.. La-modularité-de-louvain, une mesure de la qualité d'une partition 44 2.2 L'algorithme

L. Limites-de-la-modularité and .. , 50 3.2 L'intérêt d'une vision multiéchelle, pp.50-53

. Finalement and . Qu, il est important de poursuivre l'effort de recherche académique publique, libre et ouverte à tous, dans le domaine de l'extraction d'informations , afin que cette expertise reste la plus transparente possible ; il en va, je pense, de notre libre accès à l'information, Algorithm for Graph EMD, vol.176, issue.21

D. Application, 2. On-the, and .. , 179 3.2 Two examples of sensor networks and discussion . . . . . 180 3.3 Another definition of local extrema, p.182

@. N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, Liste de publications Publications dans des journaux à comité de lecture, 2014.
DOI : 10.1109/TSP.2014.2345355

@. N. Tremblay, P. Borgnat, J. Pinton, A. Barrat, M. Nornberg et al., Bootstrapping under constraint for the assessment of group behavior in human contact networks, Physical Review E, vol.88, issue.5, p.52812, 2013.
DOI : 10.1103/PhysRevE.88.052812

URL : https://hal.archives-ouvertes.fr/hal-00909617

@. N. Actes-de-conférences-À-comité-de-sélection, P. Tremblay, P. Borgnat, and . Flandrin, Graph empirical mode decomposition, EUSIPCO proceedings, 2014.

@. N. Tremblay and P. Borgnat, Multiscale community mining in networks using the graph wavelet transform of random vectors, 2013 IEEE Global Conference on Signal and Information Processing
DOI : 10.1109/GlobalSIP.2013.6736915

@. N. Tremblay and P. Borgnat, Multiscale community mining in networks using spectral graph wavelets, EUSIPCO proceedings, 2013.

@. N. Tremblay and P. Borgnat, Partitionnement multiéchelle d'un graphe en communautés : détection des échelles pertinentes, GRETSI proceedings, 2013.

@. N. Tremblay and P. Borgnat, Multiscale detection of stable communities using wavelets on networks, ECCS proceedings, 2013.

@. R. Fontugne, N. Tremblay, P. Borgnat, P. Flandrin, and H. Esaki, Mining anomalous electricty consumption using ensemble empirical mode decomposition, ICASSP proceedings, 2013.
DOI : 10.1109/icassp.2013.6638662

@. R. Fontugne, J. Ortiz, N. Tremblay, P. Borgnat, P. Flandrin et al., Strip, bind, and search, Proceedings of the 12th international conference on Information processing in sensor networks, IPSN '13, 2013.
DOI : 10.1145/2461381.2461399

@. N. Tremblay, P. Borgnat, J. Pinton, A. Barrat, M. Nornberg et al., Constrained Graph Resampling for Group Assessment in Human Social Networks, ECCS proceedings, 2012.
DOI : 10.1007/978-3-319-00395-5_89

@. P. Contribution-À-des-ouvrages-collectifs, C. Borgnat, P. Robardet, P. Abry, J. Flandrin et al., A dynamical network view of Lyon's Vélo'v shared bicycle system, book Dynamics on and of complex networks, pp.267-284, 2013.

. Article-sur-le-neurone-de-l-'inserm, http://www.inserm.fr/thematiques/ neurosciences-sciences-cognitives-neurologie-psychiatrie/ dossiers-d-information/neurones

R. Visualisation-du and . Facebook, https://www.facebook.com/notes/ facebook-engineering/visualizing-friendships

Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng, Duty-cycling buildings aggressively : The next frontier in hvac control, IPSN'11, pp.246-257, 2011.

A. Agaskar, M. Yue, and . Lu, A spectral graph uncertainty principle. Information Theory, IEEE Transactions on, vol.59, issue.7, pp.4338-4356, 2013.

H. Akaike, A new look at the statistical model identification. Automatic Control, IEEE Transactions on, vol.19, issue.6, pp.716-723, 1974.

A. Arenas, A. Fernandez, and S. Gomez, Analysis of the structure of complex networks at different resolution levels, New Journal of Physics, vol.10, issue.5, p.53039, 2008.
DOI : 10.1088/1367-2630/10/5/053039

P. Balachandran, E. Airoldi, and E. Kolaczyk, Inference of Network Summary Statistics Through Network Denoising. ArXiv e-prints, 2013.

A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, vol.286, issue.5439, p.509, 1999.

L. R. Barnes, D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and C. C. Benight, CORRIGENDUM : false alarm rate or false alarm ratio ? Weather and Forecasting, pp.1452-1454, 2009.

A. Barrat, M. Barthélemy, R. Pastor-satorras, and A. Vespignani, The architecture of complex weighted networks, Proc. Natl. Acad. Sci. (USA), pp.3747-3752, 2004.
DOI : 10.1073/pnas.0400087101

URL : https://hal.archives-ouvertes.fr/hal-00013475

S. Mathieu-bastian, M. Heymann, and . Jacomy, Gephi : an open source software for exploring and manipulating networks, ICWSM, vol.8, pp.361-362, 2009.

G. Bellala, M. Marwah, M. Arlitt, G. Lyon, E. Cullen et al., Towards an understanding of campus-scale power consumption, Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys '11, pp.73-78, 2011.
DOI : 10.1145/2434020.2434043

G. Bellala, M. Marwah, A. Shah, M. Arlitt, and C. Bash, A finite state machine-based characterization of building entities for monitoring and control, Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys '12, pp.153-160, 2012.
DOI : 10.1145/2422531.2422559

G. Bianconi, P. Pin, and M. Marsili, Assessing the relevance of node features for network structure, Proceedings of the National Academy of Sciences, pp.11433-11438, 2009.
DOI : 10.1073/pnas.0811511106

M. Blanco-velasco, B. Weng, and K. E. Barner, Ecg signal denoising and baseline wander correction based on the empirical mode decomposition . Computers in biology and medicine, pp.1-13, 2008.

V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.10, p.10008, 2008.
DOI : 10.1088/1742-5468/2008/10/P10008

URL : https://hal.archives-ouvertes.fr/hal-01146070

J. A. Bondy and U. Murty, Graph theory with applications, 1976.
DOI : 10.1007/978-1-349-03521-2

P. Borgnat, C. Robardet, P. Abry, P. Flandrin, J. Rouquier et al., A dynamical network view of lyon's vélo'v shared bicycle system. In book "Time-varying dynamical networks

P. Borgnat, C. Robardet, P. Abry, P. Flandrin, J. Rouquier et al., A Dynamical Network View of Lyon???s V??lo???v Shared Bicycle System, Dynamics On and Of Complex Networks, pp.267-284, 2013.
DOI : 10.1007/978-1-4614-6729-8_13

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer et al., On modularity clustering. Knowledge and Data Engineering, IEEE Transactions on, vol.20, issue.2, pp.172-188, 2008.

S. P. Brooks and B. J. Morgan, Optimization Using Simulated Annealing, The Statistician, vol.44, issue.2, pp.241-257, 1995.
DOI : 10.2307/2348448

M. Brown, C. Barrington-leigh, and Z. Brown, Kernel regression for real-time building energy analysis, Journal of Building Performance Simulation, vol.100, issue.3, pp.263-276, 2012.
DOI : 10.1016/j.enbuild.2005.02.005

G. Brumfiel, High-energy physics: Down the petabyte highway, Nature, vol.469, issue.7330, pp.282-283, 2011.
DOI : 10.1038/469282a

L. Wray and . Buntine, A guide to the literature on learning probabilistic networks from data. Knowledge and Data Engineering, IEEE Transactions on, vol.8, issue.2, pp.195-210, 1996.

E. Carlstein, The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence, The Annals of Statistics, vol.14, issue.3, pp.1171-1179, 1986.
DOI : 10.1214/aos/1176350057

R. Carmona, W. Hwang, and B. Torrésani, Practical Time-Frequency Analysis : Gabor and Wavelet Transforms, with an Implementation in S, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01302102

C. Cattuto, W. Van-den-broeck, A. Barrat, V. Colizza, J. F. Pinton et al., Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks, PLoS ONE, vol.41, issue.7, p.11596, 2010.
DOI : 10.1371/journal.pone.0011596.s007

URL : https://hal.archives-ouvertes.fr/hal-00503275

P. Chan, M. Mahoney, and M. Arshad, Learning Rules and Clusters for Anomaly Detection in Network Traffic, Managing Cyber Threats of Massive Computing, pp.81-99, 2005.
DOI : 10.1007/0-387-24230-9_3

C. Chen and D. J. Cook, Energy outlier detection in smart environments, Artificial Intelligence and Smarter Living, volume WS-11-07 of AAAI Workshops. AAAI, 2011.

. Chitika, Chitika Insights : The Value of Google Result Positioning, 2013.

F. Chung and L. Lu, The average distances in random graphs with given expected degrees, Proceedings of the National Academy of Sciences, p.9915879, 2002.

F. R. Chung, Spectral graph theory. Number 92, 1997.

F. R. Chung and L. Lu, Complex graphs and networks. Number 107, 2006.

J. Clark and D. A. Holton, A first look at graph theory, World Scientific, vol.1, 1991.
DOI : 10.1142/1280

A. Clauset, C. R. Shalizi, E. Mark, and . Newman, Power-Law Distributions in Empirical Data, SIAM Review, vol.51, issue.4, pp.661-703, 2009.
DOI : 10.1137/070710111

S. Clémençon, H. De-arazoza, F. Rossi, and V. Tran, Hierarchical clustering for graph visualization, 2012.

R. R. Coifman and M. Maggioni, Diffusion wavelets, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.53-94, 2006.
DOI : 10.1016/j.acha.2006.04.004

URL : http://doi.org/10.1016/j.acha.2006.04.004

S. James and . Coleman, Introduction to mathematical sociology, 1964.

M. Crovella and E. Kolaczyk, Graph wavelets for spatial traffic analysis, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), pp.1848-1857
DOI : 10.1109/INFCOM.2003.1209207

A. Davison and D. Hinkley, Bootstrap methods and their applicationcambridge university press, 1997.

Y. De-montjoye, A. César, M. Hidalgo, . Verleysen, D. Vincent et al., Unique in the Crowd: The privacy bounds of human mobility, Scientific Reports, vol.23, 2013.
DOI : 10.1038/srep01376

J. C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities across time scales, Proceedings of the National Academy of Sciences, vol.107, issue.29, pp.12755-12760, 2010.
DOI : 10.1073/pnas.0903215107

E. William, A. J. Donath, and . Hoffman, Lower bounds for the partitioning of graphs, IBM Journal of Research and Development, vol.17, issue.5, pp.420-425, 1973.

L. Donetti and M. A. Munoz, Detecting network communities: a new systematic and efficient algorithm, Journal of Statistical Mechanics: Theory and Experiment, vol.2004, issue.10, p.10012, 2004.
DOI : 10.1088/1742-5468/2004/10/P10012

L. Donetti and M. A. Muñoz, Improved spectral algorithm for the detection of network communities, AIP Conference Proceedings, p.504059, 2005.
DOI : 10.1063/1.2008598

L. David and . Donoho, Compressed sensing. Information Theory, IEEE Transactions on, vol.52, issue.4, pp.1289-1306, 2006.

F. Dorfler and F. Bullo, Kron reduction of graphs with applications to electrical networks. Circuits and Systems I : Regular Papers, IEEE Transactions on, vol.60, issue.1, pp.150-163, 2013.

J. Olive and . Dunn, Multiple comparisons among means, Journal of the American Statistical Association, vol.56, issue.293, pp.52-64, 1961.

R. Durrett, R. Durrett, and R. Durrett, Random graph dynamics, 2007.
DOI : 10.1017/CBO9780511546594

N. Eagle and A. Pentland, Reality mining: sensing complex social systems, Personal and Ubiquitous Computing, vol.10, issue.2, pp.255-268, 2006.
DOI : 10.1007/s00779-005-0046-3

B. Efron, The jackknife, the bootstrap, and other resampling plans, Society for Industrial and Applied Mathematics Philadelphia, vol.38, 1982.
DOI : 10.1137/1.9781611970319

B. Efron, Bootstrap methods : another look at the jackknife. The annals of Statistics, pp.1-26, 1979.

N. Venkatesan, G. Ekambaram, B. Fanti, K. Ayazifar, and . Ramchandran, Critically-sampled perfect-reconstruction spline-wavelet filterbanks for graph signals, 2013.

N. Venkatesan, . Ekambaram, C. Giulia, B. Fanti, K. Ayazifar et al., Multiresolution graph signal processing via circulant structures, Digital Signal Processing and Signal Processing Education Meeting 2013 IEEE, pp.112-117, 2013.

H. Eldardiry and J. Neville, A resampling technique for relational data graphs, Proceedings of the 2nd SNA Workshop, 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2008.

F. Emmert-streib, G. Glazko, and R. De-matos-simoes, Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data, Frontiers in Genetics, vol.3, issue.8, 2012.
DOI : 10.3389/fgene.2012.00008

P. Erdös and A. Rényi, On random graphs i, Publicationes Mathematicae, vol.6, pp.290-297, 1959.

L. Varick, M. Á. Erickson, A. Carreira-perpiñán, and . Cerpa, Observe : Occupancy-based system for efficient reduction of hvac energy, IPSN'11, pp.258-269, 2011.

T. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Physical Review E, vol.80, issue.1, p.16105, 2009.
DOI : 10.1103/PhysRevE.80.016105

V. Fabrizio-de, V. Fallani, V. Nicosia, M. Latora, and . Chavez, Nonparametric resampling of random walks for spectral network clustering, Physical Review E, vol.89, issue.1, p.12802, 2014.

J. Felsenstein, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, vol.39, issue.4, pp.783-791, 1985.
DOI : 10.2307/2408678

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, vol.23, issue.2, pp.298-305, 1973.

R. Fontugne, N. Tremblay, P. Borgnat, P. Flandrin, and H. Esaki, Mining anomalous electricity consumption using Ensemble Empirical Mode Decomposition, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.5238-5242, 2013.
DOI : 10.1109/ICASSP.2013.6638662

R. Fontugne, J. Ortiz, D. Culler, and H. Esaki, Empirical mode decomposition for intrinsic-relationship extraction in large sensor deployments, IoT-App'12, Workshop on Internet of Things Applications, 2012.

R. Fontugne, J. Ortiz, N. Tremblay, P. Borgnat, P. Flandrin et al., Strip, bind, and search, Proceedings of the 12th international conference on Information processing in sensor networks, IPSN '13, pp.129-140, 2013.
DOI : 10.1145/2461381.2461399

L. Ford and D. R. Fulkerson, Flows in networks, 1962.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proceedings of the National Academy of Sciences, p.36, 2007.
DOI : 10.1073/pnas.0605965104

E. B. Fowlkes and C. L. Mallows, A Method for Comparing Two Hierarchical Clusterings, Journal of the American Statistical Association, vol.66, issue.383, pp.553-569, 1983.
DOI : 10.1080/01621459.1983.10478008

N. Friedman, M. Goldszmidt, and A. Wyner, Data analysis with bayesian networks : A bootstrap approach, Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp.196-205, 1999.

M. Gavish, B. Nadler, R. Ronald, and . Coifman, Multiscale wavelets on trees, graphs and high dimensional data : Theory and applications to semi supervised learning, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.367-374, 2010.

D. Gfeller, J. Chappelier, and P. Rios, Finding instabilities in the community structure of complex networks, Physical Review E, vol.72, issue.5, p.56135, 2005.
DOI : 10.1103/PhysRevE.72.056135

M. Girvan and M. E. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences, p.7821, 2002.
DOI : 10.1073/pnas.122653799

F. Glover, Future paths for integer programming and links to artificial intelligence, Computers & Operations Research, vol.13, issue.5, pp.533-549, 1986.
DOI : 10.1016/0305-0548(86)90048-1

L. Michel, . Goldstein, A. Steven, . Morris, G. Gary et al., Problems with fitting to the power-law distribution, The European Physical Journal B-Condensed Matter and Complex Systems, vol.41, issue.2, pp.255-258, 2004.

H. Benjamin, Y. Good, A. De-montjoye, and . Clauset, Performance of modularity maximization in practical contexts, Physical Review E, vol.81, issue.4, 2010.

L. Grady and E. Schwartz, Anisotropic interpolation on graphs : the combinatorial dirichlet problem, 2003.

P. Hall, J. L. Horowitz, and B. Y. Jing, On blocking rules for the bootstrap with dependent data, Biometrika, vol.82, issue.3, pp.561-574, 1995.
DOI : 10.1093/biomet/82.3.561

P. Hall, Resampling a coverage pattern, Stochastic Processes and their Applications, pp.231-246, 1985.
DOI : 10.1016/0304-4149(85)90212-1

D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, vol.30, issue.2, pp.129-150, 2011.
DOI : 10.1016/j.acha.2010.04.005

URL : https://hal.archives-ouvertes.fr/inria-00541855

S. Hanhijärvi, C. Gemma, K. Garriga, and . Puolamäki, Randomization Techniques for Graphs, SDM, pp.780-791, 2009.
DOI : 10.1137/1.9781611972795.67

F. Harary, D. Hsu, and Z. Miller, The biparticity of a graph, Journal of Graph Theory, vol.10, issue.2, pp.131-133, 1977.
DOI : 10.1002/jgt.3190010208

A. John and . Hartigan, Using subsample values as typical values, Journal of the American Statistical Association, vol.64, issue.328, pp.1303-1317, 1969.

T. Hasan and M. K. Hasan, Suppression of Residual Noise From Speech Signals Using Empirical Mode Decomposition, IEEE Signal Processing Letters, vol.16, issue.1, pp.2-5, 2009.
DOI : 10.1109/LSP.2008.2008452

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning : Data Mining, Inference, and Prediction, 2009.

T. Heimo, M. Jussi, K. Kumpula, J. Kaski, and . Saramäki, Detecting modules in dense weighted networks with the Potts method, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.08, p.8007, 2008.
DOI : 10.1088/1742-5468/2008/08/P08007

C. George and . Homans, The human group, Routledge, vol.7, 2013.

H. Huang and J. Pan, Speech pitch determination based on Hilbert-Huang transform, Signal Processing, vol.86, issue.4, pp.792-803, 2006.
DOI : 10.1016/j.sigpro.2005.06.011

J. Huang, H. Sun, Y. Liu, Q. Song, and T. Weninger, Towards Online Multiresolution Community Detection in Large-Scale Networks, PLoS ONE, vol.96, issue.8, p.23829, 2011.
DOI : 10.1371/journal.pone.0023829.t004

N. Huang, Z. Shen, S. Long, M. Wu, H. Shih et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.454, issue.1971, pp.454903-995, 1971.
DOI : 10.1098/rspa.1998.0193

E. Norden and . Huang, Computing frequency by using generalized zero-crossing applied to intrinsic mode functions, U.S. Patent, vol.6990, pp.436-437, 2006.

E. Norden, Z. Huang, S. R. Wu, K. C. Long, X. Arnold et al., On instantaneous frequency Advances in Adaptive Data Analysis, pp.177-229, 2009.

P. J. Huber and E. M. Ronchetti, Robust Statistics, 2009.
DOI : 10.1002/0471725250

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/BF01908075

C. Hubler, H. Kriegel, K. Borgwardt, and Z. Ghahramani, Metropolis Algorithms for Representative Subgraph Sampling, 2008 Eighth IEEE International Conference on Data Mining, pp.283-292, 2008.
DOI : 10.1109/ICDM.2008.124

J. P. Huelsenbeck and F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, vol.17, issue.8, pp.754-755, 2001.
DOI : 10.1093/bioinformatics/17.8.754

P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft et al., Pocket switched networks and human mobility in conference environments, Proceeding of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking , WDTN '05, pp.244-251, 2005.
DOI : 10.1145/1080139.1080142

L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J. F. Pinton et al., What's in a crowd? Analysis of face-to-face behavioral networks, Journal of Theoretical Biology, vol.271, issue.1, pp.166-180, 2011.
DOI : 10.1016/j.jtbi.2010.11.033

P. Jaccard, Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines, Bulletin de la Société Vaudoise des Sciences Naturelles, vol.39, pp.241-272, 1901.

A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.31264-323, 1999.
DOI : 10.1145/331499.331504

K. Anil, . Jain, C. Richard, and . Dubes, Algorithms for clustering data, 1988.

M. Jansen, P. Guy, . Nason, W. Bernard, and . Silverman, Multiscale methods for data on graphs and irregular multidimensional situations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.82, issue.1, pp.97-125, 2009.
DOI : 10.1111/j.1467-9868.2008.00672.x

B. Karrer, E. Levina, and M. E. Newman, Robustness of community structure in networks, Physical Review E, vol.77, issue.4, p.46119, 2008.
DOI : 10.1103/PhysRevE.77.046119

N. Katenka and E. D. Kolaczyk, Inference and characterization of multi-attribute networks with application to computational biology, The Annals of Applied Statistics, vol.6, issue.3, pp.1068-1094, 2012.
DOI : 10.1214/12-AOAS550

S. Katipamula and M. R. Brambley, Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems???A Review, Part I, HVAC&R Research, vol.11, issue.1, pp.3-25, 2005.
DOI : 10.1080/10789669.2005.10391123

S. Katipamula and M. R. Brambley, Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems???A Review, Part II, HVAC&R Research, vol.11, issue.2, pp.169-187, 2005.
DOI : 10.1080/10789669.2005.10391133

W. Brian, S. Kernighan, and . Lin, An efficient heuristic procedure for partitioning graphs. Bell system technical journal, pp.291-307, 1970.

Y. Kim, R. Balani, H. Zhao, and M. B. Srivastava, Granger causality analysis on IP traffic and circuit-level energy monitoring, Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, BuildSys '10, pp.43-48, 2010.
DOI : 10.1145/1878431.1878442

R. Hans and . Kunsch, The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, pp.1217-1241, 1989.

S. N. Lahiri, Theoretical comparisons of block bootstrap methods. The Annals of Statistics, pp.386-404, 1999.

R. Lambiotte, Multi-scale Modularity and Dynamics in Complex Networks, Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th International Symposium on, pp.546-553, 2010.
DOI : 10.1007/978-1-4614-6729-8_7

A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities, Physical Review E, vol.80, issue.1, p.16118, 2009.
DOI : 10.1103/PhysRevE.80.016118

A. Lancichinetti, S. Fortunato, and J. Kertész, Detecting the overlapping and hierarchical community structure in complex networks, New Journal of Physics, vol.11, issue.3, p.33015, 2009.
DOI : 10.1088/1367-2630/11/3/033015

A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, Finding Statistically Significant Communities in Networks, PLoS ONE, vol.81, issue.4, p.18961, 2011.
DOI : 10.1371/journal.pone.0018961.s001

A. Lancichinetti and S. Fortunato, Community detection algorithms: A comparative analysis, Physical Review E, vol.80, issue.5, p.56117, 2009.
DOI : 10.1103/PhysRevE.80.056117

A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E, vol.78, issue.4, p.46110, 2008.
DOI : 10.1103/PhysRevE.78.046110

E. Le, M. , and C. Hankin, Multi-scale community detection using stability as optimisation criterion in a greedy algorithm, Proceedings of the 2011 International Conference on Knowledge Discovery and Information Retrieval, pp.216-225, 2011.

E. Le, M. , and C. Hankin, Fast multi-scale detection of relevant communities in large-scale networks, The Computer Journal, vol.56, issue.9, pp.1136-1150, 2013.

T. Lee and T. B. Ouarda, Prediction of climate nonstationary oscillation processes with empirical mode decomposition, Journal of Geophysical Research, vol.95, issue.1???2, 2011.
DOI : 10.1029/2010JD015142

R. B. Lehoucq and D. C. Sorensen, Deflation Techniques for an Implicitly Restarted Arnoldi Iteration, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.4, pp.789-821, 1996.
DOI : 10.1137/S0895479895281484

N. Leonardi and D. Van-de-ville, Tight Wavelet Frames on Multislice Graphs, IEEE Transactions on Signal Processing, vol.61, issue.13, pp.613357-3367, 2013.
DOI : 10.1109/TSP.2013.2259825

J. Leskovec and C. Faloutsos, Sampling from large graphs, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.631-636, 2006.
DOI : 10.1145/1150402.1150479

C. Li, . Wang, C. De-haan, . Stam, and . Van-mieghem, The correlation of metrics in complex networks with applications in functional brain networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.11, pp.2011-11018, 2011.
DOI : 10.1088/1742-5468/2011/11/P11018

Y. Regina, K. Liu, and . Singh, Moving blocks jackknife and bootstrap capture weak dependence. Exploring the limits of bootstrap, p.248, 1992.

S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

D. Mandic, N. Rehman, Z. Wu, and N. Huang, Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals: The Power of Adaptive Data Analysis, IEEE Signal Processing Magazine, vol.30, issue.6, pp.74-86, 2013.
DOI : 10.1109/MSP.2013.2267931

D. Christopher, P. Manning, H. Raghavan, and . Schütze, Introduction to information retrieval, 2008.

V. Marx, Biology: The big challenges of big data, Nature, vol.8, issue.7453, pp.498255-260, 2013.
DOI : 10.1038/498255a

P. Mc, Pseudo-replication : Half samples. Review of the International Statistical Institute, pp.239-264, 1969.

N. Patrick, M. Mcgraw, and . Menzinger, Laplacian spectra as a diagnostic tool for network structure and dynamics, Physical Review E, vol.77, issue.3, p.31102, 2008.

M. Meil?, Comparing clusterings???an information based distance, Journal of Multivariate Analysis, vol.98, issue.5, pp.873-895, 2007.
DOI : 10.1016/j.jmva.2006.11.013

R. Vilela-mendes, C. Hugo, T. Mendes, and . Araújo, Signal processing on graphs : Transforms and tomograms. arXiv preprint, 2014.

A. Benjamin, . Miller, T. Nadya, . Bliss, J. Patrick et al., Toward signal processing theory for graphs and non-euclidean data, Acoustics Speech and Signal Processing 2010 IEEE International Conference on, pp.5414-5417, 2010.

A. Benjamin, . Miller, T. Nadya, . Bliss, J. Patrick et al., Detection theory for graphs, p.2013

J. Miller and A. Hagberg, Efficient generation of networks with given expected degrees. Algorithms and Models for the Web Graph, pp.115-126, 2011.

M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence. Random structures & algorithms, pp.161-180, 1995.

Y. Nakatsukasa, N. Saito, and E. Woei, Mysteries around the graph Laplacian eigenvalue 4, Linear Algebra and its Applications, vol.438, issue.8, pp.3231-3246, 2013.
DOI : 10.1016/j.laa.2012.12.012

S. Narang, A. Gadde, and A. Ortega, Signal processing techniques for interpolation in graph structured data, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.5445-5449, 2013.
DOI : 10.1109/ICASSP.2013.6638704

S. Narang and A. Ortega, Lifting based wavelet transforms on graphs, Proc. of APSIPA Annual Summit and Conference (APSIPA ASC), 2009.

S. Narang and A. Ortega, Perfect Reconstruction Two-Channel Wavelet Filter Banks for Graph Structured Data, IEEE Transactions on Signal Processing, vol.60, issue.6, pp.2786-2799, 2012.
DOI : 10.1109/TSP.2012.2188718

K. Sunil, A. Narang, and . Ortega, Local two-channel critically sampled filter-banks on graphs, Image Processing (ICIP) 17th IEEE International Conference on, pp.333-336, 2010.

K. Sunil, A. Narang, and . Ortega, Downsampling graphs using spectral theory, 2011 IEEE International Conference on, pp.4208-4211, 2011.

K. Sunil, A. Narang, and . Ortega, Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs, IEEE transactions on signal processing, vol.61, pp.17-204673, 2013.

M. Newman161 and ]. M. Newman, Networks : an introduction Modularity and community structure in networks, Proceedings of the National Academy of Sciences, p.8577, 2006.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.69, issue.2, p.26113, 2004.
DOI : 10.1103/PhysRevE.69.026113

J. C. Nunes, S. Guyot, and E. Delechelle, Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, pp.177-188, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00177472

J. Nunes, Y. Bouaoune, . Delechelle, P. Niang, and . Bunel, Image analysis by bidimensional empirical mode decomposition, Image and Vision Computing, vol.21, issue.12, pp.1019-1026, 2003.
DOI : 10.1016/S0262-8856(03)00094-5

URL : https://hal.archives-ouvertes.fr/inserm-00177506

E. Paparoditis and D. N. Politis, Tapered block bootstrap, Biometrika, vol.88, issue.4, pp.1105-1119, 2001.
DOI : 10.1093/biomet/88.4.1105

URL : https://hal.archives-ouvertes.fr/hal-01310921

D. Patnaik, M. Marwah, R. K. Sharma, and N. Ramakrishnan, Temporal data mining approaches for sustainable chiller management in data centers, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.4, 2011.
DOI : 10.1145/1989734.1989738

N. Dimitris, . Politis, P. Joseph, and . Romano, A circular block-resampling procedure for stationary data. Exploring the limits of bootstrap, pp.263-270, 1992.

N. Dimitris, J. P. Politis, and . Romano, The stationary bootstrap, Journal of the American Statistical Association, vol.89, issue.428, pp.1303-1313, 1994.

P. Pons and M. Latapy, Post-processing hierarchical community structures: Quality improvements and multi-scale view, Theoretical Computer Science, vol.412, issue.8-10, pp.892-900, 2011.
DOI : 10.1016/j.tcs.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-01146086

H. Maurice and . Quenouille, Approximate tests of correlation in time-series, Journal of the Royal Statistical Society. Series B (Methodological), vol.11, issue.1, pp.68-84, 1949.

R. Menaut, Mesure et analyse d'un réseau social, 2013.

M. William and . Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, vol.66, issue.336, pp.846-850, 1971.

J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Physical Review E, vol.74, issue.1, p.16110, 2006.
DOI : 10.1103/PhysRevE.74.016110

B. Ribeiro and D. Towsley, Estimating and sampling graphs with multidimensional random walks, Proceedings of the 10th annual conference on Internet measurement, IMC '10, pp.390-403, 2010.
DOI : 10.1145/1879141.1879192

A. Stuart and . Rice, The identification of blocs in small political bodies, American Political Science Review, vol.21, issue.03, pp.619-627, 1927.

G. Rilling, F. Flandrin, and P. Gonçalves, On empirical mode decomposition and its algorithms, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00570628

P. Ronhovde and Z. Nussinov, Local resolution-limit-free Potts model for community detection, Physical Review E, vol.81, issue.4, p.46114, 2010.
DOI : 10.1103/PhysRevE.81.046114

M. Rosvall and C. T. Bergstrom, Mapping Change in Large Networks, PLoS ONE, vol.5, issue.1, p.8694, 2010.
DOI : 10.1371/journal.pone.0008694.s003

M. Rosvall, D. Axelsson, T. Carl, and . Bergstrom, The map equation, The European Physical Journal Special Topics, vol.178, issue.1, pp.13-23, 2009.
DOI : 10.1140/epjst/e2010-01179-1

M. Rosvall, T. Carl, and . Bergstrom, Maps of random walks on complex networks reveal community structure, Proceedings of the National Academy of Sciences, pp.1118-1123, 2008.
DOI : 10.1073/pnas.0706851105

M. Rosvall, T. Carl, and . Bergstrom, Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems, PLoS ONE, vol.94, issue.4, p.18209, 2011.
DOI : 10.1371/journal.pone.0018209.t001

M. Sales-pardo, R. Guimera, A. A. Moreira, and L. A. Amaral, Extracting the hierarchical organization of complex systems, Proceedings of the National Academy of Sciences, vol.104, issue.39, pp.15224-15229, 2007.
DOI : 10.1073/pnas.0703740104

A. Sandryhaila and J. M. Moura, Discrete Signal Processing on Graphs, IEEE Transactions on Signal Processing, vol.61, issue.7, pp.1644-1656, 2013.
DOI : 10.1109/TSP.2013.2238935

A. Sandryhaila and J. M. Moura, Discrete Signal Processing on Graphs: Frequency Analysis, IEEE Transactions on Signal Processing, vol.62, issue.12, pp.3042-3054, 2014.
DOI : 10.1109/TSP.2014.2321121

A. Sandryhaila, M. José, and . Moura, Discrete signal processing on graphs: Graph filters, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6163-6166, 2013.
DOI : 10.1109/ICASSP.2013.6638849

A. Sandryhaila, M. José, and . Moura, Discrete signal processing on graphs: Graph fourier transform, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6167-6170, 2013.
DOI : 10.1109/ICASSP.2013.6638850

J. Schein and S. T. Bushby, A Hierarchical Rule-Based Fault Detection and Diagnostic Method for HVAC Systems, HVAC&R Research, vol.12, issue.1, pp.111-125, 2006.
DOI : 10.1080/10789669.2006.10391170

G. Schwarz, Estimating the dimension of a model. The annals of statistics, pp.461-464, 1978.

J. E. Seem, Using intelligent data analysis to detect abnormal energy consumption in buildings, Energy and Buildings, vol.39, issue.1, pp.52-58, 2007.
DOI : 10.1016/j.enbuild.2006.03.033

G. Shen and A. Ortega, Tree-based wavelets for image coding: Orthogonalization and tree selection, 2009 Picture Coding Symposium, pp.1-4, 2009.
DOI : 10.1109/PCS.2009.5167459

D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.
DOI : 10.1109/MSP.2012.2235192

I. David, M. J. Shuman, P. Faraji, and . Vandergheynst, A framework for multiscale transforms on graphs. arXiv preprint arXiv, pp.1308-4942, 2013.

I. David, . Shuman, K. Sunil, P. Narang, A. Frossard et al., The emerging field of signal processing on graphs : Extending high-dimensional data analysis to networks and other irregular domains, Signal Processing Magazine, issue.3, pp.3083-98, 2013.

I. David, B. Shuman, P. Ricaud, and . Vandergheynst, A windowed graph fourier transform, Statistical Signal Processing Workshop (SSP), 2012 IEEE, pp.133-136, 2012.

I. David, B. Shuman, P. Ricaud, and . Vandergheynst, Vertexfrequency analysis on graphs. arXiv preprint, 2013.

I. David, P. Shuman, P. Vandergheynst, and . Frossard, Chebyshev polynomial approximation for distributed signal processing, Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International Conference on, pp.1-8, 2011.

I. David, C. Shuman, N. Wiesmeyr, P. Holighaus, and . Vandergheynst, Spectrum-adapted tight graph wavelet and vertex-frequency frames. arXiv preprint, 2013.

C. Soize, Méthodes mathématiques en analyse du signal, 1993.

A. Daniel, S. Spielmat, and . Teng, Spectral partitioning works : Planar graphs and finite element meshes, Foundations of Computer Science Proceedings., 37th Annual Symposium on, pp.96-105, 1996.

M. Starnini, A. Baronchelli, and R. Pastor-satorras, Modeling Human Dynamics of Face-to-Face Interaction Networks, Physical Review Letters, vol.110, issue.16, p.168701, 2013.
DOI : 10.1103/PhysRevLett.110.168701

J. Stehlé, A. Barrat, and G. Bianconi, Dynamical and bursty interactions in social networks, Physical Review E, vol.81, issue.3, p.35101, 2010.
DOI : 10.1103/PhysRevE.81.035101

J. Stehle, N. Voirin, A. Barrat, C. Cattuto, L. Isella et al., High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School, PLoS ONE, vol.3, issue.2, p.23176, 2011.
DOI : 10.1371/journal.pone.0023176.s005

URL : https://hal.archives-ouvertes.fr/hal-00615528

J. Stehlé, F. Charbonnier, T. Picard, C. Cattuto, and A. Barrat, Gender homophily from spatial behavior in a primary school: A sociometric study, Social Networks, vol.35, issue.4, pp.604-613, 2013.
DOI : 10.1016/j.socnet.2013.08.003

L. Tabourier, Thèse de doctorat : Méthode de comparaison des topologies de graphes complexes. Applications aux réseaux sociaux, 2010.

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, pp.411-423, 2001.
DOI : 10.1111/1467-9868.00293

M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4144-4147, 2011.
DOI : 10.1109/ICASSP.2011.5947265

V. A. Traag and J. Bruggeman, Community detection in networks with positive and negative links, Physical Review E, vol.80, issue.3, p.36115, 2009.
DOI : 10.1103/PhysRevE.80.036115

L. Amanda, . Traud, D. Eric, . Kelsic, J. Peter et al., Comparing community structure to characteristics in online collegiate social networks, SIAM review, vol.53, issue.3, pp.526-543, 2011.

N. Tremblay and P. Borgnat, Multiscale community mining in networks using the graph wavelet transform of random vectors, 2013 IEEE Global Conference on Signal and Information Processing, pp.463-466, 2013.
DOI : 10.1109/GlobalSIP.2013.6736915

N. Tremblay and P. Borgnat, Graph Wavelets for Multiscale Community Mining, IEEE Transactions on Signal Processing, vol.62, issue.20, p.2014
DOI : 10.1109/TSP.2014.2345355

N. Tremblay, P. Borgnat, J. Pinton, A. Barrat, M. Nornberg et al., Constrained Graph Resampling for Group Assessment in Human Social Networks, European Conference of Complex Systems, 2012.
DOI : 10.1007/978-3-319-00395-5_89

N. Tremblay, A. Barrat, C. Forest, M. Nornberg, J. Pinton et al., Bootstrapping under constraint for the assessment of group behavior in human contact networks, Physical Review E, vol.88, issue.5, p.52812, 2013.
DOI : 10.1103/PhysRevE.88.052812

URL : https://hal.archives-ouvertes.fr/hal-00909617

N. Tremblay and P. Borgnat, Multiscale community mining in networks using spectral graph wavelets, Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pp.1-5, 2013.

N. Tremblay and P. Borgnat, Partitionnement multi-échelle d'un graphe en communautés : détection des échelles pertinentes, GRETSI, p.4, 2013.

N. Tremblay, P. Borgnat, and P. Flandrin, Graph empirical mode decomposition, Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22st European, pp.1-5, 2014.

W. John and . Tukey, Bias and confidence in not-quite large samples, Annals of Mathematical Statistics, pp.614-614, 1958.

P. Van-mieghem, Graph spectra for complex networks, 2011.
DOI : 10.1017/CBO9780511921681

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world'networks, Nature, vol.393, issue.6684, pp.440-442, 1998.
DOI : 10.1038/30918

J. Duncan and . Watts, Small worlds : the dynamics of networks between order and randomness, 1999.

S. Robert, E. Weiss, and . Jacobson, A method for the analysis of the structure of complex organizations, American Sociological Review, pp.661-668, 1955.

M. Wrinch, H. M. Tarek, S. El-fouly, and . Wong, Anomaly detection of building systems using energy demand frequency domain anlaysis, IEEE Power & Energy Society General Meeting, 2012.

Z. Wua, N. E. Huang, and X. Chan, THE MULTI-DIMENSIONAL ENSEMBLE EMPIRICAL MODE DECOMPOSITION METHOD, Advances in Adaptive Data Analysis, vol.01, issue.03, pp.339-372, 2009.
DOI : 10.1142/S1793536909000187

X. Ying and X. Wu, Graph Generation with Prescribed Feature Constraints, Proc. of the 9th SIAM Conference on Data Mining, 2009.
DOI : 10.1137/1.9781611972795.83

W. Zachary, An Information Flow Model for Conflict and Fission in Small Groups, Journal of Anthropological Research, vol.33, issue.4, pp.452-473, 1977.
DOI : 10.1086/jar.33.4.3629752

Y. Zhang, E. D. Kolaczyk, and B. D. Spencer, Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks, The Annals of Applied Statistics, vol.9, issue.1, 2013.
DOI : 10.1214/14-AOAS800

K. Zhao, J. Stehlé, G. Bianconi, and A. Barrat, Social network dynamics of face-to-face interactions, Physical Review E, vol.83, issue.5, p.56109, 2011.
DOI : 10.1103/PhysRevE.83.056109

URL : https://hal.archives-ouvertes.fr/hal-00565802

Q. Zhou, S. Wang, and Z. Ma, A model-based fault detection and diagnosis strategy for HVAC systems, International Journal of Energy Research, vol.33, issue.1, pp.903-918, 2009.
DOI : 10.1016/j.buildenv.2008.08.011

E. Ziv, R. Koytcheff, M. Middendorf, and C. Wiggins, Systematic identification of statistically significant network measures, Physical Review E, vol.71, issue.1, p.16110, 2005.
DOI : 10.1103/PhysRevE.71.016110

A. M. Zoubir and D. R. Iskander, Bootstrap techniques for signal processing, 2004.
DOI : 10.1017/CBO9780511536717

.. La-modularité-de-louvain, une mesure de la qualité d'une partition . . . 44 2.2 L'algorithme, pp.45-47

L. Limites-de-la-modularité and .. , 50 3.2 L'intérêt d'une vision multiéchelle

D. Dimensionnement-du, 131 4.1.3 Distributions classiques