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CHAPTER 1

Résumé en Français

1.1 Préambule

Ce chapitre reprend l’ensemble des développements présentés dans ce manuscrit, en langue

française, puisque le reste du manuscrit est, lui, rédigé en anglais. La structuration des paragraphes

au sein de ce chapitre suit la structuration de la thèse.

L’objectif de ce chapitre est de restituer l’argumentation scientifique qui est articulée tout au

long du manuscrit en anglais. Bien évidemment, comme il s’agit d’un résumé, il nous a semblé que

faire apparaître l’ensemble des références bibliographiques aurait nui à la lecture. Nous renvoyons

donc le lecteur aux chapitres suivants, en anglais, pour des références plus complètes.

La thèse est organisée en six chapitres, sans compter celui-ci. Le premier de ces chapitres

est une introduction situant notre travail dans une perspective informatique, c’est-à-dire dans la dé-

marche de contribuer à définir ce que peut on ou non calculer une machine. En effet, dans la mesure

où nous abordons des systèmes liés à la vie artificielle et aux réseaux de neurones, nous aurions pu

vouloir proposer une modélisation du vivant, ce qui nous aurait conduit à d’autres raisonnements

ainsi qu’à d’autres justifications. Cette précision du cadre informatique est nécessaire dans le con-

texte pluridisciplinaire dans lequel notre travail s’insère. Le deuxième chapitre porte sur une étude

des différents paradigmes de calcul, pour aboutir à la notion de calcul cellulaire, auquel nous avons

proposé une contribution. Une fois que les paradigmes de calcul qui nous concernent sont définis,

le troisième chapitre aborde la question du temps dans les réseaux de neurones, en passant en revue

les différentes approches que l’on peut trouver dans la littérature. Dans la mesure où nos travaux

abordent explicitement la prise en compte du temps, il s’agit dans ce chapitre de donner les élé-

ments de bibliographie qui permettent de positionner notre approche par rapport à l’état de l’art,

dans la perspective du calcul temporel. Le quatrième chapitre est un développement du troisième,

puisqu’il met en avant les approches par cartes auto-organisatrices des apprentissages temporels.

Nous profitons de ce chapitre pour rappeler les bases des cartes auto-organisatrices, puisque nos

travaux reposent sur ce paradigme d’auto-organisation pour capturer la dynamique du flux des

entrées soumises au système. Le cinquième chapitre présente notre modèle à proprement parler,

modèle qui se situe à la frontière des systèmes de calcul cellulaires, des systèmes d’apprentissage

temporel, et des systèmes auto-organisés. C’est cette position, à la croisée de ces trois domaines,

qui est selon nous originale dans nos travaux. Enfin, le sixième chapitre conclut le manuscrit en

faisant le bilan de l’approche et en ouvrant quelques perspectives pour les travaux qui pourront faire

suite aux nôtres.

Avant d’entrer dans le résumé de la thèse, nous souhaiterions souligner ici qu’au-delà de la

présentation du modèle que nous proposons, nous avons souhaité faire un point le plus complet

possible sur l’état de l’art des trois domaines mentionnés ci-dessus, de façon synthétique. Nous



2 Chapter 1. Résumé en Français

espérons également par cette contribution bibliographique pouvoir clarifier le domaine et aider

l’orientation des travaux futurs de l’équipe.

1.2 Introduction

De l’époque sumérienne (2400 avant JC) où les premières formalisations du calcul ont vu le jour

à l’époque actuelle, l’Homme a cherché à automatiser les calculs, pour des besoins économiques

et scientifiques. Initialement, il s’agissait de développer les mathématiques, les outils permettant

d’enchaîner les calculs étant essentiellement le papier et le crayon, ce qui a changé récemment

avec l’arrivée des ordinateurs et leur montée en puissance. Actuellement, cette puissance est telle

qu’elle génère de plus en plus de besoins en calcul. Pour répondre à ces besoins, les scientifiques

envisagent des paradigmes pris à d’autres disciplines, comme la mécanique quantique, l’ADN, mais

aussi le cerveau humain.

1.2.1 Émergence de la calculabilité, fonctionnalisme et intelligence

Dès les années 30, en réponse au problème de décision posé par Hilbert, Alan Turing propose un

outil formel, la machine de Turing, permettant de définir la calculabilité. Cette machine consiste

en une bande infinie mono-dimensionnelle sur laquelle peuvent être inscrits et lus des symboles. À

cette bande s’ajoute une machine à états, dont les transitions sont contrôlées par le symbole présent

sur la bande à l’endroit pointé par une tête de lecture. Une transition conduit à un changement

d’état, mais aussi à l’écriture d’un symbole sur la bande, ainsi qu’au déplacement de la tête de

lecture d’une position, vers la gauche ou vers la droite. Les règles décrivant les transitions sont le

programme exécuté par la machine, et sont la définition formelle d’un calcul.

La calculablilité ainsi définie, par la thèse de Church-Turing, permet de délimiter le périmètre

des méthodes calculables, c’est-à-dire des méthodes impliquant un nombre fini d’étapes. Toutefois,

toutes ces méthodes ne sont pas nécessairement efficaces, et il existe des problèmes non calculables.

Le calcul de ces problèmes-là est l’hyper-computation, pour lequel d’autres machines formelles ont

été définies, mais aucune ne semble physiquement réalisable. La notion de machine a fait l’objet de

nombreux débats philosophiques, avec l’idée de savoir si cette notion pouvait s’étendre au cerveau

humain, par exemple.

Bien au-delà de la réponse au problème de décision de Hilbert, la formalisation de la calcu-

labilité sous forme de machines pose la question de savoir si une machine peut penser, être dotée

d’intelligence. Alan Turing a proposé le fameux test, très controversé, où c’est à un humain de

qualifier si oui ou non l’agent avec lequel il interagit via un clavier, est doté d’intelligence. Turing

pensait que la physique du système nerveux pouvait être approchée d’aussi près qu’on le souhaitait

par un programme informatique, qui par conséquent aurait les même propriétés d’intelligence que

le système nerveux qu’il modélise. C’est le type d’arguments repris plus tard par Putman, sous le

terme de théorie fonctionnaliste, lorsqu’il introduit l’intelligence comme une fonction entre entrées

et sorties, indépendemment du support physique (i.e. il n’est pas nécessaire de posséder un cerveau

biologique pour être intelligent, il suffit que le système ait de quoi réaliser les mêmes fonctions).

C’est ainsi qu’est introduite l’idée de l’intelligence, la pensée, comme un processus computa-

tionnel. Par conséquent, le cerveau, lui, apparaît selon cette approche comme un calculateur, et
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donc comme le siège de processus informatiques. Là encore, cette idée fait l’objet de nombreux

débats philosophiques, argumentant que les ordinateurs ne font qu’imiter l’intelligence (i.e. rejet

de l’argument fonctionnaliste).

Au niveau informatique, ce qui ressort de ce débat est l’idée qu’une informatique adéquate, dif-

férente de l’algorithmique traditionnelle, peut permettre d’aborder l’intelligence. Turing lui-même,

alors que l’informatique n’était qu’à son commencement, avait émis l’hypothèse d’une informa-

tique évolutionniste, de systèmes adaptatifs pouvant modifier les règles qui commandent au calcul

qu’ils réalisent.

1.2.2 Architectures numériques

Depuis les premières machines à calculer numériques, faites de ressorts, de billes, puis la no-

tion introduite par Alan Turing de machines où les programmes sont stockés, qui a été instanciée

physiquement par Von Neumann, les électrons remplaçant les billes, des efforts de technologies

colossaux ont été réalisés pour construire des ordinateurs de plus en plus puissants.

L’architecture de Von Neuman, que l’on retrouve encore dans les CPU d’aujourd’hui, souf-

fre d’un goulot d’étranglement, puisque c’est sur un bus commun que circulent les instructions et

les données, séquentiellement. L’essentiel du trafic d’information n’est pas dû au calcul lui-même,

c’est-à-dire aux instructions et aux données, mais à la circulation des informations (adresses) néces-

saire à retrouver ces instructions et données en mémoire. Certaines architectures dédiées (comme

les DSP) s’écartent du paradigme de Von Neumann, pour des raisons d’efficacité, mais elles sont

en général moins flexibles en terme de programmation (modification du programme en cours de

son exécution, etc.).

Aujourd’hui, il y a une saturation des accélérations que l’on peut attendre des architectures

de Von Neumann, pour des raisons physiques, aussi bien en raison de la limitation des vitesses

d’échange à la vitesse de la lumière que de la résolution spatiale des constituants élémentaires,

sans parler de la consommation énergétique qui s’élève significativement avec la miniaturisation et

l’augmentation des fréquences d’horloge.

Pour ces raisons, des constructeurs comme Intel ont choisi de s’engager sur la voie de

l’augmentation du nombre de cœurs sur un même composant plutôt que l’accélération de la

fréquence et la miniaturisation, ce qui implique que l’augmentation de la puissance de calcul réal-

isable sur une machine passe désormais nécessairement par la capacité des algorithmes que l’on

souhaite exécuter à être parallélisés, ce qui n’est pas assuré pour un algorithme séquentiel quel-

conque.

Il est alors important de distinguer le parallélisme des architectures de celui des programmes.

En effet, le premier est lié à la machine, et correspond à une solution physique pour sortir du goulot

d’étranglement imposé par l’architecture de Von Neumann. C’est celui que nous avons évoqué ci-

dessus. Le parallélisme des programmes, lui, est une propriété de l’algorithme qui autorise le calcul

à être exprimé comme l’exécution de plusieurs processus concurrents. Cela dit, un algorithme

s’exprimant en termes de processus concurrents ne s’implémente pas forcément naturellement sur

les architectures multi-cœur actuelles.

En conclusion, les architectures matérielles parallèles sont indéniablement les machines qui

permettront à l’avenir d’augmenter la puissance de calcul des ordinateurs, mais écrire des algo-
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rithmes qui aient une nature distribuée compatible avec ces machines-là reste un défi, pour lequel

il est nécessaire de pouvoir penser les concepts de calculs adéquats.

1.2.3 Le calcul cellulaire

Le cerveau humain, si l’on accepte l’idée de le considérer comme un calculateur, est indéniable-

ment différent des machines de Von Neumann du fait de son architecture, qui met en relation 1011

neurones, avec des poids de connexion évoluant au fur et à mesure du temps et des stimulations

reçues. Nous adhérons à l’idée selon laquelle, du fait de son architecture non séquentielle, le

cerveau humain peut implémenter des calculs super-Turing.

Pour cette raison, nous nous intéressons ici au domaine du calcul neuronal, puisque c’est selon

ce paradigme que le cerveau produit le comportement, les raisonnements, les différents types de

mémoires, etc. C’est en cela que notre démarche, du point de vue informatique, est résolument

connexionniste.

Parallèlement aux formalisations séquentielles du calcul proposées par Turing, Von Neumann

et Ulam ont proposé une autre formalisation du calcul, plus proche dans sa nature de ce que réaliste

le cerveau : les automates cellulaires. Il s’agit d’unités réalisant toutes le même calcul en parallèle,

avec une connectivité entre elles qui repose sur une notion de voisinage. Le jeu de la vie de Conway

en est un exemple célèbre. Différents types de calculs ont été abordés par des approches cellulaires,

allant de la création d’un additionneur binaire au traitement d’image, avec des supports variés,

comme par exemple des bactéries.

Il convient, afin de préciser la suite de notre argumentation, de reprendre la taxonomie de Sipper

à propos des systèmes informatiques pour y situer notre approche. Un calcul cellulaire est définit

par l’équation

simple + largement parallèle + local = calcul cellulaire (1.1)

Un calcul simple signifie que chacun des calculateurs élémentaires de l’architecture réalise un

calcul simple, une opération logique par exemple. Le caractère largement parallèle signifie que

le nombre de calculateurs élémentaires est de l’ordre de quelque milliers, centaines de milliers,

voire plus encore. Enfin, la localité concerne la connectivité. Elle suppose une topologie au niveau

des calculateurs de l’architecture (par exemple leur localisation dans un espace). La localité de la

connectivité signifie alors que les voisinages définis par les connexions sont les mêmes que ceux

définis par la topologie, i.e. que les calculateurs connectés entre eux sont ceux qui sont voisins au

sens de la topologie.

1.2.4 Capacités du calcul cellulaire

Les deux voies classiques pour aborder le calcul sont la construction de systèmes physiques qui

réalisent des calculs d’une part, et des formalisations et outils mathématiques permettant de définir

la calculabilité, de dériver des preuves, d’autre part. Wolfram propose une troisième voie, celle du

calcul expérimental.

Dans le contexte du calcul cellulaire en effet se manifeste la notion d’émergence. Il s’agit

de propriétés qui apparaissent au sein du calcul sans que le calcul ait été spécifiquement conçu

pour les faire apparaître. Les phénomènes émergents sont en général difficile à formaliser, le lien
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entre la propriété qui émerge et le calcul qui la fait émerger étant souvent complexe à établir, du

fait de la non-linéarité des calculs par exemple. C’est pourquoi il est intéressant de considérer le

système qui calcule comme un objet sur lequel on peut expérimenter, ce qui est assez inhabituel en

mathématiques, mais très fréquent dans le domaine du calcul cellulaire.

En fait, nombre de systèmes naturels peuvent se modéliser sous forme d’un calcul cellulaire.

Il s’agit des systèmes composés de multiples constituants interagissant localement les uns avec les

autres. Dans ces modèles, les calculateurs élémentaires, i.e. les cellules, représentent les constitu-

ants et les connexions entre cellules représentent les interactions au sein du système modélisé. Aussi

peut-on modéliser sous cette forme la mécanique des fluides, des réseaux sociaux, l’économie, etc.

Wolfram fait le constat que les mathématiques sont plutôt inadéquates pour exprimer la com-

plexité. Or, contrairement à la mécanique de certains fluides qui se décrit analytiquement par une

théorie des champs, il existe des systèmes complexes que l’on ne peut réduire à des équations de

champ, et dont la formalisation minimale est celle d’un automate cellulaire, dont on ne peut ex-

plorer les propriétés autrement qu’en émulant son exécution. C’est ce qu’évite l’analyse à partir de

systèmes d’équation différentielles quand le système modélisé le permet.

Wolfram s’est donc attaché, dans le cas ultra-simplifié des automates cellulaires binaires, à

explorer exhaustivement les règles de mise à jour possible des cellules, et à documenter le com-

portement de l’automate cellulaire résultant dans chacun des cas.

Depuis, on a constaté que les règles conduisant à des comportement intéressants étaient rela-

tivement rares, et que certaines d’entre elles conférait à l’automate cellulaire qu’elles génèrent une

puissance de calcul équivalente à celle des machines de Turing. Toutefois, comme déjà énoncé, un

des enjeux de la compréhension de ces systèmes et bien d’aborder la calculabilité super-Turing.

Aujourd’hui, il existe des composant physiques dont la structure peut être décrite comme celle

d’un calculateur cellulaire. Il s’agit par exemple des FPGA et des GPU. Rappelons que le calcul

intensif de demain repose sur la possibilité de distribuer nos algorithmes sur ce type de structures,

ce qui est un argument de poids pour la promotion du calcul cellulaire.

1.2.5 Systèmes neuronaux cellulaires et complexes pour la modélisation de l’état
d’un système dynamique

La plupart des processus naturels s’inscrivent dans l’écoulement temporel. Autrement dit, il s’agit

de systèmes dynamiques. L’étude des systèmes dynamiques est un domaine entier des mathéma-

tiques. Dans ce contexte, on définit un système dynamique comme un système ayant à chaque

instant un état, dont l’évolution dépend de l’état au temps précédent et de l’entrée externe1 reçue

au temps précédent2. Le système produit une sortie, parfois considérée comme une observation,

qui est fonction de l’état courant et de l’entrée courante. La loi d’évolution ne s’appuie que sur le

temps précédent, ce qui fait du système dynamique un système markovien. En revanche, la sor-

tie/observation peut être ambiguë, lorsqu’à deux états pourtant disjoints correspond une seule et

même observation. On parle dans ce cas de systèmes dynamiques partiellement observés.

1Quand une entrée externe est considéré, on parle de système dynamique non autonome.
2La notion de pas de temps précédent renvoie à des systèmes dynamiques à temps discret. Il existe bien entendu

des formalisation à l’aide d’équations différentielles pour les systèmes dynamiques à temps continu, formalisations pour
lesquelles ce que l’on dit dans ce paragraphe se généralise aisément.
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L’étude de systèmes dynamiques via la séquence des observations qu’ils produisent est large-

ment abordée dans la littérature informatique, du fait des enjeux de modélisation de systèmes

réels (bourse, etc.) qui motivent ces recherches. Cette étude est rendue encore plus complexe

lorsque le système est partiellement observé, puisqu’il faut alors inférer l’état réel à partir du flux

d’observations pour comprendre “où le système en est” de sa séquence d’exécution.

Nous nous intéresserons dans ce document aux approches neuronales de ces systèmes, car

ces approches, qui reposent sur la notion de réseaux récurrents, n’ont eu de cesse d’étudier cette

question, sur la base d’une informatique qui justement correspond à celle à laquelle nous nous

proposons de contribuer. Toutefois, à l’heure actuelle, le domaine est surtout dominé par les réseaux

de neurones, qui sont certes une mise en œuvre de calculs distribués mais ne sont pas pour autant

des approches cellulaires à proprement parler3. Les approches cellulaires, de leur côté, restent

assez focalisées sur les automates cellulaires, qui modélisent des systèmes dynamiques autonomes.

Il nous a donc semblé pertinent d’aborder la question de l’identification des états d’un système

autonome d’après la séquence d’observations qu’il produit, mais en sortant du cadre des réseaux

neuronaux pour s’aventurer dans le territoire plus restreint des systèmes cellulaires où ces questions

n’ont pas vraiment été abordées à notre connaissance.

1.2.6 Problématique de la thèse

Les réseaux de neurones ont su faire la preuve de leur capacité à résoudre des problèmes sur la base

d’une architecture connexionniste et distribuée. Certains de ces réseaux sont capables également

d’auto-organisation, qui est une propriété émergente de première importance. Dans le cadre des

réseaux de neurones, l’étude de systèmes dynamiques a été largement abordée dans la littérature,

mettant l’accent sur une notion particulièrement puissante d’apprentissage temporel, mais soulig-

nant également les difficultés posées par ces concepts.

Les réseaux de neurones ne sont toutefois pas parfaitement compatibles avec la définition du

calcul cellulaire, définition qui, nous l’avons vu, est un garant de la possibilité des algorithmes

cellulaires à profiter des évolutions technologiques futures des calculateurs.

La thèse propose par conséquent de faire le point sur ces différentes approches, et de proposer

une architecture cellulaire, au sein de laquelle émergent des phénomènes d’auto-organisation, pour

la prise en compte de séquences temporelles issues d’un système dynamique. Le modèle proposé

sera étudié expérimentalement, à l’instar de ce que prône Wolfram pour les systèmes complexes,

et il est conçu comme pouvant constituer lui-même un composant élémentaire d’une architecture

cellulaire beaucoup plus vaste.

3Il leur manque l’argument de localité.
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1.3 Paradigmes de calcul parallèle : du calcul classique au calcul cel-

lulaire

1.3.1 Introduction

Comme énoncé précédemment, les limitations de l’architecture de Von Neumann résident dans le

fait que les données comme le programme doivent partager le même bus, ce qui rend les exécu-

tions intrinsèquement séquentielles. Toutefois, la taille des problèmes informatiques ne cessant

d’augmenter, du point de vue des calculs comme du point de vue des données, la recherche en

architecture des machines n’a eu de cesse d’améliorer les instanciations de l’architecture de Von

Neumann.

En ce qui concerne les données, elles sont fréquemment trop grandes pour pouvoir tenir en

mémoire, et il existe de nombreuses techniques (mémoire virtuelle, etc.) qui permettent au pro-

grammeur de disposer d’énormément de mémoire, comme si celle-ci était physiquement présente

sur la machine qui réalise les calculs. On rencontre ce type de problèmes dans le vaste domaine de

la fouille de données, où sont en plus développés des algorithmes incrémentaux plutôt que des algo-

rithmes batch qui nécessiteraient de disposer de toutes les données en une fois. D’autres techniques

comme la sélection de données sont également employées, mais l’ensemble de ces approches reste

difficile à mener dans le cas de très grandes quantités de données.

D’autre part, certains algorithmes sont gourmands en calcul bien plus qu’en données, comme

par exemple les méthodes de Monte Carlo où les méthodes où l’on doit explorer systématiquement

l’ensemble des paramètres pour trouver une solution optimale. Dans ces problèmes-là, il n’y a

pas de raccourci algorithmique, de dépendance entre certains aspects, qui puissent accélérer la

résolution.

Pour ces raisons, il a été nécessaire d’envisager des architectures parallèles pour sortir du cadre

de l’architecture de Von Neumann, même si la technologie permettait de l’accélérer. L’idée la plus

immédiate, du fait de l’existence de réalisations physiques de la machine de Von Neumann, a été

de construire des architectures parallèles en mettant ce type de machines en réseau. Toutefois, il

existe un autre paradigme de parallélisation, qui consiste à considérer une myriade de petites unités

de calcul. Ce paradigme, dont nous avons parlé précédemment, a été suggéré dès les années 40,

comme l’illustre par exemple les travaux sur les automates cellulaires où les réseaux de neurones.

Cette idée touche également à des considérations philosophiques et physiques sur le monde, puisque

certains auteurs considèrent l’univers comme un gigantesque calculateur, cellulaire en se sens que

les calculs sont localisés sur l’espace physique, au sein duquel ils interagissent de proche en proche.

Finalement, on peut considérer que tout ce qui se produit dans le monde est une forme de calcul,

dont on approchera la nature par une étude informatique des systèmes à grains fin. Dans les para-

graphes suivants, nous nous efforcerons de bien introduire ce concept, sur la base des fondements

plus théoriques de l’informatique.

1.3.2 Modèles de calcul

Depuis les travaux de Church et Turing visant à définir la calculabilité, dont nous avons parlé

précédemment, l’informatique théorique a distingué différents types de complexité des calculs,
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invoquant pour ce faire des machines abstraites. La capacité d’un calcul à être réalisé ou non par

telle ou telle machine permet de classifier les problèmes.

Ces machines théoriques sont toutes dotées d’états, au sein desquels on distingue un état initial

et un ou plusieurs états finaux. Les états sont visités suite à des transitions. Les transitions d’état

sont consécutives à la présentation d’une succession d’entrées, d’une séquence. Si la réalisation

du calcul conduit la machine dans l’un de ses états finaux, la séquence d’entrée est acceptée par la

machine, sinon elle est rejetée. La séquence d’entrée est une instance du problème à traiter, et on

parle de problème de décision quand il s’agit de déterminer si une machine va ou non accepter une

séquence donnée.

Depuis Chomsky, ces problèmes de décision se ramènent à l’étude de la théorie des langages

formels, les langages étant regroupés en une successions d’ensembles inclus les uns dans les autres,

pour lesquels l’appartenance d’une séquence aux ensembles peut être décidé par un type de machine

adéquat.

1.3.2.1 Machines à états finis

Il s’agit d’un graphe orienté où les sommets sont des états, et où les arêtes sont des lettres4. Quand

une machine est dans l’état courant, la présentation de la prochaine lettre en entrée provoque la

transition de la machine vers l’état relié à l’état courant via l’arête étiquetée par cette lettre-là.

Si pour chaque état, il n’y a qu’une seule arête pour chaque lettre, on parle de machine à

état déterministe (DFA5). Les séquences que l’on peut reconnaître par une DFA forment la classe

des langages réguliers. Une classe importante de machine à états finis sont les transducers. Ces

machines génèrent en sortie une séquence de même taille que le mot en entrée. Pour ce faire, dans

le cas des machines de Mealy, on définit pour la machine une fonction qui à un couple état-entrée

associe une sortie. Cette fonction est appliquée à l’état courant et à l’entrée courante pour former

la sortie.

Les machines à états finis peuvent reconnaître le langage 0n1m, mais ne peuvent pas n’accepter

que les mots pour lesquelsm > n. Cet exemple illustre le besoin de machines plus complexes pour

reconnaître des langages6 plus difficiles à décrire.

1.3.2.2 Automates à pile

Les automates à pile permettent de reconnaître des langages non contextuels (e.g anbn). Il s’agit

d’un automate à états finis auquel on adjoint une pile infinie. Les transitions peuvent empiler ou

dépiler des symboles sur la pile. Toutefois, le langage anbncn ne peut pas être reconnu par un

automate à pile. Ce type de langage, dit langage contextuel, requiert la puissance d’une machine de

Turing.

4Conformément à la théorie des langages, nous parlerons d’entrées littérales pour les machines, la séquence d’entrée
formant ainsi un mot.

5Deterministic Finite Automaton
6des ensembles de mots.
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1.3.2.3 Machines de Turing et ordinateur de Von Neumann

Les machines de Turing sont définies par une machine à états finis à laquelle on ajoute une bande

infinie7. La séquence d’entrée est écrite sur la bande. La machine dispose d’une tête de lecture qui

pointe sur une case de la bande. La transition est déterminée par l’état courant et la valeur de la

bande au niveau de la case pointée. La transition consiste à écrire une autre valeur sur la bande,

déplacer la tête de lecture d’un cran à gauche ou à droite, et changer d’état.

Les langages reconnus par les machines de Turing sont dits langages récursifs. Les problèmes

de décision associés (décision d’appartenance) deviennent assez épineux, car on ne sait pas tou-

jours déterminer si la machine conduira où non à une décision d’appartenance (voir problèmes de

décidabilité).

La grande force des machines de Turing est l’existence d’une machine de Turing universelle.

En effet, pour une machine donnée, ces règles d’activation peuvent être codées et écrites sur une

bande, suivies de la séquence à reconnaître. La machine de Turing universelle est une machine

capable de lire ces règles, et d’appliquer le calcul correspondant à la donnée qui les suit sur la

bande.

On peut déduire de cette propriété que les règles régissant la machine de Turing universelle

peuvent guider la conception d’une machine physique réelle, pouvant réaliser un calcul décrit en

mémoire. La mémoire (la bande), devient donc le siège de l’hébergement des données mais aussi

d’une description du calcul à réaliser, en d’autres mots, du programme. C’est sur cette base que

Von Neumann a pu définir l’architecture qui préside à la construction des ordinateurs, avec les

problèmes de séquentialité dont nous avons parlé.

1.3.3 Modèles d’exécution massivement parallèles

1.3.3.1 Définitions et terminologie

Les architectures parallèles peuvent se décomposer en deux catégories :

• les architectures à gros grains, qui sont la majorité des architectures parallèles, et consistent

en la mise en réseau de processeurs complexes, i.e. en la mise en réseau de machines de Von

Neumann,

• les architectures à grain fin, qui sont la mise en connexion de calculateurs bien plus simples,

mais en plus grand nombre. Ces architectures sont bien moins répandues, et sont davantage

un paradigme prometteur. Le calcul cellulaire est une sous-classe des architectures à grain

fin.

La distinction entre les deux catégories nous semble relever de la logique du calcul élémen-

taire (simple vs. complexe) plutôt que du nombre de processeurs lui-même, puisque l’on trouve

aujourd’hui des architectures à gros grains pouvant compter un millier de processeurs.

1.3.3.2 Synchronisation

La synchronisation des calculs est un point crucial au sein des architectures parallèles.

7suivant les deux directions.
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On parlera de système synchrone si chaque calcul est sujet à une exécution pas de temps par pas

de temps, et que ces pas de temps sont effectués en même temps sur chacun des processeurs, chacun

n’ayant connaissance que des informations fournies au pas de temps précédent par les processeurs

auxquels il est connecté.

Les systèmes asynchrones sont ceux pour lesquels les pas de temps sont réalisés sans syn-

chronisation au niveau global de l’architecture. On pourra parfois vouloir s’assurer que tous les

processeurs aient exécuté un pas de temps avant que ne soit autorisé pour chacun d’eux l’exécution

du pas de temps suivant.

1.3.4 Modèles à gros grain

L’idée de ce paragraphe est de rappeler les grands principes de constitution des architectures par-

allèles classiques, afin de mieux articuler plus tard les différences avec les architectures qui nous

concernent. Ces architectures parallèles classiques diffèrent entre elles pas la nature du couplage

des processeurs, et les ressources qu’ils partagent. Ainsi, selon les cas, les processeurs peuvent être

très fortement couplés, ou au contraire très peu.

1.3.4.1 Multiprocesseurs fortement couplés

Le cas de multiprocesseurs fortement couplés recouvre celui des machines qui partagent la même

mémoire, voire le même bus. On peut l’étendre au cas où la mémoire est distribuée. Dans ce cas,

seuls des groupes de processeurs partagent entre eux la mémoire, mais ces groupes communiquent

via un bus partagé dédié. Ce couplage fort se traduit également au niveau du système d’exploitation,

qui a connaissance de l’architecture parallèle et qui lui est, lui aussi, dédié.

La taxonomie de Flynn permet de regrouper ces architectures parallèles en trois grandes

classes :

• Single Instruction, Multiple Data (SIMD). Chaque processeur applique la même séquence

d’instructions à des données différentes.

• Multiple Instruction, Multiple Data (MIMD). Il s’agit du cas typique d’un réseau de ma-

chines.

• Multiple Instruction Single Data (MISD). C’est un modèle plutôt rare, utilisé par exemple

dans le cas d’architectures redondantes pour la robustesse aux pannes matérielles.

• Single Instruction, Single Data. Il s’agit d’une machine de Von Neuman classique, non

parallèle en fait.

Outre les problèmes matériels de partage de mémoire, la programmation de ces architectures

parallèles n’est pas forcément simple.

1.3.4.2 Multiprocesseurs faiblement couplés

Les machines réparties sur internet, ayant des architectures logicielles, des périphériques, voire des

systèmes d’exploitation différents, peuvent être vues comme un calculateur parallèle à partir du
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moment où elles concourent à l’exécution d’un même calcul. Le lien entre les différentes machines

peut se faire via un middleware. Là aussi, la programmation de ces systèmes n’est pas toujours

facile.

1.3.4.3 Systèmes hybrides

L’arrivée des GPU8 sous la pression de la demande du domaine des jeux vidéo modifie profondé-

ment le paysage des machines parallèles. Ces machines ne sont en effet plus dédiées aux calculs

graphiques, car elles sont devenues au cours des évolutions de plus en plus paramétrables, pour être

largement programmables aujourd’hui. Il s’agit de machines majoritairement SIMD, qui travaillent

de concert avec un CPU.

Aujourd’hui, il existe des super-calculateurs qui sont des grappes de PC dotés de GPU, ce qui

en fait des architectures hybrides. Même si des langages de programmation des GPU de plus en

plus évolués voient le jour, la programmation de ces architectures reste délicate.

1.3.5 Modèles distribués à grain fin

Même si l’on dispose aujourd’hui de machines parallèles avec de nombreux processeurs, pouvant

être connectés via des bus très rapides, l’on est encore loin, en terme de parallélisme, des archi-

tectures des systèmes nerveux. En fait, ces derniers reposent sur l’interconnexion d’un nombre

de neurones dépassant de plusieurs ordres de grandeur le nombre de processeurs des plus grosses

machines parallèles d’aujourd’hui, mais ces neurones réalisent des fonctions relativement simples,

en parallèle. Ce type de calcul est très fréquent en biologie.

Nous souhaitons insister sur le fait que les modèles distribués qui nous concernent se réfèrent à

des paradigmes de programmation et non à une réalisation physique. Il s’agit de concevoir des

algorithmes qui s’expriment comme l’exécution parallèle de calculs simples interconnectés, ce

parallélisme pouvant très bien être simulé sur des machines séquentielle dans le but d’étudier la

dynamique de l’exécution de ces algorithmes.

1.3.5.1 Automates cellulaires

Un automate cellulaire est une machine composée de cellules disposées suivant une topologie,

usuellement en ligne ou en grille 2D. Chaque cellule se comporte comme un automate à états finis,

avec uniquement deux états, notés 0 et 1. L’entrée selon laquelle sont déclenchées les transitions

est la configuration des états des cellules avoisinantes. Ainsi, même si chaque cellule perçoit des

activités qui lui sont externes puisqu’il s’agit de l’état de ses voisines, l’ensemble des cellules

n’est pas soumis à une entrée externe, ce qui en fait un système dynamique discret autonome.

L’évaluation des automates cellulaires est synchrone.

Le jeu de la vie de Conway est certainement l’automate cellulaire le plus connu. Il s’agit d’un

automate dont les cellules sont disposées suivant une grille 2D. Il a été démontré qu’il était suffisam-

ment riche pour que l’on puisse y coder, en déterminant une configuration bien précise d’activations

8Graphical Processing Unit.
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initiales, une machine de Turing. Cette propriété est également vraie pour des automates cellulaires

aux cellules disposées en ligne.

Utiliser les automates cellulaires comme calculateurs universels est très inefficace, mais l’idée

est de montrer qu’ils ont une puissance d’expression très large. Toutefois, pour qu’un automate

cellulaire exhibe une dynamique riche, et donc expressive, il faut que les règles de transition d’état

des cellules qui le régissent autorisent une grande variabilité de motifs dans les distributions d’états,

sans être pour autant chaotiques. De tels systèmes sont décrits comme évoluant à la frontière du

chaos, et on montre que les règles qui conduisent à cette propriété sont rares, et donc difficiles à

trouver.

L’intérêt des automates cellulaires réside dans la promotion qu’ils font d’un calcul massivement

parallèle, impliquant des connexions locales. Nous avons déjà évoqué qu’ils servent de ce fait de

modèle à une vue de l’Univers comme un processus de calcul, ce qui a des répercussions aussi

bien en physique qu’en philosophie. De plus, c’est au sein de ce type de structures que peuvent

émerger des phénomènes complexes, comme l’auto-organisation, ce qui montre que l’on peut ob-

server une complexité sans qu’il soit nécessaire que les mécanismes qui lui donne naissance soient,

eux, complexes.

1.3.5.2 Réseaux de neurones comme modèles à grain fin

A l’instar des automates cellulaires, les réseaux de neurones sont un paradigme de calcul à grain

fin inspiré de la nature. Ils sont constitués d’unités de calcul simples9, mises en connexion. Les

activités des neurones ne sont pas booléennes mais scalaires, et sont obtenues comme une fonction

de la somme, pondérée par les poids hébergés par les connexions, des unités voisines.

Une autre caractéristique différencie fondamentalement les réseaux de neurones des automates

cellulaires. Il s’agit de la notion d’apprentissage. En effet, les influences d’un neurone sur un

autre sont dues au poids de la connexion qui les relie, et ce poids est sujet à des modifications

consécutives aux activations des neurones connectés. A l’instar du cerveau, les réseaux de neurones

sont des systèmes adaptatifs.

La topologie des réseaux de neurones est moins contrainte que celle des automates cellulaires,

les connexions pouvant être quelconques, sans qu’il soit nécessaire de définir une topologie de

localisation des unités. Il existe ainsi plusieurs connectivités typiques décrites dans la littérature,

comme la connectivité totale, mais surtout comme la connectivité en couches successives10.

Le perceptron multi-couches est l’archétype du réseau de neurones utilisé en apprentissage

automatique supervisé, mais il en existe des variantes où les couches les plus élevées sont recon-

nectées aux couches inférieures, formant ainsi des réseaux à couches récurrents, sur lesquels nous

reviendrons.

Par réseaux de neurones, on entend en général le modèle mathématique du neurone formel

introduit par MacCulloch et Pitts, qui est au cœur des perceptrons. Nous nous intéressons princi-

palement à ces modèles dans la mesure où ils offrent un paradigme de programmation à grain fin,

laissant de côté leur capacité à effectivement modéliser la biologie des véritables neurones. Men-

tionnons néanmoins l’existence de modèles plus élaborés, que nous pouvons, eux aussi, considérer

9les neurones
10Réseaux à couches feed-forward
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sous l’angle des paradigmes de programmation à grain fin.

Parmi ces modèles plus réalistes, on trouve l’immense littérature sur les neurones impulsion-

nels. En effet, le neurone formel de MacCulloch et Pitts manipule des scalaires, qui modélisent les

fréquences de trains d’impulsions électriques sur les fibres nerveuses. Cette approche fréquentielle

n’autorise pas de considérer les phénomènes de synchronisation d’impulsions par exemple. Nous

ne développons pas ce sujet dans nos travaux de thèse, car notre travail n’y est pas rattaché. Cela

dit, les évolutions futures des travaux sur les neurones impulsionnels devraient certainement fournir

de nouveaux paradigmes à l’informatique. Sans rentrer dans une modélisation impulsionnelle, il

existe des raffinements du modèle de MacCulloch et Pitts qui rendent compte de la dynamique

des neurones en proposant des équations différentielles temporelles pour calculer les activités des

neurones.

L’universalité11 des réseaux de neurones a été établie, à condition de ne pas se limiter aux

architectures en couches. Il a même été établi que les réseaux de neurones à activités continues

pouvaient être super-Turing. Ce résultat théorique est toutefois discutable, car il repose sur la

précision infinie des nombres scalaires, précision qui n’existe pas au sein de dispositifs physiques.

Autant on peut qualifier les réseaux de neurones comme des systèmes à grain fins, autant il

est plus délicat d’affirmer leur caractère parallèle. En effet, même si le paradigme neuronal de

base, à savoir l’interconnexion de neurones formels, n’exclut pas une évaluation parallèle, à l’instar

des automates cellulaires, il s’avère que la plupart de réseaux de neurones exigent l’activation

successive de couches. Une part non négligeable des algorithmes à base de réseaux de neurones est

donc fondamentalement séquentielle.

Cette restriction est principalement valable pour les réseaux de neurones à couches, mais tous

ne sont pas de cette nature, ce qui réconcilie les réseaux de neurones avec la notion de paral-

lélisme. Notons par exemple les réseaux de Hopfield, qui implémentent une mémoire adressable

par le contenu, ou les cartes auto-organisatrices sur lesquelles nous reviendrons, qui réalisent un

apprentissage non-supervisé.

Déterminer l’architecture neuronale adéquate pour une tâche donnée reste difficile, même si

l’universalité des réseaux neuronaux affirme que cette architecture existe. Il existe quelques ap-

proches abordant ce problème, dont des approches évolutionnaires comme celles proposées par

Randall Beer.

Enfin, mentionnons ici l’existence de travaux de parallélisation des algorithmes de réseaux de

neurones, sur clusters de PC ou sur FPGA. Il s’agit fréquemment de parallélisation de perceptrons

multi-couches, et la séquentialité que nous avions soulignée pour ces réseaux-là pose effectivement

des problèmes.

1.3.5.3 Réseaux de neurones cellulaires

Les réseaux de neurones cellulaires sont un paradigme intermédiaire entre les réseaux de neurones

et les automates cellulaires. Leur caractère cellulaire est motivé par la contrainte d’implanter ces

réseaux sur la surface de dispositifs physiques. Les neurones de ces réseaux sont des systèmes

analogiques réduits, qui s’échangent des signaux via un motif de connexions locales. Les neurones

11C’est-à-dire leur capacité à être aussi puissants que les machines de Turing
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sont dynamiques, implémentant des équations différentielles temporelles12, couplées spatialement

via le motif de connexion.

Ces systèmes sont appliqués au traitement d’image, à la résolution analogique d’équations dif-

férentielles couplées. Ils sont efficaces puisque le parallélisme à grain fin n’est pas simulé, mais

effectivement réalisé par le composant.

Ces systèmes ont la puissance de Turing si l’on autorise une adaptation du motif de connexion,

ce qui est faisable sur les derniers développements des réseaux de neurones cellulaires.

1.3.5.4 Un nouveau concept de calcul

Les modèles à grain fin que nous avons évoqués constituent bel et bien un concept de calcul, de

programmation, radicalement différent de l’algorithmique classique et des architectures matérielles

de type Von Neumann. Cette différence se situe à deux niveaux, au niveau structurel et au niveau

fonctionnel.

Au niveau structurel, on trouve ce que nous avons déjà mentionné, à savoir la simplicité des

calculateurs élémentaires dans le cas du grain fin, qui s’oppose à la puissance des processeurs

utilisés dans les architectures parallèles à gros grain. Une autre différence structurelle réside dans

la circulation de l’information.

Au niveau fonctionnel, dans les architectures à grain fin, le goulet d’étranglement que constitue

le bus où circulent à la fois les instructions et les données n’existe pas. Les calculs et les données

se font au même endroit, et les deux sont répartis.

Enfin, les architecture à grain fin peuvent adapter le calcul qu’elle réalisent au flux de donnée

qui les traverse, via des capacité d’apprentissage que nous avons citées dans le cas des réseaux de

neurones.

1.3.6 Calcul cellulaire

Le calcul cellulaire est un cas particulier de calcul à grain fin. À la caractéristique d’être constitué de

nombreux processeurs simples connectés s’ajoute la notion de localité des connexions, par rapport

à une topologie qui décrit la position des processeurs locaux dans un espace, et l’exigence d’une

évaluation strictement décentralisée.

Afin de préciser cette notion de localité, il convient de distinguer deux formes de localité. La lo-

calité fonctionnelle et la localité topographique. La localité fonctionnelle signifie qu’un processeur

n’est connecté qu’à un nombre faible d’autre processeurs, faible comparé au nombre total de pro-

cesseurs. La localité topographique ajoute que ces quelques processeurs soient en plus des voisins,

au sens topographique.

La localité topographique, exigée pour que le calcul à grain fin puisse être qualifié de cellulaire,

à plusieurs avantages. Premièrement, elle facilite l’implémentation physique du calcul. Deux-

ièmement, lorsque l’on change la taille de l’automate, il n’y a pas d’explosion combinatoire liée à

l’augmentation des connexions.

Le terme cellulaire est emprunté à la biologie, puisque les cellules d’un organisme se compor-

tent comme des agents interagissant localement les uns avec les autres. Même si le terme cellulaire

12La présence de condensateurs ajoute des termes dérivés dans la production des signaux électriques.
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est parfois utilisé pour des architectures multi-cœurs par IBM, nous le réserverons aux systèmes

vérifiant l’équation 1.1 introduite page 4.

Suivant cette restriction, il est notable que les automates cellulaires ainsi que les réseaux de

neurones cellulaires entrent naturellement de le cadre du calcul cellulaire, mais que la plupart des

réseaux de neurones, eux, en sont exclus, du fait des connexions totales entre couches qui ne re-

spectent pas le principe de localité topographique et de l’évaluation des couches dans un ordre

précis.

Notons qu’il existe un domaine en émergence, le calcul amorphe, qui consiste à définir des cal-

culateurs répartis aléatoirement sur un espace physique, espace qu’ils utilisent pour communiquer

avec leurs voisins, via des mécanisme de diffusion. Ces approches-là sont elles aussi cellulaires.

De plus, contrairement aux automates cellulaires, les calculateurs s’évaluent de façon indépendante,

c’est-à-dire de façon asynchrone. Les calculs modélisés sont par exemple des calculs de réparation

de structure, de routage d’information, réalisés de façon strictement distribuée et non supervisée.

Ces approches, du fait qu’elles sont conçues pour être adaptatives sans aucun pré-requis sur la ré-

partition exacte des processeurs, sont robustes aux dommages de structure. Il existe également des

variantes où les particules sont mobiles, ce qui revient à reconfigurer le graphe des connexions, les

relation de localité étant modifiées par le mouvement des particules.

1.3.6.1 Décentralisation au sein du calcul cellulaire

Nous avons parlé précédemment des deux types de localités que l’on rencontre dans les systèmes à

grain fin, localité fonctionnelle et localité topographique. Cette notion de localité rejoint la notion

de décentralisation des calculs.

La décentralisation est la propriété du calcul de se décomposer en plusieurs exécutions sans que

celles-ci n’aient à partager une ressource commune, de type mémoire partagée ou variable globale

typiquement. Le fait d’exiger qu’une horloge commune synchronise les calculs est contraire à la

propriété de décentralisation.

La plupart des approches de type réseaux de neurones se ramènent à du calcul matriciel. Il en

résulte que l’algorithme neuronal, une fois ramené à des opérations matricielles, n’est plus décen-

tralisé. Que ce calcul matriciel soit une façon de simuler le parallélisme d’un système décentralisé

n’est pas toujours vrai selon les architectures neuronales. De toute façon, le calcul matriciel utilisé

pour évaluer les réseaux de neurones correspond à une évaluation synchrone des neurones, syn-

chronicité qui est déjà une entorse au principe strict de décentralisation.

1.3.6.2 Propriétés architecturales

Un modèle cellulaire est nécessairement doté d’une topologie, c’est-à-dire que ses cellules sont

liées à une position dans un espace muni d’une notion de voisinage.

La topologie est déterminée à la construction du modèle cellulaire. De même, les connexions

entre cellules sont déterminées a priori, suivant la topologie. Dans le cas des automates cellulaires,

les connexions sont de simples moyens d’accès à l’activité des unités voisines, alors que dans le

cas des réseaux de neurones cellulaires, les connexions peuvent héberger un poids.

Les propriétés temporelles des modèles cellulaires sont également définies à la construction.
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Cette définition passe par le choix d’un mécanisme d’évaluation, qui peut être synchrone ou asyn-

chrone, l’asynchronisme pouvant s’implémenter de différentes façons dans le cas où une évaluation

asynchrone est retenue pour le modèle.

Les cellules sont usuellement toutes identiques13, de même que les connexions. Toutefois, il

existe des contraintes aux bords des grilles qui peuvent ou non se résoudre par une connexions

suivant un tore (les unités sur un bord sont voisines de celles du bord opposé).

Les sorties des cellules peuvent être soit discrètes, comme dans le cas extrême des automates

cellulaires à deux états d’activation, soit continues, comme dans le cas de réseaux de neurones

cellulaires.

Le comportement dynamique des unités dépend des règles d’évaluation impliquées. Nous avons

déjà évoqué la question du syncrhonisme/asynchronisme dans l’évaluation, qui a une influence es-

sentielle sur la dynamique globale du système cellulaire, mais le caractère déterministe ou stochas-

tique de la règle de mise à jour est aussi prépondérant dans la détermination de cette dynamique. À

ceci s’ajoute la modélisation du temps, qui est souvent discrète, même s’il existe dans la littérature

des modèles à temps continu, comme par exemple les réseaux de neurones cellulaires.

1.3.6.3 Propriétés opérationnelles

Programmer un modèle cellulaire consiste à ajuster ses propriétés architecturales de sorte à ce que

l’automate réalise la tâche que l’on souhaite. Du fait de la difficulté de maîtriser les phénomènes

complexes d’émergence qui surviennent au sein de ces structures, cet ajustement peut être ex-

trêmement difficile. Des approches évolutionnistes ont été proposées pour résoudre ce problème de

spécifications.

Les systèmes cellulaires sont censés être robuste aux dégradations, ou plus précisément à se

comporter d’une façon dégradée qui reste élégante. Bien que cette propriété n’ait pas été confirmée

dans les modèles actuels14, le fait que le cerveau soit un calculateur cellulaire et qu’il soit extrême-

ment robuste est l’un des arguments en faveur de la robustesse aux pannes que l’on peut attendre

de ces approches.

Mentionnons enfin les extensions du calcul cellulaire à des systèmes adaptatifs, capables

d’apprentissage. Ces approches, que l’on rencontre pour les automates cellulaires comme pour

les réseaux adaptatifs, sont une alternative au tâtonnement ou aux approches évolutionnistes lors de

la définition de l’architecture.

1.3.6.4 Ce que l’on peut attendre du calcul cellulaire

Il est courant en informatique de constater que, du moment que les modèles de programmation

sont tous Turing-équivalents, ce qui préside au choix de l’un d’entre eux pour tel ou tel problème

est qu’il peut-être plus aisé de le résoudre avec une architecture plutôt qu’une autre. Dans le cas

des approches cellulaires, si l’on s’en réfère au cerveau par comparaison aux machines de Von

Neumann, il semblerait bien qu’il y ait des problèmes faciles pour les humains et difficiles pour les

machines, comme les problèmes de reconnaissance de visage. C’est pour ces problèmes-là que l’on

13Il existe des exceptions, conduisant à des modèles plus riches de systèmes cellulaires.
14Rappelons que la programmation cellulaire n’en est qu’à ses débuts.
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peut raisonnablement espérer une solution élégante par des approches cellulaires, puisque c’est ce

que le cerveau met en œuvre.

L’informatique traditionnelle semble adaptée aux tâches où l’on résout un problème par ap-

plication successive de règles arithmétiques, mais, contrairement aux systèmes nerveux des ani-

maux, elle est en difficulté dès qu’il s’agit de prendre des décision en étant aux prises avec un flux

perceptivo-moteur permanent, incertain, et bruité. C’est ce type de tâche qui nous paraît solliciter

une recherche sur les systèmes cellulaires.

Le domaine du calcul cellulaire est encore balbutiant, et peu étudié car la démarche infor-

matique classique vise à décomposer les problèmes en une séquence de tâches imbriquées, avant

d’essayer de reconnaître dans les problèmes des parties autonomes qui coopèrent. La science des

systèmes cellulaires est donc encore loin de proposer des solutions clé-en-main pour les problèmes

informatiques d’aujourd’hui.

1.3.7 Conclusion

Les systèmes à grain fin et les systèmes cellulaires sont issus d’une formalisation de la façon dont

la nature calcule, que ce soit au niveau des système nerveux ou au niveau plus fondamental de la

physique de l’univers.

La question pourrait être de savoir si l’on peut réaliser par les systèmes à grain fin les mêmes

calculs que sur les machines classiques, de type Von Neumann, ou clusters de machines de Von

Neumann. Cette question n’est pas la bonne, puisque les deux approches sont Turing-équivalentes.

La question est plutôt de cerner les problèmes qui pourraient, à terme, être résolus élégamment

par les approches à grain fin, ou, dit autrement, de comprendre quelle informatique découle le plus

spontanément, le plus naturellement, de ces modèles.

L’existence d’un calculateur à grain fin, conçu par l’évolution, dans le crâne de chacun de nous,

est un réel moteur pour persévérer à comprendre cette informatique-là, tant les tâches résolues par

le cerveaux sont difficiles à reproduire par les approches informatiques classiques.

À ceci s’ajoute que ce sont ces architectures-là, qui lorsqu’elle sont cellulaires, peuvent pré-

tendre à bénéficier des évolutions technologiques futures, où le progrès viendra de la capacité des

algorithmes à s’étaler sur l’espace physique pour s’y exécuter en parallèle. Il n’est certainement

pas fortuit que la nature ait opté pour un système cellulaire, disposant d’une technologie lente15 et

du volume limité du corps des animaux.

1.4 Encodage du temps dans les réseaux de neurones dynamiques

Les automates cellulaires et les réseaux neuronaux cellulaires ont été utiliser pour modéliser des

phénomènes temporels. Ils faut toutefois distinguer entre les cas où le modèle cellulaire est en

interaction avec un flux d’entrée des cas où il se comporte en système dynamique autonome (par

exemple quand un réseau de neurones cellulaire résout une équation différentielle).

Les réseaux de neurones artificiels ont également été utilisés pour modéliser des phénomènes

temporels, mais nous avons vu que ces modèles à grain fin ne sont pas cellulaires. En revanche, ils

15Les signaux électriques dans le cerveau ont une vitesse de quelques mètres par seconde au maximum.
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sont plus fréquemment utilisés que les modèles cellulaires pour modéliser des systèmes dynamiques

non autonomes.

Il reste toutefois le problème de l’apprentissage au sein des structures à grain fin, problème

surtout décliné dans le cadre des réseaux de neurones, par des méthodes de type rétro-propagation

du gradient d’erreur. Ces méthodes ne sont pas compatibles avec un calcul local et distribué, et

passent difficilement à l’échelle quand le nombre de neurones augmente, puisque le nombre de

poids explose de façon combinatoire.

Nous définissons dans ce qui suit les notions de séquences et série temporelles, puis passons

en revue les différentes approches neuronales du traitement de séquence, laissant toutefois pour le

paragraphe suivant les approches fondées sur les cartes auto-organisatrices.

1.4.1 Traitement de données temporelles

Les données temporelles sont des données pour lesquelles on dispose d’une information sur la date

d’acquisition. Le traitement de cette information peut se faire en ligne, auquel cas l’algorithme

reçoit les données une par une, et réalise un calcul à chaque nouvelle donnée reçue. D’autres méth-

odes, dites batch, consistent à collecter les données dans un premier temps pour ensuite effectuer

un calcul sur l’ensemble des données collectées.

Il nous paraît nécessaire de faire la distinction entre les séries temporelles et les séquences

temporelles. Les séries temporelles sont l’échantillonnage d’un phénomène temporel16, la période

d’échantillonnage étant dépendente du problème étudié. En revanche, les séquences temporelles se

réfèrent à des données où le label temporel désigne un ordre, comme par exemple les mots d’une

phrase ou les nucléotides d’une séquence d’ADN. Alors que ces données sont d’un point de vue

informatique de même nature, la sémantique du label temporel est différente dans les deux cas, il

ne s’exprime en secondes que dans le cas des séries temporelles.

1.4.1.1 Traitement de séries temporelles

Le traitement de séries temporelles consiste en général en une classification des séries, ou de parties

de séries, mais aussi en une prédiction de l’élément de la série à venir compte tenu des éléments

déjà reçus.

La prédiction de l’élément à venir est un problème de régression, le nombre d’éléments passés

qu’il est nécessaire d’avoir à disposition dépend de la nature du problème qui génère la séquence.

Parfois, on souhaite simplement prédire, dans le cas de séquences scalaires, si le prochain élément

correspond à une augmentation du signal ou à une diminution. Le problème de prédiction, dans ce

cas, se réduit à un problème de classification.

Si la fonction de prédiction est correcte, on peut l’utiliser pour modéliser le phénomène qui

génère la séquence. Il suffit pour cela de prédire successivement les valeurs, et d’utiliser les valeurs

prédites jusqu’ici pour nourrir la fonction de prédiction qui ainsi générera les valeurs futures.

16à temps continu donc
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1.4.1.2 Traitement de séquences temporelles

On retrouve pour les séquences temporelles les problématiques de prédiction, comme pour les

séries temporelles, et par conséquent la notion de génération de séquence. Une séquence étant,

contrairement aux séries temporelles, finie, on trouve également dans la littérature des probléma-

tiques de reconnaissance, qui consistent à dire si une séquence remplit certains critères, appartient

à une classe de séquences.

Parmi les techniques impliquant des séquences, citons la prise de décision séquentielle. Ils

s’agit d’orienter une séquence d’action vers un but à atteindre. Le cadre du traitement de séquences

temporelles est propice à l’application de techniques d’apprentissage supervisé et non-supervisé, et

a donc naturellement été abordé par les approches à base de réseaux de neurones.

1.4.1.3 Ambiguïté des éléments d’un séquence

Les éléments d’une séquence, lorsqu’ils se répètent, peuvent être cause d’ambiguïtés, surtout si

le but est de s’en servir pour prédire les éléments à venir. Dans la séquence CONFONDRE, la

sous-séquence ON est suivie tantôt d’un F, tantôt d’un D. Déterminer ce qui suit le N requiert

de considérer les deux pas de temps précédents. On dit que la séquence CONFONDRE est alors

de profondeur 3. En d’autres termes, le processus qui génère la séquence à partir de l’élément

courant n’est pas markovien, c’est celui qui génère l’élément suivant de la séquence à partir des

trois derniers éléments qui l’est, d’où la profondeur 3.

1.4.2 Réseaux de neurones pour le traitement de séquences temporelles

Notre travail porte sur les systèmes cellulaires temporels. Même si les réseaux de neurones ne sont

pas cellulaires, ils n’en reste pas moins des systèmes à grain fin, et les modifications qui leur ont

été apportées pour prendre en compte les données temporelles sont intéressantes vis-à-vis de nos

travaux.

1.4.2.1 Temps interne et externe

Rappelons ici que l’activation d’un réseau de neurones, en elle-même, s’effectue suivant plusieurs

pas de temps. C’est le cas pour les perceptrons, qui ont une phase feed-forward puis feed-back de

couches en couches, mais aussi pour la relaxation d’un réseau de Hopfield, ou les mécanismes de

compétition d’une carte auto-organisatrice. Nous qualifierons ce temps-là de temps interne, lié à

l’activation de l’algorithme, même quand il traite des données statiques.

Ce qui nous intéresse ici est d’avantage un temps externe, présent dans les données, qui requiert

parfois d’adapter la structure des algorithmes neuronaux.

1.4.2.2 Les différentes représentation du temps dans les réseaux de neurones

Les adaptations des réseaux de neurones aux données temporelles consistent à modifier explicite-

ment les réseaux dans ce but. Parmi les modifications, on trouve l’ajout de tampons circulaires qui

gardent en mémoire les n derniers éléments de la séquence. Cette méthode convertit le caractère
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temporel des entrées en un vecteur spatial, appliquant alors les algorithmes classiques sur ces don-

nées temporelles spatialisées. La taille du tampon doit alors être supérieure à la profondeur de la

séquence, profondeur qui ne peut pas être nécessairement déterminée a priori.

Une autre technique consiste à ajouter des propriétés temporelles aux activations des neurones,

comme dans le cas de neurones intègre-et-tire, ou aux poids, mais la technique la plus utilisée est

celle qui consiste à considérer l’état interne du réseau comme représentatif de l’état courant de la

séquence. Il s’agit d’ajouter dans ce cas des connexions récurrentes, avec délai, au réseau, de sorte

que l’activation courante intègre les activations aux pas précédents.

1.4.2.3 Composants temporels des réseaux de neurones

Le traitement du temps suppose de pouvoir considérer l’entrée courante dans le contexte de ce qu’il

vient de se passer. Le réseau doit donc, d’une façon ou d’une autre, être doté de mécanismes de

mémorisation permettant le stockage en mémoire de ce contexte.

Une autre caractéristique des réseaux de neurones de type perceptron est qu’ils apprennent

de façon supervisée, en corrigeant la valeur qu’ils prédisent d’après la valeur qui était attendue.

Dans le cas des séquences, il s’agit de prédire l’élément courant, sur la base du contexte mémorisé

précédemment introduit.

Dans les approches neuronales donc, on retrouve ces deux composants : un système de mé-

morisation qui construit un contexte temporel, et un système de prédiction qui s’appuie sur ce

contexte.

1.4.3 Réseaux feed-forward pour le traitement de séquences temporelles

Les réseaux feed-forward sont typiquement les perceptrons multi-couches, appliqués en ce qui con-

cerne le temps à des données temporelles spatialisées, comme par exemple un mot pris globalement

et non comme une séquence de lettres. Leur apprentissage est supervisé, et se base classiquement

sur des techniques de rétro-propagation du gradient d’erreur, de couche en couche.

D’un point de vue informatique, ces techniques n’apporte rien de nouveau du fait de la présence

de données temporelles. Notons toutefois qu’en tant que perceptron, ces méthodes ne peuvent être

considérées comme cellulaires.

1.4.4 Réseaux dynamiques avec lignes à retard

1.4.4.1 Lignes à retard standard et filtrage

Il s’agit d’un tampon de type fille d’attente. À chaque pas de temps, l’entrée courante est insérée

dans la file et la perception la plus ancienne de la file en est retirée. Le réseau établit donc sa

prédiction sur la base de l’historique récent des entrées. Il existe également des systèmes de file

d’attente qui appliquent des opérations aux entrées au fur et à mesure de leur circulation dans la

file.

Une autre modification de l’architecture du réseau proposée dans le cadre de réseaux à lignes

à retard est le partage des poids. En effet, les lignes à retard ajoutent des dimensions aux entrées,

et multiplient ainsi le nombre de poids, au risque de sur-apprendre. Le partage de poids consiste
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à imposer que des groupes de poids soient identiques entre eux. Cette technique est toutefois une

entorse de plus au paradigme de calcul distribué, puisque le maintien de valeurs égales entre ces

groupes de poids est un mécanisme de supervision global des calculs.

Il existe également, pour constituer un contexte temporel sur lequel baser la prédiction, des

approches à base de filtrage temporel du flux d’entrée. Mais quoi qu’il en soit, les méthodes à base

de lignes à retard ou de filtrage ne sont pas cellulaires, du fait même de l’utilisation d’un perceptron.

1.4.5 Réseaux de neurones récurrents comme modèles à états

Plutôt que d’utiliser une structure de type lignes à retard pour représenter le contexte temporel

du flux d’entrée, l’idée développée dans le cadre des réseaux récurrents consiste à considérer que

l’activation du réseau elle-même peut stocker le contexte temporel. Pour ce faire, on ajoute à

l’architecture classique des connexions qui transmettent l’activité distante avec un pas de temps

de retard. Ainsi, l’activation courante du réseau dépend de son activation passée, qui elle même

dépendait de l’activation encore précédente, etc. Même si les retards ne sont que d’un pas de temps,

l’état instantané du réseau peut potentiellement dépendre d’un passé assez lointain, ce qui permet

d’envisager la construction d’un contexte pour des séquences très profondes.

La plupart des réseaux de neurones récurrents sont à temps discret. On peut les diviser en

deux classes, d’une part ceux qui ont des connexions symétriques17, pour lesquels on sait ramener

la dynamique à la minimisation d’une fonction d’énergie, et les réseaux aux connexions non

symétriques. Parmi les premiers, on trouve les réseaux de Hopfield et les machines de Boltzmann.

Les seconds sont très nombreux et l’on trouve parmi eux les versions récurrentes des perceptrons

et les approches de type réservoir.

L’idée générale, dans la plupart des cas, est que le réseau de neurone doté de connexions à délai

puisse apprendre la dynamique des entrées, et pour certains modèles, il a été montré qu’ils étaient

des approximateurs universels des systèmes dynamiques dont ils reçoivent le flux d’entrée18.

1.4.5.1 Les réseaux basés sur le perceptron multi-couches

Les réseaux de neurones d’Elman et Jordan sont des perceptrons, avec par conséquent une structure

en couche feed-forward. À cette structure de perceptron classique, on ajoute des lignes de délai

temporel d’un pas de temps. Ces lignes servent à activer des neurones, dont l’activité n’est que la

copie différée d’un pas de temps d’un autre neurone du réseau. Conservant la structure de couche

pour ces neurones-là également, les réseaux d’Elman et Jordant disposent en fait d’une couche de

neurones qui est la copie d’une des couches du perceptron. Il peut s’agir d’une copie d’une couche

cachée ou de la copie de la couche de sortie. Cette couche de copies différées est concaténée à la

couche d’entrée, si bien que la couche qui usuellement reçoit la couche d’entrée dans un perceptron

considère comme entrée non seulement les signaux d’entrées, mais aussi une entrée générée par le

réseau lui-même. Ces réseaux peuvent être entraînés pour générer des séquences.

Mentionnons également, toujours sur la base du perceptron, le réseau NARX, qui est un

mélange de réseaux récurrents et de réseaux à base de lignes à retards évoqués précédemment.

17Le poids entre un neurone A et un neurone B est toujours le même que le poids entre B et A.
18Cette propriété d’approximation universelle ne résout pas la question de l’apprentissage.



22 Chapter 1. Résumé en Français

L’idée est de construire une FIFO pour l’entrée, mais aussi pour la sortie du perceptron. C’est la

concaténation de ces deux FIFO qui constitue l’entrée du perceptron.

Ces réseaux, très populaires, exhibent une dynamique temporelle riche, et exploitent un principe

de récurrence pour engrammer le contexte temporel dans leur état d’activation. Basés sur le percep-

trons, ils n’ont toutefois pas le caractère cellulaire qui nous intéresse, comme nous l’avons déjà dit.

Les techniques d’apprentissage sont en effet toujours basées sur la rétro-propagation d’un gradient

d’erreur, adaptée à la structure récurrente du réseau.

1.4.5.2 Réservoirs

Les réseaux de type réservoirs reposent eux aussi sur le principe que nous avions énoncé précédem-

ment, à savoir la constitution d’un contexte temporel puis la prédiction à partir de ce contexte, plutôt

qu’à partir de l’entrée instantanée. Autant l’apprentissage permet aux réseaux récurrents de con-

struire ce contexte, autant ici, l’idée est de mettre en place une architecture produisant des contextes

riches, desquels seront extraits les contextes pertinents.

Un réservoir est constitué d’un ensemble de neurones, connectés aléatoirement par des con-

nexions avec un délai d’un pas de temps. Sous réserve de certaines conditions sur la matrice de

connexions, l’activité des neurones est telle qu’elle garde une trace des activités passées. Toutefois,

l’influence d’un événement passé s’évanouit au fur et à mesure du temps, ce qui fait que le système

n’est pas chaotique, même s’il est dépendent du passé. On retrouve la notion de frontière du chaos

que nous avions évoquée dans le cadre des automates cellulaires.

Certains neurones du réservoir reçoivent le flux d’entrée externe, et l’ensemble du réservoir

exhibe donc un contexte temporel complexe pour ce flux d’entrée. Il existe des méthodes dites

de plasticité intrinsèque qui adaptent les connexions au sein du réservoir au flux d’entrée pour

maintenir le réseau à la frontière du chaos.

Le réservoir contient un très grand nombre de neurones, dont il faut extraire ceux sur lesquels

peut se baser la prédiction. Cette extraction se fait par un perceptron simple, dont la couche d’entrée

est l’ensemble des neurones du réservoir. Le réservoir, même si en pratique il est souvent implé-

menté via un calcul matriciel, et donc une évaluation synchrone, est un système à grain fin qui

pourrait de plus être cellulaire, si on y ajoutait un critère de localité topographique sur les connex-

ions. Toutefois, le perceptron monocouche en sortie, du fait de sa connexion à tous les neurones du

réservoir, est une structure globale, ce qui va à l’encontre de l’approche cellulaire qui nous motive.

1.4.5.3 Réseaux de Hopfield

Les réseaux de neurones de Hopfield sont des réseaux totalement connectés, avec des connexions

non orientées puisque le poids de la connexion de A vers B est par construction le même que celui

de B vers A. Cette contrainte, peu plausible biologiquement, a toutefois l’avantage de permettre

l’expression d’une fonction d’énergie pour le réseau. L’activation des neurones est asynchrone.

En effet, une étape d’évaluation consiste à choisir aléatoirement une unité, puis à ré-évaluer son

activité en fonction des unités auxquelles elle est connectée.

Cette architecture implémente une mémoire adressable par le contenu. En effet, lors d’une

phase d’apprentissage préalable, si l’on présente des motifs d’activation et que l’on adapte les poids
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par une règle Hebbienne, on crée des bassins d’attractions vers ces motifs-là dans la dynamique du

réseau. Ainsi, si l’on active le réseau par la suite en lui imposant une activité proche de l’un

des motifs, la relaxation du réseau, c’est-à-dire la dynamique obtenue en réalisant successivement

des mises à jour asynchrones des activités des neurones, conduit à retrouver le motif initialement

engrammé qui est le plus proche de l’activation initiale.

Le gros intérêt de ces réseaux est l’existence de la fonction d’énergie qui décrit l’évolution du

système19, qui permet d’établir des propriétés mathématiques et d’envisager des extensions. Ainsi,

il existe des versions où l’évaluation des neurones est stochastique, ce qui conduit à la définition de

machines de Boltzmann.

Les réseaux de type Hopfield ont une dynamique temporelle basée sur une évaluation asyn-

chrone, et sont indéniablement à grain fin. Il ne leur manque que des propriétés de connectivité

topographiquement locale pour être des systèmes strictement cellulaires.

1.4.5.4 Autres réseaux

Nous souhaitons ici mentionner d’autres réseaux temporels, un peu moins classiques. Il s’agit par

exemple de réseaux où les activités ou les poids sont modulés par d’autres activités, ce qui fait que

l’apprentissage se fait à différents moments à différents endroits du réseau. Il s’agit par exemple des

réseaux Long Short-term Memory, ou de réseaux de d’ordre 2 impliquant des triades synaptiques.

Il existe d’autre part des approches à bases de réseaux récurrents à temps continus, dont

l’activation est définie par une équation différentielle. L’apprentissage pour ces réseaux est très

artificiel, impliquant parfois le recours à des approches évolutionnistes, peu compatibles avec les

modèles cellulaires qui nous intéressent.

1.4.6 Réseaux de neurones et modèles de calcul

Dans la littérature, on trouve de nombreux rapprochements entre les réseaux de neurones récurrents

et la théorie de la calculabilité. En effet, les réseaux récurrents, une fois l’apprentissage réalisé,

exhibent des états différents, issus d’une transition déterminée par l’état courant et l’entrée courante.

Ils se comportent ainsi comme une machine à états, voire un transducer quand on considère la sortie

qu’ils produisent.

Même si les problèmes liés à l’apprentissage de ces réseaux sont épineux, mais il s’agit si

l’on compare aux machines d’une phase de programmation qui n’est jamais triviale, les réseaux

récurrents réalisent des machines théoriques de reconnaissance de langages, ayant potentiellement

la puissance d’expression des machines de Turing, ce qui motive par conséquent des recherches

plus proches de l’informatique théorique à leur sujet.

1.4.7 Conclusion

Peu de modèles cellulaires ont fait la preuve qu’ils pouvaient implémenter une structure de traite-

ment de l’information temporelle. En revanche, même s’ils ne sont pas cellulaires au sens strict,

les réseaux de neurones sont des systèmes à grain fins proches des systèmes cellulaires. Ils ont été

19Il s’agit d’une fonction de Lyapunov.
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très utilisés pour le traitement de séquences temporelles, et on tracé la voie du traitement séquentiel

par les architectures à grain fin, traitement qui rejoint des arguments sur leur puissance de calcul

théorique.

Il reste toutefois une classe de réseaux de neurones que nous n’avons pas abordée, les cartes

auto-organisatrices. Elles sont au cœur des travaux que nous proposons, aussi leur avons nous

réservé le paragraphe suivant.

1.5 Cartes auto-organisatrices pour le traitement de séquences tem-

porelles

Initialement inspirées du cortex cérébral, les cartes auto-organisatrices de Kohonen (SOMs) sont

aujourd’hui une technique d’apprentissage automatique non-supervisé utilisée pour de nombreuses

applications. Elles ont mis en avant des techniques de quantification vectorielle avec restitution

de topologie, techniques qui ont évolué depuis. Dans ce paragraphe, nous nous concentrerons sur

le principe des cartes de Kohonen et examinerons la façon dont elle peuvent permettre une auto-

organisation temporelle.

1.5.1 Cartes auto-organisatrices de Kohonen

Une carte de Kohonen est un ensemble d’unités organisé suivant une topologie, souvent 2D. En ce

sens, leur structure est assez proche de celle d’un automate cellulaire. Cette topologie permet de

définir une notion de voisinage entre les unités. Ce voisinage est donné a priori, lors de la définition

de la carte.

Comme nous nous situons dans un contexte de quantification vectorielle, chaque unité

représente un prototype des configurations que peuvent prendre les entrées fournies à la carte.

Ce prototype est une entrée particulière, stockée par l’unité. L’espace des entrées est un espace

métrique, et la distance au sein de cet espace est à bien distinguer de la distance induite par la

topologie mentionnée plus haut. En effet, deux unités proches sur la carte peuvent avoir des proto-

types éloignés dans l’espace des entrées, c’est-à-dire des prototypes très peu ressemblants.

L’apprentissage au niveau de la carte se fait en lui présentant successivement des entrées.

L’algorithme consiste à d’abord déterminer quelle unité a le prototype le plus proche de l’entrée.

On appelle cette unité best matching unit (BMU). Notons, même si ce n’est pas nécessaire ici, que

l’on peut définir pour chaque unité une activation, qui est une fonction décroissante le la distance

entre le prototype de l’unité et l’entrée courante. Au regard du profil d’activation des unités, la

BMU est donc celle qui est la plus active. Contrairement aux cartes de Kohonen, d’autres algo-

rithmes requièrent que cette notion d’activation soit explicitée. Une fois la BMU déterminée donc,

on définit une zone d’influence au niveau du voisinage sur la carte de la BMU. L’influence est max-

imale au niveau de la BMU, et décroît progressivement au fur et à mesure que l’on s’en éloigne.

Une fois cette influence déterminée, l’apprentissage consiste à rapprocher les prototypes de toutes

les unités de la carte de l’entrée courante. Toutefois, ce rapprochement est modulé par l’intensité

de l’influence, si bien que seuls les prototypes des unités proches de la BMU se rapprochent signi-

ficativement de l’entrée courante.



1.5. Cartes auto-organisatrices pour le traitement de séquences temporelles 25

Au fur et à mesure de la présentation des entrées, on obtient une répartition des prototypes

sur la carte qui est telle que deux prototypes d’unités voisines sur la carte sont également proches

(ressemblants) au regard de la métrique de l’espace des entrées. La réciproque, elle, peut être

fausse.

1.5.2 Traitement de séquences avec les cartes auto-organisatrices classiques

Le premier cas que nous allons considérer est celui des SOMs classiques appliquées à une transfor-

mation temporelles des entrées. On retrouve ici la même idée que pour les perceptrons auxquels on

soumet comme entrée les éléments d’une FIFO temporelle. L’idée ici est de construire également

une FIFO de longueur donnée, et de considérer ce vecteur comme l’entrée courante d’une SOM

classique. Il existe d’autres techniques de pré-traitement, comme l’application d’ondelettes ou

autres filtrages, mais l’idée reste de finalement n’appliquer ni plus ni moins qu’une SOM classique

à ces données pré-traitées.

Le second cas que nous allons considérer est celui où le calcul temporel est un post-traitement.

Considérons une SOM classique, une fois l’apprentissage réalisé. Au fur et mesure que l’on

présente la suite des entrées, on obtient une suite de BMU qui y répondent, donc une suite de

positions d’unités sur la carte. Ces trajectoires, sur l’espace topologique de la carte, sont signi-

ficative de la séquence qui a été soumise en entrée. Il existe donc plusieurs techniques visant à

comparer ces trajectoires, à les classifier, afin d’effectuer un traitement temporel.

1.5.3 Traitement de séquences avec des cartes auto-organisatrices modifiées

Dans le paragraphe précédent, nous avons mentionné des méthodes où l’algorithme SOM est utilisé

tel quel, le traitement séquentiel intervenant en pré- ou post-traitement. Il existe bien entendu des

adaptation de SOM pour tenir compte du caractère temporel des données.

Le modèle Hypermap introduit par Kohonen en est un exemple. Il consiste à utiliser deux

fenêtres temporelles glissantes centrées sur l’élément courant de la séquence. L’une est étroite et

l’autre est plus large, servant de contexte. Les prototypes de la carte sont alors doubles, puisqu’ils

représentent ces deux motifs. Le processus de détermination de la BMU s’effectue en deux temps.

Premièrement, une BMU est choisie, en fonction d’une distance n’impliquant que les prototypes

larges (contexte). On délimite dans la carte, autour de cette BMU une région au sein de laquelle on

cherche une BMU, mais cette fois-ci, en fonction des prototypes étroits, liés à fenêtre temporelle

étroite. C’est cette BMU-là qui sera retenue pour l’apprentissage. On voit ici que la spatialité

de la carte est mise en correspondance avec la temporalité de la séquence, qui s’exprime par les

prototypes contextuels. D’autres variations sur ce principe existent.

Une autre approche consiste à présenter les entrées une à une, comme on le ferait pour une

SOM classique, mais à restreindre la recherche d’une BMU dans un voisinage de la BMU élue par

l’entrée précédente. Ce mécanisme est une modification assez légère de SOM, qui là aussi crée

une dépendance entre la disposition des prototypes sur la carte et la succession des entrées de la

séquence.
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1.5.4 Modèles contextuels basés sur les cartes auto-organisatrices

À l’instar des réseaux récurrents où la ré-entrance permet de construire un état du réseau qui tienne

compte de l’historique, il existe des modèles à base de SOMs qui implémentent une ré-entrance,

de sorte à conférer au processus d’auto-organisation la capacité à représenter le contexte temporel

d’une séquence.

Dans le modèle Temporal Kohonen Map, la ré-entrance est limitée à un filtre récursif au

niveau de l’activation de chaque neurone. De façon assez proche, l’algorithme Recurrent SOM

se base d’avantage sur la variation de l’activation, limittant la récurrence à un calcul temporel sur

l’activation de chaque unité.

Nous nous intéressons plus avant aux modèles où une véritable récurrence est implémentée.

C’est le cas de l’algorithme Recursive SOM. Le profil d’activation des unités de la carte est un

vecteur, qui sert de contexte. Lorsqu’une entrée est présente, elle est comparée à un prototype de

même nature, mais les unités disposent également d’un prototype de contexte, auquel est comparé

le profil d’activation de la carte du temps précédent. L’activation de l’unité se fait d’après les

comparaisons aux deux prototypes, si bien que l’unité choisie reflète l’entrée courante mise en

contexte de la séquence passée. Cette forme de récurrente est similaire à celle implémentée sur la

base du perceptron dans le cas des réseaux d’Elman et Jordan que nous avons mentionnés.

Le vecteur de contexte dans Recursive SOM est de haute dimension, au regard de la dimension

souvent faible des entrées. L’idée qui sous-tend SOMSD et de n’utiliser l’ensemble des activations

comme contexte dans la ré-entrance, mais simplement la position de la BMU sur la carte. De façon

analogue, Merge SOM utilise le prototype de la BMU comme contexte.

Sans discuter plus avant ici des différences entre Recursive SOM, SOMSD et MergSOM,

soulignons que ces réseaux, à l’instar des réseaux récurrents, implémentent une forme de machine

à état, voire d’automate à pile.

1.5.5 Modèles de cartes auto-organisatrices hiérarchiques

On peut avoir une vue hiérarchique des séquences, considérant qu’une séquence se compose de

sous-séquences, elles-mêmes formées par des séquences plus élementaires, etc. Il existe des ap-

proches où cette hiérarchie se reflète par des structures multi-cartes hiérarchisées. Ces approches

partagent avec le modèle que nous proposons le fait d’impliquer plusieurs cartes auto-organisatrices

simultanément, même si notre modèle se rapproche davantage dans son fonctionnement des cartes

récurrentes mentionnées précédemment.

1.5.6 Du caractère cellulaire des cartes auto-organisatrices

Les cartes auto-organisatrices mettent en œuvre des unités disposées suivant une topologie, usuelle-

ment une grille, qui sert à définir un voisinage entre les unités. Cette caractéristique en fait un mod-

èle proche des modèles cellulaires. Toutefois, la sélection de la BMU reste un processus centralisé

incompatible avec une approche cellulaire.

Cette incompatibilité nous a amené à considérer un autre mécanisme de sélection sur la sur-

face de la carte, d’après les travaux passés dans l’équipe. Ces mécanismes se basent sur la no-

tion de champs neuronaux dynamiques, qui sont de bons candidats pour ramener les processus
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d’auto-organisation mis en avant par les cartes auto-organisatrice dans le domaine des algorithmes

cellulaires.

1.5.7 Calcul cellulaire à base de cartes auto-organisatrices et de champs neuronaux
dynamiques

Les champs neuronaux, comme le terme “champ” l’indique, sont des réseaux de neurones organisés

suivant une topologie, usuellement bidimensionnelle. Chaque neurone du champ est relié à ses

voisins au sens de cette topologie via deux types de connexions. Les connexions excitatrices le

relie à un voisinage proche, et amènent le neurone à être excité si ses voisins proches le sont. Les

connexions inhibitrices, elles, s’étendent plus largement autour du neurone, et tendent à désactiver

celui-ci si un voisin est actif. Le neurone, enfin, est soumis à une entrée scalaire, dont l’intensité

favorise l’excitation du neurone.

Le modèle classique définit l’activation des neurones par une équation différentielle, les influ-

ences via les connexions de voisinage étant calculées par convolution. On montre que l’on peut

obtenir dans ce cas un profil d’activation à l’équilibre qui correspond à quelques zones d’activité

compactes sur la carte, voire à une seule. La population de neurone réalise ainsi une prise de déci-

sion collective, ne retenant sur sa surface que les neurones pour lesquels l’entrée est localement la

plus forte.

L’idée des travaux récent de l’équipe est de se servir de ces champs neuronaux comme pro-

cessus de sélection d’une carte auto-organisatrice, laissant le champ neuronal, par sa dynamique,

déterminer la zone d’influence qui guide l’apprentissage des prototypes, et s’affranchissant ainsi du

processus global de sélection de la BMU.

Les modèles de champs neuronaux classiques ne permettent toutefois pas de piloter convenable-

ment les processus d’auto-organisation, ils sont en général utilisés pour modéliser des processus de

sélection attentionnels. Il a donc fallu que nous nous basions sur des résultats développés dans

notre équipe pour mettre en place d’autres champs neuronaux afin de disposer d’un modèles de

cartes auto-organisatrices dont le mécanisme de compétition est distribué. Aujourd’hui, ce modèle

est en place, mais il repose sur une connectivité aléatoire des connexions inhibitrices, qui n’a pas la

localité topographique requise pour que le modèle soit strictement cellulaire. Nous reviendrons sur

ce point en conclusion.

1.6 Un modèle cellulaire auto-organisant pour le traitement de

séquences temporelles

1.6.1 Introduction

Le modèle que nous proposons est un algorithme de traitement de séquence qui soit cellulaire.

Ce modèle est comparable aux réseaux récurrents dans sa capacité à se comporter comme une

machine à états qui restitue la dynamique du processus qui génère la séquence, séquence qui peut-

être ambiguë. Cela dit, du fait de notre volonté de contribuer à l’informatique cellulaire, nous

avons exclu, parmi les modèles récurrents, les modèles basés sur le perceptron. Nous leur avons
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préféré une approche à base de cartes auto-organisatrices couplées, cartes qui sont contrôlées par

un processus de compétition distribué inspiré des champs de neurones dynamiques.

L’architecture sur laquelle nous nous sommes basé est le modèle bijama20 développé dans notre

équipe. Il s’agit d’une architecture à grain fin, distribuée, qui permet de concevoir des algorithmes

comme une population d’unités de calcul connectées entre elles. Chaque unité héberge plusieurs

activités scalaires, qui sont mise à jour à chaque pas de temps. Cette mise à jour dépend des

activités d’autres unités, le rôle des connexions étant de fournir un droit de lecture pour une unité

aux activités de l’unité distante.

L’évaluation des unités dans le modèle bijama est asynchrone. À chaque pas de temps, toutes

les unités sont évaluées une seule fois, dans un ordre aléatoire qui change d’un pas de temps à

l’autre. L’environnement bijama induit également une méthodologie dans la définition de mise

à jour. Les différentes activités appartiennent à des couches, prenant chacune plusieurs entrées

et fournissant plusieurs sorties. Les entrées d’une couche peuvent être les activités de sorties de

couches inférieures, où les informations collectées via les liens. Les sorties sont des activités de

l’unité, à disposition des couches supérieurs et pouvant être lues via les liens.

L’architecture bijama est implémentée sous forme d’une bibliothèque C++, qui permet, sans

effort supplémentaire de programmation, d’instancier le système à grain fin que l’on définit sur un

cluster de PC, le cluster Intercell. Cette implémentation est possible du fait du caractère distribué

et décentralisé imposé par bijama, et elle sera d’autant plus efficace que le réseau implémenté est

cellulaire.

Même si l’idée de bijama est de permettre la programmation de couches que l’on peut empiler

pour définir le fonctionnement d’une unité, il existe des couches déjà réalisées, sur la base de

travaux précédents de l’équipe. C’est le cas de la couche de compétition que nous avons utilisée,

qui implémente les modifications des champs neuronaux requises pour construire des cartes auto-

organisatrices dont la compétition n’est pas centralisée sous la forme d’un winner-take-all, comme

dans les cartes de Kohonen.

Une des intérêts de bijama est de faciliter la construction de cartes, et par conséquent de perme-

ttre d’exprimer des architectures impliquant plusieurs cartes. La connectivité entre deux cartes est

une connectivité en bandes, qui est partielle. Les connexions inter-cartes, dites connexions corti-

cales, hébergent un poids qui est en permanence ajusté par apprentissage. Lorsque plusieurs cartes

sont interconnectées, elles s’influencent l’une l’autre, par un mécanisme de résonance, de sorte que

les activités en sortie des champs neuronaux produisent au sein de chaque carte une seule petite

région compacte active, que nous appellerons une bulle d’activité. La résonance assure, suite à

quelques étapes de relaxation, que les bulles au sein de chacune des cartes se trouvent situées à des

endroits connectés entre eux d’une carte à l’autre, ce qui n’est pas aisé du fait de la connectivité

en bande qui est partielle. Ainsi, par ces mécanismes, la connectivité partielle évite l’explosion

combinatoire du nombre de connexion avec l’accroissement de la taille des cartes, et la résonance

assure des activations qui restent à des endroits connectés, et donc des apprentissages au sein des

cartes de représentations qui, si elles sont concomitantes, sont liées par des connexions après auto-

organisation.

Le problème que nous nous proposons de résoudre est celui d’une machine à états autonome,

20Biologically-Inspired Joint Associtive Maps.
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périodique, qui génère des observations. L’observation courante est obtenue en fonction de l’état

courant, mais cette fonction n’est pas bijective. Il existe donc des états différents qui produisent la

même observation. Dans notre modèle, l’observation est un scalaire, compris entre 0 et 1, qui prend

des valeurs notées A,B,C,D,E,F, avec 0 pour A, 1 pour F, et une répartition linéaire entre ces deux

valeurs pour les autres lettres. Ainsi, une machine à 5 états, qu’elle visite tour à tour, pourra donner

la séquence AFFFF d’observations, si la fonction d’observation associe A au premier état et F aux

autres. Alors que la séquence ne présente que deux types d’observation, A et F, nous souhaitons que

notre architecture soit capable, sur la surface d’une carte organisatrice, de correctement retrouver

que le système dynamique qui génère les observation est bien un système à 5 états, et non 2, même

dans le cas d’une séquence aussi ambiguë.

1.6.2 Notre architecture

Notre architecture se comporte de trois cartes. Nous ne le détaillons pas dans ce résumé, mais les

mécanismes implémentés sont très homogènes d’une carte à l’autre, ce qui rationalise la procédure

d’ajustement des paramètres.

La carte principale est la carte d’entrée. Une bulle d’activité sur cette carte a vocation à désigner

une position sur la carte qui représente l’état du système dynamique qui fournit les entrées. Cette

carte gère des unités dont les prototypes combinent l’entrée21 courante et un contexte. Ce contexte

provient justement de la seconde carte, dite carte associative, qui est connectée à la carte d’entrée

via des bandes de connexions adaptatives, comme le suggère le modèle bijama. La troisième carte

est une carte de délai, qui est une copie, différée d’un pas de temps de séquence, des activités de la

carte d’entrée. La carte associative associe donc la carte d’entrée avec sa copie différée, via deux

séries de bandes de connexion, provenant chacune de l’une des deux cartes. La carte d’entrée reçoit

donc des bandes de connexion de la carte associative, qui comme nous l’avons dit déterminent le

contexte temporel, mais la carte associative reçoit en retour des bandes de connexions de la carte

d’entrée. Cette boucle dans l’architecture et le siège de mécanismes d’auto-organisation complexes,

discutés dans le manuscrit, qui font l’un des intérêts de nos travaux.

1.6.2.1 Résultats expérimentaux et discussion

Nous avons soumis plusieurs séquences à cette architecture, afin d’évaluer sa capacité à reproduire

fidèlement les états du système dynamique qui génère les entrées ambiguës. Nous avons d’ailleurs

comparé nos résultats avec Recursive SOM, qui est le modèle non-cellulaire existant le plus proche

de nos travaux.

Nous avons montré que l’architecture était capable de créer différents états pour les mêmes

entrées en cas de séquences ambiguës, c’est-à-dire de donner naissance à des bulles d’activités à

des endroits distincts de la carte d’entrée. L’architecture est donc bien capable de s’organiser pour

représenter sur le substrat cellulaire la dynamique du processus qui génère les entrées.

Nous avons également montré que l’architecture reste adaptative. En effet, aucune initialisation

particulière n’est requise, et les paramètres du système restent constants au cours de son évolu-

21A, B, C, D, E ou F.
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tion22. Ainsi, si l’on change le système dynamique, l’ensemble du système cellulaire se réorganise

spontanément pour représenter le nouveau système sur son substrat.

Toutefois, même si nous nous réjouissons de ces résultats, nous avons observé que, parfois,

la représentation d’état du système dynamique qui fournit les entrées, même si elle reste correcte,

dérive sur la surface de la carte. Ce type d’instabilité n’a pas été décrit sur des systèmes auto-

organisant plus simples, et il est difficile de déterminer ses causes, et de savoir s’il sera un obstacle

à la constitution d’architectures impliquant plusieurs cartes temporelles.

1.7 Conclusion

Cette thèse s’est résolument inscrite dans la perspective de contribuer à l’essor du calcul cellulaire,

en proposant d’aborder par ce type d’approche le problème complexe de l’auto-organisation de

la représentation de séquences ambiguës. Les résultats sont prometteurs, puisque les effets de

résonance, qui sont des effets émergents comme ceux que l’on attend des systèmes cellulaires,

concourent effectivement à organiser l’ensemble de l’architecture sans supervision, en allouant

le substrat de calcul disponible à une représentation non ambiguë, i.e. markovienne, du système

dynamique autonome qui fournit les observations.

Nous avons, du fait de la réalisation de nos recherche, mis en lumière plusieurs difficultés, qui

sont autant de perspectives à ce travail. La première est l’apparition d’instabilités de représentations

sur la surface, qu’il conviendrait de mieux analyser. Cela dit, se phénomène apparaît justement car,

fort des outils de simulation que nous avons utilisés, nous avons pu manipuler un système suffisam-

ment complexe pour que ces effets se manifestent. La seconde difficulté est certainement le fait

de n’avoir pas pu pousser jusqu’au bout la logique cellulaire. En effet, les processus de compéti-

tion distribués au sein des cartes supposent une connectivité aléatoire, qui n’est que la détérioration

d’une connectivité totale, et n’a donc pas la localité topographique attendue des systèmes cellu-

laires. Il reste donc à concevoir des mécanismes de compétition distribués qui s’affranchissent de

l’exigence d’une connectivité totale, même dégradée.

Enfin, la restitution d’états à partir d’observations non-markovienne n’est pas sans rappeler

la problématique de contrôle de systèmes dynamiques partiellement observés, et par conséquent

les processus décisionnels de Markov partiellement observés (POMDPs). Une des motivations de

cette thèse était de pouvoir proposer des solutions cellulaires à cette question-là, et nous n’avons

pu y répondre que partiellement puisque le système dynamique dont nous extrayons les états est

autonome, et non soumis aux actions de contrôle d’un agent. La poursuite de nos travaux dans cette

direction nous semble essentielle.

Enfin, nous sommes fiers d’avoir pu contribuer à l’aventure humaine qu’est la maîtrise du cal-

cul, son automatisation, et à l’exploration de paradigmes un peu en marge de la tendance majori-

taire à ce domaine, nous inscrivant ainsi dans la lignée des travaux initiés par les sumériens, en

2400 avant JC.

22Contrairement par exemple aux cartes de Khonen pour lesquelles le rayon d’influence autour de la BMU diminue
au cours du temps.
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Sumer, 2400 BC, is where the first computation machine appeared. By 3000 BC, Sumerians

(who lived in modern Iraq) were representing objects by signs, each object was given a different

sign. The development in economy and trade led to an increased variety of goods and a growing in

goods quantity that made it difficult to draw hundreds of signs to represent a single number.

Sumerians then started to give a symbol for each group of objects, the same symbol regardless

of the counted object, and introduced thereby, for the first time the abstract concept of a number,

which will be primordial for developing computation methods and machines in later times of human

history. They represented 10 objects by a cone, 6 cones by a circle, 10 circles by another shape and

so on. This was the very origin of their sexagesimal numeral system (base 60) which is still used in

one of its forms up to our days for measuring time and angles.

By the end of the third millennium BC, Sumerians developed their numerical system to a place

value system, where the value of the number is determined by its place. A number was represented

using simple grooves in the sand with stones in the grooves, or using a board of wood with stones

for calculation and dust for drawing geometric shapes. Delimited grooves or columns were used

to signify the different orders of magnitude of numbers in the sexagesimal system. This was the

very first tool for representing numbers: the Sumerian Abacus. While Sumerians used abacus only

for number representation, their successors, the Babylonians, are thought [Carruccio 2006] to have

used abacus for arithmetic such as addition and subtraction, making of it the first devised apparatus

by human to carry out computation, i.e. the first computer.

Archaeological evidences show that Greeks used abacus for the first time about the 5th century

BC. They called it αβαξ (abax) to signify the dust used for drawing, the Greek word itself is

thought to be a borrowing from the Phoenicians (the sailors).

Aside from developing a complex numeral system, Sumerians who were traders of oil and grains

calculated the area of the triangle and the volume of the cube, motivated by their needs. This short

story in solving existing problems is not only the story of Sumerians; it is a repetitive story in
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human history: “need motivates innovation”.

Since the era of Sumer in the early bronze age until our days of infant information age (born

1970 with the first personal computer), the need for improving computation methods and devices

never ceased to increase. Over the time, people developed computation in parallel with mathe-

matics, physics, and astronomy. Computation passed through several steps of evolution, the most

important, the human computer (using the terms of the 18th century) using pens and papers, and

mechanical computers. The most important step was the invention of digital computer that revolu-

tionized computation and empowered the acceleration of scientific research, industry and economy,

ending up with the knowledge-based society that depends on a high-tech global economy. This

course of evolution seems to be more requiring for computation power each new day.

The ever increasing need for computation has led people to investigate the potential of what-

ever useful basis in other fields of science to devise more powerful machines in order to meet the

increasing needs. Quantum computing from physics, living cells and DNA molecules from biology

are examples. However, the most important source of inspiration and the ultimate goal of compu-

tational models is the “machine” that devised all other computation machines since the very start:

the human brain.

2.1 Emergence of computability, functionalism and intelligence

Humanity cumulatively integrates a legacy of knowledge through generations, until when it is ripe

it fires some strides forward through some pioneers. The wide stride in computation was made by

Alan Turing in mid 30’s and John Von Neumann in mid 40’s of the past century.

Alan Turing, was looking to find an answer to the decision problem posed by Hilbert which is

called “Entscheidungsproblem”. The problem can be reduced to the following question “was there

a method by which it could be decided, for any given mathematical proposition, whether or not

it was provable?”, or alternatively “is there a mechanical procedure for separating mathematical

truths from mathematical falsehoods?”. To give the answer, Turing proposed in 1936 his famous

machine and used one of its properties “the halting problem” to prove that a general solution to this

problem is impossible.

His proposal was a description for a hypothetical machine that is able to compute any com-

putable sequence that a human calculator can do using unlimited time, energy, paper and a pencil.

This machine is known as the Turing machine (TM) [Turing 1936]. Turing describes the machine

as follows:

“...an unlimited memory capacity obtained in the form of an infinite tape marked out

into squares, on each of which a symbol could be printed. At any moment there is one

symbol in the machine; it is called the scanned symbol. The machine can alter the

scanned symbol and its behavior is in part determined by that symbol, but the symbols

on the tape elsewhere do not affect the behavior of the machine. However, the tape

can be moved back and forth through the machine, this being one of the elementary

operations of the machine. Any symbol on the tape may therefore eventually have an

innings”. A.Turing, Intelligent Machinery. 1948.
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A Turing machine consists of a control unit (a finite state machine) with an open ended tape

(representing memory) on which is written a table of behavior (a program, in today terms). Each

table of behavior corresponds to a different Turing Machine, thus there is an infinite number of

TMs. The program, or the table of behavior of a TM implements an algorithm that consists of a set

of sequential atomic operations.

Using the definition of the TM, Turing and Church defined computability through defining com-

putable functions. In their Church-Turing thesis [Kleene 1967] they define computable functions

to be the functions whose values are effectively calculable, i.e the functions that could be computed

by a finitely specifiable algorithm. The original thesis defines computable functions as: “Every

effectively calculable function is a computable function”, or equivalently “ If and only if it is com-

putable by a Turing machine”. In modern terms computable functions are those for which there

exists some algorithm to compute, in fact, a computable function is the formalized analogue of the

notion of an algorithm. If computable functions are defined for all possible input arguments then

they are called recursive functions, otherwise, if they are defined for certain inputs only then they

are called partially recursive functions.

The expression “effectively calculable” designates “effective methods” in modern mathematical

terms, which are the methods that give a correct answer in finite time steps for all problems of the

same class. Effective calculability is now used by mathematicians to classify functions, into Turing-

computable functions or computable functions, and non-Turing-computable ones or uncomputable

functions”. However, effectively computable functions are not always efficiently computable: even

if there exists some algorithm to compute them, it is not always possible to compute them in a

reasonable time (with some effectively computable functions the computation time increases ex-

ponentially or super-exponentially with the length of the input). Waiting a very long time is not

efficient even if the function is calculable. Thus one can argue the feasible computability of these

functions. The latter term became a stand-alone field that studies efficient function computation.

Examples on computable functions are the addition of natural numbers, and all functions de-

fined on a finite domain (like a finite sequence of natural numbers). An example on non-computable

functions is the set of finitary functions (which take a finite number of inputs) on natural numbers

(the whole set of naturals). These functions are not computable because they are uncountable, al-

though one can find some computable functions between them (like 7-input addition function on

natural numbers). Not only a function could be non-computable, but also could be a number like

the infinite group of natural numbers, or fractions in real numbers because there is no machine that

can compute them to an infinite precision.

Hypercomputation [Copeland 1999] refers to the computation of the uncomputables mentioned

above including all non-recursive functions, i.e. the models of computation that compute functions

beyond Turing machine capabilities. Typically, they also go beyond the human capabilities when

not equipped by a machine [Copeland 2004]. There were many proposals for hypercomputing ma-

chines [Stannett 2006], but none of them had yet been proved to be physically realizable. The

reason is that most of those theoretical models require computing infinite precision real numbers

in a finite time. The term “super-Turing computation” refers to systems that outperform Turing

machines in terms of complexity or other measures, and don’t necessarily compute recursive func-

tions [Stannett 2006]. However, super-Turing computation and hypercomputation tend to be used
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in literature interchangeably.

In his writings, it was clear that Turing was very cautious in giving details about the terms he

used, giving only very sophisticated precision, and left the definition of the word “machine” as

general as possible. This later led to a whole literature of debate on many aspects related to Turing

machine, most of which was purely philosophical. This was the case of the concept of “algorithm”

and “machine”. Some scientists and philosophers tend to extend the basic definition of a Turing

Machine to a more general concept which is “a computing machine, occupying a finite space and

with working parts of finite size” based on a later explanation of Church in 1937. For instance

Hodges [Hodges 2002] built a criticism on Church explanation of the Turing machine by using the

term “machine” instead of “computing machine”. The latter is claimed by [Copeland 2004] to be

different from “machine” in that the computing machine is working in accordance with systematic

methods or algorithms, while the “machine” was not simply defined as such. So, was Turing trying

to extend the definition of a machine to contain the brain?

When he put his model, Turing wanted to go beyond the “Entscheidungsproblem” problem

and to capture what a human mind can do when it carries out a procedure [Hodges 2011], i.e. a

sequential procedure of solving a problem. Moreover, his interest went beyond the framework

of algorithmic functions. He was interested in the theoretical limits of computation, and focused

on the comparison of the computational power of a computer with that of the brain, and thought

that it is possible that a well programmed computer could rival the brain. He argued against the

proposal that a machine can think in his article "Computing Machinery and Intelligence - 1950”

and proposed the Turing Test that checks if a judge can distinguish a human from a machine in a

chat session without prior knowledge of their positions. If he can’t reliably determine on which

side is the machine, the machine passes the test, and then it is considered as intelligent. Passing

the test is not related on how much its answers were correct, but rather on the distinguishability

from human behavior. This reveals that Turing view to intelligence is behavioral by nature. Actual

artificial intelligence is following Turing’s view, and is concerned by building intelligent systems

that behave like the human regarding some task. If given an input, an intelligent system should

give the same output (behavior) as a human. However, other people like Jeff Hawkins 1, claim

that intelligence should not be defined by behavior, but should rather be defined by predictions

and should be tested by the correctness of these predictions. Hawkins claims that the mechanism

of intelligence in the human brain resides in the neo-cortex that stores (memorizes) sequences of

patterns and makes constant predictions all the time. For example we are predicting what is the

next song on a CD after listening to it several times, and if we hear another song then we will

immediately feel that there is something wrong.

Back to Turing,

“The Argument from Continuity in the Nervous System, in particular, simply asserts

that the physical system of the brain can be approximated as closely as is desired by a

computer program”. A.Turing, in Mind, 1950.

It is obvious that Turing was an early supporter of the Functionalism theory proposed later in

1961 by H.Putnam. Functionalism claims that every mental state can be identified by functional

1TED talk by Jeff Hawkins: How brain science will change computing, (February 2003).
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roles, and that brains are physical devices with a neural substrate that perform computation on

inputs and internal states to give an output. Earlier contributions in the direction of this theory

came from McCulloch and Pitts, the pioneers of artificial neural networks. In their influential paper

“A logical calculus of the ideas immanent in nervous activity. 1943”, they considered that every

neural activity is computation in the sense of Church-Turing-Thesis and that every neural activity is

explained by some neural computation, thus it is “metaphorically” possible to implement by a finite

number of interconnected logical devices. They thought that their proposed neural network was less

powerful than Turing machines but if provided by a tape (memory) they will be Turing-equivalents.

Functionalism was later developed by Fodor to the Computational Theory of Mind [Fodor 1978]

which looks at the brain as an information processing system and thinking as computation. How-

ever, many people argued against both theories. Objections have been raised by people like Penrose,

Searle, and later from Putnam himself. Penrose for instance, argued that there should be uncom-

putable physical operations in the brain as it can see formally unprovable truth. An illustration of

formally unprovable truth is the Gödel’s sentences. A Gödel sentence contains a strange loop which

occurs due to self reference. Gödel modified the liar paradox which is expressed by the sentence:

“this sentence is false” by replacing “false” by “not provable”. So, Imagine a theory T which con-

tains a sentence G that says “G is true, but not provable in the theory T”. The brain can formally

see this sentence while it can’t be proven, and this is the main claim against functionalism and the

computational theory of mind.

One of the most discussed topics in Turing time was “intuition” as a form of intelligent be-

havior, and whether there is a mathematical framework to describe it, and if a machine can ex-

hibit intuition. Human intelligence, including intuition, requires the ability to evaluate functions

that are beyond the classical boundaries of computability [Kugel 2002]. For Kugel, computers

-limited to computing- can only fake intelligence when performing artificial intelligence tasks.

Hodges [Hodges 1997] claimed that Turing changed his mind after the war influenced by the great

extent that machines helped in breaking the U-Boat enigma during the second world war. But in

fact, rather than being a belief, Turing had some clear insights about intuition and intelligence, that

came partially true concerning intelligence.

“This – raises the question ’Can a machine play chess?’ It could fairly easily be made

to play a rather bad game. It would be bad because chess requires intelligence. We

stated—that the machine should be treated as entirely without intelligence. There are

indications however that it is possible to make the machine display intelligence at the

risk of its making occasional serious mistakes. By following up this aspect the machine

could probably be made to play very good chess.” A. M. Turing’s ACE report of 1946.

“We may hope that machines will eventually compete with men in all purely intellectual

fields”. A.Turing, Computing machinery and intelligence, Mind, 1950.

In his writings, not only he talked about machines that can perform intelligent computation to

develop intuition, but also talked about systems that can modify their own programs including nets

of logical components whose properties could be trained to implement a desired function. This was

long before the rise of artificial neural networks. He also talked about “genetical or evolutionary
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search” of a machine to modify the program and exhibit intelligence. This also was before genetic

algorithms. In all this, Turing was clear about looking at these methods as non-algorithmic and

that the implementation of such structures is only possible on what he suggested to call Universal

Practical Computing Machine.

Computation emerged as an indispensable need for Human and was developed cumulatively in

several steps throughout history. The development of computation allowed to explore the possi-

bilities to build intelligent computing machines that do some functions of the human brain. People

have looked to the brain as a computing machine, and efforts in computerized computation tried

since the very start to mimic its functions.

2.2 Digital computer architectures

The idea of building machines that carry out computation goes way back. Thomas Hobbes, ex-

plained in 1651 how arithmetic and logic are the same thing, and how artificial thinking and artifi-

cial logic can be done using arithmetic operations. Leibniz said in 1679 that all can be done with

addition only, and was the first to talk about building a machine having gates that can be shifted

(same as shift registers) with holes which can be opened for 1 and closed for 0, then marbles can

flow in open holes 2. Digital computers do the same thing but using electrons instead of marbles.

In his model, Turing put the basic idea of stored program computer. Later, Von Neumann

introduced in June 1945 a detailed architecture of serial computation based on Turing model. Von

Neumann’s architecture consists of an arithmetic processing unit, a control unit (both make the

central processing unit-CPU), a memory for both data and programs, and input-output devices. On

the basis of this architecture was built the first digital computer.

Basically, Von Neumann built a physical machine in order to do bomb calculations. The de-

manding industry in wartime had affected the work of scientists and led them to focus on industry

rather than pure scientific research. People efforts were focused on the vertical development of the

basic structure, rather than thinking of better alternative models. This led to accumulate efforts on

the investment of Von Neumann architecture rather than developing it, and forced the adoption of

the basic computer structure instead of developing it and losing the accumulated efforts. Although

many later modifications and improvements were made on the basic Von Neumann architecture

over time, manufacturing computers continued in adopting the same principle: serial computa-

tion of instructions, one instruction by time. Indeed, even nowadays programming languages are

sequential in order to fit with the hardware.

A well known drawback of the Von Neumann architecture is what is called Von Neumann

bottleneck. Von Neumann architecture employs a shared bus for the program memory and data

memory that limits the data transfer rate (throughput) between the CPU and memory. The fact that

there is a shared bus makes it impossible to access data and instructions at the same time. This

means that the processor has to wait for data to be transferred to and from the memory and most

of the processing time goes for instruction fetching and data loading. The problem became more

2TED talk by George Dyson: At the birth of the computer, (Mars 2003).
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serious with the increasing speed of processors and memories (though memories are becoming

increasingly slow relative to processors).

“Surely there must be a less primitive way of making big changes in the store than

by pushing vast numbers of words back and forth through the Von Neumann bottle-

neck. Not only is this tube a literal bottleneck for the data traffic of a problem, but,

more importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time

thinking instead of encouraging us to think in terms of the larger conceptual units of

the task at hand. Thus programming is basically planning and detailing the enormous

traffic of words through the Von Neumann bottleneck, and much of that traffic concerns

not significant data itself, but where to find it.” John Backus [Backus 1978].

There had been many efforts to reduce the effect of Von Neumann bottleneck [Markgraf 2007],

for example by using the cache memory, a small but fast memory between the processor and

the memory to partition instructions and data, creating some type of separate paths (though non-

physical), or providing processors with stacks to reduce data transfer with the memory. An alterna-

tive solution was the Harvard Architecture and the Modified Harvard Architecture, which physically

separates paths for data and instructions and separates the address spaces for data and programs al-

lowing for faster processing. This architecture, being more robust and fast is more expensive and

limits programming flexibility compared to Von Neumann architecture that allows a program, for

example, to change its own code, resulting in self-modifying code, impossible on Harvard architec-

ture. Harvard architecture is mainly used in digital signal processors (DSPs) and microcontrollers

such as AVR and PIC families in which the focus is on the processing speed.

However, both Von Neumann and Harvard architectures are processing one instruction at a

time, thus they are serial. The ongoing development and manufacturing of these serial architectures

will unavoidably reach the limit.

By now, the clock speed is almost saturated due to technology dependent issues. Physics im-

poses an upper bound to the clock speed, because of the fundamental physical law that imposes

that no signal propagation speed can exceed that of the light. Not only clock speed is bounded

by physical laws, but also the power-law of increasing density and the decreasing size of micro-

scopic elements in chip fabrication is expected to reach the limit within one or two decades due

to physical laws of quantum mechanics. Shrinking to the scale of nano-technology makes it im-

possible to maintain the controllability of nano-elements due to the ruling laws at the nano-scale

such as Heisenberg’s uncertainty principle. Chip manufacturers are still able to increase transistors

density, while they are bound by now with the clock speed. Increasing the clock speed increases

heat and power consumption, the thing that requires a significant power source and heat dissipation

technology.

Indeed, it may be noticed that processors clock cycle rate saturated since a decade. Intel, The

world’s largest and highest valued semiconductor chip maker, released in 2004 a 4GHz processor.

The processor suffered from high power consumption and current leakage. Since that time, Intel

engaged with a careful clock speed race with AMD, the other processor manufacturing giant. The

highest clock speed reached thereafter by Intel was 3.8 GHz in its Pentium Family. To this date,
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Intel’s most powerful processor according to PassMark CPU benchmarking 3, was released in 2012:

The cream of the crop, Xeon Processor family, with its top-of-the-line E5-4650 processor with a

clock speed 2.7GHz. Instead of the clock speed, Intel turned to improve the processing performance

using multi-threading and multi-core technology.

It is clear from this realistic example that manufacturers resorted to increase the number of

transistors on chip components in such a way that implements concurrency, while saturating (even

reducing) the clock speed.

The laws of physics ruling processors industry, being fundemental in nature, means that they

will apply on future design and manufacture of computer processors. Moors’s law will sooner or

later be no longer valid, but at the same time, Human will continue to double the size of produced

information every 18 months or even in a shorter time interval. Therefore, other solutions for more

computation power are to be found.

One solution, emerged since 1990s, also derived by the need for higher performance, particu-

larly computational speed is parallelism and distributed computing.

Parallel computing emerged motivated by application fields like engineering, real time pro-

cessing, weather forecasting, and other fields. Calculations in parallel computing are carried out

simultaneously. Architectures allowed for parallelism in different levels: bit-level, instruction level,

data, and task level. And as mentioned before, Intel uses some parallelism techniques using multi-

thread and multi-core processors. This is a modification of the basic Von Neumann architecture in

the form of parallelism.

Parallelism is rather architectural and hardware-related, and should be distinguished from Con-

current computing. The latter is rather a programming paradigm: programs are written so that they

can be divided into separate processes (or threads), then they can be executed either on the same

processor by interleaving the execution steps, or on parallel processors simultaneously. Concurrent

computing is oriented to a specific nature of applications, for instance, database applications which

need to allow several users to access the database at the same time, same can be said on web servers.

Distributed computing (in the mainstream sense), consists of multiple software components

that run on multiple computers (here we are no longer talking about processors), but they are all

seen as a whole system, and they cooperate with each other to achieve a common goal. Although

the overlap in terms and use, in parallel computing processors usually share the same memory

and exchange information within this shared memory, while in distributed computing ones, each

computer has its own memory. Even though some parallel computers like supercomputers started

to use separate processor memories, using distributed systems is not an inherent property of parallel

computing. In brief, parallel computing is related to computing simultaneously, while distributed

computing is related with distributed parts carrying out computation.

But still, these computing approaches, being parallel or distributed, are using modifications or

combinations of the basic Von Neumann architecture to get better performance or to fit with the

task requirements, and we are still stuck at the same bottleneck. Solutions like parallelism and dis-

tribution (in the mainstream sense) seem to be sufficient for some application fields but for sure this

is temporary in other highly expanding fields. Hence the need for another approach of computation.

3CPU Benchmarks: High End CPU’s, (read on 4 June 2013).
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Actual processors in today computers are Von Neumann architectures that are based on the the-

oretical Turing machine which is serial in nature. Several structural enhancements were added

to the core of the Von Neumann architecture. Other major enhancements were added through

the revolutionary parallel and distributed computing paradigms which duplicate the processing

power and allow for extensible usability. Although, these enhancements are either modifications

or aggregations of the serial Von Neumann processors.

The increase of processors speed will reach its limit in the near future due to physical laws. There-

fore, the serial processing nature of Von Neumann processors became an intellectual bottleneck

that should be overcome in order to stay in line with the ever increasing required computation

power and the demanding applications. This requires the thinking of radically different process-

ing concepts.

2.3 Cellular computing

Knowledge about the human brain inspired both computation and intelligence domains. Von Neu-

mann architecture processes one instruction at a time, thus it is way far from resembling to “com-

putation” in the human brain. Same thing can be said about Harvard architecture. After having

put his architecture, and after the wartime, Von Neumann reconsidered a brain-like computation

mechanism. Just before his death, Von Neumann left an unfinished book “The Computer and the

Brain” which was published later. In his book, Von Neumann viewed the brain as a computing

machine, and discussed the differences between the brain and the computers of his days, especially

concerning speed and parallelism.

Indeed, unlike the sequential Turing Machine, computation in the brain is parallel, carried out

by populations of relatively slow entities (neurons) that fire around 10 times per second. The human

brain consists of 1010 − 1011 interconnected neurons with synaptic connections strength changing

in an adaptive and continuous manner (synaptic plasticity). With this structure the brain is able to

exhibit intelligence and, therefore, what we can be sure of, at least, is that it can’t be perceived as a

Turing Machine, because it doesn’t implement a “finitely specifiable algorithm”. Instead, we stand

for the opinion that says that the brain activity can’t be seen as computation in the Turing sense, but

rather can be seen to implement Super-Turing computation, i.e. for us, what happens in the brain is

a form of computation, thus it is possible to simulate in the future, but not by Turing machines.

The field of neural computing is based on perceiving the brain as an information system. In

this perspective, senses are viewed as feeding inputs to the system, and the system encodes data

(knowledge) in some way like membrane potentials and neurons firing rates and stores informa-

tion via different kinds of memory (short-term, long-term and associative memories). The neural

activities that the brain performs are considered as computation. Decisions, motor commands, feel-

ings, and thoughts are perceived as the system output. Knowledge in the brain is encoded in the

organization of neurons, their activities, and the connections weights (synaptic efficiency). The

neural computing field is usually referred to as connectionism. Knowledge representation in the

brain is distributed, a concept is stored by a net of nodes (neurons) and corresponds to some pattern

of activity over all nodes. Moreover, each node could be involved in representing more than one

concept.



40 Chapter 2. General Introduction

It was paradoxical that although Turing was aiming to approach the brain computation, it was

Von Neumann with Stanislaw Ulam who proposed a mathematical model that performs parallel

computation which is similar to some degree to what happens in the brain: the cellular automata.

Cellular automata consists of a population of locally interconnected units, in which each unit is

connected to a limited number of neighbors. This is somehow similar to neurons connectivity in

the brain, with the difference in the number of connections.

Based on cellular automata, Von Neumann proposed a universal constructor, a machine for self-

replication that copies itself with an open ended complexity of growth allowing for mutations, as

observed in biological organisms. This constructor incarnates the phenomena of natural selection

adopted by modern Darwinism. In 1970, Conway proposed his famous two dimensional automata

“game of life” and launched the true interest in cellular automata.

Later on, structures of cellular populations originating in different scientific fields showed

the ability to perform computation. Cellular automata was used to implement binary addi-

tion [Benjamin 1996], cellular neural networks have been used in image processing applications

like contour extraction [Xiao-hua 2009], DNA computing was used to solve the directed Hamil-

tonian path problem [Adleman 1994]. Very recently, bacterial cells were transformed to living

calculators that are able to divide and compute logarithms and square roots. Existing and engi-

neered genes of the bacteria were used to create synthetic computation circuits inspired by the

analog electronic circuits [Daniel 2013].

Structures that carry out computation coming from different fields form the domain of cellular

computing. Populations of cellular elements that carry out computation are sometimes called cel-

lular machines. The first concrete work about cellular computing was [Sipper 1998b], in which the

term of cellular computing was coined.

While parallel computing deals with a small number (tens up to tens of thousands in super-

computers) of powerful processors able to perform a single complex task in a sequential manner,

cellular computing is based on another philosophy: simplicity of basic processing cells, their vast

parallelism, and their locality. These properties were expressed by [Sipper 1999] to be an equation:

simple+ vastlyparallel + local = cellularcomputing.

Simplicity refers to the processing capabilities of the basic unit in a cellular processor which

is the cell. Unlike parallel computing processors that can perform complicated tasks, the cell can

do very little computation. An illustrative simplicity example is the comparison between what

can do a NAND logic gate with what can do a computer processor. Vast parallelism in cellular

computing refers to involving a completely different scale of cell numbers. It could be expressed in

an exponential notation 10x. Locality refers to local connectivity patterns between processor cells:

a cell can communicate with a few other cells, usually those who are physically close. Connections

hold a small amount of information. One direct implication of locality is that there is no central

controlling unit in cellular processors.

Figure 2.1 shows a representation of computing paradigms respecting three features: the sim-

plicity of the basic computing unit (on the x-axis: varying from complex to simple), the locality

of connections (on the y-axis: varying from global to local), and the scale of parallelism (on the

z-axis: varying from serial to parallel). The figure illustrates the relative positioning of cellular

computing compared to other computing paradigms.
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FIGURE 2.1: The computing cube; a graphical representation of the equation: simple +
vastly parallel + local = cellular computing [Sipper 1999]. Distinction between some
existing computing paradigms can be made respecting complexity and parallelism and
locality of connections. Cellular computing is carried out by populations of locally con-
nected simple cells, distinguished by their vast parallelism due to the large number of
cells involved in the population. Extracted from [Sipper 1999].

The general purpose serial architectures like Von Neumann processors are complex processors

performing serial processing, and in the case of a single processor there is no connectivity to

other processors. A group of such serial processors results in the parallel computing paradigm

that uses a shared memory as discussed above. More simple serial processing units result in finite

state machines. Fully connected neural networks like Hopfield networks have each cell globally

connected to all other cells within the network and each computing cell is a simple processing

unit, and units are computing in parallel. The main stream distributed computing discussed above

is built on combining in parallel a set of complex serial processors with local connections, where a

processor needs not necessarily to be connected to all processors in the system, while this task is

entrusted to network protocols.

Inspired from physics and biology, especially from the human brain, cellular computing is a

promising new computation paradigm which is based on distributed units with small processing

capabilities. It offers a completely different scale of computational power than the Von Neumann

machines.
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2.4 Capabilities of cellular computing

Since the crystallization of computation in Turing days, computation was approached by two ways:

either by engineering methods by building practical systems performing computation, or mathemat-

ically by proposing and proving theorems about computation. A third approach was proposed by

Stephen Wolfram, the founder of Mathematica, and the computational knowledge engine Wolfram

Alpha, this approach is the experimental computation. Wolfram [Wolfram 2002] empirically stud-

ied cellular automata, besides to cellular structures originating from different domains, and claimed

that they are good candidates to build processors. Wolfram studied systems which are composed

of populations of more or less identical elements, in which each element can be in a finite number

of states. The states are functions of the current element state, the states of adjacent elements, and

the rules determining state changes. Although cells are running simple programs, the population

of elements can show interesting range of complex behaviors. Getting complex behavior from the

interaction of a population of elements carrying out simple programs is called emergence. It is get-

ting new phenomena starting from basic elements. Nobel winner, the physician Murray Gell-Mann

describes emergence by “Emergence means that you don’t need something more in order to get

something more” 4.

Emergence is a property related to complex systems. Physical world phenomena are usually

studied by translating them into mathematical formulae which are then used in control and predic-

tion. Despite the witnessed success of this approach, it has its limits, especially when it comes to

understand complexity that surrounds us. Physical complexity couldn’t be explained by conven-

tional ways of mathematics, and thus, complex systems emerged as new branch of mathematics in

order to emulate physical complexity.

Complex systems are made of many interconnected or interacting parts, like swarms of birds

or fish, ant colonies, financial markets, ecosystems, and of course, the brain. These systems are

hard to map into mathematical equations, but fortunately, what looks as complex behavior from

the outside is actually the result of few simple rules of interaction, therefore one can forget about

mathematical equations, and try to understand the system by looking at the interactions.

The emergent behavior of a complex system means that the whole is literally more than the sum

of its parts (in term of behavior). A straight-forward example is the self-organization phenomena in

which a global coordination spontaneously arises out of local interactions between the parts of an

initially disordered system. Self-organization can be seen in physical systems like convection pat-

terns in liquids heated from below, chemical systems like chemical oscillators, biological systems

as in the cerebral cortex, and social systems like swarms of birds. This behavior of a complex sys-

tem can’t be understood or predicted by looking at the parts of the system. However, one can forget

about the individual parts of the system, whether they are cells or ants or birds or other, and focus

on the rules of interactions between them in order to understand or predict the emergent complex

behavior.

In this view, network representation (nodes and links) turns out to be the ideal representation

that facilitates the study of such systems, where the nodes represent the system parts, and links rep-

resent interactions. Such networks enable the study of complex systems behavior. These networks

4TED talk by Murray Gell-Mann: On beauty and truth in physics, (Mars 2007).



2.4. Capabilities of cellular computing 43

are for the study of complex systems where equations are for the study of physics. Following this

approach, many complex systems were studied in physics, biology, computer and social science.

A work that attracted the attention of international media was applied in economics. Such net-

work was applied on studying global corporate control [Vitali 2011] in order to find “who rules the

world”. The authors built an ownership network of Transnational Corporations (TNCs) based on

financial data of 2007. Network nodes represent shareholders (which could be persons, companies

or governments), and links represent the shareholding relations (for a directed connection from a

node A to a node B, node A holds some percentage of node B). The 43.000 studied TNCs resulted

in a network of 600.000 shareholders and 1 million links. Regarding the structure, the network was

organized in a periphery and a center that contains 47% of all shareholders. Besides, the authors

found in the center a small dominant core region which represents 36% of highly connected TNCs

that makes 95% of the total revenue of all TNCs. As ownership gives a voting right for sharehold-

ers, one can trace the capability of shareholders in controlling the economy. It has been found that

737 shareholders (about 0.1% of all shareholders) has the potential to control 80% of the whole

TNCs value, and 146 of them have the potential to control 40% of TNCs values. The authors argue

that this result could probably be due to the self-organization phenomena found in complex sys-

tems (in economics it is called the invisible hand of the market), rather than a top-down approach

or conspiracy (from our side, we think that what could have emerged as a natural self-organizing

phenomena is an opportunity that would be hardly left unseized). Whatever, the authors claim that

high connectivity between players, can cause a systemic risk to the global economy, because high

connectivity makes instability highly spread across the network.

In line with the precedent claim related to complex systems, Wolfram claimed that traditional

mathematics was failing to describe complexity in systems, and that these systems are computa-

tionally irreducible, i.e. it is not possible to describe the complex behavior of a system in a simple

way, alternatively, there is no easy theory of almost all behaviors that seem complex. In such sys-

tems, the best way to describe the system is to simulate it. He claimed, however, that any complex

behavior, can be captured by populations of elements running simple programs (like cellular au-

tomata). Indeed, complex patterns that can be found in nature are seemingly the result of sampling

what is out there in the computational universe. Astonishing patterns can be obtained from running

simple rule cellular automata. While some rules give simple behaviors, others give very complex

ones. For example Rule 30 (figure 2.2(a)) is particularly interesting, it is a one-dimensional cellular

automaton that shows a chaotic behavior which can be used like a pseudo-random bit generator. In-

terestingly, it generates patterns similar to a sea snail called the Textile Cone(figure 2.2(b)). Other

two-dimensional rules can give patterns similar to zebra stripes.

Wolfram [Wolfram 2002] recommended to experimentally explore the nature of cellular com-

putation, and document what they do, as the results would have great importance in understanding

the natural world which he assumes to be digital, and that could result in a new scientific field just

like physics or chemistry.

Actually, we know that when programmed with the appropriate rule, cellular automata are

shown to be universal computers. For instance, The rule 110 that Wolfram conjectured in 1985 was

proven in 2000 by Matthew Cook to be Turing-complete, i.e. it can be used to simulate a single-

taped Turing machine and is thus theoretically able to perform as powerful as actual serial proces-
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(a) Rule 30 (b) Textile Cone

FIGURE 2.2: Rule 30 cellular automaton shows aperiodic chaotic behavior. It shows how
simple rules produce complex structures and behavior that can be found in nature

sors. Cook’s paper wasn’t published until 2004 due to rights conflict with Wolfram [Cook 2004].

Even earlier, Von Neumann proved that an automaton consisting of cells with four orthogonal

neighbors and 29 possible states would be capable of simulating Turing machine [Gardner 1983].

Implementing some rule on cellular machines in order to prove their universality basically aims to

prove that they are at least as powerful as existing machine. However, this degenerates the main

aspect of cellular models: parallelism.

Indeed, recalling the limitations of actual computation paradigms, cellular models are promis-

ing approaches for implementing distributed and parallel computation, with which computation

could restart ab initio. Let’s also recall that some cellular populations, like artificial neural net-

works, are proven to be good candidates to perform super-Turing computation [Siegelmann 1995a].

Cellular architectures were used in different application domains, showing the ability to gen-

erate patterns, cluster input data, solve differential equations. Except for some image processing

applications, cellular architectures were rarely used in temporal problems. In particular, there is no

work, to our knowledge, in which cellular architectures deal with temporal sequences.

Some cellular structures were implemented in hardware, like FPGA (field-programmable gate

array) chips and GPU (graphics processing unit) processors. Although, these efforts are still the

first steps, and cellular computing is still a young domain. The computational capabilities of today

cellular structures are still to be investigated before being able to build powerful general-purpose

programmable cellular processors.

Cellular structures have the ability to capture complex behaviors. They are thought to have the

ability to regenerate the emergent behavior of complex systems, i.e. they themselves can behave

as complex systems. However, the investigation of their capability in temporal problems is far

from being sufficient, and need more exploration.
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2.5 Complex and cellular neural systems for modeling the state of a

dynamical system

As mentioned earlier, the behavior of a complex system is determined by the interaction between

its elements. Complex systems are in the first place the biological systems of nature, but they also

involve systems originating from other fields like mathematics, physics and computer science.

Theoretically, a system is a set of interacting elements that form an integrated whole and could

have interactions with the outer world via inputs and outputs. Most systems are dynamical by

nature, their state of internal components, input and output change with time. Although most sys-

tems are dynamical, dynamical systems is a mathematical notion and a field of study with specific

methodologies that are used in some scientific domains like Newtonian mechanics, fluid dynamics,

mathematical economics and others. Examples of dynamical systems are everywhere, the stock

market, the weather, the motion of an object, sugar dissolving in a cup of coffee, traffic, etc. Dy-

namical systems could miss either their inputs or outputs or even both, one example of the latter

case is the theoretical model of the universe. A dynamical system that has no input is referred

to as autonomous. In the dynamical systems study, the major focus is on how outputs are issued

from the system state which is a compound of the internal variables. The state itself is a function

of the previous state and the system inputs. In the case where the system is autonomous the state

depends only on the previous state. In this sense, autonomous dynamical systems are conform with

the Markov property. The latter, basically issued from probability theory is extended to describe

any working environment. If an environment has the Markov property then its state depends only

on the previous state.

Dynamical systems need sometimes to be modeled for the purpose of study, prediction or con-

trol. Some other times it may be needed to build a representation of their state for the purpose

of learning like in some reinforcement learning algorithms. However, it is not always possible to

measure the internal state variable; it could be impractical to measure like in the study of weather

where it is not possible to know the temperature and humidity for every point in the system, or it

could be hard to measure like the case of a metal oven where the variable to be measured is the

degree of crystallization of the metal, or even inaccessible like in the study of the solar system. In

such cases, people try to model the dynamical system starting from the available observations like

the temperature in some points, or partial measurements like sensory information at the start and

the end of the melting process. Such environments are partially observable; the measured obser-

vations are not sufficient to precisely determine the actual state of the system, thus they are called

ambiguous hereafter. In such cases, the construction of the state or a representation of the state

behavior should be done starting from the available observations, dealing with them as a temporal

sequence.

In computer science domain, artificial neural networks are dynamical systems in which neurons

values change over time and the network state is determined by the previous state and the current

inputs (thus they are non-autonomous). In order to deal with temporal data, scientists developed

a family of neural networks that was proved to be efficient to comply with the job, this family

is the recurrent neural networks. Also, some kinds of neural networks exhibit the phenomena of

self-organization, which is also a property of complex systems. Indeed, the dynamics allowing the
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organization is not yet fully understood. Besides to being dynamical systems, neural networks are

fine-grain models of computation, that comply partially to the cellular computing paradigm.

Our work subscribes to the experimental approach of cellular computation as proposed by Wol-

fram. At the same time, it is motivated by the knowledge about the dynamical properties of neural

networks and their witnessed ability to encode temporal data. In the current work, we are proposing

a cellular and complex neural system with a self-organizing emergent behavior in order to build a

representation of the state of dynamical system starting from observations on the system. We would

like to do this in the case of an autonomous dynamical system where the temporal sequence of its

measured observations violates the Markov property, however, we want the built representation by

the cellular neural processor to maintain it.

Neural networks are distributed models. Adopting distribution in this work is not imposed

by the need to solve some specific problem that couldn’t be solved by other means. It is rather a

choice of research that aims to explore the capabilities of neural networks as cellular structures.

2.6 Problem definition

Neural networks are distributed models that were used in various applications, the one of major

interest in the context of this manuscript is sequence processing. Some applications require ac-

counting for the temporal dimension in the processed sequence, recurrent neural networks appeared

as a reply for this requirement. Self-organizing neural networks have interesting emergent proper-

ties, they were used in several works for spatio-temporal problems, besides, by their 2-dimensional

topology they offer a natural representation surface.

Neural networks differ from cellular computing models like cellular automata by their high and

non-local connectivity, and thereby, their non-local computation. Another difference is their non-

decentralized way of processing in learning and run. Due to their high and non-local connectivity

and the control of their operation by central processors, neural models are typically implemented

on classical digital computers, in particular, large networks are run on parallel computers. Because

of these properties, their simulation on classical computers even parallel ones turns out to be com-

plicated and lacks scalability. Besides, unlike other cellular models, implementing neural networks

on hardware happens to be difficult.

Regarding temporal sequence processing, networks designed for accounting for the temporal

dimension in input sequences have recurrent connectivity, global in most cases, and the problem is:

local connectivity contradicts with connectivity recurrence found in most neural architectures in lit-

erature. Not to mention that in most cases such networks are computed by some central processing

mechanism. Indeed, using neural networks as cellular computers for temporal sequence processing

is not a straightforward task.

In this work, we explore the possibility of building distributed neural network structures fol-

lowing the cellular computing paradigm and investigate their potential in processing temporal data.

We will see if networks with local connectivity patterns and decentralized learning and run could

process temporal sequences. In order to account for the temporal dimension of inputs, the principle

of recurrence is implemented in a different way than traditional models, in such a way that doesn’t
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contradict with the cellular nature of the network. One direct outcome from the combination of

these two approaches is to be able to process temporal sequences, all in facilitating the network

implementation on both software and hardware, and getting their scalability enhanced.

We propose such a model that integrates the temporal dimension of input sequences, while

borrowing from the principle of recurrence as found in recurrent neural networks. Being hybrid

between cellular automata and neural networks, this approach is based on a population of neural

cells with small processing capability, which are locally but stochastically interconnected.

We investigate the capability of the proposed model in temporal sequence processing to con-

struct a representation of an autonomous dynamical system states, by profiting from the represen-

tational power of self-organizing maps. The idea is to process temporal sequences of observations

on the dynamical system that violate the Markov property, using a recurrent scheme of competitive

self-organizing populations of distributed neural cells, in order to build a state representation that

maps one-to-one to the dynamical system states. Being distributed and local, this approach allows

for asynchronous update regime and decentralized processing and scales well on parallel comput-

ers. Moreover, this approach is online, adaptive and unsupervised. These later properties play an

important role when the dynamical system is non-stationary.

2.7 Plan of the thesis

Cellular computing is a recent trend in computation. Cellular structures originating from differ-

ent scientific fields were used to carry out some more or less complicated computations. These

structures emerged from physics like cellular automata and cellular neural networks, bioinformat-

ics like artificial neural networks, and molecular biology like DNA processors. Cellular processors

originating from biology are out of the scope of this manuscript.

This English introduction constitutes the second chapter of this manuscript. The third chapter

starts by discussing the abstract models of computation and their related formal languages in order

to facilitate the discussion of the computational power of the cellular models. Then we remind

with the classical models used for parallel computation that we refer to as coarse-grain models.

This is intended to help contrasting them against the cellular paradigm of computation that will be

introduced after presenting its parent family, the fine-grain computation paradigm. Then we remind

with the existing fine-grain models in computer science; we briefly introduce the theoretical basics

of cellular automata, and move on to present the related cellular neural networks, then the prevailing

models of artificial neural networks. We discuss the computational capabilities for each of these

models and show that they are all capable of universal computation. At the end of this chapter,

we present a definition of cellular computing as a parallel computation paradigm, and discuss the

main properties of cellular populations and the main differences between a cellular processor and

today’s classical parallel models. Different properties on both the cell and the population levels are

discussed, besides to the operational and behavioral aspects of cellular populations.

The fourth chapter discusses the problem of processing temporal data in artificial neural net-

works. We first talk about the temporal dimension of input data, and discuss time series processing

and temporal sequence processing and focus on the conceptual differences between them and their

domains of application and the most important required learning tasks for each of them. Then we
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review the main approaches of dynamical neural networks that encode the temporal dimension of

input sequences. In this review, we show how static neural networks are used in some tasks for tem-

poral sequence processing, and show some network architectures that employ tapped delay lines

with a multi-layer perceptron to implement a memory mechanism. We also present the prevailing

neural architectures used for temporal sequence processing; the recurrent neural networks. Dur-

ing this review, we show how apt these architectures are to build a cellular processor. At the end

we discuss the relation between artificial neural networks and the previously presented models of

computation.

The fifth chapter discusses a special type of neural networks applied to spatial and spatio-

temporal problems: the self-organizing maps. We first present the basic self-organizing map of

Kohonen and talk about its properties. We then review the existing self-organizing architectures

for sequence temporal processing, starting from using the algorithm in its basic form in temporal

sequence processing using pre-processing or post-processing, then we present models that modify

the algorithm in order to incorporate the temporal context in the inputs, and the models that use

recurrent connections to feedback the map activity into its dynamics so that it encodes the temporal

dimension of input sequences. We show how all these models based on the self-organizing map

and used in temporal tasks are not cellular. At the end of the fifth chapter we present the neural

field paradigm as a distributed competitive mechanism that is able compute the activity of self-

organizing maps, and show how it enables to change the way that self-organizing maps are viewed,

from being a neural network to being a population of neurons that fulfills the cellular computing

requirements.

The sixth chapter presents a recurrent neural/cellular architecture that is able to process tem-

poral sequences. The architecture is based on a recurrent scheme of self-organizing maps with an

auxiliary delay structure. In this chapter we show how this architecture is applied to the problem of

disambiguation of ambiguous observations on a dynamical system, and how it is able to construct

a state representation that maps one-to-one to the dynamical system states. We also show how

the architecture behaves in the case where the dynamical system is non-stationary. We compare

the obtained results to a reference non-cellular recursive self-organizing algorithm, and discuss the

differences in their capability to learn sequences and compare the stability and extensibility of both

methods.

Chapter seven concludes this manuscript by discussing the applicability of the proposed cellular

architecture in some problems like POMDP and dynamical modeling.
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3.1 Introduction

As mentioned in the previous chapter, no physical nor logical distinction could be made in the Von

Neumann machines between where data is stored and where it is processed, and therefore, data
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should travel from the memory to the processor and the way back at a speed inferior to the speed of

light. Besides, the processor -even equipped with some parallelism techniques such as pipelining-

still handles one basic instruction at a time, making the processing sequential in nature. For this

reason, and given the physical limitations explained in the previous chapter, the processing speed

will stay limited in Von Neumann based computers.

Improving the performance of computers, especially the processing speed, was a subject of ulti-

mate interest for researchers in computer science through the past decades. Scientists and engineers

from different domains deal with growing sizes of data and more complicated tasks every new day.

On the one hand, there are applications that need to process large volumes of data. This is

challenging because data could be much larger than the available memory. The problem is called

data bottleneck. The traditional solution is to resort to the “ virtual memory “ in which the com-

puter memory management unit visualizes the available storage space (secondary memory) as a

contiguous global address space in order to process some or all the tasks of the system using the

virtual memory. The use of this technique is well known to be slow as the storage is not expected

to perform as fast as the memory (RAM). Besides, the use of virtual memory usually requires high

level expertise from the user. People generally tend to avoid the use of virtual memory and prefer,

instead, to deal with reduced sizes of datasets while using less accurate operations to process their

data. This also requires more time and effort in developing algorithms that work on partial data,

not to mention data reduction techniques.

One good example of such tasks come from data mining domain. The classification of commer-

cial data (e.g. clients or transactions data) deals usually with large datasets. Building a classifier

(like a decision tree) based on a large volume of data needs the use of virtual memory, nevertheless,

this could take a considerably long time. This problem is usually turned around by using incremen-

tal algorithms, except that the latter result in less classification quality than batch algorithms. This

is also the main reason behind the existence of the “data selection” phase in the field of data mining

and knowledge discovery in database (KDD) in general. As data grows, the problem becomes more

and more serious.

On the other hand, some processing tasks take a long time to run. Two examples are Monte

Carlo simulations and parameter sweep, to mention a few. Such algorithms need to deal with large

number of combinations that should be processed separately, while there is no data interdependen-

cies that could reduce the processing. This is why such tasks are called “embarrassingly parallel”.

One illustrative example on parameter sweep is the research for primary numbers in a large range.

Here, no information about a sub-range of numbers could give an information about the whole

range or other sub-ranges, therefore, there is no solution but to process the whole range of numbers

one-by-one. When tasks of this nature are run on a serial Von Neumann processor, they scale lin-

early with time and the wait time becomes impractical, thus, people tend to run fewer simulations

or coarser parameter sweep. The other solution is to distribute the task on several computing ma-

chines. In the example of primary numbers, this means affecting to each machine the computation

of a sub-range of numbers.

Problems like the aforementioned ones, besides to the limitations of the general purpose com-

puters due to the Von Neumann bottleneck discussed in section 2.2 motivated the research in parallel

models.
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Coupling multiple Von Neumann machines to work in parallel in order to multiply the compu-

tational power of these machines is an intuitive idea that was realized as a parallelization paradigm.

The other paradigm was inspired from biology and our physical universe in general. It relies

on myriads of small computing elements (fine-grain), that work in unison to perform computation.

This paradigm found all the necessary reasons to motivate it. First, it became clear that the foreseen

limit of computational power of Von Neumann machines is inevitable, this is imposed by the phys-

ical laws conditioning their functioning at the very basic level. Second, there were already some

mature fields that perform computation using agglomerations of small computing elements like ar-

tificial neural networks and cellular automata known since the 1940’s and the 1960’s respectively.

Third, the new advancements in biology especially the information about microbiological cells and

their DNA mechanism and the possibility to control them, even going further and engineering such

cells. And fourth, and more importantly, the scientific ambition to better understand the physical

nature of the universe, and the philosophical conjectures relating physics to computation. This

new paradigm is tightly related to the philosophical points of view that consider our universe as

a huge computer, this claim was recently proposed by Wolfram [Wolfram 2002], but Schmidhu-

ber 1 pays our attention that the idea was first proposed by Konrad Zuse in 1969 and published in

1969 [Zuse 1969] (in German, [Zuse 1970] is the English version).

Indeed, all the processes that happen around us imply some form of computation, this intrinsic

property of our physical world needs to be studied and simulated. Such understanding of our

physical world allows us to hold the ambition that one day we will get more powerful and natural

computing machines that need farther less energy and exhibit more scalability and fault-tolerance.

All these reasons motivated the distinction of a new computing paradigms which is intrinsically

parallel, thus recently allowed us to hear about terms like “fine-grain computing” and “cellular com-

puting”. However, those terms were used in different contexts, leading to terminology ambiguity,

that will be clarified in the coming sections.

In the following sections we dive more in parallel computing and remind of the existing models,

their major families, and discuss their main properties and their pros and cons, then we present the

fine-grain distributed models for parallel computing and present the main models pertaining to

computer science. Finally, we present the cellular computing paradigm and show how it is a special

case of the fine-grain paradigm, and discuss its main properties on the structural and operational

levels. But before all, we start by reminding of some theoretical models of computation that will

be referred to in later sections and chapters.

3.2 Models of computation

This section is intended to remind with the theoretical basis of the models of computation. As men-

tioned in the previous chapter, Turing and Church have put the Church-Turing thesis and defined

computability that allowed for reinforcing research in the field of computation.

During the work on computing different functions, the need to classify these functions into

groups of equally difficult functions had arose, and led to the appearance of a whole field in com-

1Schmidhuber home’s page: Origin of the main ideas in Wolfram’s book “A New Kind of Science”, (Online, visited
03 August 2013).
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puter science that is concerned in classifying problems according to their difficulty and is called

computation complexity theory. Each class of equally difficult functions has been associated with a

set of rules that describes the class. Each set determines the allowable operations in order to com-

pute the class of functions. This resulted in different theoretical machines (or abstract machines)

that compute exactly a related class. These machines became reference models of computation.

The field that studies how efficiently problems are solved by the models of computations is called

the theory of computation.

Theoretical machines start from a start state, and change their internal state during computation.

The machine is in one state at a time, called the current state. The change from the current state to

another occurs after processing an event or input, so the machine makes a transition. Each machine

has a set of terminal states called final states, when reached, computation stops. When the machine

changes its state, it could output some value. The transition between distinct states implies that the

functions recognized by these machines are the discrete functions. If an input string of symbols

causes the machine to reach a final state, it is said that the machine accepted the string, if not, it is

rejected. In the language of the theory of computation, the problem of deciding whether a string

will make the machine reach a final state is called a decision problem, and the input string is called

problem instance.

Each machine is related to some type of strings, normally generated by another set of rules that

generates strings accepted by the machine, called formal grammar. The set of strings generated

by such a grammar and accepted by the related machine is called formal language. The field that

studies these languages is the formal language theory. Languages are of particular importance

in computation, and have been classified into different classes, the reference and most important

one is the Chomsky hierarchy [Chomsky 1956]. There exists two standard ways to characterize a

formal language, either by generating it by a grammar, or by specifying the abstract machine that

recognizes it.

There are several models of computation, the difference between them is related to the set of

allowable operations or rules. The most famous models are finite-state automata with their different

forms, and the Turing machine, each one of those machines accepts a language that belongs to the

Chomsky hierarchy.

3.2.1 Finite-state machines

A Finite-state automaton (FSA), also known as finite-state machine (FSM), is a machine that has

a fixed number of different internal states. Each machine changes its states after processing an

action. Some real life applications implement such behavior like the vending machine, the elevator,

the light switch, to name a few. Traffic lights are another example that differs from the previous

examples in that it makes state transitions autonomously.

Finite state machines can be of different types depending on their defined behavior, namely,

transducers, classifiers, sequencers and acceptors. The acceptor FSM is of particular interest be-

cause it can be used to test a condition, and if an input string of symbols is a member of some

language.

Figure 3.1 shows a simple acceptor FSM that decides whether a binary input string of any

length contains an even number of 0’s or not. The computation begins with the FSM in the start
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Another important class of FSMs is the transducer machines, also called translators, because

they are useful in computing functions. They take an input string and generate an output string

of the same length. The most important transducers are Mealy machine [Mealy 1955] and Moore

machine [E.F. Moore 1956]. Formally, a Mealy machine is a 6-tuple (Q,Γ,Σ, q0, δ, λ), defined

like a FSM with Σ the finite output alphabet, : λ : Q×Γ 7→ Σ. When the machine is in the state qi
after reading a symbol γj it write a symbol λ(qi, γj) ∈ Σ.

Moore machine is similar to Mealy machine, the difference is that the output symbols are

written after the next state has been reached. The output depends only on the new state rather than

on the previous state and the input, therefore in Moore machine λ is defined as follows: λ : Q 7→ Σ.

It is possible also that a FSM generates no output, it can only process inputs and perform state

transitions. A FSM of this type is called a semiautomaton or transition system. Semiautomata

are Moore-type automata that can be expressed as a quadruple (Q,Γ, q0, δ). Another Moore-type

automata are autonomous automata, which are also without output, but their input set Γ contains

only one element.

FSMs are pretty weak, mainly because they don’t have a dynamic memory. Their memory is

determined by a finite number of states. For example there is no FSM that can decide whether the

number of 1’s is greater than the number of 0’s in a string of the form 0n1m in any binary input

string using a pre-fixed memory only. It is impossible to build a FSM that remembers the number

of 1’s for every value of n because this requires to have a different state for each value of n, while

the number of states in a FSM is finite by definition (Q is finite).

3.2.2 Pushdown automata

Languages like L = anbn that contain strings like ab, aabb, aaabbb, · · · for all n > 0 belong to a

class called context-free languages. They are recognized by FSMs provided with infinite stacks,

called Pushdown automaton (PDA), which enable to push and pop symbols. In the case of anbn,

the PDA reads an a and pushes some symbol onto the stack as it counts the number of a’s, and

pops the pushed symbols while checking if there are the same number of b’s. However, PDA can’t

process languages like L = anbncn, because after pushing some symbols for the a’s count and

popping then to check if the count of b’s is the same, it will have nothing left in the stack that helps

to check if the number of c’s is the same. The language L = anbncn belongs to a class of languages

in the Chomsky hierarchy called context-sensitive languages.

3.2.3 Turing machine and the general-purpose computer of Von Neumann

A Turing machine consists of a control device and an infinite tape in one or two directions. At the

beginning of computation a binary input string is written on the tape surrounded by infinite blank

symbols on both sides (this implies a finite number of symbols on the tape). The tape is accessed by

a read/write head that is located at the leftmost of the input string at the beginning of computation.

At each step during computation, the head reads a symbol from the tape, checks the current state of

the control device, and performs three operations: it writes a binary symbol on the tape under the

head, moves the head one step to the left or to the right, and changes the current state of the control

device. The computation stops when the control device reaches one of the final states called the
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• And the newly defined and promising paradigm in computation: the fine-grain models that

are based on a way far simpler processors relying on the connectionist paradigm. Cellular

computing paradigm is a subclass of this one as explained later.

Although it was newly used to signify computing models, the term “fine-grain” (or “fine-

grained”) is not new. It was used on both software and hardware levels. On the software level,

it is usually used to describe code-related elements, for example, in object-oriented program-

ming, replacing an object that holds many variables with many objects with less variables and

simpler behavior is considered as fine-grain programming. This is usually used in flexible

environments for the purpose of data hiding, or in order to favor low coupling and high cohesion,

and make objects simpler to develop, test, modify, reuse, and deploy. However, this technique

increases network calls. Fine- and coarse-grain techniques are also familiar terms in parallel

programming domain like fine-grain adaptation of program behavior (one example is [Kang 2009]).

It should be emphasized that the terms “fine-grain” and “coarse-grain” in this work, concern the

conceptual architectures of parallel computing. In this context, coarse-grain models are intended

to refer to massively parallel computer architectures built of the traditional powerful sequential

processors and deal with the symbolic paradigm of information representation, while fine-grain

architectures refer to massively parallel models that deal with the connectionist paradigm of in-

formation representation.

It is noteworthy to mention that even coarse-grain architectures in our defined sense, could

be found in literature as a subject of classification between coarse-grain and fine-grain depending

on the number of processors. When some parallel computing structure contain a large number

of processors, say 10000, or uses processors which contain many cores on the same die, it could

be referred to as fine-grain parallel architecture. However, we restrict ourselves to the previously

defined terminology.

3.3.2 Synchronization

When talking about coordination between multiple processors, a general issue related to distributed

and parallel systems arises: how computation carried out by different processors is coordinated?

Which processor computes which operation or task, and at which time relative to other processors?

This leads to distinguish two major update regimes: the synchronous and asynchronous ones. In the

synchronous update regime, there exists a global device called “phase clock” [Boulinier 2005] that

defines a discrete time framework allowing to distinguish successive “phases of computation”. The

phase clock maintains the current phase number (τ = 0, 1, 2, · · · ) so that all processors perform

their operation of tasks (we can say: updated) in the phase τ , then this is repeated for τ + 1, and

so on. The notion “phase clock” is not to be confused with the notion of timestep. The latter is

also a time discretization into successive instants (t = 0, 1, 2, · · · ), but it is reserved to control the

computation carried out by processors within each phase. In the asynchronous update regime, there

is no need for a global signal, instead, it is sufficient to specify an order, so that processors perform

their operations sequentially, one after the another in a cyclic form. However, it should be ensured

that no processor continues to compute in a new cycle, before all other processors do in the previous
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cycle. There are several scenarios to implement asynchronous update, either by specifying a fixed

order, or a random order for each cycle [Schönfisch 1999].

3.4 Coarse-grain models

This is the trend in parallel computing and the classical paradigm of building parallel computing

architectures. This section is a reminder of these models, presented here in order to contrast its

specifications with those of fine-grain and cellular models presented later in this chapter. A model

from such a class is an agglomeration of powerful sequential processors (of the Von Neumann

type) that can be organized in multiple ways. A single Von Neumann processor is illustrated in

Figure 3.3.

Different design criteria arise when thinking of coupling processors together: the way these

processors are organized and interconnected and the way that such processors communicate and

coordinate to split the processing tasks and share resources like memory between them, specifi-

cally, whether they share memory or not, and last, how tight are those processors coupled together

(geographically, and depending on connection speed whether it is a high speed bus or merely some

type of area network connections) .

Some design criteria are interdependent, for example, sharing the storage medium between pro-

cessors makes the communication between them more likely to occur through the shared storage,

this in turn makes it more likely that they are communicating with the storage through buses rather

than network connections. Of course, there are configurations that violate this rule, where, for ex-

ample, processors share the storage while communicating through the network, or, tightly coupled

processors like in some supercomputer configurations could have each its own memory. But in

general, criteria tend to cluster together, leaving room to a possible coarse classification of parallel

coarse-grain architectures into tightly-coupled and loosely-coupled ones.

Processors in coarse-grain models are complex and capable of universal computation, and the

number of processors in such parallel models varies and increases with time, for example Blue Gene

supercomputer is one hardware implementation of coarse-grain models, it runs in its Blue Gene/P

generation 250000 processors that has a computation power that exceeds 1 peta flops (1015 floating

point-operating per second) , and the Chinese Tianhe-2 that consists of 3.12 million cores in 16000

processors exceeds 33 peta flops, while it is estimated that there are some 108 − 109 machines

connected to the world wide web, which could also be thought of as a parallel model. The model

proposed in this thesis is run on a parallel coarse-grain architecture called InterCell .

It is important to distinguish between the theoretical basis of the models of parallel computation

paradigm from their hardware implementations. The latter are listed in this manuscript for the

purpose of illustration of the underlying model. In the previous example, Blue Gene is a hardware

implementation that illustrates coarse-grain models, but it is not the main concern per se.

3.4.1 Tightly-coupled multiprocessors

Multiprocessors are said to be tightly-coupled when a group of sequential powerful processors

communicate either through a shared memory or over a shared bus. Example of such class are
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supercomputers. Two main configurations could be distinguished. The first is when processors

share the same memory thus they are called shared memory machines. In this case, the communi-

cation between processors occurs through writing to and reading from the global shared memory.

Figure 3.4 illustrates this configuration.

FIGURE 3.4: Tightly-coupled shared memory multiprocessor models. Extracted
from [Barney 2013]

The second configuration could be found when processors don’t share memory but instead, each

processor or small agglomeration of processors has its own memory thus they are called distributed

memory machines. Communication in such configuration occurs through a shared bus (typically,

of type backbone). Figure 3.5 illustrates this configuration.

FIGURE 3.5: Tightly-coupled distributed memory multiprocessor models. Extracted
from [Barney 2013]

Some models rely on bus-connected processors that have each its own memory but share the

address space. In some other models, processors could be interconnected to use both shared and

distributed memories, i.e. all the processors share a global memory, but at the same time each

processor or small agglomeration of processors share a small memory or a cache. Both models

are tightly-coupled but could be seen as hybrid between shared and distributed memory machines.
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This is somehow similar to what is found in our today laptops and PCs, except that they contain

one processor with multiple cores packed in the processor socket, and cores often share the cache

memory.

In both tightly-coupled configurations, the multiprocessor system has its own input/output pe-

ripheral devices, and a shared operating system that is the same on all processors.

Apart from architecture details, tightly-coupled systems could be classified depending on other

criteria. Another important classification for such systems is depending on how instruction streams

and data streams are processed. This classification is called Flynn’s taxonomy (figure 3.6) for

computer architectures:

• When all processors select the same instruction from the instruction pool, but each processor

executes it on a different piece of data, then the obtained model is called Single Instruction,

Multiple Data (SIMD), figure 3.6(c) shows the schematic of this model.

• Similarly, Multiple instruction, Multiple Data (MIMD) models are obtained when processors

execute different instructions on different data as in figure 3.6(d).

• Multiple Instruction, Single Data (MISD), as depicted in figure 3.6(b), is a rarely materialized

model. Its main use is in task replication where redundant instruction execution is needed in

fault-tolerant computers.

• While the Single Instruction, Single Data (SISD) model refers to the Von Neumann sequential

processor, it is depicted in figure 3.6(a).

A difficult task in shared memory machines is how to ensure scalability. The problem arises

when processors are added or the shared memory is increased in size. Distributed memory machines

became more common as they are more scalable. However, they raise another problem which is

managing the message passing between them, which is used for processors communication and

coordination. In general, programming both types of machine is not straightforward and requires

advanced skills and considerable programming time.

3.4.2 Loosely-coupled multiprocessors

This design approach is the same as the main stream sense of the word as discussed in 2.2. In this

approach, the system is compound of different machines, each of them is an autonomous machine

that contains its own processor (or multiprocessors) and input/output peripherals. Different ma-

chines in the system could have different operating systems and different hardware manufacturers

and settings. Such systems are loosely-coupled and distributed, because the system machines don’t

communicate neither through shared memory nor through a shared bus, instead, they communicate

using a network that could span a wide geographical area like in Wide Area Networks (WAN).

Figure 3.7 shows an illustration of loosely-coupled systems.

The World Wide Web that spans the globe, is itself a valid example of loosely-coupled dis-

tributed systems. One could claim that distributed systems are expected to carry out a common

goal, which is not the case of the Web. To answer this claim, one could recall the example of large

computation tasks that are partitioned into smaller ones and sent over the web to users around the
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globe who accept to run a small part of the computation on their machines (Example, SETI experi-

ment that uses internet-connected computers in the search for “extraterrestrial intelligence” 2).

In order to facilitate communication and coordination between machines, a middle-ware is nor-

mally installed on each machine. The middle-ware aims to set a common communication language

between different machines, so they can use it to send and receive messages over the network.

Loosely-coupled systems scale better than their tightly-coupled counterparts; they could be

extended, modified, and reconfigured more easily. They also allow for more flexible energy dis-

sipation management, leaving place for integrating large number of machines, and thus, for more

computational power.

Their disadvantages compared to tightly-coupled systems is that they are harder to program,

control, monitor and predict due to the possible different operating systems and access right issues

over the network. Information security is another problem to solve. Their scalability implies an

additional task of keeping track of topology change. Setting up machines to work synchronously

in such multiprocessor systems is harder than in tightly-coupled ones, so they are mostly run in

asynchronous configuration (see 3.3.2).

3.4.3 Hybrid computing paradigms

The classification of coarse-grain multiprocessor models between tightly-coupled and loosely-

coupled is somehow a rigid one, as there exists some hybrid models that combine not only mixed

architectural aspects but different processor types.

Some newly developed computation hardware implementations like the GPU (Graphics pro-

cessing unit) allow for parallel computation and are not that “coarse”. GPUs are processors that

contain a big number of cores (say, thousands) compared to Von Neumann processors. GPU pro-

cessors are often SIMD implementations.

GPUs were engineered by Nvidia in 1999. It was basically a response to the demanding com-

putation in image processing tasks in graphics cards. In the First GPUs, each core performed a

fixed function. Research and development in GPU resulted in programmable GPUs with familiar

programming languages like C/C++, and FORTRAN, besides to special development platforms

like OpenCL. The program needs to run on a framework such as the dominant CUDA one. As it is

possible now to program and use in various application domains, GPUs allow for GPGPU (general

purpose computing on graphics processing units).

The use of hybrid architectures consisting of GPUs and a CPUs is referred to “GPU comput-

ing”. GPUs with their up to thousands cores able to process up to one tera flops (like in Tesla

GPUs) are assigned parallel computations, while CPUs with their few cores are optimized for se-

rial computations. Such architectures are now being used in some personal computers like Apple

MacBook Pro to attain higher computation speeds.

With the appearance of processors like GPU which allow for integrating a high number of

processing cores, people now talk about the “new” Moore’s Law: the number of processor cores on

a chip will double roughly every 18 month [Furber 2009].

Finally, it is suitable to mention that recent supercomputer architectures benefit from the power

2SETI home page, (Online, visited 24 October 2013).



3.5. Fine-grain distributed models 63

of GPU computing. Manufacturers tend to produce hybrid but tightly-coupled architectures that

contain both CPUs and GPUs as illustrated in Figure 3.8.

FIGURE 3.8: A hybrid multiprocessor model used in some supercomputers. It combines
CPUs and GPUs in one architecture. Extracted from [Barney 2013]

3.5 Fine-grain distributed models

Massively parallel coarse-grain computers developed by computer scientists consist of a relatively

small number of processors, each of them can be described to be of high complexity. Their appli-

cation in various research and engineering fields confirmed their high computation power. These

systems allowed to realize complex and demanding computation tasks, although, they are not avail-

able to all people because of their high cost and need for special engineering and programming

skills. Besides, some computational tasks seem to be more demanding like in statistical physics

and biology where tasks could be computational-greedy. Even Blue Gene that has been used (in

the context of the Blue Brain project) to simulate only 1% of the human cortex (1.6 million neu-

rons with 9 trillion connections), seems to be limited and far from fulfilling scientists ambition in

building a complete model of the human brain.

Natural systems like the human brain (and that of other species), implement an altogether differ-

ent concept for parallel computation. Rather than depending on a small number of costly, complex,

energy demanding processors, they depend on a very large number of highly interconnected low-

energy simple processing entities.

Although each neuron in the brain computes a simple function of its inputs and synapses store

a small amount of data, undeniably, the brain is a robust, fault-tolerant computation system. Those

properties stem from the high number of neurons (processors) working in parallel, and from their

high connectivity reflected by the high number of synapses (links) between them.

Inspired from the brain and its computational properties, artificial neural networks have been

proposed and used in computer science and found a wide success as witnesses their intensive use in

artificial intelligence. The high connectivity and synergical cooperation between their processing

units announced for the connectionist paradigm in computer science. Some of the neural networks

models have their processing units working in parallel, thus they are considered as parallel dis-

tributed processing structures (PDPs).
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Cellular automata (CA) is another connectionist model that was originally studied in physics

(growth of crystals studied by Stanislaw Ulam) and biology (self-replicating systems studied by

Von Neumann) in early 1940’s, and was later studied in computer science. They are populations of

interconnected cells that run in parallel and carry out computation. By inspiring from both ANNs

and CAs, Cellular Neural Networks (CNNs) have emerged as a new connectionist paradigm for

computation.

These paradigms rely on a different approach in building massively parallel computing

systems. The number of basic processors and the granularity of processing units in such models is

much higher than in coarse-grain parallel models, this is why they are called fine-grain models

that define the fine-grain paradigm in computation. With few exceptions, fine-grain models are

parallel computation models, one exception is related to artificial neural networks and is discussed

in a later section. While the term “massive parallelism” is frequently used to signify parallel

models containing large number of processors including coarse-grain models with thousands of

processors, Sipper [Sipper 1998b] proposes the use of the term “vast parallelism” with fine-grain

models in order to distinguish the different order of magnitude of processors number that could be

expressed by the exponential notation 10x.

Fine-grain models are theoretical models of computation that shouldn’t be confused with how

they are implemented. Often, fine-grain models implementation are simulations on coarse-grain

parallel machines. However, this is not the only possibility, consider cellular automata for exam-

ple, they can be implemented (and are implemented) on parallel computers, and using CMOS

technology, they are also implemented using nano-crystal semiconductor materials (quantum

dots). What is important to retain here, is that although most fine-grain models are implemented

as coarse-grain parallel machines programs, they shouldn’t be perceived merely as programs, but

also as different theoretical models that have different computation capabilities. Coarse-grain

implementations limit the parallel computation, and thus, they limit the speed of computation of

fine-grain models by their own capability of parallelism, but they don’t affect the other aspects of

their computational power, such as their emergent behavior.

In the following sections, we present the major fine-grain computing models in computer sci-

ence, CA, ANNs, and CNNs and discuss their special mechanisms of processing and memory.

3.5.1 Cellular automata

Originally introduced by Von Neumann [Neumann 1966], cellular automata (CA) are decentralized

systems that have the potential to perform complex computation with high robustness and efficiency

and model the behavior of complex systems in nature [Mitchell 1996].

A classical cellular automaton consists of a large number N of cells spatially extended over a

lattice called the cellular space, topologically distributed on the nodes of regular grid (1D,2D,..).

Each cell on the lattice is connected to its neighbors following the same connectivity pattern as all

other cells. The whole system is controlled by a global clock that provides an update signal for all

cells working in parallel so that they are updated synchronously.

The CA can be seen as a population of identical FSMs interconnected in a regular way. Each cell



3.5. Fine-grain distributed models 65

in CA implements a semiautomaton FSM (see 3.2.1). The cell’s FSM reads the states of neighbor

cells and computes a value as its own state, the state value can also be considered as the cell output.

The cell state is one of a set Q of the FSM states with k = |Q| possible states. A cell with index

i computes a state qti at time t with qti ∈ Q. The cell neighborhood is the topographical neighbors

connected to it, it may also include the cell itself, thus in the one-dimensional case, at a time t, the

cell has µ = 2r + 1 neighbor states, where r is called the radius of the CA. A cell’s FSM takes as

input the states of neighbor cells at time t and computes its next state q(t+1)
i at time t+1 following

a transition rule δ, also called CA rule, which is a mapping from the set Qµ of neighbor states to

the set of cell states Q.

When k = 2 then the state is binary and its value is either 0 (called the quiescent state), or 1

(called the active state). In case of binary states, the CA rule is often displayed as a lookup table

which lists all possible combinations of neighbor states together with their corresponding output

bits.

Cellular automata are closed systems: cells have no connectivity to any external input source,

and the cell’s only input is the states of the neighbor cells whereas its output is its state itself (the

semiautomata generate no outputs). The cells initial states are loaded before the run and their states

are read during or after the run. Thus CA behave as autonomous dynamical systems, they are also

discrete and deterministic.

FIGURE 3.9: One dimensional CA shown in two successive timesteps. Each cell has
k = 2 possible states 0 or 1. r = 1 thus the neighborhood of a cell is itself and the cells
to the left and the right. The boundary condition is handled by wrapping as show the
arrows on the borders. The cell next states are computed following the transition rule φ
expressed as a rule table in this figure. Extracted from [Mitchell 1996].

Figure 3.9 shows a 1-dimensional cellular automaton, with binary states. The cell neighborhood

consists of the cell and its two neighbors to the left and right. As it is a finite automata, the CA is

wrapped like a ring for boundary cells update: The leftmost cell is considered as connected to the

rightmost cell and vice versa. The CA rule φ in figure 3.9 is Wolfram’s rule 110 3.

In a 2D CA cells are distributed on the nodes of a grid where the lattice is the Euclidean space.

3The rule’s numbering scheme is proposed by Wolfram, the output bits are ordered lexicographically and are read
from right to left, so the binary “0111 0110” is read “0110 1110” and thus it equal to the decimal 110
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The cell neighborhood could be defined in different ways, the most common ones are Von Neumann

and Moore neighborhoods, they are illustrated in figure 3.10.

(a) Von Neumann (b) Moore

FIGURE 3.10: Famous neighborhood functions in 2D CA: (a) The Von Neumann Neigh-
borhood. (b) The Moore neighborhood. The shaded cell is the one to update.

One of the first CA to be studied and the most famous example of 2D cellular automata is

John H.Conway’s Game of Life, or “Life” for short. The grid could be infinite or wrapped in both

directions giving the shape of a torus. In Life, k = 2, the state could be 0 (or “dead”), or 1 (or

“alive”). The cell neighborhood µi is the Moore’s neighborhood 3.10(b). The Life rule is totalistic:

the next state of the cell depends only on the number of alive neighbor cells, regardless of their

relative positions. This rule is detailed in table 3.1. Life is normally initialized to a limited number

of cells in alive states.

Number of alive neighbors Current state Next state
2-3 live live
0-1, 4-8 live dead
3 dead live
0-2,4-8 dead dead

TABLE 3.1: CA rule φ for Conway’s game of life

Regarding initial conditions, Life is known to have initial conditions that yield a complex be-

havior, besides to a number of initial states that yield interesting stable patterns. Some patterns

oscillate in various periods, some others yield gliding localized structures that resemble to space-

ships (an overview of some structure can be found in [Berlekamp 1982]).

Conway conjectured that there is no initial condition that allows for unlimited growth of the

number of the living cells and offered $50 to anyone who can prove or disprove it [Downey 2012].

He paid the money to Bill Gosper who invented in 1970 the “glider gun” which is a structure that

emits every 30 timesteps a new propagating structure of living cells (like only 5 alive cells) called

“gliders”.

3.5.1.1 Universality

The importance of what is now known as Gosper’s Guns is that they led to prove that the Game

of life is Turing complete. For this purpose, and instead of emulating a Turing machine, basic
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logic functions were built up from interactions between glider streams. Some properties of gliders

and glider guns were used to build these functions. For example, a stream of gliders shot off

from a glider gun is interpreted as a stream of bits, where the presence of a glider means “1” and

the absence (a hole in the stream) means “0”. Some types of gliders change direction when they

collide, others annihilate, the latter property was used to build the NOT gate. The same technique

was used to build the Or gate with the help of a glider gun that performs delay. Adding a structure

that destroys other ones (called “eaters”) are used to build the AND gate. Other amusing techniques

were invented to play with glider streams for information copy, delay, and storage in the form of

circulating gliders. These techniques in building basic logic functions could be used to compute

any recursive function, and thus proving at least a universal computer could be embedded in Life.

As mentioned in 2.4, Rule 110, one of the simplest CA, was proved by Matthew Cook to be

a Turing machine in the one dimensional case [Cook 2004]. In the proof, Cook used the same

principle of gliders to simulate the tape and functioning of Turing machine. The glider in the one

dimensional case is a point or a structure of neighbor points moving with time.

3.5.1.2 Life on the edge of chaos

Rich computation capabilities arise when a CA rule makes the CA work in a maximal complexity,

complexity in the context of CA means that information exchange between the CA cells is maximal.

Some CA rules endow the CA with the sufficient complex behavior that allows the CA to exhibit

the capability of universal computation.

Some CA rules lead to a trivial behavior and poor computational capability, whereas others

lead to a useless chaotic behavior of the CA. Stephen Wolfram [Wolfram 2002] claimed that Rule

110 and Life are neither completely stable neither completely chaotic, this is called the edge of

chaos. The latter is a metaphor that means that a biological, physical, economic or social system

has its maximal complexity when it operates in a region between order and randomness. The first

researcher that clearly pointed out to this phenomenon is Christopher Langton. A good coincidence

is that he was also working on cellular automata.

Langton [Langton 1990] parametrized the space of all possible CA rules by a variable λ, in-

creasing λ gives different rules that lead to increasing the CA behavior complexity. He observed

that there exists an upper and lower limit on the complexity of a CA system (in term of λ values),

where, in between, the complexity of the system is non-degenerative, constructive, and open-ended.

These limits are close to each other and exist on the vicinity of the phase transition of the system

(the edge of chaos), especially second order (or critical) transitions. Within this range the system

dynamics exhibit the capacity of storage, modification and transmission of information, thus well

reflecting the emergence of computation. Using the terms of dynamical systems with CA is correct

although these terms are basically defined in the case of continuous time continuous space dy-

namical systems. Wolfram put an analogy between CA classes of behavior and dynamical system

ones [Wolfram 1984], which allows for such term borrowing.

The interesting behavior exhibited by systems allowed Berlekamp, Conway, and

Guy [Berlekamp 1982] to speculate that: “It’s probable, given a large enough Life space, initially in

a random state, that after a long time, intelligent self-reproducing animals will emerge and populate

some parts of the space.”
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That speculation was about Life, however, from the realm of computation and cellular automata

Langton has put a beautiful and inspiring “text” about the other “life”:

“Computation may emerge spontaneously and come to dominate the dynamics of phys-

ical systems when those systems are at or near a transition between their solid and

fluid phases, especially in the vicinity of a second-order or "critical" transition. This

hypothesis, if borne out, has many implications for understanding the role of informa-

tion in nature. Perhaps the most exciting implication is the possibility that life had its

origin in the vicinity of a phase transition, and that evolution reflects the process by

which life has gained local control over a successively greater number of environmen-

tal parameters affecting its ability to maintain itself at a critical balance point between

order and chaos”. C.Langton, Computation at the edge of chaos: phase transition and

emergent computation. 1990.

This very idea of critical balance of the universe is recently argued by the physicist Gian Giu-

dice 4 , member of CERN’s Group for theoretical physics, but this time depending on physical

calculations after the discovery of the Higgs boson and the Higgs field. Giudice explains that the

Higgs field (the substance that fills all space-time) can also exist in another state, called the ultra-

dense Higgs field which is billions times more dense than the actual field state. The mere existence

of another state of the Higgs field poses a potential problem, because according to the laws of quan-

tum mechanics, it is possible to have a phase transition between the two field states, a phenomenon

called quantum tunneling. The intensity of the Higgs field is critical for the structure of matter,

if it is only a few times more intense, we would see atoms shrinking, neutrons decaying, nuclei

disintegrating, and hydrogen will be the only possible chemical element in the universe. If it is

billion times more intense, no molecular structure is possible, and all matter will collapse. Giudice

claims that the fate of the Higgs field in our universe is related to the Higgs boson mass, which is

about 126 GeV (about 2×10−22 grams), and that recent calculations revealed that the Higgs boson

mass is very special, as it has just the right value to keep the universe hanging in unstable situation,

at the edge of a phase transition (a knife edge), and that it will eventually collapse.

3.5.1.3 Cellular automata as a possible computer of the Universe

Langton has made an allusion to the idea that the universe is describable by information and

therefore it is computable. This very idea is the basic premise for the theoretical perspective

of digital physics field of science that suggests that the universe is a digital computer. It was

originally speculated by the German civil engineer Konrad Zuse in his book “Rechnender Raum”

(“The Computing Space” in English) in which he suggested that the universe is being computed

on a discrete computer, possibly a deterministic cellular automata [Zuse 1969]. The famous movie

“Matrix” owes a great deal to Zuse’s theories 5.

4TED talk by Gian Giudice: Why our universe might exist on a knife-edge, (May 2013).
5American Scientist: The Computational Universe, (Online, 28 June 2013).
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Along with Langton hypothesis and Zuse speculation, and in the search of the computational

model for the physical universe, Wolfram speculated that the research in the computational space

that contains all possible rules, also called computational universe, could result in finding the

model of our physical universe. This target model could result from simple rules generating an

irreducible rich and complex behavior. For Wolfram, the universe is a basic computational struc-

ture that resembles to a mesh or a network, and behaves like a continuous space when regrouped

in the same way that lots of molecules behave like a continuous fluid. When some rule is applied

to these computational structures they result in a universe, different from the universe that results

from another rule. He presented some examples of rules with the resulting universe generated by

each of them and found some candidate universes that “are not obviously not our universe” . The

problem is that such candidates are full of computational irreducibility, therefore, it is irreducibly

difficult to verify if they match our physical universe.

The author of this manuscript subscribes himself to this thinking current represented here by

the pioneering works and speculations of Zuse, Langton, and Wolfram. We believe that our uni-

verse is the outcome of a physical substrate subject to apparently complex, but in essence simple

interactions between the units of the physical substrate. The complex phenomena in the universe

are thought to be the result of cellular interactions, implying computation, between the basic units

of the physical substrate. Even chaos in the universe, is in essence a deterministic phenomena, that

the human studies using the black box approach, because he has not yet the sufficient understanding

or tools that allow him to model them in the precise way.

The complex phenomena is the outcome of “emergence” of cellular interaction between dif-

ferent levels of agglomerations of the physical substrate. Self-organization is the ultimate form

of emergent behavior, different in that it implies an intrinsic power of self-maintenance and sta-

bility. Self-organization can be disturbed by external perturbations, possibly emerging from other

self-organizing systems, or systems that seek to be organized. We see the universe as a system

that permanently seeks self-organization , although, self-organization in the universe might be ab-

stracted to hierarchical levels: objects and creatures are self-organized systems of basic physical

units, that have the power of self-maintenance in their actual environments, all within another level

of self-organization that includes other objects, or creatures, included finally in a system of large

number of self-organizing systems that form our continually self-organizing-while-changing uni-

verse. Stillness is impossible, the change is ruling, at least while life is there.

We believe that the universe is a cellular computer, which behavior could be thought of as

implying an intrinsic “conscious”. The human finally reached an era where he started to carry

out complex computations that enable him to willingly participate in controlling the order of the

universe. His scientific knowledge can either favor or disturb the existing self-organizing systems,

the human is responsible ever after. The human consciousness should keep in harmony with that of

the universe as it is embedded in it, this is what his responsibility implies.

3.5.1.4 Cellular automata as a massively parallel computation model

Cellular automata was proved to be universal either by simulating the Turing machine like in the

case of Rule 110, or by constructing a serial processor able to perform recursive functions like
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the case of Game of Life. Both constructions are not practical for building a general purpose

computing machine. One reason is that simulating a serial machine in order to perform some

computation results in a very slow computation. Rule 110 as proposed by Cook is an exponentially

slow simulator of Turing machines, another solution was proposed by [Neary 2006] to reduce it to a

polynomial time. This also degenerates the parallelism aspect of CA as mentioned in 2.4. The other

reason is that setting up the appropriate initial configuration that allows for the desired computation

is extremely difficult and should be found for every different computation.

That is why efforts to build a vastly parallel universal computer with CA should pass by in-

vesting its parallel computation capabilities. Instead of using the CA-built or CA-simulated Turing

machines to perform some operation, researchers are working on carrying out computation, like

performing some arithmetic operation, by the direct investing of vast parallelism of cellular au-

tomata (some examples are [Squier 1994, Weston 2007, Choudhury 2008]).

The presented model of CA in this section is the basic and more used one, nevertheless, CA

has many possible architectural and behavioral variations, like stochastic [Fatès 2011] and asyn-

chronous CA [Schönfisch 1999, Bouré 2012, Fatès 2008]. Infinite-size cellular automata are also

studied in computation, however, if infinite size is to be allowed, the CA would be a non-realistic

computation models. First, perfect synchrony is hard to justify in the case of infinite CA. And sec-

ond, in order to CA to be a legitimate massively parallel model of computation, it should be defined

on finite configurations only [Tosic 2004]. A realistic CA computation machine should allow for

a countably many starting configuration (inputs) and a countably many reachable configurations

(outputs), reached after a finite number of steps, while maintaining a finite number of active states

at the start and at the end of computation. The latter condition is conform with the constraint im-

posed on the work of Turing machine where the only allowed symbol to occur infinitely is the blank

symbol as explained in 3.2.3.

Today’s computer science started to show interest in the way in which computation occurs in

the universe, by relying on models that carry out computation using a population of similar compu-

tational cells. Computation in the universe is supposedly the result of miniature computations that

occur on a very small level, as a result of the interaction between the basic units of the physical sub-

strate with their neighbors, hence, computation in the universe is basically local. Cellular automata,

as studied in this section, are fine-grain models that consist of large number of cells computing in

parallel. The functional neighborhood of a cell is the same as its topographic neighborhood: each

cell computes its state on the basis of the states of its direct topographic neighbors, thus, computa-

tion in cellular automata is also local. Computation propagates in the population of cellular cells,

allowing complex computations to emerge on the population level. Cellular automata constitute the

simplest and more expressive model of computation as occurs in the universe, they are the best to

illustrate complex computation that emerges from local interactions between basic computational

units. This idea, is in the core of interest of recent computer science, as well as the interest of this

work as will be detailed later in this chapter.

3.5.2 Artificial neural networks as fine-grain models

In the previous section, it was shown that cellular automata are fine-grain and parallel computing

systems. Another computational model that consists of simple processing units is artificial neural
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networks (ANNs), in this section we introduce them and examine their fine-grain and parallelism

properties.

There are a large number of different artificial neural networks (ANNs), they vary in their

architectures and their paradigm of computation, hence, it is difficult to encompass them all in one

formal definition. A possible general definition in the discrete time is introduced, although there

are ANNs that work in continuous time.

ANNs are populations of processing units ai also called neurons, with i = 1, · · · , N and N is

the number of units in the network. Each unit ai has an output or an activation level yi(t) at time t

that can be rational or binary number. Units are interconnected by connections with weights called

synaptic weights or weights for short, so that, if a unit ai is connected to another unit aj , then the

weight wij determines how much the activation yi(t) participates in the input of aj . The inputs to

a unit can be either other units activations, hence inputs internal to the network, or alternatively,

they can be external inputs, both input types are presented to the processing unit via weighted

connections. Inputs to the unit are referred to as x(t). Units compute their activations starting from

their inputs, generally, this is a two step computation, the cumulative effect of inputs to the unit aj
is first computed using a function g, then the activation of aj at time t + 1 is computed using an

activation function f , so that:

yi(t+ 1) = f(g(x1(t), · · · , xk(t), w1j , · · · , wkj)) (3.1)

where k is the number of inputs to the unit aj . Depending on the connectivity scheme, different

units can have different number of inputs. The function g is often the weighted sum of inputs, that

is:

g(x1(t), · · · , xk(t), w1j , · · · , wkj) =

k
∑

l=1

wljxl(t) (3.2)

The network units are generally organized in layers, namely, input, hidden and output layers.

The units in the input layer are set by the environment or the user, the units in the hidden layer are

intermediate units that help in the network computation. The units in the output layer are computed

using the other units and connection weights, it delivers the computed output to the environment or

the user.

Neural networks can optionally update their weights through an adaptive process called learn-

ing or training in order to fit some set of input/output pairs, or to reflect the similarity in input data,

depending on whether learning is supervised on unsupervised respectively. There exists several

learning methods, called learning algorithms.

ANNs are neural in the sense that they are inspired from biological neurons in the brain, but they

are not necessarily faithful models of biological neurons. They are rather mathematical models that

can work as input classifiers, regression models and clustering algorithms. Information about the

environment is presented to the network in the form of input patterns. ANNs acquire knowledge

about the environment through learning. Synaptic weights are dynamically modified along the

iterative learning process in order to accumulate knowledge about the environment or enhance the

accumulated one. The modifiability of synaptic weights is called synaptic plasticity.

In his report “intelligent machinery”[Turing 1948], Alan Turing proposed the idea of making
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processing from simple units like neurons in the brain, and talked about “unorganized machines” for

computation. But before, based on information available about the biological neuron, McCulloch

and Pitts developed in 1943 the first conceptual model of the biological neuron and called it the

formal neuron. The model receives binary inputs, processes them and generates an output. The

neuron takes binary values 0 and 1 as values of its output y. Inputs to the neuron (x1, · · · , xN ) are

values in (0,1) bounded by fixed synaptic weights (w1, w2, · · · , wN ) also normalized in (0,1). The

neuron computes the weighted sum of the inputs as the function g and the output is computed as a

linear step function of the weighted sum with a threshold T as the function f . The linear threshold

activation function is called hard limiter. This model is useful in classifying the set of inputs into

two different classes when those are linearly separable by a decision surface, or alternatively, by

a hyperplan in the uni- or multi-dimensional space representing the distribution of input patterns.

The hyperplan is obtained by resolving the equation
∑

wixi = 0.

In 1949, the psychologist Donald Hebb postulated a rule for self-organized learning that ex-

plains the adaptation of neurons in the brain during the learning process, and showing the mecha-

nism of synaptic plasticity [Hebb 2002]. Hebb’s postulate could be expressed as “neurons that fire

together, wire together”. Hebb’s rule suggests that when an input to the neuron triggers an output,

then the input weight is reinforced, otherwise it is attenuated. This is expressed by ∆wij = µxiyj

with µ is a learning rate.

In 1958, Frank Rosenblatt has put the first application of the formal neuron and called it the

perceptron. It is a modified model that has the ability to learn “on the fly” by adaptive modification

of the synaptic weights using the Hebb’s rule. The perceptron was able to process real values as

inputs, typically bounded in [0,1], and it has more rich activation functions. Depending on the

activation function, whether it is a linear function like the boolean-valued linear threshold function

or a non-linear one like the sigmoid or Gaussian functions, the perceptron can compute a linear

or non-linear combination of the inputs. However, the formal neuron of McCulloch and Pitts used

only a step function with T = 0. The perceptron found its wide interest because it introduced the

notion of learning from examples in such a way that simulates the human intelligence.

Based on the perceptron, the multi-layer perceptron (MLP) was built by arranging neurons in

layers: the input, output and some hidden layers, the signal always propagates forward and no

backward signal is allowed. MLP is computationally more powerful than the single perceptron.

[Hornik 1989] showed that the MLP with n neurons in the input layer and m neurons in the out-

put layer is capable of approximating any continuous function R
n 7→ R

m to any given accuracy,

provided that sufficient hidden neurons are available.

The MLP belongs to a class of networks called feed-forward neural networks [Haykin 1998a].

Several other neural models were introduced and found a wide use motivated by several factors,

the most important one is that they enable learning from the data related to a problem without

necessarily formalizing it.

When loops are allowed in MLPs so that the signal could propagate backwards, in the form

of feedback from a given layer to one or more of the previous layers, then one obtains a recurrent

neural networks (RNNs). The latter can account for the temporal dimension in the inputs as will be

discussed in the next chapter.

ANNs models can be classified in different ways. It has been shown that depending on the
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direction of signal propagation, they could be classified into feed-forward networks that contain no

loops, and recurrent neural networks that contain feedback signals. ANNs may also be classified

depending on the learning paradigm into supervised learning like in the MLP and unsupervised

learning like in self-organizing maps. In the supervised learning a set of input patterns with their

associated desired outputs is available and is used as a training set. In classification tasks, the output

could be seen as “labels” of the input patterns . The training set is used for learning network in such

a way that it adapts its weights to minimize some error function. After learning is finished, the

network becomes ready to compute outputs for the new “unlabeled” inputs that could be unseen

before. In the unsupervised case there is no such labeling: no output is associated with the input, and

the network is expected to cluster input patterns into groups depending on some intrinsic similarity

of input patterns.

There are other adaptive networks that change their weights by reinforcement learn-

ing [Sutton 1998a]. Both feed-forward and recurrent neural networks could be either supervised

on unsupervised. The various models and classes of ANNs with their different architectures share

the same property of involving multiple neurons in one system that exhibits a complex adaptive

behavior, this is why there is no single formal definition for ANNs.

The previous neural network models can rely on two formal models of the biological neuron.

Basically, the action potentials of biological neurons are brief pulses of about 1ms [Dayan 2005]

that are handled as spikes (Dirac pulses in the mathematical models). The mean firing rate model

of the neuron computes the average spike count within an interval T . In this model, the information

about the neuron inputs is assumed to be encoded in the neuron firing rate. The leaky integrator or

integrate-and-fire formal model of the neuron is the classical and most used model and it is based

on the aforementioned neural coding. The leaky neuron j computes its output yj in continuous time

as a function of its inputs xi and synaptic weights wij as follows:

τ
dy

dt
= −yj + f

(

∑

i

wijxi

)

(3.3)

In equilibrium, one obtains the classical model used in the discrete time case:

yj = f

(

∑

i

wijxi

)

(3.4)

In most cases the function f is the logistic function (or sigmoid) of the form:

f(p) = 1/(1 + e−p) (3.5)

The other model of neurons in computer science is the spiking neuron. The neuron fires at

certain points in time and the neuron output consists of discrete pulses called spikes. The spiking

neuron model describes the transformation of an input spike train into an output spike train. The

neuron model comprises some internal state variables that evolve governed by a set of differential

equations. The coming input spikes induce discrete changes in the state variables handled by the

differential equations, and the output spikes are triggered by threshold conditions.

In these models, it is the precise timing of spikes that carries information. The size and the
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shape of the spike is independent from the neuron input, but the firing times depend on this input.

Formally the neuron activity in the range [0, T ], also called the neuron response, can be expressed

as:

ρ(t) =

n
∑

i=1

δ(t− ti) (3.6)

where δ(t) is the Dirac function at time t, and n is the count of pulses in the interval [0, T ] so

that 0 ≤ ti ≤ T .

Static neural networks that use the classical neuron model can be emulated to an infinite preci-

sion by spiking neurons [Maass 1996], where the activity of a mean firing rate neuron is encoded

in the timing of a spiking neural network. This tells that spiking neurons are at least as computa-

tionally powerful as classical neurons. Spiking neurons are more realistic approximations to what

really happens in biological neurons, however, they are more difficult to simulate. Spiking neurons

are out of the scope of this manuscript.

3.5.2.1 Universality

ANNs are at least capable of universal computation. Even in the basic form of ANNs, it is possible

by combining linear perceptrons to build the logic gates (NOT, OR, AND), therefore it is possible to

build logical or mathematical functions of nowadays digital computers, hence, ANNs have at least

the capability of a Turing machine. Also, Artificial neural networks can be used to build a cellular

automata as in [Mahajan 2009, Kim 2006, Li 2002], therefore, ANNs inherit the universality of

CA. ANNs are also showed to be universal in works like [Gerstner 1992, Kilian 1996].

However, ANNs are proved to surpass the universal computation to super-Turing computation,

although under impractical conditions, related to implementation or computation time restrictions.

[Krap 1982] introduced a nonuniform computation model that is computationally stronger than

Turing machine. They are nonuniform in the sense that inputs pertaining to a specific formal lan-

guage are processed using different hardware. In these models, the response time increases in a

polynomial manner with the input length, this is handled by allowing the available hardware to

grow: for an input of length n, there exists a polynomial p(n) such that the output is calculated by

p(n) digital components, like the McCulloch and Pitts neurons. The problem here is that inputs of

different lengths, even if they belong to the same formal language, should be computed by different

hardware, thus nonuniform implementation, which turns out to be impractical.

Hava T.Siegelmann [Siegelmann 1999] showed that analog recurrent neural networks

(ARNNs) composed of a finite number of continuous-valued neurons connected in a general fash-

ion, not necessarily in a layered or symmetrical fashion, can perform universal computation and

even surpass it to super-Turing computation. In [Kolen 2001], Siegelmann shows that all recursive

languages (that Turing machines can compute) can be computed by an ARNN, and require a poly-

nomial computation time as a function of the input length. However, if the computation time is

permitted to be exponential, one can specify an analog network for each binary language, includ-

ing the non computable recursively enumerable languages that surpass the capabilities of Turing

machines.
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Theoretically, such networks require infinite bit description of real values for both network

weights and activations, such infinite precision can’t be practically attained. However, Siegelmann

claims that the infinite precision of real values is not necessary if computation is carried out in a

finite-time interval, whereas they are necessary in long-term infinite-time ones. This is justified

by the “linear precision suffices” feature of real-valued neural networks [Siegelmann 2003]: the

required precision of real values is a function of the number of computation steps, hence, the re-

quired precision is a function of the computation time. This feature is expressed as: For q steps of

computation, only the first O(q) bits of weight and activation values influence the result, whereas

the less significant bits do not affect it [Siegelmann 1994]. Hence, for time-bounded computations

only a finite precision is required.

3.5.2.2 ANNs as a massively parallel computation model

The main concern in this work is not the capability of ANN in artificial intelligence as reflects their

adaptability, although it is an important property compared to CA, but rather, it is concerned by

what ANNs can offer for massively parallel fine-grain computation.

ANNs are claimed in [Tosic 2004] to be fine-grain models that compute in parallel, however,

we don’t completely agree with that, and it merits the discussion of some special cases. In essence,

a fine-grain model consists of large number of simple processing units, in most cases computation

occurs in parallel, except that it is not the case of all neural networks. Let’s consider the case of the

MLP which is a feedforward ANN, it is a fine-grain model that consists of interconnected simple

computational units, that are typically limited in number. However, they are not computing in

parallel. Computation in MLPs can be perceived as a cooperative work of multiple units, but is not

parallel. The well functioning of an MLPs requires synchronous processing in which all the units

activations are computed in each timestep following some order, because computing the activation

of some units like those in the output layer is not possible without computing the activation of

units in previous layers. Computing units activation in some layer is typically carried out using

matrix calculations. Hence, units are cooperating to compute the output of the MLP, but there is

no concurrent parallel computation. Parallel computation means that every unit in the model can

compute its activation in once cycle of the phase clock without waiting other units to compute, it is

the case in CA as mentioned before.

A minimum condition to refer to a model as parallel is that, at least in some phase of the

computation, the units compute their activations without waiting other units to compute. This

means that, during this phase, computation is possible to be carried out by asynchronous update.

However, the asynchronous computation is not possible in the case of MLPs. This holds true for

feedforward networks, including recurrent ones based on feedforward architectures.

Although, there are some ANNs models that accept the asynchronous update in some phase dur-

ing computation, without breaking the functioning of the network, these networks include Hopfield

networks and Self-organizing maps. Such networks typically allow for integrating a larger number

of units than in feedforward networks, and thus they are fine-grain and parallel models. Hence,

unlike CA, with their large number of existing models, ANNs encapsulate different computation

paradigms.

However, the computational properties of fine-grain networks remain interesting even if they
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are not parallel, their simple processing units and the large number of processor-to-processor con-

nections allow the synergical cooperation between units to yield an important computational power

and speed of computation. Those models are the prevailing ANN models, they have been used

in real time applications involving pattern recognition like geographic information systems (GIS)

and remote sensing applications [Fischer 1997]. The nonlinearity of ANNs, combined with their

computational adaptability as used in machine learning, allows them to perform well in tasks like

function approximation [Li 2008] and prediction tasks [Bishop 1995b, Qin 2005, Zhang 1998]. In

all these tasks, research has already made a wide step, which means that some computations tasks

are already well understood.

In their turn, fine-grain and parallel ANNs are used in clustering [Du 2010] and vector quanti-

zation [Somervuo 1999], while Hopfield networks are mostly used as content addressable memo-

ries [Lopez-Rodriguez 2005].

Neural networks are universal and even super-Turing, thus they are able to compute any com-

putable function. However, changing the program that a neural network computes is difficult be-

cause it is constrained by its topology. A single “program” that corresponds to some task could be

built using a neural network that would be specialized to this very program, and maybe modified

to execute other programs in the limit of what the topology allows. Networks with programmable

topology are still used for special purpose applications, programmable topologies can be imple-

mented using evolutionary algorithms like the work of Randal Beer [Beer 1996, Gallagher 1999].

ANNs are powerful computational devices, although, finding the suitable ANN for performing a

specific computation is not a straightforward task. Indeed, getting ANNs to perform some de-

sired computation is known to be very difficult [Bengio 1994]. Moreover, with sufficiently com-

plicated ANNs like the ones with feedback, the computational capability of the ANN could not

be fully discovered, i.e. its computational capability could go beyond the purpose it is designed

for [Jacobsson 2005].

We found nothing in the literature about building a general-purpose neural network computer

in the common sense of the expression. At the inverse, most neural networks are implemented

via computer programs on general-purpose computers whereas few of them are implemented on a

specialized hardware. Moreover, parallel processing systems, in the fine-grain sense, are used to

implement large networks for faster training and working in real time [Furber 2009, Long 2005,

Seiffert 2001, Girau 2000].

3.5.3 Cellular neural networks

Inspired from both cellular automata and neural networks, Chua and Yang came out in 1988 with

cellular neural networks (CNNs) [Chua 1988a]. Chua’s idea was to use a large array of simple

coupled nonlinear dynamic circuits (cells) built of linear and nonlinear analog components in order

to process large amounts of information in real time applications. The resulting arrays work in con-

tinuous time, they are able to perform time consuming tasks such as image processing and partial

differential equation solutions (PDEs), while being suitable for prototyping and implementation on

VLSI. The basic cell in Chua’s CNNs were made of analog electronic circuits.

Chua’s CNN resides in 2-dimensional space with a rectangular topology of size N × M as

shown in Figure 3.11(b). However, higher dimensional CNNs can also be defined. The cell intro-



3.5. Fine-grain distributed models 77

(a) (b)

FIGURE 3.11: Chua’s Cellular neural network: (a) The network cell scheme. (b) A
2-dimensional cellular neural network . Extracted from [Arena 1997].

duced by Chua is a nonlinear circuit as shown in Figure 3.11(a). The cell located at the row i and

the column j in the array is denoted C(i, j). uij , yij and xij are voltage values that respectively

represent the input, the output and the state of cell C(i, j). The input value uij is a fixed value

determined by the value of the voltage source Eij (cf. figure 3.11(a)) which is set to be less than 1.

The cell C(i, j) interacts locally with its neighbors within a radius r, the cell neighborhood is

expressed as Nr(i,j) = {C(k, l)|max(|k − i|, |l − j|) ≤ r} with 1 ≤ k ≤ M , 1 ≤ l ≤ M . The

cell C(i, j) interacts with each cell C(k, l) in Nr(i,j) using two voltage controlled current sources

for each neighbor cell. C(i, j) is coupled to C(k, l) via the controlling input voltage ukl, and the

feedback from the output voltage ykl.

The participation of the output ykl of C(k, l) in the state xij of C(i, j) is represented in the

value of one current source denoted Ixy(i, j; k, l). Similarly, the participation of the input ukl of

C(k, l) in the state xij of C(i, j) is represented in the value of another current source denoted

Ixu(i, j; k, l). The values of both current sources are given by Ixy(i, j; k, l) = A(i, j; k, l)ykl and

Ixu(i, j; k, l) = B(i, j; k, l)ukl, with A(i, j; k, l) and B(i, j; k, l) parameters called the cloning

templates. These templates define the interaction between neighbor cells, thus they define the

dynamics of the CNN.

The interaction with all neighbor cells in Nr(i,j) is accumulated by the addition of current

sources corresponding to all neighbor cells within Nr(i,j), and the state equation of the cell is linear

as follows:

C.ẋij = − 1

Rx
xij(t) +

∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl +
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + I (3.7)

with 1 ≤ i ≤M , 1 ≤ j ≤M , the capacitor and resistance values C > 0, Rx > 0 respectively, the

initial condition xij(0) ≤ 1 and |xij | ≤ 1.

The output function is nonlinear and is computed as follows:

yij = f(xij) = 0.5(|xij + 1| − |xij − 1|) (3.8)
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The model is known as the Chua-Yang model or the linear CNN model due to linearity in

state computing. However, later generalizations of the basic model included nonlinear interac-

tions with neighbors by using nonlinear cloning templates. Further generalizations were later

introduced: different topologies with different cell types or varying neighborhood sizes in the

same network, introducing functional dependency using delay templates [Roska 1990, Gilli 1994]

that allow for handling past values of neighbor cells inputs/outputs, and introducing discrete-time

CNNs [Arena 1997, Fortuna 2001].

After these generalizations, Chua proposed a general definition to CNNs as: “The CNN is a n-

dimensional array of mainly identical dynamic systems, called cells, which satisfies two properties:

(a) most interactions are local within a finite radius r, and (b) all state variables are continuous

valued signals” [Chua 1993].

The bottleneck of CNNs stays that there exists no efficient strategy to learn the suitable tem-

plates values in order to perform a given task [Fortuna 2001]. For a new task, the design and the

cloning templates are set in most cases by trial and error technique, and is also a question of design.

A large number of templates and template algorithms were found to perform a wide range of tasks,

almost all of them were found by simulations and trial and error [Arena 1997, Fortuna 2001].

CNN Applications vary from simple image processing tasks [Caponetto 1998] to complex sys-

tems modeling [Gollas 2005]. The locally distributed way of analog signal exchange of CNNs

allow them to simulate and reproduce in low cost some complex dynamics found in living systems,

such as autonomous wave formation and propagation [Chua 1995] and morphological pattern for-

mation [Setti 1996], PDEs solution [Gobovic 1994], modeling physical systems [Slavova 2012],

generation of nonlinear and chaotic dynamics, for instance, a simple CNN compound of two cells

could result in complex chaotic dynamics [Cafagna 2003].

3.5.3.1 Universality

Universality in CNNs is inherited from that of CA and ANNs. Discrete time CNNs (DTCNNs)

were developed and led to building a complex CNN architecture called CNN universal machine

(CNNUM) [Roska 1993]. The latter consists of analog circuits completed by digital logic ones. In

this structure the templates determine the working of the machine thus they play the role of the pro-

gram instructions in a general purpose computer. The machine is universal because templates could

be changed in order to simulate the program change. It is even possible to change templates during

the run: the CNN with a given template is allowed to run on a given time window corresponding

to a first phase of computation, then the next phase of computation starts with another template

for the CNN but working on the produced data from the first phase, and so on. [Roska 1999] in-

troduced an extended CNNUM that allows for learning and adaptability and was implemented on

VLSI, [Paasio 1997] is one example.

3.5.4 A new concept of computation

The fine-grain models introduced in the previous sections implement a different concept of compu-

tation from that of coarse-grain models. The differences are structural and functional.

From the structural point of view, the first difference between fine-grain and coarse-grain
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processing models is the composition and organization of their architectures. Fine-grain models

contain a different scale of processors number that exceeds coarse-grain ones in several orders of

magnitude, and the processors are much more simple than those powerful ones used in coarse-grain

models. A node in coarse-grain models can perform complex computations, while in fine-grain

models, the node computes a quite simple function.

Another structural difference between both models resides in the relation between processing

and storage. Coarse-grain models are collections of Von Neumann machines that make a clear

separation between program execution and storage, whether it is program or data storage. Fine-

grain models implement an entirely different concept for processing and for program and data

memory, in such models the memory and the processors are hard to separate from each other.

Unlike the actual computational systems, in which tasks are written as procedures that are executed

starting from the first line of code and moves to the next line in a linear path, fine-grain models are

connectionist models in which cells work collectively in parallel.

Consider the case of CA where the processors are the automaton cells. All the processors

compute the same function (that the FSM of the cell computes). This function is the program that

CA runs, thus, cells are also the program memory. The only input to a CA model, which is a closed

system, is its global configuration, i.e. the initial cells values set at the start. During the run, the

data processed by a cell is its inputs which in turn, are the states of the neighbor cells, therefore,

the data is stored in cells states making of the cells the inputs and data memory as well. The output

seen by the outer world is the cells outputs. Indeed, the cell in a CA substitutes the processors, the

memory, and the input/output in classical computers.

In ANNs, the neurons are the processors. The program is distributed across neurons: it is the

way inputs are combined and the activation function of neurons that determine the function that the

ANN computes. The processed data is the previously accumulated knowledge stored in the mod-

ifiable synaptic weights (processor-to-processor connections) of the network, which change their

values as the network processes new inputs through learning, i.e, the new knowledge is conserved

in the weights, thus, ANNs weights play the role of the data memory. Theoretically, ANN are ana-

log models, where values are real numbers of infinite precision, this gives them an advantage over

digital computers that can’t do that. But in practice, ANNs are simulated on digital computers, so

they are bound to inherit the finite-precision decimal numbers representations on the host machine,

thus, in practice they can be thought of as digital models.

Concerning CNNs, the processors are the network cells. The cell output function and the

cloning templates determine what the CNN computes, therefore they are the program memory.

The processed data is the neighbor nodes states and the input patterns coming from the outside

world if there are any, while the output is the node states. Here, the cells play the role of the data

memory and the output as well.

From the functional point of view, data fetching and storage in fine-grain models is a one-shot

operation that takes a very small amount of time. It could take no more than one clock cycle to read

the neighbor state value in CA or CNNs and compute the output. Similarly, ANNs could take one

clock cycle to compute the neuron output, while it could take one or more cycles to compute the

new weights depending on the used learning processes. Whatever, the speed of this process is not

to be compared with the data fetching and storage in coarse-grain models that suffer from a storage
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bottleneck: the Von Neumann bottleneck.

Fine-grain models are complex systems that can exhibit rich and complex behavior that allow

for the emergence of computation. Some of these models like ANNs and CNNs can learn, there-

fore they are complex adaptive systems that change their internal structure based on information

flowing through them [Shiffman 2012]. In particular, ANNs offer an excellent adaptive behavior

that makes them suitable for many application domains, unfortunately, their implementation on

hardware like VLSI is limited due to their global connectivity as explained in the next section.

3.6 Cellular computing

Fine-grain models have the main features of relying on a vast number of simple processors working

in parallel. Regarding connectivity, a cell in a fine-grain model could be connected to a few cells,

typically the neighbor ones, or could be connected to more cells beyond their neighborhood that

could be all the cells in the model in a full connectivity scheme. An example is associative memory

ANN models like Hopfield networks that will be explained in the next chapter. Cellular computing

inspires from computation in our physical universe. It can be perceived as a subfield of fine-grain

parallel computing that deals with models that rely on a vast number of simple processors (the

cells) with local connectivity patterns. Another condition is that cellular models compute in a

decentralized way, i.e no central processor is used.

In the context of cellular computing, we distinguish two senses of locality, the first is the topo-

graphic locality, which means that cells interconnect is bounded in a limited topographic area in

the model space. Functional Locality, means that the cell computes whatever value on the basis

of other cells values to which it has access to by its connections. Locality in this manuscript refers

to both senses, unless it is otherwise explicitly specified.

But does this minor difference merit the distinction of a new computation paradigm? The an-

swer is yes. It is justified by the consequences of connection locality and decentralization, that

distinguish cellular computing from fine-grain computing. There are three major consequence for

these conditions: The first is that they facilitate the hardware implementation such as VLSI imple-

mentations. The second, is the scalability of the model; the number of cells in the model could

be changed easily without the need for an entire review of the model to check if it still complies

with the task, normally, minor modifications are required. The third consequence is that the com-

putational power could be measured by the size of the model, the more cells there are, the more

computational power is obtained.

Cellular computing has its terminological origins in Biology. The cell is the basic structural,

functional and biological unit of all known living organisms and is often called the “building block

of life” 6. Borrowed from the Latin word “cella” which designates a small chamber, the English

natural philosopher Robert Hooke coined the term “cell” in his book “Micrographia” (published in

1665) after his research in the science of microscopy.

The biological cell could interact with its neighbor cells, but not with the far ones, at least not

directly. Neurons in the brain are special instances of biological cells making of the brain a cellular

6Wikipedia: cell, (Online, 23 June 2013).
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wetware structure. The term “cellular computing” was imported to computer science from biology

by the computer scientist Moshe Sipper [Sipper 1998b] to refer to a similar concept. Sipper de-

scribed the cellular computing paradigm by the “equation”: simple+vastly parallel+local=cellular

computing. Decentralization is referred to in the paper of Sipper, but we think that it merits to be

added to the definition of cellular computing as a model defined as in Sipper’s equation can be

computed by a centralized processor, that should be prohibited. The term was also used recently to

describe some fine-grain models like the IBM multi-core Cell microprocessor. However, we adopt

Sipper definition of the term.

The locality in cells interconnect is private to cellular computing and distinguishes it from fine-

grain computing; each cell in the cellular model is connected to a few number of cells, typically

to the physical neighbors. Sipper indicates that a full connectivity scheme puts the model outside

the realm of cellular computing. Locality, being private to cellular computing, in addition to the

inherent properties of fine-grain computation; namely, cells simplicity and vast parallelism, leave

room for special properties of cellular computing. Different architectural and behavioral properties

allow for multiple choices. Each set of choices result in a different model. These properties are the

topic of the following subsections.

By contrasting the three properties proposed by Sipper to the properties of fine-grain models ,

it could be found that the CA and CNNs are cellular by nature, while ANNs are not. The difference

between neural networks and cellular neural networks is that the latter are “cellular” as the name

indicates. Indeed, CNNs share the property of local connectivity with cellular automata, which is

not the case in most of the neural networks. It is because of the local interaction between cells that

CA and CNNs are more suitable for the physical implementation than ANNs [Fortuna 2001].

A related field to cellular computing that can be also seen as massively parallel computing

model is amorphous computing. It appeared in mid-1990s inspired from both microbiology and

cellular automata. An amorphous computer is a collection of computational particles dispersed

irregularly on a surface or throughout a volume, where individual particles have no a priori knowl-

edge of their positions or orientations [Abelson 2000].

One way to realize these particles has emerged through the two past decades; such parti-

cles were manufactured as cheap microelectronic mechanical devices combining logic circuits,

micro-sensors, actuators, and communication devices on the same chip. One kind of these parti-

cles, millimeter-scale particles for environment monitoring applications are commercially available

nowadays under the name of dust networks [Technology 2013].

Another way for engineering particles comes from biology which motivated several comput-

ing metaphors in the past including neural networks, but started recently to show that, by itself,

it offers a suitable substrate for computing. As mentioned in the past chapter, engineered cells

based on DNA are a technology directly based on microbiology, DNA protein concentrations were

used to represent voltage and logic levels, enabling the construction of DNA-based logical cir-

cuits [Weiss 2003, Weiss 2001].

All particles in an amorphous computer are fabricated in the same way, a particle has a small

computing power and a small memory, they can process at the same speed, and they are all loaded

with the same program, although, it is not required that they work in synchrony. Also, particles

don’t need to work all reliably, besides, their is no need to manufacture a precise geometrical
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arrangement or precise interconnection among them. Amorphous computing search for program-

ming aggregations of such particles without requiring the precise control over their interaction and

arrangement.

In an amorphous computer, a myriad of particles (1010 − 1012) are mixed with bulk materials

like paint, gel and concrete, so that they act as a host medium. Mixing them with paint result in

smart paint. The latter could be used to coat walls or bridges in order to cancel noise or to sense

vibration and wind loads.

Programming an amorphous computer is done by diffusion, each particle communicates with its

few neighbors by message diffusion either by short-distance radio in microelectronic particles, or

by chemical signals in the biological particles. Amorphous computing is intended to resemble to the

computation in nature, where neighbor cells in an organism could be dead, thus, programming al-

gorithms should be independent from the number of particles, and the performance should degrade

gracefully as the number of the particles decreases. An example of message diffusion is finding a

chain connecting two particles A and B: A particle A can diffuse a message containing a count to

its neighbors, which in turn stores an increased version of the count, re-diffuses the message and

ignores future messages, this is repeated until reaching a particle B. B then diffuses a backward

message to A asking all the pre-visited particles to register themselves as a part of the chain. The

number of particles in the chain between A and B establishes a rough distance measure between

the two. There exists several messages diffusion algorithms that detect chain cut and perform re-

routing operations. Particles mixed with some host medium, could behave as self-repairing material

and self-healing systems, resembling to the mechanism of wound repair [Clement L. 2003]. This

is possible when the particles are equipped with actuators so that they can be used to heal small

cracks by moving the material to cover them. Such mobile particles are the basis of the new field

of swarm robotics [Werfel 2005].

The major differences between amorphous computing and cellular computing are that they

don’t require to ensure reliability, interaction between particles is not required to strictly follow

some update regime whether it is synchronous or asynchronous, instead update is arbitrary, the

topology of particles need not to be regular, moreover, particles can be mobile.

The state of the art of cellular computing is still in its infancy, the preliminary works (there are

very few) on the concepts and properties of cellular computing in computer science and fine-grain

parallel models in general, are [Sipper 1999] and [Tosic 2004] respectively. The next subsections

discuss the properties of cellular models, some of these properties are expected ones and still to be

tested.

3.6.1 Decentralization in cellular computing

One defining property of cellular models is that they compute in a decentralized way. Decentraliza-

tion is a property that means that there is no global controller that controls the computation of the

model, except, of course, for the clock which is some systemic property that offers only a working

basis and does not intervene in cell functioning.

This distinction between decentralization and locality is somehow ambiguous, although, they

are partially related.

Locality in cellular models is two-fold, topographic and functional. The functional locality
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means that each cell in the model is authorized to compute its output and connection weights on

the only basis of the values that it has access to by its connections (whether they are neighbor cells

outputs or synaptic weights or other). The cell is not allowed to compute a function based on a

value that it doesn’t have access to by its connections, for example, the values seen by its neighbors

connections and not seen by the cell itself, say, the synaptic weights of a neighbor cell connections

to other cells.

However, it will be shown in the next chapter that an ANN model called reservoir networks,

is functionally local, but cells values are normally computed using matrix computations on the

population level, using a centralized processor. But in cellular computing, cells can compute in

parallel, independent from other cells, based only on the values they read via their connections,

hence there is no need for a central processor. This what decentralization means.

Another example, a model in which each cell is connected to all other cells is not topograph-

ically local, but can be functionally local, so that each cell computes its activity using values ac-

cessed by its connections. Although, such model can compute in a decentralized way. Decentral-

ization implies that the model doesn’t have a shared memory (or global storage variables) between

the cells; no global variable can be stored and accessed later. In cellular models, this is not possible

due to topographic locality. Decentralization also implies, that it should be possible that the model

computes in the asynchronous regime.

Even the brain works in a decentralized way, neurons compute in parallel, and no global con-

troller exists, although some regions in the brain seem to play this role, but they themselves are

decentralized structures and the way they control other regions is decentralized as well. Decentral-

ization in cellular models is an important property that facilitates their hardware implementation.

3.6.2 Architectural and design properties

A cellular model consists of a population of distributed cells following some topology. Cells are

interconnected with their topographic neighbors using connection links that hold a small amount of

information. In cellular automata, links hold no information, but are simply used to read neighbors

values.

The properties of cellular models are either related to architecture specifications set at the design

time, or to the behavior of the model during the run. Cells could be uniform or from different types,

they compute their outputs following some rule, and could follow some temporal regime. These

architectural properties, beside to the decentralized behavior described above, are properties set at

the design time.

An architectural property of cellular models is their topology. The cell population could be

arranged on a regular grid of n-dimensional array (often, n = 1, 2, 3) in such a way that fills

some geometrical shape (a rectangle, a circle, etc..). Regular grids imply that all cells connections

follow the same connectivity pattern like in the case of 2-dimensional cellular neural networks

with rectangular geometry. Finite grids require determining the boundary condition, as in this case,

connectivity pattern for boundary cells will not be the same for other cells. When the effect of

this condition is critical for the model behavior, the grid is usually wrapped around itself (giving

a ring in case of 1D and a torus in the case of 2D grids). It is also possible to arrange cells on a

non-regular grid or a graph. Moreover, cells within the grid, could be uniform or nonuniform in
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two ways, either respecting some connectivity pattern, or respecting whether all the cells compute

the same function or if they compute different ones. Sipper [Sipper 1998a] showed that using

nonuniform cell functions could reflect in definite computational advantages.

Other properties of cellular models that are set at the outset include the nature of the computed

value by the cells whether it is discrete or continuous, how the output is computed, and when they

are computed.

The cell output values can be discrete (like in CA), so that it selects its output from a finite

range of values, and thus, could be considered as enumerated states. Alternatively, output values

can be continuous (like in most ANNs) and take their values within some range.

The dynamic behavior of the cell depends on the way the output is computed starting from

neighbor values: when the cell state is discrete, an exhaustive enumeration list could be used to

compute the cell output. In this case, the mapping between neighbor cells states and the cell output

is established. The cell output could also be computed using a linear or nonlinear function of

the neighbor output values. Output functions could also be non-deterministic, like probabilistic

functions. In this case, the cell response for a specific input may vary so that different outputs could

be obtained for the same input, and the whole population of cells behaves as a non-deterministic

dynamical system.

There also exist more sophisticated scenarios for computing cells outputs, such that using a

small program or behavioral rules that specify the cell behavior in different situations. The latter

case is preferred when simulating the behavior of a biological cell.

Depending on what the cellular population is used to compute and how, different temporal

dynamics could be obtained. The temporal dynamics depend on the way the cell output is computed

respecting time: time could be continuous or discrete. In continuous time dynamics, the output

is possible to compute at any time instance, usually, it is computed using a differential equation

(regardless of the input, should it be continuous or discrete in time). In discrete time dynamics,

outputs are computed at each timestep.

In the case of discrete time, it is possible to compute outputs simultaneously in each timestep

so that the cells outputs change follow the synchronous regime (for the definition of update

regimes cf 3.4). Alternatively, asynchronous temporal dynamics is possible by computing cells

outputs in some order. Event-driven models, like a subclass of spiking neurons-based neural net-

works [Brette 2007], which use the spiking neuron model presented in 3.5.2, don’t rely on any clock

signal, but update their values when an event occurs, like when a new input comes. The absence of

any clock signal reinforces the biological plausibility of these models. The update regime in event

driven models can be classed under the asynchronous update regime [Lin 2009], although there is

no clock to control the update phases on the population level.

However, it is possible to use variations of mixed regimes, like dividing the population into

groups of cells and update cells within each group in a synchronous fashion, while updating groups

following the asynchronous regime. It is noteworthy to mention here that by its locality of cells

interconnect, cellular computing naturally allows for asynchronous update regime, which is not

always evident in non-cellular fine-grain models like MLPs for instance.
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3.6.3 Operational properties

Cellular models operational properties are those related to the run of the model, the important ones

discussed here are the model programming, and its robustess and scalablity properties.

Programming in the actual context of cellular computing refers to adjusting the cellular model

to behave in such a way that fulfills a target task. This is done either directly by completely spec-

ifying the cellular system characteristics at the outset, like specifying the system topology and the

cell types, connectivity, or by specifying a part of the system characteristics like the topology and

cell type and determining other characteristics by adaptive methods that include learning, evolu-

tionary methods or self-organization. For example, the transition function of a cellular automata

could be adjusted by a evolutionary algorithm like in [Sipper 1997]. In general, the dynamics of

cellular models as described in the previous section could be considered as first-order dynamics of

the model, while adaptive programming could be perceived as higher-order dynamics.

The resilience of some system in the presence of faults defines its robustness. When a cell in the

cellular model functions incorrectly, or a connection between two cells fails, then the robustness

of the model requires that it continues to function or at least show a graceful degradation. One

good reason to think that cellular models are fault tolerant is the brain; it is a highly effective neural

network that degrades gracefully as there are neurons and synapses that die everyday in our brains

but they keep functioning well [Tosic 2004]. The properties of cellular computing are thought to

assure fault-tolerance in most cases; when a cell or a connection fails, the local connectivity is

thought to prevents the error from spreading on the population level so that it remains bound in

a specific region. The large number of population cells and interconnection links are thought to

assure that the model stays operational.

Cellular computing models also scale well, much better than classical coarse-grain models. Bet-

ter scalability stems from the fact that the delay in memory access needs not to grow proportionally

to the processors number as there is no physically separated memory that cellular processors need to

access during computation. Instead, cellular models adopt another concept of memory as discussed

in section 3.5.4.

Cellular computing models can adapt to comply the task at hand through learning. So

far, it has been pointed out that ANNs can learn, and the choice of CNN characteristics are

done by trial and error [Arena 1997, Fortuna 2001]. However, recent works introduced some

learning techniques to CNNs [Xavier-de Souza 2005, Luitel 2012, Vilasis-Cardona 2005] and

CA [Qian 1996, Nakamura 2010, Beigy 2010, Jr. 2006]. Therefore, they could also be adaptive

models. Whether it is the adaptive learning or the run, cellular computing should respect the con-

straint of decentralization. In the next chapter, decentralization will be verified in the case of some

ANN models.

3.6.4 What to expect from the cellular computing paradigm

Respecting application domains, coarse-grain and fine-grain models (including cellular models)

could outperform one the other according to the specific domains. There are problems that fit

better the architecture characteristics and the computing style of one computing paradigm than the

other. We can infer that from the brain that outperforms the Von Neumann machines in super-
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computation tasks like intuition and other intelligence tasks, but loses the competition when it

comes to computing a fraction to some precision or searching in a database of unordered data. Take

the example of artificial neural networks, they are capable -due to their learning mechanism- of

performing tasks of the type “easy-for-human, difficult-for-a-machine”. Pattern recognition like

face recognition is a clear example of such tasks.

Indeed, a computing paradigm in some task type could outperform the other in several orders or

magnitude. Tosic [Tosic 2004] compares fine-grain models with the human brain and gives some

partial justifications for this difference in computational power: multiplying two 100-digit numbers

need no interaction with the environment apart from reading the inputs, digital computers are capa-

ble of efficiently solving this task by following a set of simple and fixed-size arithmetic rules. But

in tasks that need an ongoing dynamic interaction with a complex and structured environment in

which computation should deal with uncertainty, such as in the face recognition task, then comput-

ers fail and human brains excel. The brain successfully interacts with the environment in uncertain

and fuzzy conditions due to its plasticity, a criteria that enables neurons to learn and adapt to the

task while interacting with the environment.

Cellular models outperform classical coarse-grain models when it comes to robustness as the

latter could be subject to total dysfunction if a part gets out of service especially that they could be

geographically distant, or not very compatible with one another or under control of different users

like in loosely-coupled parallel models. Scalability issues are discussed previously and it has been

shown that cellular models and fine-grain models in general outperform classical parallel models.

Cellular computing is still a young field of research. Cellular systems like CA are well known

since decades, while CNNs are recent cellular models, neither of them is used to build a general

purpose computer comparable to sequential machines. Michael Flynn, the pioneer of parallel com-

puting attributes this to the difficulty of partitioning actual serial programs in order to find large

and consistent degrees of parallelism within them. Whereas there are some algorithms that are eas-

ily parallelized, most existing algorithms are difficult to decompose into concurrent tasks in order

to be allocated on parallel processors in such a way that their parallel joint operation be efficient.

Flynn states that in order to make better use of cellular models, computational problems should be

represented in a cellular form [Flynn 1996].

Nevertheless, computer science is far from developing a general purpose computer architec-

ture based on cellular models that could be programmed and employed for everyday computation.

Although, there exists some preliminary attempts like using CA to design a programmable special-

purpose computer architecture [Margolus 1993], however, they are far from being mature.

3.7 Conclusion

Computation in nature occurs in physical systems that consist of spatially extended physical sub-

strates, which in turn are populations of basic units that interact with each other in parallel, and

their interaction incorporates computation. Computation in nature is local; each unit interacts with

its physical neighbors only, it is also decentralized as there is no central processor that computes for

the system, instead, computation occurs on the level of basic units. Although, interesting behav-

ioral patterns emerge on the population level, hence, decentralized computing in spatially extended
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natural systems gives rise to emergent computation.

Cellular computing is a new paradigm of computation that emerged inspired from the scientific

information about computation in the physical universe. This paradigm borrows the same concept

of computation as in nature, and brings it to computer science. Cellular models are built of fine-

grain populations of simple processors, with local connectivity between the processors. Cellular

automata and cellular neural networks are fine-grain models that already exist and fit this concept

of cellular computation paradigm. In these fine-grain models, computation is spatially distributed

across the population of processors.

The important question here is: is it possible to use fine-grain models in order to compute

what the existing coarse-grain parallel models can compute? There is at least one possible way

to do that: coarse-grain parallel models are agglomerations of Von Neumann machines that are, in

essence, fine-grain populations of transistors that cooperate to compute sequentially. But sequential

computation degenerates the parallelism aspect of fine-grain models, hence, there would be no

benefit of investigating this new paradigm of computation. However, fine-grain models are Turing-

equivalent that can compute, in parallel, what coarse-grain models compute, but the problem is that

finding the suitable model for computing a specific function is a difficult task.

The parallel and cooperative nature of fine-grain models complicates function computations,

not because they are not able to do that; we already know that they are at least Turing-equivalent,

but because all the existing algorithms for computation are sequential, developed to fit the Von

Neumann sequential way of computation. Even parallelizing a task on coarse-grain parallel models

is carried out by parallelizing the steps of the existing sequential algorithms of computation. Indeed,

no pure parallel algorithm exists yet, and new algorithms for functions computation that fit the fine-

grain concept of computation should be found.

A standalone fine-grain computer already accomplished is the human brain, with nearly 1011

simple processors and 1015 links (synapses). Our information about the computational power of

the human brain suggests that building fine-grain parallel models that are able to carry out powerful

computations with less energy, less heat dissipation and less cost than the coarse-grain ones could

be possible.

The question to ask now is: how to organize the population of processors and their intercon-

nectivity in order to obtain the universal computation? Alternatively, how to get one fine-grain

model that can compute all computable functions like Von Neumann machines? The answer to this

question is not clear yet, but we believe that the right answer should rely on fine-grain models with

emergent computation, promoted by the adaptability of their models.

The implementation of fine-grain systems without the conditions of locality and decentraliza-

tion is difficult, their physical implementation is difficult even with populations of small numbers

of processors as will be discussed in the introduction of the coming chapter. Cellular Computing

fulfills these two conditions, and maintains the same computational capabilities of the fine-grain

paradigm. Most importantly, cellular models are spatially extended systems that exhibit emergent

computation.
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Through the past chapter, several applications and application fields of the cellular computing

paradigm in computer science have been mentioned. More detailed works that cover the gen-

eral applications of CA can be found in [Wolfram 1986, Preston 1985], ANNs general applica-

tions are reviewed in [Suzuki 2013, Chi Leung 2011], CNNs general applications are reviewed
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in [Chua 1988b, Tetzlaff 2002]. Some examples in both computer science and biological cellular

computers can be found in [Sipper 1999].

In this manuscript, we are interested in using the cellular computing paradigm in temporal

domains, those tasks require processing spatiotemporal data in which inputs are dependent on past

ones, thus the computation of outputs should take into account the input history.

In fact, both CA and CNNs have been also applied to spatiotemporal problems. However, it is

noteworthy here to distinguish between two types of spatiotemporal problems, the first is modeling

the temporal dynamics of complex systems or some physical phenomena like wave simulations

and PDEs solutions, this case corresponds to an autonomous dynamics. In such cases, the input to

the model is the cells initial states, and the system runs autonomously without interaction with the

outer world. The second type involves interaction with the outside environment; during the run,

the system receives inputs from the environment, computes outputs, and passes them back to the

environment. The latter type, which corresponds to a non-autonomous dynamics, could be involved

in a closed loop in order to control some real system, an example can be found in [Nicolosi 2010].

The cellular nature of CA and CNN allow to use them as software and hardware parallel

computing structures with the possibility of large-scale implementations. CA has been applied

in spatiotemporal tasks like mining imagery data flow [Fu 2006], partial differential equations

(PDEs) [Strader 2008], modeling artificial financial markets [Ding 2011]. CNNs were used in

active wave computing [Roska 2002] which involves the generation, expanding, and collision of

waves. They were also applied in motion detection [Cimagalli 1993]. CNN Silicon-based chips

were implemented for robot navigation tasks [Balsi 2001], artificial retina [Werblin 1997] that pro-

cess spatiotemporal sensory data. Examples of FPGA hardware implementations of CA and CNNs

are [Chuanwu 2008] for CA and [Cheung 2006] for CNNs.

In their turn, ANNs which are fine-grain models (in the cellular computing sense) were

the prevailing paradigm used for spatiotemporal tasks. They were used for trajectory plan-

ning [Zegers 2003], gesture recognition [Su 1998], speech recognition [Kurogi 1991], spatiotem-

poral memory [Ramanathan 2009], to mention a few. However, ANNs are not cellular.

The current situation is as follows: CA and CNNs are already cellular models with local con-

nectivity between cells and it is possible that each cellular processor computes without the help

of a centralized processor. Hence, these models can be used for large-scale parallel computation.

However, they have poor adaptability and interaction with the environment, which limit their usage

in temporal tasks. Whereas, ANNs are more adaptable and more interactive with the environment,

but they are not cellular (global connectivity and require a centralized processor) which limit their

usage in temporal tasks, but for a different reason than CA and CNN. So the goal is: incorporating

the interesting properties of ANNs in a cellular model for processing temporal tasks, endowing the

cellular computing paradigm with the powerful temporal properties of ANNs. This is the core of

discussion in the coming paragraphs.

Indeed, ANNs compete CA and CNNs in temporal tasks. Although CA and CNNs can process

spatiotemporal data, they have some drawbacks that limit their potential, especially when compared

to ANNs. The first major difference is the interactivity with the environment. CA are closed

systems that lack the interaction with the environment; their input and output are the initial and

final cells states. Although CNNs partially inherit the adaptability of ANNs, they also inherit the
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functionality and applicability from CA; although they have been used in some tasks that require

the interaction with the environment, CNNs are more suitable in simulating some autonomous

dynamics with no interaction with the environment: inputs are loaded as the initial cells state and

the output is read as their final state. This difference between CNNs and ANNs is reflected in a

difference in the roles of weights between both models: in ANNs, weights are used to hold an

information about the system feedback or the system previous state, while in CNNs, weights are

used to determine the dynamics of the system.

The other major difference is related to the system adaptability. On the one hand, learning in CA

is very limited compared to ANNs, especially because connections in CA have no weights. On the

other hand, although CNNs are more adaptive than CA, their adaptability is limited to training the

cloning templates that define the cell interconnect with neighbor cells. This is where ANNs excel,

they offer more freedom of design and interconnect than CNNs, besides, there exist an arsenal of

effective learning algorithms for ANNs, a task which is not well controlled in CNNs, especially

that most CNNs characteristics that fit some task are determined by trial and error [Arena 1997,

Fortuna 2001].

However, unlike CA and CNNs, connections in ANNs are global (thus, not local), for example

in the multi-layer perceptron a neuron in one layer is often connected to all neurons in the next layer,

and in Hopfield networks the network is fully-connected, i.e. each neuron is connected to all other

neurons in the network. Global connectivity puts ANNs outside the realm of cellular computing.

This lack of cellular representation of ANNs is an obstacle for implementing ANNs on hardware.

ANN implementation are often software ones that are run on general-purpose sequential comput-

ers, and ANNs with large number of cell and interconnect are implemented on classical parallel

computing systems. The few hardware implementations of neural networks show the difficulty of

the study and programming of globally connected non-cellular ANNs. An example is [Sahin 2006]

in which a three layer MLP with a total of 6 units is implemented on FPGA. Such implementa-

tion is far from being scalable, as adding one extra neuron requires an entirely new study of the

network and the implementation. A review of ANNs hardware implementations could be found in

[Misra 2010].

Connection globality in ANNs is not only an obstacle in hardware implementation, but

is also an obstacle in software implementation which is resorted to in the case of large-scale

ANNs. One can see the difficulty of this task in works like [Valafar 1993] in which training

an ANN by backpropagation [Hecht-Nielsen 1989] is parallelized on massively parallel comput-

ers. In such work, the authors profit from ANNs parallelism to find partial independent calcu-

lations in order to process them on a parallel computer that supports SIMD operations. Sim-

ilarly, [Scanzio 2010] parallelizes backpropagation on a GPU SIMD architecture, using CUDA

framework and uses the learned ANN for speech recognition. Other examples of parallelizing

ANNs are [Jiang 1997, Calonge 1997, Blas 2005, Forrest 1987, Przytula 1993].

It is now clear that if attained, locality and decentralization in ANNs facilitates both their hard-

ware and software implementations. In particular, scaling the ANN implementation on parallel

computers will not be an issue; if the ANN is a cellular model, one can get more computation

power by the mere changing of the variables determining the model dimensions. This research

work aims at reconciling the adaptability and interactivity of ANNs with the cellular properties like
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in CA and CNNs, namely, connection locality and processing decentralization. For this purpose,

we choose to build such cellular model starting from ANNs. Hereafter, this manuscript will focus

on studying ANN models, covering their temporal properties and their adequacy with the cellular

computing properties, and ends by proposing a cellular model based on neural networks.

In the following sections we start by defining what we mean by temporal data processing and the

encountered tasks in such case. Then, we introduce the state of the art of artificial neural networks

models for processing temporal data. We start by introducing the unified features of neural networks

used in temporal tasks, and focus on their temporal parts. Then we introduce the major existing

architectures for temporal sequence processing, with their different approaches for time integration

and adaptation. At the end, we show how neural networks with time representation ability are

capable of simulating the formal models of computation. During the presentation of different ANN

architectures, we explain why all of the existing fine-grain temporal neural networks architectures

are not cellular models.

4.1 Temporal data processing

Most data processed by information systems is collected in different points in time. This is the

case in processing physical data where measurements like temperature or pressure are collected

in successive time instants or in financial systems where prices or exchange rates are watched in

several points in time.

Batch learning is the method normally used in data processing; data is collected over a time

period and presented to an information processing model as a batch of offline static patterns in

order to perform some processing. Data is organized in an array or similar structures, the values

of data points can belong to some interval or some set of numerical or symbolic values, the data

point related to some point in time can also consist of one or more values, therefore they can be

univariate or multivariate. In such situation, input patterns are said to have a spatial dimension.

However, in some applications like real time applications, one is confronted by the case where

data is not collected beforehand and should be handled as they arrive. In this latter case, data points

are virtually arranged in a sequence of values (or a series) that become available in the course of

time. Thus, in addition to the spatial dimension, data is said to have a temporal dimension, and

is therefore referred to as spatiotemporal data [Ray 1996]. Often, the time interval separating the

collection of two consecutive data points is fixed.

Typically, data points in the sequence of values are presented one by one to the processing

model, as soon as they become available. When the model is adaptive, i.e. it changes its computing

parameters during data processing like in most neural network models, the model parameters are

updated after processing each newly coming value, in an online manner then one may talk about

incremental learning. It should be noticed that sometimes data is collected and presented to the

model offline but in a sequential way, because in some cases, like in machine learning systems, this

reduces the computational complexity as the system doesn’t need to learn all the previously learned

data [Oohira 2003].

Depending on the nature of the temporal data and the related tasks, literature differentiates

between two closely-related terms referring to the temporal nature of sequential data: time series
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and temporal sequence.

When the data represent the values of a continuous observable variable like in physical systems,

or a variable studied on the long term while taking a big number of measurements like the price of

the stock exchange or the number of births in a city, then we are talking about a time series. The

variable is measured in different time intervals that can vary depending on the studied phenomena.

The time interval may vary from milliseconds like when the variable is the electricity load, to years

like when the variable is related to some cosmic phenomenon. The process of taking measurements

in time intervals and adding it to the sequence is called sampling. Due to the nature of the sampling

process, time representation in the resulting sequences is discrete.

Sometimes, sequential data can be related to serially ordered elements by their intrinsic nature,

like letters in language processing or symbols in DNA chains. In such cases there is no time

in the physical meaning, however, the elements are also obtained by a sampling operation, thus

they can still be seen as values separated by time distances, typically equal. In this case, time

is implicit, and has the meaning of coordinates of serially ordered elements, and the result is a

temporal sequence [Wang 1998]. Temporal sequences are not limited to ordered elements, but can

also be related to common physical meaning of time where time is explicit.

From the example of language processing, several differences can be derived between a time

series and a temporal sequence. The values of a time series are mostly real values sampled from

some natural or physical phenomena to be studied. The values of a sequence can also be real, but

sometimes they can be symbolic like in language processing. From the same example, it can be

noticed that temporal sequence elements are not necessarily related to a true temporal dimension,

but rather to an order relation between them. Besides, in most cases sequences contain a limited

number of samples, while the time series can be seen as a continuous function with time, discretized

for practical reasons. The nature of the variable, being in principle unbounded in time, leads to

time series dealing with considerably larger number of data points. This also leads to consider the

statistical properties of the time series like the average and standard deviation, and the study of the

series properties like stationarity. One also could be interested in some statistical operations on the

time series like regression.

From the processing point of view, there are some differences and similarities between sequence

processing and time series processing, depending on the nature of temporal data and the application

domain. The latter, besides to the processing tasks in both cases are the subject of the forthcoming

subsections.

4.1.1 Time series processing

A time series as defined in [Dorffner 1996] is a sequence of vectors that we refer to as elements:

X = {x(t)} , t = 0, 1, · · · ,∞ (4.1)

The typical tasks in time series processing include forecasting the future values, classification

of the time series or a part of it into one of several classes, modeling the time series by describing

the model that generated it, and mapping one time series onto another.

Forecasting the future values of the series is the prevailing task in time series processing. It
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is concerned in predicting the value of the series element after some steps in time on the basis

of its previous elements values. Formally, forecasting is concerned in finding the function F :

Rk×(n+1) 7→ Rk, with k the dimension of x and n the number of previous elements, that gives the

estimate x̂(t + d) of x at time t + d given the element values of x up to time t. d is called the lag

of prediction.

x̂(t+ d) = F (x(t), x(t− 1), · · · , x(t− n), π1, · · · , πl) (4.2)

With π1, · · · , πl are some time independent variables related to the model. Written this way, fore-

casting can be viewed as a function approximation problem carried out by regression, where the

function F should be approximated as closely as possible.

Sometimes, the exact value of x̂(t + d) is not required, instead, the desired information is to

know whether it increases or decreases or remain the same. In this case the problem can be seen as

a classification problem where the goal is to map the series or a part of it (could be one value) to

one of few classes, in this case into rising, falling, or constant classes. Thus, classification can be

seen as a special case of function approximation, where the function to be approximated maps the

values of inputs to a set of classes F : Rk×(n+1) 7→ C with:

Fc : (x(t), x(t− 1), · · · , x(t− n), π1, · · · , πl) → ci ∈ C (4.3)

Another addressed task is Modeling the time series, which means finding the parameters of

the model describing it, this is equivalent to finding the description of the function F in equation

(4.2). When the description of F is found, it can be used to generate the time series by successively

substituting future inputs by previous estimates.

Mapping a time series means finding the functional mapping between two series, for example,

finding the mapping between one series like electricity consuming with another series like the

population of a city where the model takes one series as its input and computes the elements values

of the second as its outputs.

4.1.2 Temporal sequence processing

A sequence can be expressed as:

X = {x(t)} , t ∈ [i, j] (4.4)

With 1 ≤ i ≤ j < ∞. A part x(k), x(k + 1), · · · , x(l) of the sequence, with i ≤ k ≤ l ≤ j is

called a subsequence.

Sequence processing problems, or sequence learning can be categorized into four cate-

gories. Sequence prediction, similar to forecasting in times series, attempts to predict the fu-

ture elements of the sequence on the basis of previous elements: given the sequence elements

x(i), x(i + 1), · · · , x(j) with 1 ≤ i ≤ j < ∞, x(j + 1) is to be determined. When i = 1, pre-

diction is made on all previously seen elements of the sequence. When i = j the next element is

predicted on the basis of the previous element only.

Sequence generation is essentially the same as prediction, it attempts to generate the elements

of the sequence one by one in their original order: given x(i), x(i+1), · · · , x(j), generate x(j+1).
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Sequence recognition attempts to determine if the sequence fulfills some criterion, like in

time series classification, the sequence is to be mapped into one of several classes, for example:

x(i), x(i + 1), · · · , x(j) → yes, no. This definition is conform to the incremental learning ap-

proach when values are introduced to the recognition model one by one, nevertheless, sequence

elements can also be buffered and presented to the model following batch processing approach.

Sequential decision making is applied in interactive environments, where the sequence process-

ing is related to the state of the environment (the system), and actions are to be taken to change

the state. Sequential decision making can be one of two variations: goal-oriented tasks in which,

given a sequence of states x(i), x(i + 1), · · · , x(j) and a goal state x(G), an action aj at timestep

j that leads to the state x(G) is to be determined. This can be used to generate a trajectory; the

task can be seen as trajectory-oriented in which at each timestep, the goal state x(G) is x(j + 1).

The other variation is reinforcement learning tasks [Sutton 1998b], they are tasks in which, given a

sequence of state-action pairs (x(i), ai), (x(i+ 1), ai+1), · · · , (x(j − 1), aj−1) and a state x(j), it

is required to choose an action aj at timestep j that leads to receiving a maximum total reinforce-

ment (or reward) in the future. If the action selection depends only on the immediately preceding

state, then the action selection policy is Markovian. If it involves other preceding elements then it

is non-Markovian.

The aforementioned sequence learning tasks are tasks that are rather related to machine learn-

ing. However, there are other approaches related to statistics like autoregression for forecasting

time series [Sandholm 2007], autoregressive moving average for time series [Ben 1999], frequency-

based (support) methods [Srikant 1995] and statistical dependence methods [A.E. 1995].

From the point of view of machine learning, sequence learning tasks can be supervised or un-

supervised, the previously mentioned learning tasks except for reinforcement learning are often

done by supervised methods. Although, unsupervised methods exist for some tasks like the unsu-

pervised forecasting of financial time series [Pavlidis 2003] and the unsupervised face recognition

from image sequences [Raytchev 2001]. In supervised methods, sequential data used for training

are labeled with the corresponding output, when unlabeled, sequential data is handled by unsuper-

vised learning methods. Learning in this latter case, is expected to discover patterns in the sequence

that characterize the data the most. In machine learning, most sequence processing is done by arti-

ficial neural networks. Neural networks, by their different paradigms and arsenal of supervised and

unsupervised models offer the suitable approach for processing temporal data.

4.1.3 Ambiguity of sequence elements

A sequence of the form O − N − E is called simple. If the sequence contains repetitions like

C −O −N − F −O −N −D −R− E then it is called complex [Araujo 2002, Arbib 2003].

Complex sequences may cause ambiguity in sequence processing, because some sequence el-

ements might occur at different points in the sequence. Let’s consider the task of sequence pre-

diction, suppose that we want that a model, say a neural network, predicts the next element in the

sequence C −O−N − F −O−N −D−R−E. If the network last prediction was the element

N , then what will be the next predicted element, F or D? Obviously the network can’t determine.

This ambiguity in the sequence leaves the network unable to predict which is the following element.

However, the network could correctly predict the coming element if it is able to associate the ele-
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ment N with its two preceding elements at each occurrence, so that it memorizes the subsequence

C − O − N and F − O − N . The subsequence that unambiguously determines an occurrence of

the element N in the sequence is called the context of that occurrence of N . Its length (3 in the

example) is called the degree of the element N [Wang 1995]. The degree of a sequence is defined

as the maximum degree of all its elements. The degree is a concept that measures the temporal

dependency in a sequence. As the network does not know which elements are the ambiguous ones,

it should hold for each element in the sequence the subsequence of elements coming before with

length equal to the sequence degree. A corollary is that the degree of simple sequences is 1.

Knowing the previous element in a complex sequence is not sufficient to correctly determine

the next element, alternatively, the current element is not completely predictable by the past

element alone. This is why complex sequences, also called ambiguous, are sometimes called

non-Markovian [Sun 2001]: an ambiguous sequence is any sequence which is not Markovian of

order 1. In this manuscript, complex, ambiguous, and non-Markovian sequences refer to the same

concept.

Literature makes no clear distinction between temporal sequences and time series, although that

they are drawn from sources that are different in nature. Their processing contains much simi-

larity, although, it contains some differences that is sometimes reflected in different terminology.

In particular, time series processing considers the statistical properties of the series that the pro-

cessing models should consider. The previous discussion aimed to clarify their differences and

similarities. However, regardless from the existing differences, time series are essentially tem-

poral sequences that could have an infinite length. This maintains true at least when discussing

processing models that deal with the temporal properties of both of them. Assessing the temporal

dimension of data by a processing model whose main interest is the integration of the temporal

dimension of the data makes that model blind to whether it is a time series or a temporal se-

quence. Thus, the use of “temporal sequence” is privileged henceforth, and what is said about

temporal sequences is valid for time series. Although, we explicitly mention time series when

talking about processing models that consider the statistical properties of temporal data.

4.2 Neural networks in temporal sequence processing

As seen in the previous section, there are various sequence learning tasks. When considering the

various real temporal processing problems, one encounters different sequence properties, namely

different element types, various sequence lengths, different sequence complexities. One then

obtains a combination of different sequence properties and processing tasks that are difficult to

handle by a single approach. There exist several approaches for sequence processing tasks, like

hidden Markov Models [Bengio 1996], reinforcement learning [Sutton 1998b], evolutionary al-

gorithms [Moon 1998], fuzzy systems [Juang 2004], rule-based systems [Park 2008], besides to

neural networks.

In the context of this manuscript, cellular computing models in the temporal domain, we are

particularly interested in neural networks as processing models for their fine-grain properties and

their ability of time integration. Indeed, neural networks are able to cope with temporal sequences
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and represent the temporal dimension of their inputs, and to this end, they implement different tech-

niques than static networks. Unlike static networks, networks that deal with the temporal dimension

of data implement an internal dynamics in order to integrate time, we refer to these networks as dy-

namical neural networks.

In the rest of this section, we discuss the main issues of neural networks related to temporal

sequence processing. We differentiate between the internal and external time that the neural net-

works deal with, and talk about the existing approaches for representing time in neural networks,

and their main temporal components.

4.2.1 Internal and external time

Neural networks are the dominant model in sequence processing, and was used since the mid 1980s

to process temporal sequences. Prototypical neural networks like MLPs, Hopfield networks, and

self-organizing maps deal with the static processing of data. Although, even in this case where

the data doesn’t contain a temporal dimension, networks use an internal representation of time.

Internal time in neural networks could be continuous like in the continuous-time networks that

use neuron models like the one expressed by equation (3.3) or discrete time networks like the one

expressed by equation (3.4). Internal time in neural networks is necessary for the well-functioning

of the network dynamics, like the computation of activations and weights update in MLP and self-

organizing maps, and the relaxation of neurons activities dynamics as in Hopfield networks. When

the input data have a temporal dimension, imposed by the nature of the problem at hand, say, speech

recognition, then in addition to the use of internal time, a different time is handled by the network,

which is the time characterizing the inputs and related to the problem at hand, this usage of time in

neural networks is called the external time.

4.2.2 Time representation approaches in neural networks

The internal time in neural networks is a part of their internal functioning, it is there even in the

case of static inputs, thus the focus is put on external time. Neural networks integrate time in the

input data, i.e. the external time, following several approaches. Time is represented in the network

either explicitly or implicitly.

The explicit time representation means that the integration of time is reflected either by an

explicit change in network architectures or as an explicit variable intervening in the functioning of

some network component like neurons and connection weights.

The representation of time can be explicitly introduced by adding additional components to the

network architecture, typically a buffer implemented by tapped delay lines at the input of feed-

forward networks like MLPs. In this case, the sequence elements at the input are pushed down

one-by-one in the buffer. Elements are discarded when they arrive to the end of the buffer (FIFO

behavior). At each specific timestep, the resulting vector in the buffer is a spatial vector for which

an output is computed. In this method, the temporal dimension of the input sequence is converted to

a spatial dimension in a time-to-space transformation. The retention of sequence elements besides

to the limited number of past elements in the buffer allows the network to be sensitive to the tempo-

ral context of sequence elements, nevertheless, for the well-functioning of the neural network, the
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degree of the sequence should not be higher than the buffer length. Using tapped delay lines, net-

works used for static processing could be converted to cope with temporal processing. The buffer

can be viewed as a window in time of fixed size at the input level [Bengio 1989, Gorman 1988].

However, this windowing in time can be used also at other layer levels like the hidden layers in

MLP. An example of the latter case is the TDNN [Lang 1990] networks explained later.

There exists another way to explicitly represent time in neural networks such as adding time

at the connection level or at the neuron level. Time integration at the connection level concerns

the connection weights, and results in temporal weights, which means that the connection per-

forms a delay [Jacquemin 1994, Beroule 1987], or a convolution of the inputs with a temporal

kernel [Natarajan 2008, Sutskever 2010]. For example, in [Sutskever 2010], the temporal kernel is

exponential, a parameter λ with 0 ≤ λ ≤ 1 parametrizes the connection established between the

network input x(t − k) at t − k time steps in the past, and the network output y(t) at time t so

that the connection weight is wxyλ
k−1, with wxy a time independent weight. However, the use of

temporal weights is not common in neural networks.

At the neuron level, neuron models presented in 3.5.2 integrate the temporal information in the

neuron activity in two ways. The integrate-and-fire model of the neuron, integrates time by means

of a differential equation, and the information is encoded in the time-course of the neuron activity.

The other neuron models, the spiking neurons, also inspire directly from biology, the activity of the

neuron is a train of discrete events, the spikes, and information is held in the timing of these spikes.

The implicit representation of time means that time doesn’t appear explicitly in the network,

instead, the temporal dimension of input data is integrated in the internal state of the network.

The state is determined by the activations of some hidden units, these activations depend on the

current input and the past activations that represent information about input history. The network

state acts as a memory that stores information about past inputs, enabling to store the context of

inputs. Hence, time could be thought of as an index of the “sequence of network internal states”.

This type of memory results from adding recurrent connections to the network giving the recurrent

neural networks (RNNs). Depending on where the recurrent connections are added in the network,

different temporal capabilities arise. The memory implemented by the state units activations is

called the short-term memory, it is “short” because activations vary rapidly, compared to the net-

work weights that vary based on the experience but in a much slower rhythm than the activations,

thus they are also considered as a sort of memory, called the long-term memory. RNNs reduce

the weight number compared to the case of delay lines because they are able to deal with arbitrary

long temporal dependencies [Sutskever 2010]. However, the short-term memory is efficient with

“short” temporal dependencies, but when computing the output for the current input depends on

far inputs in the past, many existing models have difficulty in handling such situation, while some

models (like NARX, explained later) show better results. This problem is known as the problem

of long-term dependency.

4.2.3 Temporal Components of neural networks

To be able to cope with the temporal dimension of sequences, the neural network should be able

to hold information about the context of sequence elements as defined in 4.1. The context of

an element depends on its past inputs, and the network should be able to retain an encoding of
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which is the output of the function f . The transformation is obtained by the convolution of the

input sequence with some memory kernel as will be explained later.

The memory content is related to the number of arguments that f takes and the nature of these

arguments. The content at time tmay depend on the inputs at previous timesteps, or may depend on

both the inputs and the previous outputs of the function f itself. In other words, a state unit could

compute its activation (or state) based on the current input and the previous activations of neighbor

units possibly including itself. The memory content can depend on a limited number b of memory

values, thus it can be seen as Markovian of order b. However, sometimes it may depend on all the

past history of the memory.

The content of a short term-memory is characterized by two measures; depth and resolu-

tion [Koskela 1996, Mozer 1994]. The depth of the memory refers to how far in the past the mem-

ory can retain information, and the resolution refers to how accurate are the retained information

concerning the elements of the input sequence. A low depth memory holds only information about

the recent sequence elements, while a high depth memory holds information about sequence ele-

ments distantly presented in the past. A memory with a high resolution allows to reconstruct the

recently stored sequence elements, while a low resolution memory holds coarser information about

the stored sequence elements.

The memory plasticity is related to the derivation ∂f
∂t

which indicates how the memory evolves

through time. This process is attained by adapting the connection weights between the memory

units. Weight adaptation in neural networks is generally known as learning or training. As will

be shown in the following sections when presenting some example neural networks for temporal

sequence processing, there are some static short term memories in which weights are fixed in

advance, those mainly include networks that use delay lines. Adaptive memories on the other side

are those in which some connection weights are learned.

4.3 Feedforward networks for temporal sequence processing

Feedforward networks are static networks that perform static processing of data, although, these

networks can be used in some special cases of temporal problems. The principal feedforward

networks are multi-layer perceptron (MLP) and radial basis functions networks (RBFs).

An MLP with n, k, m units in the input, hidden and output layers respectively, is a function

FMLP : Rn 7→ Rm that takes as input the vector X of length n:

FMLP (X) =

k
∑

j=1

vjlf(

n
∑

i=1

wijxi) (4.5)

With l = 1, · · · ,m, and wij , vjl are the weights of hidden and output layers respectively.

The hidden units activities are nonlinear functions f of the inputs, all hidden units activities are

computed using the same function which is nonlinear and non-polynomial. The output of the MLP

is a linear combination of the hidden units activities.

Radial basis function network (RBF), on the other side are given by the equation:
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FRBF (X) =
k
∑

j=1

vjlΓ(
n
∑

i=1

(wij − xi)
2) (4.6)

Where Γ indicates the Gaussian function. Like MLPs, RBFs are proven to be universal function

approximators given a sufficient number of hidden units [Park 1991]. Both MLPs and RBFs ap-

proximate nonlinearity by the superposition of several instances of the nonlinear functions f and

Γ.

These static feedforward networks can be used in temporal sequence processing, even in the

online mode, in the special case when the stream of sequence elements are temporally independent,

i.e. when the sequence is simple. In this case, when the multivariate (i.e. vector) sequence element

x(t) is presented as network input, the network computes an output function F (x(t)) of a single

input.

Another example of static feedforward networks in temporal sequence processing is

NetTalk [Sejnowski 1987] which is used for English text pronunciation, it takes a sequence of

letters that are spatially presented to the input layer in a serial-parallel transformation, thus, inputs

can be seen as a window in time without explicitly having delay lines. However, the number of

units in the input layer is large (203 in [Sejnowski 1987]).

Some other tricky methods were used to process temporal data by static networks, whether

they are feedforward networks or other static ones like self-organizing maps. Spatiotemporal data

can sometimes be pre-processed to fit static models, one approach is to transform the time-domain

data to the frequency domain through Fourier transform, this was used in [Amari 1998]. Another

approach proposed in [Mozayyani 1995] consists in using complex numbers to encode time, where

one quadrant of the number is used to encode past values, and the another quadrant is used to

encode present and future values. The authors in [Mozayyani 1995] applied this on an MLP and a

self-organizing map.

Learning of feedforward networks is supervised. In supervised learning a set of inputs and the

related target outputs is provided, this forms a training set
{

x(t), ˆy(t)
}

for t = 1, · · · , T , where

T is the length of the training set. The goal of learning is to adapt the synaptic weights w of the

network in order to fit the best its computed output to the target output, the difference is considered

as the network error. In general, it is better to separate the available set of labeled data into a

training set and a test set, so one can test the accuracy of the model on data not used in learning.

Other training scenarios, like cross-validation, are also possible.

The used algorithm for learning in feedforward networks is backpropagation, it consists of two

steps: first, the inputs are propagated forward through the network to compute the output, and

second, the gradient of the errors between the computed and the target outputs propagated back in

the network and used to update the weights. The error to minimize is often the mean square error

(MSE) given by:

E =

T
∑

i=1

E(t) =
1

2

T
∑

i=1

( ˆy(t)− y(t))2 (4.7)

In batch learning mode, the weights of the network are updated after the presentation of a
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training set that consists of a part or all the available inputs. In the incremental learning mode,

the weights are updated after the presentation of each single input, and thus, the error is computed

based on E(t) instead of E, i.e. for each input element. There exist different learning algorithms,

most of which are gradient descent algorithms [Bishop 1995a] .

Let’s now discuss whether these feedforward networks are cellular models, to this end, let’s

consider a feedforward network with three or more layers. These networks are fine-grain ones

with simple processing units working in parallel. However, the computation of the network output

requires the propagation of information forward, so that, in some time step, computation consists of

ordered subsequent actions: first the output of the input layer units is computed on the basis of the

network inputs, then the output of hidden layer units is computed on the basis of the output of the

input layer units, and third, the output layer units compute their outputs based on the output of the

hidden layer units. Thus, it is clear that in order for the output layer units to compute they require

an information related to the input layer to which it has no connections, which contradicts with the

functional connectivity condition. Also, the update of the weights at the input layer depends on the

error E which is a global value computed on the network level by a central processor, this value

is propagated back in the network, so that for example the weights in the input layer are updated

according to values computed on the basis of the globally computed error E to which units at the

input layer has no direct access by their connections. This also contradicts with the functional

locality condition, besides, computing E contradicts with the decentralized processing condition.

In addition, as mentioned earlier in this manuscript, the full connectivity between layers, reflected

in equations (4.5) and (4.6), is contradictory with the topological locality of cellular models.

As a result, although feedforward networks fill the simplicity and parallelism conditions

of cellular computing paradigm, the weights update process is not decentralized, the connec-

tivity is not local, and the computation is not functionally local as well. Hence, feedforward

networks are not cellular models.

4.4 Dynamical networks with delay lines

Among the arsenal of dynamical neural networks capable of temporal sequence processing, there

are architectures that implement short-term memory by holding past input values in the network or

a transformation of these inputs. For this purpose delay lines are typically added at the input layer

of the network so that input elements are fed to the buffer obtained by the delay lines, and values

transformation may or may not be applied. Models that rely on delay lines make a clear separation

between the short-term memory and the predictor parts. The short term memory consists of the

buffer formed by delay lines. The predictor part is normally a static feedforward network such

as MLP or RBF which consists of no, one, or multiple hidden layers. In the rest of the section,

the most important architectures that rely on delay lines are presented and their main capabilities

relative to temporal sequence processing are explained.
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the delay line elements, hence, implementing another memory form.

In the standard tapped delay line seen before, the relation between the buffer content and the

input values is given by the following: xi(t) = x(t − i + 1). It can also be written as xi(t) =

x(t−wi) for arbitrary long delay. However, there exist other buffer types in which when shifted in

the delay line, the value of the retained element changes. This is obtained by the convolution with

a kernel ci called the memory kernel. The general formulation for this convolution is given by:

xi(t) =

t
∑

τ=1

ci(t− τ)x(τ) (4.10)

Delay lines with an arbitrary delay wi can be obtained by the kernel:

ci(t) =







1 if t = wi

0 otherwise
(4.11)

Where standard delay lines can be obtained by setting wi = i− 1 for each xi(t). By using different

kernels, one obtains different memory forms. For example using the following kernel with µi in

the interval [0, 1], the exponential trace memory [Mozer 1995, Jordan 1990] is obtained:

ci(t) = (1− µi)µ
t
i (4.12)

By comparing equations (4.11) and (4.12), a straightforward difference between standard delay

lines and the exponential trace memory can be drawn. The latter doesn’t sharply drop off at a fixed

point in time like standard delay lines, instead, a unit xi(t) in the line depends on more than one

past value; it keeps trace of the values that pass through it, and this trace decays exponentially

with time. This way, the recent inputs to the delay line are more relevant to the actual output

computation, while information related to past inputs become more difficult to take into account by

the network with the time course. As a result, the standard delay line has a lower depth compared

with the exponential trace memory, but has a higher resolution because information about past

sequence elements does not decay like in the exponential trace memory.

One important property of the exponential trace memory is that the values of xi(t) can be

computed incrementally:

xi(t) = (1− µi)xi−1(t) + µixi(t− 1) (4.13)

The value xi(t) is a linear combination of its past output xi(t−1) and the current output of the past

unit xi−1(t). This can be perceived as a moving average filter of order 1 (MA[1]) parametrized by

µi. If µi is close to 1 then the unit output xi(t) is mainly determined by the past value of the same

unit xi(t − 1), if µi is close to 0 then the xi(t) is mainly determined by the output of the past unit

xi−1(t). In the latter case the behavior of the exponential memory resembles to that of the standard

tapped delay line. It can be noticed from equation (4.13) that a unit with index i in the delay line

performs a value decay and can be seen as leaky integrator unit. For this reason, exponential trace

memories are also called feedforward exponential decay (FED) memories [Barreto 2003].
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Let us define the shift operator q such that q−1xi(t) = xi(t − 1). By rearranging the terms of

equation (4.13) and using the shift operator, it can be rewritten in the form of a filter:

xi(t) =
1− µi

1− q−1µi
xi−1(t) (4.14)

The gamma memory obtained by the gamma filter presented in [Vries 1992] is intended to

generalize across delay lines and exponential trace memory, in such a way that allows to parametrize

a continuum of memory forms ranging from high resolution and low depth, to low resolution and

high depth. Given γi in [0, 2] the gamma filter is given by:

xi(t) =
γiq

−1

1− (1− γi)q−1
xi−1(t) (4.15)

There exist other memory forms, that can be expressed as memory kernels or alternatively, as

filters. Each different filter results in a different memory form. Other important filters implemented

by tapped delay lines to implement memory kernels are Laguerre filters [Wahlberg 1991], and

IIR/FIR filters.

There are some drawbacks related to delay networks for time representation. The buffer length

that determines the length of the window in time is fixed in advance, therefore, it is necessary

to adapt the buffer length with the maximum temporal dependency length in the input sequence,

i.e the degree of the sequence (as defined in 4.1). This implies that the degree of the processed

sequence should be known beforehand, which is not always possible, especially when sequences

arrive online. The network may either encounter sequences with longer temporal dependency than

the size of the buffer, or inversely, the buffer length may be larger than the degree of the processed

sequence, the latter case means allocating extra computational power that exceeds the task needs.

Even though, typically not all sequence elements are of the same degree, and thus, irrelevant and re-

dundant temporal information are presumed and computed for elements with lower orders. Memory

kernel networks have better memorizing capability as they have higher depth than standard delay

lines, thus they can retain information related to sequence elements past in time that exceeds the

buffer length, however, the resolution drops exponentially and the information becomes sooner use-

less. What is common to both standard delay lines and memory kernels is their lack of “selectivity”

to the different degrees of sequence elements; the context of all elements is memorized in the same

way.

Another drawback is that adding delay lines causes delay networks to contain a large number of

weights that causes over-training [Chappelier 2001]. Weight sharing in TDNNs tries to reduce the

number of weights to be learned, although, their computation remains expensive, especially when

dealing with high degree sequences requiring large delay lines. In this latter case, delay networks

doesn’t hold practical because of the large number of added weights and the high computation time.

Learning in the delay networks is supervised, it consists in adapting the synaptic weights of the

adaptive part which is the predictor, the latter being a feedforward network. No learning occurs on

the level of short-term memory whether it is a standard delay line or a memory kernel.
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The benefit of the delay networks is that they are easy to build and tune the depth or the

resolution, and most importantly, they can be trained with classical backpropagation without

any modification. Training is carried out in a similar way as in static feedforward networks.

As explained in the previous section, a centralized processor is used for this training, and the

weight update depends on computed values that are not accessed by units connections, thus,

delay networks are inherently not cellular models.

4.5 Recurrent neural networks as state models

The delay approach for short-term memory presented in the previous section uses delay lines to

hold the temporal context of inputs. Delay networks, suppose that all input elements have the same

degree, and remember their history equivalently. In fact, these networks could be thought of as

dealing with a spatial representation of time that is maintained in the delay line. The consecutive

outputs are then computed starting from inputs following the same functional operations, this com-

putation could be referred to as static. As has been explained, when they should retain information

about inputs deep in the past, these networks employ a large number of units in the delay line, and

the number of weights explodes, leading to a large computation time.

Another approach for accounting for the temporal context of inputs relies on providing the net-

work with a dynamical internal state, obtained by adding recurrent connections to static networks,

leading to the distinction of the major family of dynamical neural networks dedicated for temporal

sequence processing, the recurrent neural networks (RNNs).

Recurrent connections are looped connections that implement a delay, typically with one

timestep. Units in some layer are connected to the other units in the same or previous layers.

These connections implement a form of positive feedback that aims to maintain the previous net-

work state information in the network by feeding them back to the processing units, creating a

recurrent path. Recurrent connections reinject the past units activities in the network and allow

the network to develop a self-sustained temporal activation dynamics along the recurrent path; i.e.

the network state that changes with time, making of the RNN a dynamical system. Hence, the

computation of the output is no longer static as in delay networks. This dynamical computation is

the main functional difference between RNNs and both static feedforward networks that behave as

functions and dynamical delay networks.

The internal state of the obtained dynamical system is called the network state, it is a vector

of activations whose elements are maintained in state units. The work of state units is to latch

information about the past activations of some units in the network, that vary depending on the

architecture. The stored information are nonlinear transformations of the temporal inputs presented

to the network.

The network state serves as a short-term memory that maintains information about past inputs

for an arbitrary period of time. This allows the network to process the context of past inputs, in a

different way than the window in time used in delay networks.
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Representing the arbitrary context of different inputs in the dynamical state of the network, re-

places the need for delay lines that impose large number of connections and weights. Besides,

learning in RNNs allows the short-term memory to adapt to the degree of sequence elements, so

that the network maintains no more than the sufficient context information for each input.

RNNs are proved to be universal approximators of dynamical systems [Funahashi 1993], and are

known to be capable of representing high complex functions on input sequences [Sutskever 2010]

and thus suitable for nonlinear temporal sequence processing problems [Lukos̆evic̆ius 2009] .

With very few exceptions, almost all recurrent networks work in discrete time. RNNs imple-

ment an implicit representation of external time characterizing the inputs sequence. Time can be

seen as an index of network internal states where the state of the network changes with each new

processed input, this is why RNNs are sometimes called “adaptive state networks” [Koskela 1996].

From this perspective of dynamical systems, two classes of RNNs can be distinguished, the first

class is characterized by symmetric connectivity between the network units and an energy mini-

mizing dynamics. The most famous example is the Hopfield networks [Sulehria 2007], and their

stochastic variant Boltzmann machines [Ackley 1985]. These networks have functionally local con-

nections that make their asynchronous update possible (see 3.3.2). However, with the asynchronous

update regime, supervised learning is not possible, thus they are trained using unsupervised learning

rules. The second class is characterized by directed connections and deterministic update dynam-

ics, these networks can be perceived as nonlinear filters that associate an input sequence with an

output one (sequence mapping). RNNs of this class are mostly trained in a supervised way.

There is yet no general theoretical framework that describes the properties of recurrent net-

works [Cruse 2006], however, almost any recurrent neural network architecture can be expressed

in the form:

S(t) = f(S(t− 1), X(t), πft ) (4.16)

Y (t) = g(S(t− 1), X(t), πgt ) (4.17)

where S ∈ R
NS represents the network state which is a vector of activations, X ∈ R

NX , Y ∈
R
NY represent the input and the output vectors of the network respectively, πft , π

g
t represent the

model parameters which are typically the weights, and f, g are functions that depend on the specific

architectures, and they are applied element-wise. f can be seen as the short-term memory function,

and g is the function implemented by the predictor part. Here, the dimension NS of the state vector

is usually higher than the dimension NX of the input. This implies that the state results from an

expansion of the input space to a higher dimensional space. One can think of X as included in S

as the latter implements a transformation of X .

The functional dependency in RNNs between the past state, the current state, the current input

and the current output is illustrated in figure 4.4(a).

This general representation for RNNs functional dependency fits equations (4.16) and 4.17.

However, some networks compute their output from the current state, not the past one, without

involving the current input. Thus equation (4.17) can be simplified to:

Y (t) = g(S(t), πgt ) (4.18)
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are [Nerrand 1993, Tsoi 1997, Tsoi 1998, Kremer 2001, Barreto 2003].

In the following subsections, the most important architectures for time integration are pre-

sented, while briefly discussing the learning algorithms and contrasting these models against the

requirements of cellular computing paradigm.

4.5.1 Elman networks

Elman architecture [Elman 1990] is an MLP with one hidden layer with recurrent connections.

One-to-one recurrent connections with weights fixed to 1.0 are added to the hidden layer of the

MLP, so that they copy the activation of hidden units to some context units in the input layer as

called by Elman, that is:

aCi (t) = aHi (t− 1) (4.21)

where C indicates a context unit in the input layer, H a state unit in the hidden layer, and i the

index of the unit in the layer, this implies that the number of context units is equal to the number

of hidden units. At time t, the context units maintain a copy of the past state S(t − 1). The state

units in the hidden layer then compute their activation on the basis of input units and context units

activations in the input layer. This way, the past state S(t − 1) participates in computing the new

state S(t). An Elman network is depicted in figure 4.5.

The units in the hidden layer that maintain the dynamical state S(t) of the network, besides to

context units in the input layer, implement both the short-term memory mechanism. This short-

term memory part of the network performs three operations: input, computed as in MLPs, and then

comes the copy operation: an input element x(t) is first loaded into the input layer, then the current

input with the previous state S(t− 1) maintained by context units are used to compute the current

state S(t), which is in turn used to compute the output Y (t) following 4.18. The final operation is

copying the computed state back to the context units.

The state computation given in equation (4.16) is given as follows for Elman networks:

S(t) = f(A.S(t− 1) +B.X(t)) (4.22)

where A,B are matrices in which is hidden the term πft referring to weights in equation (4.16), and

f is the nonlinear sigmoid function.

Concerning learning, the recurrent weights values are fixed, and only feedforward connections

are adapted. The original algorithm used by Elman [Elman 1990] was learned using a truncated

version of gradient descent, that assumes the gradient of context units activations with respect to

the network weights is zero, allowing to use the standard backpropagation algorithm for learning.

With this assumption, learning in Elman networks can be carried out using any algorithm used for

MLPs. Elman networks were also trained by Kalman filter algorithm as in [Williams 1992b].

4.5.2 Jordan networks

The original model of Jordan [Jordan 1986] is an MLP with one hidden layer that contains one-to-

one recurrent connections from the output layer to some context units in the input layer as in Elman
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nections added to the input layer, here, input units are also the context units. Another architecture

consists of input, context, hidden and output layers, with self-recurrent connections only in the con-

text layer. These latter architectures are well suited for sequence recognition but less well suited

for sequence generation like Elman or Jordan networks [Rolf Pfeifer 2010].

On the other side, in Elman architecture, and in some instantiations of Jordan architecture,

each context unit receives connections from all other copied context units, these architectures and

similar ones [Williams 1988] are called fully recurrent networks. In other network architectures like

the ones used in [Bengio 1992, Back 1991] the context units are connected to themselves via self-

recurrent connections, but not to other context units, this type of networks is called locally recurrent

neural networks. Fully recurrent networks provide more complex processing of activation values

and have greater representational power [Kremer 1999].

4.5.3 NARX networks

An important class of discrete time nonlinear systems is the Nonlinear AutoRegressive with eXo-

geneuos inputs (NARX) [Leontaritis 1985, Chen 1990] . The model computes its output not only

on the basis of the inputs but also on the basis of past outputs, that is:

y(t) = f(y(t− 1), · · · , y(t− dy), x(t), · · · , x(t− dx)) (4.24)

where f is a nonlinear function, dx, dy are the lengths of the input and output history involved in

computing the current output.

It is possible to implement this model by neural networks; the nonlinear function f can be

approximated by an MLP, and tapped delay lines of lengths dx, dy can be used to buffer the input

and output respectively. If implemented this way, this network combines Jordan networks with

delay networks. It uses a first tapped delay line at the input layer and feedback connections from

the output to the input, this feedback is connected to the input layer by recurrent connections with

adaptive weights, the past output activations are buffered by a second tapped delay line that makes

part of the input layer. Although a delay network, the feedback connections from the output to

the input layer make these networks recurrent ones. NARX nonlinear systems implemented by a

neural network give NARX recurrent neural networks. Figure 4.7 shows a possible schematic of

such networks.

NARX networks with their nonlinear function f are able to simulate a linear discrete system

that extends equation (4.9) to account for the outputs:

F (x(t)) = y(t) =

dx
∑

i=1

αix(t− i) +

dy
∑

j=1

βiy(t− j) (4.25)

where αi, βi are constant coefficients. In time series modeling, these models are referred to as

autoregressive moving average model (ARMA), and NARX networks are capable of computing

such linear models as a special case. [Dorffner 1996] presents a variation of the NARX architecture

that works as an ARMA model. The models that nonlinear NARX networks compute are sometimes

referred to as NARMA models.
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the computation time.

However, NARX recurrent networks are known to be better than other RNNs concerning the

problem of vanishing gradient, because unfolding the network in time makes the output delays ap-

pear as “jump ahead” connections. For example unfolding the network in figure 4.7 will result in

connections between each copy of the network with all the dy = 3 preceding copies in time (this

doesn’t hold true for the last three copies k−2, k−1, k as there are no unfolded copies left). These

connections offer a shorter path for propagating gradient information back through network copies

corresponding to previous timesteps, thus avoiding network nonlinearities and reducing the sensi-

tivity of the network for long-term dependencies. One can roughly conclude that NARX are dy
times more powerful than RNNs with no output delays. But in fact, this is not perfectly correct, as

the benefit of output connections is related to the portion of the gradient that flows in the jump ahead

connections that should be sufficiently large relative to the portion that flows in the network, this

relation should maintain in order to have NARX network able to deal better than other RNNs with

long-term dependencies. In practice, BPTT is not that easy to use and requires an important effort to

choose the initial weights. Indeed, using BPTT is not straightforward, because unlike backpropaga-

tion which deals with networks implementing functions, BPTT deals with networks approximating

dynamical systems, thus they are not guaranteed to reach a local minimum of the error while this is

guaranteed in backpropagation. Networks with internal dynamics can also encounter bifurcations

when the initial weights induce a different behavior than what the task requires. Near bifurca-

tions, the gradient information may become useless or the error may dramatically increase and the

learning fails to converge [Jaeger 2002b].

NARX networks were used in the prediction of chaotic time series [Diaconescu 2008]. They are

also proved to be as computationally powerful as fully connected networks thus at least as powerful

as Turing machines [Horne 1995].
Elman, Jordan, and NARX networks are based on MLP feedforward networks that are trained

by backpropagation, BPTT or RTRL, all are gradient descent methods. For the same reasons of

learning and architecture as discussed in section 4.3, Elman, Jordan, and NARX networks are

not cellular models.

Another implementation of equation (4.24) that uses self-organizing maps was given

in [Barreto 2001]. Learning in such neural implementation of NARX is unsupervised, thus

avoids learning algorithms based on gradient descent. However, NARX implementation that relies

on self-organizing maps does not fit the requirements of cellular computing paradigm, that will be

discussed in the coming chapter.

4.5.5 Random networks maintaining states: Reservoir Computing

Although RNNs are suitable for nonlinear modeling and processing of temporal sequences, RNNs

trained by gradient descent are limited, mainly because they suffer from the vanishing gradient

problem. Besides, the gradual change of network parameters during training may drive the network

dynamics through bifurcations so that the gradient information degenerates and the convergence to

error minima can’t be guaranteed [Doya 1993].

A recent neural paradigm for nonlinear modeling appeared to overcome these problems and
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was independently and concurrently developed by different researchers. It is based on the idea first

pointed out by Peter F. Dominey, that it is possible to build recurrent networks able to carry out

temporal processing, without adaptation in the recurrent part of the network that implements the

short-term memory, and that a simple adaptation is required in the predictor part [Dominey 2000].

This paradigm consists of networks that also make a clear separation between the short-term mem-

ory and the predictor parts. The short term memory is the recurrent part and is the one that is called

the reservoir. The reservoir is a recurrent network with a large number of units (neurons) (50 to

1000) with random connectivity that remains unchanged during training. This random network

expands the input vector of the network to a higher dimensional vector which is the state of the

network. This expansion often implies that the input vector X(t) forms a part of the state vector

S(t) maintained in the reservoir. So when a new input arrives the reservoir is excited by the inputs

and maintains in its state a nonlinear transformation of the input history.

The predictor part is a feedforward network that computes a linear combination of the reservoir

units activities, this part is called the readout in the terminology of reservoir computing paradigm.

The state should maintain a representation rich enough so that the output could be linearly computed

from the state, and the main challenge in these networks is to design a reservoir that makes this

possible.

Reservoir units could be thought of as computing some “basic functions” of both the input and

its past activity. The readout learns to combine these basic functions in the best way to compute

the target output. Thus, unlike other RNN models, the reservoir doesn’t need to be trained, the

only part to train is the predictor part of the network; the readout. Hence, state representation is

realized in a different way, that doesn’t require learning, and the problems of gradient vanishing or

degeneration are avoided.

Two main classes of reservoir networks were independently developed, they are encapsulated

under the name reservoir computing paradigm. The first class relies on spiking neurons and dy-

namic synaptic connections, their design is biologically motivated. Using spiking neurons with

their ability to represent real values makes these networks computationally powerful, but hard to

train and use, and require more computational power. When inputs are presented to the network,

the internal state change resembles to the ripples on the surface of a pool of water, hence the name

of this class of networks liquid state machines (LSMs) [Maass 2002]. Reservoirs of this type are

proved to be computationally universal and can model by their bounded time and value resolution

any continuous time, continuous-valued system [Maass 2006]. However, we choose not to discuss

this class of reservoirs because by its low-level modeling it is mainly suitable to simulate the brain

and because it is harder to control for the same reason.

The second class is called echo state networks (ESNs) [Lukos̆evic̆ius 2009]. The neural struc-

ture that holds the state in ESNs, i.e. the reservoir, is different from those in other recurrent net-

works, a reservoir contains large number of mean firing rate or leaky integrator neurons (units) with

sparse and random interconnectivity, thus the dimension of the state vector is considerably larger

than this of the input vector, i.e. NS ≫ NX . Sparseness is attained by less than 1% of cells in-

terconnectivity. This property results in loosely coupled subsystems within the reservoir all along

with a dynamics rich enough that allows the readout to compute the output linearly.

Although the design of the ESNs reservoirs is different from feedforward networks, the state of
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FIGURE 4.8: Reservoir. Extracted from [Lukos̆evic̆ius 2009]

an ESN reservoir is formally given by a similar equation:

S(t) = f(A.S(t− 1) +B.X(t) + C.Y (t− 1)) (4.26)

where f is usually the sigmoid function applied piece-wise. A,B,C are weight matrices similar

to those seen in Elman networks. A difference from the Elman networks is the possibility to in-

volve the feedback from the output Y in the computation of the current state. However, in many

applications it is not used, thus, equation (4.26) turns out to be formally similar to (4.22) for Elman

networks.

ESNs should have the echo state property, that requires that the effect of the current input X(t)

and the current state S(t) on future state S(t+ k) should behave like an echo, i.e. it should vanish

gradually when k → ∞. This is why the states of the reservoir are termed “echos”, hence the

name of echo state machines. For this property to be attained, the spectral radius of the weight

matrix ρ(A) should be inferior to 1, irrespective of the input. For such value the reservoir is

on the edge of chaos, thus exhibits interesting memory and computation capabilities, all while

guaranteeing that the effect of the input dies out with time. For a value of ρ(A) slightly larger

than 1, the reservoir starts to exhibit oscillations, while for larger values it exhibits chaotic behav-

ior. Generally, the random creation of reservoirs is not always the best choice, instead, changing

some characteristics at the design could result in reservoirs that are better adapted for specific

tasks [Lukos̆evic̆ius 2009]. Literature talks about some “goodness measures”, some of them aim to

make possible the separation of inputs by a linear readout, this is called the linear separation prop-

erty. Some other goodness measures address the computational power and memory capabilities of

the reservoir like the echo state property discussed before, and the short-term memory measure es-

tablished in [Jaeger 2002a], or the entropy of S(t) that measures the local information transmission

in the reservoir [Jaeger 2005].

After the state is computed, the readout computes the output of the network. The readout part

is typically a single-layer feedforward network, it computes the output of the reservoir following

equation (4.18) where g is usually the sigmoid function. Let’s notice that both the reservoir and the
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readout parts are, in principle, allowed to compute nonlinear functions of their inputs. However,

in many practical applications, it is often sufficient to use a simple linear readout of the ESNs in

which g is a linear function, given D is a weight matrix:

Y (t) = D.S(t) (4.27)

Training the readout is mostly non-temporal supervised task, often carried out by linear regres-

sion when the readout is a single layer perceptron like in [Jaeger 2001]. MLPs can also be

used when single layer perceptron gives rough mappings between X and Y . Because learning

in ESNs occurs only in the readout, learning is extremely fast compared to other temporal net-

works [Sutskever 2010].

However, ESNs are also learned by unsupervised learning, here, the goal is not to associate

inputs with target outputs, but to set out the reservoir in such a way that it fulfills some goodness

measure like the memory power, by setting it to have the echo state property, and to have a rich

signal pool that allows for the linear separation of whatever inputs by the readout. To obtain this

property, the reservoir is either properly set out the design phase, or alternatively by learning the

reservoir part. In this later case, the reservoir part is adaptive, and learning occurs either by local

methods in the functional sense of locality like the Hebbian learning [Hebb 1949], or by global

methods that consider the whole reservoir and thus require matrix calculations. A somehow similar

model to unsupervised reservoirs that seeks to reach the edge of chaos by some plasticity techniques

is the one called SORN [Lazar 2009], it is discussed in the coming chapter.

What remains a special advantage of reservoir computing and distinguishes it from other RNNs

approaches is that the two parts of the network, the reservoir and the readout, can be created and

trained separately, so that for a specific task, the network can be built by selecting reservoir and

predictor modules with known suitable characteristics for this type of the task.

Because reservoir computing networks do not suffer from vanishing gradient problems as there

is no gradient descent based learning, these networks have outperformed previous recurrent meth-

ods in many domains like classification and pattern generation, forecasting of time series, and

nonlinear system identification [Lukos̆evic̆ius 2009]. Besides, they perform very well in learning

long-term dependencies [Sutskever 2010].

However, reservoirs use a large number of neural units in order to create a sufficiently rich signal

pool from which the readout learns to select the appropriate ones through linear combinations. This

means that there will be many unused signals that have already been computed by many units. Thus,

reservoirs can be said to be computationally inefficient.

Reservoir networks are not cellular models because, first, although reservoir units activ-

ity does not depend on units that they are not connected to, the next state of the reservoir

is computed by matrix computations on the population level, i.e. using a centralized pro-

cessor, thus they are not computed in a decentralized way. Although, it is possible to over-

come this condition like in adaptive reservoirs learned by Hebbian learning. However, it

is the readout part that can not be cellular, even if it is a one layer perceptron (a feedfor-

ward network), because of the global nature of matrix calculations necessary for linear re-

gression, that requires a centralized processor which holds true for all variations of ESNs.
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Thus, the reservoir part can be cellular, but the reservoir network with readout is not cellu-

lar.

4.5.6 Hopfield networks

Units update in the presented models so far is synchronous; all model units are updated at each

timestep. They are hierarchical models arranged in layers, even reservoir networks contain two

hierarchical levels, the reservoir and the readout, that latter could be hierarchical as well.

Hopfield networks [Hopfield 1982] represent a different model in which units are not hierar-

chically organized and they are updated asynchronously. This model is considered as a milestone

in neural networks domain, because of its interesting properties, especially biological plausibility,

also, because the Hopfield model drew the attention of the scientific community on neural networks

as valid models for modeling and solving problems. These networks are later proven to be Turing

equivalent [Sima 2003, Sima 1999].

A Hopfield network consists of a fully connected neural network with N units; each unit is

connected to all other units but not to itself, this implies that the connectivity between every two

units i, j are bidirectional. The weights of connection between units i and j are symmetric, i.e.

wij = wji, so the connectivity matrix is symmetric with zeros on the diagonal. Hence, these

networks are recurrent as the bidirectional connections make cycles and deliver a form of feedback

to the units.

There exist binary and continuous versions of Hopfield networks, the latter has continuous

valued units activations. For simplicity, the binary one is presented. The units in the binary version

of Hopfield networks have their activations in {−1, 1}, or {0, 1}. In what follows units activations

{−1, 1} are adopted. The network dynamics in the absence of inputs is determined by the way the

units activity is computed, it is sometimes called the Hopfield dynamics, for a unit i:

ai(t) = sgn(
∑

i

wijaj(t− 1) + θi) (4.28)

where sgn(x) =







1 if x > 1

−1 if x < 0
(4.29)

and θi is an activation threshold of the unit i, it is considered to be 0 in what follows.

The inputs to the network are vector patterns of the form X(t) = (x1(t), x2(t), · · · , xN (t)).

The length of each input pattern is N , the same as the network units, so that the element i in the

vector is presented to the unit i in the network. When an input pattern X(t) at time t is considered,

then the activity of unit i is computed as follows:

ai(t) = sgn(
∑

i

wijaj(t− 1) + xi(t)) (4.30)

The asynchronous update in Hopfield networks can be carried out in two ways, either by the

sequential update of single units according to equation (4.28) in a random order, or by letting

network units update themselves with certain probability.
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Hopfield networks are mainly used to work as associative memories so that they learn static

patterns and reproduce them upon the presentation of inputs. The basic idea of associative memo-

ries can be formulated as follows:

“Store a set of p patterns
{

ξ1, ξ2, · · · , ξp
}

in such a way that when presented with a new patternX ,

the network responds by producing whichever one of the stored patterns most closely resembles to

X .”([Polk 2002] ).

Hopfield networks as associative memories store static patterns. Each stored pattern ξk with

1 ≤ k ≤ p is a vector with the same number of elements N as the network nodes. That is,

when recalled, elements of a stored pattern ξk are distributed over all the network units: ξk =

(ξk1 , ξ
k
2 , · · · , ξkN ), where ξkl represents the bit l of the pattern ξk.

The activity vector of the N units in a Hopfield network defines the state of the dynamical

system that the network constitutes. In the binary case, this vector takes its values in a finite set.

The temporal change of the activity vector determines the dynamics of the network.

Hopfield networks are dynamical systems with discrete states, Hopfield showed that the net-

work can learn to store patterns as stable states, in such a way that patterns become attractors in the

state space (RNNs terminology) or phase space (dynamical systems terminology) of the dynamical

system that the network represents. This means that when an input X = ξk + ∆ is presented to

the network, with ∆ a sufficiently small deviation from the stored pattern ξk, then the dynamics of

the network spontaneously moves to ξk after several timesteps necessary for the relaxation of the

network dynamics. The states in which the dynamics passes from X to ξk are called the trajectory

of the system. Possible trajectories that lead to ξk in the state space define a region called basin of

attraction illustrated in 4.9. This capability of the network to converge to an attractor although the

deviation in the input pattern from the stored pattern means that it is able to recall stored patterns

even if the input pattern contains only a part of the stored pattern, or even if the input pattern is

a distorted version of the stored pattern, due to noise for example. Thus, Hopfield networks as

associative memories are robust to noise. Recalling a stored pattern starting from a distorted or

non-complete one is often called pattern completion. The stored patterns are recalled by a con-

tent related to them, i.e. to the memory content, this is why associative memories are also called

content-addressable memories.

It is convenient here to briefly remind with the attractor types of dynamical systems. When

the state dwells at a single state for a considerable period of time as in Hopfield networks, then it

is called fixed point attractor. When the systems exhibits a cyclic behavior in which the trajectory

passes by the same states then one talks about periodic attractors (or limit cycles). However, when

the state is continuous (like Hopfield networks with continuous activations), then although the

cyclic behavior of state, it never returns to the same exact point, thus this type of attractors is called

quasi-periodic attractor. Finally, if the trajectory remains within a bounded region in the state

space but it is unpredictable, then this region is called chaotic attractor.

Hopfield has another contribution in neural networks, which is the introduction of the concept

of energy function, for his network he defined an energy function E(t) for the network state at time

t as follows:

E(t) = −1/2
∑

i,j

wijui(t)uj(t) (4.31)
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FIGURE 4.9: Attractors and basins of attraction of associative memory: the delimited re-
gions represent the basins of attraction for each attractor, when input patterns fall within
any of these regions the network dynamics moves the state toward the attractor. Af-
ter [Polk 2002]

He proved that in an asynchronous update regime, E always decreases whatever was the initial

state, and that the network dynamics converges toward local minima of the energy function, that

correspond to the stored patterns in the associative memory. It should be also mentioned that the

synchronous update of Hopfield networks is possible, but it is stated in [Polk 2002, Cheung 1987]

that it may result in instability of the network dynamics. [Cheung 1987] gives a more detailed study

of stability conditions, asynchronous update regime is guaranteed to converge, but it may require

involving units thresholds θi, while stability of synchronous update regime requires more strict

conditions. The same work further considers networks with additional self-recurrent connections,

hence another variation of Hopfield networks.

Although these networks consist of N binary units, one shouldn’t expect that they are able to

store 2N different patterns, nor even N patterns, in fact, the capacity of the network is limited to

about p = 0.14N [Hertz 1991]. The reason is that the network state space (consisting of vectors)

is not entirely allocated for storage, instead, only a few states can be memories, those are the

attractors, while the rest of states form the basins of attraction.

The update rule 4.28 of Hopfield network is deterministic, but a stochastic counterpart also ex-

its, it is called Boltzmann machines [Ackley 1985]. In these networks, units are updated following

a probability dependent on the energy of the network at each timestep. Being stochastic, the main

usage of these networks is to build an internal representation that allows the network to generate

patterns that have the same statistical distribution as the input patterns.

Learning in Hopfield networks is unsupervised. Learning the network to store patterns
{

ξ1, ξ2, · · · , ξp
}

means that if the network is in some state ξk it remains in it, moreover, it should

converge to the attractor of ξk whenever it is in its basin of attraction. In Hopfield network, learning

stable states for the to-be-stored patterns leads to weights wij proportional to the elements of these

patterns that correspond to units i and j, which is an interesting property. A corollary is that Hop-

field networks can be learned with Hebb rules seen in 3.5.2. A learning rule for storing p patterns
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is:

wij =
1

N

p
∑

k=1

ξki ξ
k
j (4.32)

Clearly, Hebb learning rule is local in the functional sense as the synaptic weight wij takes into

account only the activations of units i and j at its sides. However, this rule needs knowing all

patterns in advance, and doesn’t work incrementally, thus it fits static pattern learning and not

temporal patterns presented as temporal sequences. For the latter case, another functionally local

rule exists, it takes into account a local field [Storkey 1999] around each unit; a network trained

by Storkey rule allows for incremental learning, moreover, they offer more capacity than the same

network trained by Hebb rule. Hopfield networks are used to learn static patterns, but they are also

used to learn temporal sequences of patterns. For example, [Gas 1993] extends Hopfield networks

to achieve unsupervised learning of temporal sequences. [Miyoshi 2004] presents an associative

memory network with delayed synapses, able to encode a temporal sequence. This ability was

extended in [Maurer 2005] to encode several temporal sequences. [Chang 2004] uses a two layer

Hopfield network to process 3D magnetic resonance imaging (MRI) spatiotemporal data.

Interestingly, Hopfield networks are decentralized models. From the one hand, when trained

with functionally local rules like Hebb or Storkey, synaptic weighs depend only on the activa-

tions of units at their sides, on the other hand, the activation of a network unit during learn-

ing or functioning depends only on the units to which it is connected, in addition to their

synaptic weights as shows equation (4.28). However, it is the fact that each unit is con-

nected to all other network units that violates the condition of topographic locality required

in cellular models as defined in 3.6. The mitigation of the strict conditions put by Sip-

per, especially the condition of topographic locality, makes Hopfield networks cellular models.
Indeed, although their full connectivity, Hopfield networks are straightforward to implement,

they scale easily, they allow for the asynchronous update, and the major drawback of their full

connectivity is the larger computation time. As a result, depending on one’s perspective, Hopfield

networks might or might not be seen as cellular morels.

4.5.7 Long Short-term Memory Networks

These networks were developed to overcome the problem of vanishing gradient that happens usu-

ally when training networks by BPTT or real-time recurrent learning (RTRL) [Williams 1988]

which is an online gradient descent algorithm that, contrasted to standard backpropagation and

BPTT, applies the weight updates at each time step. The long short-term memory networks

(LSTM) [Polk 2002] are “engineered” networks with explicit memory cells that intend to extend

the time of information storage in the short-term memory. The memory cell is called a block, it

consists of several units, and it is intended to replace hidden units in state models (RNNs).

The idea of the block in LSTM networks is to “isolate” the state unit from the network events

that aren’t related to the state information, and allowing it to handle only salient information. The

block has input and output gates that learn to open and close at appropriate times, either to allow

block inputs to affect the stored state, or to let the state activation affect other units in the network.

The block may contain more than one state unit, but they should all be controlled by the same gates.
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A block dented cjwith one memory unit is illustrated in figure 4.10.

FIGURE 4.10: A block in LSTM networks: it contains a state unit with a recurrent con-
nection. The access to the state unit activity scj (t) is controlled by the outputs yinj ,youtj

of an input and output gate units respectively. After the network has learned, gate units
learn when to allow access and when to prohibit it. For more details, see the text. Ex-
tracted from [Polk 2002]

The state unit inside the block is a simple linear unit with a self-recurrent connection with

weight 1.0. This unit maintains a state activation scj (t). The access of input information to the

block is controlled by an input gate unit. Also, the reading from the state unit and the backprop-

agation of the error to the memory cell are controlled by an output gate unit. The input gate and

the output gate units compute their outputs yinj , youtj on the basis of their inputs, denoted here

netinj
, netoutj respectively. These outputs are weighted sums of the gate units inputs passed to an

activation function, typically a sigmoid.

The input to the memory unit is the weighted sum of the block inputs which is denoted netcj , it

is passed to an activation function g, typically a sigmoid. The input to the memory unit is controlled

by yinj such that:

scj (t) = scj (t− 1) + yinjg(netcj ), and scj (0) = 0 (4.33)

When the output yinj of the input gate is close to 0 then the block input netcj doesn’t reach the

state unit and it maintains its past state.

The output of the block is the output of the state unit, it is controlled by youtj , such that:

ycj (t) = youtjh(scj (t)) (4.34)

where h is an activation function, typically a sigmoid. When the output youtj of the output gate is

close to 0 then the state value doesn’t affect other units connected to cj , whether they are the output

layer units or other blocks or gates.

Inputs to the block, come from the input layer, gates, and from other blocks in the same layer

via recurrent connections. Inputs to the gates come from all non output units, i.e. from input layer

units, from their blocks or their neighbor blocks, or even from their own outputs. Another variation

of LSTM blocks contains an additional forget gate which resets the value in the state unit.

LSTM networks are trained by a combination of BPTT and RTRL. During learning, the gates
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learn to control the access to their blocks. Besides to their explained functioning, output gates also

control the backpropagation of error gradient, if an output gate allows the gradient to pass back from

an output layer unit to the state unit in the block, it is “trapped” in the state unit and flows freely

through the self-recurrent connection probably indefinitely, this is why LSTM networks doesn’t

have the problem of vanishing gradient. Similarly, the gradient information don’t affect the weights

of input layer connections unless the input gate allows the error to pass back to them.

LSTM networks can solve problems where important information are separated by thousands of

timesteps while state RNNs like Elman and Jordan may fail to learn in the presence of 10 timesteps

lag. An example is using LSTM RNNs in robotic control (knotting in heart surgery) that learn from

training sequences of more than one thousand elements [Mayer 2006]. These networks resemble to

Elman networks, when they are trained by gradient descent, therefore they are not cellular models.

LSTM networks can also be trained by unsupervised learning in order to maximize some objec-

tive function. An example is the work of [Klapper-Rybicka 2001] in which groups of temporal

sequences were discriminated by unsupervised learning of an LSTM network according to features

emphasized by the binary information gain optimization objective function [Schraudolph 1993],

and in another experience by the non-parametric entropy optimization [Viola 1996]. The outputs of

the used logistic activation functions in all units were interpreted as binary values beforehand. In

this work, the authors used one block network with two state units with the first objective function,

and a one-block network with one state unit for the second. Clearly, it is not possible to discuss

cellular properties in a one cell model.
A larger LSTM network trained by supervised gradient descent methods is obviously not cellular.

If the network is trained by unsupervised learning such as the presented ones, global computation

of objective functions require centralized processors, thus LSTMs are not cellular models.

4.5.8 Second order recurrent networks

These networks have the structure of MLPs, they implement the short-term memory using a single-

layer but with second-order units to compute the state based on the previous context and the current

input. Connections in such networks are called second order connections. They connect three

nodes instead of two, so that the activation of a node is modulated by the activation of the other,

and transmitted to the third. The latter then computes a weighted sum of all the products and passes

the result to an activation function that computes the state activations. An example is the network

presented by [Giles 1991]. In these networks the activation of the state unit is computed as follows:

aSi (t) = f(
∑

j,k

wijka
C
j (t− 1)xk(t− 1)) (4.35)

where f is a sigmoid activation function, aS , aC , x are the state, context, and input activations

respectively.
Understanding the operation of second order connections, reveals that these networks allow the

inputs to gate the previous state information. This makes them well suited for modeling fi-

nite state automata [Goudreau 1994]. These networks are also trained by a gradient descent

method [Omlin 1992], hence, they are not cellular models.
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4.5.9 Continuous time recurrent neural networks

These networks inspire from neurons in the brain where neurons work in continuous time. Unlike

all the previously presented discrete time networks, units in such networks are continuous leaky

integrator neurons as given by equation (3.3). These neurons partially decay and partially recycle

their activations, and serve by themselves as a short-term memory. The activity of leaky integrator

unit j in continuous time recurrent neural networks (CTRNNs) [Tani 2008] is given by:

τ
dyj(t)

dt
= −yj(t) +

∑

j

wijf(yj(t)− θj) +
∑

k

wikxi(t) (4.36)

Here, y(t) is the state of the unit, τ is its time constant, f is a sigmoid, θ is a bias term proper

to each unit.
Because of their complex dynamics, CTRNNs are used in evolutionary robotics where the dy-

namics can be exploited by the robot. Weights are determined by evolutionary algorithms as in

[Campo 2010], hence, obviously CTRNNs not cellular models.

4.5.10 Other networks

There exist many other recurrent neural models and learning algorithms that are not explained here,

we just mentioned the most important ones that cover the maximum underlying concepts of imple-

mentation. Other networks include recurrent cascade correlation networks (RCC) that learn to map

an input sequence to an output one and are used in learning finite state grammar [Fahlman 1990],

and recurrent neural trees that extend recurrent networks to acyclic graphs and used in the process-

ing of structured data [Frasconi 1998]. These two models use constructive algorithms that build

up the network architecture based on the gradient information during learning. Evolutionary algo-

rithms in their turn can be viewed as constructive algorithms because more complex networks can

evolve within the population of networks.

Besides to the mentioned algorithms so far, other learning algorithms include extended Kalman

filter (EKF) [Williams 1992a] which can also be used for online training and include changing

the units activations in addition to the weights, temporal difference (TD) [Sutton 1988] used for

interrelated predictions [Sutton 2005]. Both algorithms are gradient descent ones. Stochastic algo-

rithms are also used to train recurrent networks like expectation maximization (EM) algorithm that

decomposes the learning of complicated recurrent networks to the training of several feedforward

networks as in [Ma 1998].

Most of the presented neural network models so far are typically trained in a supervised way,

with the exception of Hopfield network. However, some a priori supervised models like ESN and

LSTM networks can also be trained in unsupervised way as mentioned before in 4.5.3 and 4.5.5.

Generally, there are two approaches for building unsupervised networks for temporal sequence

processing. The first is to start from supervised temporal networks and change the objective func-

tion. In supervised learning, this function is mostly the mean square error between the computed

and the target outputs. The new objective function of the network should be one which is suit-

able for unsupervised learning, i.e. it should be related to the processed data itself such as entropy

functions as seen for LSTM and ESNs, or some distance function between the probability distribu-
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tion of the network output and some target probability distribution using some information diver-

gence measure like Kullback-Leibler divergence as in [Sum 2007], or Jensen-Shannon divergence

as in [Mishtal 2012].

The second approach is to start from an unsupervised network and provide it with short-term

memory so that the network gains dynamic properties that allow to integrate time. The short-term

memory mechanism can be implemented by delay lines, or feedback loops, or even by leaky inte-

grator neurons as in exponential trace memory or other memory kernels. Normally, the activation

and learning rules of the network should be revised in order to take into account the temporal as-

pect of the input sequence [Barreto 2003]. Most temporal unsupervised networks respecting this

second approach are built up starting from self-organization maps (SOMs) which is an important

unsupervised model in the field of neural networks. SOMs and their temporal extensions are the

subject of the next chapter.

It has been shown that the presented neural models trained with supervised learning can’t be

cellular models. Unsupervised learning methods may or may not be cellular models depending

on the used methods for computation and update. On the one hand, when unsupervised learning

is carried out by global methods of computing on the population level as in reservoir computing,

it requires centralized processing. In this case the network can’t be a cellular model. On the

other hand, unsupervised local methods can be cellular, as weights are computed locally, under

the condition that the network doesn’t violate other cellular computing requirements such as the

topological locality that Hopfield networks violate. When weights are possible to update locally,

the asynchronous update regime of the network becomes possible. Indeed, having neural models

to be cellular is closely tied to the possibility of the asynchronous update regime, which is in turn

closely tied to local computation.

4.6 Neural networks and models of computations

The formal models of computation presented in 3.2 fit the symbolic computation type, while the

fine grain computation in neural networks is numeric by nature. However, neural networks with

their parallel paradigm of computation, can embed such abstract models. The relation between

computational models and RNNs was initiated since the very first RNN of Elman proposed in

1990. Indeed, there exist a correspondence between formal languages, their accepting automata

and neural networks [Crutchfield 1988]. This correspondence was studied in literature motivated by

the idea that using neural networks in specific applications doesn’t offer the convenient framework

to study their computational capabilities. Instead, the formal models of computation offer that

convenient framework that allows for better understanding of the power of neural networks, and

then selecting the suitable one for a specific task.

Dynamical networks, both recurrent and delay ones can be used to implement models of com-

putation. However, delay networks have poor dynamical properties that limit their potential in

simulating formal models. Example networks are feedforward networks provided with a delay line

at the input layer, or with delay line associated with each unit. Such networks can simulate DFA

(deterministic finite automaton) whose state depends on a limited history only, determined by the

length of delay lines. The formal models that this type of networks can simulate are called definite



4.6. Neural networks and models of computations 127

memory machines (DMMs).

Recurrent networks are more powerful in simulating formal models because they are dynamical

systems with internal state that theoretically allow for infinite memory, thus one can assume that

they are non-finite memory machines.

Recurrent networks deal with temporal sequences as inputs, but it is also the case of models

of computation that deal with sequences of actions as their inputs. In the models of computation,

the next state is determined by the past state and the current input to the model, and some of them

possibly issues an output like in transducer FSMs (finite state machine) like Mealy and Moore

machines presented in 3.2. In their turn, RNNs compute their next state on the basis of their past

state in addition to the currently available input in each input presentation cycle. The output of the

network is computed starting from the current state and possibly the current input. This analogy

motivates the relation between RNNs and the models of computation and makes it possible to view

RNNs as state machines. It also suggests that it is possible to use RNNs to implement the models

of computation if they can exhibit the sufficient complexity as the target model of computation.

Many works (like [Haykin 1998b, Kremer 1996, Tsoi 1997]) proposed to view RNNs as neural

state machines (NSMs), parallel to Mealy and Moore machines, NSMs are defined as follows:

A neural state machine is a 6-tuple NSM = (S,X, Y, s0, f, g), where S = [R0, R1]
nS is the

state space of the NSM with R0 and R1 are the values defining the range of the output of the

activation function. nS is the number of state units. X = R
nX is the set of possible input vectors

and nX is the number of input units. Y = [R0, R1]
nY is the set of outputs of the NSM with nY

is the number of output units. f : S × X 7→ S is the next state function that computes the state

s(t) from the past state s(t − 1) and the current input x(t). s0 is the initial state of the NSM, i.e

s(0). g is the output function, it differs between Mealy and Moore machines. In NSMs simulating

Mealy machines g : S × X 7→ Y , the output y(t) is computed from the previous state s(t − 1)

and the current input x(t). This fits equation (4.17) and figure 4.4(a). In NSMs simulating Moore

machines g : S 7→ Y and the output y(t) is computed on the basis of the current state s(t) only.

This fits equation (4.18) and figure 4.4(b).

This relation between RNNs and formal models is bidirectional: Neural networks can be used

to implement models of computation, and conversely, it is possible to determine the model of

computation that mimics the RNNs to a satisfactory degree, this is referred to as rule extraction

(RE) [Jacobsson 2005].

Theoretically, RNNs are powerful computational tools that are Turing equiva-

lent [Siegelmann 1995b], thus can compute any function a digital computer can do. Although,

even if RNNs have the capability to simulate some formal model, getting a RNN to perform a

specified computation is very difficult because it is hard to find the suitable instantiations of the

network to do the computation [Bengio 1992]. These instantiations include, the initial state, the

weights, and learning rates.

The capability of the RNN to simulate a formal model depends on several factors, it depends

first of all on the architecture that defines the dynamics, and on the nature of the activation func-

tion of the network units whether it is a hard limiter (a threshold) that computes binary values or

if it is a continuous function that allows for a richer dynamics. It also depends on the number of

units in the RNN, especially those dealing with finite precision real numbers in weights and activa-
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tions. The correspondence between RNNs and formal models requires finding a mapping between

a subset of the network states and transitions, and those of the formal models. Hence, the practical

implementation of models of computations using RNNs is not that straightforward.

An example on the effect of the architecture on the computational power of RNNs and their

ability to implement some formal model is the work of [Lin 1996]. In this work, Elman and NARX

networks are used to simulate a finite state acceptor automata with 5 states, and with various length

sequences of booleans as inputs. The two networks used have the same number of units and de-

lay elements and weights. Varying the input sequence length from 10 to 30 gives that NARX

largely outperforms Elman when it come to long-term dependencies in the inputs. Here, varying

the network architecture for the same number of units and connections changes the computational

capability of the network and the input history that the FSM can consider.

As has been mentioned, the network capability to simulate a formal model is also related to the

nature of the activation function of the network units. If the activation function of the state units

is a hard limiter like in McCulloch and Pitts neurons, then the resulting set of internal activations

(state vectors) is finite. Such networks are candidates to exhibit the regular abilities associated with

FSMs. It is sufficient to find a mapping between some states and transitions of the network, and

those of the formal model. The bottom line, one can build a RNN that accepts the same language

as a DFA M = (Q,Γ, q0, F, δ) with n states and m inputs (defined in 3.2). A straightforward

RNN architecture can be obtained by using nm hard limiter neurons of McCulloch and Pitts as

the network units, so that each unit corresponds to one pair (state q ∈ Q, input γ ∈ Γ) of the

DFA, and the weight of the connections between units i and j is set to wij = 1 if there is an input

symbol γk such that δ(qi, γk) = qj , otherwise, the weight wij = 0. Hence, at each timestep there

exists only one unit that has its activity set to 1, it is the unit that corresponds to the current DFA

state. The network has a single output unit in its output layer, each state neuron is connected to the

output neuron with a connection weight woi = 1 if the state qi is an accepting state of the DFA,

and 0 otherwise. With hard limiter activation functions, Elman networks can simulate any DFA

as proved in [Kremer 1995], also can do other fully recurrent networks. Same can be said about

NARX recurrent networks as proved in [Siegelmann 1996]. Turing machines are also constructed

by RNNs with hard limiter units [Siegelmann 1995b], in this work the RNN simulates a DFA and

the network is provided with two external binary stacks.

RNNs with smooth activation functions (like sigmoids), are preferred on hard limiter ones

because they allow the construction of gradient descent-based learning algorithms that need the ac-

tivation function to have a derivation. These networks can simulate the same models as hard limiter

activation functions if the networks weights are extremely large so the units activities saturate, so

that they can be interpreted as binary. In this case, the range of network units activations is divided

to several intervals: high, low and forbidden, networks are trained to have their units activations

outside the forbidden interval. Thus, the state vector of these networks can also be seen as a finite

set, so they can exhibit the same possibility of simulating FSMs.

Network with increasing and bounded continuous functions (true for sigmoids) and with small

weights, can also exhibit a regular behavior if their internal activation vectors start to cluster in a

finite set of clusters or regions in the state space S and if they are stable. Thus, in order to be able

to simulate an FSM, the RNN must split its states into distinct regions that fit the FSM states. Pre-
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senting a new input changes the network state from within one region to another. These transitions

enable RNNs to recognize regular languages that FSMs recognize. For an RNN (S,X, Y, s0, f, g)

to be able to simulate a state machine M = (Q,Γ,Σ, q0, δ, λ) (as defined in 3.2), it should fulfill

several conditions related to the state representation and the network dynamics. The representation

conditions, include that each state qi ∈ Q is assigned to one region Si ⊆ S in the RNN state space.

These regions must be disjoint: Si ∩ Sj = ∅ if qi 6= qj . The initial state q0 is assigned to the initial

RNN state s0. Concerning the interpretation of inputs, each possible input symbol γi ∈ Γ should

be assigned to a different input vector xi ∈ X of the RNN, or alternatively, a region Xi ⊆ X .

Similarly, each possible output symbol σk ∈ Σ is assigned to a non empty region Yk ⊂ Y , these

regions should be disjoint as well.

The dynamic of the RNN should fulfill these two conditions related to the correctness of the

next state and output functions:

f(Sj) ⊆ Si ∀qj ∈ Q, γk ∈ Γ : δ(qj , γk) = qi (4.37)

gk(Sj) ⊆ Ym ∀qj ∈ Q, γk ∈ Γ : λ(qj , γk) = ym (4.38)

with gk(A) = {g(s, xk) : s ∈ A}.

RNNs with continuous activation functions are used to learn FSMs from input samples rep-

resenting the grammar that recognizes the FSM, example works are [Gori 1998, Manolios 1994,

Tino 1995]. Examples of simulating Mealy machines using a second-order RNN can be found

in [Forcada 1994, Giles 1992] . Examples of simulating Mealy machines using Elman networks

can be found in [Carrasco 1996, Blair 1996]. There exist other RNNs that split their states into a

number of regions that fits the number of every possible pair of states and inputs (qi, γk), one ex-

ample is the RNN proposed in [Alquezar 1995]. In all these works the RNNs learned to recognize

grammar strings of the same length of those used in training. Presenting longer input strings from

the same grammar leads the network internal state to blur and merge, thus gives wrong outputs. This

phenomenon is referred to as instability, which limits the generalization of RNNs ([Horne 1998]).

Another problem that limits the infinite state representational power of RNNs is the problem of

long-term dependency as discussed before concerning the work of [Lin 1996].

The state of RNN with continuous activation functions doesn’t always cluster; the input se-

quence could lead the network to move between infinite internal states. Although this behavior

could be undesired for some applications, it holds the potential for more computational complexity

that can give rise to the behavior of pushdown automata or Turing machines. They could even be

Super Turing, when real values of activations and weights are possible, as explained in 3.5.2.

Any network that can simulate a DFA provided with an infinite stack can simulate a PDA

and the network should learn to manipulate the stack (pop, push, no-operation). Neural network

pushdown automata (NNPDA) were implemented in [Das 1992, Sun 1998]. However, the stack can

theoretically be implemented as a part of the network state so that the RNN can recognize context-

free languages, but in practice, this is not possible, because an infinite memory stack requires a

network with an infinite precision, so most RNNs simulating PDA try to implement a finite stack.

Like PDA, RNN networks simulating Turing machines are PDA networks augmented by a second

external stacks, an example of implementation using RNNs is in [Williams 1989].
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4.7 Conclusion

Between the existing cellular computing models, few of them are well suited for processing tem-

poral data. Depending on the nature of the temporal problem, the temporal data can have different

characteristics. They can either be seen as temporal sequences or time series, they are slightly

different in some properties and the required processing tasks.

The existing cellular models dealing with temporal data, have poor adaptive properties, and

their training is not yet well established. Neural networks, at the contrary, have witnessed powerful

and adaptive tools for temporal data processing.

The large number of neural networks offers different architectures that can deal with sequential

data. Static feedforward networks like multi-layer perceptrons implement nonlinear functions that

can be used to process temporal data in some special cases. Feedforward networks provided with

traditional tapped delay lines exhibit dynamical properties that fit the processing of temporal data.

They can be used to buffer portions of the sequence so that the temporal context of sequence ele-

ments is explicitly preserved in the network and intervenes in output computation. Memory kernels

implement more complicated behaviors than the shift operations in simple delay lines; a unit in the

delay line keeps trace of the past values shifted through it, so that it can maintain an information

about the past inputs, which is forgotten gradually as time passes.

Recurrent neural networks, the major family of dynamical networks for temporal data process-

ing, maintain the context of inputs differently. They are networks that contain feedback recurrent

connections, this endows them with dynamical properties and transforms them into dynamical sys-

tems. Such dynamical networks integrate and represent time in their internal states. The context

of input sequences is maintained with fewer number of connections and less computation time

compared to delay networks. Learning endows dynamical networks with their ability to exhibit

the desired behavior that fits the task requirement. The dynamical properties of recurrent networks

models resemble those of formal models of computation, and many works established the bidirec-

tional mapping between both models.

In the previous chapter, it was briefly mentioned that neural networks are fine-grain models that

are not cellular. In this chapter, we surveyed the most important dynamical networks in order to

figure out if any of them is cellular. It was found that only Hopfield networks might be considered

cellular, only if the topographic connection locality condition as proposed by Sipper is mitigated.

Reservoir computing networks can have their memory part, i.e. the reservoir, cellular when trained

by local unsupervised learning methods, but the network as a whole can’t be a cellular model.

One remaining important model of neural networks used in temporal sequence processing, the

self-organizing maps, is still to be discussed. Their use in temporal tasks and their compliance with

the conditions of the cellular computing paradigm is the subject of the next chapter.
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The previous chapter reviewed the most important artificial neural networks models used in

processing temporal data. As has been shown, almost all of those models turn out to be not conform

with the requirements of the cellular computing paradigm.
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One last important model that has been used for the purpose of temporal data processing is the

Self-organizing maps (SOMs), also called topographic maps. They are two-dimensional grids of

computing units, that perform as static models used for processing sets of static patterns. SOMs

are nonlinear projection methods that map a higher, finite-dimensional continuous vector space

(the data space) onto two-dimensional discrete space of the map in a topology-preserving fashion.

The original static SOM was developed by Kohonen [Kohonen 1982] for processing data where

the sequential order is not significant, i.e context-independent. Thus its application in temporal

problems was limited.

SOM was intensively used in many static tasks, and some modified and enhanced versions of the

basic model were proposed for processing static data. Although, the representational capabilities

and the internal representation of SOMs are not well understood [Tino 2006].

Recently, SOM was extended from processing vectorial data to more general data structures

like temporal sequences and trees. SOM-based models are being used more and more as standalone

sequence processors. However, some modifications are introduced to the original SOM in order to

be able to process such recursive data types. In this chapter, we are interested in SOM-based models

for sequential data, while SOMs for tree structures are not discussed.

Many different SOM-based models for sequence processing were proposed with different un-

derlying mechanisms, however, there is yet no general consensus on the better SOM-based mech-

anism for addressing temporal problems, and the subject is an active concern of the research com-

munity in neuroscience.

SOM, and SOM-based models are fine-grain ones that compute in parallel at least in some

phase of their computation. Besides to the temporal properties of these fine-grain models, we are

interested in the cellular nature of the computation.

In this chapter we first remind with the original SOM model as proposed by Kohonen. We

then review the most important SOM-based models for temporal sequence processing, with their

different underlying mechanisms and focus on those using feedback connections. We then show

how SOM-based models are not conform with the cellular computing paradigm. Then we briefly

introduce the concept of neural fields, and show how we use them to guide learning in SOMs, and

how this combination of methods allows SOMs to be not only fine-grain parallel models, but also

implementing cellular computation.

5.1 The self-organizing map by Kohonen

The original self-organizing map by Kohonen [Kohonen 1982] is a neural network that consists of

a set {1 · · ·N} of N units arranged in a grid A which in turn, lies in two-dimensional space R
2.

We refer to A as the map space. Each unit is defined by its index i ∈ {1 · · ·N} and topographic

coordinates ri in R
2. SOM is also a projection method that associates a weight vector ω ∈ R

d,

also called codebook vector or prototype, to each unit in a map space A . The prototype vector

is of the same dimensionality as the input vectors {x} sampled from the data space X ⊆ R
d.

Usually, the number of unitsN in the map is determined after some experiments to find the suitable

mapping, but a rule of thumb, is to start with N =
√
M , where M is the number of available input

vectors [Peres 2006] .
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all the map units. The map implements a function ibmu(x(t)) : X 7→ A that assigns to the actual

input vector x(t) at time t a unit index ibmu(t) ∈ A through a competitive process:

ibmu(t) = argmini∈AEi(t) (5.1)

where Ei(t) is given by:

Ei(t) = dX (x(t), ωi(t)) = ‖x(t)− ωi(t)‖ (5.2)

with dX (x(t), ωi(t)) is a distance defined in the data space X .

The distance Ei(t) is a value that measures how much ωi(t) matches x(t). It can also be

regarded as an error between them, where the prototype ωi(t) is regarded as the expected value by

the unit i, and x(t) is the actual input it receives. The algorithm tries through learning to minimize

this error. Computing Ei(t) for each unit in the map is referred to as the matching process, and

Ei(t) itself is referred to as the matching value as well.

After computing the BMU, the prototypes of the BMU and its neighbor units are adapted via a

cooperative learning rule:

ωi(t+ 1) = ωi(t) + α(t)h(dA(i, ibmu(t)))(x(t)− ωi(t)) (5.3)

with 0 ≤ α(t) ≤ 1 is the learning rate, and dA : A × A 7→ R is a decreasing distance function

defined in the map space A, usually taken as the Euclidean distance:

dA(i, j) = ‖ri − rj‖ (5.4)

with ri and rj are, as defined before, the coordinates of the units i and j in the map space A,

and h is a radial weighting function, called the neighborhood function that delimits the adapted

neighborhood of the BMU at time t :

h(θ) = exp

(

− θ2

2σ2(t)

)

(5.5)

with σ(t) the radius of the neighborhood function at time t. This function is typically a Gaussian.

As can be noticed, there is no computation of the units activations in the basic SOMs, as they

play no role in its functioning. However, this neighborhood function used for learning purpose can

be regarded as the output that the map computes at each timestep, it is associated with the actual

output: the BMU.

The elements of the set {x} of inputs are presented iteratively to the map, one at each timestep,

and learning continues to adjust the prototypes of the map units until the steady state of the proto-

types is arrived, the map is then said to be converged. The change of the prototypes during learning

in order to reach a global steady state is referred to as self-organization.

A common practice during learning is to decay the learning rate α(t) and the radius σ(t) with

the time in order to guarantee the convergence of prototype vectors to a stable steady state. This

can be thought of as conducting learning in two phases, a coarse- and a fine-tuning ones.
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The SOM works in two phases, the learning phase as explained above, and the exploitation

phase in which it is used to compute outputs for its inputs without prototype update.

What the SOM performs, is sometimes expressed as approximating the input space, because it

can map a large set of input vectors {x} to a smaller set Ω of prototypes. Self-organization in the

SOM results in a topology preserving distribution of prototypes, so that adjacent units prototypes

in the map space A correspond to adjacent regions in the data space X . The topology preservation

property of the SOM combined with the quantization of input vectors results in clusters in the map

space that correspond to their distribution in the data space.

In addition to the input space approximation and the topology preservation properties, the SOM

has another interesting property which is density matching which means that the SOM reflects the

statistical distribution of inputs. Normally, higher density regions in the data space X are sampled

with higher probability, and the SOM maps these regions into larger regions on its space A. Hence,

higher density regions in X are assigned higher resolution regions in A than lower density ones.

Some modification of the original SOM have been proposed in literature, for example

[Yin 2002] proposes a visualization-induced SOM called ViSOM, it is a data projection method

that reflects better on its lattice the distance between data points in the input space, and offers a

parametrized method to changing the resolution of the resulting clusters. Another variant of SOM

is proposed in [Lee 2002] with a new learning rule that updates neighbor units to the BMU based

on the topographic relation between each unit and the BMU without necessarily taking into account

the BMU prototype, thus allowing for possible non-radial adaptation of the neighborhood.

SOMs were applied in various applications, like vector quantization [Heskes 2001], dimen-

sionality reduction [Campoy 2009], data visualization [dong Jin 2002, Heskes 2001], clustering

[Vesanto 2000, Xiao 2003], and classification [Bogdan 1996].

5.2 SOM-based temporal sequence processing

Although Neural networks were used for Temporal sequence processing tasks, SOMs were not used

for such tasks until the past fifteen years. The main reason is that sequence processing tasks were

thought of as supervised learning ones, in which the input is the current and the past values and

the output is the one-step ahead prediction. On the other side, SOMs were always thought of as

unsupervised methods for vector quantization [Barreto 2007]. For this reason, supervised models

like the MLPs and RBFs and their temporal variations discussed in the previous chapter, were

used for the supervised learning of temporal sequences, while SOM was thought of as not suitable

for sequence processing tasks. However, several SOM-based models were proposed to carry out

sequential data processing. The investigation of SOMs in sequence processing was first motivated

by scientific curiosity, but there are other reasons as discussed in [Barreto 2007].

The first reason is related to the nature of computation in SOMs. At each timestep, the SOM

works on localized regions of the input space to compute its output (the BMU). This allows for bet-

ter understanding of the dynamics of the underlying process that generates the temporal sequence,

especially when combined with visualizing techniques. This is in contrast with MLP-based models,

the latter work on highly distributed data in the input space, thus make the interpretability and the

visualization of the results more difficult.
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Another reason for using SOMs in sequence processing is related to their clustering capability.

Unlike feedforward networks, which require specifying the number of units in the model in advance

to fit the data space, the number of units in SOMs is less important to specify. SOMs, that can adapt

their prototypes, can fit to the best the data distribution to their actual prototypes, no matter was

their number. With the same number of neurons, one can adapt the parameters of the competitive

learning in order to fit another data distribution. A third reason is that injecting prior knowledge to

the model is as easy as loading a prototype vector.

In order to cope with temporal sequence processing tasks, SOMs are used in different ways

[Guimaraes 2003]. The first way is by using the basic SOM, but with the pre-processing or post-

processing of the temporal data. The second, is by modifying the basic SOM algorithm, basically

the learning rule, so that it reflects the temporal dependency between the sequence elements. And

the third way is modifying the basic SOM architecture to obtain a new model.

If we leave apart the use of the basic SOM in sequence processing, different SOM-based models

add different modifications to the basic static SOM in order to add the capability of representing

the temporal context of inputs. Some of these models represent time explicitly using a spatial

representation of time through, for example, a time window, and deal with windowed temporal

inputs as a spatial input vectors. Windowing can be implemented using tapped delay lines, in

this case the necessary short-term memory is implemented by a data structure. Other SOM-based

models represent time implicitly through adding some form of feedback implementing a short-

term memory mechanism that accounts for the temporal context of the inputs. Here, the memory

mechanism is rather seen as a procedure.

In addition to these discussed models, there are other models that use hierarchical architectures

that contain multiple SOMs. Each of the mentioned options can be implemented using different

methods, resulting in various models, most of them are reviewed in the coming paragraphs.

However, until now, the representational capabilities and the internal representation of struc-

tures within these models are unclear [Hammer 2004b]. They are hardly understood in spite of the

different mathematical efforts and theoretical analysis in this direction, such as [Hammer 2004b,

Tino 2006]. This is in line with the statement presented by researchers like Hammer and Barreto

[Hammer 2004b, Barreto 2003] that there is yet no clear winner unsupervised SOM-based model

that represents the temporal context in sequence processing in the best way.

SOM-based models were used in various applications including time series classification and

forecasting [Ultsch 1996, Koskela 1997, Vesanto 1997], control [Ritter 1989, Simula 1996a], mon-

itoring [Simula 1996a, Kangas 1990b] and data mining [Deboeck 2010, Guimaraes 2001].

5.3 Temporal sequence processing with the basic SOM

Temporal sequence processing can be carried out using the SOM algorithm as proposed by Koho-

nen. In order to use the static SOM in such temporal tasks, the data is either pre-processed before

presenting it to the SOM or the SOM output is post-processed.
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could be assigned to spatially distant BMUs. Second, that grouping the elements of a subsequence

in the delay line and presenting its context as input vector to the SOM makes it insensitive to the

order of elements in the result vector, thus to their statistical dependency. This is because the SOM

algorithm computes the BMU on the basis of the Euclidean distance between the input vector and

the stored prototype in each unit, and in this, elements order is irrelevant; it is possible to carry

out a permutation on the elements of the time window and the result does not change. There exist

other distance measures, some of which like the Manhattan distance [Demartines 1992] suffer from

the same problem. Other possible distance measures that are sensitive to elements order are the

dot product distance [Demartines 1992], and data-related distances [Horio 2008, Hajjar 2013], the

latter work uses Mahalanobis distance and varies it within each data cluster on the map.

Another approach to time-embedding in the map input, is by performing time-related transfor-

mations as a pre-processing of the data sequence. Depending on the task, if the to-be-processed

temporal sequences contain features that can be processed in domains other than the temporal one,

then the pre-processing of the temporal sequence consists in extracting these features and using

them as static inputs to the basic SOM algorithm. This approach is illustrated in figure 5.2(b) Sev-

eral transformation can be used, such as using frequency domain features after applying Fourier

transformation as in [Kohonen 1988], wavelet-transform as in [Moshou 2004], time-frequency

transformation as in [Atlas 1996]. Another technique for embedding time using complex num-

bers [Mozayyani 1995] was mentioned in 4.3.

Data pre-processing through time-related transformations has the advantage of maintaining the

basic SOM algorithm, and it can be used with other static model, not only SOMs. However, this

approach is only useful in tasks where the temporal sequences have sufficient informative features

in domains other than time.

5.3.2 Post-processing: Trajectories as extrapolation into the temporal domain

In this approach, the sequence elements are processed one after another by the basic SOM as static

vectors, then the successive outputs, or part of them, which is the BMUs corresponding to the

processed sequence elements is visualized on the map as a trajectory (illustrated in figure 5.3).

The trajectory then can be seen as extrapolating the static outputs again into the temporal domain.

The visualization of the processing results as a trajectory of BMUs is possible thanks to the two-

dimensional lattice of SOM that is used as a representation space. This visualization is not possible

in feedforward networks. Representing the result as a trajectory can be perceived as a form of

post-processing of processed sequence elements inputs.

In this method, it is not necessary to present the sequence elements in their natural order, in-

stead, it allows for collecting the elements of the temporal sequence and presenting them to the

SOM in any order, and the temporal information can be recovered and interpreted in the tempo-

ral domain to reflect the structure of the underlying process. The interpretation of results can be

facilitated by the shape or direction of the trajectory. The required information can sometimes be

obtained if the trajectory is heading toward a specific region, an example work is [Simula 1995] in

which the authors classify speech signals using the behavior of the resulting trajectories.

More information can be obtained by combining the trajectory with other information, for ex-

ample by drawing the trajectory on the map lattice while showing the prototypes values as gray
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5.4.1 Embedding of the context in the map input: the Hypermap

This method implements a different approach for temporal sequence processing than the basic

SOM. It associates the sequence elements with their context in a supervised way, through embed-

ding the element and its context in the input vector presented to the map. The used algorithm has

different variations, especially in time series prediction applications.

In the method, called the Hypermap [Kohonen 1991], the input to each unit in the map consists

of two distinct vectors, the pattern vector xpat(t), and the context vector xcont(t). The input xpat(t)

can contain one sequence element, or the concatenation of the elements of a subsequence of length

τ1 centered around t, and the input xcont(t) contains the concatenation of a larger subsequence

of length τ2 > τ1 also centered around t. This is illustrated in figure 5.4. To each map unit i is
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FIGURE 5.4: Inputs to Hyper map: The input to the map is a pair of two vectors, the
pattern vector xpat(t) of length τ1 centered around t, and a context vector with a larger
length τ2 also centered around t.

associated two prototype vectors ωpat
i (t) and ωcont

i (t) that are compared to xpat(t) and xcont(t)

respectively.

The computation of the BMU in this method occurs in two steps, the first is done by comparing

the context vector ωcont
i (t) to the corresponding prototype vector ωcont

i (t) in order to select a “best

match region”, called the context domain, denoted R ⊂ A, obtained by all units that fulfill:

dRτ2 (xcont(t), ωcont
i (t)) =

∥

∥xcont(t)− ωcont
i (t)

∥

∥ ≤ δ (5.6)

with δ is a threshold determined experimentally. The BMU is then selected, in the second step,

within the region R, on the basis of the xpat(t) vector:

ibmu = argmini∈RdRτ1 (xpat(t), ω
pat
i (t)) = argmini∈R

∥

∥

∥
xpat(t)− ωpat

i (t)
∥

∥

∥
(5.7)

This is illustrated in figure 5.5.

Prototype adaptation is carried out in two periods, in the first period, the context prototypes

ωcont
i (t) are adapted by unsupervised learning using xconti (t) vectors, following the same rule as

the basic SOM. When learning converges to a stable representation, context weights are frozen at

the end of this period. In the second period, only the ωpat
i (t) vector is adapted in unsupervised

way. Another step may be added at this period to adapt ωpat
i (t) in a supervised way using the LVQ

algorithm [Kohonen 2001]. Kohonen applied the Hypermap model on phoneme recognition, in

order to recognize patterns that occur in the context of other patterns.

The Hypermap is also used in time series prediction with slight modifications. When used in
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quantized temporal associative memory (VQTAM), where the BMU is determined by the context

part xcont(t) only, hence the notion of “context domain” is not defined in VQTAM, and the BMU

is searched within all the map, not in a restricted region. Both the context and the pattern parts

of the prototype Wi(t) are updated concurrently, using the basic SOM learning rule. A major

difference between VQTAM and the Hypermap approach is that there is no separated learning

periods, learning of both prototype parts in VQTAM occurs at each time step until the map reaches

a stable representation, not in periods like Hypermap.

During the exploitation phase, the one-step-ahead prediction is obtained by ωpat
i (t) after finding

the BMU in a similar way as in the learning phase, i.e. depending only on the context part xcont(t)

of the input. In VQTAM, the prediction can also be computed after smoothing the prototype of the

BMU, by computing the average of the ωpat
i (t) parts of the k neighbor prototypes, with k > 1.

A variation of VQTAM was proposed in [Lendasse 2005] and improved time-series forecasting

performance over a benchmarking task. It implements an auto-regressive model AR(p) in which

the elements of the context vector xcont(t) (past p sequence elements) as well as the pattern vector

xpat(t) are weighted by a set of parameters, and the algorithm searches to find the best parameters

through a cross-validation procedure.

Other SOM-based models that use the same idea as the Hypermap and VQTAM were developed

in [Lehtokangas 1996] to associate a local model, which is anAR(p) model, to each unit in the map.

A set of p parameters are associated to the context part ωcont
i (t) of units prototypes; one parameter

for each element corresponding to the p elements of the sequence held by xcont(t). Training is

carried out using a set of q input vectors that are p+ 1 length (additional one for the future value),

obtained by a moving window over the time series. As in Hypermap and VQTAM, BMUs are

determined using xcont(t) but learning is carried out using the whole input vector x(t). After

learning is completed, each parameter of each local model (associated to each unit) is determined

by matrix calculations. Obviously this is a lot of computation. During learning, some q local

models specialize to q time-windows of the processed time series. In the exploitation phase, the

one-step-ahead prediction of the time series is given by future part ωpat
i (t) that the local model

has associated to the BMU, which, during the learning phase, has adapted the best to the actually

processed portion of the time series. SOM in this example computes local models, here they are

autoregressive models. It is worth noting that the computed models are local not because they

are associated to localized units in the map, but because the map units model the behavior of the

time series in a localized portion of this time series. SOM-based models are efficient methods in

such local modeling, because, with their population of computing units, they can cover several

portions of the processed sequence. Several other variant methods that use the same philosophy of

the Hypermap are used for local modeling, such as [Walter 1990] for the online learning of local

models, and the KSOM model [Barreto 2004] for computing time varying local AR models from

prototypes. The model proposed in [Principe 1998] is used for computing “nonlinear” local models

applied in system identification and control.

As one expects, the Hypermap algorithm and its variations perform temporal embedding as do

time-delay SOMs, thus suffer from the same problems; one should determine the degree of the

sequence in advance, and when it is high, the method becomes computationally expensive.
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more SOMs. This section presents several SOM networks with feedback, while hierarchical SOMs

are presented in the coming section.

It has been shown in the previous chapter (see 4.5) that feedback connections in RNNs create

an internal dynamics in the network that allow to implement a short term memory, used in memo-

rizing the context of the to-be-learned sequence elements. This is why models that use SOM with

feedback are sometimes called context models [Hammer 2004b]. The advantage of SOMs with

feedback over other SOMs implementing time embedding techniques, like the one seen in time-

delay SOMs, is similar to the advantages of RNNs over time-delay networks: there is no need to

specify the length of the delay line in advance; the network can adapt -in the limit of its memory

depth- to the length of the context of the processed element.

Unlike RNNs which consist in multiple layer networks, there are few values in SOM that can

be fed back. The basic SOM computes no activation to its units, however, in most SOM models

with feedback, activation plays a central role in the model.

SOM-based context models differ in how they account for the temporal context.However, what-

ever the case, all these models should deal with the sequences differently from the basic SOM; they

should take into account the order in which the elements are presented. The elements of a sequence

are presented one after another to the model, each iteration of the prototype adaptation (learning)

should be influenced by the previously presented elements which form the context of the current

input element. The integration of the temporal context is done during the BMU selection, so that

the BMU at a certain timestep corresponds not only to the current input, but to the current input as-

sociated with its temporal context. The temporal context intervenes in the selection of the BMU, by

involving the context information in computing the matching prior to BMU selection. This ensures

that the BMU is influenced by the temporal context of the current input element.

Basically, SOM-based context models differ by the way the context is represented, and their

approach of influencing the BMU selection by the context information. That will be detailed in the

coming subsections where different models with different approaches for context representations

are presented.

5.5.1 Local feedback: Temporal Kohonen map

This model was the first one to introduce feedback to the SOM. Temporal Kohonen maps (TKM)

[Chappell 1993] differ from the basic SOM in that they use the output or activation of the map

units for the model functioning. Whereas the tapped delay line provides the SOM with an external

short-term memory mechanism, another memory mechanisms can be implemented on the level of

each map unit. In TKM, each unit memorizes its past activation, and reuses it in computing its

next activation. This is done using a leaky integrator (implemented by a difference equation) to

recursively compute the output. For a unit i ∈ A, the unit computes an activation, which is also the

computed matching as follows:

yi(t) = Ei(t) = βyi(t− 1)− 1

2
‖x(t)− ωi(t)‖2 (5.8)

with β is a decay factor, where 0 ≤ β ≤ 1. When talking about the context models, the matching

Ei(t), which is basically a distance as mentioned in 5.1 is sometimes called the recursive distance,
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computation, without reference to the previous map activity. Also, the approach of both models

for accounting to the context is to refer to the unit itself; no other map units are involved in the

computation of the activation.

RSOM was used to compute local linear models for time series prediction in [Koskela 1997]. It

was also used in [Varsta 1997b] in the classification of EEG-based epileptic signals, for each new

input, the prototypes are reset to zero.

Although RSOM overcomes some of the TKM problems, it shares with it the shortcomings of

classifying the sequence by the last reached BMU, thus loosing the spatial representation of the

temporal sequence on the map.

5.5.3 Total activity as feedback: Recursive SOM

Both TKM and RSOM use a form of local feedback in the computation of the unit output, the leaky

integrator approach for presenting the temporal context suffers from the limitation that only past

activities related to that very unit can hold the context information, and no information about other

units are considered.

However, other SOM-based context models that use a more explicit representation of the con-

text were developed. These models use a global information related to the past map state of activa-

tion. They use as feedback (to all units) some output information of all or some of the map units

in the previous timestep. This way, each unit in the map becomes “aware” of the previous map

state, and can account for a richer temporal context. One important model is the one proposed by

Voegtlin [Voegtlin 2002], called recursive SOM or RecSOM. It is a reference model to which most

recent temporal SOMs are compared to. The model proposed later in this manuscript is compared

to it as well.

RecSOM approach to account for the temporal context is to feed back the activation of all the

map units in the previous timestep to each unit in the next timestep. The past activations of all the

map units {yi(t− 1)}i∈A are arranged in a vector xcont(t) = y(t − 1) ∈ R
N that is concatenated

with the current input xpat(t) = x(t) and the result vectorX(t) =
[

xpat(t)|xcont(t)
]

is presented as

input to each map unit at time t. This implies that to each unit i is associated a two-part prototype

vector that corresponds to both input parts: Wi(t) =
[

ωpat
i (t)|ωcont

i (t)
]

. The prototype Wi(t)

vector is then compared to X(t) to compute the matching for the unit i.

RecSOM goes beyond using the simple local recurrence of leaky integrators as in the earlier

models presented previously, and was proved by [Hammer 2004b] to exhibit much richer dynamical

behaviors. Within this model structure, the map becomes a non-autonomous dynamical system, its

rich-enough dynamics allows to implement a form of short-term memory. In RecSOM, the basic

SOM algorithm is applied for both the current input and the context information represented by

the previous map activation, and the network learns to associate the current input with the previous

map activity; activity which is related to the matching of all units prototypes with the previous map

input in the previous timestep. It is by this association that the map units respond to a specific part

of the temporal sequence. So each unit i learns to represent a coupled input vector that corresponds

to some input sequence element associated with its context expressed as the past map activity,

that depends on the already seen elements. It is important here to emphasize that the interior

representation of the context in the map, has a different structure from the “pure” context that
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where γ is a learning rate, h(dA(i, ibmu(t))) the neighborhood function as in the basic SOM.

At this point, it is convenient to differentiate between recursive SOMs and recurrent SOMs.

In recurrent SOMs some output value is simply fed back to the network again, while in recursive

SOMs, the feedback signal is treated exactly as the input signal. This is the case in RecSOM, as

both the activation feedback and the current input are handled similarly in the feedforward phase

of the model functioning.

This RecSOM model belongs to a general class of SOM-based models, called activation based

recursive SOMs (ARSOMs) that use activation state of the network as a time delayed internal input

that serves as the context, while the external input serves as the “content”, and both are concatenated

in one input vector presented to each unit in the map.

RecSOM was used in many applications, Voegtlin himself used his model to process a corpus

of written English, after each word, he resets the context vector, and as in the basic SOM, the

radius σ(t) of the neighborhood function is decreased with time. He defined the receptive field of

a unit in the map as the common suffix of all subsequences for which that unit becomes the BMU.

The organization of receptive fields on the map is shaped on the only basis of the suffix structure

of the processed subsequences, and it doesn’t depend on the position of the subsequence in the

input sequence, i.e. doesn’t depend on its temporal context, this organization is said then to have a

Markovian flavor [Tino 2006]. In general, all feedback SOM-based models have their organization

with this Markovian flavor [Tino 2007].

The Markovian organization of the activation state space of RecSOM happens only of its repre-

sentation is stable. Stability in RecSOM, as investigated in [Voegtlin 2002, Tino 2006] means that,

under a fixed input, the mapping y(t) 7→ y(t + 1) of the map activation is a contraction, i.e. the

autonomous RecSOM dynamics is dominated by a unique attractive fixed point. The authors in

[Tino 2006] claim that this condition, if satisfied (related to the values of the β coefficient), leads

to a Markovian representation of the temporal context.

Another recursive model, similar to RecSOM in that it uses the activity of all the units outputs

in the previous time step as a feedback is proposed in [Hynna 2006]. In this model, called “also”

the activation-based recurrent self-organizing map (ARSOM), the only difference from RecSOM is

in how it computes the units outputs. It is computed as follows:

yi(t) = F (dX (x(t), ω
pat
i (t)), α).F (dRN (y(t− 1), ωcont

i (t)), β) (5.17)

where F is a transfer function used for both matchings. The authors tried several transfer func-

tions while changing the radius of the neighborhood function, and found their characteristics that

allow the network to outperform RecSOM in some specific temporal tasks. Interestingly, the au-

thors reported that the choice of the optimal settings is also data-dependent, i.e. it depends on

the complexity of the input sequence. The latter remark is in line with what claim Hammer an

Barreto [Hammer 2004b, Barreto 2003], that there is yet no clear winner SOM-based model that

represents the temporal context in sequence processing in the best way.
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5.5.4 BMU coordinates as compact feedback: SOMSD

The RecSOM approach to account for the context is to use the whole map activity as a feedback,

requiring a lot of computation due to its complexity and storage requirements. Although, the feed-

back information in RecSOM is centered around the BMU, while the activity of other regions in

the map is suppressed [Hammer 2004b], this is justified by the exponential transformation given in

equation (5.12), that emphasizes regions with high activity and suppresses those with small activity.

Other context models with feedback connections that are less computationally demanding than

RecSOM in the unsupervised processing of temporal sequences were also developed. These models

use much more compact feedback information. One model is proposed in [Hagenbuchner 2003],

called SOM for structured data (SOMSD), it was basically developed for learning general tree

structures, however, it can be used on temporal sequences as a special case of trees.

Instead of all the units activity as in RecSOM, in this approach, the feedback information to

SOMSD units is the coordinates ribmu(t−1) of the BMU in the input map space A at the previous

timestep. At time t, ribmu
(t − 1) is compared to the context part ωcont

i (t) of the prototype Wi(t).

Here also, the dimension of ωcont
i (t) is the same as the dimension of ribmu

(t− 1) ∈ A (embedded

in R
2). The recursive distance is given by:

Ei(t) = α
∥

∥

∥x(t)− ωpat
i (t)

∥

∥

∥

2
+ β(dA(ω

cont
i (t), ibmu(t− 1))) (5.18)

Then the activation yi(t) is given in a similar way than RecSOM, as in equation (5.12). Here, by

computing dA(ωcont
i (t), ibmu(t− 1)), the context part ωcont

i (t) is manipulated as if it belongs to A.

The BMU is selected as:

ibmu(t) = argmini∈AEi(t) (5.19)

Training adapts the two parts of the prototype vector of the winning neuron and its neighborhood

as in the basic SOM:

ωpat
i (t+ 1) = ωpat

i (t) + γh(dA(i, ibmu(t)))(x(t)− ωpat
i (t)) (5.20)

ωcont
i (t+ 1) = ωcont

i (t) + γh(dA(i, ibmu(t)))(ribmu(t−1) − ωcont
i (t)) (5.21)

The use of a compact feedback makes SOMSD considerably much faster than RecSOM. The

cost of the gained computation speed, is that the context information is not as rich like in RecSOM,

however, the noise is also reduced in SOMSD compared to RecSOM.

There are other models that implement the same feedback. For example, in [Mcqueen 2002]

the author presents a recurrent SOM for language processing. The context part of the input vector is

the binary-coded geometrical coordinates of the last BMU in the two-dimensional map space, con-

sidered as the feedback to the network. For each input sequence (sentence) he draws the trajectory

of the BMUs, and resets the context vector for each new sequence. The recognition of a sentence

is based on the “visual signature” obtained by different BMU trajectories.

However, this approach for context representation depends on the topology of the map, be-

cause it uses the semantic meaning of the BMU coordinates. For this reason, it is claimed in

[Strickert 2005] that it cannot be combined with other models without lattice semantics, like with
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the neural gas model [Martinetz 1993], the latter being a topology preserving network which can

be applied on unspecified lattice topologies. Besides, the fact that the context integration depends

on the distance in the map space A, makes the topological distortion on the map lattice affect

the sequence representation, this limits the usability of the model in processing complex temporal

sequences.

5.5.5 BMU content as compact feedback: Merge SOM

Merge SOM (MSOM) [Strickert 2003, Strickert 2005] is a model that also uses a compact feedback

as SOMSD, but instead of using the semantic meaning of the coordinates of the BMU, in this

approach, the feedback signal is a merged content of the BMU prototype vector. The prototype

vector associated to each unit i at time t is also two-part, the context part ωcont
i (t) and the pattern

part ωpat
i (t), both have the same dimension. In order to have the whole prototype Wibmu

(t− 1) =
[

ωpat
ibmu

(t− 1)|ωcont
ibmu

(t− 1)
]

at time t− 1 fit in the context part ωcont
i (t) of units prototypes at time

t, ωpat
ibmu

(t − 1) and ωcont
ibmu

(t − 1) are merged using a linear combination, and the merged value is

stored in the context part ωcont
i (t) of all units prototypes in the next timestep. It is the computation

of the linear combination that requires both prototype parts to be of the same dimension.

The recursive distance in MSOM is computed as follows:

Ei(t) = (1− α)
∥

∥

∥x(t)− ωpat
i (t)

∥

∥

∥

2
+ α

∥

∥cibmu
(t− 1)− ωcont

i (t)
∥

∥

2
(5.22)

where cibmu
(t− 1) is a linear combination:

cibmu
(t− 1) = (1− β)ωpat

ibmu
(t− 1) + βωcont

ibmu
(t− 1) (5.23)

with 0 ≤ β ≤ 1.

The BMU is computed as the one with the highest matching value:

ibmu(t) = argmini∈AEi(t) (5.24)

Prototype adaptation is the same as in SOMSD equations (5.20) and (5.21) (substituting

cibmu
(t− 1) by ribmu(t−1) in (5.21)), but with possibly different learning rate γ for each equation.

In this model, the context does not depend on the lattice topology. It was mainly developed

in order to be, unlike RecSOM, computationally affordable, and to be possible to combine, unlike

SOMSD, with other lattice structures like neural gas model.

Although the capacity of unsupervised context models are hardly understood, some recent

works studied the computational capabilities of feedback models in the form of theoretical mod-

els of computation. TKM and RSOM can only simulate finite memory models [Kaminski 1990],

because of their restricted recurrence within each unit. SOMSD and MSOM are claimed to be

equivalent to finite state automata [Hammer 2004c, Strickert 2005] while RecSOM was claimed to

be at least able to simulate a pushdown automata [Hammer 2006].
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5.6 Hierarchical SOM models

These models consist essentially of a hierarchy containing basic SOMs or temporal SOMs like the

previously presented ones. A hierarchical model is arranged in layers, and in each layer resides

one or more SOMs. SOMs in different layers may be synchronized or the SOMs of each layer may

work in a different time scale than those of other layers.

Hierarchical models are normally used when the task requires decomposing the problem of

sequence processing into smaller subproblems, or when constructing a higher level semantics is

desired, then SOMs pertaining to each layer, do each a part of the work. For example, the model

can use several SOMs at the first layer to handle different sources of data, then in the upper layer, the

result of the processing can be fused by another map. Such models are used in speech recognition,

where subsequent layers process phonemes, syllables, and words [Behme 1993].

Hierarchical models differ between them by the number of SOMs used in each layer, their

types (basic or temporal), and in the number of layers. They also differ in how information is

forwarded from each layer to the other. Information from a lower layer is forwarded in the form

of an input vector to the map or maps in the upper layer. The prototypes of the map in the lower

layer can be presented as inputs to the maps in the next layer, or the inputs can be a transformation

of the prototypes of the maps in the lower layer. Such transformations can be based on the distance

between units prototypes, or concatenating subsequent vectors that form a trajectory into one vector

presented to the map in the next layer (like in [Srinivasa 1999] as mentioned before).

One example model that computes the distance in time between two subsequent prototypes

is a VQTAM-based model that performs double vector quantization (DVQ). It is proposed in

[Simon 2004] and is used for long-term time series prediction tasks. This model is achieved by

using two basic SOM networks, intended to give a static characterization of the evolution of a time

series. The first SOM clusters q subsequences obtained by a sliding time window on the time series

as explained before. The current subsequence is held in xcont(t) part of the current input. The

second SOM clusters the deformations ∆xcont(t) = xcont(t + 1) − xcont(t) associated to each of

the q subsequences. Visualizing the q pairs of (xcont(t),∆xcont(t)) gives useful information about

the evolution of the time series between the q time windows.

Another example of prototype transformation is the work of [Simula 1996b], in which two

SOMs are used to predict the behavior of an industrial process. The first SOM was used to track

the operating points of the process by a trajectory in the map space, the second map is trained on

the concatenation of trajectory prototypes to predict the next operating point that represents the

expected state of the process. Another example is the model proposed in [Kangas 1990a], that uses

a two layer model for phoneme recognition, where the first layer contains a SOM and the second

layer contains a time-delay temporal SOM that processes the trajectory of activations produced by

the first map.

In some cases, a hierarchical model can combine SOMs with other networks in order to improve

the performance of these networks. These models are referred to as hierarchical hybrid models.

Such a model was used in [Mayberry 1999] which combines SOM with Elman and NARX networks

in order to improve their performance concerning the long-term dependency in processing natural

language.
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Combining SOMs to carry out some task is a frequent practice in literature. Many different

hierarchies and processing methods exist, however, SOMs or temporal SOMs as presented before,

reside somewhere in all architectures.

5.7 Other self-organizing neural networks for sequence processing

Self-organization is an emergent property that characterizes the self-organizing map by Kohonen,

however, they are not the only neural models to exhibit this property. There are other topology-

preserving neural models that are used in temporal sequence processing.

SOMs and SOM-based models for temporal processing encode time in their units activation

rules, and implement no lateral connections. At the inverse, most of the non-SOM self-organizing

models use lateral connections among the output units. It is these connections that are responsible

for learning sequential order of inputs, so that the model can capture the temporal dependencies

between the input sequence elements. In these models, lateral connections between units are adapt-

able following a form of the Hebbian learning rule that depends on the activity of units on both

vertices of a connection.

One example model that also uses a two-dimensional map is the one proposed

by [Kopecz 1995]. In this work, the map A is provided with two groups of lateral connections,

the first one is called “symmetric lateral connections”, they are responsible for the spatial local-

ized activations of the map units. A symmetric connection between two units i and j has a weight

ωs
ij(t) = ωs

ji(t) computed as a function of the distance between the units:

ωs
ij(t) = α.h(dA(i, j)) (5.25)

where α is a constant, and h(.) is the same as in equation (5.5). The second group is called “asym-

metric lateral connections”, it is responsible for encoding the temporal order of the inputs. An

asymmetric connection between two units i and j has a weight ωa
ij(t). Unlike their symmetric

counterparts, these connections are adaptable by an asymmetric Hebbian learning rule, this rule

accounts not only for units activations, but on the timing of these activations, thus it is referred to

as a “temporal Hebbian rule”:

dωa
ij(t)

dt
= −

dωa
ji(t)

dt
= S(yi(t))

dS(yj(t))

dt
(5.26)

where yi(t), yj(t) are the activations of units i, j respectively. S(yi(t)) = 1 if yi(t) > 0 and

S(yi(t)) = 0 otherwise. The activation dynamics of a unit i is given for the sequence learning and

recall phases:

dyi(t)

dt
= −yi(t) +

N
∑

j=1

ωs
ij(t)S(yj(t)) + xi(t)− h (for learning) (5.27)

dyi(t)

dt
= −yi(t) +

N
∑

j=1

(ωs
ij(t) + εωa

ij(t))S(yj(t)) + xi(t)− h (for recall) (5.28)
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where h is a constant, xi(t) is the external input to the unit i, and ε is a parameter that controls

the speed of activity change during recall. Once trained, the asymmetric connections allow active

regions in the map to trigger other regions, thus reproducing the learned temporal sequence. This

method was tested in the learning and recall of artificial sequences, and gave good results, unless

the sequence is ambiguous where it fails.

Another self-organizing network used in temporal sequence processing is the reservoir-like

recurrent network proposed in [Lazar 2009]. In this model, called self-organizing recurrent network

(SORN), the network contains a population of NE excitatory units and a smaller population of NI

inhibitory units. Each of these unit has a threshold of activation. The connectivity between the two

populations is total, i.e. every excitatory unit xEi (t) is connected to every inhibitory unit xIj (t) by

a connection holding the weight ωIE
ij and vice versa. The connectivity between excitatory units is

sparse and random, while inhibitory units are not connected between them.

A temporal sequence consists of different symbols, in this model, each symbol is assigned to a

group of NU input units, which are the third type of units. These units are set to 1 when the current

input element is that sequence symbol, otherwise they are set to 0. Input units are connected to

excitatory units only.

The activity of excitatory and inhibitory units are updated as follows:

xEi (t+ 1) = θ





NE
∑

j=1

ωEE
ij xEj (t)−

NI
∑

k=1

ωEI
ik x

I
k(t) + xUi (t)− TE

i (t)



 (5.29)

xIi (t+ 1) = θ





NE
∑

j=1

ωIE
ij x

E
j (t)− Ti



 (5.30)

where θ is a threshold function that constrains the activity of units to a binary representation,

and TE
i and T I

i are the excitatory and inhibitory units thresholds respectively, their values are drawn

from a uniform distribution in
[

0, TE
max

]

and
[

0, T I
max

]

. As equations show, each unit is driven by

the past units activities and by the current input for excitatory units. A unit fires if the total weighted

input that it receives is greater than its specific threshold.

The network is trained by unsupervised learning, driven by three plasticity techniques. First,

the plasticity of the excitatory connections, called spike-timing-dependent plasticity (STDP):

ωEE
ij (t+ 1) = ωEE

ij (t) + α (xi(t)xj(t− 1)− xi(t− 1)xj(t)) (5.31)

This rule means that the synaptic weight ωij(t) of the connection between unit i and j is strength-

ened by a fixed amount α when the unit i is active in the time step following the activation of unit

j, and is weakened by the same amount if the activation of i precedes the activation of j. This

plasticity is intended to reinforce the firing of subsequent units for subsequent input elements.

The second plasticity normalizes connections in order to keep constant the sum of the weights

of one type of incoming connections to an excitatory unit:

ωEE
ij (t) = ωEE

ij (t)/
∑

j

ωEE
ij (t) (5.32)
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The third plasticity technique consists in modifying the excitatory units thresholds, it is called

the intrinsic plasticity (IP):

TE
i (t) = TE

i (t) + β(xi(t)−HIP ) (5.33)

whereHIP is a constant depending on the number of input unitsNU and excitatory unitsNE . This

rule means that the unit that has been active increases its firing threshold to leave place for other

units to fire. Similarly, other units lower their thresholds to increase their chance in firing in the next

timestep. This IP rule also reinforces the firing of subsequent units for subsequent input elements.

This network is claimed by the authors to learn the temporal structure embedded in the input

sequence in unsupervised manner, and to be able to learn ambiguous sequences and assign identical

inputs to different representations depending on their temporal context. When a readout is trained

on the network, it is claimed by the authors [Lazar 2009] to outperform highly tuned random reser-

voirs in some sequence prediction tasks.

A third example of self-organizing networks used in temporal sequence processing is the model

presented in [Araujo 2002]. It is a relatively complicated model that combines adaptive lateral

connections with two additional context mechanisms at the input: A tapped delay line implementing

short-term memory, and a set of units that hold a part of the sequence as its identifier. The content

of these two sets of context units with the external input form the current input to the network.

During the lateral competition, the winner is excluded from subsequent competitions.

The combination of these three mechanisms for temporal processing besides to the winner

exclusion technique allows for learning ambiguous sequences. Moreover, they allow the network

to learn two sequences concurrently.

The common property between the presented models that differentiates them from SOM-based

models is the adaptability of lateral connections, so that the temporal order of the input elements is

learned to be captured by the subsequent activations of the output neurons.

5.8 On the cellular nature of SOM-based models

SOMs are fine-grain models that consist of populations of simple processing units. Units are com-

puting in parallel at least in some phase of the computation. Specifically, the matching phase is a

parallel one where all the map units compute a matching value based on the distance between the

current input and their stored prototypes.

For the SOM to be a cellular model, it should meet, besides to the simplicity and the parallelism

of the processing units, the conditions of locality and decentralization. In SOMs, there are no lateral

connections, the interaction between units occurs only in the learning phase using the neighborhood

function that implements the winner-take-most update strategy. This learning process requires the

use of a central processor in order to search for the BMU within the population of units, and in order

to apply the prototype update as the neighbor units concerned by the update has no connections to

the BMU. The centralized processor is also needed in cases where the learning rate α(t) or the

radius σ(t) of the neighborhood function are decayed with time during learning.
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What is said about SOMs, can also be said about all the presented SOM-based models. For those

models, in addition to the mentioned reasons, the central processor is also required for the reset of

some map values, like the prototypes, as mentioned for RSOM, RecSOM, or the model presented

in [Mcqueen 2002]. Obviously, SOMs and SOM-based models are not cellular models, due

to the lack of decentralized processing during the learning phase.

In the following, we present the neural field theory that we rely on later in the learning phase of our

proposed model introduced in the next chapter, and we show how it makes a SOM-based model a

cellular one.

5.9 Neural fields

The Dynamic Neural Fields Theory (DNFT) aims at describing the formation and evolution of

patterns of activity at the level of populations of neurons, rather than at the level of individual ones.

The DNFT approach bridges the gap between two approaches used for the symbolic formalization

of the neural activity in the brain.

The first approach is the biophysical models that provide detailed descriptions of electri-

cal or chemical phenomena observed within or between individual neural cells [Hodgkin 1952,

FitzHugh 1955, Nagumo 1962, Izhikevich 2004]. While they generally display great accuracy with

respect to experimental observations, their computational complexity makes it impractical to use

them in large-scale neural modeling (see [Izhikevich 2004] for a review).

The second approach is the statistical modeling of neurons activity; it relies on the Bayesian ap-

proach and proposes probabilistic models of neural information processing at the level of networks

of neurons [Rombach 2008, Friston 2008, Moran 2013]. While extremely valuable for examining

emergent computational properties of neural dynamics, they generally focus on “phenomenologi-

cal” rather than “functional” descriptions of these processes, thus providing only limited insights

about the neural mechanisms underlying these phenomena. Moreover, most of the statistical models

have formal descriptions which are not conform with the principles of cellular computing paradigm

presented previously.

Unlike these two approaches, DNFT uses an integro-differential mathematical description to

define a paradigm of local, parallel, distributed and decentralized computations performed by a

population of basic units which exchange information through local connections. These proper-

ties make the DNFT compatible with cellular computing general principles of computation. In the

following subsections we introduce the mathematical framework of DNFT, as we consider it as an

excellent candidate for our motivation in building neural networks which can be both computation-

ally powerful and architecturally appropriate with cellular computing requirements.

5.9.1 The formalism of dynamic neural fields

DNFT addresses the problem of capturing the instantaneous response of a population of neural units

to external stimuli and tracking the long-term dynamics resulting from the interactions between

groups of units. The focus is set on population-centric description of neural phenomena rather than

a unit-centric one. DNFT accounts for mesoscopic (i.e. intermediate-level) characteristics of the
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FIGURE 5.10: Notations and general architecture of a dynamic neural field (here depicted
for the one-dimensional case). From [Alecu 2011a].

neural units activity, such as the mean firing rate of groups of neural units, rather than microscopic

variables (such as channel currents related to individual neural units). Attempts in this direction

started since the work of Beurle [Beurle 1956], but the theoretical foundations of dynamic neural

fields were established in the works of Wilson and Cowan [Wilson 1973] and Amari [Amari 1977].

A dynamic neural field is a spatiotemporal description of the evolution of the activity of a set of

neural units, usually denoted by ux(t). It represents the average firing rate which can be observed

at a specific position x in the space and at time t within the set of population of units. Usually, a

position in the field refers to a place occupied by a group of neural units, rather than by an individual

ones. One can say that this group defines an abstract neural unit of computation, as it embodies a

computational process performed by a group of neural units. This view allows for the mesoscopic

description of the neural phenomena instead of the microscopic one.

The spaceX within which the field is defined is a subset of a topological space and is considered

a continuum, typically, X ⊂ R in the one-dimensional space or X ⊂ R
2 in the two-dimensional

space. The units are interconnected through lateral connections as illustrated in figure 5.10. In most

of the models, these connections act either in an excitatory or inhibitory manner, in the following

way: the connections between short-range neighbor units are excitatory, while the long-range con-

nections to more distant units are inhibitory. The synaptic weight w(x, x′) represents the influence

of the connection between two units situated in the positions x and x′ in the field. The distance

‖x− x′‖ between them is given according to the metric ‖·‖ in the topological space X , typically

the Euclidean distance is used. This synaptic weight is normally modeled as a difference of Gaus-

sians:

w(x, x′) = A+e−a‖x−x′‖2 −A−e−b‖x−x′‖2 (5.34)

with A+ and A− are the amplitudes of the excitatory and inhibitory influences and a and b are

modulation parameters.

In addition to the activity of the neighboring units, each unit x in the field can be influenced by

an external input ix(t) referred to as the external stimulation. With these notations we can introduce
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the classical model proposed by Amari in [Amari 1977].

5.9.2 Amari model

The activity of the field at each point x ∈ X in the space and at a time instance t is defined as

follows:

τ
dux(t)

dt
= −ux(t) +

∫

x′∈X
w(x, x′)σ(ux′(t))dx′ + ix(t) + h (5.35)

Here, τ is a time constant which defines the rate with which the activity of the field can change

at each timestep, σ(.) is a sigmoid function that models the activation (firing) of a unit, and h is

the field’s resting potential; a level of activity to which the field converges in absence of any other

stimulation (i.e. external or lateral).

The integral term in equation (5.35) implies that in order to update its current activity, a unit

must know the activities of all the other units in the field. However, in practice, as the synaptic

weight to distant units in the field approaches zero (due to the exponential in equation (5.34)), thus

it is sufficient to know the activities (and the corresponding synaptic weights) only for a group of

neighboring units, in order to perform the computation. In this case, DNFT can be implemented in

a fully parallel, distributed and local manner: each unit of the field updates its activity based only

on cumulative local information: the external simulation ix(t) and the current activity ux(t) of its

neighbors modulated by the synaptic weights, which is called the lateral contribution, .

When the ensemble of neural units in the population performs the computation given by the

neural field equation (here equation (5.35)), the population evolves in time giving a temporal activ-

ity profile that is determined by the local competition between the neural units.

5.9.3 Behaviors of dynamic neural fields

The behavior of the neural field depends on the internal parameters of the model and on the profile

of the input stimulation. For example, it has been shown that in absence of external input, the

field can (in certain conditions) self-sustain patterns of activities similar to stationary or traveling

pulses or waves, or more complex patterns such as breathers or Turing instabilities [Coombes 2005,

Folias 2004, Folias 2005, Wyller 2007].

However, in the practical case in which the field is stimulated by some external input (the case

most frequently used in DNFT applications and also in the case of our work), the neural field usu-

ally displays the so-called bump dynamics. Through its competition mechanism, the field gradually

increases its activity in places corresponding to the highest local cumulative external stimulation.

As a result, the field generates a so-called bump of activity in these places as in figure 5.11 (some-

times the bumps resemble to the shape of a bell). The bumps remain unchanged as long as the input

stimulation does not change. These bumps represent, in terms of dynamical systems theory, the

attractors of the neural system, that is, the stable states toward which the field converges.

When the profile of the input stimulation changes, the profile of the field’s activity can change

too. In certain cases, the already emerged bumps vanish and reemerge somewhere else in the
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FIGURE 5.11: Formation of bumps in a 2D dynamic neural field (illustrated as a mesh
surface), in response to input stimulation ( illustrated as a full surface). Illustration ob-
tained using bijama simulation software [Frezza-Buet 2012].

field, in other cases, they shift toward the new attractors. However, there can also be situations

where, even if the profile of the input stimulation changes, the positions and amplitudes of the

already emerged bumps remain the same (in this case, they are self-sustained through the lateral

contributions, rather than by external stimulation). Other more subtle effects can appear too, but it

is generally difficult to characterize all the dynamic regimes that a field can exhibit.

5.9.4 Applications of dynamic neural fields

A whole area of research in DNFT focused on the study of the behaviors of neural fields in order

to find the conditions under which these behaviors can emerge and can remain stable, these stud-

ies began early with the proposal of Amari [Amari 1977]. However, they are usually difficult to

conduct due to the intrinsic complexity and non-linear character of the model equations.

A second path of research approaches DNFT from a more practical point of view, it aims

at applying the computational features and the dynamics of neural fields to the design of new

neural mechanisms. This is based on a more general view, called attractor network computa-

tional paradigm [Amit 1992], which exploits the properties of the attractors of recurrent dynamical

networks to perform complex computations. This paradigm was used in computational neuro-

science [Gros 2009] and has been applied to various problems.

Neural mechanisms based on DNFT have been proposed in recent years for visual atten-

tion [Fix 2007], short-term and long-term memory [Simmering 2007], and for designing embodied

cognitive autonomous robotic agents capable of acquiring multimodal sensory perception and de-

veloping motor skills [Iossifidis 2001, Ménard 2005, Erlhagen 2006] or decision-making and plan-

ning skills [Toussaint 2006, Trappenberg 2008, Sandamirskaya 2008].

DNFT was initially developed to provide an intermediate level of description for the neural ac-
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tivities across the cortical tissue. Due to its laminar anatomical structure and its columnar functional

structure [Mountcastle 1957, Mountcastle 1997], the DNFT fits the architectural macroscopic de-

scription of the cerebral cortex. According to this theoretical framework, the cortex can be viewed

as a set of interconnected computational units arranged in a two-dimensional space. Works such

as [Bressloff 2002, Hutt 2003, Sabatini 2004, Meyer 2007] show that DNFT can provide accurate

descriptions of neural dynamics observed in neurophysiological studies of the cortical tissue. How-

ever, DNFT is not limited to the depiction of neural activities detected in the cerebral cortex, but can

also be used to describe the neural dynamics of other regions in the brain. Other studies have shown

that DNFT can successfully describe patterns of neural activity in other sub-cortical neural struc-

tures as well, such as in the superior colliculus [Schneider 2002] or the striatum [Nakahara 2002].

Neural units in DNFT compute their activity on the basis of the activity of neighbor units in the

same layer, thus DNFT is a subclass of recurrent neural networks (RNN). Consequently, classical

techniques used in RNN can be applied to the context of DNFT, most notably in the area of train-

ing. Although this subject is of central interest in RNN realm, learning based on DNFT has been

rather rarely studied. Training a DNFT-driven neural architecture can be achieved by considering

adaptable characteristics of the neural field such as the synaptic weights, the resting state potential,

the firing profiles, etc., or by the investment of the dynamic properties of the patterns of activity that

emerged in response to input stimulation, in order to adjust some other variables of the global archi-

tecture. Works such [Gross 1998, Miikkulainen 2005a, Ménard 2005, Gläser 2008b, Gläser 2008a]

have been proposed to implement unsupervised or reinforcement learning strategies through neural

field-like dynamics. Besides, the model of [Kopecz 1995] presented in 5.7 is a spacial kind of

neural field, in which the synaptic weights are adaptive, except that different field equations are

used for learning and recall.

In our work, we are interested in applying DNFT to the problem of learning of temporal se-

quences using unsupervised self-organization. Our work relies on two main works [Ménard 2005]

and [Alecu 2011b], both conducted previously in our lab, which deal with the subject of self-

organization driven by dynamic neural field. The legacy of the first work is the bijama architec-

ture (which we will rely on to build our model), while the legacy of the second is the Binp neural

field.

In our work, we use the dynamics of neural field bumps to drive the self-organization process in

our learning architecture. In this context, the bump is the analogous of the neighborhood function

h(.) of the basic SOM algorithm. We recall that in the basic SOM, the neighborhood function is a

winner-take-most (WTM) function facilitating the cooperation mechanism. Its role is to compute

the amount with which the prototypes of the units in the map adjust themselves according to the

distance from the BMU. In our proposed implementation of the self-organization process, this role

of the neighborhood function is replaced by the dynamics of a bump generated through a neural

field mechanism stimulated by an external input (which is the matching computed by the map

units). Thus, the entire process can be implemented locally, in a completely distributed parallel

way (unlike the case of the SOM, which requires centralized processing).

The model of Amari is the first candidate to implement this mechanism. However, in practice, it

is very difficult to achieve the appropriate behavior for the field in the context of self-organization.

As analyzed in [Alecu 2011b], in order to perform learning, the field has to be extremely sensitive,
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and capable of generating a bump even in conditions of very low input stimulation. If this can

be achieved, the field then experiences very high levels of excitation within the area of the bump,

and very high levels of inhibition elsewhere. When the input changes, these changes are usually

too small to counterbalance the influence of the existent excitation/inhibition contributions. As a

result, in most of the time, the bump does not follow the changes in the input, being thus unable to

implement satisfactorily a WTM policy.

To address this problem, [Alecu 2011b] proposed a new neural field model, adding new features

to the model of Amari. This is shown to exhibit more convenient behavior than Amari model, and

to make use of the bump dynamics to drive successfully a SOM-like unsupervised learning process.

In the next subsection, we introduce this neural field model.

5.9.5 Binp model

Unlike in the model proposed by Amari and presented above, the Binp model (stands for: Back in-

hibited neural populations) [Alecu 2011b] makes a separation between the excitatory and inhibitory

connections. The corresponding weights are then:

w+(x, x′) = e−a‖x−x′‖2 (5.36)

w−(x, x′) = e−b‖x−x′‖2 − e−c‖x−x′‖2 (5.37)

This leads to distinguish excitatory and inhibitory lateral contributions, perceived by each unit

x in the field, and denoted by Ex(t), Ix(t), respectively:

Ex(t) = σ+
(∫

x′

w+(x, x′)f(ux′(t))dx′
)

(5.38)

Ix(t) = σ−
(∫

x′

w−(x, x′)f(ux′(t))dx′
)

(5.39)

where σ+, σ− and f are sigmoid functions.

The Binp field formalism is given by:

τ
dux(t)

dt
= ix(t) + α Ex(t)− β Ix(t)− γ g(i, v) (5.40)

dvx(t)

dt
= h(Ex(t)) (5.41)

Here, τ is a time constant that has the same meaning as in Amari model, while α, β, γ are positive

constants. The activity described by the variable v models a delayed version of the perceived local

excitation E . Finally, g and h are sigmoid functions, which enable a built-in delayed local feedback

inhibition mechanism.

The model is built such that the field is capable of generating a bump quickly in all conditions

and in particular, in conditions of very low input stimulation. When a bump is generated, the

excitatory contribution increases within the neighborhood of the bump. The auxiliary activity v

increases too, but more slowly than the excitation E . Throughout all this time, the bump follows

the dynamics in the model of Amari. After a transitory period, it stabilizes to match the locally
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highest region of input stimulation. The slower v evolves, the larger this period is. When the input

stimulation changes and the new input perceived by the units in the bump region is high enough,

the bump remains in its place. However, if the latter input is low, the function g(i, v) is designed to

become very high and as a consequence, inhibits locally the field (influenced by the negative term in

equation (5.40)). If multiple units become inhibited, this triggers a local feedback inhibition chain

reaction which causes the bump to vanish, leaving thus the possibility for the bump to reemerge

elsewhere (where the input is significantly higher), while this area is temporarily inhibited.

As expected, this improves the dynamics of the bump compared to the model of Amari. With

this mechanism, the new field model can be successfully applied in driving the self-organization

process. [Alecu 2011b, Alecu 2011a] present more detailed description of the behaviors of the Binp

neural field.

However, Binp model can not implement a WTM policy in all cases. In particular, it allows for

a specific undesired behavior to happen. Suppose that a bump has emerged due to a certain external

stimulation. If the amount of this external stimulation is sufficient enough, the bump sustains itself

due to this external stimulation but also due to lateral excitation (the levels of inhibition outside

the bump are high in this case). However, in this situation, the field may become insensitive to the

external stimulation received by other units in the map, even if they receive higher stimulation. As

a result, instead of inhibiting the bump in the initial location and reemerging it in the new location

that corresponds to the higher stimulation, the field maintains the bump location unchanged. While

this effect does not seem to be statistically significant in the context of basic SOM self-organization,

it becomes an important issue in the implementation of our learning mechanism, which deals with

temporal sequences. In the first case, the field activity is used in learning only, thus, this undesired

field behavior does not significantly affect the general process of self-organization, while in the

second case of a context model, the activity of the field is used not only for learning, but also as

a feedback signal. This undesired behavior of the Binp neural field in driving self-organization in

context models using feedback leads to erroneous temporal contexts.

Given these considerations, in our work we use a new neural field model, presented below,

which solves the issues encountered with the Binp model.

5.9.6 LISnf model

The problem in the Binp model is the self-sustaining of the bump in some situations, although the

input stimulation elsewhere in the map can be higher from the input in the bump region. To address

this problem, another model was proposed in our lab 1, called the lateral input sensitive neural field

(LISnf ). In this model, a unit takes into account not only the activity of connected units, but also

the input stimulation of these units. Besides to solving this Binp self-sustaining issue, LISnf offers

a faster competition mechanism, reliable enough to fit our purpose of driving self-organization by

a parallel and local computation mechanism.

LISnf differs from the previous models of Amari and Alecu in that it doesn’t use integral equa-

tions as will be shown next, instead, it deals with the discrete space of indexed units. This is justified

by the motivation for which these models were developed: instead of modeling neural dynamics in

1By Hervé Frezza-Buet, to be published.
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the brain, LISnf was designed for machine learning purposes. Consequently, instead of relying on

continuum X , with LISnf relies on a discrete map space A.

Let us consider the two units p and q in A. We note DR (p) the set of units included in a disk of

radius R around the unit p. The cardinal of this set, i.e. the number of units within the disk is noted

|DR|. The unit p is connected to the units q ∈ DR (p) within the disk with excitatory connections

that will be called on-connections.

Let us also define DR (p) as all the units in the map that do not belong to DR (p). For a

unit p, connections with the units q ∈ DR (p) are inhibitory connections that will be called off-

connections. Connecting p to all units within DR (p) takes a lot of memory, hence it is connected

to a subset of these units with a probability P . The set of off-connections are thus noted DP
R (p).

Both the on- and off-connections are established at the design time and fixed thereafter.

The LISnf dynamics relies on using smoothed versions of the input i and the activity u, these

versions are denoted i and u, and computed locally by averaging the values of i and u read through

the on-connections of the unit:

ip(t) =

∑

q∈DR(p) iq(t)

|DR|
, up(t) =

∑

q∈DR(p) uq(t)

|DR|
(5.42)

From these preliminary definitions, let us define an ordering relation between a pair

(ip(t), up(t)) and the analog values (iq(t), uq(t)) at p and q respectively. A function Inft (p, q)

implements this order relation, it returns 1 when the pair at q is greater than a pair at p, otherwise

it returns 0. The order relation (depicted in figure 5.12) is based on a lexicographic order with a

priority given to i over u, and using a tolerance parameter ε ≥ 0:

Inft (p, q) =



















1 if iq(t) > ip(t) + ε

0 if iq(t) < ip(t)− ε

1 if
∣

∣iq(t)− ip(t)
∣

∣ ≤ ε and uq(t) > up(t) + ε

0 otherwise

(5.43)

The LISnf field equation is then a straightforward update rule, that is, as mentioned before, not

derived from any differential equation as in Amari and Binp neural fields:

up(t+ 1) = [up(t) + δ∆up(t)]
1
0 (5.44)

with

∆up(t) =













1− α

∑

q∈D
P
R(p)

Inft (p, q)

|DR|













±

(5.45)

and α > 0 and δ > 0, and [x]± is a Heaviside function defined as [x]± = 1 if x ≥ 0, [x]± = −1

otherwise, and [x]10 is a saturation function with [x]10 = x if 0 ≤ x ≤ 1, [x]10 = 0 if x ≤ 0, and

[x]10 = 1 if x ≥ 1.

The LISnf model solves the problem encountered with Binp. Each unit within the LISnf field

is aware of the activity of other units connected to it, but also of their input stimulation. So when
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FIGURE 5.12: The order relation implemented by Inft (p, q): The gray area represents
the value of 1, while white areas represent the 0 value.

the average input stimulation of the units within the off-connections range are sufficiently high to

suppress the already existing bump, there would be sufficient points q ∈ DP
R (p) with Inft (p, q) =

1. Thus, the value ∆up(t) in equation (5.45) computes to a negative value (and equal to -1).

Consequently, this causes the reducing the value of up(t+1) in equation (5.44) at the next timestep.

Moreover, due to the order relation defined in equation (5.43), the suppression of the bump can

happen even if the average input to the distant units is almost equal (with a range defined by the

tolerance ε) to the average input in the bump region, while their activity is larger (at least by ε) than

that of the units in the bump region. This means that under some conditions related to the input,

sufficient number of activity spikes in the field can be able to inhibit the already existing bump.

Indeed, unlike Binp, the LISnf neural field offers the reliable mechanism to drive the self-

organization in our activity-based model for temporal sequence processing, that will be presented

in the next chapter. In our simulations, we used the following numerical values the LISnf field

parameters: α = 20, δ = 0.333, ε = 0.02, and P = 0.3.

5.10 Cellular computing with SOM and DNFT

DNFT offers a moderately complex yet powerful formalism which can be used to describe, design

and simulate various neural phenomena. As shown above, it has been used with great success in

different research works to propose new neural mechanisms, and is a valuable framework capable

of describing neurophysiological observations at the mesoscopic level in various nervous structures.

In our research, we are interested in the computation mechanism of DNFT that we judge useful

in attaining our goal: conceiving a self-organizing neural model for temporal sequence processing,

having the properties that fit the general computational principles of cellular computing.

We have previously shown that the unsupervised computation of the existing SOM-based tem-
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poral models do not fulfill the requirements of the cellular computing paradigm, basically because

they require a central processor for their computation. We have also presented three different DNFT

models, each adds some enhancements on the precedent. All of these neural field models can pro-

duce activity bumps that can substitute the neighborhood function used for learning in the basic

SOM. As for the combination of a neural field with the SOM, this can be simply done by consider-

ing the computed match Ep(t) of each unit p as the input ip(t) of the neural field.

As explained before, some neural fields fit the process of self-organization more than the others.

In particular, the LISnf model is a fast and reliable model compared to Amari and Binp, and offers

the desired performance that allows to account on its accuracy in activity-based self-organizing

neural models, in which the computation of the map activity is crucial for the correctness of the

computation.

Hence, using the LISnf neural field, the computation in the map becomes fully decentralized,

as each unit can now compute whichever value based on the values read by its connections (that

is the functional locality condition required for the cellular computing paradigm), and there is no

more need for the central processor. As for resetting the activities of the weights of the neural field,

our proposed model is autonomous in the sense that, when the computation starts, there is no need

to reset whichever value.

Moreover, the computation within the neural field framework is parallel like in the basic SOM.

As will be shown in the next chapter, our proposed model is implemented according to the bijama

framework [Ménard 2005], in which equation (5.44) is applied to the map units asynchronously. As

explained in 3.3.2, for each update cycle, all the units in the map are evaluated according to some

random order, so the update of a unit p is visible to whichever unit q whose evaluation occurs after

p. This asynchronous update regime is intended to bring stability to the competition mechanism.

For LISnf , there is no buffering, no need to store the weights for the on- and off-connections, this

allows for fast computation.

However, one should point out that the use of any of the DNFT models in guiding the self-

organization process, is not without drawbacks. The standard self-organization process computes

one -and only one- neighborhood function around the BMU. When conducting learning using the

neural field mechanism, one should guarantee that there is one, and only one bump within the

field. Thus, the emergence of a bump within the field should inhibit the emergence of other bumps

elsewhere in the field. This is why, when LISnf was introduced, we considered the off-connections

of a unit p to be with all other units in DR (p), that is, all the map units outside the on-connections

region DR (p). Later we avoided total connectivity by introducing a probability P that controls

the number of the off-connections in order to save memory, so the unit p is now connected to P

(P = 0.3 in our model) of the total units within DR (p) (denoted DP
R (p) to refer to this partial

connectivity).

Although connectivity is not total like in Hopfield networks, it is not that much convenient with

the strict condition of topographic locality of the cellular computing paradigm that requires the

connections of a unit to be in a bounded region around that unit, typically to its direct neighbors.

Other conditions like parallelism, decentralization, functional locality are maintained within the

framework of DNFT. However, as mentioned in 4.5.6 for Hopfield networks, the mitigation of the

strict condition of topographic locality put by Sipper [Sipper 1998b], makes it possible to see such



5.10. Cellular computing with SOM and DNFT 165

models as compatible with the cellular computing paradigm.

Motivated by these considerations and encouraged by the previous success in applying DNFT

to aspects closely related to our objectives, we decided to adopt this neural paradigm, namely the

LISnf model as a computational foundation for our research work which we introduce next.
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6.1 Introduction

So far, we have seen the difference between coarse-grain and fine-grain computation architectures,

and what makes an architecture that carries out computation a cellular computer. We have also seen

that artificial neural networks are fine-grain models that often lack the topographic locality and the

decentralized properties of cellular computing structures, although, they are powerful models in

processing temporal sequences.

Between the different temporal neural models, those implementing recurrence (through feed-

back connections) exhibit interesting temporal properties and a rich internal dynamics. This, be-

sides to their adaptability, makes them adequate models for dynamical systems representation, mod-

eling and control. Specifically, self-organizing maps were recently used in temporal processing,
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and their different approaches for processing temporal sequences were presented in the past chap-

ter. Besides, we introduced the DNFT framework and explained how they help in making SOMs

conform with the cellular computing requirements.

The proposed temporal model is a fine-grain architecture for temporal sequence processing, it

is a multi-map recurrent architecture that seeks to self-organize as a whole. As a fine-grain archi-

tecture that relies on a neural field for distributed computation, this temporal architecture becomes

a cellular computing model, which is the objective of this research work.

In order to show the model ability in temporal sequences processing, it is applied to the extrac-

tion of a state representation of a dynamical system starting from an ambiguous stream of obser-

vations on that system. Before presenting the model, in the coming subsections, we get into the

details of its computational constraints and architectural characteristics, and explain the example

application that is presented in its context.

6.1.1 A fine-grain architecture

The proposed model is a parallel fine-grain computing architecture that is run on InterCell

supercomputer, which is a coarse-grain parallel computing architecture that allows for high per-

formance computation. Although coarse-grain, the bijama framework which is a fine-grain

software dedicated for distributed computation, was run on InterCell in order to serve our re-

search objectives. This hardware and software combination is used to implement and run a model

with hundreds of cells, however, bijama running on InterCell allows for running larger-

scale fine-grain systems.

Using such parallel hardware architecture to run the systems implemented in bijama soft-

ware package for fine-grain system modeling imposes some constraints on these systems:

• First, the system is strictly connectionist, knowing that connections are the computer science

modeling for the interactions between cells within a cellular model. The system consists of

a population of units that interact with others using connections, units compute their output

values by reading the outputs of the connected units and the external output, if there is any.

The whole system is only defined by this connectivity and the units update rules, there is no

central processor that supervises the system execution, and no global variables allowed.

• Second, the system is evaluated by the successive update of all its units, chosen in a random

order. This means that the update regime is asynchronous.

• And third, the system is driven only by its own dynamics and the external input. After the

systems is set out to run, there is no external intervention from the user that goes beyond mon-

itoring the system evolution. This means that, unlike most of the previously seen adaptive

neural models, in models implemented in bijama there is no separation between learning

and exploitation or test phases, there is no reset to any system variable, nor tuning with time

to any system parameters. The system is left to drive its dynamics spontaneously in reaction

to the external inputs; it is strictly online.

It should be emphasized here that these constraints on systems implemented with bijama on

InterCell are compliant with the properties of fine-grain models.
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6.1.2 Distributed winner-take-most

With constraints imposed by bijama fine-grain framework, driving the self-organization of the

basic SOM in the traditional way as defined by Kohonen is not possible.

In Kohonen SOM, as well as in recursive self-organizing models (like Rec-

SOM [Voegtlin 2002]), the winner-take-most (WTM) learning policy requires that the learning

rate of the prototype that matches the best the external input (the BMU prototype) be the higher.

The learning rates of the prototypes of the BMU neighbors are also non null; they are less than

that of the BMU and decrease with units distances from the BMU following a bell-shaped learning

kernel (typically a Gaussian). It is this distribution of learning rates that implements the WTM

competition learning policy (as already mentioned in 5.9). The application of such policy requires

first, finding the BMU which is obtained by a global search procedure on the population level that

iterates on all units. This requires the use of a central processor to carry out this procedure. Once

the BMU is found, the application of the WTM policy requires, next, computing the learning rates

of its neighbors within the bell-shaped kernel, then applying these learning rates to update the

prototypes values. Both steps require the use of a central processor within the traditional SOM

learning algorithm. Besides, both the search of the BMU and the computation of the learning

kernel require the process to be synchronous, which is not the case of bijama framework

Within the bijama framework, the learning kernel should be computed in a distributed and

asynchronous manner that fits its way of computation. The WTM policy of traditional Kohonen

SOMs (also used with other recursive models) should be replaced with a distributed and decentral-

ized WTM policy that can be computed and applied asynchronously. DNFT models as presented

in the past chapter offer the convenient solution.

Using a neural field to implement the distributed WTM policy, the competition is set up via a

dynamical process, as follows: each unit p in the map matches the external input o(t) it receives at

time t against its prototype ωp, and computes a matching value ip(t). The learning rates distribution

{up(t)}p∈map computed by the neural field forms a bump (similar to the bell-shape) centered at the

position of the highest ip(t) (corresponding to the BMU). The selection of BMU within a pre-

selected region (by the bump) reminds the mechanism of Hypermap (see 5.4.1).

As shown in the previous chapter, some neural fields fit the process of self-organization better

than the others. Some neural fields are appropriate for simple self-organization (the case of one

map) even though they form bumps that are not all the time centered around the BMU, but the

self-organization process itself needs not necessarily such a reliable field. But in the case of a

temporal model that includes feedback, such non-reliability can cause the imprecise computation

to be amplified leading to an erroneous model behavior. We have shown in 5.9.6 that the LISnf

neural field guarantees the necessary accurate behavior, and offers a fast and reliable competition

mechanism compared to other neural fields like Amari and Binp.

We have also shown in 5.10 that using neural fields makes self-organizing maps meet the cel-

lular computing properties as they offer the necessary decentralization and functional locality, and

somehow sufficient topographic locality that allows to consider the self-organizing map a cellular

model.
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FIGURE 6.1: Multimodal architecture: three self-organizing maps that correspond to
three modalities (sensory or motor), interact through an associative map. The partial
connectivity has the form of strips; each unit receives connections from remote map units
within the strip. Extracted from [Ménard 2005].

6.1.3 A multi-map architecture

The bijama framework was originally introduced by Ménard [Ménard 2005] and used for joint-

organization. The latter signifies the self-organization of maps within a multi-map architecture in

which maps are connected to each other, such architectures are normally used for multimodel sim-

ulations, like the sensory-motor coordination as in the same work by Ménard. In such architectures,

each of the maps corresponds to some modality, either sensory or motor. However, multi-map ar-

chitectures may also contain associative maps, that play the role of an intermediate medium for

signal exchange between other maps. In such scenario, each map seeks to self-organize driven by

its external inputs, hereafter called thalamic inputs, but also driven by inputs received from con-

nected maps (their activity), hereafter called cortical inputs. This terminology borrows from the

neuroscience of the cerebral cortex, in which mesoscopic neural units (also called micro-columns)

receive input signals from the thalamic area as well as from similar units in the cortical tissue. Fig-

ure 6.1 illustrates a multimodel architecture that includes an associative map. In bijama , it is

possible to combine thalamic and cortical inputs in one input that is the actual input to the com-

petition mechanism (in our case, the neural field). The presented model implies a comprehensive

illustration of bijama methodology.

For the purpose of joint-organization, the inter-map connectivity between the multimodal maps

is implemented by connecting each unit in a local map to a set of units in one or more remote maps,

this set may contain all the units of the remote map or maps. However, in his work, Ménard showed

that partial connectivity may be sufficient for the joint-organization of the model maps. This aims

to avoid the combinatorial explosion that comes with the total connectivity and thus, to reduce the

computation load. So, the partial connectivity is implemented by connecting each unit in the local

map to a set of units in the remote map that has the shape of a strip, identified by its width and

direction as shown further.
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FIGURE 6.2: Activity binding in joint-organization. Left: transitory activity bumps
that are not bound. Right: binded stable activity bumps align together. Extracted from
[Ménard 2005].

This joint-organization as handled by Ménard is intended to find a concordance between the

different map responses to their stimuli, that corresponds to a static task. Concordance is attained

by binding together the sensory maps activity with the motor map activity through the activity of

an associative map. At the start of the run, the activity bumps of the maps (in response to specific

sensory inputs) can appear in random places. This situation corresponds to a non-stable activity,

because the mutual excitation due to the maps interconnectivity, causes the bump in each map to

excite a different region in the other map than the actual bump region, thus inhibiting it due to

lateral competition (implemented by a neural field). For this reason, this situation is transient in

the context of joint-organization, and the activity bumps tend to bind together, which is a stable

situation. Binding the activity bumps means that they reach a position in their maps such that

bumps are placed at connected places. Transient and stable activity bumps are depicted in figure

6.2.

This way, activity bumps that correspond to a specific sensory input are for example bound

together with a motor activity bump. The binding of activities that corresponds to all input stimuli

and motor map activity is the result of joint-organization.

6.1.4 A dynamical recurrent architecture

It has been shown in the past two chapters that several techniques were applied to artificial neu-

ral networks in order to encode time. The best method, regarding memory, computation time,

and adaptability to varying statistical characteristics of the input temporal sequences (mainly their

complexity), is turning neural networks into adaptive dynamical systems through adding recurrent

connections. Hence, by their adaptive and dynamic structures, neural models can efficiently repre-

sent the temporal context of input sequences.

In specific, we have seen in the past chapter that the recent trend in building adaptive tempo-

ral self-organizing maps is by implementing recurrence, with RecSOM being a benchmark in the

literature.

When the input to the temporal SOM-based model arrives online, it can be seen as a stream of
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FIGURE 6.3: Recursive self-organizing map principle. At each time, o(t) is received
from the input stream. It is combined with a context value c(t) in order to form the actual
input to all units within the self-organizing map. The map contains units p, each having a
prototype wp comparable to the input. The activities of units i are used to form c(t + 1)
with a process that differs between different approaches [Hammer 2004a] (see also the
previous chapter). c(t+ 1) becomes the context value for the next input.

values. As a reminder, the input ξt to such a model received at time t is made of two components:

the external observed input o(t) and a context value c(t). The architecture is recurrent since c(t)

is computed from the state of the map at time t − 1, when o(t − 1) was presented. It has been

pointed out in the previous chapter that these recurrent architectures are called recursive when they

handle the feedback signal in the same way as the external input signal. Figure 6.3 illustrates the

work-flow of RecSOM, but also the workflow of all other recursive self-organizing architectures.

Similarly, the proposed model consists also of a recurrent architecture, moreover, it is also

recursive as it handles the feedback signal in the same way as the external input. In fact, the model

architecture implements two levels of recurrence, on the map level, and on the architecture level.

Some maps in the architecture are computing their activity by performing competition via a neural

field. The mechanism of neural fields itself is recurrent as pointed out in the previous chapter.

However, the architecture implements another level of recurrence, the connectivity between the

architecture map forms a recurrent path as well. As will be shown further, the map connectivity

implements a form of feedback that reinjects the activity of a specific map into its dynamics after

being processed by other maps.
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Indeed, the proposed architecture is a recurrent neural network that shares a common archi-

tectural and functional features with some of the previously seen neural models. For example, the

proposed model can be regarded as a cellular implementation of RecSOM; it is a recursive model

that uses the neural field paradigm in order to compute in a local and decentralized way, although, it

is able to implement a competition and cooperation mechanisms. However, although recursive, it is

a self-organizing architecture that implements vector quantization on a temporal stream of inputs.

This work builds on the previous research efforts in our lab. It bases on bijama framework

introduced by Ménard, but also on the research of Alecu in dynamic neural field theory, and goes

beyond the latter work to using LISnf neural field that is sensitive to neighbor units inputs. The

proposed model makes use of both works and introduces an architecture that is able to process

complex temporal sequences and to adapt in such a way that follows their changes. This architecture

does this in an autonomous way, moreover, it is cellular, asynchronous, and unsupervised.

6.1.5 Example sequence processing: ambiguity resolving and representation

In order to show the utility of the proposed model in processing temporal sequences, we will in-

troduce it by an example that corresponds to a practical problem encountered in some application

domains. For instance, in POMDP (partially observable Markov decision process) problems, where

there is an agent that interacts with its environment, the agent observes the environment and per-

forms actions back in the environment. The observations perceived by the agent can be regarded as

a stream (or sequence) of inputs, and the subsequent actions it takes can be regarded as a sequence

of actions. In such problems, the environment is partially observable by the agent, i.e. the observa-

tions perceived by the agent may not be sufficient to determine the exact state of the environment,

hence, to determine the action to be taken.

Although of this partial observability, the agent has to estimate the actual environment state, and

based on this estimation, to take the appropriate action. However, the estimation of the actual state is

not straightforward, because sometimes, the agent receives identical observations that correspond

to different environment states, hence they require the agent to perform different actions. This

ambiguity in the stream of observations corresponds to a complex sequence, and the agent should

resolve the observation ambiguity before taking any action.

As shown further, the proposed model is able to resolve the ambiguity of observations, it re-

ceives a stream of observation from the environment, and uses them to build up a representation

that assigns to each observation (even repeated or ambiguous) a distinct representation. This can

be thought of as building a representation not to the observations themselves, but to the underlying

environment states. The model, being a neural architecture for temporal sequence processing, does

this by distinguishing identical observations in the input stream by their temporal contexts.

However, by building such representation, the model does not exactly simulate the agent in a

POMDP problem. In such problems, the changes in the environment happens due to the actions of

the agent performed in the environment, but in the case of the proposed model, there is no feedback

to the environment. Thus, the model can be thought of as the part of the agent that builds an internal

representation of the environments states that disambiguates the observations.

Although, the model exhibits more flexibility than needed by typical POMDP agents that in-

teract with an environment with a predefined behavior: the model can re-adapt its representation
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whenever the defined behavior of the environment changes. When the environment is thought of

as a dynamical system, the change of the environment corresponds to the change of an evolution

function of the dynamical system.

As the proposed model does not perform actions in the environment, we will handle the envi-

ronment as an autonomous dynamical system. The actual state of the system at time t is denoted

x(t). The evolution of the state through time is controlled by an evolution function noted φt, thus:

x(t + 1) = φt(x(t)). The interaction between the agent and the dynamical systems is one way,

the agent is only observing the system state and gets a stream of observations o(t) = O (x(t))

through time (as in figure 6.4-a).

For the sake of illustration, let us consider an example autonomous dynamical system. Fig-

ure 6.4-b depicts a wheel divided into gray-scale colored sectors. Each sector is labeled by a letter

depending on its color. The wheel is turning counter clock-wise. In this example, we define the

actual state x(t) of this dynamical system as the discrete angle of a fixed point on the disk circum-

ference relative to an outer reference point as illustrated in the figure. This system is autonomous,

in that the state changes are not driven by any external action.

The agent observes the values of a variable related to the state, this observation is the color

(also expressed as a letter) at some fixed position (the observation is denoted o(t) in figure 6.4-b).

In this example, the sequence of observations is periodical: as the wheel turns, the same observa-

tion sequence is repeated, it is the sequence CDCEABEFCCFEDCBA in the actual case of

the figure. Obviously, this sequence of observations is ambiguous, or complex. To illustrate this

ambiguity, let’s consider the color labeled A. In one wheel turn, this color can be observed in two

different time instances o(t1) = o(t2) = A, corresponding to two different system states (wheel

angles) x(t1) 6= x(t2). In this case, if the agent observing the wheel is required to take distinct

actions for each distinct state x(t1) and x(t2), then the observation A will not be sufficient to infer

the system state.

In the case of ambiguous observations illustrated in the above wheel example, the architecture

is expected to extract two different representations x̂(t1) 6= x̂(t2) corresponding to x(t1) 6= x(t2)

although o(t1) = o(t2). The proposed model, which is an unsupervised cellular one that consists

of several modified self-organizing maps interconnected in a recurrent architecture, initiates a rep-

resentation of the system state space over the surface of one of its maps, so that each state x is

projected to some specific position x̂ on that map. In further map representations, the observation

o associated to each x/x̂ is shown by the color assigned to the position x̂ (see gray-scale units in

the map on the right in figure 6.4-b).

Let us recall that the evolution function φ is time-related, as depicted in figure 6.4-a. During

further experiments, the arrangement of wheel colors is changed during the learning, i.e. the evolu-

tion function φ is suddenly modified. This allows for testing the ability of recurrent self-organizing

process to cope with non-stationary dynamical systems, which corresponds to a non-stationary

POMDP problem as well.
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FIGURE 6.4: Dynamical system state extraction. a) A schematic of an autonomous dy-
namical system. b) An example of an autonomous dynamical system; a turning wheel
exhibiting ambiguity when observed. The system state is the angle of rotation, and the
observation is the color of the angular sector at some fixed position (also referred to by
a letter) . The observer gets identical observations for different states, i.e ambiguous
observations.

6.2 Architecture

Having presented the preliminary background on the distributed fine-grain nature of models built

using bijama framework, the cellular nature of self-organization with neural fields, and the dy-

namical properties of neural models involving recurrent connections, we are now ready to introduce

our cellular model for temporal sequence processing. We choose to present it in the context of the

example application of dynamical systems that requires processing ambiguous sequences. The rest

of this section delves into describing the model architecture.

The architecture is multi-map, it consists of three interconnected maps that form a recurrent

pathway aiming to capture the temporal context of the inputs, i.e. the observations of the au-

tonomous dynamical system. Considering the temporal context of each observation should help

distinguishing it from identical observations occurring at a different temporal context. The archi-

tecture extracts a representation of the states of the observed dynamical system. This representation

is built on the surface of one of the architecture maps.

We start by giving names for the three maps, they are the input map, the delay map, and the

associative map (see figure 6.5). Roughly speaking, the input map is the one on the surface of which

the state representation will emerge. The other two maps play an intermediate role in information
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architecture units. Connections are two-type, intra-map connections and inter-map connections.

Intra-map connections are necessary for the implementation of the neural field mechanism in a

distributed architecture, these connections can be of on- or off-connection types as pointed out when

presenting LISnf neural field in 5.9.6. Inter-map connections, that we also call cortical connections,

are those forming the recurrent pathway between the architecture maps, they are in the form of strips

as illustrated in figure 6.5.

The neural field uses the on- and off-connections types to perform distributed lateral compe-

tition in order to compute the units activities within a map. The activity of neural fields tend to

agglomerate in different map regions, these agglomerations have the shape of a bell or a bump (see

the dark meshes in figure 6.7). For the purpose of self-organization, the field should be parametrized

in such a way that gives place to the emergence of a single activity bump, in order to be a valid al-

ternative to the neighborhood function. In the proposed model, the LISnf neural field is only acting

in the input and associative maps, and it is parametrized in such a way that this requirement is met.

The activity bump that the neural field computes is actually the response of the map to its inputs

whether they are external (like thalamic inputs) or internal (like cortical inputs) to the architecture.

However, the input to the neural field could be a value computed on the basis of several input types

received by the map units (as explained further). When an activity bump emerges in some region

in a map, the units in that region are the ones to which learning is applied. Learning occurs in the

units prototypes (the case of input map), and in the inter-map connections. Let us emphasize again

that driving self-organization by neural fields reveals to be difficult as explained in [Alecu 2011c].

As mentioned before, inter-map connections are arranged in strips. Each unit in some local

map is connected to a set of units in the remote map. A local map unit with position p in the two-

dimensional map space is connected to a subset of units in the remote map, the units within this

subset of remote map units are located within a strip-shaped region in that map (see figure 6.5). For

now, we note this strip region with the generic notation Sp, which signifies the existing connections

between the unit at the position p in the local map with the units at positions q ∈ Sp in the remote

map. The set of all strips connecting the units of the local map with the units of the remote map are

denoted by S .

Each cortical connection within a strip, that connects a local unit p with a remote one q ∈ Sp

handles a weight whose current value is s̄pq(t), this weight is referred to as cortical weight. The

strip Sp owned by p handles a vector of cortical weights S̄p(t) = (s̄pq(t))q∈Sp
.

Strips are characterized by their width and direction. The width of a strip is expressed by its

half width ρS . The direction ψS of a strip refers to the angle of the axis connecting the centers of

the local and remote maps relative to the horizontal axis (see figure 6.5). We note the activity of

a unit at the position p at time t as up(t), and the vector of remote unit activities perceived by p

through the strip Sp as Sp(t) = (uq(t))q∈Sp
.

Now that the generic definitions are presented, we can specialize the generic notation of the

strip according to the remote map name, so in figure 6.5, the notation S is replaced by A, I,D
according to the initial of the remote map (the name of the map where the information originates).

In bijama framework, units activities are computed using a layered stack of computational

modules that defines the functional behavior of units. In the proposed model architecture, units that

belong to some map have the same stack composition. Each module in the stack handles a scalar
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value that is either received as an input or computed on the basis of scalars in lower modules in the

unit stack. The dependency between modules follows the ascending order, i.e. each module can

compute its scalar on the basis of lower modules scalars. With this flexible stack building method,

it is possible to define the behavior of a unit with a reasonable freedom, adjusting the number of

modules in the stack to the need, but always respecting the ascending modules dependency. The

stack of modules for the three maps units and their interconnectivity within the architecture is

illustrated in figure 6.6.

The uppermost module of each unit stack is the one holding the unit activity up(t). When

remote maps read the activity of the local map units, they actually read this module of the unit

stack, i.e. this is the module accessed by cortical connections in order to read the unit activity.

When a map computes its activity by a neural field (case of input and associative maps), thus, the

uppermost module that handles the unit activity is the neural field module.

In the case of the proposed architecture, the neural field module implements the LISnf algorithm

with the input i to the neural field (refer to 5.9.6) being the scalar handled by the previous module

in the unit stack. As shown in figure 6.6, i = µ for the associative map and i = ν for the input

map. Both values are not pure inputs, they are computed as combinations of other inputs to the map

units.

Let us now describe the composition of the stack of modules for each of the architecture maps,

and the computation carried out by each stack module. Figures 6.6 and 6.7 help reading the

descriptions that follow.

A unit in the input map receives two inputs, the external input is the elements o(t) of the stream

of observations, and the internal input is delivered by connections within the strips A originating

from the associative map. The activity of the input map units is computed starting from these two

inputs. The LISnf neural field uses a computed combination of these inputs and computes the

activity of the units that form an activity bump in some localized map region. The latter will be

shown in the experiments to correspond to a valid representation x̂(t) of the dynamical system state

x(t).

The lowermost module in the stack of a unit p in the input map handles the external input o(t).

As the external input is called thalamic input, this module is referred to as the thalamic module.

The thalamic module matches its received input o(t) against a stored prototype ωp(t) also called

the thalamic prototype, and computes the matching value θp(t), also called the thalamic matching

which decreases with the distance between the compared values:

θp(t) = exp

(

−(o(t)− ωp(t))
2

2σ2

)

(6.1)

The value of thalamic matching is kept in the range [0, 1], this is also the case for all maps stack

modules. Both the values of the thalamic prototype ωp(t) and the computed matching θp(t) are

stored in the thalamic module. Each computed value of each module in all the units stacks within a

map form an activity distribution over the map surface. Figure 6.7 shows the activity of all modules

in all maps. In that figure, the computed matching θp(t) for all units of the input map form the

thalamic matching distribution noted θ.

The next module in the stack of unit p in the input map is called the cortical module. This mod-
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ule handles the strip Ap originating from the associative map. Similarly, it computes the matching

value cp,A(t) between the weight vector Āp(t) of all connections within the strip and the vector

Ap(t) of remote units activity in the associative map that are within the strip connections. The

matching, called the cortical matching is computed as follows:

cp,A(t) =

〈

Ap(t).Āp(t)
〉

max
(

∥

∥Āp(t)
∥

∥

2
, B
) (6.2)

with B a numerical constant. Let us notice here that a similarity measure based on the Euclidean

distance is not a good candidate to compute the cortical matching. If both Ap(t) and Āp(t) are zero

vectors (due to initialization for example) this will result in a maximum cortical matching value,

whereas, it is not actually meant to be an actual matching.

The third module in the input map stack computes a scalar that is a merging of the thalamic

and cortical modules values; it merges θp(t) and cp,A(t) into one scalar νp(t), which is called

cortico-thalamic merging:

νp(t) =
√

θp(t). (β + (1− β).cp,A(t)) (6.3)

with β a constant that calibrates the participation of thalamic and cortical matchings in their

merge. Figure 6.8 shows the variation of νp(t) according to θp(t) and cp,A(t).

The idea behind this rule is that the activity perceived by the cortical connections is not suf-

ficient to activate the unit. A similar principle in neuroscience can be found in Grossberg ART

Model for visual attention [Grossberg 1976], which says that the input from remote cortical re-

gions in the brain is not sufficient to activate the cortical unit, but when a primary input exists then

cortical inputs can modulate the unit activity. It should be stressed at this point that we are not con-

cerned with any similarity with the brain neuroscience, as our approach is related to computational

cellular structures for temporal sequence processing. Instead, we explain the absorbing nature of

the thalamic activity in the cortico-thalamic merging from the perspective of temporal processing:

essentially, the activity of the associative map that is delivered to the input map via cortical connec-

tions is intended to deliver a signal related to the temporal context of the actually processed input,

thus it is expected to bias the activity bump within an active thalamic region, but, for the same

reason, it should not in any way be sufficient to activate a region where the thalamic activity is null.

The value of νp(t) forms the input of the neural field module, which is the uppermost module in

the stack of the input map units. This module computes the unit activity up(t) by executing lateral

competition between the map units in the way explained in 5.9.6. Thus, this module is referred to

as a competition module. The units activities are computed following the LISnf field equation in

distributed and asynchronous way as explained before.

LISnf behaves in such a way that the map regions that have low thalamic matching θ (see

equation (6.3) and figure 6.8 ) will have low neural field inputs i = ν even if they have high

cortical matching c. At a time step t, the activity up(t) of the map units will be distributed in such a

way that they have a maximum in the region of the two-dimensional map space where the external

input o(t) matches the best the stored prototypes ωp(t), i.e. in the region having the higher θp(t).

The participation of the cortical matching in the cortical merging is still important though, because
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FIGURE 6.8: Cortico-thalamic merging for β = 0.25.

it determines the bump position within the region that has the best matching θp(t).

Due to lateral competition, the activity of the neural field follows the shape of a bump even if

the input distribution to the neural field module has not a bump shape, although, the bump follows

the higher input activity. For example, in figure 6.7, although the input to the neural field (the

activity distribution ν) does not have the shape of a bump, the lateral competition executed by the

neural field resulted in a bump of activity around the higher input values (the activity distribution

u). When the bump of activity is computed, it is used to implement the WTM policy of the self-

organization algorithm. The activity value up(t) of a unit p computed by the neural field is used to

modulate the learning of the thalamic prototype of unit p. The learning moves ωp(t) towards the

input o(t) proportionally to the unit activity value up(t):

ωp(t+ 1) = ωp(t) + αω.up(t).(o(t)− ωp(t)) (6.4)

with αω a fixed thalamic learning rate, the same for all units within the map. As u has the shape of

a bump, only the units surrounding the best matching place actually learn.

Besides to adapting the thalamic prototypes, the computed unit activity is also used to adapt

the cortical weights within the strip that the unit handles. For each connection within the strip

owned by a unit, learning implies moving the cortical weight āpq(t) of a cortical connection towards

the connection input which is the activity uq(t) of the unit in the remote map accessed by the

connection:

āpq(t+ 1) = āpq(t) + αS .up(t).(uq(t)− āpq(t)) (6.5)

with αS a fixed cortical learning rate for all the connections within the architecture. The pre-

vious learning rule for the cortical connections implies that learning occurs only in connections to

active units in the local map; if up(t) is null then no learning occurs in the cortical connections

within the strip owned by this unit. Another remark is that the learning mechanism of cortical

weights in equation (6.5) is similar to that of thalamic weights in equation (6.4) which is respon-



182 Chapter 6. A Self-Organizing Cellular Model for Temporal Sequence Processing

sible of the self-organization of thalamic weights in Kohonen maps [Kohonen 2001]. The weight

āpq(t) is moved towards the connection input uq(t) (originating in the remote map) proportional

to the activity up(t) of the unit in the local map. This means that what happens to the weights

of cortical connections within each strip resembles to what happens to the prototypes in the basic

SOM.

The second map in the architecture is the associative map, it receives the actual activity of the

input map as well as its delayed activity maintained by the delay map. Both activities are delivered

by strips to the associative map. This neural field in this map performs lateral competition to

compute its activity which has also the form of a bump. This activity is then reinjected to the input

map via the strips A as mentioned before.

The lowermost module in the stack of a unit q in the associative map is a cortical module

that handles the strip Dq originating in the delay map. The next module is a cortical module that

handles the strip Iq originating from the input map. Both modules compute their matching cq,D(t)

and cq,I(t) respectively, in the same way as given by equation (6.2).

The third module in the stack of a unit in the associative map merges the scalars in lower

modules, and is referred to as cortico-cortical merging. It computes the merging µq(t) of the

cortical matchings cq,D(t) and cq,I(t) as follows:

µq(t) =
√

cq,I(t).cq,D(t) (6.6)

The value µq(t) is actually the input to the upper module, which is the LISnf neural field module

that computes the unit activity uq(t). When uq(t) is computed it is then used to modulate the learn-

ing of the cortical weights within the strips Dq and Iq in the same way as given by equation (6.5).

There is no thalamic learning in this map as it does not receive an external input.

The last map in the architecture is the delay map, it receives a copy of the activities of the input

map units via one-to-one connections (not strips) and delays them for a specified period T of time.

Its delayed activity is injected into the associative map dynamics via the strips D. The stack of a

unit p in the delay map has two modules. The first module is called the copy module, it copies

its activity up(t) from the activity of an input map unit uq(t), where p is a position in the two-

dimensional space of the delay map, and q is the same position in the input map two-dimensional

space. The second module in the stack is called the FIFO module which implements the delay.

The FIFO module contains a T -length FIFO queue that exposes its input on its output after T time

steps. Thus up(t) = uq(t− T ) for each unit p in the delay map and its corresponding unit q in the

input map. By means of this delay mechanism, the activity of the delay map at time t is the same

as the input map activity at time t− T .

Having presented the model architecture, it can be noticed that the architecture parameters are

independent from which dynamical system or observation stream it processes, thus it is a model free

architecture. After initialization, the architecture parameters (including learning rates) are left un-

changed during learning even if the input stream changes. This means that, unlike some other SOM-

based models, there is no need for decaying the learning rates, or the width of the learning kernel,

as usually done in models based on self-organizing maps [Carpinteiro 1999, Miikkulainen 2005b]

(and the previous chapter). This statement, in addition to the fact that there are no imposed initial
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conditions on the values of thalamic and cortical weights (they are initialized to random values in

the range [0, 1]) means that if the architecture succeeds to set up a representation for a specified

dynamical behavior, then it can succeed to re-adapt and set up another representation when the

system dynamics changes. This confirms that the architecture is system-independent, moreover, it

tells that it can cope with non-stationary dynamical systems.

6.3 Experiments

The experiments aim to test the capability of the proposed cellular self-organizing architecture in

temporal sequence processing. The architecture is tested in the particular example of extracting a

valid representation for the states of a dynamical system. We also test the adaptation of the repre-

sentation extracted by the architecture to the change in the evolution function φt of the dynamical

system. The proposed model is also compared to the RecSOM [Voegtlin 2002] reference algorithm,

which has been implemented for the sake of this comparison.

As shown in the further experiments, both temporal models are able to build a representation of

the dynamical system state based on their ability to consider the temporal context of the inputs. This

ability is rooted in two properties for both architectures: the self-organization that assigns different

representations for distinct input values on the map surface, and recurrence that differentiates them

and ensures assigning different representations to ambiguous observations that have the same value

o(t) but correspond to different system states by considering their different temporal contexts (recall

that ambiguous observations corresponds to distinct x(t)).

The experimental scheme presented next starts by verifying the self-organization capability

of the fine-grain and cellular implementation of the basic SOM algorithm. The next experiment

tests the capability of the proposed architecture to perform self-organization while considering the

temporal context of the inputs. This experiment shows how the proposed architecture is able to build

up a representation of a dynamical system state even though its receives ambiguous observations as

inputs.

Later we compare the behavior of the proposed architecture to the behavior of RecSOM for the

same inputs. An experiment simulates the case of a non-stationary dynamical system by changing

the evolution function φt, and shows how both architectures can reorganize to find another repre-

sentation that fits the new situation. Some other experiments aim to compare the properties of the

short-term memory and stability of both the proposed architecture and RecSOM.

6.3.1 Notations and representations

Before introducing the experiments results, let us explain some issues that concern all the intro-

duced experiments. In this section we explain how observations are sampled from the dynamical

system, and how they are introduced to the self-organizing architecture. It is also necessary to ex-

plain how the representation built up by the architecture and RecSOM is visualized and interpreted.

In order to facilitate the visualization of the architecture behavior, the thalamic prototypes ωp(t)

are coded in gray-scale colors (as figure 6.9-b). Values that are close to 0 are assigned the black

color and values close to 1 are assigned the white color. The colors on the map are used to repre-

sent the prototype values for each unit p in the map. When the maps is self-organized, organization
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appears as a continuous shade over the map surface. Regions of the map that have nearly uniform

prototypes define what we call a thalamic region. For example, there are two wide thalamic re-

gions (black and white) in figure 6.16, while figure 6.10 (bottom-right) shows a map tiled with six

thalamic regions.

The dynamics of the system is somehow subtle to represent. Consider the state of the dynamical

system at a time instance τ to be x(τ), the observation of the state is then O (x(τ)). This observa-

tion is the external input to the input map in the architecture (as depicted in figure 6.6, on the right,

the observation is the input to the thalamic module). The neural field mechanism requires a suffi-

cient time for the activity bump to form, and a sufficient time to adapt the thalamic prototypes and

the cortical weights during the learning process. For this reason, the input O (x(τ)) is maintained

for several time steps. We found experimentally that when using the LISnf neural field mechanism,

a value of T = 24 time steps is enough for bump formation to reach a steady state, then for learning

to occur. This is an improvement over the previous neural fields like Binp, that needed T = 100

time steps for the same phenomena to occur [Alecu 2011c], thus LISnf is quite fast as compared to

the Binp neural field.

So, in order to maintain the same input for a T time steps period of time, in all the coming

experiments, τ is incremented each T time steps. During this period, the same input O (x(τ)) is

presented to the input map, this can be expressed as follows: o(t) = o(t+1) = · · · o(t+ T − 1) =

O (x(τ)) and o(t + T ) = o(t + T + 1) = · · · o(t + 2T − 1) = O (x(τ + 1)), etc., where o(t)

is the input for the input map at time t. In order to have the whole architecture parts computing

consistently the same input, it is necessary to choose the T value to be the same as the length of

the FIFO queue (in the FIFO module) of the delay map, i.e. the delay should correspond exactly to

the duration T between two successive observations. In this notation, the time variable used for the

transitions in the dynamical system which was noted t in figure 6.4, is now noted τ , since t is now

used to refer to tinier time steps used in the architecture evaluation.

Recall what was mentioned in 6.1.5 that the input stream to the architecture is the repetition

of a periodic sequence of sampled observations, that is, a repetition of the sequence O (x(τ)),

O (x(τ + 1)), · · · , O (x(τ + n− 1)) where n is the sequence length.

In order to obtain a meaningful representation of the map response (activity bumps) to the input

stream, the positions of the successive activity bumps are plotted on the map surface. So, we plot

the response to the successive inputs O (x(τ)), O (x(τ + 1)), · · · , O (x(τ + l − 1)) with l > n.

We trace l positions that represent the map response to a larger number than the length of the

repeated sequence elements. This is not necessary though, but it aims to visualize the stability of

the map response through several repetitions of the sequence. The trace is obtained as follows: for

each time τ (at the end of each T time steps), the barycenter of the activity u of all map units is

computed and plotted on the map surface, since at this time, the neural field is expected to find a

stable bump for each input O (x(τ)). The barycenter is computed as follows:

G(τ) =
∑

p∈input map up(t).p/
∑

p∈input map up(t) (6.7)

It can be noticed that as the activity of the map has the shape of a bump, then, the computed

barycenter for all the map units corresponds to the position of the bump center.



6.3. Experiments 185

As revealed by the representations extracted in the coming experiments, the computed barycen-

ter represents the map state x̂(τ) at time τ (that is shown on the right in figure 6.4-b). From the

stream of such x̂(τ) positions at each transition of the dynamical system occurring at time τ , it

is possible to trace the recent positions at each time τ . The trace is made of the last l computed

barycenters (l = 50 in all the experiments), organized in a list P (τ) = {G(τ − l + 1), G(τ − l +

2), · · · , G(τ)}. They are drawn on the map surface in the form of a l-length path depicted in the

coming figures as a red poly-line (see figure 6.9-b for example).

The experiments in this section are all run with the same numerical values. In these experi-

ments we simulate the case of sampling noisy observations of the dynamical system. The actually

observed value O (x(τ)) (presented during T time steps) is the value represented by a gray-scale

color, and corresponds to a letter in the sequence : A = 0 (black), B = 0.2, C = 0.4, D = 0.6,

E = 0.8 and F = 1 (white). The noise noiseo is added to the input value, but the result after noise

addition is kept in [0, 1]. Noise is sampled from a uniform random distribution U [−0.05, 0.05].

Concerning the coming experiments in which we simulate a non-stationary dynamical system, the

change of the system evolution function occurs after the presentation of τ(s) = 25000 inputs.

The numerical values of the architecture parameters are fixed to the following in all the exper-

iments: the map radius is R = 15 units for all maps, up(0) = 0, ωp(0), āpq(0), īpq(0), d̄pq(0) are

initialized to uniform random values from U [0, 1], σ = 0.07, αω = αS = γ/T (see γ, T below),

B = 10, β = 0.25, ρI = ρA = ρD = 3. ψI = 90◦, ψA = −90◦, ψD = 0, T = 24, and l = 50.

The competition module is implemented by the LISnf neural field equation, with the following

parameters (as mentioned in 5.9.6): P = 0.3, δ = 0.333, ε = 0.02, and α = 20.

As we announced before, the RecSOM algorithm is used for the sake of comparison with the

proposed architecture. As explained further, its parameters are set such that it behaves in a similar

way to the distributed architecture. The numerical values of RecSOM parameters are given here

but their meaning is explained later, they are: λ = 10, η = 0.1, γ = 0.1, and Ω = 5.

6.3.2 Distributed winner-take-most self-organization

We start our experiments by testing whether a distributed implementation of the basic SOM

algorithm can also self-organize in the same way as the basic SOM introduced by Kohonen

[Kohonen 1997]. This implies testing if the winner-take-most (WTM) policy can be realized in

a distributed way using the LISnf neural field. For this purpose, we built a distributed version of

SOM using bijama . The distributed SOM architecture is similar to the architecture presented in

figure 6.6, but the latter is reduced to the input map alone.

When a single input map is needed, the two layers corresponding to the integration of the

associative map influence are removed (both the cortical and the cortico-thalamic merging modules

are dropped), so that the input map consists of the thalamic module and the neural field module on

the top of it (figure 6.9-a).

Although SOM self-organization is known to be difficult to obtain from usual neural fields

equations [Alecu 2011c], figure 6.9-b shows that LISnf was able to drive the self-organization to

obtain one similar to the topology-preserving self-organization that can be obtained by the basic

SOM algorithm (colors that correspond to close prototypes values are close on the map surface in

figure 6.9-b). In the same figure, there are 6 different thalamic regions (corresponding to thalamic



186 Chapter 6. A Self-Organizing Cellular Model for Temporal Sequence Processing

b)

 0  5  10  15  20  25  30
 0

 15

 20

 25

 30

E

D

C

B

A

The map after #12000 inputs

a)

F

FIGURE 6.9: a) Module structure of a basic SOM input map. The module representation
is the same as in figure 6.6, and the equations of the modules are the ones detailed in
section 6.2. b) Distributed WTM self-organization. The gray-scaled values correspond to
prototypes ωp(t), and the poly-line traces the succession of the l = 50 last bump positions
in the map. Each point of the poly-line is labeled with the input value presented at that
time. The repeated input sequence is the ambiguous S1 = ABCDEFEDCB sequence.

prototypes) colored with 6 different grayscale colors. This reflects that the input consists of 6

different values: from A to F . The trace of the map activity (bump position) reveals that the input

goes from A to F , then from F to A (the input sequence is S1 = ABCDEFEDCB). However,

there is no clear distinction between values occurring in each direction although the sequence is

ambiguous. For example, within the C region, there is no distinction between the C observation

received when the observation stream goes from A to F and the C observation received when it

goes from F toA. This is because the map is inherently not able to consider the temporal context of

inputs, just like the basic SOM, and is not related to the distributed implementation of the algorithm.

6.3.3 Disambiguation of observation stream

The result of the previous experiment is that the basic SOM can not differentiate input values

by their temporal context, instead, it assigns close input values to clusters of points in the same

thalamic region, which is not adequate for processing ambiguous temporal sequences. Now we test

the proposed recursive architecture (explained in 6.2 and depicted in figures 6.5 and 6.6) that uses

the principle of recurrence to see if it is able to consider the history of input values, or their temporal

context, to affect assigning representations for each of the stream elements that correspond to the
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FIGURE 6.10: Status of the input map during the system evolution as a response to
two input sequences. The two higher figures represent the map response on the first
ambiguous input sequence S1 = ABCDEFEDCB. The two lower figures represent
its response on the second ambiguous input sequence S2 = ABCBAFEDEF .

dynamical system observations.

For this experiment, the input is the repetition of the input sequence S1 = ABCDEFEDCB

which is the ambiguous one used with the past experiment, and noise is added to the inputs as well.

Let us recall that in the architecture, besides to the thalamic prototypes, the weights of cortical

connections within the strips are also adapted continuously during the experiment.

Figure 6.10 (top-left) shows the state of the input map at the experiment start. The thalamic

prototypes ωp(t) random initialization is still visible, and the random poly-line indicates that there
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is no useful representation at the experiment start. After the architecture processes sufficient repe-

titions of the input sequence, the spatial self-organization of thalamic prototypes occurs as shows

the figure 6.10 (top-right).

Let us analyze this resulting representation: each thalamic region in the top-right figure cor-

responds to a range of observation values. Each region contains the representation of one or two

observations that correspond to one or two system states, respectively. Consider for example the

black thalamic region that corresponds to observations close to 0. It contains the representation

of one system state that corresponds to the observation A, this observation is not ambiguous. The

two points marked D express non successive system states corresponding to the same observation

value, but occurring in different temporal contexts. By following the poly-line, it can be verified

that the order of D representations is conform with its order in the input sequence S1; it is once

preceded by C and once by E. The ambiguities of other observations B,C,E are also resolved

and two different state representations are assigned in each thalamic region. The result is that, the

architecture resolved the ambiguity of input values, and correctly assigned them to different repre-

sentations according to the input history of each input value. Differently speaking, the architecture

took the input observation stream and built up a representation that assigns them non-ambiguous

representations, a representation that maps to the states underlying these observations, although the

observations are ambiguous.

Unlike the representation of the experiment in 6.3.2, the built up representation does not only

consider the observations values, but also considers their temporal context, and the clusters of dots

(the vertices of the poly-line) map one-to-one to the underlying states of the dynamical system.

Hence, we can say that the representations x̂(τ) built up by the architecture on the input map

surface can be regarded a bijective mapping to the dynamical system states x(t), thus, the resulted

representation is indeed a valid state representation.

It should be mentioned that the duplication of state representations corresponding to the same

value o(τ) is formed progressively while the whole architecture gets organized. A “split” phe-

nomenon happens during the organization that makes the clusters of dots (observation values rep-

resentations) concentrated around one position split into two separate clusters of dots concentrated

around two distinct positions on the map surface.

Again, this happens due to the influence of the recurrent pathway in the architecture that con-

tains a delay mechanism. Recurrence with delay is responsible for implementing a form of short-

term memory that helps considering the temporal context. The context information is delivered by

the cortical connections within the strips, so that they bias the bump position within each thalamic

region in the input map depending on the history of this map activity. This allows to obtain multiple

bump positions within the same thalamic region, not just two, as shown in a further experiments.

6.3.4 State representing of non-stationarity dynamical systems

The continuity of the previous experiments concerns investigating the architecture response to a

change in the evolution function φt of the dynamical system, which corresponds to the simulation

of a non-stationary dynamical system. The change of the evolution function can be simulated by

a gradual or sudden change in the input stream of observations. In this experiment we dramati-

cally change the observation stream during the architecture run, after having set up the first state
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representation.

As already mentioned, this experiment is a continuity to the previous one. During the previous

experiment, the input stream is switched from repeating the sequence S1 = ABCDEFEDCB

to repeating the sequence S2 = ABCBAFEDEF . This occurs at time τ = τ(s), while always

adding noise to the inputs.

As mentioned in 6.3.3 that the sequence S1 is ambiguous, this is also the case for S2. For

example, in S2, the input value A is preceded once by F (as the sequence is presented periodically)

and once by B so it is ambiguous, while C and D are not, because both C and D are always

preceded by the same subsequence of values.

Figure 6.10 (bottom-left) shows the state of input map immediately after switching from S1 to

S2. The past organization of the map which was fitting S1 does not fit S2 anymore. For example,

the input F which was corresponding to one point representation in the map, is now ambiguous in

S2, thus it should be assigned to two distinct representations as it occurs in two different temporal

contexts. This exactly what happens, figure 6.10 (bottom-right) shows that the architecture seeks

another organization and finds another representation that forms a new correct mappings to the

dynamical system states corresponding to the sequence S2.

Let us detail two cases. The inputs A and F which were not ambiguous in S1 are ambiguous in

S2, so in the new organization, the architecture assigned two distinct representations to these input

values. During re-organization, the point clusters corresponding to A and F on the map surface

split after the sequence S2 is presented. Contrarily, the inputs C and D which were ambiguous

in S1 and were assigned two distinct representations are not ambiguous anymore in S2. The re-

organization assigned each of them only one representation. Contrarily to the split phenomena,

another phenomena happens in this case; during the architecture evolution, the previously dupli-

cated representations merge.

As a result of this experiment, the proposed architecture was able to build up a representa-

tion that maps to the state of the dynamical system, but was also able to re-adapt to follow the

system non-stationarity when the transition function φt changes, and set up a new correct repre-

sentation. It is convenient to notice that switching from S1 to S2 is done without any architecture

re-configuration or any further parameter resetting, thus the architecture is strictly online.

6.3.5 Comparison with RecSOM

In order to better judge the behavior of the proposed architecture we compare it with the Rec-

SOM model [Voegtlin 2002], usually used in literature as a reference recursive self-organizing

model.

RecSOM was introduced in 5.5.3 with a unified notations for SOM-based models in the pre-

vious chapter. Although, RecSOM equations are rewritten with a notation conformity with the

proposed architecture in order to reflect the existing similarity between the two models. For the

purpose of comparison equity, RecSOM parameters are set so that its behavior resembles the most

to the proposed architecture. During this revision, we take the opportunity to explain how inputs are

introduced to RecSOM, and how its evolution is computed, besides to discussing its representation

issues.

The structure of RecSOM is similar to figure 6.3, the context information c(t) is the map activity
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at the previous time step delivered by feedback connections. A RecSOM unit p receives two inputs;

the external input vector o(τ) which is compared to a feed-forward weight ωp(t) (or prototype), and

the activity vector of all units in the map at the previous time step which is compared to a weight

vector Āp(τ). The activity of a unit p is a matching value computed as follows:

νp(τ) = exp
(

−λ ‖o(τ)− ωp(τ)‖2 − η
∥

∥A(τ − 1)− Āp(τ)
∥

∥

2
)

(6.8)

with A(τ) the vector of all activities {νq(τ)}q∈map of the map units.

In this experiments, the RecSOM parameters λ and η are set such that their respective contri-

butions in the exponential are of the same order, and so that the computed matching νp(τ) has a

sensitivity similar to what is obtained from equations (6.3) (and (6.1), (6.2) as well, indeed equation

(6.8) is equivalent to that three equations).

Like in the basic SOM, the BMU is defined as the unit that minimizes νq(τ), noted k(τ) =

argminp∈mapνp(τ). The learning rules used to update the feed-forward and the recurrent weights

are:

∆ωp(τ) = γhpk(τ)(o(τ)− ωp(τ)) (6.9)

∆Āp(τ) = γhpk(τ)(A(τ − 1)− Āp(τ)) (6.10)

with hpq is a decreasing function of d(p, q), the latter is the Euclidean distance between the positions

of units p and q.

In his experiments, Voegtlin [Voegtlin 2002] used a narrow neighborhood function h, so that

the learning of feed-forward and recurrent weights occurs only in the winner unit. This implements

a winner-take-all policy, also called hard competition, rather than a WTM policy (thus called soft

competition). This results in K-means-like clustering of the inputs rather than self-organization.

For the sake of appropriate comparison of RecSOM with the proposed architecture, we slightly

modified the original neighborhood function used in [Voegtlin 2002], we replaced the original ex-

ponential function hpk by an arc of cosine. The chosen function is null everywhere except within

a limited radius Ω, simulating by this, the activity bump (the dark gray distributions in figure 6.7)

computed by the neural field in the proposed model. This choice is also more practical than using

an exponential as it avoids applying extremely small learning rates on far units from the BMU, thus

reduces the computation load. So, hpk is defined as follows:

hpk =

{

cos(d(p, k)π2 /Ω) if d(p, k) ≤ Ω

0 if d(p, k) > Ω
(6.11)

with Ω = 5 is the bump width set such that it fits the experimentally observed bumps width in the

proposed architecture. For the sake of comparison equity also, the learning rate γ is chosen to be

equal to the accumulated effect of the learning rates in the proposed architecture during T time step,

Indeed, o(τ) and o(τ + 1) are separated by T time steps in the case of the proposed architecture,

but with only one time step in RecSOM. Thus we put γ = αωT with αω the thalamic learning rate

defined in equation (6.4).

In his experiments, Voegtlin [Voegtlin 2002] applied parameter decaying, but in our experiment
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FIGURE 6.11: Status of RecSOM during the system evolution as a response for both
input sequences. The higher two figures represent the map response on the first input
sequence S1 = ABCDEFEDCB. The two lower figures represent its response on the
second input sequence S2 = ABCBAFEDEF .

we deal with RecSOM in the same way as we dealt with the proposed architecture in sections 6.3.3

and 6.3.4. In this experiment, RecSOM is tested with S1 and S2 like in those sections, without

parameter resetting, and with noise as well.

The representation in this experiment is extracted by the same logic as in past experiments,

except that there is one difference in the case of RecSOM, that is, new inputs are introduced to the

map at each time step, because in RecSOM, the soft competition is not driven by a neural field that

requires few time steps to relax to a steady state, instead it is carried out using a central processor.
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Thus, the representation is extracted in the same way explained in 6.3.1, by simply putting T = 1.

The results of sequence learning using RecSOM is shown in figure 6.11. Figure 6.11 (top left)

shows the initial state of RecSOM. As can be seen, the feed-forward weights ωp(t) are initialized

to random values as well. Figure 6.11 (top right) shows the map state when the representation

corresponding to S1 observation stream is extracted. It is analog to figure 6.10 (top right) of the

proposed architecture. This figures shows that, similarly to the proposed architecture, RecSOM was

able to set up a representation that resolves the observation ambiguity and form a bijective mapping

to states of observed dynamical system.

Figure 6.11 (bottom-left) shows the map state immediately after switching to the next input

sequence S2. Here, and similarly to figure 6.10 (bottom-left), the past organization that was fitting

S1 does not fit S2 anymore. Figure 6.11 (bottom-right) shows that RecSOM was able to re-organize

and find another representation that forms a new correct mappings to the dynamical system states

corresponding to the observation sequence S2.

To set it clear, the result from this experiment is that RecSOM was able, like the proposed

architecture, to extract a correct representation that maps to the dynamical system state, and able

to track the non-stationarity in the dynamical system, and set up a new correct representation when

the dynamical system transition function φt changes.

One additional issue to discuss about this experiment results from comparing figure 6.11 with

figure 6.10. It could be noticed that all the map surface in the proposed architecture was recruited

during the self-organization process, while in RecSOM, only a part of the map was recruited. The

representations of different values of inputs tend to be farther in the proposed architecture than in

RecSOM due the neural field mechanism.

As pointed out earlier, the internal dynamics of feedback SOM-based models is not clear yet,

we are not sure of the source of the difference in surface recruitment. Although, we experimentally

watched that the competition driven by the neural field in the proposed architecture tends to ex-

plore the available input map surface before arriving to a stable representation, whereas RecSOM,

searches to find a sufficiently correct representation and then stops exploring. The origins of the

exploration tendency watched in the proposed architecture, could be related to the effect of the pos-

itive feedback to the input map, that is known in control theory to result in instability, interpreted

here as exploration. Anyway, in a limited neural population, if the exploration itself is not limited,

it could be a source of instability, the latter issue is discussed in the next section.

6.4 Representation and stability issues

Experiments in the past section have shown that the proposed architecture was able to process a

stream of observations on a dynamical system and set up a representation that maps to the under-

lying system states, coping with observations ambiguity. They have also shown that this recurrent

self-organizing system can adapt its dynamics with the changes of the evolution of the systems

dynamics.

However, the proposed architecture is itself a dynamical system. Contrarily to the observed

dynamical system, which is autonomous, the architecture is not, because its dynamics is affected

by an external input, which is the stream of observations of the modeled dynamical system.
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As a dynamical system (and a complex system that exhibits an emergent self-organizing behav-

ior), the architecture exhibits a complex dynamics compared to the simplistic example dynamical

system, because first, it is non-autonomous, and second, because it is adaptive and online, which

makes its state subject to a more radical change. The architecture dynamics becomes simpler when

it reaches a stable representation. However, representation stability is not always guaranteed as

shown in the coming experiments, and in light of the complexity of the architecture dynamical sys-

tem and the difficulty of understanding recursive self-organizing architectures, formal justification

is hard to find, hence qualitative justifications are proposed.

Recurrence, that turns the architecture to be a dynamical system, endows it with the short-term

memory mechanism which, as explained in 4.2.3, is characterized by two measures: depth and

resolution.

The following subsections tackle the short-term memory and stability issues. The forthcoming

experiments use the same numerical values of model parameters as in the previous experiments,

except that inputs are presented without noise (i.e. noiseo = 0) hereafter.

6.4.1 Depth and resolution of the short-term memory

The presented architecture shares with RecSOM and many other recurrent neural networks, the

principle of recurrence with one time step delay (τ−1) (see figure 6.3), that corresponds to the time

separating the presentation of two successive inputs. Contrarily to what one may intuitively think,

these models can represent a temporal context with a depth larger than one, because recurrence

allows the model to take into account the direct past state of the model, but the latter also includes

information about past model states as well. Thus, having a one step delay does not restrict the

architecture to consider only the previous input as a temporal context. An example about that is the

actual experiment; when a sequence of observations AAAAAFF is presented, the fifth element A

is characterized by the precedence of four As before, and the first F by the precedence of five As.

Snapshots of the behavior of the proposed architecture are shown in figure 6.12. It can be seen

that only one region representing allAs, and other region for all F s are emerged. Then, each region

splits to create new state representations, that split in their turn in order to fit the number of am-

biguous observations in each region and assign them the adequate state representations. Subsequent

stages of split are illustrated in figure 6.12. The RecSOM algorithm behaves similarly concerning

representation splits, however, it has a deeper short-term memory. In order to test the memory

depth, we show the results of experiments carried out on sequence lengths where the proposed ar-

chitecture starts to reach the limit of its representation power . Figure 6.13 shows the representation

set up by RecSOM for sequences containing 7 and 8 successive As. The representations set up

by the proposed architecture for the same sequences are shown in figure 6.14. Figure 6.14 (right)

shows that the architecture started to suffer in representing the sequence with depth 8, unlike Rec-

SOM in figure 6.13 (right) which represents it correctly. This figure is captured as the best snapshot

resembling to a correct representation. In this very experiment, the depth of short-term memory

seems to be sufficient to capture the temporal context, but the resolution is not sufficient to cor-

rectly represent it. This is because the architecture have already distinguished 8 different clusters,

but didn’t cluster them correctly.

Just to mention, in our experiments, we found that the implemented RecSOM can con-
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FIGURE 6.12: The mapping of the AAAAFF sequence: The figures show how subse-
quent splits emerge. In this experiment the short-term memory depth is 5.
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FIGURE 6.13: RecSOM mapping for sequence AAAAAAAFF (left) and
AAAAAAAAFF (right).
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FIGURE 6.14: Architecture mapping for sequence AAAAAAAFF (left) and
AAAAAAAAFF (right).

sider sequences up to a degree 13 (requiring a memory depth 13), while in the original work

[Voegtlin 2002], the average reached depth (Voegtlin calls it the “quantizer depth”) is 7.08 (av-

erage length of the receptive field, the latter is defined in 5.5.3), however, in that experiment the

input was a corpus of English language, so the map should represent the temporal context of much

more inputs, which makes both situations not comparable.

One important remark concerning experiments in this subsection, is that it appears that the or-
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FIGURE 6.15: Prototype organization by the architecture by time. The figure shows how
the extracted representation slides during different stages of the system evolution. This is
the continuation of the experiment in figure 6.12.

ganization of prototypes by RecSOM is stable, while it continuously “slides” with the architecture.

In order to illustrate this, figure 6.15, shows the continuity of the map evolution of the same se-

quence used for figure 6.12. It shows that different mappings of the same sequence can be observed

at different stages of the architecture evolution. This unstable mapping is discussed in the next

subsection.

6.4.2 Mapping instabilities

In the previous experiments, some instabilities have been observed at the level of the mapping of the

states of the external dynamical system over the input map surface. This corresponds to continuous

changes in the topology preserving mapping. Topology preservation which characterizes the basic

SOM, is not always guaranteed in the case of temporal SOM-based models, it could sometimes

break out. This phenomena is studied in [Tino 2006] for RecSOM. As that work shows, tackling

this subject formally is complicated, but it is more complicated in the case of the proposed archi-

tecture that is multi-map and uses a neural field and the inter-map partial connectivity. Besides, as

mentioned in 5.5.3, the instability issues addressed in RecSOM are indeed a different problem.

In order to reveal more about the instability problem in the proposed architecture, we present a

straightforward example. In a new experiment, the architecture is provided with the repetition of a

short sequence of observations AAFF as input. As expected from the architecture, it can be seen

in figure 6.16 that it is able to map the four states underlying this sequence of observation to four

positions in the map surface in spite of observation ambiguity, but the same figure shows that the

mapping continuously drifts over the map surface, but the mapping remains correct (this also what

happens in figure 6.15). Sometimes, during the drift, separate states can merge inappropriately but
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FIGURE 6.16: A straightforward unstable mapping example. The representation of the
sequence is AAFF is drifting on the map surface.

re-split after a while. RecSOM taking the same sequence as input does not exhibit any drift (see

figure 6.17).

In order to investigate the reasons for this occurring instability, we consider again the input

sequence ABCDEFEDCB, as in figure 6.10 (top right), but the architecture is run this time with

a smaller maps size. Recalling that there is no noise in these experiments, the result is shown in

figure 6.18(a). As shown in this figure, the second input map snapshot is taken after presenting suf-

ficiently large number of inputs after the first snapshot. It is obvious that this time, the architecture

formed a stable representation. Although, the mapping is not correct; this is because the input map

is not wide enough to allow for the splitting of C and D regions. With the same maps size, we
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FIGURE 6.17: RecSOM set up a stable representation for the sequence AAFF .

run another simulation with a simpler sequence ABCDEF , which is not ambiguous, the result is

shown in figure 6.18(b). Contrarily to the case illustrated in figure 6.18(a), the mapping is correct

but instability re-appears; the representation is rotating slowly.

Here, a qualitative explanation of this difference in behavior stability is proposed. We have ob-

served during the experiments run on the proposed architecture that the organization of the network

looks like an expansive process: the position of the poly-line vertices evolve as if they were repul-

sive. This can be watched in figure 6.12, where the distance between the nodes tends to increase

when the points in some region split.

This mapping expansion occurs also in figure 6.18(a) for the sequence ABCDEFEDCB, but

the mapping is kept confined within the small map so that it is bounded by the lack of surface

available for the representation. It seems that, during the expansion in this case, the direction of

vertices movement is related to the order of elements in the input sequence. When elements order

contain a change of direction, or a U-turn, the mapping tends to be stable. This could be due to the

effect of the self-organization of cortical weights within the strips between the maps (As one can

imagine, the visualization of their dynamics is very difficult), we think it is possible that cortical

weights learning (that also results in a bump of high cortical weights within each strip) makes the

higher weight region (the bump within the strip connections) drifting in one side then in the opposite

side when the input sequence makes the U-turn (at A and F ). Thus, the higher activity of cortical

weights within the inter-map strips is swinging in the case of ABCDEFEDCB (figure 6.18(a)),
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FIGURE 6.18: Mapping instability on a smaller map. See text for detail.

instead of continuously drifting (in a circular way) in the case of ABCDEF (figure 6.18(b)). As

a result, the fact that points A and F in figure 6.18(a) are trying to move in opposite directions is

thought to give the stability in the confined space of the map, while for the sequence ABCDEF ,

there is no direction change and the vertices of the poly-line turn coherently with the sequence of

inputs (counter-clockwise in figure 6.18(b)). Unfortunately, tackling mapping instability revealed

to be difficult, and the presented explanation is only qualitative, a more formal approach of the

mapping instability is in perspective.
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6.5 Discussion

In this chapter, we introduced a multi-map recurrent self-organizing architecture, built using the

bijama framework for fine-grain modeling, and following the neural field paradigm for decen-

tralized lateral competition, making of it a cellular computing model.

Let us recall that at the beginning of this manuscript, we set our research objectives to attain

a cellular computing architecture capable of processing temporal sequences. The previous chap-

ters included preliminary introductions to understand the model proposed in this chapter, including

fine-grain and cellular computing paradigms, the theoretical models of computation, the neural

paradigms for processing temporal data, the paradigms of SOM-based models conceived for tem-

poral sequence processing, and the dynamic neural field theory for distributed computation. Based

on these preliminary introductions, in this chapter we introduced the model.

During the way, we made the best effort to criticize our proposed model. One central criticism

concerns the topographic locality required by cellular computing as set by Sipper [Sipper 1998b],

and said that our proposed model can be regarded as cellular with a kind of mitigated percep-

tion concerning this very point, and explained that applying the WTM policy using a distributed

paradigm of neural field requires inhibiting all possible bumps from emerging elsewhere in the

input map. This required overtaking the topographic locality condition, all while meeting the func-

tional locality and decentralized nature of cellular computing. With this consideration, the model

reveals to be a cellular model (in the mitigated sense) capable of temporal sequence processing.

Another criticism concerns the occasionally encountered instability of the extracted representation.

Before discussing stability issues furthermore, let us first step back and try to look at the archi-

tecture, also at the dynamical system, from the perspective of theoretical models of computation.

The autonomous dynamical system can be regarded as an autonomous automata (defined in 3.2.1),

which is an FSM that has no output, and its input set contains only one element. This element could

be thought of as an internal triggering signal that controls the state transition. In the case of the ex-

ample wheel dynamical system, it is the force turning the wheel. The states of this autonomous

automaton are observed and introduced to the architecture.

In its turn, the proposed architecture implements a neural state machine. Indeed, it takes as input

the stream of observations on the autonomous dynamical system, and rebuilds a representation of

its internal states, each steady state (that corresponds to a stable bump) can be regarded as a state of

the neural state machine. As an FSM it has a finite dynamic memory. It is finite in the architecture,

because it has a limited memory depth with which the resolution is sufficient to correctly extract

the representation of the input observation. From the point of view of a state machine, we account

only for the reliable memory depth, which it is limited as in all realistic models. Same can be said

on RecSOM.

Depending on the perspective, the FSM that the architecture implements can be regarded as

semiautomaton or a Moore-type state machine with output. Specifically, from an internal perspec-

tive to the architecture, the activity of the input map is considered as a part of the state, i.e. not an

output. In this case, it is a finite neural state machine without output, i.e. a semiautomaton (also de-

fined in 3.2.1). From an external perspective to the architecture, the input map activity (or even the

position of successive bumps) is considered as an output. This output is computed after the input is
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processed and the next state is reached, thus it is a Moore-type neural state machine, recalling that

computing the output after the new state is reached makes the FSM a Moore-type machine.

The idea that motivated bijama was, in the first place, to provide a construction sets for

complex distributed fine-grain multi-modal computing systems. The bijama framework along

with the InterCell high performance parallel computer, allow for the definition and run of

large systems of such characteristics. In this work, we introduced and tested a new kind of build-

ing brick in bijama construction set, bringing to it, recurrent self-organization with a cellular

implementation, and the ability to process complex sequences that require the accounting for the

temporal context of the model inputs. This ability was introduced in the form of an example appli-

cation, aiming to build a mapping to the state of an autonomous dynamical system. It was chosen to

be autonomous for the sake of simulations simplicity. Another reason is that, during this research

work, the architecture was thought of as a part of a cognitive agent able to autonomously cope with

POMDP problems, the latter requiring the agent to perform actions in the environment. However,

and generally speaking, there is nothing that prevents the proposed architecture to cope with the

problem of setting up a mapping to the states of non-autonomous dynamical system, if the input to

the latter system is delivered by another source than the agent itself.

We think that this work is a natural continuity to previous work in our lab. In the mentioned

previous works, Kohonen self-organizing maps has been adapted to bijama , and this was recalled

by experiments in figure 6.9 (using a different neural field). For comparison, RecSOM algorithms

was adapted to behave similarly to the proposed cellular and distributed architecture. The proposed

model could be somehow thought of as a cellular version of RecSOM, adapted to fine-grain and

cellular computing requirements. In fact the recurrent path is not exactly the same; the binding

mechanism requires strips in both directions between the input and the associative maps.

Nevertheless, bringing the RecSOM paradigm into bijama implies two major modifications

on its algorithm. The first modification is the use of a neural field for the winner-take-most com-

petition process, instead of applying a neighborhood function around the best matching unit. This

point is critical as investigated in [Alecu 2011c], as bijama implements distributed computing

and offers no central processing capability. This is why LISnf neural field was used in this work,

selected as it offers more accurate winner-take most policy than other neural fields.

The second major modification, which is desired but not obligatory in bijama , is related to

the computation load of the architecture. This modification requires changing the way of delivering

the temporal context itself (c(t) in figure 6.3). For RecSOM, the matching distribution A(τ) of the

whole map is used as a context presented to all units (equation (6.8)). This matching distribution

is analog to the distribution of νp(τ) in the input map of the proposed architecture (equation (6.3)),

but in the architecture, a more reduced information is used as a context. Indeed, the u distribution

(figures 6.6 and 6.7) is rather used as a context, which is analog to hpk(τ) values in equation (6.10).

Moreover, as opposed to RecSOM, the map units do not share the same context information, since

they only view the remote u values from their limited connection strip, which means that in some

timestep, units receive a partial context information, different from what other units receive. The

partial context information could justify the lack of memory resolution compared to RecSOM.

Although, the architecture was able to keep a sufficient memory resolution at an important depth,

this is because the important information within the map surface is restricted to the bump region,
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which can be coped with by using partial connectivity especially after the binding mechanism

emerges. Nevertheless, the main concern here, related to adjusting RecSOM to the requirements

of large scale modeling with bijama , is that such partial connectivity allows for the design of

big maps, since in this case, it will be less subject to combinatorial explosion than the all-to-all

recurrent connectivity of RecSOM.

From our experiments, it appears that the implementation difference between RecSOM and the

proposed cellular, temporal and self-organizing architecture, does not affect the behavior expected

from such models. However, with the proposed architecture, an instability is sometimes observed

when mapping the dynamical system states over the input map surface. In fact, with the basic SOM,

and with SOM-base temporal models (including the proposed model and RecSOM), several map-

pings of the inputs are actually possible (figure 6.14-right exhibits this effect), and the organization

converges to one of them. However, with the proposed architecture, when instability is observed, it

seems that these possibilities are continuously visited, following a smooth drift, except if the size

of the map or the nature of the input sequence constraints that drift.

As far as we know, this kind of instability (which is different from instability definition for

RecSOM), has not been reported or tackled in the literature of self-organizing models. It appears

that addressing more complex computational self-organizing systems, like the proposed architec-

ture, unveils such complex dynamics. The representation visualization method proposed in this

work, i.e. the path of successive bump positions in the figures, allowed to capture the dynamics and

exhibit the instability phenomena. However, more formal tools for analyzing what happens in such

neural architecture are lacking in this work, and in literature.

Such a drift in the extracted representation is not without undesirable effects. During the drift,

correctly differentiated region may collapse, and re-split afterwards. Although this does not happen

with all map-sizes and sequence configurations, and although if this happens, it sometimes happens

during small periods relative to the simulation evolution, this instability remains problematic. As

the architecture could be used as a building block for more complex larger-scale systems, unstable

map states may prevent other blocks that read the map activity from being able to learn from bump

positions within the self-organizing modules (the input map). In other words, it will be difficult

in this case to an artificial structure to differentiate the change in the bump positions due to a drift

or instability, from the change due to the non-stationarity of the dynamical system providing the

inputs.

However, as suggested by the experiments shown in figure 6.18, it is possible that adding more

constraints leads the system to stabilization. Hence, it is possible that coupling the architecture to

several other self-organizing modules in a larger system, which is feasible in bijama , impose

more ties that constraint the architecture dynamics, and possibly leads to a stable representation.

Such test is relevant, even if the instability of mapping is not solved, in order to see if this instability

disappears when several self-organizing modules are coupled together. Indeed, we live in universe

that consists of a huge, maybe infinite number of interacting cellular structures, it is not sure that

they will be stable in the situation of absolute isolation.
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Conclusion

Science allowed the Human to get more control on the elements of nature around him, and during

the centuries, he has developed mathematical models for the surrounding phenomena. The utility

of mathematical models often relies on the ability of computing them, in order to make a practical

use of the results of computation.

Computation was developed step by step since the early ages, but its development has witnessed

a remarkable acceleration in the past 80 years, that ended by our actual information age, which

requires increasing computational power every new day.

In order to increase the available computation power, coupling the available computing hard-

ware in parallel structures was the solution for few decades. However, the urge for unveiling new

computation power and methods was motivated by two factors. First, until now, the attained com-

putational power is not sufficient to compute all the existing mathematical models, some of which

obliges scientists to work on simplifications of these models or to partition tasks that take long time

to run. Although, the existing computational models did not meet their ambitions, for example

like carrying out a simulation of a realistic model of the human brain. Second, not every natu-

ral phenomena has yet a mathematical model, as for example, complex systems whose interesting

emergent behavior results from the interaction of their basic elements. Such systems should be sim-

ulated in order to be understood, they are typically of large size, and require looking for alternative

ways to compute them.

Both reasons led the scientists to revise the existing computational models, and study their limi-

tations and perspectives. They found that for reasons related to the laws of physics, the development

of the hardware implementations following the actual computation paradigms and using the avail-

able technologies will not meet the increasing need of science such as physics and economy, not to

mention astronomy. Hence, they started to discuss another computing paradigm that can offer more

computational power and cope better with complex problems. This paradigm is motivated by the

actual information in physics and biology, that allows to regard the interaction of the elements in

nature as a sort of computation that occurs on the level of basic physical and biological cells. This

idea was proposed in computer science since about 15 years, and is sometimes referred to as “fine

grain computing”, and some other times as “cellular computing”.

In chapter 3, and before introducing the cellular computing paradigm, we made an effort to

trace the story of the actual computation paradigm since its very start, which dates back to the first

efforts of Alain Turing and John Von Neumann. The latter came with a sequentially computing

machine which became the corner stone for the later parallel structures of computations until today.

The efforts of Turing led to the definition of computability and computable functions, which later

allowed Chomsky to put his hierarchy of formal grammar and the theoretical models of computation

that compute them. The reason why these works are discussed, is that they are general, and can be
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applied in studying whichever paradigm of computation.

We then presented a comparative study of parallel computation paradigms, and distinguished

between the prevailing parallel computation paradigm, the “coarse-grain” and the “fine-grain”

paradigms of parallel computation. We first revised coarse-grain models that encompass almost

all the actually existing computational structures that consist of agglomerations of Von Neumann

machines coupled in parallel.

Then we discussed fine-grain models that rely on populations of simple processors working in

parallel, and presented their three major families in computer science: cellular automata, cellular

neural networks, and artificial neural networks, and discussed their properties and their capability

of universal computation.

We then presented the cellular computing paradigm that adopts the principles of computation

in nature that give rise to emergent behavior, and proposed to distinguish cellular models from

fine-grain ones by regarding the former as a sub-family of the latter, adding the decentralized and

local computation conditions (where locality encompasses two types: the functional locality and

the topographic locality) to parallelism and simplicity of fine-grain models. Indeed, there are very

few research works concerning the fine-grain parallel models, and a deeper comparative studies of

models is required.

Until recently, such large-scale nature-inspired parallel models was not possible to simulate

due to the lack of the sufficient computation power. Such domain is in its infancy, and is far

from being used for general-purpose computing. This led scientists like Wolfram to recommend to

start studying the cellular structures and document what they do and build a kind of a centralized

knowledge library that could be a reference for future research. This research work is an effort in

this direction.

We have set our research goal to construct a cellular computing model based on artificial neu-

ral networks, and to use them in processing temporal sequences. Neural models for this kind of

tasks already exist, but not in a cellular form. Due to the difficulty of implementation, they only

incorporate small populations of neurons with a limited extensibility into large scale systems. En-

dowing neural models with the cellular computing properties allow for implementing unprocessed

large-scale neural models.

Unlike the already existing cellular models (cellular automata and cellular neural networks,

studied in chapter 3), neural networks have powerful adaptive properties that make them fit with

temporal problems such as the online interaction with dynamical systems.

Neural models for temporal sequence processing were revisited in 4, after studying and differ-

entiating temporal sequences and time series tasks. The major goal of that revision is to reveal that

none of the existing models is cellular. Indeed, these models either contain highly non-local con-

nectivity, or their computation is not decentralized, which makes their large-scale implementation

on hardware and coarse grain parallel computers very difficult. Among the different existing mod-

els, those recurrent ones implementing feedback turning the network to a dynamical system offer

good temporal processing capabilities with smaller-size architectures that need less computation.

Chapter 5 was dedicated to the state of the art of a special kind of neural models that was not

until recently used in temporal tasks, which are self-organizing neural models. It was shown that

most of these models are based on the self-organizing map by Kohonen. Here too, models that
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implement feedback connections are more powerful and have interesting characteristics, but also,

it was shown that they do not fit with the requirements of the cellular computing paradigm. In this

chapter, we also introduced the theory of dynamical neural fields, and showed how they are able

to drive the competition mechanism in self-organizing maps in a distributed and decentralized way,

i.e. in a way conform with cellular computing requirements. Although known to be difficult to

correctly drive self-organization, we selected to our model a new neural field algorithm, developed

in our lab, that can cope with this task.

In chapter 6, we presented the model that we proposed. It is a multi-map neural model that

consists of a modified self-organization map, coupled in a recurrent path with two intermediate

maps. The first one performs delay and keeps a delayed copy of the original map activity. The

second one acts as a signal exchange medium between the actual and the delayed states of the

self-organizing map activity. This recurrent path, implemented by inter-map strips of connections

avoids the combinatorial explosion of total connectivity. The activity of each map is computed by

distributed lateral competition carried out by the neural field, making of the architecture a cellular

computing system. Considering the recurrence implemented by the recurrent path but also recur-

rence implemented on the level of each map by the neural field mechanism, the model turns out to

be a dynamical system. The neural model is also adaptive, learning occurs in the self-organizing

map prototypes, and in the inter-map connections, which makes the system dynamics pretty com-

plex. The difficulty of a formal study of such model dynamics makes it indeed a complex system,

especially because it consists of a population of interacting units that exhibit an emergent behavior,

namely self-organization, which is a remarked pattern in other complex systems in nature. Under-

standing less complex temporal models based on self-organizing maps was reported in literature to

be difficult as well.

The proposed model is implemented using bijama framework dedicated for modeling fine-

grain systems, which is run on InterCell supercomputer (a coarse-grain parallel architecture).

The model is inherently unsupervised, and its update is indeed distributed and asynchronous due to

bijama properties. The model ability to process temporal sequences was tested on the example of

processing a stream of observation on some dynamical system. The system is chosen such that the

sequence of observations be non-Markovian or ambiguous, i.e. some different states result in iden-

tical observations. The model was shown to be able to process the observation stream presented as

its input, and resolve its ambiguity, such that it forms a representation for each observation on the

surface of the self-organizing map, while considering the temporal context of observations. Differ-

ently speaking, the model was able to assign different representations to identical observations that

occur in different temporal contexts. Indeed, recurrence in the proposed architecture resulted in an

internal dynamics that implements a short-term memory used to hold the context information. By

assigning different representations to identical observations, we traced the succession of individual

observation representations, and showed how the result forms a temporal representation that maps

to the observed states of the dynamical system, i.e. the architecture was able to extract a represen-

tation of the dynamical system state space starting from an ambiguous stream of observations on

the system.

We also simulated the case of non-stationary dynamical system, by changing the sequence of

observations, and showed how the proposed model was able to set up a new representation that
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maps to the new system state. It was shown that the proposed approach is online, and model free as

it does not need to consider any information related to the observed dynamical system. The model

is also autonomous as no resetting nor turning to any of the model parameters is required after the

start of the run.

In order to judge the behavior of the proposed model, we implemented RecSOM algorithm,

which is used in literature as a benchmark model for self-organizing temporal models. The im-

plementation of RecSOM was adjusted to reach the maximum equity for comparison. It has been

shown that the proposed model, although its cellular implementation, performs in a similar way to

RecSOM in temporal sequence processing. However, some behavioral remarks were drawn. The

first remarks concern the depth and resolution of the short-term memory. It has been shown that

RecSOM overcomes our proposed model, basically due to the loss of information because of the

use of partial connectivity for signal feedback instead of total connectivity as in RecSOM, but it

was discussed that such total connectivity does not remain practical when implementing larger-

scale models. The second remark concerns an observed instability of the extracted representation

by the proposed model with some characteristics of the input stream. As far as we know, this in-

stability of this kind has not been reported in literature, and might be unveiled at the occasion of

implementing such a complex cellular architecture. Because of the difficulty of studying temporal

models based on self-organizing maps, we presented a qualitative study of this instability facilitated

by the proposed representation visualization method.

Incoming works will be twofold. First, a better understanding of the mapping instability will

be investigated, from very simple examples as the one in figure 6.16. Second, coupling several

recurrent self-organizing modules in bigger architectures has to be tested. This is feasible since

bijama is designed for a cluster implementation. Such test is relevant, even if the instability of

mapping is not solved, in order to see if this instability disappears when several modules are cou-

pled. It is suggested by experiments (showed in figure 6.18) that having more constraints stabilizes

the system.

A possible work that can use the proposed model, is dynamic modeling used in some appli-

cations like system identification. System identification resembles to time series prediction in

that both are the engineering embodiment to the old problem of function approximation. Each

of these problems seek to quantify the system that created the time series by estimating its parame-

ters [Principe 1998].

The traditional way was to estimate the system parameters by linear models [Box 1976], by

assuming that the time series is generated by a linear system excited by noise. In this approach, the

inaccuracy of time series is attributed to the stochastic nature of noise, which can not be modeled.

The dynamic modeling approach appeared in mid 1990’s [Principe 1995], in which the time series

is viewed as the output of a deterministic, autonomous dynamical systems. In this approach the

variability in time series is not attributed to the nature of the excitation, instead, it is linked with

the high order dynamics and nonlinear nature of dynamical systems. In dynamic modeling, the

model could be a either a non-linear system, or a linear system with time-varying parameters in

order to avoid the trivial dynamics of invariant linear systems. Modeling a dynamical system could

be thought of as finding a model that works as an inverse function of the original system.

Dynamic modeling consists of two steps. The first is to transform the observed time series into
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a trajectory in a reconstruction space. The second step is to build the predictive model that gives

the future values of the time series starting from the trajectory in the reconstruction space. For this

purpose, any adaptive nonlinear system could be trained as a predictor. This step is straightforward,

while the first step is the most important one.

The evolution function of the dynamical system is normally unknown, thus the observations

on the system are used to build the dynamic model. The sampled observation stream is proved by

Taken [Takens 1981] to be sufficient to create a trajectory in the Euclidean space, all while pre-

serving the dynamical invariants of the original dynamical system. However, there are conditions

that lie the size of the sampled stream with the dimensions of the system attractors in the geometric

space. Using the observation stream, it is possible to recover information about the dynamical sys-

tem in the Euclidean space, which is the construction space. Recovery is carried out by constructing

a mapping from the dynamical system space (a manifold) to the Euclidean reconstruction space,

the process is called an embedding (and the theorem is called Taken’s embedding theorem)). For

this purpose, usually a delay line of N − 1 length is used to represent the N system observations.

The process of dynamic modeling is illustrated in figure 7.1.

FIGURE 7.1: Nonlinear modeling. Extracted from [Principe 1998].

The proposed model in chapter 6 performs the first step of dynamic modeling differently. It

builds a mapping to the dynamical system state using vector quantization biased by the temporal

context of input observations. In fact, it does more than the embedding in the reconstruction space:

it represents the trajectory in the reconstruction space.

In the proposed model, observations of the dynamical system are not buffered, but they are

rather taken when they are available and are presented to the model one by one online. Thanks to

recurrence, there is no need to an explicit delay line for embedding, instead, a short-term memory is

constructed intrinsically in the model structure. In order to complete the dynamic modeling, for the

purpose of system identification for example, it is sufficient to train some temporal neural network

that takes as inputs the activity of the map and predicts the next values in the time series.

Concerning the perspectives from this research work, our long-term goal is to design con-

trollers in the field of cognitive robotics, the work presented in this manuscript is only a first step

to introduce temporal representation in distributed self-organizing architecture. For this first step,

our experiments were limited to the passive observation of some dynamical system producing am-
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biguous observations. An extension to POMDP, i.e. to the design of a controller from ambiguous

observations, is more compliant with the cognitive robotics goal, but is not straightforward from our

“passive” architecture. Indeed, in POMDP problems, the change in the environment state happens

as a reaction to actions performed by the agent itself.

Action selection policies that select an action for each environment state are implemented by

reinforcement learning (RL). Solving POMDP problems by RL requires first of all solving the

problem of partial observability. The agent observes an ambiguous stream of observation that con-

fuses its perception of the real environment state and thus confuses its action selection. Hence,

before applying some RL algorithm like SARSA, the agent should maintain a consistent represen-

tation of the environment state. The proposed architecture in this work offers this possibility, and

makes the application of RL algorithms straightforward, if liberated from the distributed computing

constraints.

During our research work, we tried to build such complete POMDP controller, and found that it

is possible to “engineer” such a controller for an environment on which we have prior knowledge,

by coupling additional maps responsible for action selection. Unfortunately, we were not satisfied

by this solution as it contradicts with the autonomous and model-free (or, environment-free) na-

ture of the proposed architecture. Indeed, the optimal robotic agent should be able to navigate in

environments on which it has no prior knowledge.

The availability of high performance computing resources [Gustedt 2011], as well as a method-

ology ( bijama here) for the design of complex systems, open the field of the simulation of

complex computational systems, made of simple nonlinear units that interact massively. Such com-

plexity is difficult to handle, due to the emerging dynamics such as self-organization as well as

unexpected population effects, sometimes undesirable. Nevertheless, the nature of such complexity

fits the nature of the information processing performed by our brains, and the difficulties that we

have to face when we build such systems from scratch, may also help to understand the relevance

of the brain organization under the light of computational arguments.

Through this manuscript, we presented our contribution into cellular computing paradigm, us-

ing a neural network implementation. This contribution subscribes to the fields of computation

and parallel computing, sub-disciplines of computer science, but also subscribes to the interdisci-

plinary computational neuroscience. We expect that the infant cellular computing field of research

will attire more attention in the coming years, with scientists seeking to obtain more computational

power, but also, a nature-inspired computation that helps to cope better with nature and facilitates

people’s life, continuing a story that started in Sumer, 2400 BC.
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