N

N

Extraction and Analysis of Knowledge for Automatic
Software Repair

Matias Martinez

» To cite this version:

Matias Martinez. Extraction and Analysis of Knowledge for Automatic Software Repair. Software
Engineering [cs.SE]. Université Lille 1, 2014. English. NNT: . tel-01078911

HAL Id: tel-01078911
https://hal.science/tel-01078911
Submitted on 30 Oct 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-01078911
https://hal.archives-ouvertes.fr

: o Q
\\ Université 7y
 Lille1 O e
’ Sc'en(:eseer Technologies Lud i
Département de formation doctorale en informatique Ecole doctorale SPI Lille

UFR IEEA

Extraction and Analysis of Knowledge
for Automatic Software Repair

THESE

présentée et soutenue publiquement le 10/10/2014

pour I'obtention du

Doctorat de I’Université Lille 1

(spécialité informatique)
par

Matias Martinez

Composition du jury

Rapporteurs : Yves Ledru, Université de Grenoble 1 - France
Tom Mens, Université de Mons - Belgique

Examinateurs : Philippe Preux, Université Lille 8 - France
Diego Garbervetsky, University of Buenos Aires - Argentina

Directeurs : Laurence Duchien, Université Lille 1- France
Martin Monperrus, Université Lille 1 - France

Laboratoire d’Informatique Fondamentale de Lille — UMR Lille 1/CNRS 8022 — Inria Lille - Nord Europe

4
Y i Laboratoire Vd
d'Informatique Vo 4 a
Fondamentale
de Lille

INVENTEURS DU MONDE NUMERIQUE

Mis en page avec la classe thloria.

Abstract

Bug fixing is a frequent activity in the software life cycle. The activity aims at removing
the gap between the expected behavior of a program and what it actually does. This gap encom-
passes different anomalies such as the failure of a program facing to a given scenario. Bug
fixing is a task historically done by software developers. However, in the recent years, sev-
eral automatic software repair approaches have emerged to automatically synthesize bug
fixes.

One of the main goals of automatic repair approaches is to reduce the cost of bug fixing
compared to human fixing activity. Human fixing is a time consuming task for developers
due to it involves doing manually task such as reproducing the bug, studying the symp-
toms, searching for a candidate repair and finally validating it. Software companies aim at
decreasing the overall time of bug fixing and, by consequence, decreasing the money spent
in the maintenance activity. For this purpose, researches and companies have proposed tech-
niques and tools that help developers in particular activities such as debugging. Conversely,
automatic software repair approaches emerge to provide a solution from the beginning to the
end. That means, those approaches take as input a failing program and return a fixed version
of that program.

Unfortunately, bug fixing could be even hard and expensive for automatic program re-
pair approaches. For example, to repair a given bug, a repair technique could spend infinite
time to find a fix among a large number of candidate fixes. Additionally, even the cost of fix-
ing could be low, the cost of having a bug in production could be much higher. For instance,
a bug could set a program off-line, or produce an economic damage due to its incorrect op-
erational behavior. For that, finding faster a fix implies decreasing the time to release a fix
and to deploy it in production. The main motivation of this thesis is to decrease the time to
find a fix.

The proposed automatic repair approaches are evaluated by measuring the efficacy of
repairing a set of defects. That means, given a defect dataset, the evaluation measures how
many of them an approach is able to repair. For instance, in an evaluation of GenProg, a
state-of-the-art repair approach guided by genetic programming, this approach repaired 55
out of 105 defects. A question that motivates this thesis is What happens with the remaining
(unrepairable) bugs from those repair approach evaluation experiments? In particular, we wonder
whether they are unrepairable due to: a) the repair search space, i.e., all possible solutions
for the fix, is too large and the evaluated approach needs to spend long time to find one
solution; or b) the approach is not able to fix these bugs i.e., it does not target repairing these
kinds of bugs. For example, an approach that repairs defects in if conditions is not capable, in
theory, of repairing memory leak defects.

In this thesis, we aim at finding answers to those questions. First, we concentrate on the
study of repair search spaces. We aim at adding repair approach strategies to optimize the
search of solutions in the repair search space. We present a strategy to reduce the time to
find a fix. The strategy consumes information extracted from repairs done by developers. To
obtain this information, we first extract source code repairs done by developers from open-

source projects. Then, we analyze the composition of those repairs, in particular, the changes
done by each. Finally, we build change models that describe the kinds of changes and their
abundance. The strategy uses these models to decrease the time to navigate the repair search
space. It focuses on the most frequent kinds to repairs in order to find faster a solution.

We present a second strategy to reduce the size of repair search spaces. In particular, we
focus on reducing the search space of one kind of automatic repair approach: redundancy-
based repair approach. This kind of approach works under the assumption that the ingredients
of a fix, i.e. the source code that conforms the fix, was already written before somewhere in
the program. We call it temporal redundant code. We analyze the location of redundant code in
the application. This study allows us to prove that it is possible to reduce the repair search
space of redundancy-based approaches without losing repair strength. Both strategies are
able to increase the repair efficacy of approaches, that means, to find solutions not previously
found.

Then, we focus on the evaluation of automatic repair approaches. We aim at introducing
methodologies and evaluation procedures to have meaningful repair approach evaluations.
First, we define a methodology to define defect datasets that minimize the possibility of bi-
ased results. The way a dataset is built impacts on the result of an approach evaluation. We
present a dataset that includes a particular kind of defect: if conditional defects. Then, we
aim at measuring the repairability of this kind of defect by evaluating three state-of-the-art
automatic software repair approaches. We carry out a meaningful evaluation of software
repair approaches to determine whether: a) they are able to repair defects from the evalua-
tion dataset; and b) which is better. We set up an experimental protocol where the number
of free variables and potential biases are minimized. In summary, the experiments done in
this thesis allow us to determine that it is possible to reduce the time of repair bugs and it
is possible to carry out meaningful evaluations for measuring the real strength of automatic
software repair approaches.

Contents

1 Introduction

2 State of the Art

[2.2 Studying Software Evolution| 0000000000
2.2.1 Studying How Source Code Evolves|

2.2.2 Empirical Studies of Commits|

2.2.3 Defining Infrastructures for Software Evolution Analysis|
24 StudyofBugsand Fixes|.
[2.3 Automatic Software Repair| o 0 0L

[2.3.1 'Test Suite-based Repair Approaches|

[2.3.2 Optimizing Repair Runtime|.

[2.3.3 Bug Benchmarks and Datasets for Evaluation of Repair Approaches| .

24 Summary|.

3 Learning from Human Repairs by Mining Source Code Repositories

[3.1 A Novel Way to Describe Versioning Transactions using Change Models| . . .

3.1.1 Abstract Syntax Tree Differencing|
3.1.2 Definition of Change Models|
3.1.3 Empirical Evaluation|. 0 0000

iii

AN =N

O

10
11
13
15
15
17
18
19
19
20
20

Contents

[3.2 Techniques to Filter Bug Fix Transactions| 31
3.2.1 Slicing Based on the Commit Message| 31
3.2.2 Slicing Based on the Change Size in Terms of Number of AST Changes| 32
3.2.3 Do Small Versioning Transactions Fix Bugs?| 32

[3.3 Learning Repair Models from Bug Fix Transactions| 33
3.3.1 Methodology| o 34
3.3.2 Empirical Results|o o 000000 35
B33 Discussion|. o Lo 35

[3.4 Defining a Repair Model of Bug Fix Patterns| 38
3.4.1 Defining Bug Fix Patterns| 39
3.4.2 A Novel Representation of Bug Fix Patterns based on AST changes,|. . 39
3.4.3 Defining the Importance of Bug Fix Patterns| 43
3.44 An Novel Algorithm to Identify Instances of Commit Patterns from |

Versioning Iransactions| 44

3.4.5 Evaluating the Genericity of the Pattern Specification Mechanism| . . . 48

3.4.6 Evaluating the Accuracy of AST-based Pattern Instance Identifier) . . . 54

3.4.7 Learning the Abundance of Bug Fix Patterns| 56

48 Di 0 59

3.5 Recapitulation| 59

4 Two Strategies to Optimize Search-based Software Repair] 61

4.1 Adding Probabilities to the Search Space to Optimize the Space Navigation| . 62
#.1.1 Decomposing Repair Search Space| 62
4.1.2 A Strategy to Optimize Shaping Space Navigation|. 63

1.3 Evaluation|. 65
@14 Summary| 73

.2 Reducing Synthesis Search Space for Software Redundancy-based Repair| . . 74
4.2.1 Software Redundancy-based Repair Approaches|. 75
#.2.2 Detining Search Spaces for Redundancy-based Repair Approaches| . . 76
4.2.3 A Strategy to Reduce the Size of the Redundancy-based Synthesis Search |

Space| 77

¥4.2.4 Definition of Evaluation Proceduref. 78
425 Empirical Results| o 000000 81
426 Summary| 84

43 Conclusionl. 84

iv

5 A Unified Repair Framework for Unbiased Evaluation of Repair Approaches 85
[0.1 Detining Defect Datasets for Evaluating Repair Approaches 86
p.1.1 Defininga DefectClass| 86
5.12 Biasin Evaluation Datasets| 86
.1.3 A Methodology to Define Detect Datasets|. 87
p.1.4 Methodology Implementation| 88
p.1.5 Dataset of If Condition fixing Defects| 90
0.2 A Repair Framework for Fixing If Condition Defects| 92
.2.1 Repair Approaches that Target If Condition Detects|. 92
.2.2 A Repair Framework to Replicate Repair Approaches| 94
.23 Summary| 98
0.3 Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects| 98
b.3.1 Measures|. 98
©.3.2 FEvaluationGoals|o oo oo 100
©.3.3 Evaluation Protocoll. o 100
b.34 EvaluationResults| 101
p.3.5 Summary| 104
b4 Conclusion|. 105
6 Conclusion and Perspectives 107
[6.1 Summary| 107
6.2 Future Directions|. 108
[6.2.1 Study of Software Evolution| 108
[6.2.2 Repair Approaches Design| 109
[6.2.3 Datasets and Repair Approaches Evaluations| 110

A Mining Software Repair Models for Reasoning on the Search Space of Automated
Program Fixing 111
[A.1 Mathematical Formula for Computing the Median Number of Repair of MC- |
| Shaper| 111
[A2 Empiricalresults| oo 112
[A.3 Bug Fix Survey Summary| oo o oo 120
B Measuring Software Redundancy 133
BI Dafasellot 133
[B.2 Temporal Redundant commits| 133

Contents

Bibliography 135

vi

Chapter

Introduction

1.1 Context

The world is day by day more computerized. Software is everywhere: PC, laptops, tables,
TV, video game stations, smart-phones and gadgets such as watches and glasses. Unfortu-
nately, having new software means also having more and more new defects.

Bug fixing is an activity for removing defects in software programs. This activity aims
at correcting the behavior of a program. It removes the gap between the expected behavior of
a program and what it actually does. This gap encompasses different anomalies such as the
failure of a program facing a given scenario. Examples of bug fix are: the addition of an
if precondition to check whether a variable is not null before accessing it; the addition of a
missing method invocation; or a change in an arithmetic operator.

When a bug is found, developers or application users report it in an issue tracking sys-
tem. For instance, Apache Software Foundation!, which provides support for more than 100
open-source software projects, uses the tracking system Jira>. Nowadays, companies such
as Google or Facebook are worried® # of having bugs in their products. They do not want to
loose clients or money. They have monetary rewards for the discovery of vulnerabilities to
individuals, external to the company, who found legitimate issues. These companies aim at
searching repairs for their bugs as soon as possible.

Bug fixing is a task historically done by software developers. Consequently, the increase
of new bugs produces an increase in the demand of developers for fixing those bugs. For the
industry, bug fixing has an economical impact: companies need to pay developers for fixing
bugs. For open source projects, managed by not-profit organizations such as Apache or
Mozilla, defects in their products also have a negative impact: their developers, volunteers
that offer their time for free, have to spend much time fixing bugs. For instance, for Apache
common Math library, a well-known library for math in Java environment, 28 days were the
average time to repair each of the 52 bugs reported in 2013°.

'http:/ /www.apache.org/

*https:/ /www.atlassian.com/software /jira/

*https:/ /www.facebook.com/whitehat/

*https:/ /www.google.fr/about/appsecurity / reward-program/

5Value obtained from the dashboard provided by the Apache issue tracker https://issues.apache.
org/

https://issues.apache.org/
https://issues.apache.org/

Chapter 1. Introduction

To decrease the time of bug fixing (and the related economic cost), researchers and com-
panies have proposed techniques and tools that help developers in particular development
and maintenance activities such as debugging, or fault localizations. In spite of those contri-
butions, developers continue spending effort on bug fixing.

As solution, in the recent years automatic software repair approaches have emerged to
automatically synthesize bug fixes. One of their main goals is to decrease the time and
economical cost of bug fixing. Furthermore, these approaches aim at providing a solution
from the beginning to the end. That means, they take as input a failing program and return
a fixed version of that program. Approaches such as GenProg [1]], Patchika [2], ClearView
[3], AutoFix-E [4] and PAR [5], have been proposed by the software engineering research
community to fix real bugs.

Those automatic software repair approaches are able to automatically synthesize bug
fixes. For that, they need two entities. One is the bug oracle: an entity that indicates the pres-
ence of a bug. The other is the program correctness oracle: an entity that indicates whether a
program fulfills the software specification or not. The role of these oracles can be carried out
by humans or by automatic entities such as a program. The former oracle corresponds to
humans (user, developers, etc.) who decide whether a program works correctly or not. For
instance, Carzaniga et al. [6] use an oracle to repair JavaScript bugs. After a repair is synthe-
sized and integrated to a program, the user of the program under repair decides whether a
synthesized repair fixes a bug (previously notified by the same user) or not. An automatic
oracle has the structure of a function f(P) = c, where P is the program under repair, and
c indicates whether the P contains a bug or not. This oracle has the advantage that repair
approaches can use them in an automatically way. However, it is unusual and expensive
to have encoded the complete specification of a program in one oracle. As solution, many
approaches such as GenProg or Patchika rely on test suites as proxy to the ideal program
specification. A program that passes all test cases from a test suite means it is correct accord-
ing to its specification. Otherwise, if at least one test case fails, it means the program has a
bug.

Repair approaches are evaluated to measure their strengths i.e., their repair capability.
These evaluations usually contain two main phases. The first one is the setup of the eval-
uation process. The goal of this phase is to define a dataset of defects to be repaired by
the approaches under evaluation. Defects can be collected from diverse sources: previous
evaluations, defect repositories such as SIR [7], or from software projects (commercial or
open-source). The defects can be real or artificially created defects. The second phase is the
execution of the repair approach evaluation. A quantitative evaluation commonly consists
on the measure of its repair efficacy over a dataset of defects. The repair efficacy measures the
number of defects successfully fixed over the total number of defects from the evaluation
dataset.

1.2 Problem

Repair approach evaluations from literature show that a fraction of evaluated defects remain
unrepairable. An unrepairable defect means that the evaluated approach is not capable to
find a bug fix. For example, GenProg is able to repair 55 out of 105 defects proposed in its
evaluation [8]. Hence, it means that there remain 50 unrepairable defects in this dataset.

2

1.2. Problem

In this thesis, we wonder the reasons for having unrepairable defects in evaluations.
Is it a problem of the approach?

or

Is it a problem of the repair approach evaluation design?

We suspect both cases are possible. First, let us consider the case that an evaluated ap-
proach is not able to find a repair. A search space is the set of all candidate solutions, i.e.,
candidate repairs, that the repair approach is able to synthesize. Using the bug and correct-
ness oracles, the approach determines whether a candidate repair is a solution (it repairs the
bug) or not. A reason for not finding a solution could be the size of the search space that is
too large and takes a long time to evaluate each candidate solution. Our intuition is there are
sources of information that can be used by the approaches for improving the repairability of
bugs. That means, these sources help approaches to find faster a solution in the repair space.

As previous research shows [9], bug fixing is a repetitive task: most of the bugs can be fixed
using a finite set of bug fix patterns i.e., common fixes. Few repair approaches from the lit-
erature use knowledge from previous human bug fixes. The state-of-the art approach PAR
[5] is one that partially uses it. It synthesizes fixes by instantiating 10 bug fix patterns (recur-
ring similar patches) derived from open-source bug fixes. However, there is more valuable
knowledge from the software repositories to increase the repairability strength of repair ap-
proaches. For instance, despite that the work of Pan et al. [9] presents 27 bug fix patterns,
only a small portion of this knowledge is used in the automatic software repair field.

Second, we suspect that evaluation procedure is not well designed and, by consequence,
the evaluation does not produce accurate results. Let us present an illustrative example of a
not well-defined evaluation. Consider that we want to evaluate one language translator, that
translates words from English to Spanish. The evaluation corpus is a text written half in En-
glish and half in Chinese. The translated text (the translator output) ideally would have half
of the words in Spanish, half in Chinese. A well-defined evaluation should only consider
words that the evaluated translator targets, in this example, English words. Then, the evalu-
ation can calculate measures such as efficacy (number of words corrected translated over all
words evaluated from the target language). Contrary, a not well-designed evaluation, such
as that one from our example, includes words from a language not targeted by the translator
under evaluation. The words of the not-targeted language (in the example, Chinese words)
introduce noise in the evaluation. The evaluation result does not show the real efficacy of the
translator. This example could sound a bit naive. However, in a repair approach evaluation,
a not well-defined evaluation process could produce the same effect.

Now, let us focus on evaluations of repair approaches. We claim that repair approaches
always target defect classes. A defect class is a family of defects that have something in com-
mon such as the root cause or the kind of fix applied to repair the defect. In this context,
an approach targeting a defect class means it is able to repair defects of that class. For ex-
ample, the repair approach Semfix [10] is able to repair bugs in if conditions but not missing
method invocations. Coming back to the automatic translation example, approaches are the
translators, and the defect classes are the languages that a translator targets (e.g., English
to Spanish). Having this information, one is able to characterize evaluation datasets. We
have two kinds of defects. On the one hand, the repairable defects, which can be repaired by
the evaluated repair approach. The repair approach targets the defect classes of repairable
defects. On the other hand, the unrepairable defects are the defects that cannot be repaired, by
definition, by the evaluated repair approach. That is, the repair approach does not target the

3

Chapter 1. Introduction

defect classes of the unrepairable defects and, by consequence, its repair search space does
not contain any solution. In the previous example, English words are equivalent to repairable
defects and Chinese words to unrepairable defects. The result of the evaluation would not be
the same if a dataset contains more repairable bugs than unrepairable, and vice-versa.

To summarize, the problem we found in the evaluations from the literature is that they
present a portion of defects used in the evaluation that remains unrepairable. Moreover,
those evaluations do not always include the inclusion criteria of the defect dataset used.
As consequence, it is not possible to have a sound measure of an approach’s performance.
In particular, it is not possible to determine whether a defect could not be repaired due to
the intrinsic characteristics of the repair approach or whether the evaluation process is not
appropriate.

1.3 Thesis Contribution

Our main objective is to improve the performance of repair approaches. That means, to
increase the number of solutions for repairable defects from the evaluation dataset. To measure
the performance of a repair approach, we also need to conduct meaningful repair approach
evaluations. That involves characterizing the defect dataset used in the repair approach
evaluations. These two objectives are guided by the following hypotheses:

a) The repairability of defects can be improved by considering knowledge from previous
repairs done by human developers.
b) Evaluation results are meaningful if evaluation uses well-defined datasets.

In this thesis we validate both hypotheses. For the first one, we search for strategies
for discovering repairable defects that are not previously found by an existing approach.
These strategies rely on information from previous repairs and already written source code.
We aim at adding those strategies to existing repair approaches to optimize the search of
solutions in the repair search space.

We first present a strategy that uses information from previous repairs to optimize the
search of solutions in the repair search space. The optimization reduces the time to find a fix.
The strategy focuses on the most frequent repairs in order to find a solution faster. For that,
it consumes information extracted from repairs done by developers. We mine version con-
trol systems (VCS) of open-source projects to extract those repairs. Version control systems
are used by developers to track changes done during the software life-cycle. Then, we an-
alyze the composition of those extracted repairs. Using this information, we build a model
that captures the source code changes used in bug fixing activity and their abundance. The
strategy uses these models to decrease the time to navigate the repair search space. A repair
approach that implements this strategy aims at synthesizing fixes composed by the most
frequent bug fix changes. This thesis is the first to study the incorporation of this knowledge
in the context of automatic software repair.

Then, we present a novel approach to identify repairs from version control systems. We
present a method to specify patterns of source code changes, and an approach to identify in-
stances of those patterns in a software history. The combination of both allows us to extract
knowledge from software history. We use our approaches to specify bug fix patterns from
the Pan et al.’s bug fix patterns catalog [9], and then we measure the abundance of each of

4

1.3. Thesis Contribution

them. This knowledge could be applied to improve the repairability of bug fix pattern-based
repair approaches such as PAR [5].

We present a second strategy to optimize the search of solutions in the repair search space.
It reduces the size of repair search spaces without significantly decreasing their number of
solutions. Reducing the size has a direct impact on the repair time. We focus on reducing
the search space of one kind of automatic repair approach: redundancy-based repair approach.
These approaches work under the assumption that the ingredients of a fix, i.e., the source
code that conforms the fix, were already written before somewhere in the program. We
analyze the location of redundant code in the software. This study allows us to prove that it
is possible to reduce the repair search space of redundancy-based approaches without losing
repair strength.

Our second hypothesis states that when the evaluation procedure is not well designed,
the evaluation result could not reflect the real strength of the evaluated approach. That
means, for instance, the repair efficacy measure could be high due to a biased definition
of the evaluation dataset. To validate our second hypothesis, we study the dimensions of
evaluation for repair approaches.

First, we focus on the setup step of an approach evaluation. Our challenge is to define a
methodology to build unbiased evaluation datasets. For that, it is necessary to characterize
how the dataset is built and what it contains. As we have shown in the automatic translation
example, a biased evaluation dataset impacts on the result of an evaluation. Suppose one
wants to evaluate an approach that is able to repair defects of class A, but not defects of class
B. If one considers a dataset including a majority of A defects, the efficacy of the approach
can possibly be high. Contrary, if one includes a majority of B defects, the efficacy would
be low, by construction. The reason of these opposite results is the presence of bias in the
evaluation dataset (in this case the presence of unrepairable defects). This bias could be
unintentional, especially when the dataset is informally built without well-defined criteria.
As consequence, measures such as repair efficacy depend on the conjunction of the following
factors: a) the definition of the dataset (the defect classes included in the dataset and their
abundance); and b) the capacity of the approach to repair a given defect class (e.g., the illegal
access to an uninitialized variable).

Those factors have a great impact on the conclusiveness for the evaluation of a repair
approach. Unfortunately, evaluations of repair approaches from the literature do not include
the criteria used to define evaluation datasets. Thus, the evaluation result could be biased.
For example, in the evaluation of PAR [5], the authors define a dataset of 119 defects taken
from the issue tracking system of six open source projects. The inclusion criterion of those
defects is not well-defined. The authors state that “we randomly selected 15 to 29 bugs
per project”. Moreover, it is missing the notion of defect classes. The evaluation returns
that PAR fixes more defects that GenProg. We think that using a strong inclusion criterion,
the result could eventually be different and would better characterize the strength of repair
approaches. Our methodology aims at obtaining this result.

Finally, we focus on the execution step of a repair evaluation. Our motivation is to ex-
ecute evaluations of repair approaches that produce reliable and conclusive results. This
experiment allows us to concretely instantiate our evaluation methodology in order to val-
idate it. In particular we aim at studying the repairability of a particular defect class: if
condition defects. These defects are common: previous works [9, 11] have shown that they
are the most repaired elements in source code. According to the results of Pan et al. [9] over

5

Chapter 1. Introduction

six open source projects, between 5% and 18.6% of bug fix commits are modifications done
in if conditions. Through our experiment we also want to know: a) whether if conditions are
automatically repairable; b) whether one of the major repair approaches of the literature is
better than the others on this defect class. We consider three repair techniques from the most
authoritative literature: GenProg [12], PAR [5] and the mutation-based approach defined by
Debroy and Wong [13]. To carry out this experiment, we define an experimental protocol
where the potential experimental biases are minimized. We propose a unified repair frame-
work to reproduce the three repair approaches. The framework factorizes the variabilities
of the three approaches under consideration and allows us to implement the particular be-
havior of each of them. For instance, the framework uses, for the three implementations, the
same mechanism to detect the suspicious buggy locations and the same correctness oracle
mechanism to validate candidate fixes.

1.4 Outline

The remained of this thesis is structured as follows. Chapter [2| provides an overview of
previous work that focuses on the analysis of software evolution and automatic software
repair approaches. Chapter [provides an analysis of human repairs mined from source code
repositories. Chapter] presents two strategies to optimize search-based software repair.
Chapter [5| presents a framework for evaluation of repair approaches. Chapter [f| presents the
summary of the thesis and future works.

1.5 Publications

Published:

M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients already exist? an
empirical inquiry into the redundancy assumptions of program repair approaches,” in Com-
panion Proceedings of the 36th International Conference on Software Engineering, ICSE Compan-
ion 2014, (New York, NY, USA), pp. 492-495, ACM, 2014.

M. Martinez and M. Monperrus, “Mining software repair models for reasoning on the
search space of automated program fixing,” Empirical Software Engineering, pp. 1-30, 2013.

M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting instances of code
change patterns with ast analysis,” in Software Maintenance (ICSM), 2013 29th IEEE Interna-
tional Conference on, pp. 388-391, Sept 2013.

To appear:

J.R Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus “Fine-grained and Accu-
rate Source Code Differencing”. To appear in Proceedings of the 2014 29th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE "14.

Technical Report:
M. Monperrus and M. Martinez, “CVS-Vintage: A Dataset of 14 CVS Repositories of Java
Software,” tech. rep http://hal.archives-ouvertes.fr/hal-00769121.

6

http://hal.archives-ouvertes.fr/hal-00769121

1.5. Publications

To be submitted:

M. Martinez, M. Monperrus, “Automatically Fixing Buggy If Conditions: an Empirical
Evaluation of Three Software Repair Techniques”,2014

M. Martinez, L. Duchien, and M. Monperrus, “Accurate extraction of bug fix pattern
instances using abstract syntax tree analysis,” 2014.

Chapter 1. Introduction

Chapter

State of the Art

In this thesis we aim at extracting knowledge from repairs done by developers. We want to
use this knowledge to improve the performance of automatic software repair approaches.
In this chapter we present the prior work relevant to our thesis. First, in Section we
introduce the definitions of relevant concepts used along this thesis. Then, in Section we
analyze the related works on software evolution and bug fixing activity. Finally, in Section
2.3|we focus on presenting proposed automatic software repairs and their evaluations.

2.1 Definitions

In this section we present the list of widely used terms along this thesis. This list is presented
in alphabetic order.

An automatic software repair approach is a software that receives a program with one
defect and automatically produces a repair that solves this defect.
A biased dataset is a collection of defects defined through a biased sample.

A biased sample is a subset of a population (i.e., defects) that is not representative of
—either intentionally or unintentionally—an entire population.

A bug oracle is an abstract entity that decides whether a program has a bug or not.
A bug fix commit is a commit containing changes to fix buggy code.

A bug fix pattern is a set of source code changes that frequently appear together for fixing
abug.

A change action represents a kind of source code modification. A change action is part
of a change model.

A change model represents a feature space of software changes. For instance, the change
model of standard Unix diff is composed of two changes: line addition and line deletion. For
instance, in a probabilistic change model each change action has associated a value with a
probability that this action occurs.

A change pattern is a set of source code changes that frequently appear together.

9

Chapter 2. State of the Art

A change pattern identifier is a software entity that classifies, if it is possible, a concrete
change as an instance of a change pattern.

A correctness oracle is an abstract entity that decides whether a program is correct ac-
cording to its specification or it is invalid.

A defect class is a family of defects that have something in common such as the root
cause or the kind of fix.

A defect dataset is a set of defects used for experiments and evaluations. For instance, in
the automatic software repair domain, defect datasets are used to measure the performance
of automatic software repair approaches.

An experimental bias is a process where the scientists performing the research influence
the results, in order to portray a certain outcome®. Bias in research occurs when systematic
errors are introduced into sampling or testing by selecting or encouraging one outcome or
answer over others”.

A hunk is a set of co-localized changes in a source file. In lines of code, a hunk is
composed of a consecutive sequence of added, removed and modified lines.

A hunk pair is a pair of related hunks, one hunk being a section of code at version n and
the other being the corresponding code in the fixed version n + 1. Hunks are paired through
the process of differencing that computes them.

A repair action is a change action that often occurs for repairing software, i.e., often used
for fixing bugs.

A repair model is a set of repair actions, i.e., a set of source code changes often used for
fixing bugs.

A repair search space is a space of all candidate solutions (i.e., fixes) that an automatic
software repair is able to generate. A candidate solution must be validated to verify whether
it is a valid fix or not.

A repair synthesis is the process for generating source code of a repair.

A revision is a set of source code changes done over one file and committed in the version
control system. The revision produces a new version of the modified file.

A versioning transaction or commit is an atomic operation done by developers to reflect
their working changes in a version control system. These changes produce a new version of
the modified files.

A version control system (VCS) is a system that records the history of software changes
during the development and maintenance of a software system.

2.2 Studying Software Evolution

In this thesis we aim at studying how bugs are fixed along the software life-cycle. Bug fixing
activity is part of the software evolution. Our goal is to extract valuable information from
bug fixing activity to apply in automatic software repair domain.

Shttps:/ /explorable.com/research-bias
"http:/ /www.merriam-webster.com/dictionary /bias

10

2.2. Studying Software Evolution

In this Section, we present works that focus on how software evolves through time. First,
in subsection[2.2.T|we focus on those works that study the evolution at the source code level.
That means, how source code changes through the time. We present works that compute the
changes at the source code level. These works are used to compute, for instance, the changes
between two consecutive versions of one file. We also analyze previous work that measure
the abundance of change types, and others that detect change patterns i.e., set of source code
changes that frequently appear together.

In this thesis we are interested in detecting the portion of software changes related to the
bug fixing activity. Version control systems (VCS) are used by developers to track changes
done during the software life-cycle. Developers introduce changes in the software through
commits. In section we present works that analyze commits from version control sys-
tems. Previous works have presented infrastructure to facilitate the study of the software
evolution, i.e., the software history. In sectionwe present those state-of-the-art works.

Finally, once we are able to identify the portion of the software evolution related to bug
fixing activity, we aim at knowing how this activity is done. For instance, what are the source
code changes done to fix the most frequent bugs. In section[2.2.4we present previous works
that focus on bugs and fixes.

2.2.1 Studying How Source Code Evolves

In this section we present publications that analyze the software evolution at the source code
level. First, in subsection we present works that detect the software changes at the
mentioned level. Then, in subsection we present works that focus on measuring the
abundance of those software changes. In subsection we present works that identify
change patterns i.e., set of source code changes that frequently appear together. Subsection
present works that define methods to specify patterns. Finally, in subsection
we identify the previous works about repetitiveness of source code.

2.2.1.1 Analyzing Source Code Changes

We are interested in studying how the source code changes along the software history. For
instance, we want to calculate the source code changes introduced by a new version of a file.
Our goal is to study the kinds and abundance of source code changes related to bug fixing
activity.

Previous works focus on the computation of source code changes. The changes are ex-
pressed at a given granularity. For instance, at line granularity level (e.g., 1 line added) or
at the abstract syntax level (AST) node granularity level (e.g., 1 AST node updated). In the
context of software evolution, these approaches are used for comparing a version of a file
with its predecessor.

First approaches calculate textual changes. They are usually based on the longest com-
mon subsequence algorithm. A well-know algorithm is Myers’ differencing algorithm [14].
They compare two files and highlight elements (e.g., lines, chars) added and removed be-
tween them. These algorithms are not able to identify whether the change affects source code
or documentation, or to identify the source code entity (e.g., method invocation, assignment)
affected by the change.

To overcome these limitations, researches have proposed approaches based on, among
other solutions, UML [15,[16]], token [17] and AST [18],[19} 120, 21]]. Let us focus on one of them,

11

Chapter 2. State of the Art

which we extensively use in this thesis. ChangeDistiller [20] is a fine-grain AST differencing
tool for Java. It expresses fine granularity source code changes using a taxonomy of 41 source
change types [22]], such as “statement insertion” of “if conditional change”. ChangeDistiller
handles changes that are specific to object-oriented elements such as “field addition”. More-
over, Fluri et al. have published an open-source stable and reusable implementation of their
algorithm for analyzing AST changes of Java code.

2.2.1.2 Measuring Frequency of Change Types

Once we are able to compute changes between two files (for example, two consecutive ver-
sions of a same file) at different level of granularity, we aim at measuring the abundance of
each change type to know the importance of each.

Previous works studied the abundance of change types in the version control system
of applications. For instance, Raghavan et al. [18] analyze patches obtained from a source
code repository and then identify higher-level program changes. Their work shows the six
most common types of changes for the Apache web server and the GCC compiler, such as
“Altering existing function bodies”, “Altered existing if conditions” and “Altered existing
function calls”. At a finer grain level, Fluri et al. [20] presented some frequency numbers
of their change types [22] in order to validate the accuracy and the runtime performance of
their distilling algorithm.

Nguyen et al. [23] present an empirical study of repetitiveness of code changes. They
measure the repetitiveness of fine grained source code changes in general changes (consid-
ering all revisions form software repository) and bug fix changes. Their experiment return
that “method calls”, and “expressions” have the most number of changes, while changes to
“constructor calls”, and “do statements” are less.

2.2.1.3 Discovering Change Patterns

In this thesis we consider change pattern as a set of change types (such as addition of method
invocation, update assignment) that appear frequently together. In this thesis we aim at
studying change patterns related to bug fixing activity: the bug fix patterns. That is, we want
to know how source code changes are frequently combined to fix a particular defect class.

Studies have focused on the extraction of change patterns from the history of the soft-
ware. For instance, Fluri et al. [24] use hierarchical clustering of source code changes (from
the taxonomy defined by ChangeDistiller) to discover source code change patterns. Livshits
and Zimmermann [25] presented an approach to detect error patterns of application-specific
coding rules. The proposed approach extracts automatically likely error patterns by mining
software revision histories and checking them dynamically.

The mentioned publications, as many others in the empirical software engineering com-
munity, mine valuable information from version control systems (VCS) such as CVS, SVN
or GIT. Version control systems are used by developers to track changes done during the
software life-cycle. However, much code evolution data is not stored those systems [26} 27,
28| 29]. These systems store changes that commits introduce. However, the changes that
developers do between two commits are not registed in those systems. This involves that
they register a fraction of the software evolution data. As solution, approaches such as Cod-
ingTracker [26] or SpyWare [29] have been proposed to record fine-grained and diverse data

12

2.2. Studying Software Evolution

during code development. The authors of CodingTracker found that 37% of code changes
are shadowed by other changes, and are not stored in VCS.

2.2.1.4 Pattern Formalization

In this thesis we aim at discovering instances of change patterns. For example, we want
to collect the commits that introduce source code changes related to a particular change
pattern. This would allow us to measure the importance of change patterns in the software
history. For that, it is necessary to define a mechanism to formalize change patterns, and
then another mechanism for searching instances from that formalization.

Previous works have focused on defining specifications of patterns. For example, Mens
and Tourwé [30] presented a declarative framework for specifying design patterns, their con-
straints, and their high-level evolution transformations. Moreover, their framework allows
defining refactoring transformations that can be applied to a given design pattern instance.
The authors used their approach to specify design pattern from Gamma et al. [31] catalog
such as the Abstract Factory design pattern. Beside this work, to our knowledge, no previous
publications have focused on specifying a formalization of change patterns, i.e., a structure to
define source code change pattern.

2.2.1.5 Study of Repetitiveness of Source Code

Previous work has focused on the study of code that, in the moment it was written, already
existed somewhere in the application. We call this concept software redundancy.

Some works on code clone detection study software repetitiveness at line-granularity [32]
and at token-level granularity [33]. For instance, Kim et al. [34] considered code clones via
a temporal perspective, linking clones together across versions; Li et al. [35] presented a
token-based approach to detect copy-paste bugs.

Other works have focus on the naturalness of software. Gabel and Su [36] studied the
uniqueness of source code. Their syntactic redundancy calculates the degree to which portions
of software applications are redundant. Hindle et al. [37] studied the repetitiveness and
predictability of code. They present a statistical language model to capture the high-level
statistical regularity that exist in code, represented by n-gram level, probabilistic chains of
tokens. Both consider software redundancy from a spatial viewpoint.

2.2.1.6 Conclusion

The main lesson of this subsection is there is no previous work that defines a method to
specify change patterns in a finer-grained manner. We aim at defining an approach to specify
patterns. Moreover, we want to mine instances of these formalized patterns from the history
of the software.

2.2.2 Empirical Studies of Commits

Developers introduce source code changes in version control systems through commits. Com-
mits introduce modifications to existing software artifacts (source code files, configuration
files, etc.), introduce new artifacts, and remove existing ones. Additionally, each commit
contains meta-data such as the commit date, the name of the developer that does the com-
mit, and a message log (a text where a developer can explain the purpose of the commit).

13

Chapter 2. State of the Art

In this thesis we aim at studying commits that introduce bug fixes to know how developers
repair bugs. Several works have studied the evolution of software at the level of version
control systems commits.

In subsection[2.2.2.T|we present the works that focus on commits meta-data and metrics.
Then, in subsection and subsection we present works that focus on commits
that introduce fix and bugs, respectively.

2221 Studying Commit Meta-data and Metrics

Some works focus on commit meta-data (e.g. authorship, commit text) or size metrics (num-
ber of changer files, number of hunks, etc.). For example, Alali et al. [38] discussed the rela-
tions between different size metrics for commits (# of files, LOC and # of hunks), along the
same line as Hattori and Lanza [39] who also consider the relationship between commit key-
words and engineering activities. German [40] asked different research questions on what
he calls “modification requests” (small improvements or bug fix), in particular with respect
to authorship and change coupling (files that are often changed together). On the opposite,
Hindle et al. [41} 42] focus on large commits, to determine whether they reflect specific en-
gineering activities such as license modifications. Other works analyze the relation between
commit meta-data and the evolution of the source code. For instance, Fluri et al. [43, [44]
look at the relation between source code and comment changes. They found that when code
and comments co-evolve, both are changed in the same revision: 97% of comment changes
are done in the same revision as the associated source code change.

2.2.2.2 Searching for Bug Fixes Commits

Previous researches have focused on the identification from the software history of: a) changes
(instances) that fix bugs and b) changes that introduce bugs. For both cases, techniques pro-
pose to identify commits that introduce those changes. One approach presented by Mockus
and Votta [45] identifies keywords in the commit message. In their work, they classify a
change as “corrective” if the message log of the commit that introduces the change contains
one of the following keywords: “fix”, “bug”, “error”. Other techniques search links to ex-
ternal system in the commit message. The idea is to relate commits with reports such as a
bug report from issue tracking systems. The linkage technique is a way to combine two dif-
ferent sources of information. For example, techniques such that one presented by Fischer et
al. [46] discover links between commits and issue reports, explicitly written in the commit
message.

Other works have empirical studied these linking techniques. For instance, Bird et al.
[47] found these heuristics could produce bias results due to developers can omit bug ref-
erence (the link) in the commit message. The authors found that 54% of fixed bugs in the
bug dataset are not linked to commit message (missing links). Moreover, Antoniol et al.
[48] studied linked reports from issue tracker and obtain that less than half of them related
to corrective maintenance (bug fixing), while the rest were related to activities such as en-
hancements or refactoring. Some approaches have emerged to discover missing links. Wu
et al. [49] presented an approach called ReLink to automatically recover links. ReLink learns
criteria of features from explicit links to recover missing links. Another approach [50] uses
machine learning approach for text categorization of fixing-issue commits on CVS, while

14

2.2. Studying Software Evolution

[51] used a probabilistic approach to effectively recover traceability links between bug fix
commits and corresponding bug reports.

2.2.2.3 Searching for Bug-introducing Commits

Other works have focused on the study of commits that introduce bugs [52, 53]. A fix-
inducing change is a change that later gets undone by a fix. As Kim et al. [53] state, the
extraction of bug-introducing changes is challenging, in contrast to bug-fixes that are rela-
tively easy to obtain. In addition to the use to linkage technique to detect a fix commit, these
approaches define algorithms of find the commit that introduces the bug. Those algorithms
are based on line diff analysis [52] or annotation graphs [53, 54]. Bug-introducing changes
also were studied by Purushothaman and Perry [55]. They studied small commits (in terms
of number of lines of code) of proprietary software at Lucent Technology. They showed
the impact of small commits with respect to introducing new bugs, and whether they are
oriented toward corrective, perfective or adaptive maintenance. Filtering bug fix commits
allows us to study the features of kind of commits. For instance, the common source code
changes they introduce.

2.2.24 Conclusion

In this section we learned that previous works define methods to collect the portion of the
software evolution related to bug fixing activity. Some of them rely on mining commit’s
message logs and other on commit’s features such as commit size. In this thesis we aim at
studying the relation between bug fixing commits and commit size in terms of AST changes
affected by the commit.

2.2.3 Defining Infrastructures for Software Evolution Analysis

As Mens et al. state [56] one of the challenge of software evolution is to find out how different
kinds of data (bug reports, change requests, versioning repositories, execution traces, etc.)
can be integrated, and how support this integration can be provided. Previous works de-
fined infrastructures to facilitating software evolution research such as Evolizer [57], Kenyon
[58], Hipikat [59], RHDB [46], SoftChange [60]. These infrastructures group information
from different systems used in development such as version control systems, issue trackers
or mailing lists. They also provide mechanisms to querying the data. For instance, Fischer
[46] defined an infrastructure built from basic building blocks (SQL database and scripts) for
retrieval and filtering information from a) the version control system and b) the bug report
database. Likewise, SoftChange [60] retrieves, summarizes, and validates data from mailing
lists, CVS logs, and defect tracking systems based on Bugzilla.

224 Study of Bugs and Fixes

Once we detect commits from version control systems that introduce fixes, we aim at study-
ing what these fixes look like. Previous works characterize bugs and fixes. In this section we
first focus on works that present bugs and fixes classification (subsection [2.2.4.1), and then
works that analyze the abundance of bug and fixes (subsection [2.2.4.2).

15

Chapter 2. State of the Art

2.2.4.1 Taxonomies

In this thesis we are interested in how to classify bugs. To repair defects and propose bug
fixes, we need first to know: a) What bugs look like. In particular, the different types of bugs,
the places they affect, their manifestation; b) the changes that developers do to fix bugs.

In one hand, previous works from the literature classify software defects. The prelim-
inary works manually define a classification from, for example, bug reports or software
documentation. For instance, Knuth defines a schema to classify the errors of TEX from
his error log [61]. Chillarege et al. [62] present an Orthogonal Defect Classification (ODC).
It corresponds to a categorization of defects into classes called Defect Types. This catego-
rization has eight defect types such as Assignment (error in initialization of control blocks or
data structure), Interface (errors in interacting with other components) or Documentation er-
ror. Moreover, Ostrand and Weyuker [63] present a scheme for categorizing software errors.
They characterized an error in distinct areas, including “major category”, “type”, presence,
and use of data. For example, “major category” identifies what type of code was changed
to fix the error. They develop this classification schema from change reports filled out by
developers of an industry software product. Then, they present the number and percentage
of errors for each area.

In the other hand, previous works concentrate on the analysis of bug fixes. For instance,
Pan et al. [9] manually identified 27 bug fix patterns on Java software from previous bug
fixes done by developers. A bug fix pattern is set of common source code changes applied
to fix a particular kind of bug. The authors have manually analyzed bug fix commits from
open source commits to define the pattern catalog. Moreover, Nath et al. [64] have extended
this bug fix pattern catalog adding three alternative patterns discovered from this manual
inspection. There are approaches that automatically learn project-specific bug fix patterns
from software versioning history [65, 66].

2.2.4.2 Measuring Abundance of Defect and Fixes

In this thesis, we aim to knowing what source code changes are frequently used in bug fixing
activity. Our intuition is this information would allow us to improve the performance of
automatic software repair approaches. This improvement can be done by first concentrating
on synthesizing repairs frequently done by developers.

Previous work focuses on the measurement of the abundance of each element defined in
those bug or fix taxonomies. This measure is done by analyzing software artifacts such as
reports [63], or source code [67, 9,64} 168]. For instance, Pan et al. [9] present a tool to extract
instances of the 27 bug fix patterns of their catalog from SVN version control repositories.
Contrary, Nath et al. [64] replicate the experiment by manually measuring the abundance of
27 Pan et al.’s pattern plus the pattern they introduced. Both works also shows that there is
a portion of bug fix commits in the software history (detected by the method explained in
Section[2.2.2.2) that do not contain any instance of the defined bug fix patterns. That means,
it could exist more unknown bug fix patterns.

2.2.4.3 Conclusion

The main lessons that this subsection gave us are twofold. First, there are bug fix pattern
not already discovered or formalized. Second, the replication of experiments that measure

16

2.3. Automatic Software Repair

the abundance of pattern instance is difficult. The main reasons are: few tools are defined
and available, and these tools are not flexible to accept new patterns. In this thesis we aim
at measuring in a flexible way: independent of the pattern to search. We want to define an
approach that is able to measure the abundance of change pattern already defined and new
one as well.

2.3 Automatic Software Repair

Automatic software repair approaches have emerged to provide a patch (at source code level
or binary level) that fixes a software defect. Researchers have modeled the synthesis of
patches as a search problem [69,70]. Search-based software engineering seeks to reformulate
software engineering problems as search-based problems [70]. It aims at applying meta-
heuristic search-based techniques such as genetic algorithms [71]. A search space contains
all candidate solutions. In the automatic software repair context, a solution is a patch.

One of the main problems in automatic software repair is to have an oracle that indicates
whether a program is correct according to its specification (i.e., it does not contain bugs).
Automatic software repair approaches need those oracles to determine whether a program
contains a defect, and for a buggy program, to determine whether a candidate solution, cho-
sen from the search space, is a solution (i.e., fixes the bug) or not. Unfortunately, a program
specification is not always explicit or accessible in an automatic way. As consequence, a
challenge of software repair approaches is also to define those oracles. Usually, requirement
engineers and/or developers specify the behavior program in documents written in natural
language and using modeling language such as UML [72]. However, this natural represen-
tation is a barrier for automatic repair approaches. Paradigms such as design-by-contract
programming (DBC) [73] include formal specification in the software. Bertrand Meyer de-
veloped DBC as part of his Eiffel programming language. For instance, it uses preconditions
and postconditions to document (or programmatically assert) the change in state caused by
a piece of a program. Repair approaches such as AutoFix-E [74, 4] leverage on this kind
of specification to repair bug fixes. However, this contract does not supply the correctness
oracle.

Researchers on automatic software repair domain have relied on test suite as a proxy of
software specification [75, [12]. A test suite is a collection of test cases used to test a soft-
ware program to verify whether it fulfills some specified behaviors. A test suite presents as
advantage that it can be executed in an automatic way.

In this thesis we focus on a particular kind of repair approaches: Test suite-based repair
approaches. These approaches rely on test suite as bug and correctness oracles. If at least
one test case fails means the program under evaluation has a bug and it does not fulfill its
specification. Moreover, these approaches verify the whether a candidate patch is valid or
not. A synthesis patch must pass the original failing test cases, and must keep the other test
cases passing.

We aim at improving the repairability of test suite-based repair approaches. Our goal is
to define strategies that allow existing repair approaches to repair defects that were hard to
repair. We also want to carry out meaningful evaluation of repair approaches. The evalua-
tion of repair approach takes defect from a defect datasets and tries to repair each of them
with the approach under evaluation.

In subsection we present test suite-based repair approaches from the literature.

17

Chapter 2. State of the Art

Then, in subsection we present strategies to optimize the repair time. Finally, in sub-
section we present works that define defect datasets.

2.3.1 Test Suite-based Repair Approaches

Previous works have defined test suite-based repair approaches based on search-based op-
timization techniques. Arcuri presents JAFF [69], an approach that uses search-based tech-
niques (hill climbing and genetic programming) to repair software. Weimer et al. [12] in-
troduce GenProg, a genetic programming approach to C program repair. The approach
defines genetic operations that use existing code from other parts of the program to syn-
thesize patches. That means, GenProg never introduces new code into the application. As
difference with the mentioned work presented by Arcuri, GenProg was validated using real
defects from large programs. In the last evaluation of GenProg [8], the approach fixed 55
out of 105 bugs. Another approach leverages evolutionary computing techniques to gener-
ate program patches is PAR [5]. It generates program patches automatically from a set of
10 manually written fix templates. PAR synthesizes fixes by instantiating those bug fix tem-
plates and, for some of those, PAR does it taking by existing code from the same program.
The evaluation of PAR returns that the approach fixed 27 out of 119 bugs from 6 open source
projects.

Qi et al. [76] present RSRepair, an approach that tries to repair faulty programs with the
same operators as GenProg. RSRepair uses random search to guide the process of repair
synthesis rather than genetic programming. Their evaluation shows that RSRepair, in most
cases, outperforms GenProg in terms of both repair effectiveness (requiring fewer patch tri-
als) and efficiency (requiring fewer test case executions).

Dallmeier et al. [77] present a repair approach named Patchika that a) infers an object
usage model from executions, b) determines differences between passing and failing runs,
and c) generates fixes that alter the failing run to match the behavior from the passing run.
Patchika automatically builds finite-state behavioral models for a set of passing and failing
test cases of a Java class. Then, it can insert new transitions or delete existing transitions to
change the behavior of the failing model. Patchika was able to fix 3 out of 18 bugs from an
open source project. Wei et al. [74] present AutoFix-E, an automated repair tool which works
with software contracts. In particular, it repairs Eiffel classes, which are equipped with con-
tracts (preconditions, postconditions, intermediate assertions, and class invariants). Autofix
shares the same foundation with Pachika such as the use of behavior models, state abstrac-
tion, and creating fixes from transitions. AutoFix-E leverages user-provided contracts inte-
grating them with dynamically inferred information. In its evaluation, AutoFix-E repaired
16 out of 42 bugs from two Eiffel libraries.

Inspired from the field of mutation testing, Debroy et al. [13] present an approach to re-
pair bugs using mutations. For a given location, it applies mutations, producing mutants of
the program. A mutant is classified as “fixed” if it passes the test suite of the program. Their
repair actions are composed of mutations of arithmetic, relational, logical, and assignment
operators.

Using semantic analysis, SemFix [10] approach explicitly focuses on if conditional de-
fects. It generates repairs by combining symbolic execution, constraint solving, and program
synthesis.

18

2.3. Automatic Software Repair

2.3.2 Optimizing Repair Runtime

Previous works propose extensions or modifications of existing approaches to optimize the
search of the solution. These optimizations aim at repairing faster and, by consequence, to
increase the repairability strength of an approach

AE [78] is an extension of GenProg that aims at decreasing both repair time and repair
cost compared with GenProg by analyzing equivalent programs and applying test case exe-
cution reduction. The approach applies the same source code operators as GenProg, but the
solution search is not guided by genetic programming.

Some automatic software repair approaches such as GenProg use evolutionary comput-
ing to generate candidate patches. One drawback is the time cost. Qi et al. [79,80] show
that weak recompilation can reduce the time cost of repairing. Weak recompilation is only
compiling and installing the changed source code, without dealing with unchanged source
code. This approach can avoid the time cost of unchanged source code in multiple patches.
The time cost (in seconds) shows that weak recompilation can reduce at least 4/5 time cost
in large programs (namely, Php and Wireshark). Note that no accuracy is compared since
the technique of generating patches is the same.

Another optimization in program repair is done through fault-recorded testing prioriti-
zation [81]]. TrpAutoRepair is an extension of GenProg that aims at reducing the number of
test case executions in the repair process. The evaluation shows that the approach can sig-
nificantly improve the repair efficacy by reducing efficiently the test case executions when
searching a valid patch in the repair process.

Those optimization strategies focus on specific stages of the repair process such as fault
localization [82} 83], repair synthesis [79] or candidate repair validation [81]. However, no
approach focuses on the strategy of selecting the kind of repair to apply in a buggy location.
In this thesis we present one strategy using information from previous fixes to select. The
strategy aims at selecting first the most common repair shapes to decrease the repair runtime.

2.3.3 Bug Benchmarks and Datasets for Evaluation of Repair Approaches

In this section we present related works that define defect datasets and benchmarks. There
is a large number of previous works that focus on static fault localization [84, [85]. Fault-
Bench [86] provides a benchmark for evaluation and comparison of techniques that priori-
tize and classify alerts generated by static analysis tools.

Benchmarks such as BugBench [87] and BegBunch [88] are defined for evaluating bug
detection tools. Both benchmarks contain bugs in C/C++ code and more than one type of
bugs, for example, memory leak or buffer overflow bugs. Lu et al. [87] present a guidelines
on the criteria for selecting representative bug benchmark.

In this thesis we focus on evaluation of test-suite based program repair approaches. These
approaches use a test suite to validate the correctness of a program and, by consequence,
to know whether a program has a defect or not. So that, to evaluate these approaches, the
program under repair must include a test suite that validates its correctness and exposes the
defect (at least one failing test case).

Benchmarks from the literature include defects from programs with test suites. For in-
stance, Do et al. [7] present SIR, an artifact repository that includes versions of Java, C,
C++ and C# programs with defects. SIR includes real and seeded defects. In our opinion,
seeded bugs produce a bias in the result of approaches evaluation. A dataset with seeded

19

Chapter 2. State of the Art

bugs is biased by the defect classes seeded, that were artificially synthesized. These de-
fect classes usually are a subset of all defect classes existing in software. Additionally, the
distribution of each kind of defect seeded could be different from its distribution in real pro-
grams. Dallmeier et al. [89] present iBugs, a technique to automatically extract bug localiza-
tion benchmarks from a project’s history. Additionally, they present and publish a publicly
available repository containing 369 bugs. They recognize bugs and fixes from commits by
analyzing the commit’s meta-data i.e., commit message.

2.3.4 Conclusion

The main lesson we learned from this subsection is that neither existing repair approaches
nor optimization techniques consider information from previous repairs. Moreover, we
learned that nobody has defined datasets for evaluation test-based repair approaches, with
a well-defined built criteria such as the defect classes it contains. In this thesis we aim at
including information in repair strategies to decrease the repair time. Moreover, we want
to define meaningful defect datasets with explicit built definition for evaluating test-based
repair approaches.

2.4 Summary

In this chapter we studied state of the art related from domains such as test suite-based
program repair approaches and analysis of software evolution. Moreover, we have detect
their limitations and opportunities to extend and improve them.

First, we observe that the majority of state of the art approaches presented in this section
does not profit from any information of previous repairs done by developers. The exception
is PAR repair approach, which partially uses 10 bug fix templates manually mined from
one open-source project. However, the number of patterns that PAR uses is much smaller
than the number of all bug fix patterns defined in the literature. For instance, Pan et al. [9]
present 27 bug fix patterns. Moreover, no repair approach considers the abundance of each
bug fix pattern. Pan et al.’s work measures the importance of them and shows that there
are patterns that are more important (i.e., frequent) than others. Our intuition is that all this
information could be useful to increase the repairability of defects. There are repairs that are
more frequent than others. We aim at defining a repair strategy that focuses first on frequent
repair done by developers.

Secondly, we focus on the limitations of the previous works that analyze the software
evolution. In particular, we study those that discover change patterns, and those that mea-
sure the abundance of change patterns in the history of projects. The first limitation is they
do not define a formalization of change patterns. For instance, Pan et al. [9] describe each
pattern with a short paragraph and an example. As consequence, it can exist ambiguity in
the pattern definition. To our knowledge, nobody has defined an approach for formaliz-
ing change patterns. In this thesis we aim at defining a method to specify change pattern.
Then, using this formalization we want to define an approach that collects instances of those
formalized patterns from the software history.

Another limitation relies on tools that measure the importance of change patterns (i.e.,
tool that collects instances of a pattern) such as SEP from Pan et al. [9]. These tools encode
the pattern definitions inside their code. That means, the tool has source code that describes

20

2.4. Summary

each change pattern and source code to collect instances in, for instance, version control sys-
tems. So, with new proposed patterns such as those from Nath et al. [64] the tool cannot
be extended to collect instances of them without modify the source code. To our knowl-
edge, nobody has presented an approach to collect change pattern instances described from
pattern formalization.

Third, the evaluation of automatic program repair approaches sometimes includes an
experiment to compare the performance of a novel approach under evaluation against other
approaches from the literature. Unfortunately, these evaluations are not always well-defined.
For instance, the defect dataset used in an evaluation could not have explicit inclusion cri-
teria, and this could produce a risk of biased result. We aim at defining a method to define
datasets for test suite-based repair approaches evaluation with a minimized amount of bias
in their definition.

In the remaining of this thesis we aim at contributing to remove the mentioned limita-
tions presented in related work.

21

Chapter 2. State of the Art

22

Chapter

Learning from Human Repairs by
Mining Source Code Repositories

Software developers deal with bugs day to day during the development and maintenance
phases. To repair a bug, a developer usually follows these steps. First, she tries to repro-
duce the error. Then, she finds the root cause, the bug. She creates a candidate repair and
verifies whether the candidate repair fixes the bug. Finally, the developer makes visible the
repair i.e., the patch is integrated into the program. For instance, the repair is committed
to a version control system, which registers every change done over the program. Concur-
rently, automatic software repair approaches usually follow similar steps. They first localize
candidate bug location, then synthesize candidate repairs, and finally validate the repairs.

In our work, we wonder whether information from human repairs could be used in
automatic repair approaches. For instance, repair approaches that consider the knowledge
about what are the source code changes done to fix bug and how often these changes occur.
Our hypothesis is the mentioned information can be used in automatic repair approaches to
increase the repairability of defects.

In this chapter we aim at extracting knowledge from bug fixes done by developers. We
have two main motivations. The first one is to know what kinds of source code changes
developers apply to repair bugs. For example, a repair could be to change a value to a
variable, another could be to add a missing method invocation. We aim at defining models
that include the source code changes used by developers for bug fixing. We study repairs
done by developers at two different granularity levels. First, we study the repairs analyzing
the changes at the AST level. For example, we study the percentage of repairs that include, at
least, one change in assignment statements. Then, we study repairs at the pattern level. That
means, we study the structure of the repair, i.e., how changes are frequently combined to fix
a bug.

Our second motivation is to know which changes are more frequent when developers
fix bugs. Our challenge is to measure the abundance of each kind of bug fix. In this way,
automatic software repair approaches could concentrate on those repairs that are frequently
done by developers.

In this chapter we study version control systems. These systems store source code changes
made by developers during the software lifecycle. Developers commit their changes to ver-
sion control systems through versioning transactions (also known as commits). A versioning

23

Q= WODN -

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

transaction introduces one or more changes done in the program under development or
maintenance. We aim at describing those versioning transactions. For instance, we want
to know what are the more frequent changes they introduce. Then, we aim at focusing on
those transactions that introduce bug fixes. The experiments of this chapter allows us to
better understand how software evolves and to characterize the bug fixing activity.

The chapter continues as follows. Section [3.1| presents two change models to describe
versioning transaction. Section 3.2 presents techniques to filter those versioning transactions
that contain bug fixes. Section presents two probabilistic repair models from bug fix
transactions. Section 3.4 presents a repair model formed by bug fix patterns.

The content of this chapter is published in the proceedings of one conference [90] and in
one journal [11].

3.1 A Novel Way to Describe Versioning Transactions using Change
Models

Software versioning repositories (managed by version control systems such as CVS, SVN or
Git) store the source code changes made by developers during the software lifecycle. Version
control systems (VCS) enable developers to query versioning transactions based on revision
number, authorship, etc. For a given transaction, VCS can produce a difference (“dift”) view
that is a line-based difference view of source code. For instance, let us consider the diff
presented in listing

Listing 3.1: Example of line-based difference

while (i < MAX_VALUE) {
op.createPanel (i);

— i=i+1;
+ 1i=i1+2;

}
The difference shows one line replaced by another one: line 4 per line 3. We observe that this
representation does not provide much information about the change. It describes the change
at a coarser granularity: a line. We only know that a statement (a line) have been updated,
i.e. one statement was removed (line 3), and another was inserted in the same place (line 4).
Even for this trivial source code example, it is hard to realize that it is the change about. One
has to read the removed statement, then the added, and finally compare them.

However, one could also observe the changes at the abstract syntax tree (AST) level,
rather than at the line level. In this case, the AST diff is an update of an assignment statement
within a while loop. The AST diff gives us two main advantages. First, it works at a finer
granularity. It focuses only in those source code elements (AST nodes) that have changed.
Then, it identifies the affected elements by the change. For instance, the change could affect
an assignment or a loop condition. At this level, humans are able to easier understand the
changes.

Our goal in this section is study the content of versioning transactions to know how de-
velopers evolve a given program. For that, we need a mechanism to describe versioning
transactions. Previous empirical studies on versioning transactions [41} 40, 39, 38, [55] focus
on metadata (e.g., authorship, commit text) or size metrics (number of changed files, num-
ber of hunks, etc.). However, we aim at describing versioning transactions in terms of con-

24

3.1. A Novel Way to Describe Versioning Transactions using Change Models

tents: what kind of source code change they contain: addition of method calls; modification
of conditional statements; etc. We choose an AST level granularity to describe versioning
transactions. We believe this level of granularity is robust enough for human (developers) to
understand how software evolves. There is previous work on the evolution of source code
(e.g. [25,129,91]). However, to our knowledge, they are all at a coarser granularity compared
to what we use in this work.

Formally, the research question of this section is: what are versioning transactions made of
at the abstract syntax tree level?

To answer our research question, we follow the following methodology. First, we choose
an AST differencing algorithm from the literature. Then, we constitute a dataset of software
repositories to run the AST differencing algorithm on a large number of transactions. Finally,
we compute descriptive statistics on those AST-based differences.

Note that other terms exist for referring to versioning transactions: “commits”, “change-
sets”, “revisions”. Those terms reflect the competition between versioning tools (e.g. Git
uses “changeset” while SVN “revision”) and the difference between technical documenta-
tion and academic publications which often use “transaction”. In this section, we equate
those terms and generally use the term “transaction”, as previous research does.

The rest of the section is organized as follows. In section [3.1.1we present an AST differ-
encing algorithms from the literature. Then, in section we present a model to describe
source code changes. Finally, in section we present a study that describes versioning
transactions of open-source projects using the defined change model.

3.1.1 Abstract Syntax Tree Differencing

There are different propositions of AST differencing algorithms in the literature. Important
ones include Raghavan et al.’s Dex [18], Neamtiu et al’s AST matcher [19] and Fluri et al’s
ChangeDistiller [20]. For our empirical study on the contents of versioning transactions, we
have selected the latter.

ChangeDistiller [20] is a fine-grain AST differencing tool for Java. We list the most im-
portant reason, in our opinion, for selecting this algorithm. First, it expresses fine granular-
ity source code changes using a taxonomy of 41 source changes types, such as “statement
insertion” of “if conditional change”. ChangeDistiller handles changes that are specific to
object-oriented elements such as “field addition”, “method declaration”. The smallest ele-
ment used are statements. Then, Fluri and colleagues have published an open-source stable
and reusable implementation of their algorithm for analyzing AST changes of Java code. We
use this implementation to develop our experiments.

ChangeDistiller produces a set of “source code changes” for each pair of Java files from
versioning transactions. For a source code change, the main output of ChangeDistiller is
a “change type” (from the taxonomy aforementioned). However, for our analysis, we also
consider two other pieces of information. We describe the output of ChangeDistiller as fol-
lows. Each AST source code change is represented as a 2-value tuple: scc = (ct, et) where ct
is one of the 41 change types, et (for entity type) refers to the source code entity related to the
change (for instance, a statement update may change a method call or an assignment). For
example, the listing [3.1) would be represented as one single AST change that is a statement
update (ct) of an assignment (et). Since ChangeDistiller is an AST differencer, formatting
transactions (such as changing the indentation) produce no AST-level change at all.

25

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.1.2 Definition of Change Models

All versioning transactions can be expressed within a “change model”. We define a change
model as a set of “change actions”. For instance, the change model of standard Unix diff is
composed of two change actions: line addition and line deletion. A change model represents
a kind of feature space, and observations in that space can be valued. For instance, a standard
Unix diff produces two integer values: the number of added lines and the number of deleted
lines. ChangeDistiller enables us to define the following change models.

CT (Change Type) is composed of 41 features, the 41 change types of ChangeDistiller. For
instance, one of these features is “Statement Insertion” (we may use the shortened name
“Stmt_Insert”). CTET (Change Type Entity Type) is made of all valid combinations of the
Cartesian product between change types and entity types. CTET is a refinement of CT. Each
change action of CT is mapped to [1...n] change actions of CTET. Hence the labels of the
change actions of CTET always contain the label of CT. There are 104 entity types and 41
change types but many combinations are impossible by construction, as a result CTET con-
tains 173 features. For instance, since there is one entity type representing assignments, one
feature of CTET is “statement insertion of an assignment”.

3.1.2.1 Presenting Probabilistic Change Models

A probabilistic change model is a change model where each “change action” has associated a
value with the probability that this action occurs.

We define two measures for a change action i: «; is the absolute number of change action
i in a dataset; x; is the probability of observing a change action 7 as given by its frequency
over all changes (x; = «;/) ;). For instance, let us consider feature space C'I" and the
change action “statement insertion” (StmtIns). If there is a.symirns = 12 source code changes
related to statement insertion among 100, the probability of observing a statement insertion
is XStmtins = 12%.

3.1.2.1.1 Computing Measures from Versioning Transactions Measures o and x implic-
itly depend on the set of transactions that are computed. We call transaction bag to a set of
transaction that contains a defined inclusion criterion. For example, one can define a trans-
action bag of all transactions done by one developer or another that includes all transactions
that add one method invocation. In this section, we consider that all transactions from the
version control system are included in the transaction bug. Further, in Section (3.3l we define
another kind of transaction bug: bug fix transaction bugs.

In the rest of this section, we express versioning transactions within CT and CTET change
models. There is no better change model per se: they describe versioning transactions at
different granularity. In Section we show that, depending on the perspective, both
change models have pros and cons.

3.1.3 Empirical Evaluation

In this section, we aim at responding our research question: What are versioning transactions
made of at the abstract syntax tree level?

To respond this question, we present a study about the content of versioning transactions
of 14 repositories of Java software. We first describe versioning transactions using change

26

3.1. A Novel Way to Describe Versioning Transactions using Change Models

Change Action a; Prob. x;
Statement insert 345,548 289
Statement delete 276,643 23.1
Statement update 177,063 14.8
Statement parent change 69,425 5.8
Statement ordering change 56,953 4.8
Additional functionality 49,192 4.1
Condition expression change 42,702 3.6
Additional object state 29,328 2.5
Removed functionality 26,172 2.2
Alternative part insert 20,227 1.7
Total 1,196,385

Table 3.1: The Top-10 AST-level Changes of Change Model CT Represented Among 62.179
Versioning Transactions.

models CT and CTET. Then, we calculate the probability distribution of the change actions
for those models.

3.1.3.1 Dataset

CVS-Vintage is a dataset of 14 repositories from open-source Java software [92]. The in-
clusion criterion of CVS-Vintage is that the repository mostly contains Java code and has
been used in previous published academic work on mining software repositories and soft-
ware evolution. This dataset covers different domains: desktop applications, server appli-
cations, libraries such as logging, compilation, etc. It includes the repositories of the follow-
ing projects: ArgoUML, Columba, JBoss, JHotdraw, Log4j, org.eclipse.ui.workbench, Struts,
Carol, Dnsjava, Jedit, Junit, org.eclipse.jdt.core, Scarab and Tomcat. In all, the dataset con-
tains 89,993 versioning transactions, 62,179 of them have at least one modified Java file.
Overtime, 259,264 Java files have been revised (which makes a mean number of 4.2 Java files
modified per transaction).

3.1.3.2 Empirical Results

We have run ChangeDistiller over the 62,179 Java transactions of our dataset, resulting in
1,196,385 AST-level changes for both change models. Table presents the top 10 change
actions and the associated measures for change model CT. For change model CT, which
is rather coarse-granularity, the three most common changes are “statement insert” (28%
of all changes), “statement delete” (23% of all changes) and “statement update” (14% of
all changes). Some changes are rare, for instance, “addition of class derivability” (adding
keyword final to the class declaration) only appears 99 times (0.0008% of all changes).

Table presents the top 20 change actions and the associated measures for change
model CTET. One sees that inserting method invocations as statement is the most common
change, which makes sense for open-source object-oriented software that is growing.

Let us now compare the results over change models CT and CTET. One can see that
statement insertion is mostly composed of inserting a method invocation (6.9%), insert an
“if” statement (6.6%), and insert a new variable (4.6%). Since change model CTET is at a
finer granularity, there are fewer observations: both a; and x; are lower. The probability
distribution (x;) over the change model is less sharp (smaller values) since the feature space
is bigger. High value of x; means that we have a change action that can frequently be found

27

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

Change Action a; Prob. x;
Statement insert of method invocation 83,046 6.9%
Statement insert of if statement 79,166 6.6%
Statement update of method invocation | 76,023 6.4%
Statement delete of method invocation 65,357 5.5%
Statement delete of if statement 59,336 5%
Statement insert of variable declaration | 54,951 4.6%
statement

Statement insert of assignment 49,222 4.1%
Additional functionality of method 49,192 4.1%
Statement delete of variable declaration | 44,519 3.7%
statement

Statement update of variable declaration | 41,838 3.5%
statement

Statement delete of assignment 41,281 3.5%
Condition expression change of if state- | 40,415 3.4%
ment

Statement update of assignment 34,802 2.9%
Addition of attribute 29,328 2.5%
Removal of method 26,172 2.2%
Statement insert of return statement 24,184 2%
Statement parent change of method in- | 21,010 1.8%
vocation

Statement delete of return statement 20,880 1.7%
Insert of else statement 20,227 1.7%
Deletion of else statement 17,197 1.4%
Total 1,196,385

Table 3.2: The abundance of AST-level changes of change model CTET over 62,179 version-
ing Transactions. The probability x; is the relative frequency over all changes (e.g. 6.9% of
source code changes are insertions of method invocation).

in real data: those change actions have of a high coverage of data. CTET features describe
modifications of software at a finer granularity. The differences between those two change models
illustrate the tension between a high coverage and the analysis granularity. For example, let us
suppose an algorithm that predicts the changes that a versioning transaction contains. If
we describe a transaction using the CT model, the prediction algorithm would have more
probability to predict correctly changes than in the case the transaction is described using the
CTET model. Remember CT model has fewer elements than CTET. However, after a correct
prediction, the algorithm has a more complete picture of the transaction, i.e., more detailed
information, when CTET model is used. The main reason of that is the CTET model is more
descriptive than the CT model. Its elements have more information within, for instance, the
type of entity affected by the change. In Section we show that the tension between
those models exists in the process of synthesizing bug fixes.

3.1.3.3 Project-independence of Change Models

An important question is whether the probability distribution (composed of all ;) of Tables
and 3.2|is generalizable to Java software or not. That is, do developers evolve software
in a similar manner over different projects? To answer this question, we have computed the
metric values not for the whole dataset, but per project. In other words, we have computed
the frequency of change actions in 14 software repositories. We would like to see that the val-
ues do not vary between projects, which would mean that the probability distributions over
change actions are project-independent. Since our dataset covers many different domains,
having high correlation values would be a strong point towards generalization.

28

3.1. A Novel Way to Describe Versioning Transactions using Change Models

Correlation is a statistical measure of the strength of a linear relationship between paired
data. It is used to measure the dependence between two variables. We compute the corre-
lation values between the probability distributions of all pairs of project of our datasets (i.e.
14213 — 91 combinations). One correlation value takes as input two vectors representing the
probability distributions (of size 41 for change model CT and 173 for change model CTET).

As correlation metric, we use Spearman’s p [93]. We choose Spearman’s p because it is
non-parametric. In our case, what matters is to know whether the importance of change
actions is similar. For instance, that “Statement Update” is more common than “Condition
Expression Change”. The importance of a change corresponds to its ranking, i.e., the posi-
tion of the change in the list of changes ordered (in decreasing manner) by the probability
Xi- For example, “Statement Update” is the 3rd most frequent change in Table[3.1|(y; = 14.8),
while “Condition Expression Change” is the 7th (x; = 3.6). Contrary to parametric correla-
tion metric (e.g. Pearson [94]), Spearman’s p only focuses on the ordering between change
actions, which is what we are interested in.

Spearman’s correlation coefficient p measures the strength of association between two
ranked variables. The closer p is to &1 the stronger the relationship between the two vari-
ables. The closer p is to 0, the weaker the association between the ranks. For instance, a p =
1 indicates a perfect association of ranks, a p = 0 indicates no association between ranks and
a p = -1 indicates a perfect negative association of ranks. The critical value of Spearman’s
p depends on size of the vectors being compared and on the required confidence level. At
confidence level a = 0.01, the critical value for change model CT with 41 features is 0.364
and is 0.3018 for change model CTET (values from statistical tables, we used [95]). If the
correlation is higher than the critical value, the null hypothesis (a random distribution) is
rejected.

For instance, in change model CT, the Spearman’s correlation between Columba and
ArgoUML is 0.94 which is much higher than the critical value (0.364). This means that the
correlation is statistically significant at o = 0.01 confidence level. The high value shows
that both projects were evolved in a very similar manner. All values are given in [Al Figure
gives the distribution of Spearman’s correlation values for change model CT. 75% of the
pairs of projects have a Spearman’s correlation higher than 0.85°. For all project pairs, in
change model CT, Spearman’s p is much higher that the critical value. This shows that the
likelihood of observing a change action is globally independent of the project used for computing it.

To understand the meaning of those correlation values, let us now analyze in detail the
lowest and highest correlation values. The highest correlation value is 0.98 and it corre-
sponds to the project pair Eclipse-Workbench and Log4j. In this case, 33 out of 41 change
actions have a rank difference between 0 and 3. The lowest correlation value is 0.80 and it
corresponds to Spearman’s correlation values between projects Tomcat and Carol. In this
case, the maximum rank change is 23 (for change action “Removing Method Overridability”
— removing final for methods). In total, between Tomcat and Carol, there are six change
actions for which the importance changes of at least 10 ranks. Those high values trigger the
0.80 Spearman’s correlation. However, for common changes, it turns out that their ranks do
not change at all (e.g. for “Statement Insert”, “Statement Update”, etc.).

We have also computed the correlation between projects within change model CTET (see

8Most statistical tables of Spearman’s p stop at N=60, however since the critical values decrease with N, if
p > 0.301 the null hypothesis is still rejected.

9Spearman’s correlation is based on ranks, a value of 0.85 means either that most change actions are ranked
similarly or that a single change action has a really different rank.

29

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

40 7

35

30 7

)
o
|

of project pairs
N
o
|

N
3
|

10

0.75 0.80 0.85 0.90 0.95 1.00
Spearman correlation value

Figure 3.1: Histogram of the Spearman correlation between changes action frequencies of
change model CT mined on different projects. There is no outlier, there are all higher than
0.75, meaning that the importance of change actions is project-independent.

A). They are all above 0.301, the critical value for vectors of size 173 at o = 0.01 confi-
dence level, showing that in change model CTET, the change action importance is project-
independent as well, in a statistically significant manner. Despite being high, we note that
they are slightly lower than for change model CT, this is due to the fact that Spearman’s p
generally decreases with the vector size (as shown by the statistical table).

3.1.3.4 Threats to Validity

The threats to the validity of our results are of two kinds. From the internal validity view-
point, a bug somewhere in the implementation or in the third-party tools used (AST diff)
may invalidate our results. From the external validity viewpoint, there is risk that our
dataset of 14 projects is not representative of Java software as a whole, even if they are writ-
ten by different persons from different organizations in different application domains. Also,
our results may not generalize to other programming languages.

3.1.3.5 Summary

In this section we learned how to build change models that represent changes done by de-
velopers during the software evolution. These models allow us to understand how software
evolves i.e., what are the source code changes that are done to evolve software and their fre-
quencies. In particular, in this section we provided the empirical importance of 173 source
code change actions; we showed that the importance of change actions is project indepen-
dent; we showed that the probability distribution of change actions is very unbalanced. Our

30

3.2. Techniques to Filter Bug Fix Transactions

results are based on the analysis of 62,179 transactions. In the remaining sections of this
chapter we focus on representing models built from those changes that fix bugs.

3.2 Techniques to Filter Bug Fix Transactions

In Section3.1.2]we have defined two probabilistic change models CT and CTET. Both models
describe all types of source code changes that occur during software evolution. For each
of their change action, we calculated two measures, o and x, considering all versioning
transactions of the repository.

In this section we focus on bug fix transactions. A bug fix transaction contains changes
to fix a bug. Popular version control systems such as CVS, GIT or SVN do not provide a
mechanism to label a transaction that introduces a fix as a bug fix transaction. The challenge
of this section is to define criteria to filter those bug fix transactions. The transactions that
fulfill a criterion are grouped in a transaction bag, defined in section[3.1.2.1] In this section we
first present two criteria. Then, we measure the metrics «; and x; (see Section for each
transaction bug. Before going further, let us clarify the goal of the transaction classification:
the goal is to have a good approximation of the probability distribution of change actions for
software repair'?.

The rest of the section is organized as follows. In Section [3.2.1| we present a criterion to
filter transactions based on commit messages. In Section [3.2.2] we present a second filtering
criterion based on the number of AST changes associated to a versioning transaction. In
Section we present a study to validate that transactions with a small number of AST
changes are related to bug fixing activity.

3.2.1 Slicing Based on the Commit Message

When committing source code changes, developers may write a comment explaining the
changes they have made. For instance when a transaction is related to a bug fix, they may
write a comment referencing the bug report or describing the fix.

To identify transaction bags related to a bug fix, previous work focused on the content of
the commit text: whether it contains a bug identifier, or whether it contains some keywords
such as “fix” (see [50] for a discussion on those approaches). To identify bug fix patterns, Pan
et al. [9] select transactions containing at least one occurrence of “bug”, “fix” or “patch”. We
call this transaction bag BFP. The acronym BFP comes from the words Bug, Fix and Patch. For
example, in log4j project the developer C.Gulcu introduced a fix in the revision 310908 and
wrote in its commit message log: “Fixed an infinite loop bug in the AppenderSkeleton guard
logic.” This transaction fulfills the BFP criterion and can be included in the BFP transaction
bag.

Such a transaction bag makes a strong assumption on the development process and the
developer’s behavior: it assumes that developers generally put syntactic features in commit
texts enabling to recognize repair transactions, which is not really true in practice [50, 49| 47].
For instance, there are transactions that include the word "bug" or "fix" but indeed they do
not introduce bug fixing source code.

"Note that our goal is not to have a good classification in terms of precision or recall.

31

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.2.2 Slicing Based on the Change Size in Terms of Number of AST Changes

We may also define fixing transaction bags based on their “AST diffs”, i.e., based on the type
and numbers of change actions that a versioning transaction contains. This transaction bag is
called N-SC (for N Abstract Syntactic Changes), e.g. 5-SC represents the bag of transactions
containing five AST-level source code changes.

In particular, we assume that small transactions are likely to only contain a bug fix and
unlikely to contain a new feature. Change actions may be those that appear atomically in
transactions (i.e., the transaction only contains one AST-level source code change). “1-SC”
(composed of all transactions of one single AST change) is the transaction bag that embodies
this assumption. Let us verify this assumption.

3.2.3 Do Small Versioning Transactions Fix Bugs?

In Section we present a definition of transaction bag based on the type and numbers
of changes that a transaction introduces. In this section we aim at determining whether
small transactions correspond to bug fix changes. In particular, we define small as those
transactions that introduce only one AST change.

3.2.3.1 Overview

The study consists in manual inspection and evaluation of source code changes of versioning
transactions. First, we randomly take a sample set of transactions from our dataset (see
B.1.3.1). Then, we create an evaluation item for each pair of files from the sample set (the
file before and after the revision). A rater is a person who decides whether an evaluation
item corresponding to a bug fix or not. An evaluation item contains enough data to help the
raters to carry out that decision. To help understanding the changes, it includes the syntactic
line-based differencing between the revision pair of the transaction. Moreover, it includes
information about the changes between at AST level such as the change type and location,
e.g., insertion of method invocation at line 42. Finally, evaluation item shows the commit
message associated with the transaction.

3.2.3.2 Sampling Versioning Transactions

We use stratified sampling to randomly select 1-SC versioning transactions from the soft-
ware history of 16 open source projects (mostly from [92]). Recall that a “1-SC” versioning
transaction only introduces one AST change. The stratification consists of picking 10 items
(if 10 are found) per project. In total, the sample set contains 144 transactions sampled over
6,953 1-SC transactions present in our dataset.

3.2.3.3 Evaluation Procedure

The 144 evaluation items were evaluated by three raters: the author of this thesis and two
University professors. During the evaluation, each item (see is presented to a rater,
one by one. The rater has to answer the question Is a bug fix change?. The possible answers
are a) Yes, the change is a bug fix, b) No, the change is not a bug fix and c) I don’t know. Optionally,
the rater can write a comment to explain his decision.

32

3.3. Learning Repair Models from Bug Fix Transactions

Full Agreement (3/3) Majority (2/3)

Transaction is a Bug Fix 74 21
Transaction is not a Bug Fix 22 23
I don’t know 0 1

Table 3.3: The Results of the Manual Inspection of 144 Transactions by Three Raters.

3.2.3.4 Experiment Results

3.2.3.4.1 Level of Agreement The three raters fully agreed that 74 of 144 (51.8%) trans-
actions from the sample transactions are bug fixes. If we consider the majority (at least 2/3
agree), 95 of 144 transactions (66%) were considered as bug fix transactions. The complete
rating data is given in

Table[3.3|presents the number of agreements. The column Full Agreement shows the num-
ber of transactions for which all raters agreed. For example, the three rates agreed that there
is a bug fix in 74/144 transactions. The Majority column shows the number of transactions
for which two out of three raters agree. To sum up, small transactions predominantly con-
sists of bug fixes.

Among the transactions with full agreement on the absence of bug fix changes, the most
common case found was the addition of a method. This change indeed consists of the ad-
dition of one single AST change (the addition of a “method” node). Interestingly, in some
cases, adding a method was indeed a bug fix, when polymorphism is used: the new method
fixes the bug by replacing the super implementation.

3.2.3.4.2 Statistics Let us assume that p; measures the degree of agreement for a single
item. In this experiment is {%, %, %} The overall agreement P [96] is the average over the
degree of agreement p;. We have P = 0.77. Using the scale introduced by [97], this value
means there is a Substantial overall agreement between the rates, close to an Almost perfect
agreement.

The coefficient £ (Kappa) measures the confidence in the agreement level by removing
the chance factor!! [96,98]]. The « degree of agreement in our study is 0.517, a value distant
from the critical value which is 0. The null hypothesis is rejected, the observed agreement

was not due to chance.

3.2.3.5 Conclusion

The manual inspection of 144 versioning transactions shows that there is a relation between
the one AST change transactions and bug fixing. By consequence, we can use the 1-SC
transaction bag to estimate the probability of change actions for software repair.

3.3 Learning Repair Models from Bug Fix Transactions

As discussed in Section 3.1|, a change model describes all types of source code change that
occur during software evolution. Now, we aim at defining a change model made from a

"'Some degree of agreement is expected when the ratings are purely random[96} 98].

33

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

subset of the software evolution: the bug fixing. We call “repair model” to this kind of
models. This section presents how we transform a “change model” into a “repair model”
usable for automated software repair.

We define a “repair action” as a change action that often occurs for repairing software,
i.e. often used for fixing bugs. By construction, we define a repair model as a subset of a
change model in terms of features. But more than the number of features, our intuition is that
the probability distribution over the feature space would vary between change models and
repair models. For instance, one might expect that changing the initialization of a variable
has a higher probability in a repair model. Hence, the difference between a change model
and a repair model is matter of perspective. Since we are interested in automated program
repair, we now concentrate on the “repair” perspective hence use the terms “repair model”
and “repair action” in the rest of this chapter.

In this section we define repair models from the transaction bags presented in The
result of this section shows that, depending on the transaction bug criteria used, we obtain
different topologies for repair models.

ALL

BFP

1-SC

5-SC

10-SC

20-SC

Stmt_Insert-29%
Stmt_Del-23%
Stmt_Upd-15%

Param_Change-
6%
Order_Change-
5%
Add_Funct-4%

Cond_Change-
40/0
Add_Obj_St-2%

Rem_Funct-2%

Alt_Part_Insert-
2%

Stmt_Insert-32%
Stmt_Del-23%
Stmt_Upd-12%

Param_Change-
7%
Order_Change-
6%
Add_Funct-4%

Cond_Change-
3 (70
Add_Obj_St-2%

Alt_Part_Insert-
2%
Rem_Funct-2%

Stmt_Upd-38%
Add_Funct-14%
Cond_Change-
13%
Stmt_Insert-12%

Stmt_Del-6%
Rem_Funct-5%
Add_Obj_St-3%
Order_Change-

2%
Rem_Obj_5t-2%

Stmt_Insert-28%
Stmt_Upd-24%
Stmt_Del-11%

Add_Funct-10%

Cond_Change-
7%
Param_Change-
5%
Add_Obj_St-3%

Rem_Funct-3%

Order_Change-
1%

Inc_Access_Change Rem_Obj_St-1%

1%

Stmt_Insert-31%
Stmt_Upd-19%
Stmt_Del-14%

Add_Funct-8%

Param_Change-
7%
Cond_Change-
6%
Add_Obj_St-3%

Rem_Funct-2%

Order_Change-
2%
Alt_Part_Insert-
1%

Stmt_Insert-33%
Stmt_Del-16%
Stmt_Upd-16%

Param_Change-
7%
Add_Funct-7%

Cond_Change-
5%
Add_Obj_St-3%

Order_Change-
3%
Rem_Funct-2%

Alt_Part_Insert-
2%

C1

C2

C3

C4

Cs5

Cé6

Table 3.4: Top 10 Change Types of Change Model CT and their Probability x; for Different
Transaction Bags. The different heuristics used to compute the fix transactions bags has a
significant impact on both the ranking and the probabilities.

3.3.1 Methodology

We have applied the same methodology as in We have computed the probability dis-
tributions of repair model CT and CTET based on different definitions of fix transactions, i.e.
we have computed «; and y; based on the transactions bags discussed in ALL transac-
tions (column 6 in Table 3.4), BFP (column 2), and N-SC. For N-SC, we choose four values of
N: 1-SC, 5-5C, 10-SC and 20-SC (columns 3, 4, 5 and 6, respectively). Transactions larger than
20-SC have almost the same topology of changes as ALL, as we will show later (see section
5332).

The research question we ask in this section is: Do different definitions of “repair transac-
tions” (ALL, BFP, N-SC) yield different topologies for repair models?

34

3.3. Learning Repair Models from Bug Fix Transactions

3.3.2 Empirical Results

Table [3.4] presents the top 10 change types of repair model CT associated with their proba-
bility x; for different versioning transaction bags. Overall, the distribution of repair actions
over real bug fix data is very unbalanced, the probability of observing a single repair action
goes from more than 30% to 0.000x%. We observe the Pareto effect: the top 10 repair actions
account for more than 92% of the cumulative probability distribution.

Furthermore, we have made the following observations from the experiment results.
First, the order of repair actions (i.e. their likelihood of contributing to bug repair) varies
significantly depending on the transaction bag used for computing the probability distri-
bution. For instance, Table shows that a statement insertion is #1 when we consider all
transactions (column ALL), but only #4 when considering transactions with a single AST
change (column 1-SC). In this case, the probability of observing a statement insertion varies
from 29% to 12%.

Second, even when the orders obtained from two different transaction bags resemble
such as for ALL and 20-SC, the probability distribution still varies: for instance X s¢mt tpd is
29% for transaction bag ALL, but jumps to 33% for transaction bag 20-SC.

Third, the probability distributions for transaction bags ALL and BFP are close: repair
action has similar probability values. As consequence, transaction bag BFP maybe is a ran-
dom subset of ALL transactions. All those observations also hold for repair model CTET,
the complete table is given in the appendix |Al Those results are a first answer to our ques-
tion: different definitions of “bug fix transactions” yield different probability distributions over a
repair model. That means, there are changes that occur more frequent in a particular kind of
transactions than in others. It could have an immediate implementation: by considering this
information, repair approaches could be able to focus first in those frequent repair actions.

3.3.3 Discussion

We have shown that one can base repair models on different methods to extract repair trans-
action bags. There are certain analytical arguments against or for those different repair space
topologies. For instance, selecting transactions based on the commit text makes a very strong
assumption on the quality of software repository data, but ensures that the selected trans-
actions contain at least one actual repair. Alternatively, small transactions indicate that they
focus on a single concern, they are likely to be a repair. However, small transactions may
only see the tip of the fix iceberg (large transactions may be bug fixing as well), resulting
in a distorted probability distribution over the repair space. At the experimental level, the
threats to validity are the same as for Section[3.1.2}

3.3.3.1 Correlation between Transaction Bags

| 1-SC 5-5C 10-SC 20-SC BFP
ALL | 068 095 097 098 0.99

Table 3.5: The Spearman correlation values between repair actions of transaction bag “ALL”
and those from the transaction bags built with 5 different heuristics.

35

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

In this section we present a study to know to what extent the 6 transactions bags are
different. We have calculated the Spearman correlation values between the probabilities
over repairs actions between all pairs of distribution. In particular, we would like to know
whether the heuristics yield significantly different results compared to all transactions (trans-
action bag ALL). Table 3.5/ presents these correlation values.

For instance, the Spearman correlation value between ALL and 1-SC is 0.68. This value
shows, as we have noted before, that there is not a strong correlation between the order of
their repair actions of both transaction bags. In other words, heuristic 1-5C indeed focuses
on a specific kind of transactions.

On the contrary, the value between ALL and BFP is 0.99. This means the order for the
frequency of repair actions are almost identical. Moreover, Table |3.5/ shows the correlation
values between N-SC (N =1, 5, 10 and 20) and ALL tend to 1 (i.e., perfect alignment) when N
grows. This validates the intuition that the size of transactions (in number of AST changes)
is a good predictor to focus on transactions that are different in nature from the normal
software evolution. Crossing this result with the results of our empirical study of 144 1-
SC transactions (see Section [3.2.3), there is some evidence that by concentrating on small
transactions, we get a good approximation of repair transactions.

3.3.3.2 Skewness of Probability Distributions

Figure 3.2/ shows the probability for the most frequent repair actions of repair model CTET
according to the transaction size (in number of AST changes). For instance, the probability
of updating a method invocation decreases from 15% in 1-SC transactions to 7% in all trans-
actions. In particular, we observe that: a) For transaction with 1 AST change, the change
probabilities are more unbalanced (i.e. less uniform than for all transactions). There are 5
changes that are much more frequent than the rest. They are: “statement update of method
invocation", “add method", “if condition change", “statement update of variable declara-
tion", and “statement update of method invocation". b) For transactions with more than 10
AST changes, the probabilities of top changes are less dispersed and all smaller than 0.9%
c) The probabilities of those 5 most frequent changes decrease when the transaction size
grows. This is a further piece of evidence that heuristics N-SC provide a focus on transac-

tions that are of specific nature, different from the bulk of software evolution.

3.3.3.3 Summary

Those results on repair actions are especially important for automated software repair: we
think it would be fruitful to devise automated repair approaches that “imitate” how human
developers fix programs. In Section we use the presented repair models for reasoning
on the repair search space. To us, using the probabilistic repair models as described in this
section is a first step in that direction. In the next Section 3.4} we analyze bug fix transactions
in another granularity: at pattern level. We study how the elements from the CTET models
frequently appear together in bug fix transactions. From this study, we are able to define a
repair model composed by bug fix patterns. This model could be used by repair approaches
based on bug fix pattern such as PAR [5].

36

3.3. Learning Repair Models from Bug Fix Transactions

0.16 —|

0.14 —

0.12 —

0.10 —

0.08 —

AST change probability

0.02 —

i

CeOPDIPO
CeOPDIPO
eSO

1

D>—>—1> stmt update of method invocation

Add funct of method
Condition change of If
Stmt update of variable declaration
Stmt Insert of method invocation
Stmt update of assignment

Stmt update of return

Remove funct of method

Stmt delete of method invocation
Add Object State of attribute
Stmt Insert of assignment
Remove obj State of attribute

0.00

N
N
w
IS
v
()
~
o —

Transaction size (In AST changes)

Figure 3.2: Probabilities of the 12 most frequent AST changes for 11 different transaction
bags: 10 that include transactions with ¢ AST changes, with ¢ = 1...10, and the ALL transac-

tion bag.

37

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.4 Defining a Repair Model of Bug Fix Patterns

In Section [3.3) we present two repair models built from bug fix transactions. Those models
represent modifications of software at the AST change level. For instance, the change model
CT has a change action called "statement parent change", and the CTET model has one called
"statement update of assignment".

We observe changes in versioning transactions do not appear isolated. For instance, from
the same corpus that experiment of Section [3.1, we observe that 3095 out of 3667 BFP trans-
actions (84%) have two or more changes (AST changes from ChangeDistiller’s granularity).
That means the majority of repairs done by developers are composed of more than two of
those changes.

Let us present an example. Suppose a program defines one variable a that it is not ini-
tialized. A failure occurs when the program attempts to use the variable’s value. A possible
fix could is presented in Listing 3.2/ 2.

Listing 3.2: Example of bug fix condition

if (var a is not initialized) then
initialize a;

Let us represent using CTET repair model the transaction that introduces this fix in the
version control system. The representation of this transaction has two repair actions: one for
the addition of if statement, another for the initialization of the variable i.e., “addition of an
assignment”.

In this section we aim at presenting a repair model that describes this kind of fixes done
by developers. That is, a model where each of element are a composition of one or more
elements of, for instance, the CTET model. A bug fix pattern encodes a kind of bug fix. The
model is composed of bug fix patterns defined in the literature. For example, Pan et al.[9] call
Addition of precondition check (IF-APC) to the fix presented in the example of listing Our
challenge is to define a probabilistic repair model for automatic software repair that captures
the importance of each bug fix pattern. In a probabilistic model, each of their elements
contains a value related to probability that the element is selected when one aims at picking
one element from the model.

The goal of this section is twofold. First, we aim at presenting a mechanism to spec-
ify bug fix patterns from the literature (Section 3.4.2). We define bug fix pattern in Section
Second, we aim at measuring the importance of each bug fix pattern in version control
systems (Section For that, we define a mechanism to search for instances of bug fix
patterns. The input of this mechanism is a specification of one pattern, while the output is a
set of versioning transactions that contain instances of that pattern.

We also present two experiments to evaluate those mechanisms. In the first one, we
aim at measuring the genericity of the pattern specification mechanism (Section [3.4.5). This
evaluation allows us to measure the capacity of the approach to encode bug fix patterns
from the literature. In the second experiment, we evaluate our mechanism of search of bug
fix pattern instances (Section [3.4.6). Finally, we aim at measuring the abundance of bug fix
patterns (Section [3.4.7) for defining a probabilistic repair model formed by bug fix patterns.

12 Another fix is to initialize the variable with one value when it is defined.

38

3.4. Defining a Repair Model of Bug Fix Patterns

3.4.1 Defining Bug Fix Patterns

Bug fix patterns capture the knowledge on how to fix bugs. Bug fix patterns are essential
building blocks of research areas such as automatic program repair [12, 5]. One such bug fix
pattern called Change of If Condition Expression (IF-CC) has been identified by Pan et al. [9]].
Figure 3.3| presents one instance of this pattern by showing two consecutive revisions of a
source code file. Revision N (on the left-hand side) contains a bug inside the if condition, a
wrong call to the boolean method isEmpty instead of a call to the method isFull. In revision
N + 1 (the right-hand side piece of code) a developer fixed the bug by modifying the if
condition expression.

Log message:

e.g: Fixed related
Revision N Revision N+1_ to the empty
Time account....
__)
if (myAccount.isEmpty () { if (myAccount.isFull () {

} m } W

Figure 3.3: Example of a bug fix pattern called Change of If Condition Expression (IF-CC) [9], in
two consecutive revisions of a source code file. The left-hand side revision contains a bug in
the if condition: an incorrect method invocation. On the right-hand side, the developer fixed
it by modifying the if condition, i.e. updating the method invocation.

3.4.2 A Novel Representation of Bug Fix Patterns based on AST changes.

Previous work such as Pan et al. [9]] present catalogs of bug fix patterns. For example, Pan et
al. present a catalog of 27 bug fix patterns. The authors describe each bug fix pattern with a
brief textual description and one listing that shows the changes (at line level) corresponding
to the pattern’s instance. For example, the pattern Change of If Condition Expression (IF-CC)
from Pan et al. is described as follows:

Description: “This bug fix change fixes the bug by changing the condition expression of
an if condition. The previous code has a bug in the if condition logic.”

Listing 3.3: Pattern Change of If Condition Expression defined by Pan et al.

— if (getView ().countSelected () == 0)
+ if (getView ().countSelected () <= 1)

Then, they measure the importance of each bug fix pattern by mining bug fix pattern
instances from commits of version control systems. For that, the authors use a tool called SEP
to automatically identify pattern instances. In the case of this tool, we observe a dual pattern
definition. On one hand, Pan et al. present pattern definitions that target humans, such as
we have seen for pattern [FCC. On the other hand, the authors encode these definitions in
the same code as their tool.

In our opinion, this adoption produces some drawback. For instance, to add a new pat-
tern it is necessary to modify the source code of the tool. Moreover, it impacts on the pattern

39

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

definition’s understandability. In the case of SEP, it is necessary to inspect and debug hun-
dreds of line of code to discover the encoded definition of one pattern.

Our motivation is to introduce a new mechanism to formalize bug fix patterns. In partic-
ular, we aim this formalization be both: 4) human comprehensible; and b) used as input of
mining algorithms that search pattern instances.

In this section, we present a methodology to formalize bug fix pattern from the literature.
The method is based on AST analysis and tree differencing. In subsection[3.4.2.T, we present
a formalization of source code changes at the AST level. Then, in subsection we
present a formalization of bug fix patterns at the AST level.

3.4.2.1 Representing Versioning Changes at the AST Level

Our method identifies bug fix pattern instances from version control system revisions. It
works at the abstract syntax tree (AST) level. This means we represent a source code file
revision with one AST. The advantage of this representation is it allows us to extract fine-
grained changes between two consecutive revisions by applying an AST differencing algo-
rithm. This involves representing source code revisions as changes at the AST level. As in
the experiment of Section 3.1 we use ChangeDistiller as AST differencing algorithm.

if (myAccount.isEmpty () {.. if (myAccount.isEmpty () {..

}) }

else! Bug hunk J myAccount.close(); Fxhunk
myAccount.operate () ; [

}

myAccount.close () ;

| 74 74
Revision N Revision N+1

Figure 3.4: A lined-based difference of two consecutive revisions. The bug hunk in revision
N (the left one) contains an “else” branch. The fix hunk in revision N+1 is empty. The
corresponding AST hunk (introduced in section consists of two nodes removal i.e.
the ‘else’ node and the method invocation.

Let us take as example the change presented in Figure It shows a lined-based dif-
ference (syntactic) of two consecutive revisions. The bug hunk in revision N (the left one)
contains an “else” branch. The fix hunk in revision N+1 is empty. The change consists of a
removal of code: removal of “else” branch. At the AST level, the AST differencing algo-
rithm finds two AST changes: one representing the removal of an else node and another for
the removal of a method invocation (i.e. myAccount.operate()) node surrounded by the else
block.

As we have shown in Section ChangeDistiller handles a set of 41 source change
types included in an object-oriented change taxonomy defined by Fluri and Gall [22]. For
example, the taxonomy includes source code change types such as “Statement Insertion” or
“Condition Expression Change”. A code change type affects object-oriented elements such
as “field addition”. These elements are represented by 142 entity types.

Formally, ChangeDistiller produces a list of “AST source code changes”. For the pattern
formalization, we need a more robust definition of AST change compared to that one used

40

3.4. Defining a Repair Model of Bug Fix Patterns

for defining the CT and CTET models (see Section. For instance, we need that a change
includes the location where it is done (we call it parent entity). We formalize each change
(scc) in a 7-value tuple:

sce = (ct, et,id_e, pt,id_p, opt,id_op)

where ct is one of the 41 change types, et (for entity type) refers to the source code entity
type related to the change. For example, a statement update may change a method call or
an assignment. The field id_e is the identifier of the mentioned entity. As ChangeDistiller
is an AST differencing, that field corresponds to the identifier of the AST node affected by
the change. The field pt (for parent entity type) indicates the parent code entity type where
the change takes place. For example, it corresponds to a top-level method body or to an “If”
block. id_p is the identifier of the parent entity. For change type “Statement Parent Change”,
which represents source code movement, pt points to the new parent element. Moreover,
opt and id_op indicate the parent entity type and the identifier for the old parent entity. Both
fields specify the place the moved code was located before the change occurs, and they are
omitted in tuples related to changes types different from “Statement Parent Change”.

Let us present two examples of AST source code changes representation. As first exam-
ple, a removal of an assignment statement located inside a “For” block is represented as:
sccl =(“Statement delete" (ct), “Assignment” (et), node_id_23 (id_e), “For" (pt), node_id_14
(id_pt)).

As a second example, a movement of an assignment located in a method body to inside
an existing “Try” block located in the same method is represented as: scc2 =(“Statement
Parent Change" (ct), “Assignment" (et), node_id_24 (id_e), “Try" (pt), node_id_15 (id_p),
“Method” (opt), node_id_10 (id_op)). As this change is a movement i.e. “Statement Parent
Change", its tuple includes the identifiers and type from the location the code comes from
(opt and id_op, both ignored in sccl) and the new location as well (pt and id_p).

This structure for describing changes (scc) is more complex than the representation of
changes used for CT and CTET models, presented in Section The structure contains
more information necessary to describe pattern’s changes. In particular, it includes informa-
tion of the parent entity type (and eventually the new parent entity type for movement of
code) to describe the entity type where the changed entity is located. Moreover, the structure
includes the identifiers (ids) of each entity involved in the change. This allows us to link the
entities (AST nodes) affected by the change. For instance, let us consider a pattern that adds
an if precondition just before a statement. An instance of this pattern has two changes: one
that corresponds to the addition of the if; the other a movement of the assignment (now the
parent entity is the added if statement). The ids fields are used to validate whether the new
location (parent entity) of the moved assignment is the added if precondition. In the following
section we go deeper in the formalization of change patterns.

3.4.2.2 AST-based Pattern Formalization

In this section, we present a structure to formalize a bug fix pattern. This structure is used to
identify bug fix pattern instances from the AST-level representation of revisions presented

in section B.4.2.1
We specify a bug fix pattern with a structure composed by three elements: a list of micro-
patterns L, a relation map R, and a list of undesired changes U.

pattern = {L, R, U}

41

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

In the following subsection we describe each of those pattern elements.

3.4.2.2.1 Listof Micro-patterns A micro-pattern represents a change pattern over a single
AST node. It is an abstraction over ChangeDistiller’s AST changes, i.e., instances of source
code changes of a given type. A micro-pattern is a 5-value tuple

mp = (ct, et, pt, opt, cardinality)

where ct, et, pt and opt'® have the same meaning as the source code change formalization
in section The ct field is the only mandatory, while fields et, pt and opt can take a
wildcard character “*”, meaning they can take any value. The field cardinality takes a natural
number that indicates the number of consecutive equivalent (with the same value in fields
ct, et and pt) AST changes it represents. It also can take the value wildcard, meaning that
the micro-pattern can represent undefined number of consecutive equivalent changes. By
default (absence of explicit value in mp tuple), the cardinality is value one. For example, a
micro-pattern (“Statement Insert”,*,*) means that an insertion of one statement of any type
(e.g., assignment) inside any kind of source code entity, e.g. “Method” (top-level method
statement) or “If” block. This micro-pattern is an abstraction of all AST source code changes
corresponding to the addition of one AST node, whatever the node type and place in the
AST.

The list of micro-patterns L represents the changes done by the pattern. The list is or-
dered according to their position inside the source code file. It is not commutative: a pattern
formed by micro-pattern mpl followed by mp2 is not equivalent to another formed by mp2
followed by mpl. The former means that mpl occurs before mp2, while the latter means the
opposite.

As example, let us present the AST representation of pattern “Addition of Precondition
Check with Jump” [9]. This pattern represents the addition of an if statement that encloses
a jump statement like return. It is represented by two micro-patterns'*: mpl = (“Statement
Insert”, “If”, *) and mp2 = (“Statement Insert”, “Return”, “If"”).

3.4.2.2.2 Relation Map The relation map R is a set of relations between entities involved
in micro-patterns of L and U. Each relation links two entities (et, pt or opt) of two different
micro-patterns. The relation is written as:

r = mpl.entity; comp mp2.entitys

A relation formalizes a link between two elements (AST) from a pattern instance. That
means, the elements of a pattern instance must fulfill all the relations from the pattern’s
relation map.

Each relation has three elements: two operands and one operator. The operator comp is
used to compare the related entities. In particular, we use two operators: equal (==) and not
equal (!=). For example, the relation written as mpl.pt == mp2.pt uses the former operator,
and relation as mpl.pt = mp2.pt the latter.

The operands entity; and entity, specify which entity field from each micro-pattern (et,
pt or opt) is involved in the relation. For instance, relation mpl.pt == mp2.pt defines a

BWe omit to specify opt in the tuple for addition, updates and removes operations.
to simplify the example, we exclude jump statements ‘break’ and ‘continue’.

42

3.4. Defining a Repair Model of Bug Fix Patterns

relation between entity pt from micro-pattern mpl and entity pt from micro-pattern mp?2.
This relation expresses that two changes affect entities with the same type of parent. Contrary,
mpl.pt != mp2.pt expresses that two changes affect entities with a different type of parent.

Another case of entity relation is expressed as mp2.pt == mpl.et. It defines that a change
(matched with mp1) is done in an entity whose parent entity is affected by the second change
(matched mp2).

As we mentioned, a pattern instance (i.e., a set of AST changes) must fulfill all the rela-
tions defined by the pattern. For example, let us consider a pattern P composed by micro-
patterns mpl and mp2 and one relation R1 = (mpl.pt == mp2.et). Then, let us suppose
that a set of changes composed by changes sccl and sce2, are instances of mpl and mp2, re-
spectively. Changes sccl and scc2 form an instance of P iff R1 is fulfilled by them. To verify
whether those changes fulfill relation R1, we compare the identifiers of the entities affected by
the changes. The first term of R1, i.e. mpl.pt, corresponds to the parent of sccl, i.e. sccl.id_p.
The second term of R1 (mp2.et) corresponds to the entity of scc2 (scc.id_e). As consequence,
the relation R1 is fulfilled when sccl.id_p == scc2.id_e.

3.4.2.2.3 Undesired Changes Our bug fix pattern formalization is composed by a second
list of micro-patterns. The list of undesired changes U represents micro-patterns that must not
be present in the pattern instance. For example, the bug fix pattern “Removal of an Else
Branch” [9] requires only the “else” branch being removed, keeping its related “if” branch
in the source code. In other word, the related “if” must not be removed.

As example, let us formalize this pattern. L contains one micro-pattern mpl = (“State-
ment delete”, “else”,”If”), U contains one undesired change u_mpl= (“Statement delete”,
“If”,*) and R contains the relation u_mpl.et != mpl.opt. Generally, relations associated to
micro-patterns from U have an operator “!=" and relate a micro-pattern of U with another
from L. Hence, the relation restricts that no undesired change be related to changes associ-
ated to micro-patterns from L. In the example, the formalization of the pattern specifies that:
a) there is a deletion of a “else” (mpl); b) it does not exist a deletion of an “if” entity that, in
turn, is the parent entity of the deleted “else” (u_mp1)).

3.4.2.24 Summarization In this section we have defined a structure to formalize bug fix
patterns. In section we present a method to identify pattern instances from this pattern
formalization.

3.4.3 Defining the Importance of Bug Fix Patterns

The notion of importance of bug fix patterns refers to whether some bug fix patterns are more
important than others. A measure of importance is the number of commits in which one
observes an instance of the pattern, we call it the abundance of the pattern. The abundance
reflects to what extent those bug fix patterns are used in practice.

For instance, Pan et al. report [9] that in the history of Lucene'®, the bug fix pattern
“Change of if condition expression” (IF-CC) is the most common pattern with 370 instances
(12% of all bug fix pattern instances identified). On the contrary, the pattern “Addition of
operation in an operation sequence of field settings" (SQ-AFO) is the less abundant pattern,
with only 5 instances being observed (0.2%).

Phttp:/ /lucene.apache.org/core/

43

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

To measure the importance of one bug fix pattern we need to identify instances of that
pattern. The accuracy of bug fix pattern instance identification refers to whether an approach
yields the correct number of pattern instances. The threat to the accuracy of the abundance
measurement of bug fix patterns is two-fold. First, one may over-estimate it by counting
commits as instances of the pattern while they are actually not (false positives). Second, one
may under estimate it by not counting commits, i.e. by missing instances (false negatives).
The challenge we address is to provide a mechanism to obtain an accurate measure of bug
fix pattern abundance, by minimizing both the number of false positives and the number of
false negatives.

Before to present an accurate pattern instance identifier in Section we present the
notion of AST hunk.

3.4.3.1 Defining “Hunk” at the AST level

Previous work has set up the “localized change assumption” [9]. This states that the pattern
instances lie in the same source file and even within a single hunk i.e., within a sequence of
consecutive changed lines. For example, Figure (3.4 shows an example of two consecutive
revisions of a Java file and a hunk pair representing the changes between the two revisions.
The differences between the two files are grouped in consecutive changed lines which are
called “hunk”. In Pan et al.’s work [9], the authors identify pattern instances inside each
hunk pair. As consequence, a pattern instance belongs to only one hunk pair and, by transi-
tion, to one revision file.

From our experience, the “localized change assumption” is relevant in the process of
identification of bug fix pattern instances. Since we work at the level of AST and hunk are
the level lines (syntactic level), we define the notion of “hunk” at the AST level. AST hunks
are co-localized source code changes, i.e., changes that are near one from another inside the
source code.

The notion of hunk is important for searching pattern instances. Our identifier aims at
identifying pattern instances from AST source code changes that are in the same hunk. That
means, a pattern instance never contains AST instances from different AST hunks.

For us, an AST hunk is composed of those AST changes that meet one of the following
conditions: a) they refer to the same syntactic line-based hunk; or b) they are moves within
the same parent element. For instance, the two AST changes from the example of Figure
are in the same AST hunk (both changes occur in the same syntactic hunk). By construction,
there is no AST hunk for changes related to comments or formatting, while, at the syntactic,
line based level, those hunks show up.

3.4.4 An Novel Algorithm to Identify Instances of Commit Patterns from Ver-
sioning Transactions

This section presents an algorithm to identify bug fix pattern instances inside an AST hunk
(see Section 3.4.3.T). The pattern instance identifier algorithm is composed by three serial
phases: a) change mapping (Section ; b) exclusion of AST hunks containing undesired
changes (Section [3.4.4.2); and c) identification of change relations (Section [3.4.4.3). Let us
explain each phase in the remain of the section.

44

3.4. Defining a Repair Model of Bug Fix Patterns

3.4.4.1 Mapping Phase

The pattern instance identification algorithm first processes the phase named Mapping phase.
The goal of the phase is to map each micro-pattern mp; of L (list of micro-patterns, see
section with one AST change scc; of the hunk. The output of the phase is a map of
micro-patterns and AST changes. The result of the mapping phase is successful if all micro-
patterns of the bug fix pattern appear in the AST hunk i.e., they have at least one mapping
with AST changes of the hunk. If this condition is not satisfied, the outcome phase is a fail,
stopping the execution of the following phases. In other words, a pattern instance could not
be identified in the hunk.

The mapping algorithm is explained in Section 3.4.4.1.2l Before, in Section [3.4.4.1.1| we
detail the algorithm to match AST changes with micro patterns.

Input: micro_pattern > Micro-pattern

Input: change > AST change (scc)

Output: boolean value: true if the AST change change matches with the micro-pattern
micro_pattern

1 begin
/+ First, comparison of change types */
2 if micro_pattern.ct == change.ct then
/* Then, comparison of entity types */

if micro_pattern.et = “*” and micro_pattern.et /= change.et then
4 L return false;

/+* Finally, comparison of parent entity types */
5 if micro_pattern.pt /= “*” and micro_pattern.pt /= change.pt then
6 ‘ return false;
7 else
8 L return true;
9 else
10 L return false;

Figure 3.5: Algorithm to verify the matching between a micro-pattern and an AST
change

3.4.4.1.1 Mapping creation criterion A change scc is mapped to the micro-pattern mp if
scc is an instance of the change described by the mp. This relation is verified by matching
the structures scc and mp. Algorithm 3.5shows the matching algorithm pseudo-code. Both
match (the matching is true) if their change types (line 2), entity types (line 3) and parent
types (line 5) are the same. Note that if one wildcard (see Section is specified, the
field comparison is ignored (lines 3 and 5).

3.44.1.2 Mapping Algorithm Overview Let us first explain the mapping procedure and
then we detail the algorithm step by step in Section (3.4.4.1.3

45

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

First, the mapping algorithm tries to find a mapping between list of micro patterns and
a sequence of AST changes of the hunk. The algorithm first searches all possible beginnings
of the pattern in the hunk. A beginning is an AST change from the hunk and candidate to be
the first element of the pattern inside the hunk. In other words, it must match with the first
micro pattern.

Then, the algorithm tries to search a pattern instance from each of those beginnings. For
each beginning, it proceeds to map the changes that follow the beginning with the list of
micro-patterns. It iterates both the sequence of changes and the list of micro-patterns at
the same time. A matching between a change and a micro-pattern is done in each iteration
(as we explain in Section [3.4.4.1.T). If both match, the algorithm continues with the iteration,
otherwise it stops analyzing the sequence and continues with the following beginning. Once
the algorithm maps all micro-patterns with a sequence of changes, it returns that mapping.
This sequence of AST changes is candidate to be a pattern instance.

It is important to note that the mapping phase defines two restrictions for the mappings
between AST changes in a hunk and the micro-patterns. We call the first restriction mapping
total order. It defines that the mapped AST changes must satisfy the order defined by L. Let
us consider the list of micro patterns L= {mpl, mp2} and an AST hunk H = {sccl, scc2}. The
mapping sccl with mpl and scc2 with mp?2 is valid. Let us explain why. The mapped AST
changes respect the order imposed by the pattern i.e., through L, the first AST element of
the hunk mapped with the first micro pattern, and so on. However, the mapping sccl with
mp2 and scc2 with mpl is not valid. As mpl appears before mp2 in L, then scc2 (mapped to
mpl) must appear before sccl in the hunk, and this is not the case. As consequence, this last
mapping is not valid.

We call consecutive mapping to the second restrictions. It defines the mapped AST changes
must be consecutive inside the hunk. In other words, it cannot exist one no-mapped change
between two mapped changes. For instance, given a pattern formalization with 2 micro-
patterns mpl and mp2, and an AST hunk composed by 3 AST changes sccl, scc2 and sce3.
Then, the mapping mpl, sccl and mp2, scc3 is invalid due scc2 is not mapped and it is
located between sccl and scc3, both mapped changes.

3.4.4.1.3 Mapping Algorithm Pseudo-code Now, let us analyze the algorithm in detail.
Algorithm 3.6/ shows the pseudo-code of this mapping phase. The input of the algorithm is
the list of micro-patterns L that represents the pattern, and a list of changes C'hanges that
represents one AST hunk.

The algorithm starts by searching a list initial_changes of AST changes. The list contains
“candidates beginning” of the pattern inside the hunk i.e., in list Changes (line 3). Each
change of initial_changes matches with the first micro-pattern (see Algorithm 3.5/and expla-
nation in Section [3.4.4.1.2).

Then, for each AST change initial of the mentioned list initial_changes, the algorithm
tries to map all micro-patterns of L with the sequence S of consecutive AST changes that
follow initial. The algorithm defines two cursors change_i and micro_pattern_i to iterate
the sequence S and L, respectively. In each iteration (line 6), the algorithm matches the head
of both cursors (line 12) using Algorithm If both match, the algorithm maps them and
saves the association (line 13). After that, the cursors are updated (line 14 to 18 and from 22
to 23). The micro-pattern cursor is only updated once the algorithm has analyzed as many
AST changes as the micro-pattern’s cardinality indicates (line 16). When the cardinality is

46

3.4. Defining a Repair Model of Bug Fix Patterns

“_
*

(wildcard), the cursor micro_pattern_i is updated (line 22) if at least one change from S
is mapped to the current micro pattern (line 20).

The algorithm finishes successfully when all micro-patterns are mapped to consecutive
AST changes (line 23 and 24).

3.4.4.2 Undesired Changes Validation Phase

The second phase verifies that no change of the undesired changes U list is present in the hunk.
The algorithm of this phase maps changes for U with AST changes from the hunk. So it is
similar to that one corresponding to the Mapping phase.

Different from the previous phase, an empty set of mappings is a good signal: no un-
desired change is present in the hunk. Contrary, in case that the micro-patterns of U are
mapped to changes of the hunk, the relations over them must be fulfilled by the phase de-
fined in section3.4.4.3|

3.4.4.3 Relation Validation Phase

The change relation validation phase verifies that the relations defined by the pattern’s rela-
tion map are satisfied by the mapped AST changes of the hunk. For the validation, the maps
calculated in the two previous phases (3.4.4.1jand [3.4.4.2) are used.

Algorithm [3.7| shows the corresponding pseudo-code. First, for each relation the algo-
rithm retrieves the two micro-patterns it relates (lines 3 and 4). Then, it retrieves the AST
changes mapped to those micro-patterns (lines 5 and 6). After that, the algorithm retrieves
the identifiers of the entities related to the changes. For that, function get/dFromEntityType
first determines which kind of entities (et, pt, or opt) the relation pinpoints. Then, it returns
the identifier of the corresponding entity (lines 9 and 10). Finally, the two entity identifiers
are compared (line 12) according to the operator defined by the relation (line 11). The com-
parison involves comparing ids of the entities i.e., AST nodes affected by the changes. As
this phase is the last one from the AST change pattern identification, a successful validation
of all relations means the presence of a pattern inside the analyzed hunk.

3.4.4.4 Algorithm Result

Once all phases were executed, the pattern instance identification algorithm determines the
presence of a pattern instance inside the analyzed hunk if the following conditions are valid:
a) all micro-patterns of L are mapped and the mapped AST changes from L fulfill relations
of R; and b) no micro-pattern of U is mapped or every mapped AST change from U fulfill
relation of R.

3.4.4.5 Conclusion

In this subsection we present an algorithm to identify bug fix pattern instance in versioning
transactions. This algorithm allows us to measure the importance of bug fix patterns. Then,
the importance can be used in the automatic software repair field, for example, to define
probabilistic repair models.

In the remain of the section we present two evaluations. In section we evaluate
the genericity of our bug fix pattern formalization approach. In section we evaluate

47

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

the accuracy of our approach with a manual analysis of a random sample of bug fix pattern
instances found in commits of an open-source project.

3.4.5 Evaluating the Genericity of the Pattern Specification Mechanism

In this section, we focus on the bug fix formalization we presented in section and
present an evaluation of its genericity. That means, we evaluate whether it is possible to
specify known and meaningful bug fix patterns using our formalism.

The evaluation is built on the research question: Can our specification format represent
known and meaningful bug fix patterns?

To answer this research question, we first present bug fix patterns from the literature in
section 3.4.5.1) and a set of new bug fix patterns in section [3.4.5.2] We eventually formalize

these patterns in section 3.4.5.3

3.4.5.1 Source #1: Bug Fix Patterns from the Literature

Pan et al. [9] have defined a catalog of 27 bug fix patterns divided in 9 categories. The
categories are: If-related, Method Calls, Sequence, Loop, Assignment, Switch, Try, Method
Declaration and Class Field. According to the number of citations, this is one of the most
important papers on bug fix patterns.

Furthermore, we also consider three additional new bug fix patterns proposed by Nath
et al. [64]. The patterns are named as: “method return value changes”, “scope changes” and
“string literals”.

The existing definitions of bug fix patterns are written in natural language and are some-
times ambiguous. Before formalizing them, we clarify four bug fix patterns from Pan et al.
to facilitate their comprehension and formalization. We split into two those patterns whose
definition mixes adding and removing code. For instance, “Add/removal of catch block” be-
comes “Add of catch block” and “Removal of catch block”. Within the 27 original patterns,
four of them were split, this results in a restructured catalog of 31 patterns.

3.4.5.2 Source #2: New Bug Fix Patterns

In this section, we present new meaningful bug fix patterns. We found them while browsing
many commits that were done to repair bugs [11]. In section we formalize these
patterns to demonstrate the flexibility our specification mechanism.

Pattern DEC-RM: Deletion of variable declaration statement This bug fix pattern con-
sists of the removal of a variable declaration inside the buggy method body (e.g. after a
refactoring to transform a variable as field). This pattern is a sibling of Pan’s patterns related
to Class Field (i.e. Removal of a Class Field) but at method level.

Pattern THR-UP: Update of Throw Statement This bug fix pattern corresponds to the
update of a throw statement. It includes changing the type of exception that is thrown, or
modifying the exception’s parameter.

Pattern MC-UP-CH: Update of Method Invocation in Catch Blocks This bug fix pattern
consists in modifying the source code inside a catch body. This bug fix pattern hints that
some bug fixes change the error handling code of catch blocks.

Pattern CONS-UP: Update of Super Constructor Invocation This bug fix pattern refers
to the modification of super statement invocation, e.g., to change the parameter values. This

48

3.4. Defining a Repair Model of Bug Fix Patterns

bug related to incorrect calls to super were so far not discussed. “Super” is, according to our
teaching experience, a hard concept of object-oriented design.

Pattern IF-MC-ADD: Addition of Conditional Method Invocation This bug fix pattern
adds an if whose block contains one method invocation. This change could correspond to
the addition of a guarded invocation, typically done in a bug fix to add missing logic in
a limit cases. In Pan et al.’s catalog, there is a pattern “Addition of Precondition Check”,
that only adds the guard around an existing block. In contrast, our pattern also specifies the
addition of both the precondition and the code of the “if block”. Consequently, both patterns
are related, they share the same motivation, but they are conceptually disjoint.

Pattern IF-AS-ADD: Addition of Conditional Assignment This bug fix pattern repre-
sents the case of adding an if statement and an assignment inside its block. It corresponds
to a modification of a variable value under a specific condition defined by the if.

3.4.5.3 Results

In this section, we present a formalization of bug fix patterns, using the formalization pre-
sented in section We formalize: a) 18 bug fix patterns from Pan et al., belonging
to the categories If, Loops, Try, Switch, Method Declaration and Assignment; b) 2 patterns
proposed by Nath et al. [64]; c) 6 new ones presented in section[3.4.5.2]

Table|3.6|shows the result of the formalization of those bug fix patterns. The table groups
the formalization according the source of the patterns i.e., Pan, Nath, and the new bug fix
patterns presented in section[3.4.5.2] Column Name shows the bug fix pattern identifier. The
remaining three columns correspond to the formalization itself: L (Micro-Patterns) the list of
micro-patterns, U (Undesired Micro-Patterns) the list of undesired changes and R (Relational
Map relations between micro-patterns.

The table presents bug fix patterns that are formalized by two or more sub-patterns. For
example, pattern IF-APCJ (Addition of If PreCondition and Jump statement) is formalized
by three sub-patterns. Each of these sub-patterns identifies pattern instances with a concrete
jump statement. One corresponds to “break” jump statement, the other to “continue” jump
statement and the last one to “return” statement.

The table also shows that the size of the micro-pattern list L varies between one and three.
For those that L has two or three micro-patterns such as TY-ARTC, it exists a relation in R
that defines a relation between micro-patterns (See Section [3.4.2.2.2).For those that U is not
empty, a relation from U links a micro-pattern from R with another U (See Section[3.4.2.2.3)).

In section we discuss the limitations of our approach to formalize the remaining
patterns from Pan et al. bug fix catalog.

3.4.5.4 Summary

In this section, we have shown that our approach is able to formalize 26 bug fix patterns.
This answers our research question: our approach is flexible enough to formalize bug fix
patterns from the literature and can also be used to specify new bug fix patterns.

49

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

[¢)]

O© g o

11

12
13
14
15
16
17
18

19

20
21
22
23
24
25

26
27

28

Input: L > List of micro-patterns

Input: Changes > List of AST changes of a hunk

Output: boolean value: true if all micro-patterns of the pattern are mapped to AST

changes of the hunk, false otherwise

Output: Mapping of Micro-Patterns and Changes from Changes

begin

/* Retrieves the first micro-pattern x/

micro_pattern_i «— getMicropattern(L,0) ;

/+ Search AST changes of the hunk that matches with
micro_pattern_i */

initial_changes < getFirstMatchingChanges(Changes, micro_pattern_i) ;

if initial_changes is null then

L return false, ()

foreach change initial of the list initial_changes do

change_i < initial; M <) ;

partialMapping <« true;

cardinality_iter + 0 ;

while partialMapping and micro_pattern_i is not null and change_i is not null do

/= cardinality receives a natural number or x (wildcard) =*/

cardinality « cardinality(micro_pattern_i);

/+ Comparison of AST change and micro-pattern */

if match(micro_pattern_i, change_i) then

saveMapping(M, micro_pattern_i, change_i) ;

change_i + getNextASTChange(Changes, change_i);

cardinality_iter <—cardinality_iter +1 ;

if cardinality /= “*” and cardinality_iter == cardinality then
micro_pattern_i <— getNextMicropattern(L, micro_pattern_i);

L cardinality_iter < 0;

else

/* if current micro_pattern_i could be mapped, analyze
next micro-pattern */

if cardinality == “*” and isMapped(M, micro_pattern_i);

then
micro_pattern_i <— getNextMicropattern(L, micro_pattern_i);
cardinality_iter «+- 0;

else

| partialMapping « false;

/+ Return true if all analyzed changes are mapped and all
micro-patterns from L are mapped to changes from
Changes */

if partialMapping and allMapped(M, L, Changes) then

L return true, M

return false, ()

Figure 3.6: Algorithm to map micro patterns to AST changes

50

3.4. Defining a Repair Model of Bug Fix Patterns

12

13

14

15

17
18
19
20
21
22
23

Input: R > List of relations of a pattern
Input: M > Mapping of Micro-Patterns and Changes
Output: boolean value: true if the mapped AST changes respect the relations defined
by the pattern, false otherwise
begin
foreach relation relation of the list R do
micro_pattern_1 < getFirstMicropattern(relation);
micro_pattern_2 « getSecondMicropattern(relation);
changes_1 « getMappedChanges(micro_pattern_1, M);
changes_2 «+ getMappedChanges(micro_pattern_2, M);
foreach change change_1 of the list changes_1 do
foreach change change_2 of the list changes_2 do
id_entity_1 < getldFromEntityType(relation.entity;, change_1);
id_entity_2 « getldFromEntityType(relation.entity,, change_2);
/= operator receives values “==" or “!=" x/
operator « relation.comp;
/* Applies the comparison operator operator to
id_entity 1 and id_entity 2 */
comparison « evaluate(id_entity_1, id_entity_2, operator) ;
/+* If the relation is not valid, the phase returns
false */
if comparison == false then return false;

/* All relations were valid x/
return true;

/+ Return an entity identifier according to the field (et, pt

and opt) that a relation links */
Function(getldFromEntityType(relation, change) : id)
begin

if relation.entity is a et field then
| return change.id_et;
else
if relation.entity is a pt field then
‘ return change.id_pt;
else
L return change.id_opt;

Figure 3.7: Algorithm to verify the relation between AST changes

51

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

(x7UduIdIBIG UOIIMG 1138

youerg

jdpdwr =jjorrdurn | -ug jusweeig) = Tdw ™ (495D U0IIMG “I9su] Juswdlelg) = Tdwl | YojImMg JO UONIPPY 4SAvV-MS
(0 “a8uey) uorssardxg uonrpuo)) = Tdwt
(10, “98urey)) uorssardxg uonTpuo)) = TduL
(saseoqgns ¢)ared
(9IYM “@8uey) uorssardxyg uontpuo)) = Tdwe | -1paig dooT jo aduey) JD-d1
uorssardxyg
LJ1 “98ueyD uorssardxyg uonpuo)) = Tdwe | uonrpuo)) jI jo a3ue A1
S) puod puod J1 § L) 20
(yuawaye)g As[y “,‘e8urey)) JusreJ Juswle)g) = gdws
(I1°eRA youerg
1du=jjdordun | juoweelg) = Tdwn (,7uduIaIeIG IS[H ‘19[(] MeJ AN Y) = Tdwr | JS[Ue JO [eAOWY N1
(+71 1108 youerg
ydpdw =j3d pdun | -up juowdeig) = tdw (yusuIayeIg S[H ‘OS] M QANPUId[Y) = Tdwt | 9S[{ Ue JO UOnIppY NGV-AI
(31 “x"98ureyD) Jusre] yusurdle)g) = gdus
aed
3d-1dw ==3d-zdw (31 “019[(yudswdYeIG) = Tdut | -IPai] J[Ue JO [RAOWY AT
31 :.:.Lm\m \tmwﬁ JuauIR}eIg) w zdw (soseaqns
(431 ‘1I9su] JuowRIEIg) = Tdwt) dwmf
(31 ‘onunuo) ‘}19su] JuLWRIR}G) = gduws €
& - UHM ™YD
(/31 ‘119su] JuowRIEIg) = Tdwt HonIpUODa
(31 “yea1g “319su] JuswIvleIg) = gdwt Hp d
1o'1dwr == 3d zdw (/31 110su] JuswdR)G) = Tdw PPV V-l
(31 “y98ueyD JuaIeJ JuswdlRIg) = gdut
2ayD uon
1 pdw ==3d-zdw (71 ‘428U JuswRle)G) = Tdwus | -IpUoddIJ JO UOWIPPY DdV-dI
suajyed xiy Snq ‘[e 12 ueg

- 1du == 1d'gdu

(31 ‘yuowuSISsy “J19sul Juawdle)g) = gdw

JuswugIsse uon

(POWOIN “J1 ‘Masul juowdje)g) = [dwr | -puodard jo uonippy aav-sv-i
(31 “UOTyLDOAUL POYIRIA “}IISUI JusWA)E)G) = gdw
UOT}EO0AUL POYIaW UOH
yor1du == 1d'gdu (POWdIA “Jr31asur yuswajeyg) = Tdwr | -rpuodsard jo uonippy aav-ON-AI
(PowaN UOTJEDOAUT J0JONIIS
“UOIED0AUT J0}oN1suod 1adng ‘arepdn juswsjelg) = 7dwr | -uod 1adng jo ayepdn dIN-SNOD
(asnep asnep Ypje)) Ul uoned
yojeD ‘uoredoAur poypA ‘erepdn jusurdjeg) = rdwr | -oaur poyaA jo arepdn HD-dN-DN
juawr
(powyay ‘moay [, ‘oyepdn juswaye)s) = [dur | -ajeps moayy jo ayepdn JN-¥HL
JuaWId)E)S UoHeI
(POUISIAl “UOTIRIR[OSP J[CRLIBA ‘919[op Judwle)s) = Tdwr | -epap o[qeriea Jo 919 NI-OHa
suajped xy Snq maN
(dej\l [euonerdy) ¥ | (SUINEJ-0IIA paIIsapun) N | (SWIdEJ-0DIA) T | dureN

52

3.4. Defining a Repair Model of Bug Fix Patterns

‘surajed x1y 3nq Jo uonjeZIfEWLIO] :9°¢ d[qeL

sadued
(,'umyay ‘eyepdn) juswreje)g) = Tdwr | anfea WINRI PO c-eN
(' 4108
ydpdw =j3orpdu™n | -uf Juswgelg) = Tdw (445 “@SureyD Juare yusuraye)g) = Tdus
(4 @19RA (saseoqns)
ydopdw =j3orpdw™n | Juswojerg) = 1dwn (" “@8ueyD yuare yuswdle)s) = Tduws sadueyp adoog T-J1eN

suaped x1y Snq ‘e 19 yreN

(+’9INquNY ‘91815 199[qQ pasowRY) = [duws | P[OL] SSE[D) B JO [EAOWY AWI-1D
PP
(+'2IMquIY ‘21835 193(qO [euonIppy) = [dw | SSB[D B JO UONIppY aav-1o
uoneIe[da(]
(' POPIA “ATeUonoun, paAoway) = TduL | POYRIN € JO [eAOWdY ANI-ON
UOTjeIRI(]
('POYISIN “A1TRUOnOUN,] [PUORIPPY) = [dWl | POYOWN B JO UOHIPPY aav-an
(,'9dAT aanuLL ‘@8uey) adAT wniay) = rdw
(,2d£1 ardung ‘@8ueyD adAT umnyey) = Tdw
(s‘'uonerepPsq
mSmEm\J o[durg ‘a08uey) Suuepip mwjewere]) = 1dwt (soseaqns) vonerepaq
(,'9dAT aanTuunL ‘@8uey)) 9dAT, 1e30wrere) = Tdw OUIaTAT 10 28 UE
(,9dA], apdunrg “98ueyD) adAJ, 193owrerey) = 1dws POWPIN JO 95UBYD
(,"uoneIe[dd(] SqrLIEA J[3UIS ‘939[3(] IeweIe]) = Tdut
(,'uonyeIe[dd(] SqeLIeA [3UIg “4Iasu] 19jowere]) = Tdwt SHO-AN
(+A1L, ‘019101 o01g
jd'pdw =jj'rdun | juoujeis) = Tdwn (yasner) yoje)) ‘9199 JuPwLRe)g) = Tdws | ydje) e JO [RAOWY ADIV-AL
(K11 1198 yo01g
yd-pdwr =jjorrdwrn | -up juswaeig) = Tdw ™ (y'asne[D) yoje) ‘1asuf Juswdjeis) = Tdws | ydje) e JO UORIppY aOAV-AL
(‘@sner) yoye)) ‘9319[9(] Juswaels) = gdus
(A1, “98ureyD) yuareJ Juswdle)g) = gdws
- gdu == g2 1dw JUswLYe)S
pue 3d-gdw == 30 Tdw (+A11, 9190 yuPwRYRIG) = Tdwe K11 JO TerowDy JINV-AL
('asneD) yore) ‘419su] Juswvels) = gdus
. s (11, “,, “ 98ueyD) yuareJ jusursyerg) = gdw JuewRIIS
1d eduw == j9'Tdw <
pue d-zdw == g2'Tdw (A1, 4198U] JULWIRYLIG) = TdwL L3O UoHIPPY DINV-AL
(xuPwr
-9jeIg YPONIMG ‘9191 youerg
i pdw =jprpdwn | Juowegess)) = jdwn (95D YONMG ‘9393 JUsWRje)g) = TdW | YOUMG JO TeAousy 4SIV-MS

53

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.4.6 Evaluating the Accuracy of AST-based Pattern Instance Identifier

In this section, we present an experiment to measure the accuracy of our bug fix pattern in-
stance identifier presented in section[3.4.4). This evaluation is built on the following research
question: Is our AST-based pattern instance identifier more accurate than the state-of-the-art pattern
identifier presented by Pan et al. [9]?

The experiment consists of a manual inspection and validation of bug fix pattern in-
stances identified in commits of an open-source project. Given a bug fix commit and an
instance of pattern P; identified by an identifier, the instance is considered valid if the man-
ual inspection validates that the change indeed corresponds to pattern P;. Otherwise, the
instance is considered invalid.

3.4.6.1 Evaluated Pattern Instance Identifiers

3.4.6.1.1 Baseline Classifier The baseline tool we selected is called SEP'. SEP is a token-
based classifier used to identify bug fix instances from revisions of Java files (a revision is a
pair of file, say Foo.java version 1.1 and Foo.java version 1.2). According to the code symbols,
this tool was used to gather the results presented in Pan et al.’s study [9].

3.4.6.1.2 AST-based Classifier We develop a tool that implements the AST classifier pre-
sented in Section The tool is implemented in Java and uses ChangeDistiller [22] to
obtain AST-level differences between consecutive revisions of a file. We use a publicly avail-
able implementation of ChangeDistiller!”.

We limit both tools to identify instances of 18 bug fix patterns from Pan et al. bug fix
catalog. These patterns are those we are able to represent using our pattern formalization

presented in section3.4.5.3

3.4.6.2 Analyzed Data

We randomly selected a sample of 86 revisions (pairs of Java files) from the CVS his-
tory of the Lucene open-source project (from 09/2001 to 02/2006). The sampling strategy
is that those revisions contain a small number of source code changes, less than 5 AST
changes (this excludes formatting and documentation changes). Lucene is one of the six
open-source software applications used in Pan et al.’s work. The dataset is available on
https://sites.google.com/site/matiassebastianmartinez/journal.zipl

3.4.6.3 Experimental Results

Table |3.7| shows the result of the manual inspection for pattern instances from Lucene’s re-
visions identified by our AST-based approach and SEP tool. For each algorithm, the table
shows the number of valid pattern instances, i.e. the true positives (column “Valid”) and the
number of invalid instances, i.e., the false positive instances (column “Not Valid”). More-
over, it shows a number of missing instances (false negatives) i.e. valid instances that an
approach could identify but the other could not (column “Missing”). This number is not an

1Shttp:/ / gforge.soe.ucsc.edu/gf/project/sep/scmsvn/
http:/ /www.ifi.uzh.ch/seal /research/tools/changeDistiller.html

54

https://sites.google.com/site/matiassebastianmartinez/journal.zip

3.4. Defining a Repair Model of Bug Fix Patterns

Valid | Not Valid | Missing
Pan et al’s Token-based Approach 62 74 27
Our AST-based Approach 78 0 11

Table 3.7: The Results of the Manual Inspection of Bug Fix Pattern Instances. The row
“Token-Based” corresponds to the instances identified by the token-based classifier. The
row “AST-Based” corresponds to the instances identified by the AST classifier.

absolute number of false negatives, it is only relative with respect to the approach. In the
remaining of this section we study the accuracy of both approaches.

3.4.6.3.1 Accuracy Definition We define the accuracy of a bug fix pattern identifier as
follows:

number of bug fix instance correctly identified
total number of instance identified + missing pattern instance

accuracy =

For instance, a pattern identifier that identifies 5 instances, all correctly, but misses 2 in-
stances, has an accuracy of 5/(5 + 2) = 0.71. Another example is an identifier that correctly
identifies 4 instances, incorrectly 1 and misses 2. Its accuracy is 4/(4 +1+2) = 0.57. Accord-
ing to the accuracy values, the first identifier is more accurate than the second one.

3.4.6.3.2 Accuracy of Token-based Identification The token-based identifier finds 136 in-
stances of bug fix patterns. Table [3.7|shows that our manual inspection found 62 valid pat-
tern instances (true positives), 74 invalid (false negatives) and 27 missing instances. The
accuracy of the token-based instance identifier is 62/(62 + 74 + 27) = 0.38.

Let us analyze some cases where the identifier finds invalid instances. For instance, the
token-based identifier identifies from revision 1.4 of class “FilteredQuery”, an invalid in-
stance of pattern “Change of Method Declaration” (MD-CHG) and another invalid instance
of pattern “Addition of precondition with jump” (IF-APCJ). The actual bug fix pattern in this
commit is “Addition of Method Declaration” (MD-ADD). The first invalid instance is due to
a wrong mapping between the lines of the revision. The added method is “mapped” to an
existing method (with different signature), resulting in the change being interpreted as an
update of the method declaration. For the second false positive, the invalid pattern instance
is identified inside the code of the added method.

We also found false positive instances caused by formatting changes between consecu-
tive revisions. For example, the revision 1.3 of Lucene’s class GermanStemmer applies for-
matting changes in the source code and among the many modified lines, one local variable
is initialized. The token-based identifier incorrectly identifies from this pair 21 instances of 9
different bug fix patterns. The formatting changes produce a complex mapping between the
revision and its predecessor in many hunks. Consequently, the code inside these formatting
hunks matching with a bug fix pattern definition is incorrectly identified as an instance.

3.4.6.3.3 Accuracy of AST-based Identification The AST-based identifier found 78 bug
fix pattern instances. These instances were present in 53 different revisions. Moreover, the

55

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

identifier could not identify 11 instances (missing). The accuracy of this identifier is 78 /(78 +
11) = 0.88.

Our manual inspection found that 100% (78/78) of the pattern instances were valid (the
data is available). This implies all bug fix instances were true positives. These identified
instances correspond to 9 different bug fix patterns. However, the algorithm also missed
some instances, i.e., suffers from false negatives, which are discussed in Section[3.4.6.3.4]

3.4.6.3.4 False Negatives A false negative (or missing) instances is a valid bug fix pattern
instance which is not identified by a pattern instance identifier. To detect those instances
from the analyzed data, we cross the results obtained from both AST and token-based ap-
proaches. A missing instance of a pattern instance identifier A is not identified by A but is
identified correctly by the other approach.

Table3.7)presents the classification result. The token-based approach had 27 missing bug
fix instances while the AST-based one had 11 false negatives.

Let us now analyze the false negatives of our approach. For 7 of 11 missing instances,
the cause is due to the tree differencing tool (ChangeDistiller) we use to compute the differ-
ences between two consecutive revisions. ChangeDistiller does not compute changes inside
anonymous and inner classes and there were 7 pattern instances in such classes in our data.
For example, our algorithm does not identify an instance of pattern “Removal of if predicate
(IF-RMV)” in revision 1.21 of class IndexSearcher, the instance is in the inner class HitCol-
lector. Another case is that our approach does not see changes in the specification of thrown
exceptions (keyword “throws” in Java), which are instances of pattern “Change of method
declaration (MD-CHG)”. For example, revision 1.4 of class TestTermVectorsWriter modifies
the signature of the method by adding a clause “throws IOException”. Our tree differencing
algorithm does not consider those changes and this limitation impacts the accuracy of this
particular bug fix pattern.

3.4.6.4 Conclusion

The manual analysis done in the presented experiment allows us to respond to our research
question: our AST-based identifier is more accurate than the token-based used by Pan et al.
in their experiments.

The results of our experiment are summarized in Table It shows that our AST-based
identifier is able to identify: more valid bug fix instances (more true positives); less invalid
instances (less false positives); less number of missing instances (less false negatives). Con-
sequently, we can say that it is more accurate (0.88 vs. 0.38) than the token-based approach.

3.4.7 Learning the Abundance of Bug Fix Patterns

In this section, we use the bug fix pattern instance identifier presented in Section to
measure the abundance of bug fix patterns. The abundance allows us to measure the impor-
tance of bug fix patterns. Then, one can define a probabilistic repair model formed of bug fix
patterns and their frequencies.

This kind of probabilistic repair model could be used by bug fix pattern-based repair
approaches such as PAR [5]. Let us explain how using PAR approach as example. PAR is a
repair approach guided by evolutionary computation. To create candidate fixes, it instanti-
ates 10 bug fix templates, derived from bug fix patterns. PAR navigates the search space in a

56

3.4. Defining a Repair Model of Bug Fix Patterns

uniform random way, that means, it takes randomly one bug fix template to be applied in a
buggy location. The pattern abundance could be used in an extension of the strategy to nav-
igate the search space. Instead of a random strategy, the extension could start navigating the
space from the most abundant bug fix templates (i.e., the most frequent kind of fixes applied
by developers) to the less abundant. This strategy could help to find a fix faster, avoiding
applying infrequent changes in bug fixing.

#Commits #Revisions #Java Revisions
All 24,042 173,012 110,151
BFP 6,233 33,365 23,597

Table 3.8: Versioning data used in our experiment. Since we focus on bug fix patterns, we
analyze the 23,597 Java revisions whose commit message contains “bug”, “fix” or “patch”.

3.4.7.1 Dataset

We have searched for instances of the 18 patterns mentioned inin the history of six Java
open source projects: ArgoUML, Lucene, MegaMek, Scarab, jEdit and Columba. In Table
we present the total number of commits (versioning transactions) and revisions (file pairs)
present in the history of these projects. In the rest of this section, we analyze the 23,597
Java revisions whose commit message contains “bug”, “fix” or “patch”, in a case insensitive
manner (row “BFP” in Table 3.8).

3.4.7.2 Empirical Results

Table 3.9 shows that our approach based on AST analysis scales to the 23,597 Java revisions
from the history of 6 open source projects. This table enables us to identify the importance
of each bug fix pattern. For instance, adding new methods (MD-ADD) and changing a con-
dition expression (IF-CC) are the most frequent patterns while adding a try statement (TY-
ARTC) is a low frequency action for fixing bugs. Overall, the distribution of the pattern
instances is skewed, and it shows that some of Pan’s patterns are really rare in practice. In-
terestingly, we have also computed the results on all revisions — with no filter on the commit
message — and the distribution of patterns is rather similar. It seems that the bug-fix-patch
heuristic does not yield a significantly different set of commits.

3.4.7.3 Summary

In this subsection, we presented the abundance of 18 bug fix patterns from the analysis of
6 open-source projects. We found that the most frequent changes to fix bugs are changes
in if condition statements. Knowing this distribution is important in some contexts. For in-
stance, from the viewpoint of automated software repair approaches: their fix generation
algorithms can concentrate on likely bug fix patterns first in order to maximize the probabil-
ity of success.

57

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

Pattern name Abs
Change of If Condition Expression-IF-CC 4,444
Addition of a Method Declaration-MD-ADD 4,443
Addition of a Class Field-CF-ADD 2,427
Addition of an Else Branch-IF-ABR 2,053
Change of Method Declaration-MD-CHG 1,940
Removal of a Method Declaration-MD-RMV 1,762
Removal of a Class Field-CF-RMV 983
Addition of Precond. Check with Jump-IF-APC]J 667
Addition of a Catch Block-TY-ARCB 497
Addition of Precondition Check-IF-APC 431
Addition of Switch Branch-SW-ARSB 348
Removal of a Catch Block-TY-ARCB 343
Removal of an If Predicate-IF-RMV 283
Change of Loop Predicate-LP-CC 233
Removal of an Else Branch-IF-RBR 190
Removal of Switch Branch-SW-ARSB 146
Removal of Try Statement-TY-ARTC 26
Addition of Try Statement-TY-ARTC 18
Total 21,234

Table 3.9: Context-independent Bug Fix Patterns: Absolute Number of Bug Fix Pattern In-
stances in 23,597 Java Revisions.

58

3.5. Recapitulation

3.4.8 Discussion
3.4.8.1 Threats to Validity

Our results are completely computational and a severe bug in our implementation may in-
validate our findings. During our experiments, we studied in details dozens of bug fix pat-
tern instances (the actual code, the fix and the commit message) found by the tool and they
were meaningful.

Another threat is the criterion to manually classify a bug fix pattern instance as valid or
not. It could vary depending on who inspects it (an expert, a developer, a novice, etc.).

3.4.8.2 Limitations

In this section we sum up the limitations of our bug fix pattern formalization approach.

3.4.8.2.1 Context Dependence We notice that some patterns only describe the nature of
change itself, while others describe the change in a given context. By nature of change, we
mean only the added and removed content; by context, we mean the code around the added
and removed content. For instance, Pan et al. define a pattern representing the removal of a
method call in a sequence of method calls. To us, this pattern is context-dependent. To observe
an instance of removal of a method call in a sequence of method calls: 1) the change itself
has to be a removal of a method call 2) the context of the removal has to be a sequence of
method calls on the same object. In total, there is a minority of 8/31 bug fix patterns of the
refined catalog presented in section [3.4.5.1] that are context-dependent.

We do not consider those context-dependent bug fix patterns. This limitation could prob-
ably be overcome with a way to specify the “context” (the code surrounding the diff) at the
AST level.

3.4.8.2.2 Limitations inherited from ChangeDistiller Another limitation of our pattern
formalization approach is due to the change taxonomy used by tree differencing algorithm.
ChangeDistiller misses some kinds of source code changes. For instance, an update oper-
ation in a class field declaration is not detected. This limitation prevents us to represent
pattern “Change of Class Field Declaration” (CF-CHG) using AST changes as well as 4 other
patterns. Those 5 patterns contain at least one change that is not covered by the change
taxonomy of ChangeDistiller.

Another limitation is the granularity of the tree differencing algorithm. ChangeDistiller
works at the statement level. This prevents us to study certain fine-grain patterns. For ex-
ample, the addition of a new parameter or the change of an expression passed as parameter
of a method call cannot be detected. Also, as we discussed in Section the tree
differencing algorithm does not detect changes inside anonymous classes. Improvement or
replacement of the tree differencing algorithm could potentially decrease the number of false
negatives.

3.5 Recapitulation

In this chapter, our challenge was to learn how developers fixed bugs. There is information
from them that could be useful in automatic software repair domain. We first studied how

59

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

software evolves. In particular, we studied all changes that developers do in the history
on a set of open-source software. Furthermore, we studied the importance of source code
changes. We learned that there are changes that appear more frequent than others in the
software evolution.

Then, we focused in how software is repaired. We first presented a technique to recognize
repairs from the history of a program. Then, we analyzed the composition of these repairs
in two levels of granularity: at the AST level and a change pattern level. We proposed
mechanism to measure the importance of those levels.

The contributions of this chapter are:

1. One technique to filter repairs from version control system.

2. Two models that describe the kind of source code changes done by developers to fix
bugs, and include a measure of the importance of those changes.

3. One mechanism to formalize change patterns.
4. One mechanism to identify pattern instances using the formalization.

The work presented in this section has direct applications. For instance, one is for the
repair approaches evaluation. It allows to define a fair and unbiased defect dataset for
approaches evaluation (Chapter [5). An evaluation dataset that targets a defect class (de-
fined further) can be composed of instances of bug fix patterns identified by our mechanism.
Moreover, this work can be used for the improvement of software repair approaches (Chap-

ter).

60

Chapter

Two Strategies to Optimize
Search-based Software Repair

In Chapter 3| we presented models that characterize the behavior of developers fixing bugs.
In this Chapter, we aim at studying repair search spaces built from those repairs models.

The search space of automated program repair consists of all explorable bug fixes for a
given program and a given bug. A naive search space is huge, because even in a bounded
size scenario, there are a myriad of elements to be added, removed or modified: statements,
variables, operators, literals. The search of the solution, i.e., a bug fix, is guided by a search
strategy. For instance, GenProg [12] uses a fix search guided by genetic programming, while
Qi et al.[76] use random search. The time those strategies spend to navigate the search space
could be infinite, especially when the size of the search space is huge. As consequence, the
search of the fix is delimited by some criteria such as the time or number of candidate re-
pairs validated. For example, the search in GenProg is delimited by the number of program
variants (each with one candidate fix) to validate. This number depends on two variables of
the genetic programming search: size of the initial population and number of generations to
evolve each member of the population. For instance, in one of its evaluations [99], GenProg
executes 400 variants (from an initial population of 40 and 10 generations).

Unfortunately, during repair approach evaluations, there are bugs that remain unre-
pairable. For example, GenProg [8] is able to repair 55 out of 105 bugs. We have two hy-
potheses about the reason a solution is not found. The first one states the repair approach
is not able to fix the bug. This means, its repair search space does not contain the fix. The
second one states that at least one fix exists in the solution space but it was not discovered
by the search strategy.

In this chapter we focus on the latter hypothesis. We aim at defining strategies to find
those undiscovered solutions in the repair search space. These strategies focus on the way a
search space is navigated.

We present two navigation strategies. The first strategy, presented in Section takes
as input human bug fixes. The strategy aims at navigating the search space in the following
manner: the probability to select a fix from the space depends on the frequency this kind
of fixes is used by developers to fix. By focusing on frequent repairs, the strategy aims at
reducing the time to fix a bug and, by consequence, to increase the probability of finding a
repair.

61

Chapter 4. Two Strategies to Optimize Search-based Software Repair

The second strategy, presented in Section {4.2] aims at improving the search space navi-
gation of redundancy-based repair approaches such as GenProg. Redundancy-based repair
approaches synthesize fixes reusing already written source code. Our strategy aims at re-
ducing the locations where the reusable code is picked to synthesize a fix. As consequence,
the strategy produces a smaller search space without losing repair strength. That means, the
reduced space contains as much solutions as the original (not reduced) space.

This chapter contains material published in the proceedings of ESEM'13 [11],
ICSE’14 [100] and unpublished material.

4.1 Adding Probabilities to the Search Space to Optimize the Space
Navigation

This section discusses the nature of the search space size of automated program repair. In
Section we defined two change models, CT and CTET, and we showed in Section
that both models can be extended adding probabilistic distribution over their repair actions.

In this Section we present a strategy to optimize the navigation of the search space. Our
challenge is to know whether exists a repair model that allows repair approaches to navigate
the shaping phase faster than others, in other words, in a more efficient way. This allows
repair approach to increase the probability to find a fix.

The Section remains as follows. In Section we present a typical composition of re-
pair search spaces. In Section we present a strategy to reduce the time for searching
elements in the search space. In Section we present the evaluation of the strategy. Sec-
tion presents a theoretical study case that includes probabilistic search space over a
repair approach from the literature. Finally, Section[4.1.4] concludes the section.

4.1.1 Decomposing Repair Search Space

We consider that the repair search space can be viewed as the combination of three spaces:
the fault localization space, the shaping space, and the synthesis space.

The search space can then be loosely defined as the Cartesian product of those spaces
and its size then reads:

|FAULT LOCALIZATION| X |SHAPE| X |SYNTHESIS|

The fault localization space contains the location where a repair is likely to be successful.
The shaping space contains the kind of repair that can be applied. Informally, the shape of
a bug fix is a kind of patch. For instance, the repair shape of adding an “if” throwing an
exception for signaling an incorrect input consists of inserting an if and inserting a throw.
The concept of “repair shape” is equivalent to what Wei et al. [74] call a “fix schema”, and
Weimer et al. [12] a “mutation operator”. We define a “repair shape” as an unordered tuple
of repair actions (from a set of repair actions called R, see Section 18. For the if/throw
example aforementioned, in repair space CTET, the repair shape of this bug fix consists of
two repair actions: 1) statement insertion of “if” and 2) statement insertion of “throw”. The
shaping space consists of all possible combinations of repair actions.

!8Since a bug fix may contain several instances of the same repair actions (e.g. several statement insertions),
the repair shape may contain several times the same repair action.

62

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

Finally, the synthesis space contains the initializations of the repair shapes. The com-
plexity of the synthesis depends on the repair actions of the shaping space. For instance, the
repair actions of Weimer et al. [12] (insertion, deletion, replace) have an “easy” and bounded
synthesis space. The approach does not synthesize new code. Instead, it instantiates inser-
tion and replace repair actions with code that already exists in the program.

In this section we present a strategy to decrease the navigation time of a shaping search
space. If one can find efficient strategies to navigate through this shaping space, this would
contribute to efficiently navigating through the repair search space as a whole, thanks to the
combination.

4.1.2 A Strategy to Optimize Shaping Space Navigation

We present a strategy to optimize the navigation of the shaping space. The strategy aims
at finding faster a fix from the search space. For that, it aims at exploring the parts of the
space that are likely to be more fruitful. The strategy relies on probability repair models
presented in Section[3.3} a repair action is selected from the space according to its probability
distribution. That means that the probabilistic distributions P over the repair actions guide
the navigation of the repair space. As a consequence, the probability distribution is crucial
for minimizing the search space traversal: a good distribution P results in concentrating on
likely repairs first. We aim at providing the search strategy a probability distribution Py,
allows minimizing the time of navigating the search space. The challenge of this section
is to find a way to compare probabilistic distributions for finding P,,,. For that, we need
to: a) estimate the navigation time of the shaping space for a given probability distribution
over a repair model; b) set up a probability distribution over repair actions; c¢) compare the
efficiency of different probability distributions to find good repair shapes. In the remaining
of this section we target these points.

4.1.2.1 Mathematical Analysis Over Repair Models

To analyze the shaping space, we now present a mathematical analysis of our probabilistic
repair models. So far, we have two repair models CT and CTET (see and different ways
to parametrize them.

According to our probabilistic repair model, a good navigation strategy consists on con-
centrating on likely repairs first: the repair shape is more likely to be composed of frequent
repair actions. That is a repair shape of size n is predicted by drawing n repair actions accord-
ing to the probability distribution over the repair model. Under the pessimistic assumption
that repair actions are independent!?, our repair model makes it possible to know the exact
median number of attempts IV that is needed to find a given repair shape R (demonstration

given in[A):

k
N = k such that Zp(l —p)t>05 4.1)
i=1

Equation (1) holds if and only if we consider them as independent. If they are not, it means that we under-
estimate the deep structure of the repair space, hence we over-approximate the time to navigate in the space to
find the correct shape. In other words, even if the repair actions are not independent (which is likely for some of
them) our conclusions are sound.

63

Chapter 4. Two Strategies to Optimize Search-based Software Repair

with p = —

I, (e,

where e; is the number of occurrences of r; inside R

x ILerPp(r)

For instance, the repair of revision 1.2 of Eclipse’s Checked TreeSelectionDialog?” consists
of two inserted statements. Equation 4.1|tells us that in repair model CT, we would need in
average 12 attempts to find the correct repair shape for this real bug.

Having only a repair shape is far from having a real fix. However, the concept of repair
shape associated with the mathematical formula analyzing the time to navigate the repair
space is key to compare ways to build a probability distribution over repair models.

Input: C > A bag of transactions
Output: The median number of attempts to find good repair shapes
1 begin
2 Q<+ {} > Result set
3 T,E + split(C) > Cross-validation: split C into Training and Evaluation data
4 M < train_model(T) > Train a repair model (e.g. compute a probability
distribution over repair actions)
5 forsc I/ > For all repairs observed in the repository
6 do
7 n < compute_repairability(s, M) > How long to find this repair according to
the repair model
8 Q<+ QUn > Store the “repairability” value of s
9 return median(§2) > Returning the median number of attempts to find the repair
shapes

Figure 4.1: An Algorithm to Compare Fix Shaping Strategies. There may be different
flavors of functions split, f and compute Repairability.

4.1.2.2 Defining Probabilistic Repair Models

To compute a probability distribution over repair actions, we propose to learn them from
software repositories. For instance, if many bug fixes are made of inserted method calls,
the probability of applying such a repair action should be high. Despite our single method
(learning the probability distributions from software repositories), we have shown in
that there is no single way to compute them, they depend on different heuristics. In the
evaluation (Section , we use those heuristics BFP and N-SC to define shaping spaces.

4.1.2.3 Comparing Different Distributions

To compare different distributions against each other, we set up the following process. One
first selects bug repair transactions in the versioning history. Then, for each bug repair trans-
action, one extracts its repair shape (as a set of repair actions of a repair model). Then one

DFix for 19346 integrating changes from Sebastian Davids” http://goo.gl/d40Si

64

http://goo.gl/d4OSi

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

computes the average time that a maximum likelihood approach would need to find this
repair shape using equation [4.1]

Let us assume two probability distributions P; and P, over a repair model and four
fixes (F7 ... Fy) consisting of two repair actions and observed in a repository. Let us assume
that the time (in number of attempts) to find the exact shape of F; ... Fy according to P; is
(5,26,9,12) and according to P, (25,137,31,45). In this case, it is clear that the probability
distribution P; enables us to find the correct repair shapes faster (the shaping time for P; is
lower). Beyond this example, by applying the same process over real bug repairs found in
a software repository, our process enables us to select the best probability distributions for a
given repair model.

Since equation is parametrized by a number of repair actions, we instantiate this
process for all bug repair transactions of a certain size (in terms of AST changes). This means
that our process determines the best probability distribution for a given bug fix shape size.

4.1.2.3.1 Comparison Algorithm Figure4.1{sums up this algorithm to compare fix shap-
ing strategies. The algorithm uses cross-validation to avoid bias in the result. This bias can
emerge due we use the same data, i.e., transactions found in repositories, to: compute differ-
ent probability distributions P,, and to evaluate the time to find the shape of real fixes (bug
fix transactions). To overcome this problem, we always use different sets of transactions to
estimate P and to calculate the average number of attempts required to find a correct repair
shape. Using cross-validation reduces the risk of overfitting. Let us analyze the algorithm.
From a bag of transactions C, function split (line 3) creates a set of testing transactions and
a set of evaluation transactions. Then, one trains a repair model, with function trainM odel
(line 4), for repair models CT and CTET it means computing a probability distribution on a
specific bag of transactions. Finally, for each repair of the testing data, one computes its “re-
pairability” according to the repair model, with Equation [4.1|(line 7). The algorithm returns
the median repairability, i.e., the median number of attempts required to repair the test data
(line 9).

4.1.3 Evaluation
4.1.3.1 Evaluation set up

We run our fix shaping process on our dataset of 14 repositories of Java software considering
two repair models: CT and CTET (see Section. We remind that CT consists of 41 repair
actions and CTET of 173 repair actions. For both repair models, we have tested the different
heuristics of B.3.1]to compute the median repair time: all transactions (ALL); one AST change
(1-SC); 5 AST changes (5-SC); 10 AST changes (10-SC); 20 AST changes (20-SC); transactions
with commit text containing “bug”, “fix”, “patch” (BFP); a baseline of a uniform distribution
over the repair model (EQP for equally-distributed probability).

Since we have a dataset of 14 independent software repositories, we use this dataset
structure for cross-validation. We take one repository for extracting repair shapes and the
remaining 13 projects to calibrate the repair model (i.e. to compute the probability distribu-
tions). We repeat the process 14 times, by testing each of the 14 projects separately. In other
words, we try to predict real repair shapes found in one repository from data learned on
other software projects.

65

Chapter 4. Two Strategies to Optimize Search-based Software Repair

We extracted all bug fix transactions with less than 8 AST changes from our dataset. For
instance, the versioning repository of DNSJava contains 165 transactions of 1 repair action,
139 transactions of size 2, 71 transactions of size 3, etc. The biggest number of available
repair tests are in jdt.core (1,605 fixes consist of one AST change), while Jhotdraw has only
2 transactions of 8 AST changes. We then computed the median number of attempts to find
the correct shape of those 23,048 fix transactions. Since this number highly depends on the
probability distributions P,, we computed the median repair time for all combinations of fix
size transactions, projects, and heuristics discussed above (8 x 14 x 6).

66

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

‘sydwrayye o1 uey) ssaf ur auop st aoeds yoreas oy ur adeys aredax
3091100 3} Surpury ‘suoroesueI) [[ews 10 ‘S3eq UondesueI} DG-G Ul papnpur sadueypd jo Ariqeqoid uonnqrysip sy woijy dpew S
1D Ppow aredax ayy, "1 [opow Jredar 105 9z1s uonoesuer 1od pue 10sloxd 10d pajse) suonoesue) X1y JO IDqUINU 3} 3)LITPUT S}adeIq
ur sanjea oy ‘suondesuern; xy jo adeys aredar 3091100 sy puy o3 parmbar (proq ur) sydwaye jo pquNu ueIpaw Y], :I'F [qeL

(19) ovTve (19) LO¥L (£8) L6v€ (#8)890T (0c1) Ieh (TTT)SET (L91) €L (180) € 3edowo],

(F¢) 88956 (6€) 96491 (22)S8LF (19)SZ9 (¢or) ez (98) 00T (ge1) 21 (ITo) € smmg

(22)TeTes (68) POLEL (Z€1) ¥I6€ (ST ¥9Z (6S1) 0T (C07) €I (9%€) 9T (€99)9 qereds

(zo1) TessiL (S12) ¥98TT (S0€) S€09 (9T€) €201 (79%) TIE (FIH) PL (€82) €T (F8ID) € Yousprom m-asdipe-310
(60€) €98FZ (F1€) PPEST (9TF) 6€9% (T6€) POLL (1€9) T6T (£59) €6 (STOT) 9T (9091) 9 °10073pl-asdide-310
(8%)o0 (17) z8sss (h) 64891 (39) 65%9 (02) S99 (89)9%T (F€1) ST (€20)9 807

(9)< (6) F€91€ (11)%0 (2) s¥e6b (1T)>© (81) 968 (6€) TH (o) e un!l

(2) 16€95 (g)oo () 119 (01) 6221 (0T) 48T (6) 6ST (12) €1 (12) L gmerpjoH(

(c11) s8p8e (98) SFIEL (0ST) €09 (£¥1) LSOL (681) TZT (802) 88 (€9€) ST (F19)9 ssogl

(ze) seeec (67) 8795 (0g) 681 (29)906T (8F) 1ST (€9) 8S (#8) €1 (ctr) e wpal

(F¥)o< (€9) €9€91 (09) €90 (¥) €ssT (28) 81z (1L T0L (6€T) €T (591)9 eaelsuq

(¥6) 909%9 (€2) 80601 (80T) TIIT (£I1)0F6 (9F1) 2SS (FF1)89 (SO €L (T8) € equuniod

(6) T€90€ (9) 61071 (€1) Z1T¥T (2) $6¥ (01)99% (01) 1TL (ST) €I (0g)z 101D

(991) oeveL (L61) 8PLIT (¥€T) £L6S (¥ST) FOEL (29€) 9T (98€) 98 (8€9) €L (966)9 TINNOSIY

8 L 9 g ¥ € z I 071§ areday / aredoy

67

Chapter 4. Two Strategies to Optimize Search-based Software Repair

4.1.3.2 Empirical Results

Table presents the results of this evaluation for repair space CT and transaction bag
5-SC. For each project, the bold values give the median repairability in terms of number
of attempts required to find the correct repair shape with a maximum likelihood approach.
Then, the bracketed values give the number of transactions per transaction size (size in num-
ber of AST changes) and per project. For instance, over 996 fix transactions of size 1 in the
ArgoUML repository, it takes an average of 6 attempts to find the correct repair shape. On
the contrary, for the 51 transactions of size 8 in the Tomcat repository, it takes an average
of 34,240 attempts to find the correct repair shape. Those results are encouraging: for small
transactions, it takes a handful of attempts to find the correct repair shape. The probability
distribution over the repair model seems to drive the search efficiently. The other heuristics
yield similar results — the complete results (6 tables — one per heuristic) are given in appendix
[Al

About cross-validation, one can see that the performance over the 14 runs (one per
project) is similar (all columns of Table contain numbers that are of similar order of
magnitude). Given our cross-validation procedure, this means that for all projects, we are
able to predict the correct shapes using only knowledge mined in the other projects. This
gives us confidence that one could apply our approach to any new project using the proba-
bility distributions mined in our dataset.

Furthermore, finding the correct repair shapes of larger transactions (up to 8 AST
changes) has an order of magnitude of 10* and not more. Theoretically, for a given fix shape
of n AST changes, the size of the repair model is the number of repair actions of the model
at the power of n (e.g. |CT|"). For CT and n = 4, this results in a space of 41* = 2,825,761
possible shapes (approx 10°). In practice, overall all projects, for small shapes (i.e. less or
equal than 3 changes), a well-defined probability distribution can guide to the correct shape
in a median time lower than 200 attempts. This again shows that the probability distribution
over the repair model is so unbalanced that the likelihood of possible shapes is concentrated
on less than 10* shapes (i.e. that the probability density over |C'T|" is really sparse).

Now, what is the best heuristic, with respect to shaping, to train our probabilistic repair
models?

For each repair shape size of Table and heuristic, we computed the median re-
pairability over all projects of the dataset (a median of median number of attempts). We
also compute the median repairability for a baseline of a uniform distribution (EQP) over
the repair model (i.e. Vi, P(r;) = 1/|CT})). Figure |£.2) presents this data for repair model CT.
It shows the median number of attempts required to identify correct repair shapes as Y-axis.
The X-axis is the number of repair actions in the repair test (the size). Each line represents
probability estimation heuristics.

Figure 4.2| gives us important pieces of information. First, the heuristics yield different
repair time. For instance, the repair time for heuristic 1-SC is generally higher than for 20-SC.
Overall, there is a clear order between the repairability time: for transactions with less than 5
repair actions heuristic 5-SC gives the best results, while for bigger transactions 20-SC is the
best. Interestingly, certain heuristics are inappropriate for maximum-likelihood shaping of
real bug fixes: the resulting distributions of probability results in a repair time that explodes
even for small shape (this is the case for a uniform distribution EQP even for shape of size
3). Also, all median repair times tend toward infinity for shape of size larger than 9. Finally,
although 1-SC is not good over many shape size, we note that for small shape of size 1 is

68

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

500 -
20000
i 400 -
(2] J
-—
g. - 300
) 15000
= B 200
© 4
b 4
(_U 100
a 4
e 10000 1
H 4 10
C i
0]
- R
5000 —|
= 1
0o A ‘ |
0 i1 2 4 i 5 6 7 8 9

Repair size (in # AST changes)

Figure 4.2: The repairability of small transactions in repair model CT. Certain probability
distributions yield a median repair time that is much lower than others.

better. This is explained by the empirical setup (where we also decompose transactions by
shape size).

4.1.3.2.1 On The Best Heuristics for Computing Probability Distributions over Repair
Actions To sum up, for small repair shapes heuristic 1-SC is the best with respect to prob-
abilistic repair shaping, but it is not efficient for shapes of size greater than two AST-level
changes. Heuristics 5-SC and 20-SC are the best for changes of size greater than 2. An impor-
tant point is that some probability distributions (in particular built from heuristics EQP and 1-SC)
are really suboptimal for quickly navigating into the search space.

Do those findings hold for repair model CTET, which has a finer granularity?

4.1.3.2.2 On The Difference between Repair Models CT and CTET We have also run
the whole evaluation with the repair model CTET (see[3.1.2). The empirical results are given
in appendix[A] (in the same form as Table[A.T7).

Figure [4.3|is the sibling of figure [4.2| for repair model CTET. They look rather different.
The main striking point is that with repair model CTET, we are able to find the correct repair
shape for fixes that are no larger than 4 AST changes. After that, the arithmetic of very low
probability results in virtually infinite time to find the correct repair shape. On the contrary,
in the repair model CT, even for fixes of 7 changes, one could find the correct shape in a
finite number of attempts. Finally, in this repair model the average time to find a correct
repair shape is several times larger than in CT (in CT, the shape of fixes of size 3 can be
found in approx. 200 attempts, in CTET, it’s more around 6,000).

69

Chapter 4. Two Strategies to Optimize Search-based Software Repair

i XXX 5
1-SC
. &< 5-8C
® & & 10-sC
_ DD @ 20-sc
100000 VIRV e
€9 H—+—+ ALL
=]
e
g 80000 1
@©
=]
@®
8 60000
| -
=+ i
- &
0]
5 40000 4
(0]
E i
20000
. / ‘ |

1 2 3 4

Repair size (in # AST changes)

Figure 4.3: The repairability of small transactions in repair space CTET. There is no way to
find the repair shapes of transactions larger than 4 AST code changes.

70

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

For a given repair shape, the synthesis consists of finding concrete instances of repair
actions. For instance, if the predicted repair action in CTET consists of inserting a method
call, it remains to predict the target object, the method and its parameters. We can assume
that the more precise the repair action, the smaller the “synthesis space”. For instance, in
CTET, the synthesis space is smaller compared to CT, because it only composed of enriched
versions of basic repair actions of repair model CT (for instance inserting an “if” instead of
inserting a statement).

Our results illustrate the tension between the richness of the repair model and the ease of
fixing bugs automatically. When we consider CT, we find likely repair shapes quickly (less
than 5,000 attempts), even for large repair, but to the price of a larger synthesis space. In
other words, there is a balance between finding correct repair actions and finding concrete
repair actions. When the repair actions are more abstract, it results in a larger synthesis space,
when repair actions are more concrete, it hampers the likelihood of being able to concentrate
on likely repair shapes first. We conjecture that the profile based on CT is better because it
enables us to find bigger correct repair shapes (good) in a smaller amount of time (good).

Finally, we think that our results empirically explore some of the foundations of “re-
pairing”: there is a difference between prescribing aspirin (it has a high likelihood to con-
tribute to healing, but only partially) and prescribing a specific medicine (one can try many
medicines before finding the perfect one).

4.1.3.3 Case Study: Reasoning on GenProg within our Probabilistic Framework

We now aim at showing that our model also enables to reason on Weimer et al.’s example
program [12]. This program, shown in Listing implements Euclid’s greatest common
divisor algorithm, but runs in an infinite loop if @ = 0 and b > 0. The fix consists of adding
a “return” statement on line 6.

4.1.3.3.1 Probability Distribution In Weimer et al.’s repair approach, the repair model
consists of three repair actions: inserting statements, deleting statements, and swapping
statements?!. By statements, they mean AST subtrees. With a uniform probability distribu-
tion, the logical time to find the correct shape is 4 (from Equation [4.1). If one favors insertion
over deletion and swap, for instance by setting pinsert—0.6, the median logical time to find the
correct repair action becomes 2 which is twice faster. Between 2 and 4, it seems negligible,
but for larger repair models, the difference might be counted in days, as we show now.

4.1.3.3.2 Shaping and Synthesis In the GCD program, there are n,,.. = 13 places where
nast = 8 AST statements can be inserted. In this case, the size synthesis space can be formally
approximated: the number of possible insertions is npjgce * nqst; the number of possible
deletions is n4s; the number of possible swaps is (Nast)?.

This enables us to apply our probabilistic reasoning at the level of concrete fix as follows.
We define the concrete repair distribution as: pinsere (ast;, placey,) = —Lnsert— pooe0(ast;) =

Nplace*Nast

Pdelete =G
fdelete pswap(aSti? CLSt]’) - (TLS:;:§J2 i

Nast
With a uniform distribution pinsert = Pdeiete = Pswap = 1/3, formula [£.1] yields that the
logical time to fix this particular bug (insertion of node #8 at place #3) is 219 attempts (note

that it is not anymore a shaping time, but the real number of required runs). However, we

*'In more recent versions of GenProg, swapping has been replaced by “replacing”.

71

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Listing 4.1: The infinite loop bug of Weimer et al.’s bug [12]. Code insertion can be made on
13 places, 8 AST subtrees can be deleted or copied.

1 // insert 1

2 if (a ==0) { // ast 1

3 // insert 2

4 System.out. println(b); // ast 2
5 // insert 3

6 }

7 // insert 4

8 while (b != 0) { // infinite loop // ast 3
9 // insert 5

10 if (a >b) { // ast 4

11 // insert 6

12 a=a—>b; // ast 5

13 // insert 7

14 } else |

15 // insert 8

16 b=Db—a; // ast 6

17 // insert 9

18 }

19 // insert 10

20 }

21 // insert 11

22 System.out. println(a); // ast 7
23 // insert 12

24 return; // ast 8

25 // insert 13

26 }

72

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

Dinsert | Pdelete | Pswap LOgiCal time
33 .33 .33 219
.39 .28 33 185
45 22 33 160
40 .40 20 180
.50 .30 20 144
.60 .20 .20 120

Table 4.2: Different probability distributions over the GenProg’s repair model.

observed over real bug fixes that pinsert > Daeiete (See Table from Section . What if we
distort the uniform distribution over the repair model to favor insertion? Table 4.2|gives the
results for arbitrary distributions spanning different kinds of distribution. This table shows
that as soon as we favor insertion over deletion of code, the logical time to find the repair
does actually decrease.

Interestingly, the same kind of reasoning applies to fault localization. Let’s assume that
a fault localizer filters out half of the possible places where to modify code (i.e. nyjqce = 7).
Under the uniform distribution and the space concrete repair space, the logical time to find
the fix decreases from 219 to 118 runs.

4.1.3.3.3 Repairability and Fix Size We consider the same model but on larger programs
with fault localization, for instance 100 AST nodes and 20 potential places for changes. Let
us assume that the concrete fix consists of inserting node #33 at place #13. Under a uniform
distribution, the corresponding repair time according to formula [4.1]is > 20,000 runs. Let us
assume that the concrete fix consists of two repair actions: inserting node #33 at place #13
and deleting node #12. Under a uniform distribution, the repair time becomes 636,000 runs,
a 30-fold increase.

Obviously, for sake of static typing and runtime semantics, the nodes cannot be inserted
anywhere, resulting in lower number of runs. However, we think that more than the logical
time, what matters is the order of magnitude for the difference between the two scenarios.
Our results indicate that it is very hard to find concrete fixes that combine different repair
actions.

Let us now be rather speculative. Those simulation results contribute to the debate on
whether past results on evolutionary repair are either evolutionary or guided random search
[101]. According to our simulation results, it seems that the evolutionary part (combining
different repair actions) is indeed extremely challenging. On the other hand, our simula-
tion does not involve fitness functions, it is only guided random search, what we would
call “Monte Carlo” repair. A good fitness function might counter-balance the combinatorial
explosion of repair actions.

414 Summary

In this Section we have presented a strategy to optimize the time to navigate the search
space. The strategy relies on the probability distribution over repair actions. It focuses on
concentrating on likely repair actions first. We present a mathematical analysis to compare

73

Chapter 4. Two Strategies to Optimize Search-based Software Repair

and evaluate probability distributions with the goal of finding that one that optimize the
navigation.

We have shown that certain distributions over repair actions can result in an infinite time
(in average) to find a repair shape while other fine-tuned distributions enable us to find a
repair shape in hundreds of repair attempts.

In the following section we present a second strategy to reduce the synthesis search space
of redundancy-based repair approaches such as GenProg.

4.2 Reducing Synthesis Search Space for Software Redundancy-
based Repair

In Section {4.1| we presented a strategy to optimize the time to navigate the shaping search
space. In this Section we present a strategy that aims at optimizing the repair time for a
particular kind of repair approaches: redundancy-based repair approaches.

To some extent, each program repair technique is based on a underlying assumption.
GenProg’s “secret sauce” [12,[8] is the assumption that large programs contain the seeds of
their own repair and thus that re-arrangements of existing statements can fix most bugs. This
redundancy assumption is also behind four out of ten PAR’s repair templates [5]. We call
redundancy-based repair approach to those approaches that work under this redundancy
assumption. By contrast, SemFix [10] makes different assumptions: it is based on the idea
that some bugs can be repaired by changing only one variable assignment or if conditional

expression.

Redundancy-based repair approaches synthesize repairs by picking source code from
somewhere in the program. The search spaces of these approaches are formed by source
code found in other places of the program. This assumption could produce large search
spaces, especially when the program to be repaired is large. By consequence, the navigation
of the repair search space could take infinite time (in other words, the approach is not able
to find a fix).

In this Section we aim at presenting a strategy to optimize the solution search for
redundancy-based repair approaches. Our challenge is to know whether there exist alter-
native repair search spaces, smaller than the original (defined by one repair approach such
as GenProg) and with similar repairability strength. This means, we aim at reducing the size
of the space but keeping the number of solutions that the “original” search space has.

This experiment also allows us to validate the redundancy assumption. We wonder
whether it makes sense to re-arrange existing code to fix bugs. The results enable us to un-
derstand the foundational assumptions of program repair approaches based on redundancy
such as GenProg or PAR.

The section remains as follows. In Section[4.2.1jwe present two redundancy-based repair
approaches from the literature. In Section we study the search space of this kind of
repair approaches. In Section we present our strategy to optimize the navigation in
those spaces. In Section we present an evaluation of the strategy, then in Section
we present the results of the evaluation. Finally, Section[4.2.6|concludes the section.

74

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

4.2.1 Software Redundancy-based Repair Approaches

In this section we present two state-of-the-art program repair approaches: GenProg and
PAR. Both approaches work under the assumption that the code of a fix was already written
before in the program.

GenProg is an automatic program repair approach guided by genetic programming. It
applies evolutionary computation to evolve a failing version, i.e., with one defect, of a pro-
gram to a version without the defect. It evolves the program applying three kinds of opera-
tors: inserting, replacing, and removing source code. The approach relies on the presence of
software redundancy: it assumes that the code that forms a fix (the fix ingredients) already
exists somewhere in the program. This assumption involves that GenProg always instanti-
ates inserting and replacing operators with code taken from elsewhere in the program. As
consequence, it never synthesizes fixes that introduce new code.

Another redundancy-based repair approach is PAR [5]. In contrast to GenProg, the repair
operators of PAR correspond to bug fix templates derived from bug fix patterns manually
identified. The approach uses existing source code to instantiate four bug fix templates. For
example, templates Expression replace for an if conditional and Expression added and removed in
if conditional are instantiated with boolean expression collected in the same scope from the
location of the if condition defect.

Let us present as example one defect that, in theory, both redundancy-based repair ap-
proaches are able to fix. The defect corresponds to an issue reported in Apache Commons
Math project 22. Listingpresents a chunk of the file that contains the defect. The defect is
located in line 16: the if condition uses an incorrect relational operator. The fix proposed by
developers 2* changes the operator >= by >.

GenProg and PAR are able to synthesize this fix (and eventually others that also fix the
bug). GenProg could generate it applying replace operator. This operator replaces the AST
node that corresponds to the buggy if condition, i.e., fa x fb >= 0.0, by one AST node of
boolean expression, i.e., fa * fb > 0.0, taken from line 13 (a while statement with a condi-
tion formed by three sub-terms). The synthesized patch is equal (same code) to the real fix
proposed by the Apache developers.

PAR could also generate this fix by applying Expression replace for an if conditional bug fix
template. In the same way, PAR replaces the buggy if conditional by the mentioned sub-term
found in line 13.

Zhttps://issues.apache.org/jira/browse/MATH-280
Bnttps://fisheye6.atlassian.com/changelog/commons?cs=791766 fix introduced in file Uni-
variateRealSolverUtils.java

75

https://issues.apache.org/jira/browse/MATH-280
https://fisheye6.atlassian.com/changelog/commons?cs=791766

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Listing 4.2: Buggy If condition from issue MATH-280. Redundancy-based approaches are
able to fix the bug by replacing its boolean expression by another from the same method.

1 double a = initial;

2 double b = initial;

3 double fa;

4 double fb;

5 int numlIterations = 0 ;

6

7 do {

8 a = Math.max(a — 1.0, lowerBound);

9 b = Math.min(b + 1.0, upperBound);

10 fa = function.value(a);

11 fb = function.value(b);

12 numlterations++ ;

13 } while ((fa * fb > 0.0) && (numlterations < maximumlterations) &&
14 ((a > lowerBound) Il (b < upperBound)));

15

16 if (fa = fb >= 0.0) { //buggy if condition; fix: if (fa = fb > 0.0
17 throw new ConvergenceException(...);

18 }

4.2.2 Defining Search Spaces for Redundancy-based Repair Approaches

In Section [f.1.T|we decompose a repair search space into three spaces: fault localization space,
shape space and synthesis space. In this section, we focus on the synthesis space of redundancy-
based approaches. Repair approaches navigate this space to instantiate a repair shape. For
instance, GenProg does it to instantiate two of its repair actions: insert and replace. By the re-
dundancy assumption behind them, redundancy-based approaches never synthesis source
code, i.e., they reuse existing code from somewhere in the application. As consequence, their
synthesis space is composed of already written code.

In the remaining of the section we focus on how to define a synthesis space. We analyze
how the topology of this search space impacts on the performance of redundancy-based
repair approaches. For that, we introduce a new measurement of source code redundancy.
In the remaining of the section, we define the concept temporal redundancy in detail.

4.2.2.1 Fragment Redundancy

We use fragment to denote a substring of source code. For instance, the source code line
“for (int i=0; i<n; i++)” is a fragment. Fragments are always defined according to a level of
granularity.

A fragment F is snapshot redundant at time T if another instance of that same fragment F’
exists elsewhere in the program at time 7'. This is the redundancy studied by Gabel and Su
[36] and used by GenProg [12]. In this work we consider a richer notion of redundancy that
includes historical context.

A fragment F' is temporally redundant at time T if that same fragment F" has already been
seen during the history of the software under analysis (i.e., at time 7" < T). For instance,

76

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

literal “42” might be added in version #1, be removed in version #2 and reused again in
version #3. In the commit of version #3, the “42” fragment is temporally redundant. Thus,
once a fragment has appeared it is always subsequently viewed as a potential source of
redundancy. We consider the first version of a program to be created by insertions from an
empty initial program.

Consequently, a temporally redundant fragment is associated with a birth date, the very
first time when it has been used in the software under study. At the point in time it appears,
the fragment is called unique fragment, and remains unique as long it is not used a second
time in a subsequent commit.

4.2.2.2 Fragment Pool

We propose that the repair search space of redundancy-based repair approaches is com-
posed of two components: the search space of fragments (the atomic building blocks) and
the search space of their combinations. In this section we focus on the former. We call it
fragment pool. It has all the fragments seen up in the history of a program to a given point in
time. Fragment Temporal Redundancy is measuring using the fragment pool: if a fragment
exists in the pool means it is redundant. Otherwise, the fragment is new, i.e., not redundant.

4.2.3 A Strategy to Reduce the Size of the Redundancy-based Synthesis Search
Space

In this Section we present one strategy to optimize the search of the solution in the
search space of redundancy-based repair approaches such as GenProg. Synthesis search
spaces of this kind of repair approach include source code fragments from the application
under repair. However, for large applications, these spaces could contain a large number of
fragments. As consequence, the time to navigate them could be large or even infinite. In face
to this situation, redundancy-based repair approaches are not able to find a solution to the
bug. Remember that repair approaches have criteria to limit the search of a solution in the
repair space. For example, the navigation in GenProg is limited by parameters from genetic
programming such as the number of generations and the size of the initial population. In
one of the most recent experiments [8], these values are 10 and 40, respectively.

Our motivation is redundancy based approaches be able to find undiscovered solutions
from the search space. The intuition we have is these undiscovered solutions can be dis-
covered by decreasing the time to navigate the synthesis search space. In this section we
present one strategy that aims at finding a solution faster. The strategy aims at defining
smaller synthesis spaces without losing fertility. That means, to have a search space with a
similar number of solutions that the original space has. A smaller search space allows repair
approach to transverse all its elements faster than a larger one.

To reduce the search spaces, the strategy defines spaces collecting fragments that are in a
given scope. According to the selected scope, the space’s definition yields different topologies
of search spaces. By consequence, this impact on the repair strength of the repair approaches.
In this work, the strategy considers two temporal redundancy scopes: global and local. We
present them in the following section.

77

Chapter 4. Two Strategies to Optimize Search-based Software Repair

4.2.3.1 Defining Two Scopes of Temporal Redundancy

A fragment is temporally redundant if that same fragment was written before in the ap-
plication. As we study redundancy from version control systems, it means a fragment is
temporally redundant if that same fragment appeared in a previous commit. This kind of
redundancy has a global scope: the location of the previous fragment instance does not matter.
At global scoping, there is one fragment pool. It contains all the fragments from everywhere
in the application.

We now define a more restricted local scope notion of temporal redundancy. A fragment
is locally temporally redundant if that same fragment has been used in a previous commit
to the same file.

For example, consider two files, F; and F», each containing 3 fragments: F = {a,b, c},
Fy ={d,e, f}. Suppose commit C; adds fragment c to file F,. For that commit, fragment c is
global temporally redundant (already available in F}), but not locally temporally redundant
(never previously available in F,). Suppose commit Cy introduces another version of F
replacing fragment e with d. In that commit, fragment d is locally redundant (since d was
previously available in F3).

At local scoping, there is one fragment per each file from the application. A fragment
from file Fis locally redundant if it exists in the fragment pool associated to file F'. Otherwise,
it is not locally redundant.

4.2.4 Definition of Evaluation Procedure
4.2.4.1 Evaluation Goals

In this Section we aim at evaluating the strategy presented in Section The strategy re-
duces the size of synthesis search space by considering fragments included in a given scope.
In Section [4.2.3.1] we present two scopes: local and global. We wonder whether this strategy
affects the repair strength of redundancy-based repair approach. Our intuition is local scope
allows repair approach to define smaller search space without losing repair strength. We set
up an evaluation to validate these ideas.

The evaluation analyzes the software history of applications. We aim at measuring the
temporal redundancy of commits. We carry out the experiment considering global and local
redundancy levels. Our goal is to prove that: a) the assumption behind redundancy-based
approaches makes sense, i.e., it has sense to reuse already written code to synthesize com-
mits; and b) the strategy of reducing the search space allows repair approaches to synthesize
commits using a smaller search space than without the strategy.

4.24.2 A Method to Validating Redundancy-based Assumption

In this section we present an experiment to validate the redundancy assumption used by
redundancy-based repair approaches such as GenProg. We ask whether it makes sense to re-
arrange existing code or code changes to fix bugs. For that, the experiment aims at studying
how the software evolves, in particular whether the code that is added to the application in
the evolution was already written before in the application.

In our experiment we analyze version control systems (VCS). We analyze the source code
introduced by each commit from the VCS . We want to measure the number of commits
that introduce only already written code i.e., redundant fragments. This measure allows us to

78

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

validate the redundancy assumption: In theory, a redundancy-based repair approach should
be capable of synthesizing the code of these commits.

As we analyze commits from a version control system, in the following section we define
a redundancy measure at the commit level.

4.2.4.21 Defining Commit Redundancy A commit in a version control system consists of
new file versions. Conceptually, a commit can be viewed in two ways: as a set of file pairs
(before and after the commit), or as a set of changes (applied to the version before the commit
to obtain the version after it).

In this section, we use this change-based view of commits. We consider that a commit
adds and/or deletes new source code fragments. An update is considered as the combination
of a deletion and an addition. We do not consider commits done on other artifacts than
source code.

A source code commit is composed of added and/or deleted fragments. Using a cooking
metaphor, the added fragments are the “ingredients” of the commit.

We define a temporally redundant commit as a commit for which all added fragments are
(individually) temporally redundant. More formally, we define a commit C; performed at
the time T} as a set S; of added fragments and a set R; of removed fragments. Let C be the
set of all commits for a program. Then a temporally redundant commit C; satisfies

ViesS;|3C;eC|Ti<T;NfeS,;

For such commits, no new fragments are invented and no fresh material is introduced:
the commit is only a re-arrangement of insertions that have already been seen in previous
commits.

Along the same line, a unique commit only introduces unique fragments and a partially
redundant commit introduces already written fragment as well as unique fragments. Along
the same line, a partially redundant commit C; satisfies Je,,, € S;,3C;... and the formal
definition of unique commits is trivial.

4.2.4.2.2 Commit Classification Example Let us present an example of commit classifica-
tion at line-level granularity. In the example, the software history of a program contains four
commits Cj,¢ = 1..4. A commit is represented by a set of fragments F,, and a date d; where
the commit was done. Being the fragment history:

Ci = {Fa,Fb,Fc},CQ = {Fb,Fd},Cg = {Fe},C4 = {Fc,Fd} and d; < do < d3 < dy.

Let us classify the commits:
Cy is partially redundant. It introduces existing code (F}, from Cj) but also unknown code
(Fa).
Cly is redundant. It introduces exclusively existing code (F, from C; and Fy from C»).
On contrary, C1 and C3 are unique, they introduce unknown source code at time d; and d3,
respectively.

4.24.3 Experimental Protocol

Given a level of granularity and a scoping level, our experimental protocol to measure the
temporal redundancy of the evolution of a program consists of the following phases: It is
depicted in Figure

79

Chapter 4. Two Strategies to Optimize Search-based Software Repair

3
a) Retrieving commits W
Revld: 42 ¥ commits
b) Filtering commit files | Foo.java FooTest java .
discarded
c¢) Fragmenting commits Lpoo,java | LFoo.java |
before after
s |
i pathidien]=='/)
d) Filtering
fragments

e) SeIeCtlng acceptable | Revlds: 42, 53, ... | at least 1 added fragment

commits
. "subpath +=dlen +1;"
f) IndeX| ng first seen on 2009/05/12
fragments added on 2010/04/13
added on 2013/06/10

i

20% of commits only add
known fragments

g) Measuring
temporal
redundancy

Figure 4.4: OVERVIEW AND EXAMPLE OF OUR METHODOLOGY FOR CALCULATING SOFT-
WARE TEMPORAL REDUNDANCY (LINE LEVEL GRANULARITY)

80

—_

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

a) Retrieving commits. All commits of the program under analysis are collected from the
repository.

b) Filtering commit files. Only commits to executable code are retained; commits to test
cases are discarded.

c) Fragmenting commits. We split each relevant file into fragments at a given level of
granularity (e.g., lines or tokens, see Section [£.2.4.4). This results in a before-commit and
an after-commit sequence of fragments. At line and token granularity level, we use the
Myers differencing algorithm [14] to compare both fragment sequences and obtain the added
fragments of the commit.

d) Filtering fragments. We filter out whitespace and comments. In this paper we are only
interested in the evolution of executable code and not in indentation or documentation.

e) Selecting acceptable commits. We select those commits that introduce at least one
fragment after filtering. We call such commits acceptable.

f) Indexing fragments. We consider each added fragment in each acceptable commit in
ascending temporal order. If a fragment has not been encountered previously at the given
scoping level (i.e., global or local), we index it with the date of its first introduction. For a
global scope level, we define one fragment pool where we store all fragment introduced by
commits. For a local scope level, we define one fragment pool per each file of the application.
Each of those pools contains the fragments written in the history of the associated file.

g) Measuring temporal redundancy. The temporal redundancy of the entire program’s
evolution is the fraction of acceptable commits that are temporally redundant (see Sec-

tion4.2.4.2.1).

4.2.4.4 Fragment Granularities

We consider two different levels of granularities of source code fragments: Lines and Tokens.
At line level, we split a source code chunk in lines, as separated by line breaks. For
example, for the following source code chunk:

int i = getSum();
if (j > 1000){

We obtain two fragments at the line level, one per each line: int i = getSum(); and
if(j > 1000).

At the token level, we split one source code chunk in tokens, as separated by lexing rules.
From the former listing, we obtain seven fragments: int, i, getSum(), if, j, > and 1000.

4.2.5 Empirical Results

We now present our empirical results on the temporal redundancy of software (as defined

in Section |4.2.4.2.1) following the experimental design presented in Section |4.2.4.3| First, in
subsection we present the project used in the evaluation. Then, in subsection

we present the result of the validation of the software redundancy assumption. Finally, in
subsection we analyze the result of the space size reducing strategy.

4.2.5.1 Dataset

We use six open-source Java projects to measure the temporal redundancy. They are: Apache
Log4j, JUnit, Picocontainer, Apache Commons Collections, Apache Commons Math, and

81

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Table 4.3: The temporal redundancy of six open-source applications.

Line granularity Token granularity

Program ég;fﬁfi};le Global Local Global Local

Temporal Pool | Temporal Pool Temporal Pool | Temporal Pool

redundancy Size redundancy | Size redundancy Size redundancy Size
c1 C2 c3 c4 Cs Cé c7 cs C9 c10
log4 1687 9% | 43313 6% 57 39% | 14294 19% 71
junit 713 17% | 8855 16% 18 43% | 3256 29% | 725
pico 157 3% | 16911 2% | 22.5 31% | 6273 8% 46
collections 1019 7% | 25406 4% 35 52% | 4163 23% | 855
math 2210 6% | 69943 4% 37 45% | 20742 18% | 100.5
lang 1290 8% | 22330 6% 63 50% | 6692 29% 98

Apache Commons Lang. The inclusion criterion is as follows: the Apache projects were
used in previous research on automatic program repair [5], while the remaining two are
Java projects mentioned in previous research on software evolution [102]. After applying
the filters presented above on the 16071 commits of the dataset, we obtain 7076 acceptable
commits.

4.2.5.2 Measuring Temporal Redundancy

4.2.5.2.1 Line-Level Temporal Redundancy Research question: What is the amount of line-
based temporal redundancy?

For each application of our dataset, we measured the total number of acceptable commits
within the analysis timespan (the complete data is available at http://goo.gl/k0rZWc)
and the global-scope line-level temporal redundancy. Columns #2 and #3 of Table .3 report
the results.

For instance, for log4j (the first row), there are 1687 commits which add at least one
executable line. Only 9% of those 1681 are temporally redundant commits.

Overall, at the level of lines, 3-17% of the accepted commits are temporally redundant
commits. Their basic ingredients are only previously-inserted code.

This has additional implications for automatic repair and code synthesis: for syn-
thesizing those commits, the search-space has a finite number of atomic building blocks
(previously-observed line-level fragments). Theoretically, a redundancy-based approach
should be able to synthesize all the temporally-redundant commits.

The interval 3-17% is large and the reasons behind this variation are not obvious. One
reason could be that the commit conventions used by the developers of a project are different.
For instance, some projects prefer to have small and atomic commits (one bug fix or feature
per commit). Other projects are less restrictive on this point. This has a direct impact on the
redundancy: small and atomic commits are more likely to be redundant.

4.2.5.2.2 Token-Level Temporal Redundancy Research question: Is there a difference between
line-based and token-based temporal redundancy?

Before answering this question, we note that, analytically, all temporally redundant com-
mits at the level of lines are necessarily temporally redundant commits at the level of tokens.

82

http://goo.gl/k0rZWc

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

Furthermore, a unique new line might be exclusively composed of existing tokens. Conse-
quently, the token-based temporal redundancy must be equal to or greater than line-based
temporal redundancy. We now measure the temporal redundancy at the line and token level.

Table [4.3| reports global scope line-level (column #3) and token-level temporal redun-
dancy (column #7). For instance, in log4j, there is a line-level temporal redundancy of 9%
but a token-level redundancy of 39%. Overall, at the token level, 29-52% of commits are
temporally redundant.

For all projects, token-based temporal redundancy exceeds line-based. This follows from
the analytical argument above and gives confidence in the experiment’s construct validity.

Overall, token-level temporal redundancy (between 29% and 52%) is much higher than
the line-level temporal redundancy. For automated repair and code synthesis, a high tempo-
ral redundancy implies a smaller search space. This holds for both the line and token level
of granularity. Our token-level temporal redundancy measurements imply that for between
29% and 52% of accepted commits, synthesis and repair need never invent a new token.
For instance, repair or synthesis of arithmetic code need only consider recombining existing
literals and operations for one-third to one-half of commits.

4.2.5.3 Redundancy Scope Experiment

The results presented in Section allow us to validate the redundancy assumption be-
hind redundancy-based repair approaches. We can affirm that it makes sense to reuse to
synthesis commits from version control systems. In this section we focus on validating the
strategy to optimize the navigation of the search space presented in Section For that
we compare two measures for local and global scopes: amount of temporal redundancy and
size of the fragment pool.

Let us first analyze the differences fragment pools for the same scope, in particular, global
scope. Table [4.3| gives the size of the global scope fragment pool for line-level (column #4)
and token-level (column #8) analyses. For instance, in the considered slice of history of log4j,
there are 43313 different lines (i.e., size of global fragment pool) and 14294 different tokens
that are involved in the software evolution. For all applications under study, the token pool
at the point in time of the last commit is much smaller than the line pool.

For automated repair or code synthesis, there is a tension between working with the line
pool or the token pool. To some extent, the temporally redundant commits correspond to
the number of commits that can be synthesized. With the line pool, the combination of lines
is much smaller (the combination space is smaller) but fewer commits can be synthesized
(~10%). With the token pool, more commits can be synthesized (~40%), but at the price of
exploring a much bigger combination space.

Now, let us focus on evaluating the strategy. Our research question is: Do local (that is,
file) scope restrictions impact the amount of temporal redundancy?

We now measure the temporal redundancy available at the local scope in the same file
(as defined in Section [4.2.3.1).

Table |4.3| reports global and local scope temporal redundancy in our dataset. For each
granularity, there is one column “Global” and one column “Local” corresponding to the
different scope. For instance, at the line level, column #3 is the temporal redundancy at the
global scope and column #5 gives it when considering a local scope.

As discussed in Section [#.2.5.2.T) at the line granularity, there are between 3% and 17% of
temporally redundant commits at the global scope. At the local scope, there are between 2%

83

Chapter 4. Two Strategies to Optimize Search-based Software Repair

and 16%.

The temporal redundancy of both scopes is of the same order of magnitude. In all
projects, more than half of the temporally redundant commits actually have local tempo-
ral redundancy. Consequently, at line granularity, most of the temporal redundancy is localized in
the same file.

At token-level granularity, the results are similar: we find a large amount of token-level
local-scope temporal redundancy. Tokens are likely to be reused in commits impacting the
same file. This further indicates that the fragment locality matters during software evolution.
We note that the difference of redundancy between global and local scopes is slightly higher
at the token level (col. #7 vs. #9) than at the line level (col. #3 vs. #5).

These results validate our strategy for reducing the repair time presented in Section[4.2.3|
We observe two main conclusions. First, at the line level, the local scope pool is able to seed
the same order of magnitude of commits as the global one. In other words, it is almost as
fertile as the global pool. Second, when one considers the local scope pool, the search space
is much smaller. For instance, for log4j, the median local pool size at the line level is 57 lines,
compared to 43313 at the global scope level. As consequence, the time to navigate a local
pool is much smaller than the time to navigate the global pool.

Restricting attention to the local scope reduces the search space greatly while still en-
abling the synthesis of a large number of commits. Those results are directly actionable for
improving GenProg and other redundancy-based approaches: our results indicate that ap-
plying a strategy to reduce the search space by only considering local redundancy would
decrease the repair time while keeping a high repair success potential.

4.2.6 Summary

In this section we presented a strategy to reduce the time to navigate a synthesis search space
for redundancy-based repair approaches such as GenProg. The strategy proposes to reduce
the synthesis search space, composed by already written source code from the application
to repair. A reduced space contains code that belongs to a given scope. In the evaluation we
consider two scopes: local (file) and global (all application). We have shown that considering a
local scope allows repair approaches to have smaller space without resigning repair strength.
This evaluation also allows us to validate the assumption behind redundancy-based repair
approaches such as GenProg. It makes sense to use already written source in the application
to synthesize bug fixes.

4.3 Conclusion

In this chapter we presented two strategies to optimize search-based repair approaches. The
first one helps to reduce the time to find a solution, i.e., to navigate the search space. The
strategy relies on source change probabilities taken from version control system. It first se-
lects those frequent repair changes. We proved that there are distribution probabilities over
repair models that are better than others, i.e., it allows approaches to find faster a solution.
The second strategy reduces the search space from redundancy-based repair approaches
such as GenProg [12]]. We proved that these kinds of approaches can reuse source code from
the file where the bug is located to synthesis fixes.

84

Chapter

A Unified Repair Framework for
Unbiased Evaluation of Repair
Approaches

In this thesis one of the main motivations is to improve the repairability of bugs. This im-
provement means to increase the number of bugs fixed by repair approaches. Repair ap-
proach evaluations from literature show that a fraction of these defects remain unrepairable.
For instance, GenProg is able to repair 55 out of 105 defects, remaining 50 unrepairable [8].
In Section [we have presented two strategies that help repair approaches to reduce the time
of searching bug fixes.

We observe that the proportion of repairable and unrepairable defects depends on the
way the evaluation dataset is built. A dataset could include defects that an approach is able,
at least in theory, to repair, and defects that are not repairable by construction. If one defines
a dataset that includes majority of repairable defects, the repair efficacy of the approach
should be higher. Otherwise, if the majority of the defects are unrepairable by the approach
under evaluation, the repair efficacy of the approach should be low. As consequence, the
way the dataset is built can bias the result of the evaluation.

In this chapter we propose a method to obtain conclusive evaluations of automatic soft-
ware repairs. For that, we need to characterize how the dataset is built and what it contains.
In Section 5.1} we first present a methodology to define evaluation datasets with a controlled
bias in the dataset definition. This dataset contains defects of a unique defect class.

Then, we focus on the execution of a repair approach evaluation. Our motivation is to
execute evaluations of repair approaches that produce reliable and conclusive results. We
aim at setting up an experiment that allows us measuring the real strength of the repair
operators used by the evaluated approaches. This experiment allows us to instantiate our
methodology of repair approach evaluation in order to validate it. In particular we aim at
studying the repairability of a particular defect class: if conditions. Those defects are common:
previous works [9} [11] have shown that there are the most repaired elements in source code.
For instance, the results of Pan et al.[9] over six open source projects, between 5% and 18.6%
of bug fix commits are modifications done in if conditions.

In our study, we consider three repair techniques from the most authoritative literature:
GenProg [12], PAR [5] and the mutation-based approach defined by Debroy and Wong [13]].

85

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

We propose a framework that unifies differences across the repair approaches, and encodes
the particular repair operators of them.

In this chapter we propose: in Section[5.1} we first present a methodology to define eval-
uation dataset and a dataset of if condition defects. In Section 5.2 we present a methodology
to develop repair approach evaluations. For subsequent work, we explain the decision taken
to replicate the approaches. Finally, in Section [5.3|we present the results of the evaluation of
the three repair approaches.

5.1 Defining Defect Datasets for Evaluating Repair Approaches

In this section, we design a procedure to evaluate repair approaches. In particular, we focus
on the design of the evaluation dataset due to a main reason: we need unbiased evaluations.
We present a procedure to evaluate repair approaches with controlled biases.

5.1.1 Defining a Defect Class

A defect class is a family of defects that have something in common [103]. There are three
dimensions for defining a defect class: a) the root cause e.g., the use of a not initialized vari-
able, b) the symptom e.g., a null pointer error exception, and c) the kind of fix e.g., initialization
of a variable or addition of a null-pointer checker precondition.

A repair approach should always target explicit defect classes [103]. These defect classes
could be repaired by an approach. For some approaches such as Semfix [10] the target de-
fect classes are specific and explicit: it fixes a) if condition defects and b) integer initialization
defects. On the contrary, approaches such as GenProg [12] do not explicitly target any defect
class. However, more recent GenProg’s evaluation [1] shows that the approach fixed segfault,
infinite loop and buffer exploit defects.

5.1.2 Bias in Evaluation Datasets

A typical method used in previous publications [12, 5] 77, [13] to evaluate a repair approach
consists of taking, one by one, defects from a defect dataset and trying to find a solution,
i.e., a repair, using the repair approach. As discussed in [103]], the way one builds a dataset
directly impacts on the evaluation result. For example, let us consider an approach appr;
that targets defect classes A and B, and another approach appr, that targets classes B and C.
The evaluation of those approaches using a defect dataset formed with 80% class A and 20%
of class B would clearly favor appr;. Biased evaluation result can arise when the dataset is
built without following defined inclusion criteria.

We claim that the procedures for defining an evaluation dataset and for evaluating a
repair approach should be as separated as possible. A dataset tailored for a particular ap-
proach evaluation could produce inconclusive results. Both procedures should share only
one single concept: a defect class. This means the dataset should contain only defects from the
same defect class; and the repair approach targets defects from that class. Then, the dataset
can be considered as well formed with respect to this defect class, and competing approaches
can be quantitatively compared. From the previous example, a conclusive evaluation could
be that one that defines, for instance, three defect datasets, one for each target defect: dataset
with defect class A, dataset with defect class B, and finally dataset with defect class C. Now,

86

5.1. Defining Defect Datasets for Evaluating Repair Approaches

the evaluation can concentrate on evaluating the repairability over one each class: appr; fixes
more defects of class A that apprs, but the latter fixes more defects from class C.

In this section we present a methodology to built evaluation datasets with a specific
focus on minimizing the evaluation biases and fallacies. Moreover, we illustrate it to build a
dataset of if condition defects for repair approach evaluations.

5.1.3 A Methodology to Define Defect Datasets

The challenge we tackle is to define a methodology to build defect datasets for evaluation of
automatic software repair aproaches. The methodology must fulfill the following require-
ments: a) the dataset includes inclusion criteria of defects, such as the target defect class;
b) for each included defect, the source code of the defective version is publicly available for
evaluation replication; c) the defects included are reproducible; d) optionally, it includes de-
fects reported in, for example, bug trackers or mail lists; these sources of information allow
us to better understand, for instance, the defect’s causes, their proposed repairs and their
priority.

We propose a methodology that has two inclusion criteria: one that defines criteria for
project selection (Section [5.1.3.1), and another that defines criteria for selecting defects (Sec-

tion|5.1.3.2).

5.1.3.1 Methodology for Choosing Projects

In this subsection we present a methodology to select a project to search defects. We enu-
merate the most important criteria that, for us, should be considered in the project selection.

5.1.3.1.1 Availability of project history Collecting defects from a project involves finding
versions that contain one or more defects. For that, it is necessary that a project has publicly
available either: a) a set of isolated versions of a program (e.g., v.1.1, v.1.2); or b) a version
control system (VCS) such as CVS, GIT or SVN that manages versions of a project through
its development and maintenance life-cycle.

5.1.3.1.2 Project features Larger projects, in terms of number of revisions and versions,
increase the probability to have a richer history and, by consequence, more defects to include
in the dataset.

5.1.3.1.3 Existence of correctness validation mechanism Each version of the project must
include, at least, one mechanism to automatically measure and validate its correctness ac-
cording to the program specification. Moreover, these mechanisms must cover at least the
most critical components. An example of a validation mechanism is a test suite. Repair ap-
proaches such as GenProg, PAR and SemFix [10] use test suites as a mechanism of validation
of their repairs.

5.1.3.1.4 Availability of reporting track system A project with publicly available issue
tracking system or mailing lists allows us to collect defects from there. For example, we will
able to query tracking systems to collect those issues labeled as “bug”.

87

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

5.1.3.1.5 Conventions, rules and best practices Coding rules or management of VCS con-
ventions used in projects help to increase the software quality. We focus on three conven-
tions: 1) the use of atomic commits to introduce new features or bug fixes; 2) the inclusion
of a description in the commit message log of the changes introduced by the commit; 3) the
inclusion of a link to the issue tracker in the message log when changes correspond to a
reported issue.

These three conventions will help us to filter commits that introduce bug fixes from the
version control systems in an accurate way.

5.1.3.1.6 Summary In this subsection we presented a methodology to select software
projects to be used in evaluations of software repair approaches. In the following subsec-
tion we present a methodology to collect defects from those projects.

5.1.3.2 Methodologies of Collecting Defects

The methodology collects defects of one target defect class such as if condition defects. A tech-
nique for collecting defects, used for example in [89], first searches commits that introduce
fixes; then, it searches for the versions just before those commits (without the fix changes)
that probably contain defects.

There are two methods to collect defects. One is to first navigate reports from issue
tracking system or a mailing list of a project to find defects, and then to obtain the versions
with those defects. The other way is to first collect from the VCS commits that include
defects, then, to analyze the associated issue reports. For that, it is necessary to link VCS
commits that fix bugs with the issue reports of those bugs. Proposed techniques such as the
one presented by Fischer et al. [46] can be used to automatically discover these links. Once
a commiit is linked to one issue report, a validation step determines whether the linked issue
is a bug or not. Antoniol et al. [48] study reports from issue tracker and obtain that less
than half of them were related to corrective maintenance (bug fixing). A risk of bias could
be present in the linkage heuristic used. For instance, Bird et al. [47] found that heuristics
based on mining explicit links could produce bias results. A reason is that developers can
omit bug references (the links) in the commit message log. Approaches such as Wu et al. [49]
have emerged to discover missing links. In case these approaches can be used to link and
collect more defects, the criteria behind the linking process should be clearly specified and
included in the dataset definition. In the context of automatic software repair, this bias could
affect the evaluation of the repairability of a given defect class. The repairability of reported
defects could be different (easier or harder) from those that were not reported in the issue
tracker.

Both methods for collecting defects are equally valid. In the following section we im-
plement the second method. We first collect VCS commits and then we analyze the issue
reports of linked bug fix commits.

5.1.4 Methodology Implementation

In this section we present an implementation of the methodology to build a sound dataset.
In the presented implementation we focus on collecting if condition defects.
The implementation has three steps:

88

5.1. Defining Defect Datasets for Evaluating Repair Approaches

1. Automatic filtering of if condition fixing commits;
2. Manual validation of the commit content; and
3. Validation of defect reproducibility.

The implementation combines an automatic and a manual processing. It starts by au-
tomatically mining defects from version control systems (VCS) (step 1). The advantage of
this processing is that it allows the automation of candidate defects search. Then, a manual
processing validates those candidate defects to remove noisy results (step 2) and validates
whether they are reproducible (step 3).

The implementation of this method defines defect dataset destined for evaluations of
repair approaches known as test suite-based program repair. This kind of repair approach uses
Unit test for validating the repair correctness. A program satisfies its specification if the test
suite passes all the test cases. Otherwise, the program contains a bug. Examples of those
kind approaches are GenProg [12], PAR [5], SemFix [10], PATCHIKA [2], AE [78], Debroy
and Wong [13]].

5.1.4.1 Automatic Filtering of If Condition Fixing Commits

The process is guided by one defect class. A defect class groups a family of defects that
have something in common [103]. In this work, we consider that defects of a particular class
share the same kinds of fixes. For example, a defect class groups defects fixed by modifying
assignments, another class groups those fixed by modifying if condition statements. In this
work we analyze the latter defect class.

The automatic process starts by selecting those commits that introduce:

1. atleast one source code change to fix an if condition defect;

2. code in test cases files to validate the introduced fix, for example, through JUnit asser-
tions; and

3. alink in the commit message log to the defect issue from the issue tracker.

For the first requirement, we use the abstract syntax three (AST) based technique pre-
sented in Section[3.4]to mine instances of change patterns in commits. The technique encodes
change patterns using a taxonomy of changes over an AST. To mine if condition defects, we
encode one change pattern: Update of if condition. The process mines instances of this pattern
in commits and it saves those commits that have at least one instance. In case one wants to
define a dataset of another defect class, it is necessary to encode the change pattern related to
that defect class. For example, to define a dataset of missing precondition for evaluate repair
approaches such as Nopol [104], we can encode a change pattern Addition of If condition as
we have done in Section

For the second requirement, the process checks if one commit introduces modifications in
one or more test case files. The process selects those files which name finishes in “Test.java”.
For the last requirement, the process searches for explicit issue report links in the commit
message log. For instance, to match those explicit links in Apache Commons Math project,
we use the following regular expression:

(M ATH|Math|math) — [0 — 9]+

89

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

If all those requirements are fulfilled for one commit, we call it “candidate commit” and
we consider it for a subsequence manual validation.

5.1.4.2 Manual Validation of Commits Content

Through a manual processing, a candidate commit is evaluated to determine whether it
introduces a fix or not. For example, it could introduce an improvement or a new feature. We
propose two validations. One is the analysis of linked issue report: we keep those commits
that are related to bug reports. The other is a validation at the source code level. The commit
diff can introduce:

1. one update of if condition; it corresponds to the fix.

2. one update of if condition (the fix) plus other changes not related to bug fixing such as
refactor changes.

3. if condition updates plus other changes where all of them are part of the same fix (We
call it a complex fix).

We keep those commits that only introduce fixes for if condition defects, that is, the first two
cases listed above.

5.1.4.3 Validation of Defect Reproducibility

Finally, we process each fix commit that passes the manual validation. First, we retrieve
the previous version to the fix commit. That version contains the defect. Then, we ver-
ify whether the defect is reproducible. This involves executing the retrieved version (e.g.,
through test suite) and to observe whether the defect is exposed (e.g., failing test cases).

5.1.5 Dataset of If Condition fixing Defects

In this section we present the dataset of if condition defect class using the methodology pre-
viously presented. The dataset is publicly available at http://goo.gl/AS1Yj9.

5.1.5.1 Target Projects

The dataset is formed by defects of Apache Commons Math?* and Apache Commons Lang?.
We select both since: a) they have a large history: for Math project more that 4700 commits
in 10 years of development; for Lang project, more that 3700 commits in 11 years; b) they
contain publicly issue trackers; c) the developers link commits with reports from the issue
tracker: Apache Commons Math and Lang use keywords “MATH-n" and “LANG-n", re-
spectively, where n is the issue number; and d) previous repair approaches such as PAR
include defects from these projects in their evaluation. We analyze the commits from the
5/12/2003 to 7/08/2013 for Math and from 19/07/2002 to 7/08/2013 for Lang.

90

http://goo.gl/AS1Yj9

5.1. Defining Defect Datasets for Evaluating Repair Approaches

Project Type-Priority Issue Tracker Identifier
Bug-Minor 238, 240, 243, 309, 644, 691, 722, 836
MATH Bug-Major 198, 273, 280, 288, 340, 780, 904
Bug-Critical 947
LANG Bug-Minor 428
Bug-Major 719,746

Table 5.1: Overview of our dataset of if condition defects. The bugs come from the Apache
Commons Math and Apache Commons Lang projects. The dataset has been carefully crafted
to minimize the biases.

5.1.5.2 Resulting Dataset

Table 5.1 shows the 19 if condition defects that form the dataset, grouped by the priority (mi-
nor, major, critical) specified in the associated bug reports. For Math project the automatic
process returns 41 candidates if condition fix commits. 28/41 were linked to their correspond-
ing reports from the issue tracker and validated as bugs. We discarded 12/41 defects. Those
were related to: improvement or new feature issues (4 of them), complex fixes i.e. bug lo-
cated in more than one statement (5), or not reproducible (3). We accept 16/41 defects. For
Lang project, the automatic process returns 18 candidate if condition fix commits. All of them
were related to issue reports. We accept 3/18 defects, the remaining were changes related to
improvement issues (4), complex fixes (9) and not reproducible bugs (2). Regarding with the
critically of the defects, our dataset contains the same number of major and minor defects (9
issues each category).

5.1.5.3 Advantages of Our If Condition Defect Dataset

Previous works have defined datasets for evaluating their repair approaches [12, 5, 2]. For
instance, the authors of PAR approach [5] define a dataset with 119 defects. If we compare
the dataset sizes, our dataset is smaller: it has 19 defects. However, in our opinion, our
defect dataset is more meaningful for evaluating automatic software repair approaches. Let
us explain why. As we present in this Section, our dataset is built with a clear definition: It
is a collection of defect of one particular defect class (if condition defects), exposed through
unit test execution. Contrary, PAR’s authors do not include a dataset build criterion. It
is not possible to determine neither: a) the defect classes of the included defect (and by
consequence, the abundance of each defect classes); b) the criteria for justifying the inclusion
of defects; nor c) the criteria for justifying the absence of defects.

On the contrary, using a well-defined dataset is possible to measure: a) the defect class
that a repair is able to fix; b) the proportion of repairable defects from a defect class; and c)
the defect class that the approach is not able to repair (i.e., the defect class of the unrepaired
defects from the dataset).

In our opinion, a clear-defined dataset but smaller than another without a clear definition
criterion, gives more conclusive results about a repair approach evaluation. For this reason,

*http:/ /commons.apache.org/proper/commons-math/
Zhttp:/ /commons.apache.org/proper/commons-lang /

91

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

we believe our dataset can be used for meaningful repair approaches evaluations.

5.1.5.4 Summary

In this section we presented a methodology to define defect dataset for automatic software
repair evaluations. Using the methodology, we defined a dataset with defects of the same
defect class: if condition defects. The dataset can be used to evaluate existing or future repair
approaches that target the if condition defects, making easier the comparison of evaluation
results. This dataset has the advantage that its definition is not influenced by any decision
that could favor a particular repair approach. Moreover, it does not analyze what kinds of
fine-grained changes are involved in an if condition update. For example, an if condition up-
date could correspond to a relational operator change (the mutation-based approach targets
it) or to the addition of a new term in the if expression (PAR [5] targets it). This decision avoids
having bias to a particular kind of bug fix change in if condition fixing and, by consequence,
it avoids favoring a particular repair approach. Finally, we implemented the methodology
to build datasets that target other defect classes. For example, we could define a dataset of
missing method invocation defects to evaluate PATCHIKA [2].

5.2 A Repair Framework for Fixing If Condition Defects

In section[5.I|we present a methodology to define evaluation dataset. Now, in this section we
aim at presenting a method to evaluate the performance of repair approaches. The combina-
tion of both methodologies allows us to design automatic repair approach evaluations with
controlled bias. In particular, we focus on the repairability of one particular defect class:
if condition defects. Empirical studies over software repositories [9} [11] show that changes
in if condition are some of the most frequent changes done by developers to repair defects.
Our motivation is to know whether major and recent automatic repair techniques are able
to synthesize fixes for these defects. For this purpose, in Section [5.2.1) we first introduce the
if condition defect class. Then, we analyze state-of-the-art repair approaches that, in theory,
target to if condition defect class. In Section[5.2.2] we present a unified repair framework used
to replicate those approaches for measuring the repairability of if condition defects.

5.2.1 Repair Approaches that Target If Condition Defects

The goal of this section is to determine whether three repair approaches from the literature
are able, at least in theory, to repair if condition defects. In this section, we first introduce the
if condition defect class (Section [5.2.1.1). Then, we present a typical design of search-based
repair approaches, shared by the repair approaches under consideration (Section[5.2.1.2). Fi-
nally, we justify why the selected repair approaches target if condition defects (Section[5.2.1.3).

5.2.1.1 Defining If Condition Defect Class

The if conditions defect class characterizes those defects that can be fixed modifying an if con-
dition expression. This class encompasses a diversity of kinds for source code changes. For
example, the update of one relational operator for > to >=; the addition of a new term with
a logical operator for if(a > b) to if((a > b) && (¢ < f)); or the removal of one arithmetic
operator and one constant for if(a > (b+c+d))toif(a > (b+c)).

92

5.2. A Repair Framework for Fixing If Condition Defects

5.2.1.2 Design of Repair Approaches

The search of valid repairs is a kind of search-based software engineering. The repair search
space is a set of candidate program fixes. To find a solution, i.e., a repair, an approach nav-
igates the repair search space. The navigation involves selecting one candidate repair and
then to determine whether it is valid or not. Weimer et al. call this kind of repair approach
design Generate and Validate [78].

From previous approaches we identify a repair space as the product of two spaces. One
is the fault localization space. It contains those source code elements (classes, methods, state-
ments, etc.) that are suspicious to contain a bug. The other, the fix synthesis space, contains
all possible candidate repairs for a given suspicious statement. Each of those spaces can be
navigated on different way, for example, randomly or in a defined order.

Once a candidate repair is selected from the repair space, repair approaches determine
whether a candidate repair is valid or not. For this, repair approaches need automatic cor-
rectness oracles, which automatically verify whether a program is valid with respect to its
specification. The specification defines the target behavior of the program. GenProg uses test
suite as oracle of program correctness, i.e. as a proxy to the program specification. We call
this kind of approaches test suite-based program repair. If the repaired program passes all test
cases from the test suite, it means the program satisfies the program specification encoded
in the test cases.

5.2.1.3 Analyzing State-of-the-Art Repair Approaches

In the previous subsection, we present the basic design of repair approaches that follows
two paradigms: Generate and validate and Test suite-based program repair. In this section we
select three major and recent automatic repair techniques from the literature: GenProg [12],
PAR [5] and the mutation-based repair approach from Debroy and Wong [13]. The three of
them follow the mentioned two paradigms. In the remaining of this thesis, we use these
approaches to carry out our experiments. As we aim at analyzing the repairability of if
condition defects, in this subsection we analyze whether they are able to repair this defect
class.

5.2.1.3.1 GenProg GenProg applies evolutionary computation to evolve a failing version
of a program, i.e., with one defect, to a version without the defect. It evolves the program
applying three kinds of operators: inserting, replacing, and removing source code. The
approach relies on the presence of software redundancy: it assumes that the fix probably
exists somewhere in the program. For that reason, GenProg takes the code to insert from
elsewhere in the application, and never synthesizes fixes that introduce new code.

As GenProg does not explicitly target to defect classes, it is not possible to predict in
advance whether GenProg can fix a given defect class or not. Let us suppose a defect is in
conditional statement i f(a > b), and it can be repaired by changing the relational operator
for > to >=. GenProg could synthesize this repair if a boolean expression (¢ >= b) exists
somewhere in the program. As consequence, it is not possible to predict the repairability
of this defect without analyze the remaining code of the program. The operators defined
by GenProg give us the suspicion that it is capable of repairing if condition statements. For
example, GenProg can create a candidate repair by replacing one suspicious if expression
(or one of its sub-terms) by a term taken from another if condition located in the program.

93

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

From an analytical point of view, GenProg is able to fix some if condition defects, but not all
of them.

5.2.1.3.2 PAR The second approach analyzed in this work is PAR [5]. In contrast to
GenProg, the repair operators of PAR correspond to bug fix templates derived from bug
fix patterns. We found two of ten templates are able to fix if condition defect. They are:
1) Expression replace for an if condition; 2) Expression added and removed: it inserts or
removes a term of the if predicate. For example, the Expression remover template modifies a
if condition expression for if(a > b && ¢ < d) to if(a > b). PAR also relies on the software
redundancy assumption: the expression involved in addition and replacement operators are
collected in the same scope of the if condition defect location.

5.2.1.3.3 Debroy et al.’s mutation-based repair approach The last repair approach is
proposed by Debroy and Wong [13} 105], and is derived from the mutation testing field.
For a buggy version of one program the approach generates mutants of that program by
applying mutation operators. They apply mutation operators defined in the literature of
mutation testing. They define eight categories of mutation operators, five of them can be
applied in if condition expressions. These operators involve the replacement of: a) Op1: basic
arithmetic operator for another of the same class; b) Op2: Relational operator; c) Op3: Logical
operator; d) Op4: boolean value; e) Op8: Decision negation. The approach is not based on
evolutionary computation as GenProg or PAR. All first-order mutants (that is, program with
exact one operator applied) are generated at once. Then, the approach evaluates them (all or
a sub-set of them) one by one to find a valid mutants.

5.2.14 Summary

In this section we presented a study of the repair operations with three approaches that
all of them are able, at least in theory, to synthesize repairs for if condition defects. In the
remaining of this paper we set up an experiment to verify whether those approaches are able
to repair real defects from this class. In the following Section we present a repair framework
to replicate those approaches.

5.2.2 A Repair Framework to Replicate Repair Approaches

In this section we define a unified repair framework (URF) that allows us to implement the
behavior of the three repair approaches presented in Section[5.2.1.3|

Those repair approaches have different variabilities besides the repair operator each uses.
The most important are:

1. fault localization used to detect suspicious source code component such as statements
or methods;

2. the order these suspicious components are considered to apply a candidate fix;
3. the way a candidate fix is validated.

UREF enables us to remove those free variables in the evaluation experiments. By remov-
ing free variables, our experiment focuses on the measurement of the strength of the pure

94

5.2. A Repair Framework for Fixing If Condition Defects

repair operators. For example, using different fault localization techniques is such a free
variable. Qi et al. [106] have shown that the performance of an automatic repair approach
varies according to the fault localization technique. Within UREF, the use of the same fault
localization technique removes the disparity between the different repair approaches under
study.

Extending the framework, we implement GenProg, PAR and Debroy et al. approaches to
repair Java programs. The main reasons for re-implementing them are: PAR and Debroy et
al.’s approaches are not publicly available; and GenProg repairs C code and not Java. URF
simplifies the implementation of these repair approaches. Most of the framework’s com-
ponents are shared between the three implementations. For example, the three approaches
have the same implementation of fault localization and repair validation phases.

5.2.2.1 Unified Repair Framework Design

The unified framework is a generic search-based framework for repair and is composed of
three phases.

5.2.2.1.1 Fault localization phase This phase defines a fault localization space formed by
suspicious statements (statements suspected to contain a bug). Fault localization techniques
compute a suspiciousness value for each statement in the program. Then, they use the calcu-
lated suspicious values to create a ranking of suspicious statements. The goal of this phase
is twofold: to reduce first the search space size and second the time to navigate it.

The three approaches use fault localization techniques based on spectrum analysis. Spec-
trum based fault localization approaches execute test cases of a program and trace the soft-
ware components (e.g., methods, lines) visited by those tests. The techniques use formulas
to calculate the suspicious value of each component. These formulas usually take as input
the collected traces and the test results. The suspicious value goes for 0 (low probability
that the statement contains a bug) to 1 (high probability). GenProg and PAR use a formula
presented by Weimer et al. in [12], while Debroy et al.’s work uses the Tarantula formula
[82]. As the inputs (program code and the test suite) and output (suspicious statement list)
of these formulas do not differ, these repair approaches could change the fault localization
technique by another. Our framework uses the Ochiai formula [107] in the implementation
of the three approaches.

The navigation of a fault localization space means to pick one suspicious statement from
the space. This selected statement is modified according to the repair operators defined by
an approach. Repair approaches apply different navigation strategies. For example, the
space can be navigated: a) in order, for the most suspicious statement to the lowest; b) uni-
formly randomly: elements are uniform randomly selected; c) weighted randomly strategy:
the probability to select a suspicious statement is proportional to its suspicious value. Our
framework implements the weighted random strategy for the three approaches.

As we have mentioned, the same fault localization technique and navigation strategy for
the implementations of the three repair approaches allows us to reduce the disparity of this
phase. With our framework we unify these two free experimental variables across the three
repair approach implementations.

95

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

5.2.2.1.2 Repair synthesis phase This phase receives one suspicious statement from the
previous phase and returns a candidate repair, i.e., a patched program, to be evaluated. In
this phase, the implementation of each approach defines the particular behavior to synthe-
size a candidate repair. For example, the synthesize phase of the mutation-based approach
returns, given a suspicious if condition expression, a candidate repair that consists on the
modification of one operator for the conditional expression. In Section we discuss
these particularities.

5.2.2.1.3 Repair validation The goal of this phase is to determine whether a candidate
repair, generated in the previous phase, is valid or not. For that, the phase executes the test
suite of a program. For sake of performance, the phase does two steps. First, it executes
the originally failing test cases over the modified program. If these test cases now pass
successfully, meaning that the bug is fixed, a regression test is executed to verify whether the
candidate repair breaks the remaining functionalities. The regression test involves executing
all test cases from the test suite. If none of them fails, the candidate repair is considered
valid. If at least one test fails during the validation phase, the candidate repair is not valid
and it is discarded.

The framework uses the same implementation of the phase for the three approaches.
This phases define extension points to, for instance, integrate test case prioritization tech-
niques [108] to reduce the time to execute regression validations. For instance, Ledru et al.
[109, 110] present a test case prioritization technique based on string distances. The tech-
nique assigns high priority to a test case which is most different compared to those already
prioritised. It relies on the information present in the test suite, so, it does not need test ex-
ecution. Contrary, Qi et al. [81] present a prioritization technique applied in an automatic
program repair approach. The technique extracts information from the repair process. It
assists the patch validation process by improving the rate of invalid-patch detection in the
context of automated program repair.

5.2.2.2 Specific Implementation Decisions

In this section we enumerate the decisions taken to implement GenProg, PAR and the
mutation-based repair approach. They are essential to implement the approaches. Some
decisions aim at clarifying those hidden or ambiguous issues in the original publications.
We extend the repair synthesis phase of our framework (see Section to encode the
behavior of an approach. These implementations focus on repairing if condition defects. The
section can be skipped if the implementation details are not relevant for the reader.

5.2.2.2.1 GenProg In GenProg the repair synthesis space is the product of two spaces:
operators kind space and fix ingredient space. GenProg applies three kinds of operators: insert,
remove and replace. Our implementation of GenProg applies one operator (replace) over if
condition statements. This operator replaces a suspicious if condition (or a randomly selected
sub-term from it) by another already written in the program.

We do not consider the remaining two operators (insert, remove) in our implementation.
They are not relevant for the defect class under consideration. Both require defining addi-
tional assumptions beyond those originally proposed in GenProg. For instance, inserting
one predicate in an existing if condition involves determining: the place to insert, and one

96

5.2. A Repair Framework for Fixing If Condition Defects

logical operator (AND, OR) as well. We exclude those repair operators to avoid including
particular assumptions that alter the essence of the approach inside its implementation.

The fix ingredient space [12] contains all eligible statements for replace operator. For this
defect class, these statements are conditional expressions. A local scope strategy includes
statements from the class where the code is replaced, while global scope strategy includes
statements from everywhere in the program. According to the literature, GenProg applies a
global strategy: "A statement is chosen uniformly at random from anywhere in the program"
[99) p.5]. However, as we show in Section [4.2.2) the local strategy allows repair approaches
decreasing the search space, without neglecting “repair success potential”. Consequently,
we apply a local strategy. The fix ingredient space is formed by all predicates taken from
if condition and loops statements located in the same class. Additionally, we add to the fix
ingredient space all sub-terms included in conditional expression. For instance, given the
existing i f((a > 0) || (b == null)), the fix ingredient contains: the mentioned expression and
two more terms: (a > 0) and (b == null).

To navigate the fix ingredient space, we apply a uniform random strategy: each element
from this search space has the same probability to be selected.

As difference from GenProg, where its search algorithm is based on genetic program-
ming, our implementation of GenProg is based on randomly search algorithms. That means,
we randomly navigate the fault localization space to pick a suspicious statement, and the fix
ingredient space to pick a candidate repair. Our decision is based in recent research [76] that
shows the strength of GenProg is not due to the guidance of genetic programming, but relies
on the strength of its operators.

5.2.2.2.2 PAR The repair synthesis space of PAR is also the product of two spaces: operator
kind space and fix ingredient space. As we presented in Section PAR defines two bug fix
templates related to if condition statements that define the operators kind space: a) Expression
replace for an if condition; and b) Expression added and removed: it inserts or removes a term
of the if condition. To implement PAR we make the following assumptions.

We define the PAR’s fix ingredient space as we do with GenProg. We have implemented
the strategy to navigate this space in a different manner from PAR’s paper. PAR’s authors
state the following strategy: "Same scope of the given fault location, sorted according to
the distance". Instead, we extend PAR’s strategy: We do a weighted random choice of a fix
ingredient, where the weight is inversely proportional to the distance d (in number of lines)
between the fix ingredient and the buggy statement.

The second PAR'’s fix template we consider in this work describes modifications in exist-
ing conditional statements. Let us first focus on the addition of terms and secondly in the
removal.

To implement the “Expression Added” template we consider two assumptions. PAR’s
work does not specify both assumptions. Without them, it is not possible to implement
those templates. The first one is the place where the new clause is inserted. The PAR paper
does not discuss this point. The insertion can be placed: a) at the beginning of the if condition
expression, e.g. given the predicate i f (b == null), adding the term c at the beginning results
in if((c) && (b == null)); or b) at the end, resulting if((b == null) && (c)). The frame-
work randomly chooses between both alternatives. The second assumption is the logical
operator added to connect the new term with existing if condition. In the previous example
we consider the insertion of the logical operator AND (&&). However, it could be used an-

97

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

other operator instead such as OR (||). PAR neither discusses this point. In particular, our
framework randomly chooses one logical operator among a) and; b) or.

Regarding with the removal of a term, PAR randomly selects a term to remove. Our
framework randomly removes one of the two terms related to a logical operator.

5.2.2.2.3 Debroy et al.’s mutation-based approach The framework defines a repair syn-
thesis space (formed by mutants) by applying first-order mutation operators in one suspi-
cious if condition statement. A first-order operator applies only one change in a statement.
The synthesis space size depends on the number and the kinds of operators present in the
statement. For example, given the suspicious if if(a > b) the approach considers 6 candi-
dates fix: one corresponding to the negation of the condition !(a > b), the 5 remaining the re-
placement of the operator by another compatible operator such as >= or <. The framework
applies three kinds of mutation operators: Relational, Logical and Unary. They correspond
to operators OP2, OP3 and OPS8 defined in Debroy et al. (see Section[5.2.1.3). For Relational
category the operators are six: >, >=, <,=<, ==, and <>; for Logical are two: OR, AND,
and for Unary are two: negation and positivation (remove a negation operator). Finally, the
framework randomly selects one mutant to be validated.

5.2.3 Summary

In this section we presented a framework to replicate three state-of-the art repair approaches.
In the next following section present an experiment where we validate our evaluation
methodology. We use the unified repair framework to repair defect from our if condition
defect dataset presented in Section[5.1.5|

5.3 Empirical Evaluation Results of Repair Approaches Fixing If
Condition Defects

In this section, we present an experiment to evaluate the ability of repairing if condition de-
fects using the three repair approaches presented in Section[5.2.1] We implement those ap-
proaches with our repair framework presented in Section[5.2] This experiment allows us to
concretely instantiate our evaluation methodology in order to validate it.

The motivation of this evaluation is twofold. First, we aim at identifying which approach
is better i.e., repairs more defects for the defect class under consideration. We conduct the
experiment by taking care of reducing the possible biases in the evaluation process. Second,
we aim at obtaining the number of solutions that a repair search space is able to provide.
To accomplish these goals, in Section we present a set of measures. In Section we
present the research questions that guide our experiment. Then, in Section we present
the evaluation protocol, and finally in Sectionwe present the results of the evaluation.

5.3.1 Measures

In this section we present the measures we consider in the evaluation of repair approaches:
Repair diversity, Search Space Fertility, Failing test effort and Regression effort. The two first
measures are related to the measurement of repair capability of an approach, while the last
two are related to the repair time measurement.

98

5.3. Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects

Repair diversity: We define it as the number of different repairs generated by one approach
in the experiment. Two repairs are different if they are composed of different: a) variables
and constants, or b) number of access to those variables, or ¢) kind and number of unary and
binary operators.

Search Space Fertility: We define fertility of a search space as the proportion of their elements
that are solution. In a high fertile space the majority of elements are solutions. Measuring
fertility could be time demanding: one must navigate all the search space to know whether
an element is a solution or not. In this work, we search for alternative measures to obtain
an approximation for fertility. We propose one that measures the ease to find a solution in a
repair space of one approach. In a high fertile space, solutions easily and rapidly blossom.
On contrary, in a low fertile space, the navigation of the space is rough, and solutions are
difficult to find. We measure the fertility of a repair space as the number of distinct repairs
found by one trial.

Validation Effort: The validation of candidate repairs through the execution of test cases
is the most time consuming phase in the automatic repair process [78]. For example, let us
consider the version of Math project that contains defect #280, included in our dataset. The
386 Java classes of the version are compiled in 9 seconds using Ant tool. Then, the failing
test case is executed in 0.051 seconds.?® Finally, we execute the regression test, i.e. all the
cases from the test suite, in 2.55 minutes. The regression validation takes much more time
than the compilation and failing case validation steps. As the execution of validation is an
expensive phase, in this experiment we measure the effort to find a repair in terms of the
number of times a validation process is executed before to find a repair.

We define two kinds of effort, one for each validation step defined in[5.2.2.1.3} Failing test
effort and Regression effort.

Failing test effort measures the effort to find a candidate repair that passes all the failing
test cases (those that initially fail due to the defect presence). This effort is measured in
terms of number of times the failing test cases validation step is executed. Let us exemplify
this measure: a repair approach tries to repair a defect by first applying a candidate repair p;
at location /. The modified version of a program is validated (through the failing test cases).
If the candidate repair is valid i.e., solves the defect, the effort is one: it executes one time the
validation phase. Otherwise, the approach continues by applying a new candidate repair
p2 at [. If the modified version is valid the effort to find repair ps is two due it executes two
times validation phase: one to validate repair p;, the remaining to validate ps.

Regression effort is similar to the previous measure. It measures the number of times the
regression validation is executed before to find a repair. For instance, Regression effort of two
means that regression phase was executed two times. In the first execution the phase fails
(at least one test case fails), in the second execution, the regression is successful (all the test
cases pass).

Both validation effort measures are similar to NCP, presented by Qi et al. [106]. It mea-
sures the number of candidate repairs generated before a valid repair is found in the repair
process. NCP measure includes candidate repairs that do not pass: failing test cases valida-
tion phase, or the regression validation phase. That means, their measure does not distin-
guish candidate repairs that fail the failing test cases validation phase from those that fail the
regression phase. However, as we previously have shown, the execution times of those phases

*Experiment done in PC, OS: Windows 7, CPU: Intel i7, RAM: 4gb

99

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

have different magnitudes. We consider that is a disadvantage to gather in a same measure
different kinds of validation phase. As consequence, we propose a measure for each phase:
Failing test effort and Regression effort.

5.3.2 Evaluation Goals

The experiment is guided by the following research questions:

RQ 1: How many defects from our dataset each repair approach is able to fix?

We aim at knowing whether each of the evaluated repair approaches is able to fix if
condition defects, and which of them is better repairing this defect class. Previously, nobody
has studied the difficulty to fix if condition defects. The response will let us know whether the
evaluated approaches target if condition defects and, by consequence, whether it is necessary
to improve or propose new paradigms to increase the repairability of this defect class.

RQ 2: How many different repairs are found by each approach?

Through this question, we aim at knowing whether an approach is able to synthesize
more than one repair for a given defect. In this case, software developers are able to choose
the fix that, from their criteria, is more suitable to integrate into the program under repair.
Moreover, as the evaluated approaches use test suites to validate candidate fixes, a high
number of solutions could mean the test suite does not have enough quality to distinguish a
valid candidate repair from a invalid candidate.

RQ 3: How fertile is the search space of an approach?

In addition to the number of solutions an approach is able to discover from a repair space
(previous research question), we aim at knowing the ease to find them. It could be the case
that an approach can find one repair for a defect faster than another repair for the same
defect.

RQ 4: Which approach requires less validation effort to find a repair?

Through this research question we aim at knowing which approach repairs faster. Re-
pairing faster involves saving computational resources and to be able to deploy a repair
faster into a defective program.

RQ 5: What do generated patches look like?

We aim at knowing what are the syntactic changes done to fix if conditional defects. The
response could allow the research community to focus on defining new repair operators that
are capable of synthesizing those changes.

5.3.3 Evaluation Protocol

We use the unified repair framework presented in Section [5.2.2.1]to evaluate three automatic
repair techniques: GenProg, PAR and the mutation-based by Debroy et al. We encode the
particularities of each approach using the extension points that our framework offers as we
described in Section

We call a trial the execution of a technique to repair a given defect. A trial executes n it-
erations, where each iteration consists in: 4) selecting one suspicious statement (see ;
b) applying a candidate repair on it (see[5.2.2.2), c) compiling the repaired application; and,
d) if it compiles, validating the candidate repair applying the two validation phases (see

100

5.3. Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects

[5.2.2.1.3). Our experiment consists in the execution of ¢ trials for each tuple repair technique-
defect. We have maximum values on the number of trials and iterations. In particular, we
execute 100 trials with 50 iterations each.

We evaluate the repair technique over defects from the dataset defined in Section [5.1.5]
Our framework generated candidate repairs for 17 out of 19 defects. For the two remaining
defects, #904 and #947, both from Math project, the framework could not retrieve the list
of suspicious statement due to limitations of the fault localization tool it uses. For instance,
the fault localization tool does not produce an output when a bug such as #904 produces an
infinite loop.

5.3.4 Evaluation Results

Table 5.2/ shows a summary of repairs found by defect and repair approach. Let us describe
the table. Column Defect includes the identifiers of issues repaired by at least one approach
implemented in our framework. The unrepairable issues are not present in this table. Col-
umn Method includes the name of the three repair approaches evaluated in this experiment.
Column Repair diversity includes the total number of different patches generated by each
approach in all the trial executed. A higher value is better. Column Repair/trial include the
median and average number of repairs found per trial. Column Validation effort contains the
median number of times the two validation phases (failing test and Regression sub-columns)
are executed (see measures in Section[5.3.1) A lower value is better. Now, let us respond the
research questions from the evaluation results.

5.3.4.1 RQ 1: How many defects from our dataset each repair approach is able to fix?

We summarize the number of different repairs generated by each approach in all the trial
executed. The existing approaches could find repairs for 4 of 17 defects: #280, #288, #309,
#340 from Math project, and #428 from Lang. PAR could repair the 5 mentioned defects,
obtaining a repair efficacy of 29% (5/17) over the evaluated defects. GenProg could repair
4/17 (23%) and Debroy et al. repaired 3/17 (17%). The rest of the defects (12/17) of that
dataset, that represent the same defect class, remain unrepaired. As we have seen before, in
theory, the three approaches are able to repair defect from if condition defect class. However,
in practice, the result of this experiment shows that the repairability of this defect class using
these approaches is low: 5/17 (29%).

5.3.4.2 RQ 2: How many different repairs are found by each approach?

From column Repair Diversity of Table 5.2l we can answer this question: PAR generates 42
different repairs (32, 3, 3, 1 and 3 repairs for defects #280, #288, #309, #340 and #428,
respectively); GenProg 15 (10, 0, 1, 1 and 3, repairs respectively); the Debroy et al. 4 (1, 2, 1,
0 and O repairs respectively).

PAR generates more different repairs for the 5 defects. Surprisingly, PAR and GenProg
generate a considerable number of repairs for defect #280 (32 and 10, respectively). For
example, a trial of GenProg found 5 repairs of this defect: three fix the defect replacing the
if condition expression by another that uses different variables than the buggy version. We
suspect the abundance of repairs could be related to the quality of the test suite. A low
quality test suite could eventually consider a candidate repair as valid when it is not. This

101

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

Repairs/trial Validation effort median)
Defect | Method Distinct Median Avg Failing Regression
repairs test
#280 GenProg 10 5 49 4 1
#280 Debroy etal. | 1 1 0.98 20 1
#280 PAR 32 2 1.87 11 1
#288 GenProg 0 - - - -
#288 Debroy etal. | 2 1 1.33 19 1
#288 PAR 3 0 0.23 7 1
#309 GenProg 1 1 091 3 1
#309 Debroy etal. | 1 1 0.92 2 1
#309 PAR 3 0 0.45 3 1
#340 GenProg 1 0 0.07 6 1
#340 Debroy etal. | 0 - - - -
#340 PAR 1 1 0.98 3 1
#428 GenProg 3 1 0.82 1 1
#428 Debroy etal. | 0 - - - -
#428 PAR 3 0 0.16 1 1

Table 5.2: Summary of repairs generated for each approach. Higher “distinct repairs” and
“Median and Avg Repairs/trial” are better. Lower validation effort is better. According
to this dataset and evaluation protocol, there is no clearly better approach for repairing if
conditional defects.

result triggers new challenges for our short-term research, such as researching about, for
instance, alternative ways to measure the correctness of repairs or the quality of test cases.

5.3.4.3 RQ 3: How fertile is the search space of an approach?

As we mention in Section[5.3.1 we measure the space fertility as the ease to find a solution in
the repair space of one approach. We measure the fertility of a repair space as the number of
distinct repairs found by a trial. Columns Median repairs/trial and Avg repairs/trial show the
median and average number of distinct repairs found by a trial, respectively. We could not
determine a tendency from the results. Depending on the defect analyzed, the approach that
finds more fixes per trial is different: for defect #288 is Debroy et al., for #428 is GenProg
and for #340 is PAR. For example, let us consider defect #340, where PAR and GenProg
both generate one repair. On the one hand, PAR finds the repair in almost all trials (Avg
0.98). On the other hand, GenProg rarely finds the repair in one trial (Avg 0.07). That means
that, for that issue, the search space of GenProg is less fertile.

In our opinion, both repair diversity and fertility (i.e. Avg repairs/trial) measures are use-
ful in the comparison of the approaches repairability. When diversity value is similar to fer-
tility means the navigation of the space is straightforward and repetitive. Each trial produces

102

5.3. Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects

the same result (eventually they differ on the iteration that find a solution). When diversity is
much greater than fertility means the navigation of the space is more unpredictable: the trials
return different results. In this case, the final number of solutions found depends on the ex-
periment configuration parameters such as the number of trials and iterations. As the result of
trials is different, adding more trials in the experiment could eventually bring undiscovered
solutions. As consequence, when researches compare two approaches, through experiments
with those limitations, both metrics could be an indicator that the comparison is not fair.

5.3.4.4 RQ 4: Which approach requires less validation effort to find a repair?

Table[5.2)shows the validation effort done by each approach to repair defects. Column Valida-
tion effort presents two sub-columns Failing test and Regression that show the median number
of times that the validation of failing test case and regression validations are executed before
to find a repair, respectively.

We observe that, for defect #280 and #288, GenProg and PAR require less failing test
validation effort to find a repair than Debroy et al., while the effort to repair defect #309 is
almost the same (median 2 for Debroy et al. against 3 for the two remaining). Remember
that less validation effort means less time to find a repair. However, it is not possible to
determine the best between GenProg and PAR: for defects #309 and #428 the effort is the
same, for #280 GenProg requires less, while for #288 PAR fixes it but GenProg does not.

Regarding with the regression validation effort, Table [5.2| shows that the median effort is
always 1. We found that, for the 5 repaired defects, each time a candidate repair passes the
failing test cases, then it passes the regression test. We observe that for each of the 61 patches
found in the experiment (See Column Repair Diversity in Table 5.2). However, this situation
does not happen for unrepairable defect. For defect #691 from our dataset, GenProg found
a modification (a candidate repair) that produced the failing test cases pass. Then, the can-
didate repair could not pass the regression validation: there were test cases that fail with the
modification. The candidate repair breaks functionality, as consequence, it is not considered
solution for the defect (and that why it does not appear in Table[5.2).

Splitting the validation effort analysis in two measures allows us better understanding
the validation of candidate repairs. Once a candidate patch passes the failing test phase, it
would high probability passes also the regression and, by consequence, the candidate patch
becomes a solution. This result implies that, by only executing one test case (the failing), one
can estimate with high confidence whether a candidate patch is a solution for a bug or not.

5.3.4.5 RQ 5: What do generated patches look like?

In this section we analyze what patches generated by the evaluated repair approaches look
like. We syntactically compare each if condition with the defect and it fixed version.

Table[5.3|presents changes that the generated patches introduce (rows), and the evaluated
repair approaches (columns). Each cell (at column 7, row j) contains the issues that were
fixed by approach of column i through a patch that introduces changes described in row j.
For example, issue #340 is fixed by both GenProg and PAR by removing a term in the buggy
if condition.

From the first two rows of the table we observe two kinds of changes over binary oper-
ators: one change the relational operator >= to >, another from < to =<. The remaining
rows group if condition repairs that: a) replace the entire if condition or b) add/remove terms

103

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

in an existing if condition. The code corresponding to the fix can introduce new variables, ex-
isting variables or combination of both. For instance, given a buggy expression i.length() the
fixed version i != null && i.length() introduces an existing variable in the expression (i). On
contrary, given a buggy expression i.length() the fixed version j.isBoolean() && i.length()
introduces a new variable in the expression (j). Moreover, some rows are divided according
to: a) the connector class c used to join an added term with the existing (and bug) expres-
sion (i.e. “AND”, “OR”) and b) the positions p where the added term is located (“before” or
“after” the existing expression). For example, giving the buggy expression i.length() the fix
i'= null && i.length() adds a new term (i != null) “before” the existing expression and it
uses the “AND” (&&) logical operator.

The kind of change corresponds to the syntactic diff between the buggy if condition and
the fixed version of this if condition. We recall it does not correspond to the repair operation that
an approach applies to synthesize a candidate fix. For instance, for defect #280, GenProg
and PAR synthesize the fix by replacing the whole buggy if condition (fa * fb) >= 0.0 by
another condition in the scope (fa * fb) > 0.0. The syntactic difference between both is the
relational operator in the if condition expression. As result, this repair is classified as “Replace
relational operator < to <=", first row in Table .

The result shows that there are issues such as #280 or #288 that can be fixed in different
manners. For example, PAR generated two patches for issue #280 which add a term with
new variables in the if condition: one adding at the beginning of the if condition joined by an
AND relational operator, the other at the end of the if condition. For issue #288, the result
shows that the issue is fixed with two different patches: one changes a relational operator
from >= to > while the other changes from <to <=. The particularity of both patches is that
affect two different locations in the faulty program i.e. two different if condition. This result
shows us that it is possible to apply different valid patches over the same if condition or over
different producing different syntactic programs. All of those programs contain the same
behavior according to the program specification i.e., the test suite.

The analysis of the kind of bug has many applications. One is the definition of opti-
mization strategies such as we presented in Section A repair approach could learn from
successfully synthesized repairs to improve the bug repairability. Another application could
be the definition of studies that compare human fixes and automatically synthesized repairs.
These studies could focus on, for instance, how developers reason during bug fixing activity,
or how different are synthesized fixes from humans fixes.

5.3.5 Summary

The results of the empirical evaluation show that: a) the three approaches are capable to fix
at least one defect from our dataset i.e., if condition defects; b) PAR fixes more defects from
the dataset followed by GenProg; and c¢) GenProg and PAR require similar validation efforts
to repair defects, Debroy et al. requires more validation effort than the two former. This
means, GenProg and PAR repair faster the defect from our dataset.

In our opinion, this evaluation present several advantages compared with previous ones.
First, the defect dataset used in the evaluation was built from a detailed methodology which
aims at reducing biased defect dataset. Secondly, we introduce new measures to better un-
derstand the performance of automatic software repair approaches.

104

5.4. Conclusion

5.4 Conclusion

In this chapter we presented an evaluation of three state-of-the-art repair approaches. The
challenge was to measure the repairability of repair approaches in a meaningful and unbi-
ased manner. For that, we first defined a methodology to define evaluation datasets with a
well-defined inclusion criterion. Using the methodology, we defined a dataset with 19 if con-
dition defects from two open-source projects. Then, we defined a framework to replicate the
selected repair approaches. Both the dataset and the framework are devised in order to min-
imize the risk of bias. Using this framework we could repair 5 out of 17 if condition defects
from our dataset. From the results, we can conclude that the three evaluated approaches
have a low repair efficacy repairing if condition defect class.

We conclude with some of the learned lessons in this chapter. We learned that it is possi-
ble to define a dataset for evaluations of repair approaches without taking in account partic-
ular features of the approaches under evaluation (that could affect the dataset creation). We
learned the replication of repair approach involves clarifying assumptions about the hidden
decisions each approach presents. We also know the features of search spaces differ between
approaches: there are variations in their size and fertility. Finally, we learned that evalua-
tion that compares repair approaches should take in account these features to not produce
unbiased results.

105

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

g
& i £
Kind of change 3 & =
Replace relational operator >= to > #280 | #280| #280
#288
Replace relational operator < to <= #309 | - #288
#309
Replacement expression with new variables #280 | #280| -
Replacement expression with new and existing #280 | #288| -
variables #428 | #428
Replacement expression with existing variables - #288 | -
#309
Add term with new variables to the expression | c: AND, p: After | - #280 | -
c: AND, p: Before | - #280| -
Add term with old variables to the expression c: AND, p:Before | - #280 | -
c: AND, p: After - #280| -
c: OR, p: Before - #309| -
c: OR, p: After - #309 | -
Add term with new and old variables to the ex- | c: OR, p: Before - #280| -
pression #288
c: OR, p: After #428 | #280| -
#288
#428
Remove term in expression #340 | #340| -

Table 5.3: Kind of changes in if conditional involved by each patch. The rows are the
syntactic change done to fix a bug, the columns are the evaluated repair approaches. A cell
contains the issues resolved by each approach. Some of them are divided according to the
connector c used to joint a term with a variable (i.e. “AND”, “OR”), and the position p where
the new term is located (“before” or “after” the existing expression.).

106

Chapter

Conclusion and Perspectives

This thesis concludes with a summary of the presented work and a discussion of future
work.

6.1 Summary

Bug fixing is an activity for removing defects in software programs. An example of bug fix is
the addition of an if precondition to check whether a variable is not null before accessing to it.
Historically, bug fixing is done by software developers. Human fixing is a time consuming
task for developers. To fix a bug, they have to reproduce the bug, study the symptoms,
search for a candidate repair and finally validate it.

To decrease the time of bug fixing (and the related economic cost), several automatic
software repair approaches have emerged to automatically synthesize bug fixes [12, 77, 5,
4,176/ 169, [78]. The proposed automatic repair approaches are evaluated by measuring the
efficacy of repairing a set of defects. That means, given a defect dataset, the evaluation
measures how many defects of the dataset an approach is able to repair. Unfortunately, bug
fixing could be even difficult and expensive for automatic program repair approaches. The
evaluations from the literature show that repair approaches are able to fix a portion of those
defects. For instance, PAR fixes 27 out of 119 defects from its evaluation dataset [5]. Most
of the state-of-the-art automatic software repair approaches do not use information from
previous repairs done by developers to increase their defect repairability. For example, no
approach considers the frequency of source code changes from the bug fixing activity.

The first major contribution of this thesis is a strategy to reduce the time to find a fix. It
focuses on the most frequent kinds to repairs in order to find faster a solution. The strat-
egy consumes information extracted from repairs done by developers. To obtain this infor-
mation, we extract and analyze source code repairs done by developers from open-source
projects. We present a technique to collect bug fix commits done by developers from the soft-
ware history. The technique is based on the abstract syntax changes (AST) changes that com-
mit introduces. Then, we present an approach to extract knowledge of bug fix patterns from
the software history. A bug fix pattern is a set of source code changes that frequently appear
together in the bug fixing activity. Our contributions are a method to formalize change pat-
terns (such as bug fix patterns) and an another approach to collect instances of those change
patterns from the software history. To validate those contributions, we first formalized bug

107

Chapter 6. Conclusion and Perspectives

fix patterns from the literature [9], and then we measured their abundance in software ver-
sion control systems of open-source projects.

The second contribution presented in this thesis is a strategy to reduce the repair time
of one kind of automatic repair approach: redundancy-based repair approach. The strategy al-
lows redundancy-based approaches to reduce their repair search space without losing repair
strength.

Finally, we focus on the evaluation of automatic repair approaches. In the literature, no pre-
vious work has introduced defect datasets for test suite-based repair approaches, with a de-
fined built criteria such as the defect classed included. Our contribution in this domain
is a methodology to define defect datasets that minimize the possibility of biased results.
This thesis contributes with a dataset of 19 if condition defects for further approaches evalua-
tions. Then, to validate the methodology, we carried out an experiment that reproduces and
compares the performance of three state-of-the-art repair approaches. We presented a frame-
work to replicate automatic software repair approaches from the literature. The framework
minimizes the variabilities (such as fault localization technique) between approaches under
comparison, and it focuses on the strength of the repair operators defined by each approach.
Through this experiment, we measured the repairability of if condition defects. The result of
our repair evaluation shows that the evaluated approaches are able to repair a small fraction
of if condition defects from our dataset.

6.2 Future Directions

In this section we present some ideas that we want to explore in the future.

6.2.1 Study of Software Evolution

In this thesis we focus on open-source projects such as those from Apache Software Foun-
dation?. In future work we aim at replicating this experiment in commercial projects. One
of the main goals of this future work is to know how bug fixing activity is done in these
projects and what are the main differences compared to open-source projects.

In Section 3.4/ we analyzed bug fix patterns from Pan et al.’s [9] bug fix pattern catalog.
As the authors of this catalog state, a fraction of bug fix commits from open-source projects
could not be classified. That means, no instance of their bug fix patterns was detected in
those commits. In this thesis we presented additional bug fix patterns that complement this
catalog. In future work we plan to automatically discover bug fix patterns from version
control systems. We also aim at discovering two kinds of bug fix patterns: horizontal bug fix
patterns are those patterns independent of the application; and vertical bug fix patterns are
those patterns particular of one specific application.

6.2.1.1 Change Pattern Formalization

In Chapter |3 we defined a structure to formalize bug fix patterns. This structure allows us
to define change patterns using the change taxonomy presented by Fluri et al. [22]. For
example, the formalization allows us to specify a pattern that describes the addition of an

“http:/ /www.apache.org/

108

6.2. Future Directions

if precondition and a method invocation inside the if block. For short term future work we
aim extending the formalization to include information about the context that surrounds a
change. We explain this limitation of our current pattern formalization in Section
For instance, a change pattern that specifies the addition of an if condition just before an
existing method invocation. This extension would allow us to encode bug fix patterns from
the literature such as the pattern “Addition of Method invocation in sequence of Method
Calls” from Pan et al. [9] that cannot be encoded using the current formalization.

Our change pattern formalization uses the change taxonomy presented by Fluri et al.
[22], which includes 41 changes over 147 source code entities such as “assignment” or
“method invocation”. We plan to use a new taxonomy to define finer grain changes over
finer grain source code entities. Hence, a pattern formalization that uses a finer-grain change
taxonomy would formalize more precise and descriptive change patterns. For example, we
could define a change pattern that specifies changes in the left part of an assignment. Then,
using our method presented in Chapter 3, one is able to measure the abundance of those
finer grain change patterns.

6.2.2 Repair Approaches Design

In Chapter [d] we presented two strategies to optimize the search of repairs in a search space.
We theoretically validated that our strategies improve the repairability of fixes. In the future
we plan to add those strategies in repair approaches, in particular, into our unified repair
framework presented in Chapter

In Chapter [f|we present a framework that allows us to replicate repair approaches from
the literature. In future work we plan to implement other test suite-based repair approaches
such as Nopol [104]. Moreover, we plan to extend existing phases of our framework. For
example, we aim at adding a technique of test case prioritization [108,111] to reduce the cost
of regression testing such as that one presented by Ledru et al. based on string distances [109,
110].

Our framework implements evolutionary computing. JAFF [69], GenProg [12] and PAR [5]
repair approaches follow this paradigm. These approaches have a function called fitness
function. In automatic repair context, it measure the distance between a candidate repair and
a repair that is solution. The output of this function in GenProg and PAR is expressed in
the number of failing test cases. The output zero means the evaluated program completely
fulfills the specification. We plan to define a new fitness function, which will be capable to
measure the distance to the solution in a finer grain than the number of test cases. We have
the intuition that this kind of new function could help to find faster a solution in the repair
search space.

The repair approaches that we analyzed in this thesis rely on test suite as correctness
oracles. The test suites are used as a proxy of the specification. If all test cases pass, it means
the evaluated program fulfills the program specification. We observe that quality of a test-
suite impacts on the quality of the repair. In future work we plan to measure the quality of
test suite from the automatic software repair perspective.

Current repair works relies on test suite as proxy of the program specification. A long-
term research direction is the study of alternative mechanisms for validating candidates re-
pair approaches.

109

Chapter 6. Conclusion and Perspectives

6.2.3 Datasets and Repair Approaches Evaluations

In this thesis we presented a dataset of if condition defects for evaluating test suite-based
repair approaches. In the short term future work we plan to define additional datasets for
other defects such as missing method invocations, or defects in loop conditions. Then, we plan
to analyze the repairability of the corresponding defect classes of the defined datasets us-
ing existing repair approaches. The result of those experiments would allow the research
community to focus on those defect classes that are difficult to repair.

110

Appendix

Mining Software Repair Models for
Reasoning on the Search Space of
Automated Program Fixing

While the paper contains highlighted pieces of data, this appendix contains the whole
data. The empirical results are computed from 62179 versioning transactions with at least
one modified Java file of the repositories of Argouml, Columba, Jboss, Jhotdraw, Log4j,
org.eclipse.ui.workbench, Struts, Carol, Dnsjava, Jedit, Junit, org.eclipse.jdt.core, Scarab and
Tomcat [92]].

A.1 Mathematical Formula for Computing the Median Number of
Repair of MCShaper

Let’s consider a set of N distinct repair actions X;c(; . ny. Each repair action has an occur-
rence probability p;, (Y, pi = 1) Let’s define an “attempt” (drawing) consisting of n repair
actions (one n-tuple, with the possibility that the some X; are present more than once in the
n-tuple, n is fixed. The question we pose is: What is the median number of attempts for drawing
a given n-tuple Y'? The response is obtained as follows :

First, we are interested in the following probability:

probability of drawing Y on the ler attemptis P;(Y")

probability of drawing Y on the 2d attempt is P(Y')

probability of drawing Y on the K attemptis Px(Y)

Let’s assume that we know p, the probability of drawing p with a single draw. Then we
have P,(Y') = (1 — p)p which means that we don’t draw Y on the first attempt but we draw
it on the second. The formula, for recurrence, is Py(y) = p(1 — p)’“*1 After k attempts, the
probability of drawing Y is:

111

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

SK(Y) = Pl(Y) + P Y) + ..+ PK(Y)

k=K
Sk(Y) = Z P(Y)
k=1
k=K
Sk(Y) =Y pl-p*T
k=1

The median number of attempts to draw Y is £* such that Si«(Y") > 0, 5. So, we calculate
Sy, iteratively stopping when that condition is accomplished.

p is the probability of drawing an ordered tuple with repetition. Itis p = = x xII;p(i),
where x is the number of equivalent drawings. For ordered tuple with repetition, x is ob-
tained with the multinomial theorem [112} p.73]:

n n!
xr = = e ———
€1,€2,...,Em]._.[";-:1 (GJ')

(e; is the number of occurrences of element j inside Y and m the number of uniques elements
inY).

Finally,

p= (" > x IerPp(r)
€1,€2,...,€m

Let’s illustrate with a concrete example: N = 5,px1 = 0,1,px2 = 0,1,px3 = 0,2,px4 =
0,2,px5 = 0,4. Tofind Y = (X1,X3,X5): p=6x0,1x0,2x0,4,and S > 0.5 for k =
15 attempts. To find ¥ = (X1, X3,X3): p =3x0,1x0,2x0,2, and S; > 0.5 for k = 58
attempts.

We gratefully thank Ph. Preux for his help in getting this formula right.

A.2 Empirical results

Table A.2: The Semantic Changes of Change Model CTET
Represented Among 62179 Versioning Transactions of Java

Code.

Change Action #changes. Proba.
Statement_insert of Method_invocation 83046 6,9
Statement_insert of If statement 79166 6,6
Statement_update of Method_invocation 76023 6,4
Statement_delete of Method_invocation 65357 5,5
Statement_delete of If_statement 59336 5
Statement_insert of Variable_declaration_statement 54951 4,6
Statement_insert of Assignment 49222 4,1
Additional_functionality of Method 49192 4,1
Statement_delete of Variable_declaration_statement 44519 3,7
Statement_update of Variable_declaration_statement 41838 3,5

112

A2

Empirical results

Statement_delete of Assignment
Condition_expression_change of If_statement
Statement_update of Assignment
Additional_object_state of Attribute
Removed_functionality of Method
Statement_insert of Return_statement
Statement_parent_change of Method_invocation
Statement_delete of Return_statement
Alternative_part_insert of Else_statement
Alternative_part_delete of Else_statement
Removed_object_state of Attribute
Statement_update of Return_statement
Statement_ordering_change of Method_invocation
Statement_parent_change of If_statement
Statement_insert of Switch_case
Statement_parent_change of Assignment
Statement_parent_change of Variable_declaration_statement
Statement_parent_change of Return_statement
Statement_delete of Switch_case
Statement_ordering_change of Variable_declaration_statement
Statement_insert of Catch_clause
Statement_ordering_change of Break_statement
Parameter_insert of Single_variable_declaration
Statement_ordering_change of Switch_case
Statement_delete of Catch_clause
Statement_insert of Try_statement
Statement_insert of For_statement
Statement_ordering_change of Assignment
Decreasing_accessibility_change of Modifier
Statement_delete of Try_statement
Statement_delete of For_statement
Parameter_type_change of Simple_type
Parameter_delete of Single_variable_declaration
Statement_ordering_change of If_statement
Statement_insert of Throw_statement
Method_renaming of Method_declaration
Statement_insert of Break_statement
Attribute_renaming of Field_declaration
Increasing_accessibility_change of Modifier
Parameter_renaming of Single_variable_declaration
Statement_delete of Throw_statement
Return_type_change of Simple_type
Statement_insert of While_statement
Statement_delete of Break_statement
Attribute_type_change of Simple_type
Statement_delete of While_statement
Statement_update of Throw_statement

41281
40415
34802
29328
26172
24184
21010
20880
20227
17197
16445
15132
14267
12399
10927
9851
9818
9160
8787
8740
8708
8685
8609
8383
7927
7489
7109
7084
6772
6618
6407
6167
6048
5637
5519
4931
4767
4730
4562
4296
3876
3413
3253
3234
3063
2817
2807

3,5
34
29
2,5
2,2
2

1,8
1,7
1,7
1,4
1,4
1,3
1,2
1

0,9
0,8
0,8
0,8
0,7
0,7
0,7
0,7
0,7
0,7
0,7
0,6
0,6
0,6
0,6
0,6
0,5
0,5
0,5
0,5
0,5
04
04
04
04
04
0,3
0,3
0,3
0,3
0,3
0,2
0,2

113

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Statement_update of Super_constructor_invocation 2379 0,2
Statement_ordering_change of Return_statement 2168 0,2
Statement_parent_change of Break_statement 1921 0,2
Statement_insert of Switch_statement 1832 0,2
Parent_class_change of Simple_type 1829 0,2
Statement_update of Switch_case 1634 0,1
Parameter_ordering_change of Single_variable_declaration 1606 01
Statement_insert of Continue_statement 1597 0,1
Parent_interface_insert of Simple_type 1515 0,1
Condition_expression_change of For_statement 1407 0,1
Statement_delete of Switch_statement 1394 0,1
Unclassified_change of Modifier 1334 0,1
Statement_parent_change of For_statement 1295 0,1
Statement_parent_change of Continue_statement 1221 0,1
Parent_interface_delete of Simple_type 1189 0,1
Additional_class of Class 1175 0,1
Statement_delete of Continue_statement 1081 0,1
Removing_attribute_modifiability of Modifier 1027 0,1
Statement_delete of Super_constructor_invocation 1011 0,1
Statement_insert of Super_constructor_invocation 941 01
Adding_attribute_modifiability of Modifier 916 0,1
Condition_expression_change of While_statement 786 0,1
Removed_class of Class 682 0,1
Statement_insert of Synchronized_statement 666 0,1
Statement_parent_change of Try_statement 642 0,1
Statement_update of Class_instance_creation 623 0,1
Return_type_change of Primitive_type 615 01
Statement_insert of Super_method_invocation 607 0,1
Removing_method_overridability of Modifier 603 0,1
Statement_parent_change of Throw_statement 577 0
Adding_method_overridability of Modifier 548 0
Statement_parent_change of Switch_case 536 0
Statement_parent_change of While_statement 526 0
Parameter_type_change of Primitive_type 513 0
Statement_insert of Constructor_invocation 465 0
Statement_ordering_change of Catch_clause 458 0
Statement_delete of Class_instance_creation 454 0
Statement_update of Switch_statement 450 0
Statement_insert of Labeled_statement 432 0
Statement_ordering_change of For_statement 430 0
Statement_update of Catch_clause 426 0
Parent_class_insert of Simple_type 411 0
Attribute_type_change of Primitive_type 411 0
Parent_interface_change of Simple_type 411 0
Statement_delete of Synchronized_statement 403 0
Statement_insert of Class_instance_creation 394 0
Statement_delete of Super_method_invocation 344 0

114

A.2. Empirical results

Statement_delete of Labeled_statement 326 0
Removing_class_derivability of Modifier 303 0
Statement_ordering_change of Continue_statement 284 0
Statement_update of Super_method_invocation 280 0
Return_type_delete of Simple_type 277 0
Statement_delete of Constructor_invocation 277 0
Return_type_insert of Simple_type 276 0
Statement_ordering_change of Try_statement 276 0
Statement_update of Constructor_invocation 258 0
Return_type_insert of Primitive_type 213 0
Parent_class_delete of Simple_type 177 0
Statement_parent_change of Switch_statement 175 0
Statement_insert of Do_statement 171 0
Return_type_delete of Primitive_type 167 0
Statement_parent_change of Super_method_invocation 164 0
Statement_ordering_change of Throw_statement 161 0
Statement_update of Synchronized_statement 159 0
Statement_delete of Assert_statement 152 0
Statement_delete of Do_statement 146 0
Statement_ordering_change of While_statement 143 0
Statement_update of Break_statement 124 0
Statement_update of Labeled_statement 120 0
Unclassified_change of If_statement 119 0
Adding_class_derivability of Modifier 99 0
Statement_ordering_change of Super_method_invocation 95 0
Condition_expression_change of Do_statement 86 0
Unclassified_change of Variable_declaration_statement 86 0
Unclassified_change of Return_statement 84 0
Unclassified_change of Assignment 75 0
Statement_ordering_change of Switch_statement 67 0
Statement_insert of Assert_statement 59 0
Unclassified_change of Method_invocation 56 0
Statement_parent_change of Labeled_statement 48 0
Statement_insert of Enhanced_for_statement 43 0
Statement_parent_change of Synchronized_statement 41 0
Class_renaming of Type_declaration 35 0
Statement_ordering_change of Class_instance_creation 32 0
Unclassified_change of Else_statement 28 0
Statement_ordering_change of Synchronized_statement 27 0
Unclassified_change of Line_comment 23 0
Statement_parent_change of Do_statement 21 0
Statement_parent_change of Class_instance_creation 17 0
Statement_delete of Enhanced_for_statement 16 0
Unclassified_change of For_statement 16 0
Statement_ordering_change of Labeled_statement 12 0
Unclassified_change of Switch_case 11 0
Unclassified_change of Catch_clause 10 0

115

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Unclassified_change of While_statement 10
Unclassified_change of Try_statement 10
Unclassified_change of Block_comment 9

Condition_expression_change of Enhanced_for_statement 8
Unclassified_change of Switch_statement 6
Statement_update of Continue_statement 6
Unclassified_change of Empty_statement 4
Unclassified_change of Postfix_expression 4
Statement_parent_change of Assert_statement 3
Parameter_type_change of Parameterized_type 3
Unclassified_change of Super_constructor_invocation 2
Statement_ordering_change of Enhanced_for_statement 2
Parent_class_delete of Parameterized_type 2
Statement_ordering_change of Do_statement 2
Unclassified_change of Break_statement 2
Statement_update of Assert_statement 2
Return_type_insert of Parameterized_type 2
Unclassified_change of Type_literal 1
Return_type_change of Parameterized_type 1
Parent_class_insert of Parameterized_type 1
Unclassified_change of Constructor_invocation 1
Unclassified_change of Throw_statement 1
Total 1

(el elNeelNeNolo ool Ne oo No o No oo Noe o No Nl

196385

Table A.6: CTET Repair Actions Types and Probability x; for
Different Heuristics to Build Versioning Transaction Bags.

Item ALL 1-LC 1-SC BFP 20-SC

Statement_insert-Method_invocation 0.0694 0.0983 0.0897 0.0800 0.0881
Statement_insert-If_statement 0.0662 0.0503 0.0000 0.0776 0.0806
Statement_update-Method_invocation 0.0635 0.1311 0.1502 0.0549 0.0673
Statement_delete-Method_invocation 0.0546 0.0557 0.0439 0.0586 0.0454
Statement_delete-If statement 0.0496 0.0232 0.0000 0.0505 0.0347
Statement_insert-Variable_declaration_statement 0.0459 0.0083 0.0009 0.0509 0.0536
Statement_insert-Assignment 0.0411 0.0338 0.0210 0.0456 0.0445
Additional_functionality-Method 0.0411 0.0013 0.1381 0.0407 0.0669
Statement_delete-Variable_declaration_statement 0.0372 0.0137 0.0104 0.0368 0.0283
Statement_update-Variable_declaration_statement 0.0350 0.0908 0.0947 0.0283 0.0431
Statement_delete-Assignment 0.0345 0.0132 0.0066 0.0303 0.0206
Condition_expression_change-If_statement 0.0338 0.1223 0.1251 0.0277 0.0445
Statement_update-Assignment 0.0291 0.0599 0.0671 0.0232 0.0282
Additional_object_state-Attribute 0.0245 0.0072 0.0253 0.0245 0.0299
Removed_functionality-Method 0.0219 0.0021 0.0451 0.0167 0.0222
Statement_insert-Return_statement 0.0202 0.0325 0.0017 0.0189 0.0252
Statement_parent_change-Method_invocation 0.0176 0.0204 0.0031 0.0219 0.0233
Statement_delete-Return_statement 0.0175 0.0183 0.0000 0.0151 0.0139

116

A.2. Empirical results

Alternative_part_insert-Else_statement
Alternative_part_delete-Else_statement
Removed_object_state-Attribute
Statement_update-Return_statement
Statement_ordering_change-Method_invocation
Statement_parent_change-If_statement
Statement_insert-Switch_case
Statement_parent_change-Variable_declaration_statement
Statement_parent_change-Assignment
Statement_parent_change-Return_statement
Statement_ordering_change-Variable_declaration_statement
Statement_insert-Catch_clause
Statement_ordering_change-Break_statement
Statement_delete-Switch_case
Parameter_insert-Single_variable_declaration
Statement_ordering_change-Switch_case
Statement_delete-Catch_clause
Statement_insert-Try_statement
Statement_insert-For_statement
Statement_ordering_change-Assignment
Decreasing_accessibility_change-Modifier
Statement_delete-Try_statement
Statement_delete-For_statement
Parameter_type_change-Simple_type
Parameter_delete-Single_variable_declaration
Statement_ordering_change-If_statement
Statement_insert-Throw_statement
Method_renaming-Method_declaration
Attribute_renaming-Field_declaration
Statement_insert-Break_statement
Increasing_accessibility_change-Modifier
Parameter_renaming-Single_variable_declaration
Statement_delete-Throw_statement
Return_type_change-Simple_type
Statement_delete-Break_statement
Statement_insert-While_statement
Attribute_type_change-Simple_type
Statement_delete-While_statement
Statement_update-Throw_statement
Statement_update-Super_constructor_invocation
Statement_ordering_change-Return_statement
Statement_parent_change-Break_statement
Statement_insert-Switch_statement
Parent_class_change-Simple_type
Statement_update-Switch_case
Parent_interface_insert-Simple_type
Parameter_ordering_change-Single_variable_declaration

0.0169
0.0144
0.0137
0.0126
0.0119
0.0104
0.0091
0.0082
0.0082
0.0077
0.0073
0.0073
0.0073
0.0073
0.0072
0.0070
0.0066
0.0063
0.0059
0.0059
0.0057
0.0055
0.0054
0.0052
0.0051
0.0047
0.0046
0.0041
0.0040
0.0040
0.0038
0.0036
0.0032
0.0029
0.0027
0.0027
0.0026
0.0024
0.0023
0.0020
0.0018
0.0016
0.0015
0.0015
0.0014
0.0013
0.0013

0.0052
0.0054
0.0077
0.0353
0.0052
0.0083
0.0031
0.0015
0.0121
0.0157
0.0015
0.0036
0.0015
0.0005
0.0018
0.0000
0.0036
0.0000
0.0010
0.0031
0.0057
0.0000
0.0010
0.0031
0.0008
0.0028
0.0008
0.0021
0.0008
0.0023
0.0124
0.0010
0.0018
0.0013
0.0008
0.0010
0.0021
0.0005
0.0054
0.0072
0.0034
0.0003
0.0000
0.0026
0.0003
0.0041
0.0000

0.0000
0.0000
0.0165
0.0501
0.0092
0.0021
0.0028
0.0014
0.0017
0.0005
0.0007
0.0002
0.0000
0.0002
0.0007
0.0007
0.0000
0.0000
0.0000
0.0014
0.0071
0.0000
0.0000
0.0038
0.0000
0.0043
0.0002
0.0021
0.0012
0.0012
0.0137
0.0009
0.0005
0.0014
0.0000
0.0000
0.0019
0.0000
0.0061
0.0099
0.0000
0.0002
0.0000
0.0024
0.0002
0.0045
0.0000

0.0194
0.0150
0.0114
0.0084
0.0124
0.0116
0.0104
0.0089
0.0100
0.0077
0.0079
0.0088
0.0131
0.0076
0.0065
0.0110
0.0104
0.0064
0.0061
0.0060
0.0039
0.0079
0.0053
0.0026
0.0037
0.0051
0.0037
0.0027
0.0026
0.0040
0.0031
0.0020
0.0038
0.0013
0.0019
0.0029
0.0013
0.0024
0.0029
0.0013
0.0020
0.0018
0.0013
0.0014
0.0009
0.0009
0.0009

117

0.0171
0.0095
0.0116
0.0135
0.0099
0.0142
0.0025
0.0102
0.0093
0.0092
0.0052
0.0071
0.0013
0.0007
0.0053
0.0005
0.0043
0.0056
0.0049
0.0043
0.0048
0.0033
0.0033
0.0028
0.0026
0.0043
0.0050
0.0030
0.0029
0.0019
0.0059
0.0023
0.0023
0.0018
0.0006
0.0026
0.0021
0.0017
0.0027
0.0022
0.0014
0.0005
0.0004
0.0016
0.0007
0.0017
0.0005

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Statement_insert-Continue_statement 0.0013 0.0036 0.0002 0.0013 0.0015
Statement_delete-Switch_statement 0.0012 0.0000 0.0000 0.0008 0.0001
Condition_expression_change-For_statement 0.0012 0.0013 0.0014 0.0010 0.0013
Unclassified_change-Modifier 0.0011 0.0013 0.0019 0.0008 0.0010
Statement_parent_change-For_statement 0.0011 0.0008 0.0000 0.0012 0.0017
Parent_interface_delete-Simple_type 0.0010 0.0046 0.0045 0.0006 0.0012
Additional_class-Class 0.0010 0.0000 0.0014 0.0010 0.0018
Statement_parent_change-Continue_statement 0.0010 0.0028 0.0000 0.0010 0.0007
Statement_delete-Continue_statement 0.0009 0.0008 0.0000 0.0006 0.0005
Removing_attribute_modifiability-Modifier 0.0009 0.0013 0.0012 0.0007 0.0013
Statement_delete-Super_constructor_invocation 0.0008 0.0023 0.0002 0.0007 0.0010
Adding_attribute_modifiability-Modifier 0.0008 0.0003 0.0005 0.0002 0.0003
Statement_insert-Super_constructor_invocation 0.0008 0.0023 0.0002 0.0006 0.0009
Condition_expression_change-While_statement 0.0007 0.0018 0.0017 0.0004 0.0007
Statement_insert-Synchronized_statement 0.0006 0.0000 0.0000 0.0009 0.0008
Removed_class-Class 0.0006 0.0000 0.0026 0.0005 0.0006
Statement_insert-Super_method_invocation 0.0005 0.0023 0.0019 0.0005 0.0008
Adding_method_overridability-Modifier 0.0005 0.0003 0.0002 0.0012 0.0002
Removing_method_overridability-Modifier 0.0005 0.0003 0.0002 0.0004 0.0003
Statement_parent_change-Try_statement 0.0005 0.0000 0.0000 0.0006 0.0010
Statement_parent_change-Throw_statement 0.0005 0.0003 0.0000 0.0005 0.0007
Statement_update-Class_instance_creation 0.0005 0.0010 0.0014 0.0003 0.0002
Return_type_change-Primitive_type 0.0005 0.0000 0.0000 0.0001 0.0002
Statement_insert-Constructor_invocation 0.0004 0.0003 0.0000 0.0003 0.0006
Statement_delete-Class_instance_creation 0.0004 0.0005 0.0007 0.0002 0.0003
Statement_insert-Labeled_statement 0.0004 0.0000 0.0000 0.0003 0.0001
Statement_parent_change-While_statement 0.0004 0.0003 0.0000 0.0005 0.0006
Statement_ordering_change-Catch_clause 0.0004 0.0000 0.0000 0.0004 0.0005
Statement_parent_change-Switch_case 0.0004 0.0000 0.0000 0.0002 0.0000
Statement_ordering_change-For_statement 0.0004 0.0000 0.0000 0.0004 0.0004
Parameter_type_change-Primitive_type 0.0004 0.0000 0.0002 0.0001 0.0002
Statement_update-Switch_statement 0.0004 0.0000 0.0000 0.0001 0.0002
Statement_update-Catch_clause 0.0004 0.0013 0.0017 0.0003 0.0007
Parent_interface_change-Simple_type 0.0003 0.0005 0.0005 0.0002 0.0006
Statement_delete-Labeled_statement 0.0003 0.0010 0.0000 0.0002 0.0002
Statement_delete-Synchronized_statement 0.0003 0.0000 0.0000 0.0004 0.0004
Parent_class_insert-Simple_type 0.0003 0.0003 0.0002 0.0002 0.0002
Statement_insert-Class_instance_creation 0.0003 0.0010 0.0002 0.0002 0.0003
Statement_delete-Super_method_invocation 0.0003 0.0023 0.0009 0.0002 0.0004
Removing_class_derivability-Modifier 0.0003 0.0003 0.0005 0.0002 0.0002
Attribute_type_change-Primitive_type 0.0003 0.0000 0.0000 0.0001 0.0002
Return_type_insert-Simple_type 0.0002 0.0003 0.0002 0.0002 0.0002
Statement_delete-Constructor_invocation 0.0002 0.0005 0.0000 0.0001 0.0002
Return_type_delete-Simple_type 0.0002 0.0003 0.0000 0.0002 0.0001
Return_type_insert-Primitive_type 0.0002 0.0000 0.0000 0.0001 0.0002
Statement_ordering_change-Continue_statement 0.0002 0.0000 0.0000 0.0003 0.0001
Statement_update-Super_method_invocation 0.0002 0.0005 0.0005 0.0002 0.0003

118

A.2. Empirical results

Statement_ordering_change-Try_statement
Statement_update-Constructor_invocation
Condition_expression_change-Do_statement
Statement_ordering_change-Switch_statement
Unclassified_change-Variable_declaration_statement
Parent_class_delete-Simple_type
Return_type_delete-Primitive_type
Statement_ordering_change-Throw_statement
Statement_update-Labeled_statement
Unclassified_change-If_statement
Statement_ordering_change-Super_method_invocation
Unclassified_change-Assignment
Statement_update-Break_statement
Statement_ordering_change-While_statement
Unclassified_change-Return_statement
Statement_delete-Do_statement
Adding_class_derivability-Modifier
Statement_parent_change-Switch_statement
Statement_parent_change-Super_method_invocation
Statement_insert-Do_statement
Statement_update-Synchronized_statement
Statement_delete-Assert_statement
Statement_insert-Enhanced_for_statement
Unclassified_change-Empty_statement
Statement_update-Continue_statement
Unclassified_change-For_statement
Statement_ordering_change-Class_instance_creation
Return_type_change-Parameterized_type
Unclassified_change-Throw_statement
Unclassified_change-Constructor_invocation
Unclassified_change-Type_literal
Unclassified_change-Try_statement
Statement_delete-Enhanced_for_statement
Statement_parent_change-Do_statement
Unclassified_change-Switch_statement
Parent_class_insert-Parameterized_type
Statement_update-Assert_statement
Statement_ordering_change-Labeled_statement
Unclassified_change-Else_statement
Statement_parent_change-Class_instance_creation
Class_renaming-Type_declaration
Unclassified_change-Super_constructor_invocation
Statement_ordering_change-Enhanced_for_statement
Unclassified_change-Catch_clause
Unclassified_change-While_statement
Unclassified_change-Break_statement
Statement_parent_change-Synchronized_statement

0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0003
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0003
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0007
0.0000
0.0000
0.0000
0.0005
0.0000
0.0000
0.0000
0.0000
0.0007
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0002
0.0002
0.0000
0.0000
0.0002
0.0001
0.0001
0.0001
0.0001
0.0003
0.0001
0.0001
0.0002
0.0002
0.0002
0.0001
0.0001
0.0002
0.0002
0.0002
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

119

0.0003
0.0003
0.0001
0.0000
0.0000
0.0002
0.0001
0.0002
0.0000
0.0000
0.0002
0.0000
0.0000
0.0001
0.0000
0.0001
0.0001
0.0001
0.0002
0.0002
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Statement_parent_change-Assert_statement 0.0000 0.0000 0.0000 0.0000 0.0000
Statement_insert-Assert_statement 0.0000 0.0000 0.0000 0.0001 0.0001
Unclassified_change-Switch_case 0.0000 0.0000 0.0000 0.0000 0.0000
Condition_expression_change-Enhanced_for_statement 0.0000 0.0000 0.0000 0.0000 0.0000
Unclassified_change-Line_comment 0.0000 0.0000 0.0000 0.0000 0.0000
Statement_ordering_change-Synchronized_statement 0.0000 0.0000 0.0000 0.0000 0.0000
Parameter_type_change-Parameterized_type 0.0000 0.0000 0.0000 0.0000 0.0000
Parent_class_delete-Parameterized_type 0.0000 0.0000 0.0000 0.0000 0.0000
Statement_parent_change-Labeled_statement 0.0000 0.0000 0.0000 0.0000 0.0001
Statement_ordering_change-Do_statement 0.0000 0.0000 0.0000 0.0000 0.0000
Unclassified_change-Method_invocation 0.0000 0.0000 0.0000 0.0001 0.0000
Unclassified_change-Postfix_expression 0.0000 0.0000 0.0000 0.0000 0.0000
Unclassified_change-Block_comment 0.0000 0.0000 0.0000 0.0000 0.0000
Return_type_insert-Parameterized_type 0.0000 0.0000 0.0000 0.0000 0.0000

A.3 Bug Fix Survey Summary

The survey data is available at Thttps://sites.google.com/site/
matiassebastianmartinez/dataset_survey_Martinez_et_al_ 2013.zipl

120

https://sites.google.com/site/matiassebastianmartinez/dataset_survey_Martinez_et_al_2013.zip
https://sites.google.com/site/matiassebastianmartinez/dataset_survey_Martinez_et_al_2013.zip

A.3. Bug Fix Survey Summary

Table A.1: The Frequency of Semantic Changes of Change Model CT Represented Among
62179 Versioning Transactions of Java Code.

Change Action #changes Proba.
Statement_insert 345548 | 28,9
Statement_delete 276643 | 23,1
Statement_update 177063 14,8
Statement_parent_change 69425 58
Statement_ordering_change 56953 4,8
Additional_functionality 49192 4,1
Condition_expression_change 42702 3,6
Additional_object_state 29328 2,5
Removed_functionality 26172 2,2
Alternative_part_insert 20227 1,7
Alternative_part_delete 17197 1,4
Removed_object_state 16445 1,4
Parameter_insert 8609 0,7
Decreasing_accessibility_change 6772 0,6
Parameter_type_change 6683 0,6
Parameter_delete 6048 0,5
Method_renaming 4931 04
Attribute_renaming 4730 04
Increasing_accessibility_change 4562 04
Parameter_renaming 4296 04
Return_type_change 4029 0,3
Attribute_type_change 3474 0,3
Unclassified_change 1892 0,2
Parent_class_change 1829 0,2
Parameter_ordering_change 1606 0,1
Parent_interface_insert 1515 0,1
Parent_interface delete 1189 0,1
Additional_class 1175 0,1
Removing_attribute_modifiability 1027 01
Adding_attribute_modifiability 916 0,1
Removed_class 682 0,1
Removing_method_overridability 603 0,1
Adding_method_overridability 548 0
Return_type_insert 491 0
Return_type_delete 444 0
Parent_class_insert 412 0
Parent_interface_change 411 0
Removing_class_derivability 303 0
Parent_class_delete 179 0
Adding_class_derivability 99 0
Class_renaming 35 0
Total 1196385

121

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Table A.3: Spearman Correlation between the CT Change Action Probabilities of 14 Java Soft-
ware Repositories. The majority is higher than 0.9, showing that the probability distribution
over change actions is project-independent.

"
c
S
o A
g =
o 2
> a3 K g - Ne)
o 8 = o o 9 S o 2
T 2 g =g 8 S 2 =
(o] 8 =] (7)) 8 8 8 -— 2 Ff% = '}6‘ —=
T 2 % % o o B B B H B E S
§ S § & & 5 ¢ @A £ g & =& 3 8§
dnsjava.cvs 1.00 0.87 0.89 0.88 0.89 0.90 0.85 0.90 0.82 0.91 0.90 0.85 0.87 0.83
columba 0.87 1.00 0.94 0.91 0.85 0.91 0.84 0.88 0.91 0.92 0.90 0.91 0.85 0.88
argouml 0.89 0.94 1.00 0.95 0.89 0.94 0.85 0.90 0.87 0.93 0.94 0.90 0.85 0.92
jboss 0.88 0.91 0.95 1.00 0.91 0.96 0.84 0.90 0.87 0.92 0.97 0.87 0.86 0.94

org.eclipse.jdt.core 0.89 0.85 0.89 0.91 1.00 0.96 0.92 0.92 0.87 0.93 0.92 0.84 0.81 0.88
org.eclipse.ui.work 0.90 0.91 0.94 0.96 0.96 1.00 0.89 0.93 0.89 0.95 0.98 0.86 0.87 0.93

tomcat.cvs 0.85 0.84 0.85 0.84 0.92 0.89 1.00 0.90 0.83 0.89 0.87 0.87 0.83 0.80
jEdit 0.90 0.88 0.90 0.90 0.92 0.93 0.90 1.00 0.85 0.91 0.93 0.85 0.89 0.86
struts.cvs 0.82 0.91 0.87 0.87 0.87 0.89 0.83 0.85 1.00 0.90 0.87 0.83 0.81 0.88
scarab 0.91 0.92 0.93 0.92 0.93 0.95 0.89 0.91 0.90 1.00 0.94 0.88 0.87 0.90
log4j.cvs 0.90 0.90 0.94 0.97 0.92 0.98 0.87 0.93 0.87 0.94 1.00 0.86 0.91 0.93
jhotdraw6 0.85 0.91 0.90 0.87 0.84 0.86 0.87 0.85 0.83 0.88 0.86 1.00 0.85 0.84
junit 0.87 0.85 0.85 0.86 0.81 0.87 0.83 0.89 0.81 0.87 0.91 0.85 1.00 0.83
carol 0.83 0.88 0.92 0.94 0.88 0.93 0.80 0.86 0.88 0.90 0.93 0.84 0.83 1.00

122

A.3. Bug Fix Survey Summary

Figure A.1: The distribution of the ranking difference for the most correlated project pair
(workbenché&log4j, Spearman correlation of 0.98) and the least correlated project pair (Tom-
cat&Carol, Spearman correlation of 0.80) in change model CT. The project pair work-
bench&log4j has more change actions with distance lower than 5 (9 vs. 7), and project pairs
Tomcat&Carol has more changes actions with rank distance greater than 15 (6 vs. 0). This
explains the difference in the Spearman correlation values. Overrall, the shape of the distri-
bution is very similar.

35 4

30

25

N
o

® Tomcat&Carol

[
v
L

B workbench&log4j

Change Types

10 A

0 - . . . l . . .
5 10 15

20 25

Rank Distance

123

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Table A.4: Spearman Correlation between the CTET Change Action Probabilities of 14 Java
Software Repositories. They are slightly lower than those of change model CT but the prob-
ability distribution over change actions can still be considered as project-independent.

=
Q
[
&
.
S oz
© Q E 5) -— (4]
> Y Y Q
£ & & £ ¢ % s & £ § 2 2 B
dnsjava 1.00 0.84 0.83 0.89 086 087 088 087 084 085 087 0.79 0.73
columba 084 1.00 092 090 080 090 0.88 0.89 0.8 0.87 091 0.87 0.81
argouml 0.83 092 1.00 091 080 087 08 08 08 0.8 090 086 0.77
jposs 0.89 090 091 1.00 0.84 091 095 0.88 0.89 091 095 0.83 0.80

eclipse.jdt.core 0.86 0.80 0.80 0.84 1.00 0.83 0.87 089 081 078 0.86 073 0.64
eclipse.ui.workbench 0.87 090 0.87 091 083 1.00 091 0.89 082 089 091 084 0.76
tomcat 0.88 0.88 086 095 087 091 1.00 090 087 088 092 0.82 0.77

jEdit 0.87 0.89 0.89 0.88 0.89 089 09 1.00 0.85 085 0.89 0.80 0.73

struts 0.84 0.85 0.85 089 081 082 087 085 1.00 085 085 081 0.74

scarab 0.85 0.87 086 091 078 0.89 088 0.85 0.85 1.00 0.89 0.82 0.76

log4j 0.87 091 090 095 086 091 092 0.89 085 089 1.00 0.84 0.81

jhotdraw6 0.79 087 086 0.83 073 084 082 0.80 081 082 084 1.00 0.77

junit 073 081 0.77 080 064 076 077 073 074 076 081 0.77 1.00

carol 0.83 0.84 084 091 073 083 08 079 0.86 0.88 086 0.80 0.78

124

A.3. Bug Fix Survey Summary

Table A.5: CT Repair Actions and Probability x; for Different Heuristics to Build Versioning
Transaction Bags.

Item ALL 1-LC 1-8C BFP 20-SC 20-LC
Statement_insert 0.2888 0.2446 0.1204 0.3211 0.3273 0.3417
Statement_delete 0.2312 0.1398 0.0635 0.2340 0.1624 0.1776
Statement_update 0.1480 0.3336 0.3825 0.1213 0.1596 0.1514
Statement_parent_change 0.0580 0.0627 0.0090 0.0664 0.0719 0.0986
Statement_ordering_change 0.0476 0.0178 0.0170 0.0592 0.0286 0.0458
Additional_functionality 0.0411 0.0013 0.1381 0.0407 0.0669 0.0210
Condition_expression_change 0.0357 0.1254 0.1282 0.0291 0.0466 0.0551
Additional_object_state 0.0245 0.0072 0.0253 0.0245 0.0299 0.0156
Removed_functionality 0.0219 0.0021 0.0451 0.0167 0.0222 0.0070
Alternative_part_insert 0.0169 0.0052 0.0000 0.0194 0.0171 0.0220
Alternative_part_delete 0.0144 0.0054 0.0000 0.0150 0.0095 0.0131
Removed_object_state 0.0137 0.0077 0.0165 0.0114 0.0116 0.0071
Parameter_insert 0.0072 0.0018 0.0007 0.0065 0.0053 0.0050
Decreasing_accessibility_change 0.0057 0.0057 0.0071 0.0039 0.0048 0.0038
Parameter_type_change 0.0056 0.0031 0.0040 0.0026 0.0030 0.0040
Parameter_delete 0.0051 0.0008 0.0000 0.0037 0.0026 0.0022
Method_renaming 0.0041 0.0021 0.0021 0.0027 0.0030 0.0023
Attribute_renaming 0.0040 0.0008 0.0012 0.0026 0.0029 0.0022
Increasing_accessibility_change 0.0038 0.0124 0.0137 0.0031 0.0059 0.0086
Parameter_renaming 0.0036 0.0010 0.0009 0.0020 0.0023 0.0020
Return_type_change 0.0034 0.0013 0.0014 0.0015 0.0019 0.0018
Attribute_type_change 0.0029 0.0021 0.0019 0.0014 0.0023 0.0022
Unclassified_change 0.0016 0.0013 0.0019 0.0020 0.0010 0.0020
Parent_class_change 0.0015 0.0026 0.0024 0.0014 0.0016 0.0009
Parent_interface_insert 0.0013 0.0041 0.0045 0.0009 0.0017 0.0011
Parameter_ordering_change 0.0013 0.0000 0.0000 0.0009 0.0005 0.0004
Parent_interface_delete 0.0010 0.0046 0.0045 0.0006 0.0012 0.0009
Additional_class 0.0010 0.0000 0.0014 0.0010 0.0018 0.0002

Removing_attribute_modifiability 0.0009 0.0013 0.0012 0.0007 0.0013 0.0012
Adding_attribute_modifiability 0.0008 0.0003 0.0005 0.0002 0.0003 0.0013
Removed_class 0.0006 0.0000 0.0026 0.0005 0.0006 0.0001
Adding_method_overridability 0.0005 0.0003 0.0002 0.0012 0.0002 0.0001
Removing_method_overridability 0.0005 0.0003 0.0002 0.0004 0.0003 0.0003

Return_type_insert 0.0004 0.0003 0.0002 0.0003 0.0004 0.0004
Return_type_delete 0.0004 0.0003 0.0000 0.0003 0.0001 0.0001
Removing_class_derivability 0.0003 0.0003 0.0005 0.0002 0.0002 0.0001
Parent_interface_change 0.0003 0.0005 0.0005 0.0002 0.0006 0.0006
Parent_class_insert 0.0003 0.0003 0.0002 0.0002 0.0002 0.0001
Parent_class_delete 0.0001 0.0000 0.0005 0.0001 0.0002 0.0001
Adding_class_derivability 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000
Class_renaming 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

125

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Repair Size 1 2 3 4 5 6
argouml 5(996) 53 (638) 315(386) 2682 (362) 19975 (254) 00(234) oo’
carol 5 (30) 8(15) 595(10) 3906 (10) 3130 (7) 00(13) o
columba 6 (382) 49 (255) 417 (144) 3522 (146) 28118 (113) 99766 (108) 00
dnsjava 6 (165) 48 (139) 402 (71) 1990 (82) 34961 (54) 00(50) 00
jEdit 6 (115) 46 (84) 287 (53) 3353 (48) 27966 (32) 00(30) 00
jposs 6(514) 48 (353) 393 (208) 3248 (189) 26872 (147) 00(150) 00
jhotdraw6 5(21) 37 (21) 396 (9) 517 (10) 4769 (10) 12428 (3) 2224
junit 5 (40) 45(39) 268 (18) 95763 (11) 10305 (7) oo(11) o
log4j 5(223) 45(134) 461(68) 2655(70) 13542 (64) 00(42) 00
org.eclipsejdt.core 5 (1606) 40 (1025) 305 (657) 2318 (631) 12427 (392) oo(416) oo
org.eclipse.ui.workbench 5(1184) 53 (783) 278 (414) 2431 (464) 15999 (326) 00(305) 00/
scarab 6 (653) 44 (346) 340(202) 3138 (159) 9668 (113) 84180 (137) 00
struts 5(221) 45(133) 284 (86) 2686 (103) 5862 (61) 95470 (77) 00
tomcat 6(281) 46 (167) 399 (111) 3323 (120) 19468 (84) 00(87) 00
Table A.7: The median number of attempts(in bold) required to find the correct repair shape
of fix transactions. The values in brackets indicate the number of fix transactions tested per
project and per transaction size for repair model CT. The repair model CT is made from the
distribution probability of changes included in 1-SC transaction bags.
Repair Size 1 2 3 4 5 6
argouml 6(996) 13 (638) 86 (386) 267 (362) 1394 (254) 5977 (234) 16748 (1
carol 7(30) 13(15) 121(10) 466 (10) 494 (7) 24117 (13) 14019
columba 3(382) 13(255) 68(144) 552(146) 940 (113) 2111(108) 10908 (.
dnsjava 6(165) 13 (139) 101(71) 218(82) 1553 (54) 5063 (50) 16363 (:
jEdit 3 (115) 13 (84) 58 (53) 251 (48) 2906 (32) 3189 (30) 5648 (:
jposs 6(514) 15(353) 88(208) 272(189) 1057 (147) 6034 (150) 13148 (
jhotdraw6 ~ 7(21) 13(21) 159(9) 187(10) 1779 (10) 611 (3) 00
junit 3 (40) 42 (39) 596 (18) oo(11) 49345 (7) oo(11) 31634
log4j 6(223) 15(134) 146(68) 665(70) 6459 (64) 16879 (42) 55582 (-
org.eclipsejdt.core 6 (1606) 26 (1025) 93 (657) 291 (631) 1704 (392) 4639 (416) 18344 (3
org.eclipse.ui.workbench 3 (1184) 13 (783) 74 (414) 311 (464) 1023 (326) 6035 (305) 22864 (2:
scarab 6 (653) 16 (346) 113 (202) 420 (159) 764 (113) 3914 (137) 13104 (¢
struts 3(221) 17(133) 100 (86) 222 (103) 675 (61) 4785(77) 16796 (
tomcat 3(281) 13 (167) 135(111) 431(120) 1068 (84) 3497 (87) 7407 (¢

Table A.8: The median number of attempts(in bold) required to find the correct repair shape
of fix transactions. The values in brackets indicate the number of fix transactions tested per
project and per transaction size for repair model CT. The repair model CT is made from the
distribution probability of changes included in 5-SC transaction bags.

126

A.3. Bug Fix Survey Summary

Repair Size 1 2 3 4 5 6
argouml 5(996) 20(638) 107 (386) 482(362) 2160 (254) 6439 (234) 13733 (:
carol 9 (30) 20 (15) 104 (10) 350 (10) 642 (7) 12378 (13) 899/
columba 4 (382) 20(255) 105(144) 276 (146) 1530 (113) 1156 (108) 5887
dnsjava 5(165) 20 (139) 114 (71) 552 (82) 755 (54) 3651 (50) 9206
jEdit 4 (115) 20 (84) 81 (53) 224 (48) 1570 (32) 1255 (30) 2418
jposs 5(514) 20(353) 104 (208) 337 (189) 1029 (147) 6188 (150) 8602
jhotdraw6 9 (21) 20 (21) 228 (9) 209 (10) 3418 (10) 279 (3) 4606(
junit 4 (40) 37 (39) 494 (18) 92607 (11) oo(7) oo(11) 5086¢
)
)
)
)
)
)

logdj 5(223) 20(134) 165(68) 611(70) 9125 (64) 16351 (42) 36244
org.eclipsejdt.core 5 (1606) 20 (1025) 105 (657) 416 (631) 1587 (392) 4680 (416) 11829 (
org.eclipse.ui.workbench 4 (1184
scarab 5 (653

struts 4 (221

tomcat 4 (281

19 (783) 102 (414) 327 (464) 885 (326) 4847 (305) 9133 (:
20 (346) 127(202) 555(159) 791 (113) 2942 (137) 12977
23(133) 106 (36) 569 (103) 1009 (61) 8799 (77) 7383
19 (167) 140 (111) 416 (120) 853 (84) 1297 (87) 3215

Table A.9: The median number of attempts(in bold) required to find the correct repair shape
of fix transactions. The values in brackets indicate the number of fix transactions tested per
project and per transaction size for repair model CT. The repair model CT is made from the
distribution probability of changes included in 10-SC transaction bags.

Repair Size 1 2 3 4 5 6

argouml 5(996) 29(638) 164 (386) 391(362) 2183 (254) 5672 (234) 13597 (1¢
carol 11 (30) 27 (15) 171 (10) 639 (10) 550 (7) 10073 (13) 9619
columba 4 (382) 27(255) 153 (144) 267 (146) 1261 (113) 903 (108) 4451 (
dnsjava 4 (165) 27 (139) 169 (71) 885 (82) 720 (54) 2453 (50) 6610 (
jEdit 4 (115) 27 (84) 129 (53) 202(48) 1153 (32) 1368 (30) 2745 (:
jposs 4(514) 27 (353) 165 (208) 293 (189) 855 (147) 6132 (150) 8689 (¢
jhotdraw6 11 (21) 27 (21) 162 (9) 244 (10) 6693 (10) 190 (3) 83682
junit 4 (40) 33 (39) 402(18) oo(11) oo(7) oo(11) 26698

))

))

))

))

))

))

logdj 5(223) 28(134) 178(68) 1127 (70) 12551 (64) 20263 (42) 19718 (:

org.eclipsejdt.core 4 (1606) 27 (1025) 165 (657) 371(631) 1205 (392) 4508 (416) 9586 (3
org.eclipse.ui.workbench 4 (1184 27 (783) 126 (414) 303 (464) 781(326) 3925(305) 6665 (2
scarab 4 (653 27 (346) 167 (202) 650 (159) 729 (113) 2698 (137) 17857 (!

struts 5(221) 28(133) 173 (86) 439(103) 1095 (61) 6348 (77) 6682 (.

tomcat 4 (281) 26 (167) 161(111) 410(120) 820(84) 1078 (87) 2536 (¢

Table A.10: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CT. The repair model CT is made
from the distribution probability of changes included in 20-SC transaction bags.

127

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Repair Size 1 2 3 4 5 6
argouml 6(996) 53 (638) 147 (386) 419 (362) 2473 (254) 6049 (234) 12190 (1
carol 17 (30) 47 (15) 390 (10) 1841 (10) 1484 (7) 3803 (13) 2962
columba 6 (382) 22(255) 134(144) 254(146) 697 (113) 1380 (108) 5304 (.
dnsjava 6 (165) 48 (139) 392(71) 438 (82) 818 (54) 2781 (50) 10734 (
jEdit 6 (115) 46 (84) 89 (53) 183 (48) 1269(32) 1616 (30) 2020 (:
jposs 6(514) 47 (353) 253 (208) 444 (189) 1048 (147) 8610 (150) 5981 (¢
jhotdraw6 17 (21) 47 (21) 140 (9) 498 (10) 26388 (10) 229 (3) 00
junit 6(40) 47(39) 1160 (18) 0o(11) 0o(7) 70696 (11) 24882
log4j 6(223) 47 (134) 389(68) 2409 (70) 48093 (64) 8748 (42) 92785 (-
org.eclipsejdt.core 6 (1606) 43 (1025) 211(657) 410 (631) 1333(392) 5036 (416) 10949 (3
org.eclipse.ui.workbench 6 (1184) 30 (783) 141 (414) 289 (464) 742(326) 4778 (305) 6896 (2:
scarab 6 (653) 48 (346) 163 (202) 435(159) 718 (113) 1998 (137) 17669 (¢
struts 6 (221) 47(133) 388(86) 301(103) 1238(61) 8103 (77) 8900 (
tomcat 6(281) 18 (167) 161(111) 399 (120) 1008 (84) 1035 (87) 3494 (¢
Table A.11: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CT. The repair model CT is made
from the distribution probability of changes included in BFP transaction bags.
Repair Size 1 2 3 4 5 6
argouml 5(996) 37 (638) 152 (386) 417 (362) 2436 (254) 6661 (234) 11243 (1
carol 17 (30) 32(15) 213(10) 1296 (10) 954 (7) 3026 (13) 2918
columba 5(382) 25(255) 139(144) 334(146) 688 (113) 1582 (108) 7843 (.
dnsjava 5(165) 32(139) 213(71) 709 (82) 1058 (54) 3375(50) 13393 (
jEdit 5 (115) 30 (84) 75(53) 154 (48) 2046 (32) 2633 (30) 4247 (:
jposs 5(514) 31(353) 202 (208) 506 (189) 1054 (147) 8775 (150) 8844 (¢
jhotdraw6 17 (21) 32(21) 95(9) 517(10) 9956 (10) 348 (3) 00
junit 5 (40) 42 (39) 935 (18) oo(11) oo(7) 50700 (11) 56637
log4j 5(223) 32(134) 233(68) 1463 (70) 29316 (64) 5718 (42) 33218 (-
org.eclipsejdt.core 5(1606) 31 (1025) 204 (657) 522(631) 1751(392) 6037 (416) 16561 (3
org.eclipse.ui.workbench 5(1184) 31 (783) 127 (414) 380 (464) 1086 (326) 4542 (305) 9407 (2:
scarab 5(653) 31(346) 191(202) 652(159) 755(113) 1987 (137) 17309 (¢
struts 5(221) 31(133) 211(86) 422(103) 1818 (61) 9147 (77) 5759 (
tomcat 5(281) 25(167) 190(111) 411 (120) 1472 (84) 1229 (87) 4844 ((

Table A.12: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CT. The repair model CT is made
from the distribution probability of changes included in ALL transaction bags.

128

A.3. Bug Fix Survey Summary

Repair Size 1 2 3 4 5 6 7
argouml 9(996 370 (638) 13704 (386) 00(362) 00(254) 00(234) 00(197)
carol 8 (30 78 (15) 0o(10) oo(10) oo(7 o0o(13) 00(6)

columba 8 (382
dnsjava 8 (165
jEdit ~ 8(115
jposs 8 (514

182 (255) 8115 (144) oo(146) oo(113
1161 (139) 38837 (71) o0(82) oo(54
153 (84) 70402 (53) oo(48) 0o(32
1600 (353) 14252 (208) oo(189) oo(147

o0(108) o(73)
oo(50) o0(33)
o0(30) 00(29)

oo(150) 0o(86)

Rf‘\ﬁ(‘\

))
))
))
))
))
))
))
junit 8(40) 1759 (39) 0o(18) oo(1l) oo(7) oo(1l) oo(9)
))
))
))
))
))
))

jhotdraw6 7 (21 62 (21) 958 (9) 00(10) oo(10 0o(3) 0o(5)

log4j 7(223 101 (134) 4279 (68) 00(70) oco(64) 00(42) oco(4l) <

org.eclipsejdt.core 8 (1606) 2059 (1025) 81214 (657) o00(631) 00(392) o00(416) o00(314)

org.eclipse.ui.workbench 9 (1184 361 (783) 14231 (414) oo(464) 00(326) ©0(305) o00(215)

scarab 8 (653 85 (346) 4454 (202) 00(159) ©00(113) 00(137) ©0(89) ¢

struts 7 (221 358 (133) 9358 (86) ©00(103) oo(61 o0o(77) 00(39) ¢

tomcat 7 (281 156 (167) 14218 (111) o00(120) oo(84) 00(87) oo(61) ¢
Table A.13: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is

made from the distribution probability of changes included in 1-SC transaction bags.

Repair Size 1 2 3 4 5 6 7

argouml 10 (996) 208 (638) 3043 (386) 33309 (362) 00(254) 00(234) ©0(197

carol 11 (30) 145 (15) 8717 (10) 0o(10) 58205 (7 0o(13) oo(6

columba 11 (382) 151(255) 1995 (144) 51215 (146) o0o(113) o00(108) oo(73

dnsjava 11 (165) 408 (139) 4217 (71) 00(82) oo(54 oo(50) 0o(33

))
))
| i
jEdit 11 (115) 144 (84) 3090 (53) 23302 (48) 00(32) o0(30) oo(29)

jposs 11(514) 290 (353) 3267 (208) 92063 (189) o0(147) 00(150) 0o(86)

jhotdraw6 10 (21) 118 (21) 880 (9) 22708 (10) 00(10) o0o(3) 00o(5)

junit 11 (40) 1285(39) 4353 (18) oo(11) oo(7) oo(11) 00(9)

logdj 7(223) 124(134) 1385 (68) 29454 (70) oco(64) oco(42) oo(4l)

org.eclipsejdt.core 13 (1606) 274 (1025) 5154 (657) 74267 (631) 00(392) o0(416) o0o(314)
org.eclipse.ui.workbench ~ 9(1184) 180 (783) 1879 (414) 32900 (464) 00(326) ©00(305) oo(215)
scarab 10 (653) 126 (346) 1318 (202) 22650 (159) oo(113) o00(137) ©0(89)

struts 11 (221) 218 (133) 2887 (86) 47203 (103) oo(61) 00(77) oo(39)

))

tomcat 10 (281) 160 (167) 2129 (111) 23455 (120) oco(84) o0o(87) oo(61

Table A.14: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is
made from the distribution probability of changes included in 5-SC transaction bags.

129

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

Repair Size 1 2 3 4 5 6 7
argouml 13 (996) 199 (638) 3809 (386) 34189 (362) 00(254) 00(234) ©0(197)
carol 14 (30) 217 (15) 5863 (10) 0o(10) 59433 (7) oo(13) 00(6)
columba 14 (382) 169 (255) 2301 (144) 40661 (146) 0o(113) ©00(108) oo(73)
dnsjava 14 (165) 331 (139) 4509 (71) 76515 (82) oo(b4) 0o(50) oo(33)
jEdit 14 (115) 175 (84) 3754 (53) 20256 (48) 00(32) 00(30) oo(29)
jposs 14 (514) 270 (353) 2782 (208) 64260 (189) 0o(147) oo(150) 00(86)
jhotdraw6 13 (21) 115 (21) 1350 (9) 33871 (10) 00(10) 00(3) oo(5)
junit 14 (40) 1060 (39) 4472 (18) oo(11) oo(7) oo(11) 00(9)

))

))

))

))

))

))

logdj 9(223) 152(134) 1611 (68) 29279 (70) oco(64) oco(42) oo(4l

org.eclipsejdt.core 17 (1606) 296 (1025) 4594 (657) 58172 (631) 00(392) o0(416) oo(314
org.eclipse.ui.workbench 12 (1184) 185 (783) 1989 (414) 26960 (464) 00(326) ©0(305) oo(215
scarab 13 (653) 139 (346) 1581 (202) 20599 (159) o0(113) o0(137) ©0(89

struts 14 (221) 262 (133) 4067 (86) 45897 (103) oo(61 o0o(77) oo(39

tomcat 13 (281) 178 (167) 2499 (111) 17274 (120) oo(84 o0(87) oo(61

Table A.15: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is
made from the distribution probability of changes included in 10-SC transaction bags.

Repair Size 1 2 3 4 5 6 7
argouml 16 (996) 262 (638) 3869 (386) 39846 (362) 00(254) ©00(234) ©0(197)
carol 16 (30) 230 (15) 9186 (10) o0o(10) 70501 (7) oo(13) 00(6)
columba 16 (382) 184 (255) 2759 (144) 34348 (146) 0o(113) ©00(108) oo(73)
dnsjava 16 (165) 359 (139) 5383 (71) 73244 (82) oo(54) oo(B0) oo(33)
jEdit 16 (115) 183 (84) 3393 (53) 24577 (48) 00(32) 00(30) oo(29)
jposs 15(514) 327 (353) 3238 (208) 62760 (189) 00(147) oo(150) oo(86)
jhotdraw6 16 (21) 156 (21) 2171 (9) 50523 (10) 00(10) o0o(3) 00o(5)
junit 16 (40) 1000 (39) 5181 (18) oo(11) oo(7) oo(11) 00(9)

))

) J

))

) J

))

))

logdj 11(223) 183 (134) 2575(68) 39868 (70) oco(64) oco(42) oo(4l

org.eclipsejdt.core 21 (1606) 382 (1025) 5057 (657) 55975 (631) 00(392) o0(416) oo(314
org.eclipse.ui.workbench 15 (1184) 182 (783) 2441 (414) 30919 (464) 00(326) ©0(305) oo(215
scarab 15(653) 173 (346) 2270 (202) 33705(159) o00(113) 00(137) ©0(89

struts 16 (221) 339 (133) 3364 (86) 49330 (103) oo(61 oo(77) o0(39

tomcat 15(281) 187 (167) 2394 (111) 22010 (120) oo (84 00(87) oo(61

Table A.16: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is
made from the distribution probability of changes included in 20-SC transaction bags.

130

A.3. Bug Fix Survey Summary

Repair Size 1 2 3 4 5 6 7

argouml 19 (996) 407 (638) 6487 (386) 99947 (362) 00(254) 00(234) 00(197)

carol 25 (30) 417 (15) 11467 (10) 00(10) o0o(7) oo(13) 00(6)

columba 17 (382) 237 (255) 4376 (144) 51308 (146) 00(113) 00(108) o00(73)

dnsjava 25(165) 508 (139) 7825 (71) 00(82) o00(54) 00(50) 00(33)

jEdit 24 (115) 265 (84) 4044 (53) 34097 (48) 00(32) ©0(30) ©0(29)

jposs 25(514) 422 (353) 6031 (208) 00(189) ©00(147) 00(150) 00(86)

jhotdraw6 19 (21) 423 (21) 5741 (9) 94185(10) oo(10) 0o(3) 0o(5)

junit 25(40) 1213 (39) 9622 (18) oo(11) oo(7) oo(11) 00(9)

log4j 17(223) 352(134) 5801(68) 80747 (70) oo(64) ©00(42) oo(41)

org.eclipsejdt.core 31 (1606) 414 (1025) 7814 (657) 86521 (631) 00(392) o00(416) o0(314)

org.eclipse.ui.workbench 24 (1184) 278 (783) 4583 (414) 47871 (464) 00(326) 00(305) o0(215)

scarab 17 (653) 274 (346) 4646 (202) 59593 (159) 00(113) 00(137) 00(89)

struts 24 (221) 500 (133) 8799 (86) 86343 (103) oco(61) oo(77) ©0(39)

tomcat 18 (281) 340 (167) 4113 (111) 33663 (120) o0o(84) 0o(87) oo(61)
Table A.17: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is

made from the distribution probability of changes included in BFP transaction bags.

Repair Size 1 2 3 4 5 6 7

argouml 19 (996) 364 (638) 5749 (386) 66875 (362) 00(254) 00(234) 00(197)

carol 21 (30) 410 (15) 14905 (10) 00(10) oo(7) oo(13) 00(6)

columba 17 (382) 257 (255) 3770 (144) 51588 (146) o00(113) 00(108) o00(73)

dnsjava 20 (165) 508 (139) 7936 (71) 00(82) o00(54) 00(50) 00(33)

jEdit 19 (115) 281 (84) 4294 (53) 40013 (48) 00(32) ©0(30) ©0(29)

jposs 20(514) 432 (353) 5976 (208) 00(189) 00(147) 00(150) 00(86)

jhotdraw6 19 (21) 400 (21) 4379 (9) 75119 (10) oo(10) 00(3) 0o(5)

junit 20 (40) 985 (39) 7228 (18) oo(11) oo(7) oo(11) 00(9)

log4j 17(223) 291 (134) 5843 (68) 74260 (70) oo(64) 00(42) oo(41)

org.eclipsejdt.core 25 (1606) 375 (1025) 8049 (657) 96672 (631) 00(392) o00(416) o0(314)

org.eclipse.ui.workbench 20 (1184) 288 (783) 3985 (414) 42118 (464) 00(326) 00(305) o00(215)

scarab 17 (653) 277 (346) 4347 (202) 46263 (159) o00(113) 00(137) 00(89)

struts 20 (221) 436 (133) 6330 (86) 83370 (103) oco(61) o0(77) ©0(39)

tomcat 17 (281) 301 (167) 3466 (111) 31254 (120) oo(84) 0o(87) oo(61)

Table A.18: The median number of attempts(in bold) required to find the correct repair
shape of fix transactions. The values in brackets indicate the number of fix transactions
tested per project and per transaction size for repair model CTET. The repair model CTET is
made from the distribution probability of changes included in ALL transaction bags.

131

Appendix A. Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fix:

132

Appendix B

Measuring Software Redundancy

B.1 Dataset

Table [B.1|presents the first and last commit analyzed in our experiments.
P y p

App Commit Analyzed Date
log4 First | bf15d7fe3214cbd4belc2b998de915e7f801efc6 | 2000-11-16
Last | 07576bfa83e14bc856d423dc6f469467dede6f75 | 2013-05-13

.. First | b6a0693454ac8ded32b3alea7c859¢5a840169dc | 2000-12-03
junit Last | da0a727ebfcfee036d760d52£574f7b07aba7df2 | 2013-10-24
. First 07d3c80dcfb199cab6edefdacfa0f6c756c07434 | 2010-02-24
p1co Last 71fe6c004d043650996febb1f2{f33078e3f7dc4 | 2013-07-05
collections First 6aff6757955abc3fc11ed3fleel0e6e1d8351e34 | 2001-04-14
Last 77180£c617907659d2f7cf21cc7f15a74d4£3448 | 2013-06-30

math First | a859606a95d3eca7d8el3e8fff11daabb1a40813 | 2003-05-12
Last | de4209544270def43e39db0d214d1564939{8e40 | 2013-07-08

lang First fe460cb485a9d224b37a521b0ccef616£f786876 | 2002-07-19
Last | 2c454adce3fe771098746879b166ede2284b94f4 | 2013-07-08

Table B.1: Project Features.

B.2 Temporal Redundant commits

We present the temporal redundant commits for each project.
Commons collections
Redundant commits: Global - line

-E:IRedundant commits: Global - token
-[:lRedundant commits: Local - line
-E:IRedundant commits: Local - token

Commons lang
=[:|Redundant commits: Global - line

133

COMMIT - #Redundant fragments
4a2e49fd8daa81cf2ce331c3a3795844e79814b0 2
66c451d618577c1a1e1bf964ff990574782c3bb5 6
e2af015a2f9a11cca79daceca7efe61c1c0f0dc8 3
cb996e1b9858ae03c328448dc7cb920563d0b57d 1
799b3be413b43d3108beb77953389d438058225e 19
9340ca5e760a753988fa6f50e3ad0b1e633e9445 2
2c15f6008092297ef89e29bbbfcc44765abd882e 48
d7e506ef8ed8449a9a9c2ce06f5eb43dc3e7edf8 1
1ebd856d1f7097598a57b9fef6e466be1bdafd81 15
645063548a80c756d460b4516fc9df8c8e3f67d9 2
5be840a7f74a50d7fe2bf3898cc9c82c3737e1b7 1
9f3a1ecf83930ce42e6b43ade7f28f4c7e656943 1
79908ade0a7bca01ff15715cb8f3b7630237bdf3 8
39f52a2f79d2558efad83964344546b1bd7fa9cf 2
c0968cfcee0cbd37871ffd2f15a2b231df3681dd 1
b43554de6ac956256784b3313bdc50e7783fb93d 1
8a93f7c4523002a3e43877ea053b417160383eec 1
f32272a4e505f98611de487709ecaf1e5377a339 1
40e444a3e886acc1114f7b7ed24aa92aaa0121a9 1
b1437124f8002daacd3666b32c0f1a37f7af9b92 3
c87c643b087fe666b6e4c6345f6a7f617232db35 7
5457ede14f77f8915ecd65b2769c3927c22a0c2e 42
f3eec92e788c986c59eaf9741f29f0cd87a98816 1
c45a13dee24e5c2e90cac99548c84e3c3f32b4f5 4
d9883f168e2aff7822e58c2227334a446766e7ad 4
abb9990e0dbf49358d70da7e495824b94882fd09 1
67bb56b13be998b2c87acd5096ab985d771cf59c 1
9fea39c078c0d92807d1b5372aad9af40f1581ae 4
ac6c18f0901b3d678efdee7a0df10c5f1ad270e9 10
2182a43da2f211c7c696cf2f4d2c7d2d9a865c5e 6
f95139faac9c7ea5be51eca9a8bca525fd1733e0 5
fbe5ab65e595ba03f3295f41b673d570ec43ad36 1
2bf26f1d365160ece54dba75583d0d96f05e189d 2
9522bd7085204a99402c9aa33c919de0de0a5d24 1
f99d6d6d41f0731013adfac0666c4ffa38924c16 3
ac06284e5a7c43b27aa5a5346f9e31590e0b82b3 2
c970798db6cafb6791a5d53cb6788bbe0a494e36 4
37b6aedcd013f7f01502e46f0528c9552dc52d96 2
f95865f481e52d438ebd6ea6f1af886333823508 1
51c9effb791416299f32d45b84a569d201be9618 1
e6faf4b4a60727acff04cc6999f15a9a67afd8f4 6
f9045aedf369299cc82048ff592ab510853ae2b3 1
dc805aee2b7ab57d8c358abc5bc9aa16e903e8b0 1
6c9fa119f5488b12020c9c64455efdd56d9c89e1 14
298bf03c22a48da5ddffc23fa3935410965d2784 1
115c961ee4ec4aa47e154c80d242e1995c338f3f 2
ad2987c5ade6a7fb4f87682e888ef1d521b583f0 2
7440726c44a3da14b7dba3b5d59d2f8ee1c83a66 1
f8aa3e033c1fde4a434864f666315b433498d32c 1
ab308f04de08a3c7994a495c34c58ab308091d3f 2
1d5610521f5846c1d6f7d0a65f93c384dbf33e8d 2
c4253f47d57e2eec96da3ccd31f8c366be6ba051 2
fc7d80e70bf22698236f18de96faeab09a6574b1 3
eebcb74fb5e80592aab80f6bbb756026c7812f19 2
218be52809a06a55283b5338f9b159469cbddc5b 1
9976cbe48dc4e3fb5c9cb6b158c070ba8bfdb8f3 1
3057736c79d4ade4c6d45090d92631ae5a1e0b3c 1
f6ac90fca9d2545d9e3fe26b7ad1f9a9e9550a34 2
0145c16a6ff8dced5e3cdb899a250dcd49ef780f 2
76cca602d5bbbfb4b1d1e2d6ece32cdb4495c065 1
028f5281943340ad6afc54bb79d360af88c404b5 2
b9b6f31089fedd0e3288b5ad80771a71ee1a65ca 2
970921c2196d804d7c2d8203881cd340a4d0df3e 1
eb88ae9669fc36a4030b5f6cf27c2ea8b8bb15f8 166
bb8bb80328af3c418e0db641071243125958d9dd 61
8864189257d1f93ac867425082e8280d97c54162 2
045fda850a92afb51ab48db9d242aa45676b2d25 1
4fa2b6e3ac108b4b07d078501d962d3f5f51d940 1
b222008978560449d045cc2d76f9217748d30dc3 1
05f3b74fd581ea5f8946c64edcb293747b4d9a71 2
278eed3e1f7cfef2d39a25aba53f4478c3ad8c58 3
125c820e8d43df150ac09c9da5b38dcc1ea6e03e 1

COMMIT - #Redundant fragments
284b6f5477838fce398036497e1acc206b1eaaeb 4
3761b5514470d3f06c9076b0821430d0c2cb2da7 2
a36442f0d08bb1a5b964b4c77d4c64eaf251c3e9 3
2ecede5902f9a132a632b8431a35daf5174e1a80 1
4a2e49fd8daa81cf2ce331c3a3795844e79814b0 13
530049b41c9f42e11144fbad4d1fec65ff0956e9 4
66c451d618577c1a1e1bf964ff990574782c3bb5 10
51a5b466321a9d86679631fb02cbb31dac80ea32 1
328f30989e98db21269bcb41e9d7c6fbffca9ace 11
c5c64c02d3651b54b959e0107c434b057fd0908d 2
b0a305ab056fe78fdfaff28ede3931f6c4b640e6 16
f22d9bce8c560fcab3c564a8acfabd7b2f53672d 6
90646843f9a8969a819763f01a84b4309dbf4fcb 4
94c4dca82ffb5687398065f3523fc887a61dbabc 5
520dc72714bd71f8c067f9d7f69f250b0bb226b9 7
f247986918494fe62fa901ce3411dfa9fd7beede 7
5155b93eb014f362c97801bb377cb194a31bf7f0 15
236ad31fbd4c5214efb56df7b88cf2d1ebc6c5e5 1
25e0dd13fdc98cdab72850e61a54c55b50647158 13
fedb45760005ba58b28548b4396c8109a1ca9213 1
d0d74a4e1a39a0a461efee5322c235a046187d33 16
f62b8ed90016db2f48658405108b347134379400 5
302cc6fd284b76839d86531698f2b2c5d89be4a9 16
63cf00bf0e331ab087a6a3180df02d0c20b3dc56 6
33f0ab0d4650450b148311b63f7769ad9125a07f 16
e2af015a2f9a11cca79daceca7efe61c1c0f0dc8 7
26fbf885776844497e652b2e00065001bdc9367a 5
c1cdfa611ce2cdd186426f73f41e43f344f2da06 17
e9f2bdc6a5cccaef012d43372d771dbc96099066 4
4ab1ffccbe4bdd1a76a3731f131877cb4264e01d 23
c3a859c1cebce436cc3a29a63b138e8ae8fd63fd 21
df79bf3af4b8304694b67944e9e090dce92d8af2 20
60434941214ae34cee2e1c5c703d9c2ad2f04eaf 1
8191cf918f169980549b0551daf0b407393aceaf 6
8ab071ff5dac65b2587b20940490a3bde4d132d7 17
f26c68bf7bd4f73f1c21eb9d1c197bb2ebf08f2b 143
18c63e1eff6719eac21b55a861d700ad56a00711 47
cb996e1b9858ae03c328448dc7cb920563d0b57d 3
ed1a9d333d2c4afd3faeba8e3e379da9ed9659a2 26
babbe098f8dc329846a09591f34c77559b8beb3d 8
ebdaf3cb688b5fc90a94eb4cf1af36e325f07ae4 35
f7e4fdd91dce2bf39fd47b6ddcd54c01ee9b390a 41
a47d25a4ff3241b79ed53c705bc9f86b3e14fe3d 1
9ba0768cf5f073aa54a5e53c996b4ccffa9679e1 19
3aba1278c34b6b9eff2989fe56602e44f3e1ff21 21
49d9fa86a6fc1b30bc7cedd65a226fececd17b11 10
7b54609df85d51828f83322aad5008167bab54cc 1
db708754f61ed6e39e9b4e14aa0c6dab669ab959 20
12f98e4bc4a79e0e07f826e294bd8011865b596d 1
fe74db761c73a478c4e1c1c7e97efc6b98fe31c1 10
f6d8876a41cbe4d7c32e29509983d1054eebc772 11
50a45217716aef9a244cd446593f358e17c9c8a9 2
44e2acadff842044954c5ff5bc5893ae8c8ab0eb 1
081e3fcc15aca3663511949b39a65d3200e124cf 1
4f633bcf7f1cb4b0c6adbc813637dd04f06a0994 24
fc65ecbb813db74373ca045e83e1f1dc99476066 10
8f77a02066d791c25454a5c19d24e471c4678c20 15
4c71dedc3a7899f7233b7bbdb6b40535f685f66e 2
57335290f7b4552e5f36a1f94bd23cc1581ad2f1 1
a11c82f3bc899de8b69bf69bf0103fba6a3d691e 1
abd1fe5068b1f86f60bc6531f0800eb4d80b8c9a 6
43e7d538398821eb7869657d66d97f9cacf8c6a5 8
dc7995810d77783e329db6557ce80ffd80621e0f 20
799b3be413b43d3108beb77953389d438058225e 37
4b47c895c4fc8de988c3fe5807a9d98b739cb9bd 16
ab1cf8de16226ba6bbdd857266c69557b24d9402 13
22ae5553ac7a63538a6e310959b3921a378ba09e 11
0b3070cdc0d445c860b63b7ab0f5da5da8c35053 10
9340ca5e760a753988fa6f50e3ad0b1e633e9445 6
c08ffff306e7d68d46000359767d6469e36dea59 2
55178c1244565d2cb1fd6efefe14cd253652d76b 15
2c15f6008092297ef89e29bbbfcc44765abd882e 47
a790423ef11361b58f6c52b7d5eaec024b7c630a 2
c07fc446f6a77142c1f05fda2dd5d46f294927d7 53
acf5ebf5a07d7089af1895d7edf9b39087918fea 26
ea11630b2d18338e21b27fb3d434395e1339fa83 10
a164d04789b150a9dfd9a3689d1173944029135a 29
5069664f183c2fdbd05df8f649d579d7016b40c8 15
d7e506ef8ed8449a9a9c2ce06f5eb43dc3e7edf8 1
a3ff1ee25bd280778b33d2af50321f8e80069d23 38
a1dc756f64ccdc6dd02e64f98f76c54f71162d4b 24
d10b146e18ccca360c1aba293275ab74fe895c93 37
487ccad39653b8cafe826f7e36294cb7c0c054b1 10
2298039999ea4b56eb70f686c119974ef94bc95b 1
aa7cc64c4f784b98299b16af08f5df093616bf27 1
a17d133bb2ede9ef195bd3f17cdb988286aa2170 10
cec1f64b00a23664fcbfea4cf5a1950529278cda 1
1ebd856d1f7097598a57b9fef6e466be1bdafd81 24
645063548a80c756d460b4516fc9df8c8e3f67d9 1
5535332edc98db13602bf3d12e0b89429ebe1c54 1
0d7be3b2cf1a7b345fe4b7a50b63f01fc03975c8 8
4bc51a6634f3a51cb7c11d2a5517d7b4fa6cccb6 1
332652dea3e5f500bb0fc70ffc1f73362b45e229 2
17c05ab02e24a7b1f16e261f61c4ebd60befb3d3 10
ebc90b8f603a2cd2fb14ffeb95702cc3e8e75f58 1
5be840a7f74a50d7fe2bf3898cc9c82c3737e1b7 1
bd5708f488770404ef82615704ff070011f28a92 8
43b14025a5920c6cf64c66c39e6c2662e35ab9d4 16
fc34848eb30707ab283ac0b95d80438a23d1b4e4 8
2c106dd4ead8780fe11b0f11cffb030c6b1a0b38 7
8c3f191d5bc8ec86ad020dd077a4fab53b50693e 17
c4d88de091541b05ceab5a591707a3b5fc3bf534 12
fc4c3af2c56b4406d1b6eb58be602274b40391ba 9
9f3a1ecf83930ce42e6b43ade7f28f4c7e656943 1
3e9e81696aa968a258c9759127aaa5ecb84dfba9 1
be72e12a5dc0b35b4ef668db91d960b3ed641e9f 1
c3c28e3daeb3ee747370ff6c7a859744f8e85859 60
949b9ffcb0c999130a85c96ad72d9f5f759a35f7 1
224b2834733f6fdfbf12c6455b351d90fc0553f7 30
04c90229bb4adcdfbb254384f1a7e3cdd59558b6 25
007d3e3702b22b1593eafa42856f867b9c92eb37 29
1088244314d5fb7a5d197ad5d15cf5a85a821f3e 19
0b58a2fb6bb3e866d8bdd1fd05fd81472605c754 1
5c8de4eb74ddcdfb1a4bba50ce6cbdb0c1b7af45 13
79908ade0a7bca01ff15715cb8f3b7630237bdf3 33
333541bc3c4935741a6ebd8bfe98909ed03f299b 14
f8acd98e116824549d77c736a8cf99657b3f7406 3
456adc335431376fa4c81ac8639668a946fa00a4 8
39f52a2f79d2558efad83964344546b1bd7fa9cf 10
0deed47b72830031ecc3a87ebdf0e98657103568 6
29e063ff3f765ce97088a4cf71162855d1f24e3e 2
ce07bf068f682c58d096ae2b0accd01d3a8c98b3 6
594977c2f2fc8393e9042c5c6c1f906deaaacae5 5
c0968cfcee0cbd37871ffd2f15a2b231df3681dd 1
559db22fc253f3ec4690531fddbed457773d053d 24
64f3f8e11bef42726d4306b433e6ae5b2b7a65d4 1
b43554de6ac956256784b3313bdc50e7783fb93d 1
1057e36acf5dac49b9c6166bf9079bdbd918d068 2
92450f814100fb9a45f46a96b7a953360559b4cc 21
473cba8ee35f432d207b0aff48c33d60ceae1ab5 14
8a93f7c4523002a3e43877ea053b417160383eec 1
f32272a4e505f98611de487709ecaf1e5377a339 10
40e444a3e886acc1114f7b7ed24aa92aaa0121a9 1
257ef4a6d4f66985e2caaced5a5802874bc60b8c 20
71488d10223c32949de97d21020e7766e1c2d6a3 1
921ce7e57536109cc10dcc108fdcb1279e479df7 19
ac0e661a18e52e61e167eafaa099bae6a294c329 159
b1437124f8002daacd3666b32c0f1a37f7af9b92 18
b473a5d290736e6e598235085abcc65fa59d0387 19
d5da5df231ec4cce1e738e2c1d87775ce0898c04 4
c87c643b087fe666b6e4c6345f6a7f617232db35 22
1064cdbedb6ee25295a2d40cdadbacd8f9740a02 50
3c5ad2e9ae648de0729d9af6dba2147780e8e55a 24
7a58d2f1b81e04588a872b73a56c77c443583af3 93
7af9515a22742475bbd42312b1664b4f1e96202a 7
399fad2001612b85587dcd2e5639e4b299ff9acf 150
cc584dd49a8406dafe95c1f48ffae1312f17bfbf 210
9fb3ef3b2b722af7bff948cdf2e98dfee5c2183a 4
95f17c0843e6ad5f336253a51c5c31744aae268e 20
568475490875982dbd4fe8cd59ba9aaa5406acb2 61
f0f4b38270857694450d7e0a6608210ce5b8fe1c 19
f3eec92e788c986c59eaf9741f29f0cd87a98816 1
c45a13dee24e5c2e90cac99548c84e3c3f32b4f5 13
d9883f168e2aff7822e58c2227334a446766e7ad 13
abb9990e0dbf49358d70da7e495824b94882fd09 1
ceb49988b8fd59fcc14b6a2715afa84ccba69dcf 4
32200eb896ae3e8ff31194568657585a198f71de 51
2af965bdef98a8af2d12cab34464163f7dce4896 1
67bb56b13be998b2c87acd5096ab985d771cf59c 5
dccae620fe97024289b97d98ca55d6197626c111 1
9fea39c078c0d92807d1b5372aad9af40f1581ae 1
5f7c041ae08986d535106c4faa891ea7446d3317 3
80036ff8a1c8b2d0fa74bb5a841fec91b8dfbf8d 62
f2d99d55bc70a6f456b30346259e887a40d39d9d 19
a00293d5083ff52a0c6d721dfe0947f58a03c9d1 31
1408f0635a0641535296278c632437dbb57fc93b 6
e6d11cfee8120a83426ec51d63ef8cf3a144b702 28
5215e27ed61c4b8423b26b8a97bd786ec6a3a859 24
274b6c5b5ba959c8c27778fd6ad74cb3b7db568b 13
16c0a94d683a8b96bf6780193ac4dbafc0f612bb 1
9b1843b10dbd62adbe29b244da55a39bb04e98a7 6
fc0303fee1abd815842cd54c3f6bb0d3986b7479 1
1672bb3ee0a498338094512cf8902ab158306874 4
e97baa4b4aaf468afe1fe44b5d30a374754eceee 1
5c255a657eb7c33e5aea88c03f65b5b7287eb2df 2
a02862092ab040ea996cfcb4a0aa6eafd9c3ab69 2
17e27dbcd3cd8a3701c1af5029024ea8da8d1f07 18
43923dc65c7e62dcd5c18ed541bc613d33926c6e 46
b31704e939a9baead8c8a1c348f2bff1ec563626 19
2f9c5a08391102e575b0eab980aad0c3d69b228e 13
199716c53fd6c27a530e2ca3250e8a88b16aafac 38
c0b68181f8ace1a13e8da2e148d1e2b167903fe2 8
9bd92c2f243aa9ec93567e68a6e119218915da27 8
b3c30a8d9790becc24f0e8bf6110f50ffc59e690 25
ac6c18f0901b3d678efdee7a0df10c5f1ad270e9 16
c2a8216febe9e03bae9c216b536e672158e6a737 13
845a2177dbabb1fce23183c9d6fffa2c44456758 1
cf68324e1b0580cb745fb9d2d6f096efeeeab24a 3
14e6c1795c85eb32547669cd99d503f4dbffe683 1
156ebc8e093de06adf28224379b9286b1d3004df 3
a249eba720ca2b9430aa23d7091724659dcbbc0b 20
4eee185efdfd5ba82c3e92576a2384e0e62bfa13 14
2182a43da2f211c7c696cf2f4d2c7d2d9a865c5e 31
d56568acdf754d024152dc7d40f965d8cf5b44f4 1
f95139faac9c7ea5be51eca9a8bca525fd1733e0 22
9f992825558cd8602eec5f223ca75dfec56e6fa6 4
28ff2455d823461c1c58c45bfe8b44522d5a932f 5
7d044b046a36f44540cde696f64add23d16a5854 4
17f2f14e8e93b2d4fb9e38d1ffe1451056f703f5 4
5ca563790b3797560d4107a83dfa01b6fa2f95e9 27
b13cb3b3b406f58331c1e36d727e89a060b73343 3
fbe5ab65e595ba03f3295f41b673d570ec43ad36 3
2bf26f1d365160ece54dba75583d0d96f05e189d 4
e55c203d547b667466e7a47705f998e9f9831d40 38
9522bd7085204a99402c9aa33c919de0de0a5d24 1
f99d6d6d41f0731013adfac0666c4ffa38924c16 5
90154dba4b967aa5c71282ec5850b49b823a24e9 1
49c909bea066f28aa5785b8984106d0ee20c5a6a 19
91d751cc0c32c9aef45f1b0ec1cf8dde9e2478b5 9
a04f82b5a70934cd2f7c8f8313e0782a6a2e16ba 26
19a707c06ded92cd315cfd2b4fc78797f2395050 8
457b48b89280190624ea49371bb606423b2f5724 18
a16728cd306f86e69263512451328d370eb61d99 12
b03a47129283461602420aeb3b90090ccecf3e98 23
d3697544eec1ac7c6dce0574ff6949495af9e170 5
ac06284e5a7c43b27aa5a5346f9e31590e0b82b3 4
a162a7925e68fc661bb6d535d4a6a67ac7fa5fe1 16
c970798db6cafb6791a5d53cb6788bbe0a494e36 11
120e4a6b44d89b1ad08f007035379817b29df5dc 1
2e2ac4ba937e08effb258a3ff61fa3c1abac2f5d 2
7b420d714506687c69236ef5b499856a1b1f8b80 12
0b4f8f99f774accc094eb39d44d5286d4a38f5bc 6
1da9c06f4dbcbeb69f01ca24d9a87094312701e7 18
560c4ee8dbb1d38e3e6a2cd0a94e291a06088dea 8
d6b6fe90bc9fb53389973d9d11deb21fc63ac3c5 3
74f2c73b6de16f3476fbc2f935132e0c5e7a1891 1
37b6aedcd013f7f01502e46f0528c9552dc52d96 9
e52c4c50e16cec8e99055f717a78bede32b29d4b 8
f95865f481e52d438ebd6ea6f1af886333823508 3
51c9effb791416299f32d45b84a569d201be9618 8
e6faf4b4a60727acff04cc6999f15a9a67afd8f4 18
f9045aedf369299cc82048ff592ab510853ae2b3 5
266f67e232635a2da4f642f43473f9acd92a182f 1
dc805aee2b7ab57d8c358abc5bc9aa16e903e8b0 1
0fdd5982c32528e4b5d6913e0cd4ce62c0c68bdb 6
d90c123f2f93634d3d9afd216369792b3daa2d94 30
2923c2de86cc179c978cd9d6eff4096ebca0fc72 5
557c0cccf47f680fbb75cba3c93061cf927693f7 2
1fa2dd8d1246b0590f2a73b4427d66615a85797c 4
e1c5f7fb49894fd2c839f54289436bbf90fd975d 8
2cdf3b0ba885f3b800ae475ebadf551729036c15 14
f836ff09ee26537dc66be22532c9baf21beb0cbf 6
16cd754b197377103f0b9d6d4ed5b32f0c668f2c 2
6c9fa119f5488b12020c9c64455efdd56d9c89e1 50
298bf03c22a48da5ddffc23fa3935410965d2784 1
28631ec8adcbbb67553801eb727c18d5635d9087 1
050c817ad5a377a2ab60a51c2f44dad6ce90e106 42
3bedf271e87bef32b672252a1d83ef4466579207 2
115c961ee4ec4aa47e154c80d242e1995c338f3f 9
32769fd16904f052ad19c4164c9784bd2a665787 30
ad2987c5ade6a7fb4f87682e888ef1d521b583f0 5
28749901a9705b49ca77d88a5b8d5b41e69227d4 2
c56039ade9e9bb21a5e02755e1f215ad097e9895 19
7440726c44a3da14b7dba3b5d59d2f8ee1c83a66 1
232af59948165eb5919421fc5a91e6b2e7d19e3d 33
f9588d4debbe6651633483f61ea1af607bd097b4 20
daccd005b34ddada8b41c191cd0985abb75f4e4d 8
cfc1b177ef4365a5dbabc54cb5fc11b52a640387 19
a9c42edbcba77030689b8d21034f081ab38b1bcd 20
9d46da6c8c8283f6e8dba892a7ff08dfc433d0b0 1
b1cd358495cae3df8e0e32147ef433cce83390c8 1
f8aa3e033c1fde4a434864f666315b433498d32c 1
66c4b99ddc7daea806c1318a40736d0f5c8fa7bd 1
5e313d14b2a10ce0aea529ac4db50e183f0b1e49 6
ab308f04de08a3c7994a495c34c58ab308091d3f 2
1d5610521f5846c1d6f7d0a65f93c384dbf33e8d 2
c4253f47d57e2eec96da3ccd31f8c366be6ba051 10
d0df8e55b0d1a8e4a838fa522286963383f0b0a7 5
3af55cd334f9a279aabc5924583a769f9301448b 58
3d70b9cc190765f3c8edc85d47cb44f50d668c30 2
7cf943172b154019d7c6a66f4290272b2144e29a 11
8a5d3acab88bb2ef7416f3141d63f10b79d318cf 3
eb9cff359ceefe9bf4d06b2624e4d751f41aeff4 32
1ef83170fec123b6c29e250cf299c8d01685735f 27
68d2beaf425ed0ef80df467d121e779f60fc4b63 6
fc7d80e70bf22698236f18de96faeab09a6574b1 11
79ff10494b90ba99c339aadb87f6281c97aea966 5
f3eaf2ceae5d49c329ce8675d06b3003eb1ba389 14
0122245f02ba7b22dd40f38c98aa2f08984707bd 9
b8a191f6b756bc038bc1cdfc34986515e6703953 9
0efa8095ce27a953fde092b1fdff9d66f10dcda9 1
1645a0014eee2fa26760d30e6090f89a29cecc69 53
76d2beab1ab337c3344e3bad056c4840b3200a71 20
4b28267c17729f68f875426697d89425ff1e2adf 8
ae565ed8bcc93389b30e2ae5fe2f934aab50baf3 8
8d2b27c1d5a5804250de9ed59afd67437f8c6be6 5
6fa2bab941a4e0b919615182bd8a3a84441c7ad9 10
8416671c320e7f62228ba4c8f794ca5bcf75df46 10
3b29dde3b5f8eca019d3bdd3e7304986f113982e 4
8bdb5613124bd42c4e0d2baece3cca5afc8bb8ef 10
c1c3b44d084f0e35caabc54d7d1cdd2df42a0b19 13
87bd27bed1319fad083aef0c6bed37703e4739d6 19
ab847308ebef61c638dd53815068da542de6a746 6
94fa451d9523564bb5523bc06661ddfedaa25a87 7
c02d4dfcbc346207d1db0c91f532fada020fea6c 6
18b81f0c317de53a0539ad1dbd191f36b64f6cc7 8
0cfaaf89e545f27fd66bc0b113485f349dc26361 9
23c8ad066a4938711aeb9c192911c6a5d8029560 10
8fb4813c012c1ebbc0c04f7b7b0439c1083ad201 23
10af29350dc0b3f79ce6f05fb062827d7eaef415 23
c0aa4fdd160aea3a60b51fc78b4cbabdf2675b32 11
e82b822e1d6a5172e6d948c35860be3787a34037 15
c5ad6f0e0807f07768c6d22da4ea5c717e719743 14
d0072e5872215dce1b58316230165a05205b681c 20
914f0907aa52acb325886426b2f5cd674c8d532a 8
bdc35b5beebbd3c8f4249a97a60e2ffafe31ad3b 8
b9db60ade4ca7d02bbd9b530e12221e5f44e227e 27
11f0510299f61d2d707baeff210ed1dce8d52ed9 4
454ecf2fabb074e460ec5b43da5d1326435d02f8 17
79efcdac2a39ebd854810a65b2ed6f5735706461 5
8fe2b4eed010b2ef1134c63cfd8a0eea0b2b75fc 17
47518afaad9774ff8891141fae6d52abb5b265a4 3
c301ea06f5f32d76b65bfeb920ce0eadc13cd702 26
936ba654ac3f91d11fea7b309dd2c4068e404815 7
23c5be297b5bd2df14a73a35c9bf559510c125a1 6
2b9145c38e2022ca4f2c7409e585dbebae5d0a69 6
1dbcde91cb0dc16af92db6f483e6cd7e10a84493 6
9c4574b68df5eea6d0b1d099d21b546b85b45604 7
fdb0ea56f950e31d2187c47a4010c67446aeba0c 16
e61486f5dc02ac96af52166f0ecf17e58ee1eddc 11
ff9ab0abd69f98fc67739c7e8f365006ac0cff25 54
027b776f7ed02ee144f52275615310885366d941 25
484bfbe25535134e011d72dcdc3ea7cf1154ec6e 26
8d92a78bb64c9e36e5ab92377081d6a7a6072e1d 25
4a1e68e1b8ceb367523a8492000d05f6772803b2 25
ce592ac8173af1e768be6faf7444010b454cfd8e 9
51a2b9eae0ebc9bdd22f7483ff8bbb59c29df4af 17
cb26da928cbd3b499f0a56b31a70d513ee085246 24
80eb00cfc5a34c33736309d051770f568320f017 9
1849be9c791b6fc23ca2a4a0906f4ae047eeb078 7
f39a8763ea1f5cd85a63bb5b9315376caf132a31 8
c4306bc80df304af28caab135d13a74f9f76dc6c 21
80eb808cc1a2c5250bbc46cdca2eee5aa994f8bf 30
1f5561a76651c9e33070fc92db405a52d25b22d9 5
3c1072a711dbcae3eff59a99d7412b3c4487af4e 42
60425a423fe4cc430c13b10687dd34a2fb12b14c 8
c33b575cfca19782da1dcf6e3d587e8f2f7bcf87 19
e5cc68b926fd076d7b08a3bcff2241e45b0d82fc 4
bdfea5682bf3331a8102a8f6b44b311a6a6ef023 6
ede856f90cd99a96b195e9421f429d6feb3ad26b 6
be26bc6f09b66e3aeb09fc0485a24b7e73c588f6 11
43f9c6f97f6d3ece6c847643a74319ff1eb7c8d5 29
a5422f9b401355039ab224f4ce8325adfcb41aa1 12
f260eb5dc46a6d0b82a367b86510698183bbe21c 1
6a2b7c9831df1491673d882758d86af52d0aa8ff 1
2e29ad2a8fd33955b488c1edd0b312a6837b7cb9 13
73579cc5ef885911645dcb65b03ebf16afdf628e 6
4016c8eec992ab62747a55dcfb4be1878ecc232c 2
eebcb74fb5e80592aab80f6bbb756026c7812f19 9
f208babdc092ef6de26126fa81f20f47c49cabc0 11
bcdca8e6c9930f0ab2b40f1b752bdaa00914ce22 6
c9e19ce6cde755b4f6c03002d1ff99010e364063 1
5cabc0f86f8ee622f22fa5b2a2f04b083e22e6ad 1
fb3daab4fdded1c8dd1a4c645e5c864fb61f4d25 3
2d2aefe3613c2b80b24d55331aa806ddbeca6b09 7
218be52809a06a55283b5338f9b159469cbddc5b 7
9976cbe48dc4e3fb5c9cb6b158c070ba8bfdb8f3 7
342ac1462c364646387dd37f3b61c713645c42ed 6
0a31bb5731464cb3594cdb25fccb657e576acb39 4
3057736c79d4ade4c6d45090d92631ae5a1e0b3c 4
1c949d0a7104dbb7c0f266765bac87cc33cf7eb6 4
1fb865ca56e88cae4bec20320c3e3717c8d77ffc 4
8d4d6cc5d495599dcc05848e287bc06b07dba61d 3
4675fcd99f34abcbc008713c991aca602db8efa7 11
fa805c373231a57149dd5b7ac2fc49a85f09eea3 13
8f9fe40f7c9456b67bfdb5fed4529135fd7385f2 9
d4c9c2c7bf40044db837f1bdf55d87d27c047221 1
bf15307ea1a80a4a79561a6f9b32851a77cb5447 9
bc1660101609fd4861d20a07b8a05cdfb57c347c 13
73623d108ca8c7c3c4b3319012a218634df96f7f 5
ff8d2b1afdc9535c29c1a335256619000a263d43 3
b2152cf62766afacdd711ddff1b41b8f5a0139f6 1
452e51e94915d474e0c90ce3a2d62c17e5dd3911 13
e6f8d11ba96e59db86e3c54512a6f38d79366b12 1
a6e67175e053c731e07724f1e663c17e71a95010 4
95e20438a0c5f2469f5abdf3274c0bfabcadb31b 13
db079b02f614f25b44eb89b1e3315f9d984f0d3b 13
6a849937f5c587a7522bf184c008df3411063788 13
a75a36299ddd1edeb525f241064d0c51211ca7a1 4
2d69bd58abc09938a7d0d9e19e15351d9fc50082 10
f6ac90fca9d2545d9e3fe26b7ad1f9a9e9550a34 6
b8e474dbf0ff926ea007a1e201505400bcd32816 8
7a36e60c96845de37b88083f7a01d2cca696499c 1
898a12b6bf181edab185206f6dd413204ec6ab08 7
a99c022fbb9ce7c5da00992a125fc0e8ae848509 7
7d1c0ab0904c43eef9c20ff38fb56f7215e5743b 7
ed3d9ab90be17fcf527b79ba140d5b5dae5c4310 6
0145c16a6ff8dced5e3cdb899a250dcd49ef780f 10
76cca602d5bbbfb4b1d1e2d6ece32cdb4495c065 9
07947bd69ee6d5e87eb4ef11cb0ff1d44af49e0e 6
99be993a400eea807afe8bc0441c5c95ac88cca2 33
d4747e7edc8eebda778930e2b1d68fbd668ffbf9 2
829da75d826e71c7e73188fe67dbbd314929e387 14
3545b25d595b770bac5586007e7fc54a39d24ad9 2
028f5281943340ad6afc54bb79d360af88c404b5 1
716a128f2a6662142c13f9ebe15702577811f696 4
b9b6f31089fedd0e3288b5ad80771a71ee1a65ca 12
970921c2196d804d7c2d8203881cd340a4d0df3e 5
eb88ae9669fc36a4030b5f6cf27c2ea8b8bb15f8 130
c531834764c31d56332b0918d404c3dbbf02ccac 26
19de811cafeb55fb519965cd89427416798e3040 6
f3e93a52db74730aeb06ed4e8445d12c61d9f193 23
cb9f11c0c3342b3b3cc4453a174fbc0eddffde78 29
ff9488b31ec4a6056f55c32ad3629de31e987ab7 18
a753ba0a0340dfab360d3932ea1e45de93689586 13
cae889f3c01cd6e022d98530e867eb48abc03427 27
6db6aa496f268b7f7dd846ba7e01b69402794172 7
87d923f0d72c5e81105e6a1f8958e7800b79ef07 15
902ee25dcfb3f2a14d3dd8a9778f16b68611baaa 9
44709d8b2a99a9ac12619ba0c65196c06178e53b 6
c2d22264b029c47fb14d39cc9c4c397401e304d1 6
3293227598815108545fbe6b915a7db477b20215 3
c7e9e83f831de261eefbf0e29380fff125eb9eb3 6
7c8c58f1468023e4512d13a0b9fc60df9a3b15ce 10
1dee765d2d158830df3cb733bc257f9729343046 1
352444404d1ffffdb4f23abb9666770e557458bf 1
f2086a2105b489f58228e3563d3134bfec243787 6
c94dfb59c00ea9a6aa72f4e4e46e2bb7aff342df 11
a9b11e2cf29b824a638f0a03b662d412d2c7b140 6
b24253a157fc0860dfb2225f3eb35f54d96f188d 6
335f3c48020033d2e0407949690e9f409b660c1e 6
60a3e7c07aa7ac8102ee5b31fbdebb2c6c84f609 6
2f4d235479eabab92cddba408b56d6abf943ad2c 13
37ace6950e0c63b4bfe3bb602be1fac9176ab1ba 6
20fdf174fee023f6d816771300e034d5f13947f6 2
5486a179db84a4fff5250f061fe0e491e5755f5e 6
203a81890dab734f6f58c536f3b25dd82aeb736c 5
bb8bb80328af3c418e0db641071243125958d9dd 76
6b73b4d72de6d4b5adea2431c467765734643dcb 10
db3e08d2b748aa2db68fa10605e19abb4253f2c8 11
ff79ffc8262b796be4e52d37e6da1a64dc7abdfc 7
ab7f253ce528d3898211cbac9597e7095b355613 12
14eff09f2144f2f1b5d77f875e325bef950d346f 6
30bbfaf6d6920bca647889026339a13dd63d6736 1
459f14b33c02509a4b9cc5360f3ff2f4edba9284 14
922da12f3f7d84355755082351e488575736031c 6
61fe60ef9db30f810b7afc743a6a2a3cf45a7dcf 30
614013ae31c57bcd322ce2f2c2f997d94c332d59 2
2f87b3c187da860fd22bdd30af584e20b9a5b045 3
677f9b4e26f98a2f42ca9304e8551c6a21fc3794 1
dec0641e2f189c89e931b4ab59a06384582316b1 26
0d9e0821e0101abfa719b042b28a3286377e732e 2
f0974d3b28d1049018ad2fbcf4b3284eff6b9f20 1
af2d6e62f3f524c90d25bfc831d5b14e001a153b 1
784f4752fc91354286cf748d9f5294510a26748a 2
9aea104d8abb2269d032e13b70edc9d94c2cb2e9 1
5546efd9f7cb1055d30af938f5bf22b2977a5ffa 1
8aa8f5e67f3a4ffc48b3246e0974bf92cf7aa0a9 2
8747f6eaab8545b18ff530e4c26be8fbc02537f6 2
aed4c18c1385ffc77ea04de60423555b62675315 2
bac08c04d4bcd15c20979cc9a37749247467a054 2
80ec6a5e29bf3686abddd468b4502dac28e47b2f 14
8864189257d1f93ac867425082e8280d97c54162 1
9d6a3eb828b793c170c29e9efbdccb581dd470ed 5
76d6a4b8e4403a99bb670fdba799f3e03240cdba 5
6b5042cb52cea6b28c1e626bfb3625db61c637b2 5
5011f8cabdadf7a125e1a9f6dcf05edd2a667cab 10
4dbcfeffbfef90f72a2cd5439128dd7cd6a89072 4
c2b58d4ac760fe0b3df9f895fe73d61a4d15110b 29
84117970281c1b332b72d500d6c68daa826b3ebf 3
c6f0df6546279edfabae2755713aca33798fa19f 34
045fda850a92afb51ab48db9d242aa45676b2d25 5
89d8791f05f0d28199820e87c683696f96d42f40 44
bb9952dbedc77f25fffda32d96e6494e2246bab3 14
8106e483345dc343067d22d33a2e6bbacc141c47 4
b88692f83a938e31fd5f703c99db2a5720cd9f3e 7
e15f419b0c86047b1c689e6bb64b7beba180e4e0 1
cdfd6b7a6784246360fe77fe3789696b8b93d877 4
d5d29b625fef0a6b6c69fca9c03330d85de585de 11
a2be810bb5f1d66473b6c30f1bcf7d0944156ccc 1
c340a74c7ecfdef96ee5e1407f40d026cc3f12f1 1
6cf9d485abe2400e69eb403d58e00eb00297a5a0 6
8f672e373e2e169477ad886b2893ffd178d5ff2b 1
e230b2d40e07bd875f4baad4c9702ce8aedd348a 1
5dd750e7454aaec16f78b5ebf45d805392b2164b 1
cce4634e79fd3d74d6086ae09672fc716509c4c9 1
e7e13dda7ee8b0584f40940cf3498646711f4ef6 7
f7a557a38ad44c819fb139203f99c188c0e92604 1
a48cafa52e5744638d6a8cfc37ece9c8f71430e3 4
59d26337708a87b1b6a9f4f2fea52fb4383d02ad 23
766d9add03d4bd3dad2d23cd573de873854d045d 37
803a9c6c17efbc98bc9513e6bf7e6900d4dbae2c 9
fad4f969df9c90a425851b66363dfea9c8d3b5d0 18
bca5b3c0fffc469faefa71fe61f6a28f3d24bda8 2
696c7687162c70ba9de930af0327639b03680995 1
2a5a1d0d7730961f2046098ffe337cf1ee067f5b 1
ce86f3f8aa7ecaa12f2c62737a801a73f6e386ab 5
e7ae9283baaef264903865e8538dbfd8f98cdb1b 34
feb7b2fe0cb315bc6f0d38dcb3fcf30462055347 5
f2b49b393c8ab160a236af2db6cddd545fe4f941 2
4a64a89920cc65389b9a93455defbdb4678937c5 5
6594da9e364bc4a168a8710bb5bb8493cc8acb36 10
fcf4320023d468df672d9773c3a2755b7857b296 8
4fa2b6e3ac108b4b07d078501d962d3f5f51d940 1
44dc835e0a40b57fbb505c30b3ffa6adb8663493 30
2bed7ce3f71b9be7b53f9cc98dd059094ab29a1e 1
63252b4946731f92d6b137d24272c45be961cc4c 3
5ce18d64877a7412fb00180605db7ed1f30c6c3f 20
b222008978560449d045cc2d76f9217748d30dc3 1
c7f3ce1ab6f16b8f976c5b9e2fa6e39e034a9c20 1
8041ccfe10b1a619d32b83ae7552a7c64bc0097c 1
cde8451d6395adb24f66bbb1ae0e4176c6fd6718 1
7f0046cf4e2161f0145e0e59a1b9684b04061916 1
b236d5259f95b755aa5e1d955c8f835312047d77 1
8fe95aaec201acc964ffca80954e60f7c57d7413 2
d5b16405c77037e37bd180843c1eba79117da7a6 1
d3aa5b77428d77f5954e30b14e7385c15f6f398b 1
83119a80aa1551bea003ea6b9e65b616b7795246 1
c4de3dd2bb8afb3323fc3aaf394a463aa4222768 1
f7f4b909d0961528c9b02ca5492b2a57a8df8bbe 1
bb3d861fcde210e45f3d3ac59d8ee6e1e4086cb9 4
361b73775230d91b4ad9ed588d6d57f3a049e907 5
05f3b74fd581ea5f8946c64edcb293747b4d9a71 4
43e4df85bda71ca1500112912a83d3ed19868c4c 11
8283d966f47280f682a1407d499346a383d1b1a5 31
5878adfaf37ce37e6988956e4cd5c833c6ec61be 37
ace5ba00f7067d517a35713f439344f24144fb79 1
67e443370e06288fb2702d62c0206221413ab852 1
9687cf07f34bbf5f67c17e75cadd287b9f6662cb 1
94cfd56bd9092e0fd8579120630dba0c857b7777 1
077913c7e9eb8e4cf8863b7545bf53c2923066cc 2
278eed3e1f7cfef2d39a25aba53f4478c3ad8c58 20
1fe64733a2a28b795bddb152e9adf7489b6ea7c2 2
709aa7bf9c998cc75f6e0be7d258aa5a07ebce8b 30
cdacd4a987755572bd4d6d328b371644ac07ecd2 7
edd64cfd822ae2ca2faa8dc1c73edc38a6e19f0f 9
4a025d3f8e31bc3e944399990b3a4baedb90e630 2
0dee0324f694b1e035b9c3dcc6923278defe1d3e 12
136b96c803ce4353f2cca2b24171ddbe74345fe6 2
68c0a80d17688d6d56644deaaaec5d3575042587 22
125c820e8d43df150ac09c9da5b38dcc1ea6e03e 2
7df57879c92a467cd71860e6cfe14a04a49fd031 13
fe63f95fbff43495e57ebc37350798dee024cf9a 19

COMMIT - #Redundant fragments
66c451d618577c1a1e1bf964ff990574782c3bb5 6
e2af015a2f9a11cca79daceca7efe61c1c0f0dc8 3
2c15f6008092297ef89e29bbbfcc44765abd882e 48
d7e506ef8ed8449a9a9c2ce06f5eb43dc3e7edf8 1
1ebd856d1f7097598a57b9fef6e466be1bdafd81 15
645063548a80c756d460b4516fc9df8c8e3f67d9 2
5be840a7f74a50d7fe2bf3898cc9c82c3737e1b7 1
9f3a1ecf83930ce42e6b43ade7f28f4c7e656943 1
79908ade0a7bca01ff15715cb8f3b7630237bdf3 8
c0968cfcee0cbd37871ffd2f15a2b231df3681dd 1
8a93f7c4523002a3e43877ea053b417160383eec 1
b1437124f8002daacd3666b32c0f1a37f7af9b92 3
c87c643b087fe666b6e4c6345f6a7f617232db35 7
5457ede14f77f8915ecd65b2769c3927c22a0c2e 42
d9883f168e2aff7822e58c2227334a446766e7ad 4
abb9990e0dbf49358d70da7e495824b94882fd09 1
9fea39c078c0d92807d1b5372aad9af40f1581ae 4
f95139faac9c7ea5be51eca9a8bca525fd1733e0 5
ac06284e5a7c43b27aa5a5346f9e31590e0b82b3 2
c970798db6cafb6791a5d53cb6788bbe0a494e36 4
f95865f481e52d438ebd6ea6f1af886333823508 1
51c9effb791416299f32d45b84a569d201be9618 1
e6faf4b4a60727acff04cc6999f15a9a67afd8f4 6
f9045aedf369299cc82048ff592ab510853ae2b3 1
dc805aee2b7ab57d8c358abc5bc9aa16e903e8b0 1
6c9fa119f5488b12020c9c64455efdd56d9c89e1 14
298bf03c22a48da5ddffc23fa3935410965d2784 1
f8aa3e033c1fde4a434864f666315b433498d32c 1
1d5610521f5846c1d6f7d0a65f93c384dbf33e8d 2
fc7d80e70bf22698236f18de96faeab09a6574b1 3
76cca602d5bbbfb4b1d1e2d6ece32cdb4495c065 1
028f5281943340ad6afc54bb79d360af88c404b5 2
b9b6f31089fedd0e3288b5ad80771a71ee1a65ca 2
970921c2196d804d7c2d8203881cd340a4d0df3e 1
eb88ae9669fc36a4030b5f6cf27c2ea8b8bb15f8 171
bb8bb80328af3c418e0db641071243125958d9dd 65
278eed3e1f7cfef2d39a25aba53f4478c3ad8c58 3
125c820e8d43df150ac09c9da5b38dcc1ea6e03e 1

COMMIT - #Redundant fragments
284b6f5477838fce398036497e1acc206b1eaaeb 4
3761b5514470d3f06c9076b0821430d0c2cb2da7 4
a36442f0d08bb1a5b964b4c77d4c64eaf251c3e9 9
2ecede5902f9a132a632b8431a35daf5174e1a80 1
530049b41c9f42e11144fbad4d1fec65ff0956e9 4
66c451d618577c1a1e1bf964ff990574782c3bb5 10
51a5b466321a9d86679631fb02cbb31dac80ea32 1
328f30989e98db21269bcb41e9d7c6fbffca9ace 11
c5c64c02d3651b54b959e0107c434b057fd0908d 2
b0a305ab056fe78fdfaff28ede3931f6c4b640e6 16
f22d9bce8c560fcab3c564a8acfabd7b2f53672d 6
90646843f9a8969a819763f01a84b4309dbf4fcb 4
94c4dca82ffb5687398065f3523fc887a61dbabc 5
236ad31fbd4c5214efb56df7b88cf2d1ebc6c5e5 1
25e0dd13fdc98cdab72850e61a54c55b50647158 13
f62b8ed90016db2f48658405108b347134379400 5
33f0ab0d4650450b148311b63f7769ad9125a07f 16
e2af015a2f9a11cca79daceca7efe61c1c0f0dc8 7
26fbf885776844497e652b2e00065001bdc9367a 5
c1cdfa611ce2cdd186426f73f41e43f344f2da06 17
e9f2bdc6a5cccaef012d43372d771dbc96099066 4
4ab1ffccbe4bdd1a76a3731f131877cb4264e01d 23
df79bf3af4b8304694b67944e9e090dce92d8af2 20
cb996e1b9858ae03c328448dc7cb920563d0b57d 3
a47d25a4ff3241b79ed53c705bc9f86b3e14fe3d 7
9ba0768cf5f073aa54a5e53c996b4ccffa9679e1 34
49d9fa86a6fc1b30bc7cedd65a226fececd17b11 10
7b54609df85d51828f83322aad5008167bab54cc 1
db708754f61ed6e39e9b4e14aa0c6dab669ab959 20
12f98e4bc4a79e0e07f826e294bd8011865b596d 1
f6d8876a41cbe4d7c32e29509983d1054eebc772 11
50a45217716aef9a244cd446593f358e17c9c8a9 2
44e2acadff842044954c5ff5bc5893ae8c8ab0eb 1
081e3fcc15aca3663511949b39a65d3200e124cf 1
4c71dedc3a7899f7233b7bbdb6b40535f685f66e 2
a11c82f3bc899de8b69bf69bf0103fba6a3d691e 1
abd1fe5068b1f86f60bc6531f0800eb4d80b8c9a 18
4b47c895c4fc8de988c3fe5807a9d98b739cb9bd 17
2c15f6008092297ef89e29bbbfcc44765abd882e 47
a790423ef11361b58f6c52b7d5eaec024b7c630a 2
c07fc446f6a77142c1f05fda2dd5d46f294927d7 53
acf5ebf5a07d7089af1895d7edf9b39087918fea 26
ea11630b2d18338e21b27fb3d434395e1339fa83 10
5069664f183c2fdbd05df8f649d579d7016b40c8 15
d7e506ef8ed8449a9a9c2ce06f5eb43dc3e7edf8 1
a3ff1ee25bd280778b33d2af50321f8e80069d23 68
a1dc756f64ccdc6dd02e64f98f76c54f71162d4b 24
487ccad39653b8cafe826f7e36294cb7c0c054b1 10
aa7cc64c4f784b98299b16af08f5df093616bf27 1
cec1f64b00a23664fcbfea4cf5a1950529278cda 3
1ebd856d1f7097598a57b9fef6e466be1bdafd81 24
645063548a80c756d460b4516fc9df8c8e3f67d9 2
5be840a7f74a50d7fe2bf3898cc9c82c3737e1b7 1
43b14025a5920c6cf64c66c39e6c2662e35ab9d4 16
2c106dd4ead8780fe11b0f11cffb030c6b1a0b38 7
c4d88de091541b05ceab5a591707a3b5fc3bf534 12
fc4c3af2c56b4406d1b6eb58be602274b40391ba 9
9f3a1ecf83930ce42e6b43ade7f28f4c7e656943 1
3e9e81696aa968a258c9759127aaa5ecb84dfba9 1
be72e12a5dc0b35b4ef668db91d960b3ed641e9f 1
949b9ffcb0c999130a85c96ad72d9f5f759a35f7 1
79908ade0a7bca01ff15715cb8f3b7630237bdf3 33
f8acd98e116824549d77c736a8cf99657b3f7406 6
39f52a2f79d2558efad83964344546b1bd7fa9cf 10
ce07bf068f682c58d096ae2b0accd01d3a8c98b3 6
c0968cfcee0cbd37871ffd2f15a2b231df3681dd 1
473cba8ee35f432d207b0aff48c33d60ceae1ab5 20
8a93f7c4523002a3e43877ea053b417160383eec 1
f32272a4e505f98611de487709ecaf1e5377a339 10
71488d10223c32949de97d21020e7766e1c2d6a3 1
b1437124f8002daacd3666b32c0f1a37f7af9b92 20
d5da5df231ec4cce1e738e2c1d87775ce0898c04 4
c87c643b087fe666b6e4c6345f6a7f617232db35 22
7af9515a22742475bbd42312b1664b4f1e96202a 7
f3eec92e788c986c59eaf9741f29f0cd87a98816 1
c45a13dee24e5c2e90cac99548c84e3c3f32b4f5 13
d9883f168e2aff7822e58c2227334a446766e7ad 13
abb9990e0dbf49358d70da7e495824b94882fd09 1
2af965bdef98a8af2d12cab34464163f7dce4896 2
dccae620fe97024289b97d98ca55d6197626c111 1
9fea39c078c0d92807d1b5372aad9af40f1581ae 1
274b6c5b5ba959c8c27778fd6ad74cb3b7db568b 13
16c0a94d683a8b96bf6780193ac4dbafc0f612bb 1
fc0303fee1abd815842cd54c3f6bb0d3986b7479 1
5c255a657eb7c33e5aea88c03f65b5b7287eb2df 2
9bd92c2f243aa9ec93567e68a6e119218915da27 14
ac6c18f0901b3d678efdee7a0df10c5f1ad270e9 16
845a2177dbabb1fce23183c9d6fffa2c44456758 1
156ebc8e093de06adf28224379b9286b1d3004df 3
d56568acdf754d024152dc7d40f965d8cf5b44f4 1
f95139faac9c7ea5be51eca9a8bca525fd1733e0 22
b13cb3b3b406f58331c1e36d727e89a060b73343 6
2bf26f1d365160ece54dba75583d0d96f05e189d 4
49c909bea066f28aa5785b8984106d0ee20c5a6a 19
19a707c06ded92cd315cfd2b4fc78797f2395050 8
ac06284e5a7c43b27aa5a5346f9e31590e0b82b3 4
a162a7925e68fc661bb6d535d4a6a67ac7fa5fe1 16
c970798db6cafb6791a5d53cb6788bbe0a494e36 11
120e4a6b44d89b1ad08f007035379817b29df5dc 1
2e2ac4ba937e08effb258a3ff61fa3c1abac2f5d 2
0b4f8f99f774accc094eb39d44d5286d4a38f5bc 6
d6b6fe90bc9fb53389973d9d11deb21fc63ac3c5 3
74f2c73b6de16f3476fbc2f935132e0c5e7a1891 1
e52c4c50e16cec8e99055f717a78bede32b29d4b 8
f95865f481e52d438ebd6ea6f1af886333823508 3
51c9effb791416299f32d45b84a569d201be9618 8
e6faf4b4a60727acff04cc6999f15a9a67afd8f4 18
f9045aedf369299cc82048ff592ab510853ae2b3 5
266f67e232635a2da4f642f43473f9acd92a182f 1
dc805aee2b7ab57d8c358abc5bc9aa16e903e8b0 1
0fdd5982c32528e4b5d6913e0cd4ce62c0c68bdb 12
2923c2de86cc179c978cd9d6eff4096ebca0fc72 5
557c0cccf47f680fbb75cba3c93061cf927693f7 2
1fa2dd8d1246b0590f2a73b4427d66615a85797c 4
e1c5f7fb49894fd2c839f54289436bbf90fd975d 8
2cdf3b0ba885f3b800ae475ebadf551729036c15 14
16cd754b197377103f0b9d6d4ed5b32f0c668f2c 2
6c9fa119f5488b12020c9c64455efdd56d9c89e1 58
298bf03c22a48da5ddffc23fa3935410965d2784 1
28631ec8adcbbb67553801eb727c18d5635d9087 4
3bedf271e87bef32b672252a1d83ef4466579207 47
115c961ee4ec4aa47e154c80d242e1995c338f3f 9
28749901a9705b49ca77d88a5b8d5b41e69227d4 2
7440726c44a3da14b7dba3b5d59d2f8ee1c83a66 4
f8aa3e033c1fde4a434864f666315b433498d32c 1
66c4b99ddc7daea806c1318a40736d0f5c8fa7bd 1
5e313d14b2a10ce0aea529ac4db50e183f0b1e49 6
ab308f04de08a3c7994a495c34c58ab308091d3f 2
1d5610521f5846c1d6f7d0a65f93c384dbf33e8d 2
c4253f47d57e2eec96da3ccd31f8c366be6ba051 10
d0df8e55b0d1a8e4a838fa522286963383f0b0a7 5
3d70b9cc190765f3c8edc85d47cb44f50d668c30 2
7cf943172b154019d7c6a66f4290272b2144e29a 11
8a5d3acab88bb2ef7416f3141d63f10b79d318cf 3
fc7d80e70bf22698236f18de96faeab09a6574b1 11
79ff10494b90ba99c339aadb87f6281c97aea966 5
f3eaf2ceae5d49c329ce8675d06b3003eb1ba389 14
b8a191f6b756bc038bc1cdfc34986515e6703953 9
0efa8095ce27a953fde092b1fdff9d66f10dcda9 1
4016c8eec992ab62747a55dcfb4be1878ecc232c 2
bcdca8e6c9930f0ab2b40f1b752bdaa00914ce22 6
fb3daab4fdded1c8dd1a4c645e5c864fb61f4d25 3
0a31bb5731464cb3594cdb25fccb657e576acb39 4
3057736c79d4ade4c6d45090d92631ae5a1e0b3c 4
1c949d0a7104dbb7c0f266765bac87cc33cf7eb6 4
1fb865ca56e88cae4bec20320c3e3717c8d77ffc 4
8d4d6cc5d495599dcc05848e287bc06b07dba61d 3
4675fcd99f34abcbc008713c991aca602db8efa7 20
8f9fe40f7c9456b67bfdb5fed4529135fd7385f2 9
d4c9c2c7bf40044db837f1bdf55d87d27c047221 1
bf15307ea1a80a4a79561a6f9b32851a77cb5447 9
ff8d2b1afdc9535c29c1a335256619000a263d43 3
b2152cf62766afacdd711ddff1b41b8f5a0139f6 1
e6f8d11ba96e59db86e3c54512a6f38d79366b12 1
a6e67175e053c731e07724f1e663c17e71a95010 4
a75a36299ddd1edeb525f241064d0c51211ca7a1 4
2d69bd58abc09938a7d0d9e19e15351d9fc50082 39
f6ac90fca9d2545d9e3fe26b7ad1f9a9e9550a34 8
7a36e60c96845de37b88083f7a01d2cca696499c 1
898a12b6bf181edab185206f6dd413204ec6ab08 7
76cca602d5bbbfb4b1d1e2d6ece32cdb4495c065 9
d4747e7edc8eebda778930e2b1d68fbd668ffbf9 2
3545b25d595b770bac5586007e7fc54a39d24ad9 2
028f5281943340ad6afc54bb79d360af88c404b5 1
b9b6f31089fedd0e3288b5ad80771a71ee1a65ca 12
970921c2196d804d7c2d8203881cd340a4d0df3e 5
eb88ae9669fc36a4030b5f6cf27c2ea8b8bb15f8 374
19de811cafeb55fb519965cd89427416798e3040 6
a753ba0a0340dfab360d3932ea1e45de93689586 13
87d923f0d72c5e81105e6a1f8958e7800b79ef07 37
902ee25dcfb3f2a14d3dd8a9778f16b68611baaa 9
44709d8b2a99a9ac12619ba0c65196c06178e53b 8
c2d22264b029c47fb14d39cc9c4c397401e304d1 8
3293227598815108545fbe6b915a7db477b20215 3
c7e9e83f831de261eefbf0e29380fff125eb9eb3 6
7c8c58f1468023e4512d13a0b9fc60df9a3b15ce 14
20fdf174fee023f6d816771300e034d5f13947f6 2
203a81890dab734f6f58c536f3b25dd82aeb736c 5
ab7f253ce528d3898211cbac9597e7095b355613 12
30bbfaf6d6920bca647889026339a13dd63d6736 2
61fe60ef9db30f810b7afc743a6a2a3cf45a7dcf 30
614013ae31c57bcd322ce2f2c2f997d94c332d59 2
2f87b3c187da860fd22bdd30af584e20b9a5b045 3
677f9b4e26f98a2f42ca9304e8551c6a21fc3794 1
0d9e0821e0101abfa719b042b28a3286377e732e 2
f0974d3b28d1049018ad2fbcf4b3284eff6b9f20 1
af2d6e62f3f524c90d25bfc831d5b14e001a153b 2
784f4752fc91354286cf748d9f5294510a26748a 2
8747f6eaab8545b18ff530e4c26be8fbc02537f6 2
aed4c18c1385ffc77ea04de60423555b62675315 2
bac08c04d4bcd15c20979cc9a37749247467a054 2
80ec6a5e29bf3686abddd468b4502dac28e47b2f 14
8864189257d1f93ac867425082e8280d97c54162 1
76d6a4b8e4403a99bb670fdba799f3e03240cdba 15
6b5042cb52cea6b28c1e626bfb3625db61c637b2 13
5011f8cabdadf7a125e1a9f6dcf05edd2a667cab 10
4dbcfeffbfef90f72a2cd5439128dd7cd6a89072 4
c2b58d4ac760fe0b3df9f895fe73d61a4d15110b 29
84117970281c1b332b72d500d6c68daa826b3ebf 3
bb9952dbedc77f25fffda32d96e6494e2246bab3 14
8106e483345dc343067d22d33a2e6bbacc141c47 4
b88692f83a938e31fd5f703c99db2a5720cd9f3e 7
a2be810bb5f1d66473b6c30f1bcf7d0944156ccc 13
c340a74c7ecfdef96ee5e1407f40d026cc3f12f1 3
6cf9d485abe2400e69eb403d58e00eb00297a5a0 6
5dd750e7454aaec16f78b5ebf45d805392b2164b 8
cce4634e79fd3d74d6086ae09672fc716509c4c9 5
e7e13dda7ee8b0584f40940cf3498646711f4ef6 7
f7a557a38ad44c819fb139203f99c188c0e92604 1
696c7687162c70ba9de930af0327639b03680995 1
2a5a1d0d7730961f2046098ffe337cf1ee067f5b 1
feb7b2fe0cb315bc6f0d38dcb3fcf30462055347 5
4fa2b6e3ac108b4b07d078501d962d3f5f51d940 1
2bed7ce3f71b9be7b53f9cc98dd059094ab29a1e 1
63252b4946731f92d6b137d24272c45be961cc4c 3
8041ccfe10b1a619d32b83ae7552a7c64bc0097c 5
cde8451d6395adb24f66bbb1ae0e4176c6fd6718 1
7f0046cf4e2161f0145e0e59a1b9684b04061916 1
b236d5259f95b755aa5e1d955c8f835312047d77 1
8fe95aaec201acc964ffca80954e60f7c57d7413 2
d5b16405c77037e37bd180843c1eba79117da7a6 1
d3aa5b77428d77f5954e30b14e7385c15f6f398b 1
83119a80aa1551bea003ea6b9e65b616b7795246 1
c4de3dd2bb8afb3323fc3aaf394a463aa4222768 1
f7f4b909d0961528c9b02ca5492b2a57a8df8bbe 1
bb3d861fcde210e45f3d3ac59d8ee6e1e4086cb9 4
361b73775230d91b4ad9ed588d6d57f3a049e907 5
05f3b74fd581ea5f8946c64edcb293747b4d9a71 4
ace5ba00f7067d517a35713f439344f24144fb79 3
278eed3e1f7cfef2d39a25aba53f4478c3ad8c58 20
edd64cfd822ae2ca2faa8dc1c73edc38a6e19f0f 9
136b96c803ce4353f2cca2b24171ddbe74345fe6 2
125c820e8d43df150ac09c9da5b38dcc1ea6e03e 2

COMMIT - #Redundant fragments
53618a20ee595ec4e49967426aaa5019e636d79b 3
1b29b8e97d45edb3dfdd06077af92ad69a573de1 1
6400026ca238c10b5864f278777745851ba0e4c0 66
22ae6485cea3594267d5ca4bf8f18d4acda0d64f 73
f5144f0569be64a7ac0db5a59afe79d608217dcc 122
9cb8a845a948ee51597b3ea0c300a7fbae34839b 1
5be68dc7271c56a1ae0d52f48589436aa6057316 1
b14a198b0a7930aa1d3e23e56cf3b12dff33fe13 55
282d157569af65d054800094cbc3b3f77787174d 51
77f0373b1488beffebe5c834bdbac234e8f2c354 1
d84d18b2b8d9ce8c44b86eac40bb0cb190f57c5b 1
c0a363cf984b19010d956fd39aaac8baf7eeb103 1
ee9c5c4de7806e48adf5e01d922266c0e53b39fe 58
a76a3fc75bdab7cecf9198f1d6dea42bd0fae94c 9
926b64cdf2fd573f3c6ea4f684061050f5f9e60e 1
b87acfc96a925c9e8f86bd462265589405326600 2
b130481cb2793879ba2d8ca5b119736d756a19a0 20
c952cd0b17f6bb3ba277b534099a8f5910a1fa2d 2
f37f0b06b7549cd5b4a7d8cf9d70677f494a723d 1
a4776f33ca73b244f3b84cc3d9d70da30e6fdd7a 303
cbf7a76a60aa2d1738319e0dc326bc66610b6eb1 305
85d673982ac789be1be5e1ba5ec13cd7dee1da5b 1
375546af5e4a07b800c32b3030c4a805b1c8bd55 3
8b49f4ab0ec59db283e849bb62649c5a86420833 2
458e8149f85606a72c54887111ff13bf212dd90f 24
6c0f8b6a2fd47ce7144de12e7c176f25dbd23413 1
03b9b6657e25b03a8b1e76fd54879ef8f7e58e01 1
5d7023c7566ff7b5420a0dcf9e9c7a015ee27f5e 1
de9bb803f62d8f5b3ccc352594da45245c3115ee 1
c38524bb7f08b6f9ae0cbb290052f2f3835bff49 1
f93aa9970a20d53e5db92196a4716b4550cb3042 1
f09a9a08a3a74c46c3c00df7a4590ed575834e19 1
9446bb16086c3873320992d90a9fe2200e6cc89c 1
bba1f22ebca8b7849510fb1996cf16a8345439a2 1
f7fe4004266e4e9210b6beed5721f6c81ff5a9d6 2
cb72a0209ba4499263e3cbcac10213ca88dfad63 2
3c7aaba11d6e00cbd2aa902982567ac4dbb332d2 3
97bbe3d8c57463480d9c94712b6c52e12b04a3cd 8
c1fe5a965498410d3f62d4046cf0c58ecabeac9a 2
bcbaa2be25f5c56453e9176648cd931031242e03 209
0dc48cd72054756c05096bb3dd68b76d65f81995 5
1427a4c14836b1bdcbfa15c96ce9b0ebf4f1d7cc 1
341c6c0c3fa795c74bae3404b27760e6ff1e7309 3
14ac91c4a6d86052f0b10922f7e5d312e6e045bf 21
a6f2840e74afe99d4cc737c2e9ead55757e6a993 2
9de006cbece52cf94911112ae0a2ae900c4e9901 19
b4527c1223681de588b13d7ebb082527088a36b8 3
18663ae642cd680cae91b0b79a020c9362f75ffd 1
3ea6752042b133d4e5066641f046aeba973c4317 1
4cd27dd7fa14547fc8ff3d01531e99fe36b04574 13
baaeaea476a8ad1127227a043fe352b9085e67ee 1
8ebd0ad0de9ee4c9d6cb1e13bc02f04244f1fb72 6
3ef8a796b5ddf87e3e9afec9ba94aac62681b394 1
a5fa2b8f7d9ae2d9f00b252b46304a5a4433134f 3
71e98186184694cafddca51f5dc73685c3feb520 2
a5589b39e985e64861bd920aa7b13ab32c215b06 1
659ef247b1452b6d5b9f92271357381fa59fea50 5
68ae1aa3538c72a9967e4f262e01a42113b46b80 9
eb3e2ae1f3734986a9f0225c661888baac3cb13b 1
5044c8e226c3b7351044ef00a1be17d890f3a7d8 1
53bdae04b48160ae9cf381366f50450404eccb1d 2
ec11b257eec8b79b2021df3eca0e0bbfae8489f7 9
e23282fe0108335f1704496f7d0d5a39f00470b0 43
7be9e59d48691bbdf3595c19fa4da394857554dd 5
5fd2544ef381e8477a42441199e2cbed868702c3 2
a81f0ad75dc8b715897555f6cbae1f53bc3560df 44
30de6233b60b733b8ceec8f8eb04995d23632fc3 5
ffaaa1f047e53cd155034c77cac9c25b39214fe9 1
6eec502cf3c0cae0381a804a0e06f81a89cb3bfc 1
293a9dffcbd6ea77414d9f056392199e49ba4bdd 4
2b79b9d8e584dec728a04e2f16758ad9295ea9b8 4
1dd28cecd12df2bda5636e977acc96094cc7a217 1
f1687ae25be0b369b1de1c6495194b3777904e89 1
a49eb9c5fac520ce7ef2772ce8bcb967399b3a09 1
8315bc995bc84bae42978246f238e5f471786a9f 2
0172e8b32df52cbd2399fc62e32df05629d9ae2f 4
65295d70c5c9bdf4b1a30951c5d44e3e3b9bf225 1
45c66cd5bd2c9b47a342b12e9b5b65784e726051 7
bed1c44318ee88fd4c455460823eea9dc387b455 2
591dc8fdfbda2bb5a6308135897a93a56e9ef9b6 3
bd492c1a804b76399bd566308a8dba5586c161ea 2
423528148985125383ffcefe84d98aba1b3bf91f 1
10dd93991578cc2c82b0d5d04adb94c266baba2d 129
8a25b17e37a6a21dc82d5fa42831b563ae6258f6 7
b0287b02a64cdd473038e1b792fae033b57158b8 66
0975ad81b72762782159138ca20eb3c4f6e00859 1
acf81b5d061d9a1cbb81da07afbc8dca6f6da2b9 14
0b6ddff1dd1f5cf6d51a9515ad210caef830e455 1
7c246adf18862e1091834695d5be10895aa2d38e 1
304acb102cf134574c0b7ed1de5f61a818c6a087 1
8d6fe8ac60b0abdd2ce23364407a9060459c69cb 1
6960a16dbe7729a830d284b560a7af73c5372960 1
6f4a5d0492f6d7c0af20c170d592ba57756d012b 1
ee82ee392f9fe9bd0e5ab0922b4ae7721e84639c 31
eece566693ca380bf82311a04398b06cc1b492df 2
a4323dd71e3df2b6a7928908f8f5f7c4bc21f990 31
80807b322152356288fa441c92c2adf974479a7d 1
22f04e205ec572b4cc0e7f836500df709154d0b9 1
7b2eb8418720fb33f4e15073e4198e5e1babd836 16
132b060527622e6100a18c276095694883921449 2

Appendix B. Measuring Software Redundancy

-E:IRedundant commits:
Redundant commits:
-E:IRedundant commits:

Commons math

Redundant commits:
Redundant commits:
Redundant commits:
-E:IRedundant commits:

Pico

Redundant commits:
Redundant commits:
-E:IRedundant commits:
=|::|Redundant commits:

jUnit

-E:lRedundant commits:
-E:IRedundant commits:
Redundant commits:
Redundant commits:

log4j

Redundant commits:
-E:IRedundant commits:
=|::|Redundant commits:
-E:IRedundant commits:

134

Global - token
Local - line
Local - token

Global - line
Global - token
Local - line
Local - token

Global - line
Global - token
Local - line
Local - token

Global - line
Global - token
Local - line
Local - token

Global - line
Global - token
Local - line
Local - token

COMMIT - #Redundant fragments
afd4015ce78b5144d0994ff12e2b32e0fec23273 8
c7bbb7a0454d651a993bb626979825c8fcedd94f 15
10054b995ef0326cbb2fea6fbe5c752461f8d200 6
997f6505f3a009e387334cac8bef695fef9b654b 1
c9eb0b6a6979aeecff36b9132e4f2e25a986128c 11
069e6c0a5490fd939537e3c17144a8620855cf66 52
6f799cf8a9e05380760cec6d95e3e2fcbf133924 9
53618a20ee595ec4e49967426aaa5019e636d79b 11
6c5cc7d29c208f3193431d84eb5cc0a0468ab032 1
743c14adafdb7176348610f6c320c9701f490d7b 3
2f94a814dc01ae392768afb8110b2b55169ed69f 1
03cc91fce7686403b85bb05a5e242dae00c6a326 10
cd917fa23178d6ef5425f7b38d6bd2420da56adf 1
f89d97c1f6b15761c6ecd5eb3824452379a939d1 6
8f7563720213966c746e1de136172dc71392504d 73
b50e56998bf2ebdd15f6703a02601f4f0fa6245f 41
d047ec84e5df3d5328dc477134ad197f5a7a16ab 1
d9cafc8db21f2e906f80e9ffb0210a7593e24562 1
1b29b8e97d45edb3dfdd06077af92ad69a573de1 3
73f7084421e8751f75491d18273dfc4e46ee0611 1
41b1b291b12fff7fb034a3b76495304a804777b6 4
8b4079f1c05eff76bdfa9e6a7d690c27a000fb4f 7
f1a60110881b14454e92b57061f4c1152677d062 4
95c5facd1222b572cb0d7d52ecf640d4a9e5cccb 6
dae4912332364aa42bedc3ef490d4ee4936b76ff 13
630d3cb5f079c9b06b5e91faa78ab52318850878 1
02644db726c1e1b10af9c275bb63890a1f6cace5 1
9ef58479afdbc67a7f4fd4c9cd6ea4c033ec6fff 43
835ddaacd926414a0c667d8b5e82c3d9321ed66c 1
135e2a4de57bf46a916fef38e3d8e22b2d16dc13 3
858927268d783737f42503fa2ec868618e0c70ff 1
2f5f6c7980d344c811212272c63dd102d2d8407b 37
50d611063b9d2596f42476190090e5ad0d11e1c9 1
e3b207c848737f4a0dd71cf6ca6a9af1e78b56b8 11
3f4fb7e518ecb9dd434db1f5be9b5124189f2b38 16
84dc6cb0f018c0a1747a55bbefffc0955f0e8bc0 2
e90782608b401648c0128885fd70f500a4ecad2c 2
61f2c4105bcd75387d5b7677d33dbeccc8752055 19
cc9d4abe4b9c9f22049fad7ccffb0728d01d5481 2
6feb02cefe4e59794444e822d78a0fa4cb05e3dc 2
3487eb604ee19f175f40e320526aec43ab706d02 8
535e6f54d28ff1245675d915bf6fcf2e62a6f48b 11
946ebd29d9d7380e702f2db64f4cf4b4ca1aed2b 15
64356b6dcf465e1e485e6c778a1af482758c2ba9 3
865a748ef41fb2411bb727a0228c1dd655c41a50 23
69447957d60e9eccd172151a82fca9fe770b3f43 9
fa4c7827f8677b249009aa5d2fab8d508ceab8fa 1
646484e571f0724fa88a1bcd4d999c649a7da62f 27
e103dd6b31855283e94022588a403ecd18ae2765 47
8b90bce4b69813421ceeacf21e781adfe6da70bd 3
c113100488f9aa50dfcef3877a10a7582b6159ed 4
418091f87d72fe4216840bb2eece08dc3557c1d8 6
2336fe3e6ae846181632ac3e3e56c57dca76448c 6
6cfae0c384cafa9d100046ea1d5b7d0fa0ea2424 2
e0b16bcef80843c932e7216941c76ba40586cae8 1
ca2350dfe78b865f1d2d705aa57b418cbd4d22d6 7
95a2626a68d7dfb73560e4b08ecb6896274bf445 2
6ff2c8315c89921c4b56a2dae0d02e79f0209c34 1
22ae6485cea3594267d5ca4bf8f18d4acda0d64f 151
f5144f0569be64a7ac0db5a59afe79d608217dcc 114
9cb8a845a948ee51597b3ea0c300a7fbae34839b 2
18b614c14626fedade91a7c534a9cf7eeccbb17a 2
11d347cce06a5c02b22a17b1281be6008f7173da 2
c2c2ffafb0ad88f8d07c76a5a15f719a5500054b 6
4c3f8ab1283ab41d43fd50a70436425788973bdf 10
990e57f58e6ae9d490aa818c2ae528e528f5c1e8 1
ef800725c14905bd0743ee675fa820f8819f16ce 7
61f0f1640387a5e07a4904aa6adec9363ec5e2fc 185
a10e65e0001a05deba86ac42bdbf145e7179856c 1
043babf502ddf5a8fa731cb6b3a56814c14952a1 1
335aa68073bd8f26de8423108eda86db2d4b5270 5
96aca3696fc660c01a610e9ba90947b393b1dccb 6
5db36decad4ffe41894c81d56021c42f604f31ac 10
5be68dc7271c56a1ae0d52f48589436aa6057316 1
86b7190ce0359acf0d0022c0c81162f2984d7bdc 15
b14a198b0a7930aa1d3e23e56cf3b12dff33fe13 31
bc837fb8fd4a75a88230b99bd1520971a7db3e4b 37
282d157569af65d054800094cbc3b3f77787174d 62
77f0373b1488beffebe5c834bdbac234e8f2c354 5
d84d18b2b8d9ce8c44b86eac40bb0cb190f57c5b 5
c0a363cf984b19010d956fd39aaac8baf7eeb103 5
8a881089df23ed1ddc13a9145fd7adc44a30649c 1
4ebff6333591725efb070714e9c10ece57eebd5a 27
c5e0192ca2586126253871b3c2ad6c4b477a24fc 10
af2f23ee1deb9e05244ca604cd0248dd21227a12 9
bf8041cb432379e3086a1520670da30e1c2b4fe0 14
ee9c5c4de7806e48adf5e01d922266c0e53b39fe 132
97d2927f9f49b92842dcf8d5babc6d5a73625996 1
a76a3fc75bdab7cecf9198f1d6dea42bd0fae94c 19
2c8b32f4795add23b266b374a076935486805468 13
0309c35b649773c1bd6bf9c583d42637be176a2f 11
2928b56b7569fa0688399c8481447c7d6e71b98b 8
23d766dcb30996bf166cd74f5a0116aa2b40dc72 1
926b64cdf2fd573f3c6ea4f684061050f5f9e60e 9
f8560117a7955d701cac509f784eb396e4343b7f 15
f0bf4e8f0b4d5d7d71d556f83f790ba98ca9bedf 3
7bb4d30068e46516738c785d0288222c3e57476e 5
ccd2ba474695f4719ccc8b3eca93104215c45f9b 19
ee5daa65616cb4383f89dd8fff69c781f75aa93a 1
0da950654112a5185e2601bf44be2b6ffb17c169 25
9b82eaecb12629bfb7861113f69d56e8de1d75a1 15
b87acfc96a925c9e8f86bd462265589405326600 3
1e9618c34ea60cc214761a6618024c28aa712a51 15
6ed8e576c4e13ac3ea05a3c5422236ea3affb799 6
a7fb1967312a783231307048122e74003dc25554 8
b130481cb2793879ba2d8ca5b119736d756a19a0 42
aad4aaaf1805e3ef9980ba13d9babb3234df74f3 11
beea85e3911467c43bb21ac44a0df43213ea78ed 8
d7987f1cf84698ce67a7ac181d91d7f82329719a 12
ced9332981d2efce73e17809ba9e5e5b7cfd369f 28
245399b272732dbd3308a2940ebfdc7317572517 1
2fce75d4d06ff28db9a59f68b3bb8186968f817a 7
4d9819de7f7ab46285ce8de1500bfb6dc396cf81 8
67940fb712d06dc69fe3cb6f4a36445aeeeb999a 49
7311ae8195012296f7f8d996f9f65cb5c0ae9a9c 2
5814f50b85a8bf36437e46a420e514a53c7d4837 2
c952cd0b17f6bb3ba277b534099a8f5910a1fa2d 10
4b570ed400da3ac9f326d2e12a3fa22ef29cc0b8 4
0648c5bec67f22229ba752a990d14435edbdfee8 1
0fa987c44d2216125e1f4e99a86eff872c8c826e 24
2f4a7091d0f034a10fadcb31642415f235aa901b 1
f37f0b06b7549cd5b4a7d8cf9d70677f494a723d 3
3663d98a6580a3f34afe4a80f1ac1e66921558cd 5
122227ce48f82b636b7437afea30cfdee980afaf 21
0168c810fa794143b64a8b9481097c5e707f3b10 1
3b008e5106799fc098c3bb25035673e72025e781 29
f854e0a9112461b92d4da972619258d7095e7b12 2
7bb3e3cb931a997637cabc3901f0329b10820e03 1
fc633490cbcbbeae5e3f70d52cecc98015e19ff9 1
58fc7702c6d94c864c9580326da53982abdc1576 30
aa63078a6842c23d816f189e13e6a5acec6b61b5 5
a4776f33ca73b244f3b84cc3d9d70da30e6fdd7a 165
cbf7a76a60aa2d1738319e0dc326bc66610b6eb1 166
7ff22e0f19f41846c27b77ae41f696d820515242 1
85d673982ac789be1be5e1ba5ec13cd7dee1da5b 1
375546af5e4a07b800c32b3030c4a805b1c8bd55 1
95fb03b0aa087a1259a1b5a0e6dfb60a668f38a7 23
0a3e36f83e99b86509c53025dbe321849da7e303 3
d9bbb21458555d6ac90667382bbbe9f20338c6d2 7
05121ddadb515b4f03f0e992914095eb03a0f199 5
6b3812db629a3d3ebe6bf33be7a50958ec034532 28
d3a0da63111207adc0da2790152cc8dabc00409a 14
82649cae8f3431169a3b8e6a6f14adf4f495a350 3
bd0701593aae656483c1740965a1690eb3ad40a5 1
3bd65dca470fea9c65150f0236e68db4caf26db6 3
55216d0c59a1d680969db821d28492293b470b8b 14
76f330aba7fa82786ee14fc1c1dcd318aaf48f0d 17
8b49f4ab0ec59db283e849bb62649c5a86420833 7
de7502030b5ec6fa22d3b463065b3dfc1aab8248 2
ffcf7c628eeb1c0ee8288bcb84094224a7f9aaf0 34
458e8149f85606a72c54887111ff13bf212dd90f 25
946a2d8e0e9cf9d207ed7c5d5aea6e84ca4eeece 1
6f4a8a2d8a4cb26c95fbccfaf402ca10d48bc9ea 3
34aa8b03da6bf8ad9c605cc833f215519691e4aa 16
296cf9fb940c094ce29ff6061ea5ff5cac4d23c0 14
f4b9657b05cb32df729ea44f4b0be4665f49b88b 15
823fa853932927e32f3c274bee23396966c08fe7 11
2c7a80af4b48d3143670aebaaf8c951664d7de6f 4
c2003e4aa91120db3b91cdc659aded992bc68f58 23
a26102b3007b34100fbd3ee5e457374f4a7b9140 1
468dc65995d8993a9a1e7608dde4cc5eae81dbb4 7
bb6e3a14ae6e5dd4c77dfc7d3cbf5b609109b115 37
2f435baa687274dac335ed00aa943f2d35bbf9a2 13
bf1865a9121b18781de93a6a95cd06f14c467b4b 1
d696dcfd661661de3e1f63ceb8806a2ee97f7e32 1
8d1e5db034184a2f6d5b5bc85241e2080fff1ffc 4
84d382ef9e295be155efe5fe3b5b961300519d53 3
3559359c1d9b0bb804f874fb16abbeac580aedc7 12
27ea6707d2d2f588e32faeb67cc33a0103dd2db0 4
87400e67bcf5ed90dc30a69a1c8ebc457a757aac 7
8190a8628d3de3d3b191bca2caf6e31df42dc667 5
1df3e07f73b1c68bf0537c15824734fb765321eb 7
da87a8669b475ce648553ade59882f21f5245eed 1
595afdf9363c28aa8e0420c936854060e7297779 6
a579416445547a1121a81450211049f56c7fed60 53
cf21e27c9807829f1afc984015012ce32a5ed491 4
6c0f8b6a2fd47ce7144de12e7c176f25dbd23413 4
0a5b68e741c285999b10274ee10056367832233d 8
03b9b6657e25b03a8b1e76fd54879ef8f7e58e01 1
16730d3b0a076a4308d30ca04d0cad2f727123ff 13
2c5d42194d01403674d184c071663ab61eaaddd6 22
ffa8800006c2a0e9f8ab498647bb8efcffdffea0 19
5d7023c7566ff7b5420a0dcf9e9c7a015ee27f5e 14
1a3af8603656b098397ab9f1038bb956d6492bf5 1
7ea2668b55ad7c6f08a3557967f2fe8b0e941b20 1
721a098add2800ffb138b65992fecec618f198f2 1
42494a5f88c88a6586e46ac94725e872da06ec50 46
8ae0d1b674327cef9230399c193df581670cb3e7 35
ab5e536c3425a467e2569598a7988ec64ee22d03 9
6c88e8f766c5521cd3db7dce0c7497f81d9b97da 6
de9bb803f62d8f5b3ccc352594da45245c3115ee 3
c38524bb7f08b6f9ae0cbb290052f2f3835bff49 3
f93aa9970a20d53e5db92196a4716b4550cb3042 1
f09a9a08a3a74c46c3c00df7a4590ed575834e19 3
9446bb16086c3873320992d90a9fe2200e6cc89c 3
bba1f22ebca8b7849510fb1996cf16a8345439a2 3
f7fe4004266e4e9210b6beed5721f6c81ff5a9d6 12
cb72a0209ba4499263e3cbcac10213ca88dfad63 9
96507962170a3ca71eaf15a83a9982fb12df414d 21
3c7aaba11d6e00cbd2aa902982567ac4dbb332d2 8
552ec504a1771dba838feccf1cd8789e1eabfabd 22
fb43c79171a3df4efef946777b13f7545998ee29 5
17b59708aad21393248e80b95e8b84a731433619 8
57696acf0979b0d3a6e69639c14acda8b01ded28 1
dc03d7c8f81fa7933a095e65860078c1e0c595b8 1
5db3e6dbf804bc4c44d24edfc85fa5c15baa391a 12
d624f175e139df8fbd85603efb6b73dc9b77a714 1
53dd9fe9e4c3d013ccf0108566d6da8011ea0423 3
e34df07747691c5fc25e4375a5974387bf38771c 6
f37a1950913feb0c2136224ab31fddfaca881896 37
97bbe3d8c57463480d9c94712b6c52e12b04a3cd 31
1d99bf252bf815fd632d198d8358459763f0da59 4
8df113cc1cf9519c16a689bb9a69c3b982138665 1
bfedc322198338d37a4a31cd57739bdbf8d556cf 3
4abacfbf779d2b9ae9dbad8283792ad05f3b84be 14
336536e38303b2ac59a09bb890477244f64fbbf9 19
c1fe5a965498410d3f62d4046cf0c58ecabeac9a 7
858845811114005c9b2e05581548d1380f3da158 5
b62e9898108c678a456c28d3f40d54b99b4b544c 20
821f79b9c1533d2716147a35cfbebee58300830d 12
23253d6d5b5bcc0daa3842f6d1495201cf2304a8 7
43094f16f6ea9d77ea429749d54606a5ae182fa5 34
7bdac2b671a52c024545edaa4fdd562afe3140d9 2
bcbaa2be25f5c56453e9176648cd931031242e03 207
ed2a8da1bf10db5cb3c7701b60accd0165dc2e10 10
d2b38e02c0a70557d3e0401314940462ad51a9fa 8
df2cc9434b4c81174493c9f7c3adec6751ef4072 1
eb93df8e34f3548705a30d9166705864313e2008 5
d124f390719b54407d69dea2b6ee35a31fdbfaf2 3
0dc48cd72054756c05096bb3dd68b76d65f81995 23
1427a4c14836b1bdcbfa15c96ce9b0ebf4f1d7cc 1
afc1bee39251defc9af3966b90e17c184e52fe58 3
341c6c0c3fa795c74bae3404b27760e6ff1e7309 10
d3f274d23b3fdab5cfb5af16579392f200eebfb6 8
76c43161b2e76f4976d1aec4aaf4f43e8ad914ae 37
ac9420eb93f40a6cf1e17a896a9b2de2d39d8669 29
14ac91c4a6d86052f0b10922f7e5d312e6e045bf 36
e5cab2f60efe3907b7577194ca0dc0c833e5c2ed 24
ca9a718857ce616e3699328906c21695b5b73ab1 34
f255c8f6998bd3c277d79338a322625d7df9c72f 39
a6f2840e74afe99d4cc737c2e9ead55757e6a993 11
55a65ddd50908d3180deecfcb79535ae7d133c57 1
2c29255e1ddfc7d34bb7175a680483413059803a 1
f6e6f605361d90efce738c3c09f80bde460ff73f 22
9de006cbece52cf94911112ae0a2ae900c4e9901 45
c3f75a94a6ad1e56fe87e9ae2c485cde1139a0f5 7
b4527c1223681de588b13d7ebb082527088a36b8 1
3baa467839f29060adcf24de540ee371b1cf4617 1
18663ae642cd680cae91b0b79a020c9362f75ffd 1
4c0466fc7641d374fb61ae43969329eb055e53aa 1
160a4164a2d66e38577541113c2cd89380ac363f 24
e1c4df4d972df442cae2fcda70ef789845369b7a 21
9b42b084cfa5bf577838697823c203471a60dece 27
412c9606904180148afe5e108600704be1b1959c 3076
3c9d09017f1e23dc3b407fc9001fcb0f6b96495c 1
b8a3272c957ca51b3908acfcfa53d9fefb2fb764 29
0695c3f71e3fc5abe29d8b9b33eed7faac7e73bf 17
a605843ce6aa0df44a28130ef543c6c0a5baa663 33
cb7bfbc06d5d289be61733824d7f3e81321b2b3a 36
88c76d207f642831ca899e144159424aaa60cf8e 8
a8203b65261110c4a30ff69fe0da7a2390d82757 2
53657a62d3c95babc2a4e2b7c2e86975a15c949a 27
a4086b9dccd246c84477bec8812a3cfeaeadec92 25
c04cd2337786ce7d54ed1fb757192fb8bc8c5e41 1
1fd45a4f68ea497dfbdf1a67b8b8805a4a9b1166 8
9f53f86c883392ad153e198987c21d68ea6df853 2
c71373047dc2172b0f06cebf61da284323d6ff99 8
bbd990b81fd7f8ab9dde75c8070b973b9ce500fc 3
3ea6752042b133d4e5066641f046aeba973c4317 1
4cd27dd7fa14547fc8ff3d01531e99fe36b04574 23
e2082821a9e3b7196df7a5b0959fc012c2ffa04b 7
baaeaea476a8ad1127227a043fe352b9085e67ee 2
8ebd0ad0de9ee4c9d6cb1e13bc02f04244f1fb72 18
fd9ffffeb5e25a96b906c3786603074dfa0a5501 1
3ef8a796b5ddf87e3e9afec9ba94aac62681b394 10
e89e8d62b911340cc5b293465cdae909f3dfd640 19
d3b1163073c7aeb6011a5b65bfadad15bfc0f108 1
a5fa2b8f7d9ae2d9f00b252b46304a5a4433134f 16
71e98186184694cafddca51f5dc73685c3feb520 13
824c583fa2263489502473b4e00f52f51054a567 2
f83612506f3879bda8d47d9701a9897367c4a463 12
ddf797902c406737d929b2a9e30ecde7ab34d647 17
868f6976aea222e96259843f56df9aed8e48584b 10
a5589b39e985e64861bd920aa7b13ab32c215b06 2
659ef247b1452b6d5b9f92271357381fa59fea50 9
14d7ebd3a6e88628ccdfb190a209e155da633b0f 1
783f8b9c552be16a92e8d0241a321378defacd51 13
0f3beda56236a03c2de371a0aa776522ef24ffb6 6
46f35068c1d38be79b1d166d10e84a00357db8a7 27
21a6fa5dea37dd9ac6f293043287d21355edfb49 30
68ae1aa3538c72a9967e4f262e01a42113b46b80 31
8c4335a77b48fd7d3721bdfb31a708dff195a0db 2
dcdea66eff6cee2cd956e8ad2a92ab3a7c3a2f09 14
0ac772a4e3b07287c435fdc3c812f67277c85cc8 14
eb8f74efb75e71fc91e515a38becc2aac203e339 18
c41078f6addaa86ccb3a91896fee7253540aaed5 1
054f5be61a640f051c856dbb0f21f6efde7fe3bc 25
56d9bb88e5dc419921fe2ae84e11288f05d1e26a 17
a285861cf07afacbe6e74a9a2ce69894a7944ff0 1
2a088e07629f1d3f3cf3205ef04754067a2aad21 7
d5e343049c2610c31ddacb24f0d173942f6d5ac9 10
2c82cb710b1a487e831d35b3c184bac3d950366b 15
1ae0a0ac3558ea73880b4573c980c63945b22242 3
29c6baa30cb6e1c7a28ec20210cdbd7ac79b15e3 11
c64b4e5104206862b78680147b53ee30bd2a5670 1
7f4e0f2c73c198cef9489ade144750a859636f59 5
99692fa0256f76fc44c21e439635bc37beb21ad2 1
d99ba35255d303f04b8531b807917c1528b9acef 22
d95fcd8e24568b4f9d3cb9da922a4029e293c793 11
775b9158147fa4337ce13a153b3dba30cf85c762 5
3a28558e334e70502d122823ce2202d79485f69a 21
188afe1a13dc6f6fe49d69ca5de3845f06d77900 5
81f10d7f1ef52d44f43b38d81ac3dc1c83d45134 21
06707cb1861c20269d692076dd5ab6cf668a2fbd 1
0760da507bd858abd2be7c8545d43d856ad58f6a 9
eb3e2ae1f3734986a9f0225c661888baac3cb13b 4
11773a90716808933f4a7be549e68d4282c3ea11 2
5099238c339b4e057a530296ac8558ef3e55802c 1
585535b98f921d78cf010e874a69be8b6aaed992 1
84622ab99201af5aef217f2dec6648c06136abf0 5
bba0c15ebb62a6deaed3f1f69ae41d8fb0a549dc 5
25da68253ab6e421ae05375088f7dbbc748379d8 1
1e16f40152c7a3ab19c150f231aabbae4632ecb0 1
b0c39eee0e6b58fa88051f84e29f34116d9f4c15 6
6637e145e683fff24a9342f35dcf38471e9fd197 1
4bf46d6276d55f10a5aa43eccf38b164b69848a1 1
223c0a2e74fdddd5e491ca0cd4b6c507bd697f41 1
00bcd4cc7c8724a6456b06d4a3a83ee36921be92 4
4fe283889abed62cc02a69d4698f9c251941fb9d 7
96fb6c9e3bdf624441ae4a51f90d080ef04a35e2 4
ef210916d1e556e6e0624f8f7f993ec0fe4ff843 2
e6c5d66362db65bfb8c1d0312d4c789dc2501387 2
95e209b226b4f4a59016f1685772c9195e10ea21 16
b044272b6584ab5a6ac5a15b5baac0d585557db4 15
eb01ac3155fe35badb4de00ac96d3e82bfbd3f57 8
fc92750087c1f9a9b4ee6cb06250ebe1c86f57c7 4
7edfe075f62ca55b4e8487a0f878e358748f55e1 2
de4f8aaa86e35465a7775d59162c7857616ca7cc 2
75466de884266f1317de534c9602f79c053d95b1 10
b715ffafac8d20a681554e31546e59be7aa8dfbb 3
9b211a126335174d2cdc99f287ed33c5dde1eca1 8
80e775811e1be690104427c60afced9c7b91b10f 10
c04152d22edd220e3d979720ac03b9c13b151472 2
fd07e3e418dad482f0640a3c46d05567dddea370 7
523b8bc8e2315c5642a6cc018ae6dbd75208e9d2 1
5044c8e226c3b7351044ef00a1be17d890f3a7d8 6
f14adc7d9ae5dc6616ce2cc252a358aaa43a5ddd 6
0b8e933b7a396d74ad68e9fa570b2694978843cd 9
0e3abb160579bb2bf269c6e3390e994f113e38cb 5
4932b96ece0fc96d4b71b25909d5dce9a492d26e 9
308f4b5a2183a53ea13a4ecb1fba2de77e3ae66d 6
26f122acd58d9df5d2600a213ff0954707d56213 3
9d5404d2f9acbb64d59c0e88df501d073a669c2a 26
205aa2fe3771713c106ebcad2c53898409d15f8c 26
53bdae04b48160ae9cf381366f50450404eccb1d 7
ec11b257eec8b79b2021df3eca0e0bbfae8489f7 23
5d2335ee31ffad5d74bc1f332e7485d3b5c0a029 9
cacec440853c1444884c5328843544da87cf1d95 2
898184812f913c43a87a506cec0b8664661c4786 1
73a09afdcebbbc566a90dcbbd0df6d9910d3643a 21
f6b5ad660c0ddb68164064cb6019711ecb80da1d 23
b2a360daf2034e2b78e493f355888e11aa86ff75 1
bcc96b51c4ff11f9c8e94dfe3db5101ebf176593 1
e23282fe0108335f1704496f7d0d5a39f00470b0 1
fbd4347ca79fe9120a8bb2c8d9cc11af73243e8b 14
bec23232bc5841772e72f7f30893fef9449ffce3 4
841f743e1ceb11fb71ef21ba832323f3b7142041 9
2087934578e7b37953d63a82315248b0cbe56eb3 10
dd7810b79139918435d5575f66ab17672eaf8644 3
7095a99a76b433513f1b741c0e91d9648ea98ad1 1
85839089a98c011db8b7c4bb89cb1fcce9f8e7e0 1
dd435ee8ab4d9c86b0e46f999866532556d04ae0 8
4b5a1b7f51d1409e88be9109d904601ff0e1c07c 20
d46523cf9c6371475f375c6c0b9df8d59fe26013 22
f1f79883096b78c85ce554268059784354f4b925 13
8b1a8e178abb46cc048a3982636b8ec4e6ffc8dc 24
b007be7679490b7084537c0a45d388e9ad578d49 1
b46c553a04f8e0a84faa3fa5c1331bb407844e7d 1
cc8b82be95ec747d73f2d1ceb7d11bfb83574eff 1
ce09f7c17642e670f44e5058260ef0f09b13829c 13
0ab93567b46c852fd743123f68704ca7d79ecd8e 21
a3cabe238c4fe7e5f2781bfad8ea92aeea5a5710 31
8f589701118dc99385c7e8d0476e00fd3c3a30a5 9
9b32d00cce4d338db2412431ac1ea3fdac488ad8 3
7be9e59d48691bbdf3595c19fa4da394857554dd 20
f9ff103398abe8fcb53449186a4429328772229e 11
5eb28ea81253f0921f407b767df438d7e983199d 1
aeb61edce7e99f7997b6a928d1d879585426b883 3
a1344d49a2e3dd74136fa119e3dde9a0fe7494aa 3
df6920b56bc367832287e2a95970d246c4611106 4
a9f1ecc2febeb8957f493afbad2ea8e29a767e8e 19
ca2ac1593a20ae3a5894b901454d3599e0d759f8 3
5fd2544ef381e8477a42441199e2cbed868702c3 1
0888a463855dbc9900fa8d06032f542500591e10 2
632989ce41d777855ce2c5b5bcb9364e64dbe2b0 3
3f0e54279634aaa87bf8305c84d53486824f53e8 20
39a4fe73e1ab96500ceda60a20918be4ad01ee22 11
a81f0ad75dc8b715897555f6cbae1f53bc3560df 56
f0f67d86dbaa46b4b957cd9ba0cdbee0fc9b4b2c 13
55be27d6abe85d6d84170641da269837fa2ca10e 24
25bbcbcbc774cf70e185060de2f3237eb8d0d9d6 10
2bee742f0f8947bfec0aec4d2dcec6f8f1e2f51d 2
b58cb22f8ddbd8cf9b8d5dc64514cf1f0ebb9d52 122
30de6233b60b733b8ceec8f8eb04995d23632fc3 23
34918ebe73b0e0e605d05cd805054f89c003862b 8
9084af9870c50aca639dbd9a128249cde276441b 12
e0f265117cfc30e6804b6d6a3da28731a151ef84 1
5811e4c52f9990a0bd80c5c0643454de742e9b90 24
70916d288bad21901f0083b5e5d19f2b7076dcce 10
7755e454364ca5eef7338ec4e3632a977218ef44 4
c06f5c550f7a6af2df4c718bb3ffb136205f10ac 9
0049527c928fe39b5f30da1e257857fb552d59bf 2
c287cee5e895a384afedb682681653ca3eb60614 2
5e30f6a0d9852a1128a52f5cc9094ba77b909472 12
cb40e35f5e0990fad4c5278964fcc24e112dde8c 14
a42f813eba0f43bbf1c62e76d56f8c2ead3feb3e 3
346e68cfd40cbae1f5edf8eef7566c2a8f0b18aa 8
a95e76eefb91bdd9cf1c22734874a3d3c95ed327 5
937a5633eb9808b8b5afa59998002e274a7b6d84 9
34d25d74636254918e371e437d6234d5534693ae 2
ec0c4e5508dbd8af83253f7c50f8b728a1003388 5
da0612b348fcfa7679b92a5e9b8e1603e8e2da3a 20
66639bb5ad34c91aee69edb3d8ca7d227b88940d 16
32692e7e60948092ab5365c99cd3f110a88c67ea 3
ffaaa1f047e53cd155034c77cac9c25b39214fe9 9
6eec502cf3c0cae0381a804a0e06f81a89cb3bfc 1
25e6eb31f54573aac629281961464a484a09f210 1
f74af98e8a4e8f674a0b62fc04a531eec2f1a3da 9
51b0768fc219e8b0d06ada3b4802a136a1322a21 7
f78376cd2b9c0b18868d686bde44c6dea03c152a 12
48b1434bc6ac3e87813145299771bdb37de1a199 8
d630833beb14bdf88ed8ea5de43617d6d97a42b7 2
6c86244c6a61317b2ad35f8da76eedfd12ba30a1 7
293a9dffcbd6ea77414d9f056392199e49ba4bdd 13
48bf241d4149919e0928e39616bee2e3783e2987 13
14c230a5341f5f5e30cce4b674ccb97c38bf409c 4
f463039154e6ab4188b0859d9214a07cad0e0a5e 14
bf5daeb85b267a635cb18283b73d441c14f168d1 3
5894111a2e7519215673d11e55772599f978e986 8
e53a0c9d92b174ba8684867433f015cdbdbdf371 6
540f79db832d267747fc041498f0714faaa8af3d 6
b857309126b0922c1695cb514d07c9e493afcedc 1
6cc8b2725300189cc41177be4a371d33a3a9d504 8
0511ae6de32c59f857cf12225d661bfc60e71e6b 28
2b3de2ce0c94cb59a7458706a5d365e9f7422242 6
496525b0d626dd5049528cdef61d71681154b660 12
0603aef594fa60126c2d45f2ab164eee39f7b44c 8
1c606c3d96838e595a0664cbafdd60caae34aa0e 8
006fca88e86bd6f650d4d021d2ff3573a572827d 28
aef915fddb45aadfc3a10aaad7f4a2cad32af515 8
2b79b9d8e584dec728a04e2f16758ad9295ea9b8 21
1dd28cecd12df2bda5636e977acc96094cc7a217 1
f83d778483edd6b9216a33bb5f0baee209f40400 1
f6cbef5650d8972093003888ab54cb0f7fe129b9 1
41b01dbc10292f33d08bbd803473e46c9bc567bf 1
43885858071f12924607fb91ea595424e5880c3d 1
f1687ae25be0b369b1de1c6495194b3777904e89 1
177b08705b5a4609d42bbd11a208b10c5c6d3901 1
a49eb9c5fac520ce7ef2772ce8bcb967399b3a09 5
b3927234b51e5f14f71bb5107f35a0a04f42ea0e 1
0feb432a06f019f230592e01f617318cfc6c2dc1 27
04e212a37a480cddb9918328260cf05c8414dfc3 1
56f93663f5b7d4c4bf3a3c906c8251a1aeb097e0 1
f48f054c75e9023fe7e4a1b115ca0e184b88f48c 1
1d5c58b23210c7d1f70e2865e1f62575c21680af 1
12e9a4f65f17580d4096548ff73683023f8e2a1a 1
982e295053663787bb0396b81a8956c3c87dc25b 1
3e1afecc200d7e3be9537c95b7cf52a7c5031300 21
341507b653640f7b3ba7cf242fee5386099e7053 1
7eca20f5a3e1a4c1deaad869f334e1abec316258 74
8315bc995bc84bae42978246f238e5f471786a9f 4
d3931874702f875d6af3088d719da58a3c16e710 9
2e5785f67c9768116ee824e073837be5c3324ffd 8
2007b8efda07f0928279091f136bf0fb2732cd7d 7
c7ddd75580f5eb951f860c13a353407c0de24bec 2
45813a89a9c8a752910a37696b53e8f6049737d7 2
c2560c028173c3bc0a4627d4ce5ce221bcc9be66 16
74e28e85166eaa3314a63b66694fc6cfd09f3cc8 1
c0a4a5335a8f5539f1078f5912aa9b74a703646e 4
1506b78c6b74101f7d7e5f6dc370e271a06e0b54 12
5f377c545345cfe9ca97306fec01a191711c5991 1
0172e8b32df52cbd2399fc62e32df05629d9ae2f 1
65295d70c5c9bdf4b1a30951c5d44e3e3b9bf225 6
dbd787b0d5c7394188ec4d74a5d52b461327f1c8 9
b2c32dc35e90124e62f0ddc32952fe5bbf8e656f 9
75d5b74a1a7ef68c5169f4b44cdf972c1ab07ee0 2
c3fd1e588594842107559af59d93312787d771e5 30
45c66cd5bd2c9b47a342b12e9b5b65784e726051 29
cb0c61e7caf99be3db763c8b33b1066582b536af 3
c43916eda125df6a871a4a35e199f7db12d0a3f7 1
182804613cb886c7b1cd1fd24b197f4a1c4fe437 11
808b62bd726b83599bc0910c48adf5a23ea8a052 6
b4be05344e8de29147380c476fd457e4cb7d733d 1
f122fa66907a01be53fde906440487ebd6199743 1
81903abbb25ff92597d5f1e3acc648d12bdee444 3
b872859b3ae623fe18723226657b60b032b1af0e 18
d00faeb231e3ac17ceb53ec93e966d8d6f14ad3d 10
0b2b82ad923b0455cde93286e3f504a1abd0863b 21
8a168383211181b7466d5bb1ac364eb75806eae6 1
11202369f3b4fc3b63f0d9f7fde2e27f35821b7a 2
8bbab3898bb91f1efa442b3997f92be8ce191d02 10
0d86dcf3cf925b9d00f78e752aa03e839bfd4bb8 1
bed1c44318ee88fd4c455460823eea9dc387b455 8
591dc8fdfbda2bb5a6308135897a93a56e9ef9b6 10
a09f9cf9ef2b316b489094d7197c47be3526c62d 14
55f642725742513824975af0e5e91cb1920b6d72 1
07e3d91d8caf2b06b6782ea25d80b57e51338e8d 8
fe4f510eb12d5b37ca22394f48696ae725b9e349 11
54f38ae85c74d497f29eda1776260ea224dc1d75 7
bd492c1a804b76399bd566308a8dba5586c161ea 21
861034ca9f3e50e169e049fbcff79d17931102e9 1
07b3983ba62873f5207a853a1c79af1d273495d0 1
76ca24fdf8dbb8e05e6cfe490b08c7f47a5ac0fd 1
48808dd35ca6ddfac307e7b9790f72ed67719f60 11
7891f8eaa09cbe1aac3ff7297614d27b755a3fbf 1
1106baf514fc58955491d4f72a8a7288bd515042 10
d51f58ec0488e67f4054dfeaab0f8270643280a2 10
19d53c6033939393fbcb08d90415ff63ae3dfe27 1
00cd052a433a6eb696e0796d45c5c1b07234a6c0 5
090bbb70a24d621e06055c13e6802871980c5270 10
3a84c601105079569561cd57403dc6ad53458b61 1
b53f8bbb526eabe4c3a5847ed48fa76ceb450c28 20
f46f477adddcd555f8f526aba981e5095ddf3617 15
cd02e447f55bdb76dadc76e60db511afd15d4c64 16
2f5c744471b24439a382b463a4a1c38741a722a4 5
351a1b3ff61ac8059f6141e7965115360177915c 3
423528148985125383ffcefe84d98aba1b3bf91f 1
bd479d1976462d1092a97870c036c73936a6351e 1
5dbb0ce3e919f0db22f38a343e4b51ac2b67b5a7 1
e0248340fec89f7c3e0b242bd2f1da91fbf194ea 1
0b1929cbb026364486723f8c83bd26d08fff7cd0 6
10dd93991578cc2c82b0d5d04adb94c266baba2d 16
8a25b17e37a6a21dc82d5fa42831b563ae6258f6 6
517643d285ad504fbc18e3c1c3baf51595ef225a 1
b0287b02a64cdd473038e1b792fae033b57158b8 47
0975ad81b72762782159138ca20eb3c4f6e00859 1
886b7b8a83965b1f98d38cbe01cde0bf6169b642 5
c1708e906e777e205bc93e7c6417ab813f6deb45 25
fe8852fbc4cb2d62459d817af8c57013dee4f6aa 20
92ad68c91d5c3074291e1f0f494ccecc440096c3 22
acf81b5d061d9a1cbb81da07afbc8dca6f6da2b9 3
0c922efa781b14eb4afd32abe32a16c3a6f5d9c6 58
3ce16bc3e7f37bf4031a64696bd27ec943547e0e 9
8b1455e0305f15f807e4281937ddb36ce6f48db8 1
0b6ddff1dd1f5cf6d51a9515ad210caef830e455 1
96ab478c3daac30a0691e3b584d06d585f486a0d 4
7c246adf18862e1091834695d5be10895aa2d38e 2
756e0eadf03d012a553ff622acae45de5a5a35b5 6
5339a5668864f261d5c9c10668dfdb581667b0c0 1
300f4dcd0b94a76ddc6145ca6e1e780ee418223d 9
d47dd98f69831aa32ebc2b57786d561785f03d98 43
3ed4cc3a025327f90b401f43e729cb4c9127367d 3
239f7766ec42b25896e3263e6bb885c9e08dbad9 1
22f49d76bd1ccff603c06eaa83e448835cab5c3b 1
b4b6cc5ff5aa930c483cce8827545e4e8de55032 25
722d90e223927a615942fd1cc6a56d13288c6d2f 7
40a6d87f1fa4caa3f83d7efbc257b2421bb03b83 2
35dedafa35ddc45de42e4891b42520f69beed99d 1
404983d14f90e0a8138830c166e773b0208d1eb9 12
81efb533a104c10c08a405df319e92c6419dd6c6 14
304acb102cf134574c0b7ed1de5f61a818c6a087 5
1ef60b8b86dff677ec6c98cf26f61963ecd55fae 11
7e14cd00e356b0516c100e29312d0391c430e287 1
8d6fe8ac60b0abdd2ce23364407a9060459c69cb 1
065c898929584382d4c38836a1cb653424f9a530 1
6960a16dbe7729a830d284b560a7af73c5372960 1
1f0758362d84fc19b909685b6343eebb7efd38c3 5
b0bb16afecebe9b98188ce2fa7243d7ad24d8f22 10
6f4a5d0492f6d7c0af20c170d592ba57756d012b 1
ee82ee392f9fe9bd0e5ab0922b4ae7721e84639c 40
52a1e24a21dd1c4f28d7932270041d619ddf43e0 1
81da9efdadbed13c11c78ad3d9289f6f722aab4f 3
dabefc570554f2c2ad5c07e81cdb2a47313473a3 22
db18b7fd137479cb107089c83caab16d6c4cbb2c 6
0e76f5b6e4ac55f8df8dcd93039d33e4da26add5 16
4c5231383bec6b0f8728ed96102ee4bbd4d55124 8
63f1a356f8b9c23ae3798c126174fe9dfdf9614a 2
c3396163a4d50651319221253198122e53283e66 1
2aa9dca994b006ccbfcb528de5ff0da6a5578411 15
966941c5048af26a9deba4c3e0fec92597f084c4 10
eece566693ca380bf82311a04398b06cc1b492df 2
21078f5d784188267ad228acef34c18b11831502 4
84a814fb7c99a5cb3bad6c80932181883f92cacd 2
5c1a57a6f8144aee9736f01f3b27d45ad95c3371 2
922f4e3258b7cd7481bb69db029ab92e974efd06 2
39f39ef12a0e152f1cb247a42192f4bbcf8e298f 2
448fe31b0d1396c14901abcd272d205deaf6b853 2
b95c5eec390be0350df5b6af20a115e704439808 3
f73368fcf99efdbd4c1df9b6132e260ad11c6e01 10
a4323dd71e3df2b6a7928908f8f5f7c4bc21f990 74
a3efc774fef41123669814ffcee7a1e32bb0c4bd 2
8f19463c351d2f3a5c05f72960632c90ec4a09e2 28
89b3a16c5fb220d46dc4fe28f5bf21fc8974352e 1
706307f7eafd4c8ce7e7451270b0647e6319fc0f 15
a69a39ac743d3fe0392e5f6ce3983824cb445ad4 3
6ab98d913ae8cfc1cb54749ca7f6d20b5ec4b505 8
3a2b3c42f280f0366f753747415078765b5e4f22 9
dda3b1b60a64eea62e5a49930c0d162c381f8287 1
a3b479b758fdc9e8852eb5ba9d925ef98b1a9dc8 5
cf7211f9d7d70d56501d8c4c827bf9ce3cac5f0b 23
80807b322152356288fa441c92c2adf974479a7d 1
213b1d5ecd6a812faff3574e2536a33af01f9505 4
774e9986b3f655389cb551ee6f45420dee236370 11
20e20c7b27eb73966b01a9bccf9e0c87280e91fb 4
7feaa31ae2ad282fc3839bcec10f31c7ee082f8b 2
ee2a29c5f368223bda525677de8232236925f027 9
beab55ac6f74326d6c6d4602286f88f47125dd53 1
a08ef67f956ddf9cddd272bf0f8b7ea7300e70d2 1
0151872e4e1077468744fec344a4ced738166aac 1
05f6fcc7afc2bb16bf3b68e4ea3f35a1f6c8fa02 15
2cb5ceac24a9ed33d8156b0f46852ae8d9c7ad29 3
50e921e82a3b0be70aefd33fbd108929508965b7 3
4cbe5c3c3bc4ce2382160073721bae554786f8f7 31
7ced18679cea00ca4f54f622656e78b1420644e6 1
22f04e205ec572b4cc0e7f836500df709154d0b9 2
4b28bdf80261609da56e554b3a656c9c6656be07 16
734a45976c8f9e71c3e2e2cf6fbc94c77031c1bd 4
0765e3b8913100dd1f8163aa597d6e233137d162 1
ff98209c7faae141faf2c5d9c8f681332696c8aa 9
9ee4788f0bad23785e566467913bafdf5ba9a171 10
7b2eb8418720fb33f4e15073e4198e5e1babd836 10
212b8597a039615f7c04fd7f22db56d5e5d3b2a5 19
43621d722846acf22af6d3f855b8aa2b1006fe80 1
e229d069e5026177a14510cc895cf3cb17f3138a 1
2c60f024aa4742d633d25cfa5dcdd590bdb9d059 2
c88bab2bc25097ff3503ec22c3a356d748d4da88 18
f8e04fb7055895fdea9f85904bc7a8f7bda9ea7f 9
ff87473c6f35f4f463c8c3938e396862cce9c9cb 45
e71f6dd3f2f70c640ae73d28b432b3a69ffcab4b 15
cff0f1ae37bb2b7ab2dcdb10dec1f3cad7532e1c 1
e50e8ddf312f673461fd6d747c22599b164da19d 40
4c7b20970c0d26b06f31d97411d3126de87fbdd7 1
75944e541d358d5b06ebbba3098a919fbf2539d4 41
3a28a61175d9a444559b10833b9d6c7c9d0a652d 1
8e08ef1186360f20370aae74792633169fde5f1d 1
ae6928a0354b67a222c5ea6f9082d864a15e9f59 1
a58a3fd6724b5ec8a93121e90e0136fb8199cdb5 9
6ee75ef4d4b767ac1bdf28bb15f7ad58f8ee7dfc 33
0ccdf9c61a9cdca23705388ccac8e1e146c68628 1
fb47b96ab635d7cc6e9edefdddc46f1baf63b117 5
9d9aa68380e0e2a9320d9618c52c9a4b9803c2e0 23
01b459d0a984f5e1e28f6a0d3707902d7773ab12 25
132b060527622e6100a18c276095694883921449 8
ccddbbd3c5beff36e6b959f0f3f0105109692f34 1
9420e869bbd7ed4f3247e2bb401b1dde41e301ba 32
09d39029b16dee61022dc8afde4d84f523f37813 14
bf2ea1b3572c785c4082f1b1f70b0e91b9cea81f 1
47d59745449823c86211a179fe1488e595af363e 16

COMMIT - #Redundant fragments
1b29b8e97d45edb3dfdd06077af92ad69a573de1 1
6400026ca238c10b5864f278777745851ba0e4c0 66
22ae6485cea3594267d5ca4bf8f18d4acda0d64f 73
f5144f0569be64a7ac0db5a59afe79d608217dcc 122
9cb8a845a948ee51597b3ea0c300a7fbae34839b 1
b14a198b0a7930aa1d3e23e56cf3b12dff33fe13 55
282d157569af65d054800094cbc3b3f77787174d 51
ee9c5c4de7806e48adf5e01d922266c0e53b39fe 58
a76a3fc75bdab7cecf9198f1d6dea42bd0fae94c 9
926b64cdf2fd573f3c6ea4f684061050f5f9e60e 1
b87acfc96a925c9e8f86bd462265589405326600 2
b130481cb2793879ba2d8ca5b119736d756a19a0 20
c952cd0b17f6bb3ba277b534099a8f5910a1fa2d 2
a4776f33ca73b244f3b84cc3d9d70da30e6fdd7a 303
cbf7a76a60aa2d1738319e0dc326bc66610b6eb1 305
85d673982ac789be1be5e1ba5ec13cd7dee1da5b 1
8b49f4ab0ec59db283e849bb62649c5a86420833 2
458e8149f85606a72c54887111ff13bf212dd90f 58
6c0f8b6a2fd47ce7144de12e7c176f25dbd23413 2
03b9b6657e25b03a8b1e76fd54879ef8f7e58e01 1
5d7023c7566ff7b5420a0dcf9e9c7a015ee27f5e 1
f93aa9970a20d53e5db92196a4716b4550cb3042 1
bba1f22ebca8b7849510fb1996cf16a8345439a2 1
97bbe3d8c57463480d9c94712b6c52e12b04a3cd 8
c1fe5a965498410d3f62d4046cf0c58ecabeac9a 2
bcbaa2be25f5c56453e9176648cd931031242e03 209
0dc48cd72054756c05096bb3dd68b76d65f81995 5
1427a4c14836b1bdcbfa15c96ce9b0ebf4f1d7cc 1
14ac91c4a6d86052f0b10922f7e5d312e6e045bf 21
9de006cbece52cf94911112ae0a2ae900c4e9901 19
b4527c1223681de588b13d7ebb082527088a36b8 3
18663ae642cd680cae91b0b79a020c9362f75ffd 1
3ea6752042b133d4e5066641f046aeba973c4317 1
4cd27dd7fa14547fc8ff3d01531e99fe36b04574 13
baaeaea476a8ad1127227a043fe352b9085e67ee 1
8ebd0ad0de9ee4c9d6cb1e13bc02f04244f1fb72 6
3ef8a796b5ddf87e3e9afec9ba94aac62681b394 1
71e98186184694cafddca51f5dc73685c3feb520 2
a5589b39e985e64861bd920aa7b13ab32c215b06 1
659ef247b1452b6d5b9f92271357381fa59fea50 5
eb3e2ae1f3734986a9f0225c661888baac3cb13b 1
ec11b257eec8b79b2021df3eca0e0bbfae8489f7 9
e23282fe0108335f1704496f7d0d5a39f00470b0 43
7be9e59d48691bbdf3595c19fa4da394857554dd 5
5fd2544ef381e8477a42441199e2cbed868702c3 2
a81f0ad75dc8b715897555f6cbae1f53bc3560df 59
30de6233b60b733b8ceec8f8eb04995d23632fc3 5
ffaaa1f047e53cd155034c77cac9c25b39214fe9 1
6eec502cf3c0cae0381a804a0e06f81a89cb3bfc 1
2b79b9d8e584dec728a04e2f16758ad9295ea9b8 4
1dd28cecd12df2bda5636e977acc96094cc7a217 1
f1687ae25be0b369b1de1c6495194b3777904e89 1
a49eb9c5fac520ce7ef2772ce8bcb967399b3a09 1
8315bc995bc84bae42978246f238e5f471786a9f 2
0172e8b32df52cbd2399fc62e32df05629d9ae2f 4
45c66cd5bd2c9b47a342b12e9b5b65784e726051 7
bed1c44318ee88fd4c455460823eea9dc387b455 2
bd492c1a804b76399bd566308a8dba5586c161ea 2
10dd93991578cc2c82b0d5d04adb94c266baba2d 129
8a25b17e37a6a21dc82d5fa42831b563ae6258f6 7
b0287b02a64cdd473038e1b792fae033b57158b8 66
0975ad81b72762782159138ca20eb3c4f6e00859 1
acf81b5d061d9a1cbb81da07afbc8dca6f6da2b9 14
0b6ddff1dd1f5cf6d51a9515ad210caef830e455 1
7c246adf18862e1091834695d5be10895aa2d38e 1
304acb102cf134574c0b7ed1de5f61a818c6a087 1
8d6fe8ac60b0abdd2ce23364407a9060459c69cb 1
6960a16dbe7729a830d284b560a7af73c5372960 1
6f4a5d0492f6d7c0af20c170d592ba57756d012b 1
ee82ee392f9fe9bd0e5ab0922b4ae7721e84639c 45
eece566693ca380bf82311a04398b06cc1b492df 2
a4323dd71e3df2b6a7928908f8f5f7c4bc21f990 31
22f04e205ec572b4cc0e7f836500df709154d0b9 1
7b2eb8418720fb33f4e15073e4198e5e1babd836 16
132b060527622e6100a18c276095694883921449 2

COMMIT - #Redundant fragments
afd4015ce78b5144d0994ff12e2b32e0fec23273 8
6f799cf8a9e05380760cec6d95e3e2fcbf133924 9
53618a20ee595ec4e49967426aaa5019e636d79b 11
6c5cc7d29c208f3193431d84eb5cc0a0468ab032 1
743c14adafdb7176348610f6c320c9701f490d7b 6
2f94a814dc01ae392768afb8110b2b55169ed69f 1
cd917fa23178d6ef5425f7b38d6bd2420da56adf 1
f89d97c1f6b15761c6ecd5eb3824452379a939d1 6
b50e56998bf2ebdd15f6703a02601f4f0fa6245f 41
1b29b8e97d45edb3dfdd06077af92ad69a573de1 3
73f7084421e8751f75491d18273dfc4e46ee0611 1
41b1b291b12fff7fb034a3b76495304a804777b6 4
f1a60110881b14454e92b57061f4c1152677d062 4
dae4912332364aa42bedc3ef490d4ee4936b76ff 13
630d3cb5f079c9b06b5e91faa78ab52318850878 1
02644db726c1e1b10af9c275bb63890a1f6cace5 1
835ddaacd926414a0c667d8b5e82c3d9321ed66c 1
135e2a4de57bf46a916fef38e3d8e22b2d16dc13 3
858927268d783737f42503fa2ec868618e0c70ff 1
50d611063b9d2596f42476190090e5ad0d11e1c9 1
e3b207c848737f4a0dd71cf6ca6a9af1e78b56b8 11
cc9d4abe4b9c9f22049fad7ccffb0728d01d5481 2
6feb02cefe4e59794444e822d78a0fa4cb05e3dc 2
535e6f54d28ff1245675d915bf6fcf2e62a6f48b 11
64356b6dcf465e1e485e6c778a1af482758c2ba9 3
865a748ef41fb2411bb727a0228c1dd655c41a50 23
fa4c7827f8677b249009aa5d2fab8d508ceab8fa 1
e103dd6b31855283e94022588a403ecd18ae2765 47
8b90bce4b69813421ceeacf21e781adfe6da70bd 3
c113100488f9aa50dfcef3877a10a7582b6159ed 4
418091f87d72fe4216840bb2eece08dc3557c1d8 6
2336fe3e6ae846181632ac3e3e56c57dca76448c 6
6cfae0c384cafa9d100046ea1d5b7d0fa0ea2424 2
ca2350dfe78b865f1d2d705aa57b418cbd4d22d6 7
95a2626a68d7dfb73560e4b08ecb6896274bf445 2
22ae6485cea3594267d5ca4bf8f18d4acda0d64f 151
f5144f0569be64a7ac0db5a59afe79d608217dcc 114
9cb8a845a948ee51597b3ea0c300a7fbae34839b 2
18b614c14626fedade91a7c534a9cf7eeccbb17a 2
11d347cce06a5c02b22a17b1281be6008f7173da 2
4c3f8ab1283ab41d43fd50a70436425788973bdf 10
990e57f58e6ae9d490aa818c2ae528e528f5c1e8 1
a10e65e0001a05deba86ac42bdbf145e7179856c 1
043babf502ddf5a8fa731cb6b3a56814c14952a1 1
335aa68073bd8f26de8423108eda86db2d4b5270 5
96aca3696fc660c01a610e9ba90947b393b1dccb 6
86b7190ce0359acf0d0022c0c81162f2984d7bdc 15
b14a198b0a7930aa1d3e23e56cf3b12dff33fe13 31
bc837fb8fd4a75a88230b99bd1520971a7db3e4b 37
282d157569af65d054800094cbc3b3f77787174d 62
8a881089df23ed1ddc13a9145fd7adc44a30649c 1
4ebff6333591725efb070714e9c10ece57eebd5a 27
c5e0192ca2586126253871b3c2ad6c4b477a24fc 10
af2f23ee1deb9e05244ca604cd0248dd21227a12 9
bf8041cb432379e3086a1520670da30e1c2b4fe0 14
ee9c5c4de7806e48adf5e01d922266c0e53b39fe 132
97d2927f9f49b92842dcf8d5babc6d5a73625996 1
a76a3fc75bdab7cecf9198f1d6dea42bd0fae94c 19
2c8b32f4795add23b266b374a076935486805468 13
0309c35b649773c1bd6bf9c583d42637be176a2f 11
23d766dcb30996bf166cd74f5a0116aa2b40dc72 1
926b64cdf2fd573f3c6ea4f684061050f5f9e60e 9
f8560117a7955d701cac509f784eb396e4343b7f 15
ccd2ba474695f4719ccc8b3eca93104215c45f9b 19
ee5daa65616cb4383f89dd8fff69c781f75aa93a 1
b87acfc96a925c9e8f86bd462265589405326600 3
1e9618c34ea60cc214761a6618024c28aa712a51 15
6ed8e576c4e13ac3ea05a3c5422236ea3affb799 6
a7fb1967312a783231307048122e74003dc25554 8
b130481cb2793879ba2d8ca5b119736d756a19a0 42
beea85e3911467c43bb21ac44a0df43213ea78ed 8
d7987f1cf84698ce67a7ac181d91d7f82329719a 12
245399b272732dbd3308a2940ebfdc7317572517 2
7311ae8195012296f7f8d996f9f65cb5c0ae9a9c 6
5814f50b85a8bf36437e46a420e514a53c7d4837 2
c952cd0b17f6bb3ba277b534099a8f5910a1fa2d 10
0648c5bec67f22229ba752a990d14435edbdfee8 1
0fa987c44d2216125e1f4e99a86eff872c8c826e 24
3663d98a6580a3f34afe4a80f1ac1e66921558cd 5
122227ce48f82b636b7437afea30cfdee980afaf 21
0168c810fa794143b64a8b9481097c5e707f3b10 1
3b008e5106799fc098c3bb25035673e72025e781 29
7bb3e3cb931a997637cabc3901f0329b10820e03 1
fc633490cbcbbeae5e3f70d52cecc98015e19ff9 1
a4776f33ca73b244f3b84cc3d9d70da30e6fdd7a 165
cbf7a76a60aa2d1738319e0dc326bc66610b6eb1 166
85d673982ac789be1be5e1ba5ec13cd7dee1da5b 1
95fb03b0aa087a1259a1b5a0e6dfb60a668f38a7 23
0a3e36f83e99b86509c53025dbe321849da7e303 3
05121ddadb515b4f03f0e992914095eb03a0f199 5
d3a0da63111207adc0da2790152cc8dabc00409a 14
82649cae8f3431169a3b8e6a6f14adf4f495a350 3
bd0701593aae656483c1740965a1690eb3ad40a5 1
3bd65dca470fea9c65150f0236e68db4caf26db6 3
55216d0c59a1d680969db821d28492293b470b8b 14
8b49f4ab0ec59db283e849bb62649c5a86420833 7
de7502030b5ec6fa22d3b463065b3dfc1aab8248 2
458e8149f85606a72c54887111ff13bf212dd90f 125
946a2d8e0e9cf9d207ed7c5d5aea6e84ca4eeece 1
6f4a8a2d8a4cb26c95fbccfaf402ca10d48bc9ea 3
34aa8b03da6bf8ad9c605cc833f215519691e4aa 20
f4b9657b05cb32df729ea44f4b0be4665f49b88b 17
2c7a80af4b48d3143670aebaaf8c951664d7de6f 4
a26102b3007b34100fbd3ee5e457374f4a7b9140 1
bb6e3a14ae6e5dd4c77dfc7d3cbf5b609109b115 37
2f435baa687274dac335ed00aa943f2d35bbf9a2 13
bf1865a9121b18781de93a6a95cd06f14c467b4b 1
84d382ef9e295be155efe5fe3b5b961300519d53 3
8190a8628d3de3d3b191bca2caf6e31df42dc667 5
1df3e07f73b1c68bf0537c15824734fb765321eb 7
595afdf9363c28aa8e0420c936854060e7297779 6
6c0f8b6a2fd47ce7144de12e7c176f25dbd23413 8
03b9b6657e25b03a8b1e76fd54879ef8f7e58e01 1
2c5d42194d01403674d184c071663ab61eaaddd6 22
7ea2668b55ad7c6f08a3557967f2fe8b0e941b20 1
721a098add2800ffb138b65992fecec618f198f2 1
8ae0d1b674327cef9230399c193df581670cb3e7 35
6c88e8f766c5521cd3db7dce0c7497f81d9b97da 6
f93aa9970a20d53e5db92196a4716b4550cb3042 1
bba1f22ebca8b7849510fb1996cf16a8345439a2 3
cb72a0209ba4499263e3cbcac10213ca88dfad63 9
96507962170a3ca71eaf15a83a9982fb12df414d 21
fb43c79171a3df4efef946777b13f7545998ee29 5
17b59708aad21393248e80b95e8b84a731433619 8
57696acf0979b0d3a6e69639c14acda8b01ded28 1
d624f175e139df8fbd85603efb6b73dc9b77a714 1
e34df07747691c5fc25e4375a5974387bf38771c 6
f37a1950913feb0c2136224ab31fddfaca881896 37
97bbe3d8c57463480d9c94712b6c52e12b04a3cd 31
1d99bf252bf815fd632d198d8358459763f0da59 4
8df113cc1cf9519c16a689bb9a69c3b982138665 1
bfedc322198338d37a4a31cd57739bdbf8d556cf 3
4abacfbf779d2b9ae9dbad8283792ad05f3b84be 14
c1fe5a965498410d3f62d4046cf0c58ecabeac9a 7
858845811114005c9b2e05581548d1380f3da158 5
23253d6d5b5bcc0daa3842f6d1495201cf2304a8 7
7bdac2b671a52c024545edaa4fdd562afe3140d9 2
bcbaa2be25f5c56453e9176648cd931031242e03 207
ed2a8da1bf10db5cb3c7701b60accd0165dc2e10 10
d2b38e02c0a70557d3e0401314940462ad51a9fa 8
df2cc9434b4c81174493c9f7c3adec6751ef4072 1
eb93df8e34f3548705a30d9166705864313e2008 5
d124f390719b54407d69dea2b6ee35a31fdbfaf2 3
0dc48cd72054756c05096bb3dd68b76d65f81995 23
1427a4c14836b1bdcbfa15c96ce9b0ebf4f1d7cc 1
afc1bee39251defc9af3966b90e17c184e52fe58 3
ac9420eb93f40a6cf1e17a896a9b2de2d39d8669 29
14ac91c4a6d86052f0b10922f7e5d312e6e045bf 36
ca9a718857ce616e3699328906c21695b5b73ab1 34
55a65ddd50908d3180deecfcb79535ae7d133c57 1
2c29255e1ddfc7d34bb7175a680483413059803a 1
f6e6f605361d90efce738c3c09f80bde460ff73f 22
9de006cbece52cf94911112ae0a2ae900c4e9901 45
b4527c1223681de588b13d7ebb082527088a36b8 1
3baa467839f29060adcf24de540ee371b1cf4617 1
18663ae642cd680cae91b0b79a020c9362f75ffd 1
4c0466fc7641d374fb61ae43969329eb055e53aa 1
160a4164a2d66e38577541113c2cd89380ac363f 38
a605843ce6aa0df44a28130ef543c6c0a5baa663 33
88c76d207f642831ca899e144159424aaa60cf8e 8
a8203b65261110c4a30ff69fe0da7a2390d82757 2
a4086b9dccd246c84477bec8812a3cfeaeadec92 25
c04cd2337786ce7d54ed1fb757192fb8bc8c5e41 1
1fd45a4f68ea497dfbdf1a67b8b8805a4a9b1166 8
9f53f86c883392ad153e198987c21d68ea6df853 2
bbd990b81fd7f8ab9dde75c8070b973b9ce500fc 3
3ea6752042b133d4e5066641f046aeba973c4317 1
4cd27dd7fa14547fc8ff3d01531e99fe36b04574 23
baaeaea476a8ad1127227a043fe352b9085e67ee 2
8ebd0ad0de9ee4c9d6cb1e13bc02f04244f1fb72 18
fd9ffffeb5e25a96b906c3786603074dfa0a5501 1
3ef8a796b5ddf87e3e9afec9ba94aac62681b394 10
e89e8d62b911340cc5b293465cdae909f3dfd640 19
d3b1163073c7aeb6011a5b65bfadad15bfc0f108 1
a5fa2b8f7d9ae2d9f00b252b46304a5a4433134f 16
71e98186184694cafddca51f5dc73685c3feb520 13
824c583fa2263489502473b4e00f52f51054a567 2
f83612506f3879bda8d47d9701a9897367c4a463 14
ddf797902c406737d929b2a9e30ecde7ab34d647 17
a5589b39e985e64861bd920aa7b13ab32c215b06 2
659ef247b1452b6d5b9f92271357381fa59fea50 9
14d7ebd3a6e88628ccdfb190a209e155da633b0f 1
783f8b9c552be16a92e8d0241a321378defacd51 13
8c4335a77b48fd7d3721bdfb31a708dff195a0db 2
dcdea66eff6cee2cd956e8ad2a92ab3a7c3a2f09 14
0ac772a4e3b07287c435fdc3c812f67277c85cc8 14
c41078f6addaa86ccb3a91896fee7253540aaed5 1
56d9bb88e5dc419921fe2ae84e11288f05d1e26a 17
a285861cf07afacbe6e74a9a2ce69894a7944ff0 1
2a088e07629f1d3f3cf3205ef04754067a2aad21 7
d5e343049c2610c31ddacb24f0d173942f6d5ac9 10
2c82cb710b1a487e831d35b3c184bac3d950366b 15
1ae0a0ac3558ea73880b4573c980c63945b22242 3
7f4e0f2c73c198cef9489ade144750a859636f59 5
99692fa0256f76fc44c21e439635bc37beb21ad2 1
d95fcd8e24568b4f9d3cb9da922a4029e293c793 11
3a28558e334e70502d122823ce2202d79485f69a 21
81f10d7f1ef52d44f43b38d81ac3dc1c83d45134 21
06707cb1861c20269d692076dd5ab6cf668a2fbd 1
0760da507bd858abd2be7c8545d43d856ad58f6a 9
eb3e2ae1f3734986a9f0225c661888baac3cb13b 4
5099238c339b4e057a530296ac8558ef3e55802c 1
84622ab99201af5aef217f2dec6648c06136abf0 5
25da68253ab6e421ae05375088f7dbbc748379d8 1
b0c39eee0e6b58fa88051f84e29f34116d9f4c15 19
6637e145e683fff24a9342f35dcf38471e9fd197 2
4bf46d6276d55f10a5aa43eccf38b164b69848a1 1
96fb6c9e3bdf624441ae4a51f90d080ef04a35e2 4
e6c5d66362db65bfb8c1d0312d4c789dc2501387 2
fc92750087c1f9a9b4ee6cb06250ebe1c86f57c7 4
c04152d22edd220e3d979720ac03b9c13b151472 2
523b8bc8e2315c5642a6cc018ae6dbd75208e9d2 1
f14adc7d9ae5dc6616ce2cc252a358aaa43a5ddd 6
4932b96ece0fc96d4b71b25909d5dce9a492d26e 9
308f4b5a2183a53ea13a4ecb1fba2de77e3ae66d 6
53bdae04b48160ae9cf381366f50450404eccb1d 7
ec11b257eec8b79b2021df3eca0e0bbfae8489f7 23
cacec440853c1444884c5328843544da87cf1d95 2
bcc96b51c4ff11f9c8e94dfe3db5101ebf176593 1
e23282fe0108335f1704496f7d0d5a39f00470b0 1
fbd4347ca79fe9120a8bb2c8d9cc11af73243e8b 55
dd435ee8ab4d9c86b0e46f999866532556d04ae0 8
d46523cf9c6371475f375c6c0b9df8d59fe26013 22
8b1a8e178abb46cc048a3982636b8ec4e6ffc8dc 24
ce09f7c17642e670f44e5058260ef0f09b13829c 13
8f589701118dc99385c7e8d0476e00fd3c3a30a5 9
9b32d00cce4d338db2412431ac1ea3fdac488ad8 3
7be9e59d48691bbdf3595c19fa4da394857554dd 20
5eb28ea81253f0921f407b767df438d7e983199d 1
a1344d49a2e3dd74136fa119e3dde9a0fe7494aa 3
5fd2544ef381e8477a42441199e2cbed868702c3 1
0888a463855dbc9900fa8d06032f542500591e10 2
632989ce41d777855ce2c5b5bcb9364e64dbe2b0 3
a81f0ad75dc8b715897555f6cbae1f53bc3560df 92
25bbcbcbc774cf70e185060de2f3237eb8d0d9d6 10
2bee742f0f8947bfec0aec4d2dcec6f8f1e2f51d 2
30de6233b60b733b8ceec8f8eb04995d23632fc3 23
34918ebe73b0e0e605d05cd805054f89c003862b 8
e0f265117cfc30e6804b6d6a3da28731a151ef84 1
70916d288bad21901f0083b5e5d19f2b7076dcce 10
cb40e35f5e0990fad4c5278964fcc24e112dde8c 14
a42f813eba0f43bbf1c62e76d56f8c2ead3feb3e 3
937a5633eb9808b8b5afa59998002e274a7b6d84 9
34d25d74636254918e371e437d6234d5534693ae 2
ec0c4e5508dbd8af83253f7c50f8b728a1003388 5
da0612b348fcfa7679b92a5e9b8e1603e8e2da3a 20
32692e7e60948092ab5365c99cd3f110a88c67ea 3
ffaaa1f047e53cd155034c77cac9c25b39214fe9 9
6eec502cf3c0cae0381a804a0e06f81a89cb3bfc 1
d630833beb14bdf88ed8ea5de43617d6d97a42b7 2
6c86244c6a61317b2ad35f8da76eedfd12ba30a1 7
48bf241d4149919e0928e39616bee2e3783e2987 13
14c230a5341f5f5e30cce4b674ccb97c38bf409c 4
f463039154e6ab4188b0859d9214a07cad0e0a5e 14
bf5daeb85b267a635cb18283b73d441c14f168d1 3
5894111a2e7519215673d11e55772599f978e986 8
540f79db832d267747fc041498f0714faaa8af3d 6
b857309126b0922c1695cb514d07c9e493afcedc 1
0603aef594fa60126c2d45f2ab164eee39f7b44c 8
1c606c3d96838e595a0664cbafdd60caae34aa0e 8
aef915fddb45aadfc3a10aaad7f4a2cad32af515 8
2b79b9d8e584dec728a04e2f16758ad9295ea9b8 21
1dd28cecd12df2bda5636e977acc96094cc7a217 1
f6cbef5650d8972093003888ab54cb0f7fe129b9 1
41b01dbc10292f33d08bbd803473e46c9bc567bf 1
43885858071f12924607fb91ea595424e5880c3d 1
f1687ae25be0b369b1de1c6495194b3777904e89 1
177b08705b5a4609d42bbd11a208b10c5c6d3901 1
a49eb9c5fac520ce7ef2772ce8bcb967399b3a09 5
b3927234b51e5f14f71bb5107f35a0a04f42ea0e 1
12e9a4f65f17580d4096548ff73683023f8e2a1a 1
982e295053663787bb0396b81a8956c3c87dc25b 1
341507b653640f7b3ba7cf242fee5386099e7053 1
8315bc995bc84bae42978246f238e5f471786a9f 4
2007b8efda07f0928279091f136bf0fb2732cd7d 7
c7ddd75580f5eb951f860c13a353407c0de24bec 2
c2560c028173c3bc0a4627d4ce5ce221bcc9be66 16
74e28e85166eaa3314a63b66694fc6cfd09f3cc8 1
c0a4a5335a8f5539f1078f5912aa9b74a703646e 4
1506b78c6b74101f7d7e5f6dc370e271a06e0b54 12
5f377c545345cfe9ca97306fec01a191711c5991 1
0172e8b32df52cbd2399fc62e32df05629d9ae2f 1
65295d70c5c9bdf4b1a30951c5d44e3e3b9bf225 6
75d5b74a1a7ef68c5169f4b44cdf972c1ab07ee0 2
c3fd1e588594842107559af59d93312787d771e5 30
45c66cd5bd2c9b47a342b12e9b5b65784e726051 29
cb0c61e7caf99be3db763c8b33b1066582b536af 3
182804613cb886c7b1cd1fd24b197f4a1c4fe437 11
f122fa66907a01be53fde906440487ebd6199743 1
81903abbb25ff92597d5f1e3acc648d12bdee444 3
d00faeb231e3ac17ceb53ec93e966d8d6f14ad3d 10
0b2b82ad923b0455cde93286e3f504a1abd0863b 21
8a168383211181b7466d5bb1ac364eb75806eae6 1
11202369f3b4fc3b63f0d9f7fde2e27f35821b7a 2
0d86dcf3cf925b9d00f78e752aa03e839bfd4bb8 1
bed1c44318ee88fd4c455460823eea9dc387b455 8
591dc8fdfbda2bb5a6308135897a93a56e9ef9b6 10
a09f9cf9ef2b316b489094d7197c47be3526c62d 14
55f642725742513824975af0e5e91cb1920b6d72 1
07e3d91d8caf2b06b6782ea25d80b57e51338e8d 8
bd492c1a804b76399bd566308a8dba5586c161ea 21
861034ca9f3e50e169e049fbcff79d17931102e9 1
07b3983ba62873f5207a853a1c79af1d273495d0 1
76ca24fdf8dbb8e05e6cfe490b08c7f47a5ac0fd 1
19d53c6033939393fbcb08d90415ff63ae3dfe27 1
3a84c601105079569561cd57403dc6ad53458b61 1
b53f8bbb526eabe4c3a5847ed48fa76ceb450c28 20
cd02e447f55bdb76dadc76e60db511afd15d4c64 16
2f5c744471b24439a382b463a4a1c38741a722a4 5
351a1b3ff61ac8059f6141e7965115360177915c 3
e0248340fec89f7c3e0b242bd2f1da91fbf194ea 1
10dd93991578cc2c82b0d5d04adb94c266baba2d 16
8a25b17e37a6a21dc82d5fa42831b563ae6258f6 6
517643d285ad504fbc18e3c1c3baf51595ef225a 1
b0287b02a64cdd473038e1b792fae033b57158b8 47
0975ad81b72762782159138ca20eb3c4f6e00859 1
886b7b8a83965b1f98d38cbe01cde0bf6169b642 5
c1708e906e777e205bc93e7c6417ab813f6deb45 25
fe8852fbc4cb2d62459d817af8c57013dee4f6aa 20
92ad68c91d5c3074291e1f0f494ccecc440096c3 22
acf81b5d061d9a1cbb81da07afbc8dca6f6da2b9 3
8b1455e0305f15f807e4281937ddb36ce6f48db8 1
0b6ddff1dd1f5cf6d51a9515ad210caef830e455 1
7c246adf18862e1091834695d5be10895aa2d38e 2
3ed4cc3a025327f90b401f43e729cb4c9127367d 3
239f7766ec42b25896e3263e6bb885c9e08dbad9 1
22f49d76bd1ccff603c06eaa83e448835cab5c3b 1
40a6d87f1fa4caa3f83d7efbc257b2421bb03b83 2
404983d14f90e0a8138830c166e773b0208d1eb9 12
81efb533a104c10c08a405df319e92c6419dd6c6 14
304acb102cf134574c0b7ed1de5f61a818c6a087 5
7e14cd00e356b0516c100e29312d0391c430e287 1
8d6fe8ac60b0abdd2ce23364407a9060459c69cb 1
065c898929584382d4c38836a1cb653424f9a530 1
6960a16dbe7729a830d284b560a7af73c5372960 1
b0bb16afecebe9b98188ce2fa7243d7ad24d8f22 10
6f4a5d0492f6d7c0af20c170d592ba57756d012b 1
ee82ee392f9fe9bd0e5ab0922b4ae7721e84639c 77
81da9efdadbed13c11c78ad3d9289f6f722aab4f 3
db18b7fd137479cb107089c83caab16d6c4cbb2c 6
c3396163a4d50651319221253198122e53283e66 2
2aa9dca994b006ccbfcb528de5ff0da6a5578411 15
966941c5048af26a9deba4c3e0fec92597f084c4 10
eece566693ca380bf82311a04398b06cc1b492df 2
84a814fb7c99a5cb3bad6c80932181883f92cacd 6
5c1a57a6f8144aee9736f01f3b27d45ad95c3371 4
922f4e3258b7cd7481bb69db029ab92e974efd06 4
39f39ef12a0e152f1cb247a42192f4bbcf8e298f 4
448fe31b0d1396c14901abcd272d205deaf6b853 8
a4323dd71e3df2b6a7928908f8f5f7c4bc21f990 74
a3efc774fef41123669814ffcee7a1e32bb0c4bd 2
8f19463c351d2f3a5c05f72960632c90ec4a09e2 28
89b3a16c5fb220d46dc4fe28f5bf21fc8974352e 1
6ab98d913ae8cfc1cb54749ca7f6d20b5ec4b505 8
cf7211f9d7d70d56501d8c4c827bf9ce3cac5f0b 23
80807b322152356288fa441c92c2adf974479a7d 1
20e20c7b27eb73966b01a9bccf9e0c87280e91fb 4
7feaa31ae2ad282fc3839bcec10f31c7ee082f8b 2
ee2a29c5f368223bda525677de8232236925f027 9
a08ef67f956ddf9cddd272bf0f8b7ea7300e70d2 1
0151872e4e1077468744fec344a4ced738166aac 1
05f6fcc7afc2bb16bf3b68e4ea3f35a1f6c8fa02 15
4cbe5c3c3bc4ce2382160073721bae554786f8f7 31
7ced18679cea00ca4f54f622656e78b1420644e6 1
22f04e205ec572b4cc0e7f836500df709154d0b9 2
4b28bdf80261609da56e554b3a656c9c6656be07 16
7b2eb8418720fb33f4e15073e4198e5e1babd836 10
212b8597a039615f7c04fd7f22db56d5e5d3b2a5 19
43621d722846acf22af6d3f855b8aa2b1006fe80 1
2c60f024aa4742d633d25cfa5dcdd590bdb9d059 2
cff0f1ae37bb2b7ab2dcdb10dec1f3cad7532e1c 1
e50e8ddf312f673461fd6d747c22599b164da19d 40
ae6928a0354b67a222c5ea6f9082d864a15e9f59 79
a58a3fd6724b5ec8a93121e90e0136fb8199cdb5 9
0ccdf9c61a9cdca23705388ccac8e1e146c68628 1
132b060527622e6100a18c276095694883921449 8
ccddbbd3c5beff36e6b959f0f3f0105109692f34 1
bf2ea1b3572c785c4082f1b1f70b0e91b9cea81f 3

COMMIT - #Redundant fragments
89f4c18e5974e11a1972ef545eb417f48646ef55 1
5eb62fddf202d0c54bdde3e4b4a2a354fba05126 105
bcbf7e66b7b20dcc9471f7977f190b5ab4d47e73 10
a027cc9f26c2dc6daa8a997e00de1dd16eb6c56c 14
73eb9d352a71981371fa78907bacdccbd77d017d 10
0d458038258c271d6b7462757850a0bc45ac5cbd 65
b424c80c364aa156bf68cf5c9bd8dbe0922611e2 38
5d6b34c67f72fce8b4f07f93a0bcbc0b72437e40 38
206201617aae648e12f63d4ab8aa9751157e7e63 1
dd54604e2a7c1359c60c47426829a30138bf77e2 3
5988ff0ff679e2cfd9c6154ddf2fe78dfa4aeead 20
8d075ba387df002d76cbdfdc9a9b0016079d0660 3
b351035de0bda61d5748756880155ec5bdd581a7 2
e7077a6618f87f30629fd42bf6a13986b7aaa2e2 4
053c5e0d0dd276b5d0ee8d6c958c8fba88576f67 1
e219223496e55732708003f8da2f7021d8752d44 2
f8d4090a899526c34fe32435a67ef5f4559dbf2f 1
ae563a4e9b98a353ce9f5adf5e3a6377dea858d1 10
9bd9ce45f6e779c066c8b7d16403ed16f072296e 1
85997f7fbb91829fa3c7c51c137f4bd35117f254 1
f2b457995b9ecd803bccd6713a8a3c164ec2305f 1
fa601ee57b549eabdd099489b7cb09d2af08b5dc 1
e350740b434607e52f5a2850fd81b7d0196504ea 1
a0f3e0435c405ec842240413e2165863c9c76a16 2
ed492bd0c5c5c3a0258a65cb31cc8723d8f011fd 14
d92c1b36754b7ce22c4cc6f4c78d1af4c64ae21b 1
fbf87122e0f7229892b6dbbf2e211cc46acea008 5
44a04a5f899b700ad664548ba36e1535516bc664 1
ebac9b0dd11538aaad65fcd88c192d6ff526c662 1
ac7154954f1c52ad9a741f55133f45d4668019f2 17
207b1dc03bdee99538f2bfc86006136293469b60 12
ec4c52a56216055570ae9329f9984378e9d7eef2 17
4bd84e3ff138cdb345ab028044ca81321b129c04 1
911f0fe11146590554ec11d1277d6e2ba55bd7e9 3
32f05fb5f66fa26c15f6e1e8a09d238d5085b101 136
d27e072c2dd31debc79dffacd22bf9b8bb5efe52 1
08314630bd09cd833539221ffdb00ce529d6a5c8 4
379ad27ea0279c786847bf763cca4f26789ac151 1
ddf76243ea611b82772b6cad60455a6f7b63593f 6
63c5ec9834b0aac3e2ad8187bbbc94046c1fe95b 2
9c2f4a988cabb6136c755dedcbd3091d729dda83 1
3c4b780ea6b600195d2d644aefd12284108cc520 2
e025ce1a3958771fe20efe16d68a5a8130ed3fe1 2
379747df51d29f4edf2308f05a9525fb8fecc3f3 2
924445035e0e8d6c2231b51fc60bf2b7fff62aab 4
90e58a9bfde00714bfa81fc6bc03546fb1946c90 1
6e3ea6857dce8b7a586c3af555e21ba35a59ea54 1
138baec1c778c2ea1dc1a6efe6d5e76a3b072b1d 2
aa09ac7ca6e01a2ba41470ca590f07f2ada8af6f 2
0dd8d619f94bf604e5000a4f87f1987b8efecc39 5
78b3cfa45ce6d92e9915b076ca41c12dcd5a1f63 1
cf766c07333f5e8d0959788c434773b54d079c24 1
f41fcd85ca62a2109a6e550be0353d292d351213 1
f62b589b10d3bd94ab24006c70ae5d86ec9bd3fb 1
983b064f7f31830788ba2b5485302f02ab637767 2
d02d0109a7a4405c0355d54bac5218aa057a1423 5
cda314a1ca1de138c9512013acc25b7631dbd1ce 1
15c12f11dd69208683d863444b524e26bab59006 3
81648e8ecac4fa6b931be235a918488e70ad43c0 5
ba96c9afd8f42adb6abc9d5e447bec823c95db88 503
c54d3a8b097f549a04dc74d02c337899b4236184 2
7ff75d7c381a5f715facf0ee894d9a87ea2ad603 2
00fea9d8078d487e31cec8292dbd9bd69bc9c216 1
fb3c9ff347d2ee7011938da72a565f03a3d4756e 1
baa06c8feab274411ddb3948580d193dcab6e509 3
305cd956104b20c7b37e13c98527b72c59910799 2
76a60684fb7e5c65b7b5810df3a3debf3e553161 2
6536defc8e32df4f10b7247cb514619d05652185 1
ef028845113aca7e1159b1725edd7c39ed686faf 1
1803798d9fe0fa134a2424175c60ecfb214957ee 2
13d22f45624470ce5c07c085cf8b1ec0251eaee6 2
e3366a9d3a539fd2c3003f64416edbe1c5d60473 3
e92310e1cb0862d8a529952fb02c34a1fa6f931f 1
2d16a3940157cd66810c8e98c2d4e69bea862789 2
68a6dab45b3effd6c615580c3b13a3c86565d997 24
39311b1023eb840595d1a52838aa47e470aa444a 1
f76a8f917f5e4de8ba5abafa98a3c4f615be0e42 1
2a4cac1922a656283ba6eecda46f125ec0a41c22 1
87c292b149279fed81c31cfd03549a738175adff 1
91eee49617327cb2a72f23faa341fd213e58cdec 2
9e6b0f8c9a7d1f3e450fc4805ea93fde4ef205ac 2
4fc19e3435d675a09c2414d9919c9a91b7bd33f9 1
a00cb54e5e56b7370be0dc105d991d68e59eaa5b 1
a4b2642f11650f000768e82fa3d7f34fe894bfd2 1
7e8fbc33026c7556b54f10fb723cc1fc2938e150 3
cad6e4ae20fc7ff4535e42b1f3aa9a462f82c0ba 20
e579c212f733405d698b624c0ffd300f6cc0035d 2
882556eabbeb2f62939aee29afdec2a01ce4bbe1 1
e7bbbbcd356b5d5374bf7b78e7c2e4a4a1b2e013 3
b39e2d0fe3da5429c555ea1423ff41dc6a12d61a 3
bb4bd7481c7592cf1c5044dedbda71469f4f276e 1
dc782783130f819962c8ab83269dd8617817a9c5 1
89040e46415f080a2eaad7a9bf732cc047800135 2
84394a9e6c12d7651871ff764979db6797d4375e 2
ced14c6180260a08028837e50ef6298a615d921b 1
3eb4dcd89e96a8eaeb9933552f44924a8f795890 5
da7c8ca0497a63c6354d12b0ab9cffcf3c78f90e 3
ba34e0d8458feac61e561e840e13fa474dc3ada4 1
233c2485203bde4305534fbb9661dffa6a2ba25a 2
9751c64c1e2de72c1d1dcf545c18576e9745a474 1
de61d0de0061197de858addc8dd3181cbf865674 2
855943fb930c084000ed673589ad0754b9188b60 1
b91b3efb3854c0fd0f270bdba6cdfa8058c0515a 8
8d6478346e45d728656ccac760adc8126b3d225c 1
2c60f013ae2fe4f2c593e370487d06f1655ec394 1
64cca1d9354664286d602d7e16b2f088e31ba45e 1
bb5612d4d36bf33644926c5b99732dbe1e7f75ce 29
062332fc6d6888c8f233f6f272ce80a42d04a418 1
3e968bd8335ca1568ba696f423ce9228c677ef84 3
717b56b998f0fe37f2a8f6b1468ddc62f3802c4a 4
c67a5245dc03fef62aaca4c63688d6ab087e137f 1
16bcfbd887c6f564cb5a43520ad2b809d3219afd 6
b6f2d0304ac9530e5c43b6c889ca65a6c1640754 2
473d151d4d217ccc2af9499ff5e9239a137774af 13
f3d763ac36d16faa666c999f4506e83356025a9c 14
2b4c1f87a73448323d21cd459f967013a41870ca 6
dc68883ad75db118a7239e56f1128d7db4063587 2
b0cba9a79ee99b09958dec8e40c75bed47b7f780 2
7f836b587389f84806d61880c08f355ca8ff01fb 26
39d423c40411646aa26182266ef727d6bea9e018 7
71e7324bae5870477d27ff61650e974c0da5a238 4
c657a840cc1ce8f80ecbdb761851c356a82cf41b 17
ec145be03350c6b29b2f59078f374dbdb28ffb66 2
fe2843d4a0b6b909ba8c897b9e4ddcfd1a9bfe56 2
c78f0c013df6029b9f96c5d652f4564926b21a9d 1
1e33436524b3d617f36ae6bb37e5768ae5cff1a8 13
4bc3f63055976d1b3130dda2049b809b10e62fe0 1
725c5f28ae6ab49262d02ce216e4043a0c5bb976 7
db3ed53258fe849595f79b24ee90b930a75c7523 1
80180b28efc35d63bedde1f7014c29349d744dfe 24
8079ea5b8d1366445da532906e43afa9291473cf 8
565d8d16ef5ef46d20158303ca5407aeffde1887 1
6d7fe5d117da73a743e4b799d364cfea05a3f026 1
e54a1c92302f3167b06bc04859b87ac0681bcdf3 1
3c23e7abac5ec9cc48de688e626eefdc85abac34 1
80384c483058df4ecb84fd0e48971af33c017dca 5
633c613737a59f9b39e15ec8371fbf01d5872c22 2

COMMIT - #Redundant fragments
ebeb2dcab4e429a967f61401e6e9c755a19cf6e1 11
eb833abd95ea3bdaaac8224cb985b4587742eec0 10
c5b978ce23cde57e215327b391e0cc94a6714a06 29
fe69714916c8b0d9842c6f1ee07bef75aa64f5cd 11
290af7e332cae0d450b54130127345df2cc32b0a 4
0d23a9ccb22959e3cf0fd0ff85eddc01d4bed3ab 2
9a179ff85bd1636f5bf0e9cb5acdc2060db333e3 15
89f4c18e5974e11a1972ef545eb417f48646ef55 6
5eb62fddf202d0c54bdde3e4b4a2a354fba05126 88
ead8450fb71c098abc44552d963553c80bb6d711 1
c67cee2fad477f7b6bc67fe6ecdd27613cb193ad 6
99d3872ff25646b163d7a29ec314dc6050bc612a 4
619b6874f0bc50a8fa72631dca65e14b7c32e46b 2
a6637ae432f9a7cf0fa5b6d7500eaa1c59878e03 13
bcbf7e66b7b20dcc9471f7977f190b5ab4d47e73 37
a027cc9f26c2dc6daa8a997e00de1dd16eb6c56c 21
73eb9d352a71981371fa78907bacdccbd77d017d 37
0d458038258c271d6b7462757850a0bc45ac5cbd 71
6fa3edd33761edf5441818b57944b58271126a66 95
9b6845c0560fb8aa7a53aff3322218288ca067b4 1
5453711fb8097a0d750338f15f18f1868294dd78 8
98eff8c9db069b8297234d86c81f2c42bccd6191 42
8b3db797f220e304e215130d5e0d89e7464151bd 2
f456a8044c8753f62515a5dd88425bffb431b387 6
578b804429d7c905d06f019c62c7596e51d22917 43
23277b96dae68928fbe7a785d080fc0fbf6eb27d 1
0a904461932f2c0455611e77ec6a8d8aced2980b 1033
a7fbd3edc48543cd58e9599a6a81583d30ecdf64 36
147ef7cc1aa2cdf62c002a01e0b8dc8d2e73ab89 6
34bc9a237414013c1d2fc421965ca432c662c20b 11
264e9ec3ee55dc92409bf1910e9ca76b50154d20 1
25c9eb834dd8fb71a089c154637353281ff71094 18
2be1c1f73355fe80ed84c9bfab3a91bb24dd63c5 9
b11c7a492a8308f41436ecb12a370fc281ea45dc 6
dff65acb9ab99d0d8bf656563501436981bd7bea 1
04c3ab9b355b2c52e0178533068dd22586c0eabf 1
d05d5282b93eec457385b9f1bab8b9f2efa39852 11
e6212e7d1802d4d0133fd545f1190594aa69b09f 22
b424c80c364aa156bf68cf5c9bd8dbe0922611e2 73
5d6b34c67f72fce8b4f07f93a0bcbc0b72437e40 73
89848e0222535051e237e992df3ed46e7d89cfce 2
d877581e783f778f6204e1b607cd29f16b897a3e 4
206201617aae648e12f63d4ab8aa9751157e7e63 1
88f8675121ec780b7c2eb68d3c6d4208a7259aa7 21
dd54604e2a7c1359c60c47426829a30138bf77e2 12
5988ff0ff679e2cfd9c6154ddf2fe78dfa4aeead 57
08aeba4f0355ae6806f71bb92e9f81004cdbe6fe 9
5e15690d8e079588b3e4beedadbba6417b28d33a 4
fec4e92b96a29b98936eb5018ac2fcb02f02cc66 14
d71cb7a7db91e6cf30c278e4d94d68ee3debf2e4 12
bb8e14458a2ed360819e37e07f538073064ceaba 9
099f277ccbc4d61f06d681a19402fb8492a88c7f 9
7b22aec5529fb3bad1e8098938271398d13c92ba 2
381b1c43d007a38295f492caefb7b2ef1e827852 5
be8ca350ec803255cb32c164bc1c356f3703e4a9 9
51bf00916eb3b1e310d2a2011ad4710a19fc4c15 40
8d075ba387df002d76cbdfdc9a9b0016079d0660 4
b351035de0bda61d5748756880155ec5bdd581a7 3
62127dccaf77589717829b9f3d73e6da5c7b4177 8
c6758d6bd899c6b087fa7a8a36b1ceecac55ec31 1
d49e229caf958a12035b46d23d17aabce8159137 1
e7077a6618f87f30629fd42bf6a13986b7aaa2e2 6
4a298725e4d07477c01f84eddb699c9480554599 34
c15c50245c3fe726b27e2656f1672085959d19da 8
3771c80880835b4e294a67eab962686d8386dc74 5
053c5e0d0dd276b5d0ee8d6c958c8fba88576f67 1
d325f0f90a7c0620bf7e4d62a97a95b94cd0f111 41
d34be50a9dbbc5c940e8e46f6fe42edcc13e5eba 24
4206c1eab19900a9e494ccced926ffd14080ebf6 21
e219223496e55732708003f8da2f7021d8752d44 1
c93fd279fcaf4015085abe40aee8d0084590305a 7
09621dfdb946e9cd384d21a08677f860f678e62a 30
460b4450d71d793257ef3b31374a2bafff7c9758 1
5d3146439c1e6fd76aa0a24c0252404741bb1b82 3
f498cdfcb442facecddefc9eaa9f21322e3f9565 30
d906626837a54933700463101cc3081d2c80b1ce 12
16310dc2210c020955db09bd41e27a2978d20a27 21
ccca505ed22099594ee3b3248f377c1caeb20c48 21
4a0a0f618c13b9c0ecc97a5e841b9e91872402f2 22
f8d4090a899526c34fe32435a67ef5f4559dbf2f 2
57ef80caca376d86e8dbf5d0b7124547e141c86e 22
af98e93bd2b12bd3a4a5627155b8f626bff962fe 18
cb6378b922641f920e5f3edc2d8a3a2b1ad0f65f 4
849284f1db2aa7c1620897db0ec50b1b38bd9684 12
8edfb37f9fb817877e3266f9495e83c4010bfde9 15
83f7428b00c65298559e4988142f36eb68bdb783 8
dfe723190ca25d06724122371ae3520a5e6bdf27 19
9df6b966cecfd6db77fcf2d0d9e49794cee7fd8b 1
bec0fbd87ede35fedbc243ee2c9e74cd24957bb3 4
8b24fe642d5ab3f32e5b01671e8b4181333d4dad 87
ae563a4e9b98a353ce9f5adf5e3a6377dea858d1 28
be74c45fbcb9ccaad84c4bc69c7b4635d4edfbcf 7
06117fcdf9c186896a42205ca4e10ec8ad2843e9 12
4f1e69b5313761cb95909359a408d13e6aa29635 21
9bd9ce45f6e779c066c8b7d16403ed16f072296e 1
8d6b7da38dcf9d9bb68ee7e16d4d30de2ff8f8d6 4
12bc799c682404b914e85e16462a6e675d5b2df4 19
7153fa9be229ee078c7026dba8c9b2be3d791ed2 7
3661c94afdb9efc85df19c7639cde42284f0e812 14
79bd4b661dc6f26d16b6a701c18f474ab57d9175 28
b45652977d317211bcd02e01446796d664bc96f5 11
d1cdea807a3886e8fc7c5ba02266f809d2b54469 1
db308cd1b01d161060edae663d13362a396cb0eb 79
41ba9e00e3bbde990f6821f67f0da2a5575b9ac3 16
fc21b26f84312e4f75e8b144238618c73a8b091f 7
cfba792f7e99d05c8434f6dc90870a7eec66fa54 1
17950753e1bc76c050ee0ab1509fb83dec3096fc 11
a823b1ce46b44721686aae97be64a7794007e4f4 11
1fbd10671e6dc5c5d1ec966d657ca35f3fe81316 15
2efb90d039689b83f2d274665255bf62481a3f2f 11
60ac766b2ae0844d4c53fb300e98dac9e568cfa7 12
6eeeb5bee98c8e70459c4cde718da55e8bb027f0 1
d504ad57f7c1f9e07db9df1a70f2573a8ec3a12e 2
85997f7fbb91829fa3c7c51c137f4bd35117f254 1
f2b457995b9ecd803bccd6713a8a3c164ec2305f 6
634d68d26f9eda4bbb6eb7df4974819c705a93ad 3
0415efa73bd4b8063d4d2dfc067ef59996f5f090 1
f3843a783bfa5bf21c62ffe2a7892b11ca07dd60 1
ede34d94723e61ddd08ed6e58b80a43fefa06f24 3
9f6c9a7933f1344f1d1ef36a1e2352d50004b2d9 1
3f3ad389773e797d10fb52023def5f271ba92153 24
41ad5a208f0344a387304fcb076145e234639f35 1
d65cde69ff76003ce1ed238b5455cf04cb2af9f3 5
f6ce28df5f8d8f6da628d6a21794eda7d12eb950 5
4b251bcec48caba4771f3ad21e47623cdff4d2e9 7
c9aca98048ac6e304e13a4ef47c68a4e9d67030c 4
b609686dc766987d05c9dbaa760387bdc6227334 2
1f89e226f2b7dc9b3b498d63c5a5bd5bc23a46b6 12
76d27d8a42fd9ab8fda91b07c15ef8cb61e74812 14
bc84c00b75adae089cba788aaec9bbbd8d9efcdb 8
d0f23d0c28cdfacc0179341ba35e6c6a9f8f8174 1
afcb345fba17a8ccf58541d3094e130c38fe80ae 1
fa601ee57b549eabdd099489b7cb09d2af08b5dc 1
d838e256d9e4ad88221b2230612e78165fee5de5 7
e350740b434607e52f5a2850fd81b7d0196504ea 6
f54e5bbf25bc15054c5625c3aa75f4d0db1802d2 35
b8a46f6657147be4ddc194c04bcbd5aa00abf23f 38
23bf64e8a46595ea57fb2bc5ee0b922cb4ec987c 26
f1e04f4886977dcc186642585957fd01e25e5a94 7
494f8bc48c13298a4a31e31ec447a9fba393a28d 27
4bab561059df57a4bc8e8d4f3475dc6986360146 20
8f2301ea507add679118eccad06117446816ef2d 5
f2dde14f3369c85040d3882de0020827abda8d09 1
9ee47dda0576c1fa8fabd7ed5416d84e4f9d4561 4
32643d19538ad853a1280eb4060c4f15ac6dc3dd 10
30a40fa69d15367196d134823032514f6cddbaf6 2
9abf6700a39b965556b9ed8368fc07f63c7adbd0 2
055a88a6a674425296ce4740fc4f8b5365cff16e 29
2708b20351fb0fbb98fd0bc11d2aab1ecc89ba50 1
98a349691da7f332042ec9bafe9973f35baf5f13 1
fd0f87590d1c88c18f669e9b168c8fd20631f23c 2
26cf6d543deeb2e59564ba23568c83eda2b389bd 2
a0f3e0435c405ec842240413e2165863c9c76a16 1
ed492bd0c5c5c3a0258a65cb31cc8723d8f011fd 29
97e55988bdb1189df54ad4e32a05c7056bdc126b 43
5b82c88097248ba7bda933c11b2b40838131e473 11
e5f16ff92cba9e441de86d6cbc81cde15c2ddd0f 21
e7110eac1a03a118b7852659581a7a84b60f31af 21
b35f8a1e58611f063e7fac5573050407da9ff98c 12
a94bf27be020fdc006232b51c0b036eb071799a9 20
aedc1272b6012b36267476bfb2a9ae518f64d7b8 5
02014066495c944c5d4da6a2c160e79ee5ef66b2 12
d92c1b36754b7ce22c4cc6f4c78d1af4c64ae21b 1
e6449cccdeaba96ffba4c27db322c5c3d5c18662 2
231e2e584f0fa919f74485519f8b8faba5a3d58f 1
7d32eeb872c36edb2943efbadf86c61180032d15 10
e640d1613751a99ae4c468c9567f21ea13b496fc 1
ca850ee0de21fe95a3b840c66b8b9d409ef9f1ef 13
fbf87122e0f7229892b6dbbf2e211cc46acea008 13
ed2d9a65f1b2ff54957fbc2035f7ffd2c5f7a7b8 15
e971e376defd9df8fe34228b4bc3e6ff5a338deb 1
e1d68585bec81a68e08ab08ad274494a612856d0 1
2ab69023c5216da15183b1e666aa57d3bc2c0fe7 9
44a04a5f899b700ad664548ba36e1535516bc664 7
9be69ef558ed1e5f3737c837ea507a864f7e7c64 23
7c190c990de86a5311a4880b49d1a55e498de1ef 1
ebac9b0dd11538aaad65fcd88c192d6ff526c662 5
8979969e30f2bb55c0835d40f92c2aafdea26914 84
eea1a9d95d1e63e5aefd5897e9aeabcb552f1185 3
5979df51f8b7165aebf6f839f683af25e9701656 44
559bc9e51d490cb51fa1aa3f2364e9ff07c9524d 6
0e09cbe2ed12d43286b776df17e635f99f755a87 1
160fc1076ae568b4510fec50636fcb23740ee91b 1
b8789b6e0983b49ed173bdabde6e9dcf005ae1b2 32
2466ed1d8402459cb2383a6fdb9188fce61320c8 18
8f7a24947517068bd76ccefc6f9e878d2f6ecd91 9
6d732dba587f9d92d1dbfe3f1dee6acaf806f104 104
602c21a15ae1b25e9d304d75e3181dac9d1435d9 1
e95d9d1fa484f7da60950a2b93336eb3c8e20673 27
ac7154954f1c52ad9a741f55133f45d4668019f2 22
d080f905c595ec0336cdc618cc5f8741980ae75f 6
88561265ca3364a66a5a903a8f513f7da07f7245 2
207b1dc03bdee99538f2bfc86006136293469b60 14
0e91a5d499edfdc7af34a6b26bd657babf3649a7 1
95d9854a37e740655c86b673c40a0e326562a438 18
ec4c52a56216055570ae9329f9984378e9d7eef2 40
95ba92b94dfd4436e268ceb11dd326710e870998 9
f28a47e6b823b2b43a5b787e23b820c6cecd6bc6 3
751a79135e328b39e02fd1f5cce8104de7afd634 10
aeb7693baf05f3840fa2b8cc94a61ff1bb26372a 1
72a0f813de8f738fe2d8c339893e6e2fad3c4e3f 5
4bd84e3ff138cdb345ab028044ca81321b129c04 1
e4acfb1ab321d1101d2c7a4e24937a54029b225a 34
f60221b49f5275a8d8f92767a5a4e3cb9b2df93b 16
d07f552a2b13801bdef5b5a0b8d213fba7342b0a 67
566b8c16d3adc9b60defb78a8dc8bf5b3bcf89e5 10
0982dbed0d08323eca63a8b05fbe5bd55cb6bfca 25
79eb4d79b8b9db157517ba0b7ea2c31713db8516 22
8d69bf69e19dfda9c9833fc740514b7f4506b9c8 16
911f0fe11146590554ec11d1277d6e2ba55bd7e9 9
32f05fb5f66fa26c15f6e1e8a09d238d5085b101 165
a22972bab6b827f94bf2c5a644929418ae18b3c0 2
069999454d6a538d14927e7e64c01609da4ba013 12
def648a17dfd6789db108fe97be8cabe93d78232 11
b03d68547460332b861044db80ccd08edec361a1 25
bcd864f44ef9fc515ee9f6b9aabafa0a07999221 2
e1df5f5486f10ac521dfc3dc20d1bfe508e67aa8 13
8db62e2bb77998ebf3bf6f502a917b07dfebed0a 1
d09782308cf5598cfedc6e1238e17312378da684 20
b8711300e4923ede5450bdc89dfcf339445b3430 1
3597812efa15c4422bd3c4900a86f4cc01105ee7 1
9c8d2c79c1ef565337599849cd066ff63b8d5816 2
da1a5916e45abd0fc0adcfb56eeeab8b14314a0e 24
6750484753d78a0ff278506137aceccfa14ee4f0 1
a5f0c0dd2fe2472954b27ed1c8adefa495304073 1
58a688f6ea638ce6ee49e62635d454c51473e3b0 24
6c65646a2d62b8ead3a7d4da3410fc4050c25fb5 22
d4e2da4f81253d4163d979196d8a53a73a718831 4
f8a9ce8fef3fdfde5f08130c0b71f33e1c593e06 1
d27e072c2dd31debc79dffacd22bf9b8bb5efe52 1
0c84b28c3542f3340f7ec0dffc34c60dff66604e 13
c066ec37ae54e13d5b41c6eb9e4b46d6036722d4 2
03bb3ee4422d5c04795a7bb0c2f4ddec9b515d52 5
08314630bd09cd833539221ffdb00ce529d6a5c8 19
7ed9bad780c2d7e1a3dc99f4dd5efa8d4d4fb6b0 6
86af18283464195436ef623db9e868593e03120e 27
ee76cb3292d63a7171f5d33b7f1d5a98cc6015bc 12
b6f2a44d8201f7e4f166d2ffec1a84fe7b2e5638 2
6de4eb7243225bdfd416e69833e6d7ca0ecba7d7 55
35d0d2f9ef873ab3e74d6719ee363b80acfe64aa 6
a3005935cf33909c1d2ca50461f276df2308e0ff 14
0fa07f93e27089455c14068064f64e4b9284b995 8
780e02b61d84b04d6ec22d36d56505e9f0037f57 1
379ad27ea0279c786847bf763cca4f26789ac151 8
a0bbb9a7700a7663282d4f830eb10d2b3c66d92f 5
de8ae4a6935e52fefed269ee62dc2d92640d99fa 5
a780db15fc1a59d729cd90d10a2e1731fc1f35da 5
8065360aafd9b457564c53afad8dd555b3483b3a 6
fe9c3b879f183f192cf00e2cc33fa3e39464bef7 5
e0a760f14bdcf8318071f87392fc905ac9d17dff 5
03272318c42d5230ac4f8df0851c368da4a03640 5
a033d9de31063ea51860a46d56c4e343b99eb43a 5
0addaa71917aa9ee380219c3ae4a7124ef55d601 15
ddf76243ea611b82772b6cad60455a6f7b63593f 11
f62c07960d257e792d44981578f8bf42270eb0ba 7
9185822c2f1c7c34d66f7b6109b29612e8d41ae1 29
3c76851af2d0f39dbc3a6680c8b2426440479b13 1
8b52d99aa2ac66b04457eb5c0fa49e004d51c8b3 8
1b48dbabe18ca22396bd737df73e241cfdf8c0c5 17
4e6ce1508bb1a9e9f6b1809ea1dbb3ed075b2b42 22
63c5ec9834b0aac3e2ad8187bbbc94046c1fe95b 11
75f5c92aeb47e264c196a8c38a495adac89f493c 15
bd8f05c4dda4b5b00e525e08fd6c95d256423c97 14
d503a9472f496055201a017140946c44695755fb 4
4eb810e816aac9329ae05715a8ebb8aa7c400031 6
5c8eb0786a708ebc5cea0b0d7c856619667dffdf 3
8dad16f5e74feaaa5bf36afb1f2d384848247318 4
9494baedb5ca3346ce6817f5bf03c73918f91d8b 26
d6d2b673595e33fa906ab9e90dcf36d480f3895d 15
c92a3d9eee0701aae4e62d6678815c0eb03f5a11 51
ce8aff1a7c90e91c207fe0d99732958d3f765365 7
9c2f4a988cabb6136c755dedcbd3091d729dda83 7
081dc3307d21519b4f81411c1e5774ad215c88e5 7
8cc888a8f66dc7132b97745339b64a9f840bf057 44
0bfe55d896afa56e8a96132bb059cfb748ca559e 1
e9b7a1fe39cd1ba0bc3537186c5074623f5d4bbc 1
a9c242c3c5518947912e8176ceaec04ec6dceef1 1
240450fff301ff8a51576f48c71527a482da8789 1
036bbe27636ee9978bbecf072c26c636251d2437 70
0c4ed4f6ca0002882cdd173ba01427d2c045106f 49
38c7118389807feea11a786541886eb76980e40c 12
1ae19043a1f78a2661e6907bf9ac3ee1be82e0b0 22
18b61a1b18ed7d80ec2bf28588ce95fdd3dddf28 26
9be86f674f91fa3fe0a8694e7b98472dabe6886d 1
f2b574e1717969df425412a5ecd679969f6f7c35 1
466fdf5519d2c44d355f95a52a14f8e787eafdee 25
296f2c6ae42a099a01f84c4d80065cb6efab5faa 16
4c13fdf4d517925195024e2cd52a6ff1f89a96a5 9
c95eb0b4feac3d85645ce327d54011c8712e0fd4 4
1b22672825941e2c1d9cc13c983e6ac9fb0f07e8 11
3c4b780ea6b600195d2d644aefd12284108cc520 11
e025ce1a3958771fe20efe16d68a5a8130ed3fe1 11
379747df51d29f4edf2308f05a9525fb8fecc3f3 11
02a9807fdf6cbca1b8885d967aa00750177b78cb 12
924445035e0e8d6c2231b51fc60bf2b7fff62aab 2
90e58a9bfde00714bfa81fc6bc03546fb1946c90 3
b0b34816036095acc860f48f3eba0c1cf8d22722 9
f8947221d6abeedbb165490296b4522fbc3b8a11 1
317793eeff84dc9b260301adbe4aa8f5c79f703a 35
4ece1884cc408e15c8f1db9010fec5cac43937b9 10
d30c941b7f5dbd59bd62557cd115af6d82026776 7
89dfffaf228076eeca444bfd87baccd9a35c2999 1
966160f1d5520d1d807fb69568df26dac0b00a0d 13
4dea9e48953a39645038a5aaa296b3124cf610d5 7
e200df3ca7ae2b6ec88c561f07e03876dc9c53fe 1
39e7aea40d277ff141cc2ddae7634cd84ded97d9 7
ae23a7f0a868cd2d29118fa1fde4f6a269a4ea29 1
43af48f935a6e277b50beb1566ba8786dd17cb54 39
1f1bc152745fcf6069348ec98915451c54a83597 7
53939623daf2c4e194eae3d51afbfbf3ff3cb812 1
ec9f2c4602062836786421f2263525912c47e241 6
9c04d147e8d81894d73ab519bc199a6d9766b1e1 1
e61d2aa8870d6c52fcae2c70ff2790ae7d01e7c1 5
d962ba0d9c92943dff986e2016bd840241af2e86 18
606a202cc3a0c284261da6355a56fe2e7a83aa4e 8
6e3ea6857dce8b7a586c3af555e21ba35a59ea54 1
7d903ca533833e5db8d2fe150f1e31b54ddda700 21
3ced4f2a4e2546f0d7c309bd8f6305edee0dee8f 2
b3ed2415fc58b34667d99f077bae6c8e38b7aced 43
663b0539f6b7fd2a68c9af5337acddf4f3a9e478 4
a9ececc5b2cea19b433fde33f45ccd05634afbce 1
8ea4ff364c2d5961fb6afc2c18ee40c25b5f06c3 9
340af239a361695d8c9c2b7009de45f12c17bead 3
8404231006b9d6670dabf742d99a5df48a9b1c34 34
d6555de715889237b7be11639d164e7098862003 38
47c5f8a397f83650d1f3b590bdfbaa2b00758e5b 15
39e2ad8af8fdedac51144158061cb31e7863c3a1 22
523df0c13719150b1397a6094f410274bfaf1475 1
3081ee1490074bb3ecf276137c6dc8836da8775e 2
5d1db75c0eb4e6cdb28d3a64017ebd60ae79e2d0 1
79522bbb5869778ec805ee001710eccc6a4d2ca0 1
aefdc2a03f56e190e9e667b617bcb46e97f2026d 7
a3b45ceffede0bc816d095e161ed2ebe43628816 7
d06e7b7c8e646ff489a5dfba47dfcb283a194e9b 28
d69cc30e4c100930a958768316d50f0e8835087d 8
1687372e34828dff42e1482ed6575bb982b81b00 31
aa09ac7ca6e01a2ba41470ca590f07f2ada8af6f 2
0dd8d619f94bf604e5000a4f87f1987b8efecc39 10
5147ff5664d0c349da30fcaf86a8c3b370cccd59 17
4ff18cd26691720de94d1e57f1af80dbd01c63fc 30
5d16b13bf54b319705e352638205a8c1c204a6cb 44
78ad153bb7fc93721b8c3c348a3ca5c23dccd94a 6
90f8b1ac97efc2e10f58be02ce8e5a52bef7df4c 4
9b80ac1f5c115fd95162e3c4623c32d2867b10a4 4
cf766c07333f5e8d0959788c434773b54d079c24 1
279f08035026ff796976737ef900b4ff4fcce3ea 1
3729fba951e714135102e8c3c3aa866ac8b75cf9 18
7a01d5166d3c7794812ecf01a205a546bf461298 2
bb92ef09ec39ee52061df1cd4423f63dcdccb1ef 4
8ffa1a5978538b4a37033346b6c5c9cd1199e239 28
6537e18ad189603e19615226e6aa1a9cdd154b8f 17
f41fcd85ca62a2109a6e550be0353d292d351213 2
696375ef922347935e2e0b7aba44e3a2923b3e2c 22
a2711c189d9754c22e3aba2de1c6c125e52626aa 1
615ca9a000c253575e6f62bed87db6110b750834 22
f62b589b10d3bd94ab24006c70ae5d86ec9bd3fb 2
526cab34dea7b961f22c55b42b4e44c617078e85 6
7d375de02e70bb63a5a9189d33fd51e76eed6c86 1
cb50fe991de0296fc781a10ba0e28e19016e52a8 8
96eca83048dfa6759382e3f4942e0ebfcf2db635 23
1d3a7b6b83d04036d574db3a056aef10fc7b7a51 8
fc505bba569dede0d29a401798fa9f55df9e27f1 5
a74f9eb213eefeb43c5eba610c276682cb2e2e64 30
e44b04396d94e91d35fd44381f7ac5c4f2ff2ee9 6
fbd4691a8024f72e6c585e924529e1c7176489a6 12
d370dcd6864324655247f85e17b8f190ef30f18e 8
53335bad55937b1447697455d11e42fe3d26874e 90
a4f9188a55e6935d4d38ae97806af4d59e671588 4
986597f52ce9c6c1ff13fb134b91696de6ec2796 9
0db46cc7ea92847d8c71564ac3e0020d7c6be144 1
91b44a1ef7563f54e8acdf29906bd872985a2a6e 21
5d217094d0b07906fd0960e4a372971de70523df 4
86d92c9994adc66abd9c3e4de93394a59e79357b 2
90279e83d82389db2ba88898ec985a1827849e6e 73
8d6fe81ae4813e7a49715955fca1835f6430173f 1
d4a0b9eb3d09bb697afe8a4c2b3340a46b97a53b 28
9707f8dd5e57662832967082a1a49518cb033d1e 11
c2659d3f89c4527e86f1121e0135d92c0ee29e34 8
33ec6655a3e4026f913523866495d1ccafd9c511 1
5481717de9f248dfcf4c4f4a9dda0487ee1bef1e 1
40b47ce75505079af56befb0088a26de8c8d141b 2
6a07726a825da09003d153e52ea30005b1a4c013 21
8de3eb542b2be80ba309b2c91ae1dba75bdb5063 24
f76efe5f4ef36fadc677c94269927076f2f42eb9 27
7e00cc35a331ab86e33838579a8507c6fb6d0da0 4
970afd6c78e783ab98b652c8e81c8e07c22a5e52 8
b1a443193116341440f41344780d1fca85de9a11 18
6d908e5581121ba014f0209d98fcd47818e9213e 1
38844d12e3c59b3c39acc8c00d7e1dbc52d84e25 26
76e8b58ecb1892f609ade05fc53a0eed03f21c24 12
983b064f7f31830788ba2b5485302f02ab637767 1
16727ebdc33f38d0a37aee0e87700500cc272a8b 1
a2f8a1e856fc52d98caf883084c057d8c12f50f4 17
98cfeedd7930e9821ea22124f2ebe74da52b534a 40
15671e2074c0e68388096d9c0b3073fdaea74779 1
3cf9de3a101760cca7a26333476ec3f727df7dd0 1
ec427d185ac42e1270797ae23af71ff7d771ad4e 18
757b8d51d925e72c93868bb8971c4d8e66bdce93 16
e56a4f0a46aa062d8ba0350d007a8dbf7446e3e8 1
b21d6c1c768be759ee32618f83fdc2f8c7f50f98 1
4020136a4c3ff42348cd97e76758cab001288ac9 7
cfe62b0ee011e2477275e6f615a2b99473ebd9f4 1
fb076ae61ce200c343c9d4fac27e4f88d8dfd7a2 13
d4e1396d17b54bbda28d17750574800828ea9437 1
7285331645183d45a7110d03b45e74acf46f8be3 7
11b686c1ab48fd917e45732722deb8378bd56c6d 18
8348f00221b0e025c29ffaec42e12a59cb0fc203 4
5a5322744427201e81ccb964da6166ff06bdb2d0 26
8302dd02498495277ec0db9301edb2158bb0e314 33
b9b5413f8fcb9ab9a127c7040ace0074e07bb53c 16
ecfebf7a797146254d7f88a6be633f8fa956e4dd 17
9054aac4b948117b838d6a5b15be1f50965d805a 24
381176fdafa492b89b9d628f36d1fb61d62dac5b 58
73f74addad22ac10ccc2d1581993fdf4ca1564b1 7
5c760dd1120a4703cdd60e2af192da9295a2c228 6
3c8c9511575b08419483a0e3c57e551ff43358a7 1
588b93a2bb3874d4334a0eb7f3b23d93a5fcbf58 1
b660785bf011697ba99e6c3d50cf383c873a91ee 4
05334498de888e7c564b9bb48873e90007b6241c 1
a79c0bb281d208d40376dc53edc936321467a0e3 8
9be0992c0d829f45d0473127efdceda3c54a317d 28
d5c80d144990b342e945809ad5632cfef51ebcc9 2
a18d17c980ddd83fd77f695cd3dff3b905536339 1
b722e144d93fee0e87e389a3321a00a4c48488bf 1
ad61877c52e00a4917d020ab9e0b3ebb8a767a6a 15
de2670a5a653cb978b68abfe3787b9a44269aa7c 29
b7d5986fc24086e89b6e188c2793e635a9fa747c 3
9733c588bed1ab39388f76edb344968c742c7f78 23
d02d0109a7a4405c0355d54bac5218aa057a1423 23
96f544b1721490b564dfea76f076d4d8c7d05d15 35
c6afdbb0ec130c4fee1b77e803c947d154f24a58 1
0308fc3555d1f3b15e914fb8a097bc8f23d2f508 4
5dcca48038fb6274cc155251d09db12746ccce71 1
79a29c381815d2253a610689983cf96a00af7d17 12
36d87980e2c7d9b868b32bcd76018b02c256f16e 15
d03df85846b3eadc6da781fb4a4611a8a058226c 17
01fb77e16771516646f668450f538128b38e8825 21
eb60d3d8b5ac846eeaa4c6588fb820223465db13 26
154b791d891c42f8524295c7eaf9d05469acc22c 6
cda314a1ca1de138c9512013acc25b7631dbd1ce 7
5e873783294c04f2a8eb47518e808445b2b2900c 5
a4900c9dbad88add3eb1c0ee6366fc199edef7f7 4
7c42d548679c6b202d15bdabac8eb95058953f8f 7
3c3b871fb1920b540906d6d75d867a040787e3ab 6
3972fbb63778bebc21b4d9bc2f42b671c7a37d4a 1
09ac2f817c25634f16825326d97f078433166f69 1
d655c3c4b4ce13b05814ed773851b339641198a0 5
15c12f11dd69208683d863444b524e26bab59006 1
1905a9ed2482084911869a4efc4dc252f00f0d82 33
81648e8ecac4fa6b931be235a918488e70ad43c0 1
ba96c9afd8f42adb6abc9d5e447bec823c95db88 336
b67bf47e45fa177c25fd5c445011d868a5383a6d 106
45add3a0e7e2e94bfc29e85c9ef0856e2e473a33 38
c54d3a8b097f549a04dc74d02c337899b4236184 1
aca98c76dbfd1e8e535eaeab94280cc8f1f45732 5
b3bc2b5b62e1747cdf5a9bc5ef66ca6aa23e6676 2
feb43d631efa5fef4c842f6ba02e417e555293a2 43
0737474412b4ba7868b6855ed61202820e5cc5f8 1
455c730d72196d65a215413f56b9c644779937f2 2
7ff75d7c381a5f715facf0ee894d9a87ea2ad603 18
d3892cb85f3eb8ccadada228b791170e3e0a9124 25
00fea9d8078d487e31cec8292dbd9bd69bc9c216 1
df9e8636aae7c84e8c167c184903f9355031f955 2
3dc361920534bd229d7e561607c298119bde4843 2
c57dfd97382ffa2a700dcafea2cec0f253d8f7c3 63
42a96a6061f2189619594a54e630e2050b7f0c76 7
7486b9ea36c6112ba8a0b2c93b6da4833eb0e028 1
2fdf5aae5d47b853112e4b51551f6c8e1350903b 34
1fe3ea766d70c61b847768be7eddf2a68ffd5d93 1
e06fe05e2dd68936e770ba67caa7b9924568170d 3
2e81ed7142126462546fd98135786a9adeb305f7 29
e3c25c933acbde46ca3c3e79b95f341c1cd963b1 3
97583abf386b585040c997498199c9167d553c4e 8
afef5eea05b8a7395f5ee33726aa2113771215f4 1
573785a1cdd35971378c2f38c30d455897fe8a3b 1
c11f2191d564ab50dbe5bb0aa521a1af3fe65d00 34
fb3c9ff347d2ee7011938da72a565f03a3d4756e 1
246031f184541646cebb9743a3a6675ad29f1e5e 3
baa06c8feab274411ddb3948580d193dcab6e509 3
18c7ba81f954499e4ecabf902ebf1dbf4d42b0be 22
a1ef30396e36d54a6e5aceffd7d4e2d2cd30b464 11
80d2042d0699e9d40f56466865e5a3b0fc983efa 11
ebb687efc867b82aa16d8514d83d91932623e895 48
4cc354ca17b48b51ccd7ea6fdd98d797e04c35cd 4
340642dbf4dc26c78176302da9c1c275bef89943 4
6fb7c7a5a7b7913a615671d4b3cbd1e14f5475a4 9
88c700c10b3e001fcd0662848fe0cc2c9d5a6336 54
da16f1a6e4d9f7c73629554b4164b6e19af527c0 30
3bd4ebcb79a6bb6df36ba3fcf23ae55d68c45ddf 2
f9dafb86010fac653d33e47572f2f3e7e1a2ab12 2
fc55e2950090b84be6125cb4b6296364d97d5500 7
4ba1b2b2c9b9b60d28555a47c1f03f8e3ef54c6a 25
99b42215d5e4f6fe1f44fc3fdf7b8f5d105e9ca3 26
7a6670e8628e75a69dbdeeb6527d6fb5a2a6e55b 14
e4f6ee859287958e429f24a1dd7dd449ae0beb6e 24
916696973a698250f092b3b5ae93003648871498 18
305cd956104b20c7b37e13c98527b72c59910799 12
907d55ee00e256bf26376c0ac3ae918f30130510 26
de27e6019b0b4a36502c6bcef3c67311b3a74a9e 9
4fb53c76030656981644a1a9792cd439c16a4137 2
0053765dea6af83d2452bf5282a4a7794ace4f9a 1
9ca71cd7ab80b3b6620867272acb35b15bc50921 15
7707b0bb80be05bbf6533a36bb0c646cbfd1026d 11
b6ad082c4ec97e58ff2abf37c60190580302f5c5 3
76a60684fb7e5c65b7b5810df3a3debf3e553161 1
036d2b3d44a8439fb02064de88547ba0fff06947 15
5166d56e71f672efc055b2ed935459949123535d 1
6536defc8e32df4f10b7247cb514619d05652185 1
13213576173cbdac33afb4309bbb663bb5514594 1
b413b0db628d2a806308e9d97a29f22ce1f74389 17
9cd60db5d846a1ff4dbe9b710f9cbd46b58ad5d6 17
a0438659ec35e468582164b1b64199ea6352d8eb 4
7cd1609ee12dbddd004f010ef6af3494940413f9 1
4c2341482b6828b68525b2c4890972b018eff0c2 7
bf87c9385bfa487765faaf938f0df6019cffd911 3
610666ed70bf875174f9b71bd96ec75937b7238e 10
7492b021a9d9eb2282899bf5b6b58373dfbc5b81 3
c1a29c733bf932cd32d58f0fb9b929990b654ed8 26
e999ff71fdffdb1273bc8063450ce31091f5aa60 5
2f066a5b2d2fe8a00a251a3220b0d52446fe392d 35
50747ca40587bc29710c263a9cf164002fd26c78 2
1803798d9fe0fa134a2424175c60ecfb214957ee 2
d4702397ec34c308d4acf2c5ed843604012cb42a 19
6806acec5162c924762f884407f1d66076b81b57 12
6db6f36630924deb93a635e003853f4775a3a0e2 26
2c86e2c6ebbe4069d1e008efa2e2d4b2b972c0e1 11
e2a5747321089367086c2fc3e5687c530783c3ac 5
e4ab3df112eff5ef614823d863b1053f0453134b 1
dea89fc68a7d4bba0ab396c46e046054403710b1 27
ed400a85341cb4b26cdd9f5339231c3862fef77d 184
6bf1c2a0cfa845cd03d9f9549257e9b0e2d83b10 48
6de8034647875ef7ecce49f5ca9cad1a980636c2 35
3e7a3e8f0cde866cdfe33dae387a9e796c324023 13
2af72281fcb919dac92b0c4e464f847adda23be1 18
13d22f45624470ce5c07c085cf8b1ec0251eaee6 17
bbb5e1e198f995eddb393f820ed059aa774871c3 5
330f3fe17d132bd4e2a91ff812ccf489e77f390f 24
e3366a9d3a539fd2c3003f64416edbe1c5d60473 15
e92310e1cb0862d8a529952fb02c34a1fa6f931f 1
e45ff9ffcf611e96493aa91984ffab7a13d298ed 1
e5304c6c7a15115a25805a47b33e141d39e30228 6
2d16a3940157cd66810c8e98c2d4e69bea862789 5
19ffb8a7d59a24094c6008c3ddde270642f48368 18
21c2e0c68a31e2022179371c0060a25313bbafdf 12
596c41491cd8262d2f521105dafa07ef67147016 4
21cc381a5ac77aab6327d1fcf889ba9d998c0a4e 2
b23b84ba3f1d1e9480f6e74ee39b008b22bb6714 17
9d8f28a08be2525a0794f1f7b29e120180539c99 23
e96ed8c914c0139c89cdbe88c86b539ac2b96303 8
8da29b175dc8ab629546c60a31bebf8d176f787a 10
68a6dab45b3effd6c615580c3b13a3c86565d997 51
59fac3d8c7ab50a6b81efd845fd61bff52c289d1 25
9d76c94f1d97e689540b6840a0005fb0ea27f4fb 55
39311b1023eb840595d1a52838aa47e470aa444a 1
5b87a5b6763c54dd8825dc3eb65c0de6cbe4ef71 3
1330415e0942bf414359a7ff2fd7c4620e448232 1
1f0b0b235d847231ad337c985246c00e6fcaa880 647
1063edd7bf40f5d0db402c526fc64082587afb48 7
f76a8f917f5e4de8ba5abafa98a3c4f615be0e42 8
fd4808e7623b770cd3aa67253e4b8d0025434068 40
06ce74bd016b683009f2dfbd5612079981377d41 16
b71dafde5b71508bcd203f46f643ffeec73bb334 27
4512625d1354b7cda883af4828248d84eb49d65d 111
ed77246964eabaf62b60751398a1f36751395e4a 1
9639c6ae33b2eeaf2fdafec2763d7a83d7ce945b 158
fee41d9dbb6bfe3f21b79aed24ee546e25bad501 126
a94bd5639ea08502c2926d122234bc95c0ba992d 115
05e4d4bd0381215407b8d2247c1f7aba01c74bf6 133
d2c3198c09ff2167abaccf3110f1e9d3f84aa3c6 71
91eee49617327cb2a72f23faa341fd213e58cdec 12
4ca1ded7622b3c7e064ab005aabbeb79fe37047e 7
9e6b0f8c9a7d1f3e450fc4805ea93fde4ef205ac 3
da8550576fcdc213c528659c61a203911d3cb084 10
4e6d8b6d84d2056844c58284d10a0eebf85f3cfc 49
07c6c98b82a5f4fdedfee9fb007786c2e96bfdf5 5
4fc19e3435d675a09c2414d9919c9a91b7bd33f9 4
83ba9853e51e7f93cb741d56609faefc8600caaa 5
04e8bd5074535eb00b5a843b4adcb9ea8de9e564 4
1d5be0610d78ba72b831fdd36ba8a76d41b872ee 10
de98bd28d4c02752611391fd4c29cf535649f89d 3
a00cb54e5e56b7370be0dc105d991d68e59eaa5b 4
ce90e2191574d25b73b575e6dc8f29a37d9597f9 20
3f0b2ae731c85b184f2bc569aad5557c7bbfa822 8
0b5f157e93d941ccd9c6dd129032ef275dbb5224 29
a4b2642f11650f000768e82fa3d7f34fe894bfd2 3
b370affbd8904c420f65123d8271f65900ed73c8 20
d87651ffa9fd8409ab8277ed81329d24d26aa48d 6
a66879e098a74fe60057a6e6f1d1bb7d137c0d19 2
3d931a3bedc25d108dfdd2ccc16a61e498305f13 1
60d96e0ee72180da2c9b89e1acc66033253f0237 45
9eb32b0e7b33340bfa0bece4656d49bb8f38f6f6 16
8546acb2de0dd5512031994cf424297be32255cc 23
9d6a1f315223020e67b748245005140cd6f954b5 12
57e9718cb6e277d9e40229a48113fd4484745861 43
c483d2519decda566f39204779c00da7c5093a84 24
8dcd1aff544e084420224bcccfbdf4ce2d854a93 1
f9f0e18a2487c72016dfe2b203b05fe6a925c6dc 16
53c8cec5ceb4cd81e3f9b8858814accac83a324e 15
bbde275210895f1988932c4be494548e379f0271 2
5f6067b7de28c62f046d69607d374a59bf82473b 23
249404b376667517c9391ab637be41914c5553cb 26
1bf4ee0c04235edea27dc7878b6763b9d12834e4 35
d11bdd2c610ba3c627487cfb404750acf53cd099 34
722d5d9867bbaa135e3d7347b7ff4f7c52762938 21
29f1feab3b90980a3a73ad8593bb395632f9e2d6 1
4f655f04a468e379512841dad498ef1ba43d1f2b 1
b2f348f266041e1754ba41bb07fa89e41fed88cd 1
c5774647ed8d5cffd6387473e60b5c3dd281549e 1
2143ffd183be95fff6b3d61f3465b72a1023292d 1
182c84f29162252c3bce5610deae721f940e4304 5
1e75292c0bd314860a543a1d7a7154e056ed107c 8
d8341559b0f2e19d326466122eb27d2eaf9acbc1 19
3b68757304196242071b8b0af824e43ac1b410d9 38
681ce013786d7db57b116865394c826e802bd8f4 20
7a37b003ef84b6ba48a76815bef0059efc3f553f 4
851104e3edb9a4189785f3020254742f2ad58825 7
88c4506b6ead363262cb80b98cdf757c028ba14e 30
f6d4c8cfaad3711348304c0b3d2901b31ed635ae 36
73d32c1fd118f14d5d76423a8df9f8e076688f27 4
4e340f734d9c397119e68cc156051701976131ca 18
b936a4662db01070910353b2f5cc5cc9e0052eb6 92
dae607eb6a39bd6ffa4e2456e1020843eaed77b8 78
2164e7e472099ad4ed6f3cc71bbf72cc67602c03 86
7fe539d9a17f79d558e11fb4288a33bb54996dd8 74
4d81fcce23fdaaa728fba7f118c3e1ce716954c0 49
c6b4fef596941aeba3d9318fbeb79c831cbe580e 128
b3cbb097ddd902b5d980cdab46b7e0dba10975b6 106
2052f37c16df13b85c7f2b807e3074a95149abd0 134
f2b4d167107e12aef2234a9c2c030f2bea25ddaa 126
bdf6eb6b804f623b5e52813ce59b1bd2fd5eb91e 146
e564e3892a5bb8d74f1d9805574bed7fba8c4197 81
740e8348fbb7fcc7c8b6e0eaa3e345d646847b6d 28
b4ad520cfc70cb6df7020e967e01750c792b4925 4
9a7cdf6225afd4fc365cc0e62ab7269b9ccea724 11
dcae84b2e8f025e93340307d8bc04d406202c323 4
e579c212f733405d698b624c0ffd300f6cc0035d 13
e98a5000cd211539bf4ba65f62cc7f81395e1726 17
bfd118d14d97383f36805beb7561f8bc3cb849db 6
882556eabbeb2f62939aee29afdec2a01ce4bbe1 2
7298d4087f67eeb9c6d10a4e4201f086e6d668bd 4
b43e6a00a979edd719898cedc2beb3c5fee88a8a 2
8a69aabccd025484703f6b25f0bd780b2033563e 5
00933c7150d041cffabfe1f27907f085d6c66f12 1
36f18cdd6713ee09295895a4a1d4cc8ab4a87506 3
e7bbbbcd356b5d5374bf7b78e7c2e4a4a1b2e013 13
af3fffb74b6e2e35548a9519732077652fe89bb4 9
377990836d633f7ec9837b5c6b75efbce549ca68 10
bb4bd7481c7592cf1c5044dedbda71469f4f276e 3
917690c6a19f5eef26218321c839623de49818be 1
f8160b492a15067239220b5f42a25743f498bfeb 29
74e00296574dc3ac0bc064fc3258faabaf732d6c 15
0054e338d755f10572c96b32024e5f0bcc9f5431 28
999b7d32c42c248470e286a5f50b029020ed66ca 19
2cec1fffced9df9c5659aa16a9150f1b2a20f7f8 19
188ef9cfd13fd94f4fab18e750adff021d1e4ae6 17
7f5762d469f5ecc0ea100113a92c9371ef50ddcd 52
ba827efe76bda9b69f7121af9cbbf6506d270f8b 25
f84d2e0666306d510837b3129c50fb1a31e11e1c 20
b4af1eccf206ecbeacdc774930461c6a03678810 13
d4df0e5382524acc79f5c392ad2c51a843b43f65 1
641d435478c303af33d1299ee6a8069b351a0a29 5
59bd46bae7e8e8dc2be5cc319564b31ae20d5d81 1
dc782783130f819962c8ab83269dd8617817a9c5 13
de147e5cc14f8dac6da785289421a55b11d21aa6 4
65ed08e15af15617e967d3ea9d635dc55a0ef866 20
bc097a723c2fe881a7def4a4dbf2b4bc84ee6853 9
56805102a54406349b39e1f489293c02526b0ce0 88
c2da421878f5df7c60305f07c874652107b47ec3 5
2cb250cff282718bfb19167365910c967b28e21e 8
7695f21454e2715410153dfdadb41a89bf2c6619 4
d1c0554a68e8deed374dd561df13ff51b03e6e79 13
c51275303efe4910496494c8248bf4d3055a8ef4 28
7273ca129874dc511800d3a379c370d39dcb1bcf 1
4918ffceb499c6f5d57f2bc4a48f28380d22c6b6 2
00fcbbbda6b7b53f5162d22ce9df9fe34079c25d 9
89040e46415f080a2eaad7a9bf732cc047800135 3
d8f5555474cd388e7afc93deca55d72a672fa5ac 3
84394a9e6c12d7651871ff764979db6797d4375e 7
dada2f9432b6e13b5af81266b7cb38b0afe00e8a 24
8cbfe1b706cad70167c3d57dd5b9af211c9e8391 167
df99e89902e194b0efbc6480e752ba3569f0e96d 11
c8f524fccd20a08c55c56a2caf208637e4019514 1
6961b425200662ff28b494ca836650ea0ea8e7a0 91
8b72006be46b68085b3cac5c65b810bc273bf5df 14
ad57102c451b9b19cd224736e498658a95f6cebc 1
ced14c6180260a08028837e50ef6298a615d921b 7
53257329dd394be1333b38bae787bf0cf19dc900 6
28e84c50ffafa1969a1dd9026df82bff87b60211 2
b13d9e1bdec7c62388592495ab0d42804ad273c4 31
34c041f3aaee3fea8362badbcbfe2e76b1356ae4 1
ad8a28ce3b48a2e46653552e3390b952463fe359 17
34d1a7bc381cbc8445018db66db942c312a5387d 6
5dc9957d79874acf765b099bdb180fd6fd3b041c 1
3eb4dcd89e96a8eaeb9933552f44924a8f795890 4
da7c8ca0497a63c6354d12b0ab9cffcf3c78f90e 23
4af3b3b64d95278c6ae4c0e55c7f57452b924086 20
591a2e870b0badff89421e6791a7c18694c327a2 8
fd060f7039ed2ee8e5015c3df4327a489660570a 1
a67ffcbd832e3248f3e3d13b084d49d467fea959 1
ba34e0d8458feac61e561e840e13fa474dc3ada4 1
233c2485203bde4305534fbb9661dffa6a2ba25a 1
d05a936656136282d0ff3878bdb7c0b59ee231ff 1
9751c64c1e2de72c1d1dcf545c18576e9745a474 1
9fafe5cf60de24e5c51d9840d1976b46f1fa8036 1
4bd3adeda10223ad34188294a33ea8e5a7413246 1
ad0adeb1b8306a6300223a9b6cd62726cea8187c 9
fd75324e28c04475c944337fdf2e3e469cd23ef1 1
61051318b282c62f59f59141792d3347854cfa70 4
de61d0de0061197de858addc8dd3181cbf865674 1
4d1edd02254fa524bd0ec9d2cc35a2b1a0df0857 2
e6f32e008d078285ae29d48a085aaa3a7ec62e43 1
78f68969b4b6621d5039de00f78c16fda30f4f32 1
4f2a4383b3d59d3859d2ea7c91713e797fb1df9d 20
71042f0955b99de1f05d5ee3f96f2e8f8d2e84c0 1
855943fb930c084000ed673589ad0754b9188b60 4
8ee0fbfd03f1cfd5d202fa33f6c018a011cab270 11
e616c560c8163e1319613a12153b64955606b8ce 69
e914fd722764851e2abdacb3ac41079d8269b649 8
60f8b1a18739f623412358e3437d2f3f96b5e1ab 1
c6225ada2deeb1e01c93ecc3ce160e7d497af385 1
50909f997f9e55930fd4b8fd1bfb9ad5197432b5 1
9b661418cc0612cf5c2e300de634ea61a8a6e536 1
faf72c310a6515ded856f697c2e047cf88badd18 1
a5d8d115cb85149c62059a23e8f4d318cac0e903 3
c72e5a803bb7e83acbf21382f10e1c699893d845 2
b91b3efb3854c0fd0f270bdba6cdfa8058c0515a 16
520f36b43a13681db338a07ac6c251cbe1a7a6e5 3
0c00c9300a3d9aee8bc358c5d4e7804e71138db1 23
aa0ccf3bc09a406b5ce7bfffd00dc52bbf3dd639 1
d04a778d39e8eda98a1078731d05b77dc51af3a4 7
c64d0936a577402abdecd9cfe8721b38e628dc82 1
36d811b2d4cfe1b867823bd60ccca25abbc80b46 24
f498331dda26df916adab7ebfca9d8cf292e3ad4 5
6b67f82c40bee7bb3e69258923110bec88057717 16
3ef79313597d7d49067c48d65a09042d8d94822d 1
e3a2f146dc12711654ddb08bf55fafdd63a7563e 4
8314db7b32c336a254cb7147868587fa5c3e5845 38
64ee5650c7ca86aef9e29e76830d1fb4cc4ec736 1
c14e02b7877e91f0faf79bc91f34df4e0ebea56f 14
522596a1281806dfc0eeab8a1b62d4b042903810 1
13da14c03d4c1157e66950ceb06861b7a00fc59b 1
2d7504596a40ac182f09e651971ebfc97f0a09d5 2
d73953200b8379ad52decfe3da151da9f1f19ab0 10
8d6478346e45d728656ccac760adc8126b3d225c 7
f81847d8079753ce45b049813730055188a22efb 17
2c60f013ae2fe4f2c593e370487d06f1655ec394 1
05ac740be873e55a42a77b2806115d939e971ad8 34
30d168ead0b1274fd3ff0e067115b34c3d338a62 4
c5c363c48075221c0e34ba0a8c4c51ffcd0ef57d 1
6a759998685d091871b118438d62c1004dbea44a 25
0205f258448edf94193b64eeae38f8601706195e 1
94239f2ee08eeaa659535e19b882e3ff4f09a01b 5
9e9742628847af9a75963274ebebb4102c2d7172 21
59567429283b8f3fed97a3df2b29cbb6d5a8eab0 15
076a3c09aa3514d7a4681a9b5d75c7b2ab9fe7b8 4
64cca1d9354664286d602d7e16b2f088e31ba45e 4
350b2b1aa1ed5d7df05a77bf13f701ac1712dbc0 31
7bbddc2203bed78fafe7739a97df1f53e767341a 31
bb5612d4d36bf33644926c5b99732dbe1e7f75ce 35
29d5df5e1f75a870a6c5cbc751255531d80c1f0c 1
77fc6fcb191aae07fd8753dc393df88e1b8ac073 18
92fcf5e7a86d4ed62c6886c087e79bb3055cdd17 31
062332fc6d6888c8f233f6f272ce80a42d04a418 7
eb50c98440b0da963d5df4bfd1bf734bc415977f 24
e4b70069ea2bd312d5f9b03cbabfb6571bb88430 12
07b8843782615cfc37f074141432ad4ac7b2a203 18
6352c3d688956454ed8a76cb1fb54d44f79f7f71 21
3e968bd8335ca1568ba696f423ce9228c677ef84 15
f8c8f362262695340230d532f73dcd7d96027bcd 15
dc3a7941d539e9e397b3dd39d5f6dc24b2b9d5fa 17
f1a0493cca9048303953a7fd47b53ef57b6d33d6 17
adcb11a8ca235de923720daf6f33167f8ab8e0ce 3
717b56b998f0fe37f2a8f6b1468ddc62f3802c4a 10
490ec33e24dfc8784f6e91325f142dee1e4107da 1
6bb8d78dcf5a857090db5933a076e372d0128bbe 1
c2892d81d4cc4074478143e3eccc0ef33e66452d 32
c67a5245dc03fef62aaca4c63688d6ab087e137f 6
5519ebe31ef6510ef95834968fda1162be8e9eec 1
c04c01c5c8b49b7ece6d096ff45896a6f3306f1b 3
085bc9f4a64ecafc009b6bb474fe4dad2520a96f 1
258de9d9347c246f77c9e292657d42c3a374ef74 3
ae54fc7c671a3bb2bef14234993703a8c116e07c 10
94c89491f24359015c3f0d26a4e7189dd2dea25a 1
567f081a13c551dc4ae9c9c61389ece993b566d0 1
a24ddacfd1a4dc8ba6fff17c86be8550e2464e18 3
263e2f462f4e9a95eb3ebd77896f2175afdd5dea 1
22ee0f157471d8061f066ead5c8f95d8c6624106 7
16bcfbd887c6f564cb5a43520ad2b809d3219afd 16
d3fc5af31eb696af03cfbe2e18584c7e1d307d54 15
1566dd339f6efc2347b0962fac7fce22adbc31ff 5
b6f2d0304ac9530e5c43b6c889ca65a6c1640754 10
5fa6a20993d9ad149deb14318b094207dffa8d13 12
b768aa10c3f734a2560e46722ca14526760337b3 15
03ad33561bc09f0484e32b35354b267535c63f30 13
f8b6d3163f2e20aac6829156204c0301f2741ae1 1
513047ef8b3a84f9c61a22ace70666c17d3b5c27 1
53f5335add49fdf33248828a7d07009bed5d0f28 1
0a2da597fa38d518fe0c1f411c370e0b9d74b0ca 1
473d151d4d217ccc2af9499ff5e9239a137774af 12
f3d763ac36d16faa666c999f4506e83356025a9c 29
9330689f4c303b890ddb94442e46a1d5fe18ccd7 13
85de10a10c8ed31f6d581d8183be11a7b9e281d6 37
a1a421f1639630c22389d8a4de82cb62fb90e015 13
dbbf5b27a5a4ef5d1feeefec332d114fb7e91f1b 4
67dffec4e7adc482215df440e716525ffce5c1c5 44
6adc7f6ac48bd29123c2f4a9d5b8fc78420b7dfc 39
2cb82cc9d33861dac4db57137af1da557160b5a5 31
9ddd494bd1f0149db8a633b1a03c9c34db64f17e 64
c09d5881fa0c83112f6337a589043a46865f7fe1 7
093b098a66246b7f38c692129d24070b60362bbe 5
33df774ca5c3db48af37a9a1c0e2620f082662d4 20
5b071e6848dc7f7c897d06bb85337797233bba71 25
1bb1ae37304fc7d465dba2f30e8b2c66d649cd19 29
b4dc65be701ab2e5d8d69c2bd7f0c5a1f5fab47f 45
6c3ba12ac9b5ffaf8fc28a973490e8564d5eac17 59
b7e82a7fb16273d890186bb08b95452ab41f2e97 21
45d0ed8cf9de00c60a8af605c615a5818c2cdf33 19
5c72ac02a063ef5e02bb911612c695578711b07c 26
996dd998e3081e4a842017b8ebcdae9b6059b530 19
a79cdc8325ad3c4253edad3ce25c4eb1f1195f5f 21
4026c69068f29579be076429735dc9ffe1bee5f4 2
61e00d360b625a969e1546410159b6ce30db0a80 1
0ba6101319d95ebf6aa9d0651393c95d2bde2b29 43
1ebdd87b932c75a1d34278bf381210ead9a48da2 62
e77989250442bf4d08a05df5628cb560dd4d1edb 29
a1d1658a69abf1beb7b7a45e32ae99f48c29872b 63
35ad54c1453afa75c0074cafb30722b967d8a42c 21
e3d956a7654bdb7e1cae72a75ae19911d6b7755f 1
ede5a2876b16b111a25aff1d1e43ada594e97d23 12
039828a9e96020c202ec074a5998afb18eb85d98 7
21af910d83b4778cba2e76bcc0071db2cf284f28 4
a5822a64a848adb5a1221d8caf650beaad9ae41f 1
2e4cf965daad94ba0e3b7cea6981766c4c0281bc 16
67502e7c76f184c27e3f70912952e240e7132078 24
7e4483e49438e7beac60d99adbeecf924c02a34c 1
79d55e7f436d22beb94801fa79bc80ffce60cf9a 21
1f7c89c88e097f3d3fc5b1dc8cf060381a99a28c 13
6b589ca6ac276df021171e33273a5251ce5dcd14 14
d5ff460ba69e4261f066d7856e2f90b886924513 24
484138d2ad3e36d65ede8664bbbe6bd849bbfd63 10
4fdc478a4274a3408afc995c505e7e804cb0da69 34
2569f0687e8ef28d2c4f39191f23079bfeb46f85 10
90d3cc41ac5f8f40bcb155794cabf254068f85ee 15
2b4c1f87a73448323d21cd459f967013a41870ca 19
f1b04e990f4fc86544b6230fab1aa8ecfb74fbb1 11
dc68883ad75db118a7239e56f1128d7db4063587 9
b0cba9a79ee99b09958dec8e40c75bed47b7f780 2
472da042032e8f2f0d016cdfd2f4347b788a2371 2
e4ed959be81916b9a1aa6cf68d80fdccf71bd7c8 9
c422db8ac25e93712db663f1e9701d44458a90e1 13
c1de4ed29d80cd657d4e3c46a934b9fc91b24545 11
3a6d84ac3ceba78c196b48a018e25f75b7fbf7a4 11
ba38039720af183ce5fa4283f5ce2e0232e265f9 11
85b6aa6a9d3979f73697e6a6e939b61a9b4543da 19
1755c3c0d07205b064e4d17353be0e1960fe3095 43
e1925c967b668ab656acbc044b00b1338a65fce7 33
78bc8d3860c9f3fe1e5e73974605b2215fc210be 2
b34c6fd61d339d07b7fac0e971481d3b27b81f95 33
f2288dd9227835f300a131f501c4420fa3f2d928 1
ca031b9f6bab7d0cae8be1cf9d72eec935743413 18
dbb408e860279d92b7502474328bb5385c2d9243 2
7f836b587389f84806d61880c08f355ca8ff01fb 13
c457f57eafd9ba8411c792a560a80a5fa7ba9e74 26
a62ba887c90267162cf572de6286479eb04e02a8 12
f015c7614bf133e93b0b916ae41b2600636ddee1 14
be6ac454c12c0aad1277e25be83cf23a6dd8c6fc 17
461ccf3da5f9f691ecd2641f2e052d81113e9cce 1
39d423c40411646aa26182266ef727d6bea9e018 27
7fbec6509f5602c601431e7091becce46047691e 22
767ba4dfcfb1567d6cbb692ff3e50a8fc4da04e5 14
f1d07456129660bc84e7ec286aa3466cab3308c2 8
ff01266fed2090e0c5526e48e70bfcb955e650dd 20
14c51c348f87b8ed3bac36e24a65430761f469bb 19
e20f900dc27f21dec436c1edf17b179c591055dd 2
8ae7ff26d78a1706ea4748813a9ccf0bec0544e8 16
5a50073d07ca309d78cfc4e071f4bbe051bdbd40 3
c73fad0a0d42103b5e13a68317ea95b1090263ba 39
b66f972b623e8c93184585a7289b617654558f41 22
300d34bb13bcfb127acbe2abb79c19a044df0ac5 1
f78bd2b412428a91c32c4735b55ad7e5687af737 1
0b5c213023913b5fa46f03296e9f6da76b4bbba3 1
7c78caeac716ade0a945f684ba933a7737ba8099 1
f3599aeb2e1794560d66dbe489679618608b7d58 13
7b45e6f6cacb8966debb805b25c410adbe8c0f92 13
4c5534fc9c99e4bfd55991c42821bf26fc0eef49 18
5f1b2dfe73a57ebc4e416e7a3fd41bb8bfa8cc98 8
ec7c825789105f5ba575ce5050ab21c05702d1da 26
46fda8400c80d8173f525c98233318323a5aec58 3
f0563209e6bb47cdb70e3b98287fe57d56b415a2 4
71e7324bae5870477d27ff61650e974c0da5a238 5
7cee231ab9fbb62f27b4471fe003610ad651659b 15
3ce97dbeef250b678c3df24ca34035ac4aa347a1 14
2682318774755c4bcca241d9e1af8cbb65df12b1 15
ab871bcafec8254952044e7ff720b82e42a16a7f 2
3d76b1e6be73fe75019bdf4773dcb0eeb4469984 8
952caeca19963edf528bc9b023f608c2198ebcef 3
9a4116d03cfe98cbb857b717e4e693c700256dd9 39
1e4d8a5dcd6fe5563adc5e986fed327e4db37f7d 10
0320f5e668e2784bd6f6bce077bfff9bc9683370 1
c88186eb8dec1ed3f0234ddcc0f1a0ad75b3ca1b 1
05366a5efbe8713df2b887d3c6918c45c07c71b5 5
c657a840cc1ce8f80ecbdb761851c356a82cf41b 26
ec145be03350c6b29b2f59078f374dbdb28ffb66 2
988334fa99a362c87de553a9e4b1fbf8940bcd68 3
1f0d62cf20ad17542d1766ee2b0202b0333060c6 34
717e750a6615540b6766ed0c608c63bb66d0311b 51
2a7be0b493fed75487796db3f592fff109ab6773 1
0d9020c59acab76278d046574679030e8c96bc9d 34
a00f2246ef77015e554cf6c5e29824e37aa41466 16
b804542d53c3411a815e5c975a13c7878b5f882a 1
61b6d878dd6591103e7f67957d5bc3ff437d8bf6 5
44f670df6d0da3db3d39ef5c8c0f5b551768de49 8
a0de116a2e8b5683fc55baa6e68adf8fc985c8d0 21
527922a3865e9f07cbf3f102b9201987f505c554 13
314a973bf67f01b650d8d4063d36165eb3214720 1
3f694050709d785f4d7a7394588dea9cfea0d1e6 1
a752a37be5ee9c24b46bbaad3d4d7cc7f9ef28e3 3
fe2843d4a0b6b909ba8c897b9e4ddcfd1a9bfe56 1
4969e3917b74face17dbe7375b602bdacecf5b61 1
8c773e39bfebc802d9ebb915dc9ca297b8f7fc71 3
c78f0c013df6029b9f96c5d652f4564926b21a9d 5
2f90cfdde4bbed36a9d6acdba15bd7b88d058050 1
2074ef14d8894656d1acb881e2367a5c8e5a20ba 1
689422d8147f6966d5c25c7b758df80c6e02a693 9
1e33436524b3d617f36ae6bb37e5768ae5cff1a8 38
b57377e8597f0c2d0888e103b50506c3f519243b 9
15f15ea97165f86041540bba24e41c7ba6496cd5 1
87324e56a31c110a1653955cdd715e9e88a54ed7 14
6691271e9f5ce4f754c5d915653e740017d8288d 16
fb1517672dafee6d80b1ade6b39d75e06df399e5 15
4bc3f63055976d1b3130dda2049b809b10e62fe0 13
638563a10ab495b11991708fda791e63c6a10625 1
144a521db90614386a19e330dbe0a0e684f4152a 1
e8a6688eaf05653ce6a597bb7c2fd381ff496666 1
cab335083a88062c897b2b3da439a9f220a20113 9
84eadc815b6984304194cdc592aa38823b7e24fa 9
003bfee8e69da8a102b670997bfd6b4846523e8a 1
b003aab47e96a6d467c3b27334c84460789b0533 12
2b4dc4da0dc89d767abdbd03bdf9261e1b3a43fe 1
5cc5ae1ac70dfa5f2a8a8d44bcbbb6e0dd28eec9 23
715bce682f1469fade8b5160ab6e022a0ca9bcbf 1
ae644af89818c5cf21a828fba9438bafdc353c4d 1
45396be13029618a8c2842a3e53d699d21854404 1
725c5f28ae6ab49262d02ce216e4043a0c5bb976 9
d3e0209a49fb413bdb89068af15f4811b730e666 7
db3ed53258fe849595f79b24ee90b930a75c7523 7
80180b28efc35d63bedde1f7014c29349d744dfe 78
8079ea5b8d1366445da532906e43afa9291473cf 34
a27309031b7fdeeabb75b786e4482f9323d1d17d 5
aa2bd1d0656b0001192aa2b2ef779cfd1f3b7e4d 1
06b393d11a28f15276599526538dec5dbfde1fb7 12
007b4c14b10ff8428540c9974ec1c17a1eec9f8a 1
eedff09c91268016b9b2a735812eb2caf433056b 40
7e2ffcc9034de41d7787f0b33b5670474f7a10de 15
79abf3c48b73309e48038d69702c2987dd4fc8f1 3
58b32bc29543fb831beed7292b90ca2877ccfc8d 30
a71b633d21925f961189c339054aa6bc0c6e3301 49
dc9eb319e918e32ed9b6f9295ed53c1f70984b5c 67
c61875d7d7cbfd09f1c3605f02620daa628d9c1b 9
196e63174afdb3df1529c1b97bb8437b16831cc3 3
2dda4cfe42c2205f88fa1397a15d9adec4b124d6 27
493b86584905df3d1f0b1ab0d7cfc0de1291de5b 3
5793cad49eab2b33606d3193e984ba7b4782b69d 46
c11dee306d190276ad812511a8f4b6e75dbf5a39 17
d6efeb56e44b1172cfd1ead6921550a5a6a36910 1
565d8d16ef5ef46d20158303ca5407aeffde1887 1
22362f49c9a8d772707a821f48654a3655ff4f13 38
792a0be1c3c434d542d01ab38a9cc3ccd63e8671 14
419a052c6842192e78f747d9f5af619c2ca56e78 7
1793c8d0ef8746462eb0f8eaf8207026e98570b7 29
6d7fe5d117da73a743e4b799d364cfea05a3f026 3
ce371c9f698cb07739343857ae950931893f0742 28
297e9fd15a60c0eaa8f8e9c30978af682d172a05 10
f5e42b415e54783ee2fa013e806b3cf18c7a4af1 7
4a765d1eaad5801b95324cd561642f9c3ee821a8 3
e54a1c92302f3167b06bc04859b87ac0681bcdf3 1
cfc714cc8ed8101a89091a30af5b3297eb4d718c 2
2225f3427c1cc0c7bbb628b1d11baa4c0f9dd284 31
6ba5a58c844f55701e9816175265584aad6168c1 10
d1c1405ab39e4f4ba1b41249397812edd9cb526a 1
8a6f965d03dfb60f32edfdf9fba728b00fe5eb65 38
d727f318fd3a3426572d68c692a9d1fc6ea7c807 2
91c2be69ca77a77af07ddd879a8216e19d4dc52d 18
f727f77a9719deeced2e8a7867aec88ab29e534a 31
3c23e7abac5ec9cc48de688e626eefdc85abac34 8
52b73a93072b522ca546b53d317ff60e8a6a31aa 2
ecf79d01bcd0e06ea82516668dd4dcf520d7e3bf 1
5ee79e59781b4a764f4e2fc5256fb442fbd904f8 25
fad32c139e681618273bc1f3f218902acff64810 31
9d2516726940805842c7496fb274030767b1a542 1
6bffa0e1375aabd0cc68ba03e53a7ed877d56504 2
7f930ae5a20e9c6a865c94e228fd18a599888369 41
277e61721f34be16a20da663fd597edf6b51939b 10
55b69a5a21f62c6f41cb9750c6af78647474821d 5
2fd2fdff3316660dd55732ec0a3a2539a706c941 2
a50ec429ece53bbc35b94cdb9ba0861c597d3eb7 22
80384c483058df4ecb84fd0e48971af33c017dca 19
633c613737a59f9b39e15ec8371fbf01d5872c22 11
8d91da2f3a4e2295322b0b5b16b623e3305bd40e 1
81aa19e8a2ea1bb612f893f5ad714e563681f746 1

COMMIT - #Redundant fragments
89f4c18e5974e11a1972ef545eb417f48646ef55 1
5eb62fddf202d0c54bdde3e4b4a2a354fba05126 105
bcbf7e66b7b20dcc9471f7977f190b5ab4d47e73 14
a027cc9f26c2dc6daa8a997e00de1dd16eb6c56c 18
73eb9d352a71981371fa78907bacdccbd77d017d 14
0d458038258c271d6b7462757850a0bc45ac5cbd 65
b424c80c364aa156bf68cf5c9bd8dbe0922611e2 38
5d6b34c67f72fce8b4f07f93a0bcbc0b72437e40 38
206201617aae648e12f63d4ab8aa9751157e7e63 1
5988ff0ff679e2cfd9c6154ddf2fe78dfa4aeead 20
e219223496e55732708003f8da2f7021d8752d44 2
f8d4090a899526c34fe32435a67ef5f4559dbf2f 1
9bd9ce45f6e779c066c8b7d16403ed16f072296e 1
85997f7fbb91829fa3c7c51c137f4bd35117f254 1
fa601ee57b549eabdd099489b7cb09d2af08b5dc 1
a0f3e0435c405ec842240413e2165863c9c76a16 2
ed492bd0c5c5c3a0258a65cb31cc8723d8f011fd 14
d92c1b36754b7ce22c4cc6f4c78d1af4c64ae21b 1
fbf87122e0f7229892b6dbbf2e211cc46acea008 5
44a04a5f899b700ad664548ba36e1535516bc664 1
ebac9b0dd11538aaad65fcd88c192d6ff526c662 1
ac7154954f1c52ad9a741f55133f45d4668019f2 17
207b1dc03bdee99538f2bfc86006136293469b60 12
4bd84e3ff138cdb345ab028044ca81321b129c04 1
911f0fe11146590554ec11d1277d6e2ba55bd7e9 3
32f05fb5f66fa26c15f6e1e8a09d238d5085b101 137
63c5ec9834b0aac3e2ad8187bbbc94046c1fe95b 2
924445035e0e8d6c2231b51fc60bf2b7fff62aab 4
90e58a9bfde00714bfa81fc6bc03546fb1946c90 1
138baec1c778c2ea1dc1a6efe6d5e76a3b072b1d 2
aa09ac7ca6e01a2ba41470ca590f07f2ada8af6f 2
0dd8d619f94bf604e5000a4f87f1987b8efecc39 5
78b3cfa45ce6d92e9915b076ca41c12dcd5a1f63 1
f41fcd85ca62a2109a6e550be0353d292d351213 1
f62b589b10d3bd94ab24006c70ae5d86ec9bd3fb 1
983b064f7f31830788ba2b5485302f02ab637767 2
15c12f11dd69208683d863444b524e26bab59006 3
81648e8ecac4fa6b931be235a918488e70ad43c0 5
ba96c9afd8f42adb6abc9d5e447bec823c95db88 503
c54d3a8b097f549a04dc74d02c337899b4236184 2
fb3c9ff347d2ee7011938da72a565f03a3d4756e 1
baa06c8feab274411ddb3948580d193dcab6e509 3
305cd956104b20c7b37e13c98527b72c59910799 2
6536defc8e32df4f10b7247cb514619d05652185 1
ef028845113aca7e1159b1725edd7c39ed686faf 1
e3366a9d3a539fd2c3003f64416edbe1c5d60473 3
2d16a3940157cd66810c8e98c2d4e69bea862789 2
68a6dab45b3effd6c615580c3b13a3c86565d997 24
39311b1023eb840595d1a52838aa47e470aa444a 1
2a4cac1922a656283ba6eecda46f125ec0a41c22 1
882556eabbeb2f62939aee29afdec2a01ce4bbe1 1
dc782783130f819962c8ab83269dd8617817a9c5 1
3eb4dcd89e96a8eaeb9933552f44924a8f795890 5
ba34e0d8458feac61e561e840e13fa474dc3ada4 1
855943fb930c084000ed673589ad0754b9188b60 1
b91b3efb3854c0fd0f270bdba6cdfa8058c0515a 8
64cca1d9354664286d602d7e16b2f088e31ba45e 1
bb5612d4d36bf33644926c5b99732dbe1e7f75ce 29
c67a5245dc03fef62aaca4c63688d6ab087e137f 2
16bcfbd887c6f564cb5a43520ad2b809d3219afd 6
473d151d4d217ccc2af9499ff5e9239a137774af 13
f3d763ac36d16faa666c999f4506e83356025a9c 14
b0cba9a79ee99b09958dec8e40c75bed47b7f780 2
7f836b587389f84806d61880c08f355ca8ff01fb 26
c657a840cc1ce8f80ecbdb761851c356a82cf41b 17
ec145be03350c6b29b2f59078f374dbdb28ffb66 2
fe2843d4a0b6b909ba8c897b9e4ddcfd1a9bfe56 2
c78f0c013df6029b9f96c5d652f4564926b21a9d 1
4bc3f63055976d1b3130dda2049b809b10e62fe0 1
725c5f28ae6ab49262d02ce216e4043a0c5bb976 12
80180b28efc35d63bedde1f7014c29349d744dfe 24
8079ea5b8d1366445da532906e43afa9291473cf 8
565d8d16ef5ef46d20158303ca5407aeffde1887 1
6d7fe5d117da73a743e4b799d364cfea05a3f026 1
e54a1c92302f3167b06bc04859b87ac0681bcdf3 1
3c23e7abac5ec9cc48de688e626eefdc85abac34 1
80384c483058df4ecb84fd0e48971af33c017dca 5
633c613737a59f9b39e15ec8371fbf01d5872c22 2

COMMIT - #Redundant fragments
290af7e332cae0d450b54130127345df2cc32b0a 4
0d23a9ccb22959e3cf0fd0ff85eddc01d4bed3ab 2
89f4c18e5974e11a1972ef545eb417f48646ef55 6
5eb62fddf202d0c54bdde3e4b4a2a354fba05126 88
ead8450fb71c098abc44552d963553c80bb6d711 1
c67cee2fad477f7b6bc67fe6ecdd27613cb193ad 6
99d3872ff25646b163d7a29ec314dc6050bc612a 4
619b6874f0bc50a8fa72631dca65e14b7c32e46b 2
a027cc9f26c2dc6daa8a997e00de1dd16eb6c56c 40
73eb9d352a71981371fa78907bacdccbd77d017d 62
0d458038258c271d6b7462757850a0bc45ac5cbd 71
9b6845c0560fb8aa7a53aff3322218288ca067b4 1
264e9ec3ee55dc92409bf1910e9ca76b50154d20 1
b11c7a492a8308f41436ecb12a370fc281ea45dc 6
dff65acb9ab99d0d8bf656563501436981bd7bea 2
04c3ab9b355b2c52e0178533068dd22586c0eabf 1
d05d5282b93eec457385b9f1bab8b9f2efa39852 11
5d6b34c67f72fce8b4f07f93a0bcbc0b72437e40 73
89848e0222535051e237e992df3ed46e7d89cfce 2
d877581e783f778f6204e1b607cd29f16b897a3e 4
206201617aae648e12f63d4ab8aa9751157e7e63 1
5988ff0ff679e2cfd9c6154ddf2fe78dfa4aeead 57
08aeba4f0355ae6806f71bb92e9f81004cdbe6fe 9
5e15690d8e079588b3e4beedadbba6417b28d33a 4
7b22aec5529fb3bad1e8098938271398d13c92ba 2
381b1c43d007a38295f492caefb7b2ef1e827852 5
c6758d6bd899c6b087fa7a8a36b1ceecac55ec31 1
d49e229caf958a12035b46d23d17aabce8159137 1
e7077a6618f87f30629fd42bf6a13986b7aaa2e2 6
053c5e0d0dd276b5d0ee8d6c958c8fba88576f67 11
d34be50a9dbbc5c940e8e46f6fe42edcc13e5eba 24
4206c1eab19900a9e494ccced926ffd14080ebf6 21
e219223496e55732708003f8da2f7021d8752d44 2
09621dfdb946e9cd384d21a08677f860f678e62a 30
460b4450d71d793257ef3b31374a2bafff7c9758 1
5d3146439c1e6fd76aa0a24c0252404741bb1b82 9
f498cdfcb442facecddefc9eaa9f21322e3f9565 99
f8d4090a899526c34fe32435a67ef5f4559dbf2f 2
af98e93bd2b12bd3a4a5627155b8f626bff962fe 18
cb6378b922641f920e5f3edc2d8a3a2b1ad0f65f 5
849284f1db2aa7c1620897db0ec50b1b38bd9684 12
83f7428b00c65298559e4988142f36eb68bdb783 8
bec0fbd87ede35fedbc243ee2c9e74cd24957bb3 4
be74c45fbcb9ccaad84c4bc69c7b4635d4edfbcf 14
9bd9ce45f6e779c066c8b7d16403ed16f072296e 1
8d6b7da38dcf9d9bb68ee7e16d4d30de2ff8f8d6 4
12bc799c682404b914e85e16462a6e675d5b2df4 19
d1cdea807a3886e8fc7c5ba02266f809d2b54469 1
cfba792f7e99d05c8434f6dc90870a7eec66fa54 3
6eeeb5bee98c8e70459c4cde718da55e8bb027f0 1
85997f7fbb91829fa3c7c51c137f4bd35117f254 1
f2b457995b9ecd803bccd6713a8a3c164ec2305f 6
634d68d26f9eda4bbb6eb7df4974819c705a93ad 3
0415efa73bd4b8063d4d2dfc067ef59996f5f090 1
f3843a783bfa5bf21c62ffe2a7892b11ca07dd60 1
ede34d94723e61ddd08ed6e58b80a43fefa06f24 3
41ad5a208f0344a387304fcb076145e234639f35 1
c9aca98048ac6e304e13a4ef47c68a4e9d67030c 4
76d27d8a42fd9ab8fda91b07c15ef8cb61e74812 26
bc84c00b75adae089cba788aaec9bbbd8d9efcdb 13
afcb345fba17a8ccf58541d3094e130c38fe80ae 1
fa601ee57b549eabdd099489b7cb09d2af08b5dc 1
d838e256d9e4ad88221b2230612e78165fee5de5 7
e350740b434607e52f5a2850fd81b7d0196504ea 6
4bab561059df57a4bc8e8d4f3475dc6986360146 20
30a40fa69d15367196d134823032514f6cddbaf6 2
9abf6700a39b965556b9ed8368fc07f63c7adbd0 4
2708b20351fb0fbb98fd0bc11d2aab1ecc89ba50 2
26cf6d543deeb2e59564ba23568c83eda2b389bd 2
a0f3e0435c405ec842240413e2165863c9c76a16 2
ed492bd0c5c5c3a0258a65cb31cc8723d8f011fd 29
5b82c88097248ba7bda933c11b2b40838131e473 11
e5f16ff92cba9e441de86d6cbc81cde15c2ddd0f 26
d92c1b36754b7ce22c4cc6f4c78d1af4c64ae21b 1
e6449cccdeaba96ffba4c27db322c5c3d5c18662 2
231e2e584f0fa919f74485519f8b8faba5a3d58f 1
e640d1613751a99ae4c468c9567f21ea13b496fc 1
fbf87122e0f7229892b6dbbf2e211cc46acea008 13
e971e376defd9df8fe34228b4bc3e6ff5a338deb 1
e1d68585bec81a68e08ab08ad274494a612856d0 1
2ab69023c5216da15183b1e666aa57d3bc2c0fe7 9
44a04a5f899b700ad664548ba36e1535516bc664 7
ebac9b0dd11538aaad65fcd88c192d6ff526c662 5
eea1a9d95d1e63e5aefd5897e9aeabcb552f1185 3
559bc9e51d490cb51fa1aa3f2364e9ff07c9524d 6
0e09cbe2ed12d43286b776df17e635f99f755a87 1
160fc1076ae568b4510fec50636fcb23740ee91b 1
8f7a24947517068bd76ccefc6f9e878d2f6ecd91 9
602c21a15ae1b25e9d304d75e3181dac9d1435d9 1
e95d9d1fa484f7da60950a2b93336eb3c8e20673 43
ac7154954f1c52ad9a741f55133f45d4668019f2 22
88561265ca3364a66a5a903a8f513f7da07f7245 2
207b1dc03bdee99538f2bfc86006136293469b60 14
751a79135e328b39e02fd1f5cce8104de7afd634 10
aeb7693baf05f3840fa2b8cc94a61ff1bb26372a 1
4bd84e3ff138cdb345ab028044ca81321b129c04 1
911f0fe11146590554ec11d1277d6e2ba55bd7e9 9
a22972bab6b827f94bf2c5a644929418ae18b3c0 2
b03d68547460332b861044db80ccd08edec361a1 25
bcd864f44ef9fc515ee9f6b9aabafa0a07999221 2
b8711300e4923ede5450bdc89dfcf339445b3430 1
3597812efa15c4422bd3c4900a86f4cc01105ee7 1
a5f0c0dd2fe2472954b27ed1c8adefa495304073 1
f8a9ce8fef3fdfde5f08130c0b71f33e1c593e06 1
d27e072c2dd31debc79dffacd22bf9b8bb5efe52 1
c066ec37ae54e13d5b41c6eb9e4b46d6036722d4 2
03bb3ee4422d5c04795a7bb0c2f4ddec9b515d52 5
7ed9bad780c2d7e1a3dc99f4dd5efa8d4d4fb6b0 12
b6f2a44d8201f7e4f166d2ffec1a84fe7b2e5638 2
35d0d2f9ef873ab3e74d6719ee363b80acfe64aa 6
780e02b61d84b04d6ec22d36d56505e9f0037f57 1
3c76851af2d0f39dbc3a6680c8b2426440479b13 1
1b48dbabe18ca22396bd737df73e241cfdf8c0c5 35
63c5ec9834b0aac3e2ad8187bbbc94046c1fe95b 11
75f5c92aeb47e264c196a8c38a495adac89f493c 15
bd8f05c4dda4b5b00e525e08fd6c95d256423c97 14
5c8eb0786a708ebc5cea0b0d7c856619667dffdf 3
8dad16f5e74feaaa5bf36afb1f2d384848247318 4
d6d2b673595e33fa906ab9e90dcf36d480f3895d 15
0bfe55d896afa56e8a96132bb059cfb748ca559e 1
e9b7a1fe39cd1ba0bc3537186c5074623f5d4bbc 1
a9c242c3c5518947912e8176ceaec04ec6dceef1 2
240450fff301ff8a51576f48c71527a482da8789 1
38c7118389807feea11a786541886eb76980e40c 18
1ae19043a1f78a2661e6907bf9ac3ee1be82e0b0 22
9be86f674f91fa3fe0a8694e7b98472dabe6886d 1
f2b574e1717969df425412a5ecd679969f6f7c35 1
924445035e0e8d6c2231b51fc60bf2b7fff62aab 2
90e58a9bfde00714bfa81fc6bc03546fb1946c90 3
b0b34816036095acc860f48f3eba0c1cf8d22722 9
f8947221d6abeedbb165490296b4522fbc3b8a11 2
d30c941b7f5dbd59bd62557cd115af6d82026776 7
89dfffaf228076eeca444bfd87baccd9a35c2999 1
39e7aea40d277ff141cc2ddae7634cd84ded97d9 31
43af48f935a6e277b50beb1566ba8786dd17cb54 52
53939623daf2c4e194eae3d51afbfbf3ff3cb812 1
ec9f2c4602062836786421f2263525912c47e241 6
9c04d147e8d81894d73ab519bc199a6d9766b1e1 1
d962ba0d9c92943dff986e2016bd840241af2e86 18
6e3ea6857dce8b7a586c3af555e21ba35a59ea54 1
3ced4f2a4e2546f0d7c309bd8f6305edee0dee8f 2
663b0539f6b7fd2a68c9af5337acddf4f3a9e478 4
a9ececc5b2cea19b433fde33f45ccd05634afbce 1
340af239a361695d8c9c2b7009de45f12c17bead 3
47c5f8a397f83650d1f3b590bdfbaa2b00758e5b 15
39e2ad8af8fdedac51144158061cb31e7863c3a1 22
523df0c13719150b1397a6094f410274bfaf1475 1
5d1db75c0eb4e6cdb28d3a64017ebd60ae79e2d0 1
79522bbb5869778ec805ee001710eccc6a4d2ca0 1
a3b45ceffede0bc816d095e161ed2ebe43628816 7
d69cc30e4c100930a958768316d50f0e8835087d 8
1687372e34828dff42e1482ed6575bb982b81b00 35
aa09ac7ca6e01a2ba41470ca590f07f2ada8af6f 2
0dd8d619f94bf604e5000a4f87f1987b8efecc39 10
78ad153bb7fc93721b8c3c348a3ca5c23dccd94a 6
9b80ac1f5c115fd95162e3c4623c32d2867b10a4 7
cf766c07333f5e8d0959788c434773b54d079c24 1
279f08035026ff796976737ef900b4ff4fcce3ea 2
7a01d5166d3c7794812ecf01a205a546bf461298 2
bb92ef09ec39ee52061df1cd4423f63dcdccb1ef 4
f41fcd85ca62a2109a6e550be0353d292d351213 2
a2711c189d9754c22e3aba2de1c6c125e52626aa 1
f62b589b10d3bd94ab24006c70ae5d86ec9bd3fb 2
7d375de02e70bb63a5a9189d33fd51e76eed6c86 1
fc505bba569dede0d29a401798fa9f55df9e27f1 5
d370dcd6864324655247f85e17b8f190ef30f18e 14
a4f9188a55e6935d4d38ae97806af4d59e671588 4
0db46cc7ea92847d8c71564ac3e0020d7c6be144 1
86d92c9994adc66abd9c3e4de93394a59e79357b 2
33ec6655a3e4026f913523866495d1ccafd9c511 1
5481717de9f248dfcf4c4f4a9dda0487ee1bef1e 1
40b47ce75505079af56befb0088a26de8c8d141b 2
6d908e5581121ba014f0209d98fcd47818e9213e 1
983b064f7f31830788ba2b5485302f02ab637767 1
a2f8a1e856fc52d98caf883084c057d8c12f50f4 17
15671e2074c0e68388096d9c0b3073fdaea74779 1
b21d6c1c768be759ee32618f83fdc2f8c7f50f98 1
cfe62b0ee011e2477275e6f615a2b99473ebd9f4 1
d4e1396d17b54bbda28d17750574800828ea9437 1
11b686c1ab48fd917e45732722deb8378bd56c6d 18
8348f00221b0e025c29ffaec42e12a59cb0fc203 4
588b93a2bb3874d4334a0eb7f3b23d93a5fcbf58 1
ad61877c52e00a4917d020ab9e0b3ebb8a767a6a 15
96f544b1721490b564dfea76f076d4d8c7d05d15 35
c6afdbb0ec130c4fee1b77e803c947d154f24a58 1
5dcca48038fb6274cc155251d09db12746ccce71 1
79a29c381815d2253a610689983cf96a00af7d17 12
01fb77e16771516646f668450f538128b38e8825 21
5e873783294c04f2a8eb47518e808445b2b2900c 5
a4900c9dbad88add3eb1c0ee6366fc199edef7f7 4
3972fbb63778bebc21b4d9bc2f42b671c7a37d4a 1
d655c3c4b4ce13b05814ed773851b339641198a0 5
15c12f11dd69208683d863444b524e26bab59006 1
81648e8ecac4fa6b931be235a918488e70ad43c0 1
ba96c9afd8f42adb6abc9d5e447bec823c95db88 336
c54d3a8b097f549a04dc74d02c337899b4236184 1
aca98c76dbfd1e8e535eaeab94280cc8f1f45732 5
0737474412b4ba7868b6855ed61202820e5cc5f8 1
455c730d72196d65a215413f56b9c644779937f2 2
d3892cb85f3eb8ccadada228b791170e3e0a9124 44
00fea9d8078d487e31cec8292dbd9bd69bc9c216 1
3dc361920534bd229d7e561607c298119bde4843 2
e06fe05e2dd68936e770ba67caa7b9924568170d 3
afef5eea05b8a7395f5ee33726aa2113771215f4 1
573785a1cdd35971378c2f38c30d455897fe8a3b 1
fb3c9ff347d2ee7011938da72a565f03a3d4756e 1
baa06c8feab274411ddb3948580d193dcab6e509 7
340642dbf4dc26c78176302da9c1c275bef89943 4
f9dafb86010fac653d33e47572f2f3e7e1a2ab12 3
7a6670e8628e75a69dbdeeb6527d6fb5a2a6e55b 14
305cd956104b20c7b37e13c98527b72c59910799 12
4fb53c76030656981644a1a9792cd439c16a4137 2
0053765dea6af83d2452bf5282a4a7794ace4f9a 1
7707b0bb80be05bbf6533a36bb0c646cbfd1026d 11
b6ad082c4ec97e58ff2abf37c60190580302f5c5 3
76a60684fb7e5c65b7b5810df3a3debf3e553161 1
036d2b3d44a8439fb02064de88547ba0fff06947 15
6536defc8e32df4f10b7247cb514619d05652185 1
13213576173cbdac33afb4309bbb663bb5514594 1
9cd60db5d846a1ff4dbe9b710f9cbd46b58ad5d6 17
a0438659ec35e468582164b1b64199ea6352d8eb 4
7cd1609ee12dbddd004f010ef6af3494940413f9 1
50747ca40587bc29710c263a9cf164002fd26c78 2
1803798d9fe0fa134a2424175c60ecfb214957ee 2
6806acec5162c924762f884407f1d66076b81b57 12
e4ab3df112eff5ef614823d863b1053f0453134b 4
2af72281fcb919dac92b0c4e464f847adda23be1 18
e3366a9d3a539fd2c3003f64416edbe1c5d60473 15
e92310e1cb0862d8a529952fb02c34a1fa6f931f 1
2d16a3940157cd66810c8e98c2d4e69bea862789 5
596c41491cd8262d2f521105dafa07ef67147016 4
21cc381a5ac77aab6327d1fcf889ba9d998c0a4e 2
e96ed8c914c0139c89cdbe88c86b539ac2b96303 8
8da29b175dc8ab629546c60a31bebf8d176f787a 10
68a6dab45b3effd6c615580c3b13a3c86565d997 51
9d76c94f1d97e689540b6840a0005fb0ea27f4fb 55
39311b1023eb840595d1a52838aa47e470aa444a 1
5b87a5b6763c54dd8825dc3eb65c0de6cbe4ef71 3
1330415e0942bf414359a7ff2fd7c4620e448232 1
1f0b0b235d847231ad337c985246c00e6fcaa880 647
ed77246964eabaf62b60751398a1f36751395e4a 1
9e6b0f8c9a7d1f3e450fc4805ea93fde4ef205ac 7
de98bd28d4c02752611391fd4c29cf535649f89d 3
a4b2642f11650f000768e82fa3d7f34fe894bfd2 3
a66879e098a74fe60057a6e6f1d1bb7d137c0d19 2
3d931a3bedc25d108dfdd2ccc16a61e498305f13 1
8dcd1aff544e084420224bcccfbdf4ce2d854a93 1
bbde275210895f1988932c4be494548e379f0271 2
29f1feab3b90980a3a73ad8593bb395632f9e2d6 1
4f655f04a468e379512841dad498ef1ba43d1f2b 1
b2f348f266041e1754ba41bb07fa89e41fed88cd 2
c5774647ed8d5cffd6387473e60b5c3dd281549e 1
7a37b003ef84b6ba48a76815bef0059efc3f553f 4
740e8348fbb7fcc7c8b6e0eaa3e345d646847b6d 28
dcae84b2e8f025e93340307d8bc04d406202c323 4
e98a5000cd211539bf4ba65f62cc7f81395e1726 17
882556eabbeb2f62939aee29afdec2a01ce4bbe1 2
7298d4087f67eeb9c6d10a4e4201f086e6d668bd 4
b43e6a00a979edd719898cedc2beb3c5fee88a8a 2
00933c7150d041cffabfe1f27907f085d6c66f12 1
e7bbbbcd356b5d5374bf7b78e7c2e4a4a1b2e013 13
377990836d633f7ec9837b5c6b75efbce549ca68 10
917690c6a19f5eef26218321c839623de49818be 1
74e00296574dc3ac0bc064fc3258faabaf732d6c 15
dc782783130f819962c8ab83269dd8617817a9c5 13
2cb250cff282718bfb19167365910c967b28e21e 8
89040e46415f080a2eaad7a9bf732cc047800135 3
c8f524fccd20a08c55c56a2caf208637e4019514 1
28e84c50ffafa1969a1dd9026df82bff87b60211 2
34d1a7bc381cbc8445018db66db942c312a5387d 6
5dc9957d79874acf765b099bdb180fd6fd3b041c 1
3eb4dcd89e96a8eaeb9933552f44924a8f795890 4
591a2e870b0badff89421e6791a7c18694c327a2 8
fd060f7039ed2ee8e5015c3df4327a489660570a 1
a67ffcbd832e3248f3e3d13b084d49d467fea959 1
ba34e0d8458feac61e561e840e13fa474dc3ada4 1
233c2485203bde4305534fbb9661dffa6a2ba25a 1
d05a936656136282d0ff3878bdb7c0b59ee231ff 1
9751c64c1e2de72c1d1dcf545c18576e9745a474 1
9fafe5cf60de24e5c51d9840d1976b46f1fa8036 1
4bd3adeda10223ad34188294a33ea8e5a7413246 1
fd75324e28c04475c944337fdf2e3e469cd23ef1 1
61051318b282c62f59f59141792d3347854cfa70 4
de61d0de0061197de858addc8dd3181cbf865674 1
4d1edd02254fa524bd0ec9d2cc35a2b1a0df0857 2
e6f32e008d078285ae29d48a085aaa3a7ec62e43 1
78f68969b4b6621d5039de00f78c16fda30f4f32 1
71042f0955b99de1f05d5ee3f96f2e8f8d2e84c0 1
855943fb930c084000ed673589ad0754b9188b60 4
8ee0fbfd03f1cfd5d202fa33f6c018a011cab270 11
e914fd722764851e2abdacb3ac41079d8269b649 8
60f8b1a18739f623412358e3437d2f3f96b5e1ab 1
c6225ada2deeb1e01c93ecc3ce160e7d497af385 1
50909f997f9e55930fd4b8fd1bfb9ad5197432b5 1
9b661418cc0612cf5c2e300de634ea61a8a6e536 1
faf72c310a6515ded856f697c2e047cf88badd18 1
a5d8d115cb85149c62059a23e8f4d318cac0e903 3
c72e5a803bb7e83acbf21382f10e1c699893d845 2
b91b3efb3854c0fd0f270bdba6cdfa8058c0515a 23
520f36b43a13681db338a07ac6c251cbe1a7a6e5 3
c64d0936a577402abdecd9cfe8721b38e628dc82 1
36d811b2d4cfe1b867823bd60ccca25abbc80b46 24
f498331dda26df916adab7ebfca9d8cf292e3ad4 5
6b67f82c40bee7bb3e69258923110bec88057717 16
3ef79313597d7d49067c48d65a09042d8d94822d 1
e3a2f146dc12711654ddb08bf55fafdd63a7563e 8
64ee5650c7ca86aef9e29e76830d1fb4cc4ec736 1
522596a1281806dfc0eeab8a1b62d4b042903810 1
13da14c03d4c1157e66950ceb06861b7a00fc59b 1
2d7504596a40ac182f09e651971ebfc97f0a09d5 2
f81847d8079753ce45b049813730055188a22efb 17
2c60f013ae2fe4f2c593e370487d06f1655ec394 1
c5c363c48075221c0e34ba0a8c4c51ffcd0ef57d 1
0205f258448edf94193b64eeae38f8601706195e 1
9e9742628847af9a75963274ebebb4102c2d7172 21
64cca1d9354664286d602d7e16b2f088e31ba45e 4
bb5612d4d36bf33644926c5b99732dbe1e7f75ce 35
29d5df5e1f75a870a6c5cbc751255531d80c1f0c 1
eb50c98440b0da963d5df4bfd1bf734bc415977f 24
f1a0493cca9048303953a7fd47b53ef57b6d33d6 17
adcb11a8ca235de923720daf6f33167f8ab8e0ce 3
490ec33e24dfc8784f6e91325f142dee1e4107da 1
c67a5245dc03fef62aaca4c63688d6ab087e137f 12
c04c01c5c8b49b7ece6d096ff45896a6f3306f1b 3
085bc9f4a64ecafc009b6bb474fe4dad2520a96f 1
258de9d9347c246f77c9e292657d42c3a374ef74 3
94c89491f24359015c3f0d26a4e7189dd2dea25a 1
263e2f462f4e9a95eb3ebd77896f2175afdd5dea 1
22ee0f157471d8061f066ead5c8f95d8c6624106 7
16bcfbd887c6f564cb5a43520ad2b809d3219afd 16
1566dd339f6efc2347b0962fac7fce22adbc31ff 5
473d151d4d217ccc2af9499ff5e9239a137774af 12
f3d763ac36d16faa666c999f4506e83356025a9c 29
9330689f4c303b890ddb94442e46a1d5fe18ccd7 13
a1a421f1639630c22389d8a4de82cb62fb90e015 13
dbbf5b27a5a4ef5d1feeefec332d114fb7e91f1b 4
c09d5881fa0c83112f6337a589043a46865f7fe1 7
e3d956a7654bdb7e1cae72a75ae19911d6b7755f 1
ede5a2876b16b111a25aff1d1e43ada594e97d23 12
21af910d83b4778cba2e76bcc0071db2cf284f28 4
a5822a64a848adb5a1221d8caf650beaad9ae41f 1
f1b04e990f4fc86544b6230fab1aa8ecfb74fbb1 11
b0cba9a79ee99b09958dec8e40c75bed47b7f780 2
472da042032e8f2f0d016cdfd2f4347b788a2371 2
c422db8ac25e93712db663f1e9701d44458a90e1 13
c1de4ed29d80cd657d4e3c46a934b9fc91b24545 11
78bc8d3860c9f3fe1e5e73974605b2215fc210be 2
f2288dd9227835f300a131f501c4420fa3f2d928 1
dbb408e860279d92b7502474328bb5385c2d9243 2
7f836b587389f84806d61880c08f355ca8ff01fb 13
a62ba887c90267162cf572de6286479eb04e02a8 12
14c51c348f87b8ed3bac36e24a65430761f469bb 19
e20f900dc27f21dec436c1edf17b179c591055dd 2
5a50073d07ca309d78cfc4e071f4bbe051bdbd40 3
b66f972b623e8c93184585a7289b617654558f41 24
f78bd2b412428a91c32c4735b55ad7e5687af737 1
5f1b2dfe73a57ebc4e416e7a3fd41bb8bfa8cc98 8
46fda8400c80d8173f525c98233318323a5aec58 3
f0563209e6bb47cdb70e3b98287fe57d56b415a2 4
71e7324bae5870477d27ff61650e974c0da5a238 5
3ce97dbeef250b678c3df24ca34035ac4aa347a1 14
0320f5e668e2784bd6f6bce077bfff9bc9683370 1
c88186eb8dec1ed3f0234ddcc0f1a0ad75b3ca1b 1
c657a840cc1ce8f80ecbdb761851c356a82cf41b 26
ec145be03350c6b29b2f59078f374dbdb28ffb66 2
2a7be0b493fed75487796db3f592fff109ab6773 1
b804542d53c3411a815e5c975a13c7878b5f882a 1
61b6d878dd6591103e7f67957d5bc3ff437d8bf6 5
a0de116a2e8b5683fc55baa6e68adf8fc985c8d0 21
314a973bf67f01b650d8d4063d36165eb3214720 1
3f694050709d785f4d7a7394588dea9cfea0d1e6 1
a752a37be5ee9c24b46bbaad3d4d7cc7f9ef28e3 3
fe2843d4a0b6b909ba8c897b9e4ddcfd1a9bfe56 1
4969e3917b74face17dbe7375b602bdacecf5b61 1
c78f0c013df6029b9f96c5d652f4564926b21a9d 5
2f90cfdde4bbed36a9d6acdba15bd7b88d058050 1
2074ef14d8894656d1acb881e2367a5c8e5a20ba 1
87324e56a31c110a1653955cdd715e9e88a54ed7 14
4bc3f63055976d1b3130dda2049b809b10e62fe0 13
003bfee8e69da8a102b670997bfd6b4846523e8a 1
2b4dc4da0dc89d767abdbd03bdf9261e1b3a43fe 1
ae644af89818c5cf21a828fba9438bafdc353c4d 1
45396be13029618a8c2842a3e53d699d21854404 1
725c5f28ae6ab49262d02ce216e4043a0c5bb976 22
80180b28efc35d63bedde1f7014c29349d744dfe 127
8079ea5b8d1366445da532906e43afa9291473cf 35
aa2bd1d0656b0001192aa2b2ef779cfd1f3b7e4d 1
06b393d11a28f15276599526538dec5dbfde1fb7 12
7e2ffcc9034de41d7787f0b33b5670474f7a10de 15
79abf3c48b73309e48038d69702c2987dd4fc8f1 3
d6efeb56e44b1172cfd1ead6921550a5a6a36910 1
565d8d16ef5ef46d20158303ca5407aeffde1887 1
1793c8d0ef8746462eb0f8eaf8207026e98570b7 29
6d7fe5d117da73a743e4b799d364cfea05a3f026 3
ce371c9f698cb07739343857ae950931893f0742 28
f5e42b415e54783ee2fa013e806b3cf18c7a4af1 7
4a765d1eaad5801b95324cd561642f9c3ee821a8 3
e54a1c92302f3167b06bc04859b87ac0681bcdf3 1
cfc714cc8ed8101a89091a30af5b3297eb4d718c 2
6ba5a58c844f55701e9816175265584aad6168c1 10
3c23e7abac5ec9cc48de688e626eefdc85abac34 8
52b73a93072b522ca546b53d317ff60e8a6a31aa 2
9d2516726940805842c7496fb274030767b1a542 1
6bffa0e1375aabd0cc68ba03e53a7ed877d56504 2
277e61721f34be16a20da663fd597edf6b51939b 10
2fd2fdff3316660dd55732ec0a3a2539a706c941 2
80384c483058df4ecb84fd0e48971af33c017dca 19
633c613737a59f9b39e15ec8371fbf01d5872c22 11

COMMIT - #Redundant fragments
2d72465877507e8cd5c26552be86cf9888781567 134
007f5918972dc1156d88f330e6f45d8594e7ae3e 3
66dac9e8f2acdd38130b5979d54604e82779819c 1
eb4e6ccdc94440cab3c13c148dca3b5baf7c77a6 4
6c698a3b1043305f36cb7150053d3ce97bcef22d 1

COMMIT - #Redundant fragments
34de266191a202deb85f8a166c444d3631fb2965 5
ff0ca05d7aa1eabd010f8bc0247b9a73a350a11e 89
636cb2045cc018eac908d699cc0c03fbcd9d737a 2
fc10341a0f3e33b776ff0818841abc7b13a60677 8
b9ef3cb30c947f5dd19f1b1af20a7b5b955a053d 1
1b5f7ae88c5591fb07de77872db7517ed7c77690 23
b655822dd4dd3a54a4dffd282451545d10dc0920 3
4fc42acc270923c226cccde94fa69274a3c13741 43
b2e23734dfbef233e657bba79be18b5205881227 1
e367979ce0658aaa520419bc4254f91618c44b29 20
546597c2efca2d220168791a86deb6f03e30105d 67
efa6afc205dc6061691c0980e5d770e832c3dc97 21
cd0ecf9e06480ad58262f86a6cf37a5d2147df13 35
9a2751d182d6c50bbe069d4697c062555563c357 14
b53f91a1cc0adb3356561f839a9f0b1c065885e6 13
b67ce183dfbc90b7138db56f52f7c53a17a8032d 18
218a13cebdc7cfe46071890052f3aeb97f88a0a2 10
bb3c4f2741e7ee48b43a3ce6db643a9fb2e09696 30
14cbe7711071a713143d37557470694b3808e981 109
2d72465877507e8cd5c26552be86cf9888781567 114
b33ac8c7754f11f49becdbe2fde268f231d96a6d 13
8a3703367700d41f7cba2e3e89053cdf585a508b 7
9e1dff3d8459c277ca3bbb4670587d664bd98bb6 5
5135ac9366809e254007f661380cad39c652051f 4
508de36158e2abc82c45b9058fb1d90248e1d630 18
9b90876ec89ff70b112575aa80581e47a7e1e29d 17
5166f23ed1ee8d38f54b605b70d208dc760c7bbe 22
07c8abde6351333f3506ba07259352f855718c07 8
7335c0e7190bfb535d6a077174c888f4c53af1ed 24
007f5918972dc1156d88f330e6f45d8594e7ae3e 10
a35b476954495a372e4630c92c2a98cef644d400 2
66dac9e8f2acdd38130b5979d54604e82779819c 9
bfdf83b57058d71f5cfba7a0e98740b2ccb9d85f 14
595312e7cebeff0212043eccb59e2b7cec249fd6 26
eddc401ac5cdf484cd6bd391987fe651b0cf17a5 11
b192cfc8112941492ccfa2407704954718202a52 3
eab61262ebb50a9fdeff27e70f46ca6f60c7d933 8
adf85b09ad6aa10717420a0742f4ca33f89ed44d 17
eb4e6ccdc94440cab3c13c148dca3b5baf7c77a6 6
43e91f69c898bc3d9921cdb0274de17cedb1790a 5
d4b815f266dce0115e6af018fe099260f2f2b007 1
d2f341b329542cfb0b020c30fcdc452cfdecc00e 4
6c698a3b1043305f36cb7150053d3ce97bcef22d 9
64f1a4075f198023709dcc44b18521669119176a 7
bb55c0796e98bc36d6549a364e2b7dfe07e9aeec 38
44c76abe7f3111763f4dd9fcf1f3e446d34d3dbe 11
2626ee018369405a44ee919bbd7b90d3d69c73d1 10
71fe6c004d043650996febb1f2ff33078e3f7dc4 1

COMMIT - #Redundant fragments
2d72465877507e8cd5c26552be86cf9888781567 166
66dac9e8f2acdd38130b5979d54604e82779819c 1
eb4e6ccdc94440cab3c13c148dca3b5baf7c77a6 4

COMMIT - #Redundant fragments
34de266191a202deb85f8a166c444d3631fb2965 5
9a2751d182d6c50bbe069d4697c062555563c357 14
14cbe7711071a713143d37557470694b3808e981 436
2d72465877507e8cd5c26552be86cf9888781567 299
5166f23ed1ee8d38f54b605b70d208dc760c7bbe 22
007f5918972dc1156d88f330e6f45d8594e7ae3e 10
a35b476954495a372e4630c92c2a98cef644d400 2
66dac9e8f2acdd38130b5979d54604e82779819c 9
bfdf83b57058d71f5cfba7a0e98740b2ccb9d85f 14
b192cfc8112941492ccfa2407704954718202a52 3
eb4e6ccdc94440cab3c13c148dca3b5baf7c77a6 6
d4b815f266dce0115e6af018fe099260f2f2b007 3
64f1a4075f198023709dcc44b18521669119176a 9

COMMIT - #Redundant fragments
8076b782f8c9ac1df6569bbfa479db2da9e6cbcf 4
591fcae09c6470a03ade7d608773f8f633409bc2 1
58c50f297ca8e97e76fd3851d9eef13bd0cf73e2 1
9c83dfacb901788211a479dd275f00f6cbc8f00f 1
a24fe64ac4c88a0bc449df76c627405faa100b6b 1
23ab51791a15063027d70ec2894927f14ac9868c 1
22a6c6857eaef07a5d54fecfaea8db7c66f65de7 6
85c570ea92f0ee7d17573966dd7f94f4c3b0b61a 3
35f5f3a78cdc49954e9542dafeea86f13705fdf8 2
2bb6d5de002052680d443065e1c26f59be212e4b 1
2b56dbb49ba6595e54baa0285b76ddaae35f0c33 3
23415d78793163c399ec376bed6c72cc86d885e3 4
1796fa2ddd8ab6e2551d40b1b1a63cd954837b19 2
5af049cac0c976c586d955607fa459aacb778d3c 11
248bdb8248d80ac57d8b485ef73e758103a0c312 6
1fb24143dc38d0b00f7e7b13b23e6619cc216f9b 3
f49fb25b6fbffcc7a68b28824ed3856ffa9d6fdd 4
6664bd272c43bcdf00f9ef9ce6f2d73af82036b1 29
d6c79c0f626afd12506b6a5a672cdec84683c3ca 91
95da39292ea777ec3ff99be2bb23d46f704f683a 18
8e20f520565dc52f5599eafd54b603043bfecbaf 3
70986438ca98df55899e293a72931fc12bb737d9 11
469dcc78a7610916ffa29e2cefc21f80430df8c0 1
b5e9885854a0d594451800b9127eb50afb645433 1
912e94cafbc1f7074c39dbbd286a487c7ebe7ace 15
503a3b0d79d395ae5c05fee40cd4de2b927b7808 1
3e06324ab77f9b9f7dbfe60b41324bcea06f7824 1
6c942aec322e039d2c6fc82c4d5c1a63cf6fb244 23
764c97d22e5a71fbfd6e545e6db34b277629da0a 1
4eec09ae1d6eb5cecfa82e222f0e7d085e96f0ba 9
44e2ed65cd904fc03aecd3b0763856009294bdec 27
000826663788e16d0670edf5b8967f82b9ca551e 1
f5a10efbbdffec756bc055710ebf6b8169e9dbca 9
30a17cfdc3e58d7b0bc9723f86098c2a06a77c23 1
fdc9cd5ea91f5ae1d7e5991abadd1b3f989626f7 4
31cbeb4f3c141295d0b0703ccff2b2ffbee780f4 4
b77d9de8e3e2894fc6120c95a8e7766c38912d49 1
796e723caa0a1f75bb7b48b2454bea633fbf8e4e 35
6aa1fb428b0b6de82ca6288863ce7571b0563017 8
73e8fa8187a58a3ad4c96e6d2f010f8d77d723cb 4
13bda470bfa1fe989ce80d616fb096af1b937146 46
ac837502e0a755850e80bb9feea2071707b5446d 4
3bcf273c37bc31e1f13986b02977cadbcd2b5a76 6
7b94e3de5c8eab7e25c8b3be0e822ae6d4175bf0 6
96fd024b563859eee75b68b071cb736026c47ea1 1
b5573b70809bed76a0397bb5bb196b6b2144d3d4 5
356a069f8cbbad2a368fdbc6ceee4e94200e7140 36
5261a76c3014edc93f568ac76e8012d59dc2c831 9
fb7e47081b37842a814e9f35013b9b12a33b3fc3 25
26a9910d4df6899107d78f77795f4aba2eadde12 43
695ae54ef17fc658734119b5378b19ff754a9951 1
52e61a55e8ffcaab2586ea8fec28e4b01336cd30 22
96635b8788e3d089450c2791dd2f11100244d9e1 2
8a9c52df0ef4c0667a3a54bd4c6387c149577c2e 4
a5aa7cf7d61162947504060c9d3b6d4db6c073cf 5
79b7c3e8f1d725460212c659524b9bbf5d8a1461 6
c9e0f1a3a519bdab2d71b48635a9cc7df3cff3fa 3
a423117429dc71bf3068eeae38c6443672beda7f 18
7c6809f47fde700f345ded8faaff468dc2d53c08 9
077d4657cce12a38d4f34266fc62c190b28235a9 21
be06ab8bfe4991ce64d4dae0655833b060362cda 2
23cee0d142da2296c7a1dad7129da784ad9eb3f7 10
b4a19d903c5ec7e5ddad0776e8f611338b58be08 7
58723f03198f62f079cd242f7110a94713a5a90b 8
c1fb11d4e5280cda98c84a910545703b15b1cf67 2
24466485d2dfb58818ac3abf222558a230cbf4cb 7
9218455d51cd94b21b4536af793dd4c4c6820bf7 8
dee8a47af11dd88139f4d46a1ebee7fc613e367e 22
003f66a2e928691100fbe719d7253b5213e99698 14
d8da2f699a89857292e5e5b92945b2fe3c0a039a 18
303f74183714223503216efa037373bfb04bfe1a 14
734ab5187c068599352e5fdc7374c1334d484fef 10
54917b88aab026dabb4541276ed875117c1e1faa 36
c8657376d5706cb7cf9e357a152d1263d71fa82d 3
a68ae0886c1c6274943e6f99d70816d162273d9c 1
81821e83c425202b86c27d6be9c9ebe453e6d507 2
4abb65c56382cdd4ff453ddceb70b5944e6e0b38 36
71980abb3edfbdd988b4b4714c508e4db86787f4 2
9eab1418bf073556414f8654a8b66d65d784ed71 38
4a678cd73cdc5f0330da0b57d42f7fb0c564d73c 34
02fc1f509a670de3632417bbf33168989bfcf872 13
86abf33f863fee1db3ba7dd8ee3e9910f105f57d 3
97402a3401c6cc2d45d395c0d9d636f483b5571c 68
496ee866a46f783d145b649a688df57cbf79490e 24
5f7fddf537e551109ffd6241a00c87a2b3521523 68
309edadfd8a7169e99571d36ec31cacfaabb2fe1 7
7ffc23078cc11ce7502c375242b66d6a745ac9a1 6
a64ef43fc5d2a019d5cebd17a3c7ecb3341e5dfa 1
ab51452ac565d286b7bbd5a13767253c317bb29f 2
b5fb9c92dfb1380b8a8b0b53aea3e7f7627ee03c 19
e7a0111ce26bbce9c81f471ff925653fe0ead70d 5
7f6173aa593b07856c1ca73ffaf87ff10ea15d4c 14
9d8bb069f68e2194db742981972c8930381b62c2 3
d6ccf5b0fa4e0d62eac42425a593b870af1247bd 17
d494698a44291098aff33bd77b1ea501fe38be82 1
a49240ade1974b948b20cf2c45d9129f04122735 26
3c7c3b78065f1fc85f655bb60b3dad4ed33854a0 6
82a70910d902ffa5c63d68f78481da18aa580a94 1
2cd3988479ae1195dcd38be325d2be1ea7d780e5 4
b1068dc55c95d1000e07b71d3a9d9a2fd26bfff9 1
44e64ced4b33fd4b4c52fa6a587b9552fae41068 1
a0eea1357f0a0f4faea1245197f20ceee5ca3a5a 1
c7f5669a59fd42f887e02664e2709b7522a0302d 13
7b47d564b120c92855e9d64536a6c17dc742a4c4 1
e01ccf14711bfcb6b0c2fb5ec4bf541e8e78b721 21
93346b959c96b3e90e4f3f3b015f7049ed4624ed 2
39d30b21b3a632f158274c6937c13499cd0758f3 21
72e10d3ca80ae76af8920091736882a6dc0a5036 3
8d783ef4a517cfa7d6dbe7d1a13113d72489f485 8
811b0efc7f90a75b2913f8ecea0011b2434cd4ff 32
688854ba468c53884b74952f4daf938a99c44e8c 8
185a219148564ff905fc8d5d721115313d431c9f 1
1827bfd929d49e0f397b425e8d681c18a3518196 1
23e6e92b774e1e3910acc6a903293972bc562500 1
298cc4459cf76298f4b790a903fbdb6e6d20887d 2
6384edfffe7f8a2850d2bcde9a16a8e780734ebe 5
535ad1c6a96d338518ad5a9fd4142640cda1b931 1
0030e51f286ed52ad4c2c44857c4a28525c83f93 1
dbe8a972fadaed5d2b88f4dfa44328fa323b59a2 1
15c6048229bd16c4bfdd80b23f37357a58226d20 1
e1bf14b4d5b7aecf4611fd400417359424121544 3
53e940c3a1eafc32996135025655d3c91d0dcf5e 1

COMMIT - #Redundant fragments
a8ec4efa178afdbc7844e94d08ab38b811c7409a 3
04f4f3197084ad9ad7c050ce1a40d6f4421662f4 2
8076b782f8c9ac1df6569bbfa479db2da9e6cbcf 16
9af2e559040ea3bc3db5c5d39b2c4a27098d5a76 4
591fcae09c6470a03ade7d608773f8f633409bc2 1
58c50f297ca8e97e76fd3851d9eef13bd0cf73e2 1
f7e1007ff23c57400a6b81361def3da5906cfb77 1
0f8075aba2fc1bba1b0c145e28bb99b5da31928f 2
4e8768dd8ffe28efea98454338f79ee40d8d3ebe 33
9c83dfacb901788211a479dd275f00f6cbc8f00f 1
8c1784e4b026417ed381ac5f0a7e2dda9084d7b0 24
a24fe64ac4c88a0bc449df76c627405faa100b6b 1
5d0898b619950ecadbb2365d055ec20706352049 19
3b5085dec3f1fd578c5109114bd02370bea48fda 62
f26e25b88affec8717d8edee8df35fe771d44033 1
ece77fa477a6d322bb5b37c7e2367f4c4dfbf9f3 1
23ab51791a15063027d70ec2894927f14ac9868c 1
a7d3b25c9224f0d9f8998d01ed9b28cbf3860105 1
2d1e224c4e596521345d0af05b8f0997c18ecd50 6
b4e915892bef6d4885cbde7db91476a0a9138c4f 15
2286815454cfdf9480f954adb31439b26d25710f 37
10b674dbba2a8ceadb65dfc8e8033072f41fc2aa 2
071887a1353d6e34de306e93ef0a9818cf75fdea 17
52b67dfe70a717223859a20d389302303e22c681 1
22a6c6857eaef07a5d54fecfaea8db7c66f65de7 12
ee235bc8c5cf5d4345a690f1bd7e3fd1967ef8ea 81
85c570ea92f0ee7d17573966dd7f94f4c3b0b61a 12
0174b15e97908a4a68625cb029a07e8f7d593afc 12
2bb6d5de002052680d443065e1c26f59be212e4b 2
1350d0562466adbea1a9f8408084acdd005bfc13 5
a4c68872a91681139d404825c2bb04bd5ba804dd 43
0c5906ab0068de4852dc593ebe93356aeea639ca 60
53e85db0bec2e03bf93afc73dced9b4a0b231644 31
a6368e40e787e7a23c9f1e58d6a47bf9fa2d0a2c 27
fc7d4be813c4c89963bb90cd884efc849f334c31 20
833a511d59e2cc5314283d5ce27ff6fd6514b459 1
f94a70c6572e98cddd45d741c83bb7c410b3d109 4
6b3b9ebab7ffe91bc231ab43521a6844ad030f92 1
f8a42db55bdb365a111ca0ab2175d804c55002af 2
1e2c9d6451e587981d7be7a1a01dd5f3a722ca4d 13
81ef67251efba98fd6bb1065e9ab97c102dbcc24 5
2b56dbb49ba6595e54baa0285b76ddaae35f0c33 20
9a5dfd996ab7007994fcf60752441835dbdbb5d0 10
f06b01dcd0b9b0be4f0bd62eaf00b5cc3b0f8a65 21
3a791ec79fff66aebc332fe4e4cbf626e39bd3d3 65
4892e000aa5b890795b5082f636d6623b6f3820d 8
23415d78793163c399ec376bed6c72cc86d885e3 13
1796fa2ddd8ab6e2551d40b1b1a63cd954837b19 8
4d1d0bb9ee6926b5a85ebc2ad077eb31f94e1181 20
2a6d6365c593149da094d7512028a2d008ea6cff 3
44fabd25eb7d8c5291094b033007c32b7a1b8da2 56
0fa19baf003c5808831c59f8a839cc871586f30e 36
840b02e455b1da9741ea02160160acd6d63865d2 18
42beed3ad166a9cceefc59f6c79a16844cae0d02 22
478900d7d7af563a3b75b6ca9d7d44e37e2aff5b 32
5af049cac0c976c586d955607fa459aacb778d3c 35
09fcafc04e07b3481ef60159de2d6ae3464b98ac 10
7ceaea00ee1af6168d737b785460a803d6f3c50c 45
b067fc9b47471e5b3561b545cb63ea1ec892922d 10
248bdb8248d80ac57d8b485ef73e758103a0c312 37
18299dc8f8aaae0e64345795b2884eb7f42ad460 17
1fb24143dc38d0b00f7e7b13b23e6619cc216f9b 8
752727de89a6bab731f49597c7ec3858ebb3e0a3 26
54af3dfcf6f61839cb2d531a28fc0395cdcdb790 21
6ff2381af213bf699e62244315debec66b373d81 11
d61e2885bfae9add429f42d9ce0d9bc8c3ef72b0 83
217bb1bf62aafc466cb5ee794983e589513650fb 1
65ff7563cc41bc7158d05e69ea0e1ec7bc0f6bd5 19
f49fb25b6fbffcc7a68b28824ed3856ffa9d6fdd 10
0c8452532da8f8e9d5ccc737f3cc7e95f65df160 26
8c61443793e4c2e90a4056ee528c3880febb53d2 1
d8b6eb74e0e3466d66c9ff75e55f087c09a959b1 26
29f117914afa33c2538479c785f349daa787bf60 5
a9815c0f1419e20b6282c3944195083bb38deaa9 11
7a3e99635d7ffcc4d730f27835eeaeb082003199 57
9a789a40295a91844e4e16afee93d5ff7218951a 12
b0b34427e9e644868f2b63d40d0556c35e818a63 11
3dd6b9fca5ccbd02a4d1cb5c5b3c921e369662a0 13
1c1a6f8020c615c9d723f79a8405e57f1c66ea1e 4
d6662fcc06ec7b07c696eb703c47d3731e4e11c7 8
d9c81356e3a2fbb165c71b32d63d0cc39a1bd861 50
6664bd272c43bcdf00f9ef9ce6f2d73af82036b1 56
d6c79c0f626afd12506b6a5a672cdec84683c3ca 140
95da39292ea777ec3ff99be2bb23d46f704f683a 9
8e20f520565dc52f5599eafd54b603043bfecbaf 2
70986438ca98df55899e293a72931fc12bb737d9 41
469dcc78a7610916ffa29e2cefc21f80430df8c0 1
b5e9885854a0d594451800b9127eb50afb645433 1
912e94cafbc1f7074c39dbbd286a487c7ebe7ace 25
fd1111ed097e0db6602c2f388d41c7ad817c7f9f 5
503a3b0d79d395ae5c05fee40cd4de2b927b7808 1
ac7a1f1b2cb3ed60f87cc081fe61017f8bb8e93e 5
3e06324ab77f9b9f7dbfe60b41324bcea06f7824 1
6c942aec322e039d2c6fc82c4d5c1a63cf6fb244 74
c7874453182cde8e7b38cf3ce356d16d3d1dcde8 24
764c97d22e5a71fbfd6e545e6db34b277629da0a 1
4eec09ae1d6eb5cecfa82e222f0e7d085e96f0ba 24
44e2ed65cd904fc03aecd3b0763856009294bdec 65
000826663788e16d0670edf5b8967f82b9ca551e 1
f5a10efbbdffec756bc055710ebf6b8169e9dbca 37
30a17cfdc3e58d7b0bc9723f86098c2a06a77c23 1
fdc9cd5ea91f5ae1d7e5991abadd1b3f989626f7 2
31cbeb4f3c141295d0b0703ccff2b2ffbee780f4 1
b77d9de8e3e2894fc6120c95a8e7766c38912d49 1
796e723caa0a1f75bb7b48b2454bea633fbf8e4e 67
6aa1fb428b0b6de82ca6288863ce7571b0563017 34
73e8fa8187a58a3ad4c96e6d2f010f8d77d723cb 1
13bda470bfa1fe989ce80d616fb096af1b937146 59
ac837502e0a755850e80bb9feea2071707b5446d 1
3bcf273c37bc31e1f13986b02977cadbcd2b5a76 27
198df01b7b288e57e222a33c74f8ff98bf518d93 10
7b94e3de5c8eab7e25c8b3be0e822ae6d4175bf0 10
b3ee106f9f95e1f4093adb505e13a163df77f341 12
96fd024b563859eee75b68b071cb736026c47ea1 1
b5573b70809bed76a0397bb5bb196b6b2144d3d4 12
356a069f8cbbad2a368fdbc6ceee4e94200e7140 82
5261a76c3014edc93f568ac76e8012d59dc2c831 32
fb7e47081b37842a814e9f35013b9b12a33b3fc3 72
26a9910d4df6899107d78f77795f4aba2eadde12 80
695ae54ef17fc658734119b5378b19ff754a9951 1
52e61a55e8ffcaab2586ea8fec28e4b01336cd30 30
fd925dc6b23c4fa68de2eab06dc162c4f06ff224 3
7dd6711cb9e552cee8091893d4085fdc3f9996b0 27
96635b8788e3d089450c2791dd2f11100244d9e1 3
8a9c52df0ef4c0667a3a54bd4c6387c149577c2e 27
a5aa7cf7d61162947504060c9d3b6d4db6c073cf 34
79b7c3e8f1d725460212c659524b9bbf5d8a1461 7
a01928138beb41a189dc1fa43f92942b39393cbb 27
c9e0f1a3a519bdab2d71b48635a9cc7df3cff3fa 4
a423117429dc71bf3068eeae38c6443672beda7f 42
7c6809f47fde700f345ded8faaff468dc2d53c08 27
077d4657cce12a38d4f34266fc62c190b28235a9 58
e9e9b31a483fc562af4ebf5c59e7c89a8ef83459 27
be06ab8bfe4991ce64d4dae0655833b060362cda 1
fea583afc60dfdd67dec3349f0e0203d6cb3a69f 9
573ae79e0a1802e1875203d0f30ba3f41afadbc6 29
23cee0d142da2296c7a1dad7129da784ad9eb3f7 38
b4a19d903c5ec7e5ddad0776e8f611338b58be08 27
58723f03198f62f079cd242f7110a94713a5a90b 29
c1fb11d4e5280cda98c84a910545703b15b1cf67 1
24466485d2dfb58818ac3abf222558a230cbf4cb 9
9218455d51cd94b21b4536af793dd4c4c6820bf7 18
dee8a47af11dd88139f4d46a1ebee7fc613e367e 54
003f66a2e928691100fbe719d7253b5213e99698 38
d8da2f699a89857292e5e5b92945b2fe3c0a039a 50
303f74183714223503216efa037373bfb04bfe1a 4
734ab5187c068599352e5fdc7374c1334d484fef 4
54917b88aab026dabb4541276ed875117c1e1faa 47
c8657376d5706cb7cf9e357a152d1263d71fa82d 29
99a84a542f2ac532a8425fa0a77884902b1c01b0 8
4e2455b1f142bdf8f07383082638718695e51224 102
b0b1c80075abf53597839e6bb430804b17d5c24a 7
cc24890c002286ca583518c471b16d143a69a62a 38
df85817595e97082eaf8d6c95e2c269b86afff20 2
a68ae0886c1c6274943e6f99d70816d162273d9c 3
81821e83c425202b86c27d6be9c9ebe453e6d507 10
4abb65c56382cdd4ff453ddceb70b5944e6e0b38 80
71980abb3edfbdd988b4b4714c508e4db86787f4 2
9eab1418bf073556414f8654a8b66d65d784ed71 85
4a678cd73cdc5f0330da0b57d42f7fb0c564d73c 79
f8ee06baeb1ffa935c14c80aef5c5e6d28faefbd 8
7cd277620b4c888ae4101bb3f4768af83b85313a 44
6589127231db19458b696785bab3b839f9bde90f 35
c503e40d9ec79ba76b69dd31d7dd32648fa13cf2 10
66cf6859fa74021320c9b0d5e0a6ffc5c86b770f 1
b33b4b090c224c14415d0ffb68a078a097aeaf71 31
02fc1f509a670de3632417bbf33168989bfcf872 30
86abf33f863fee1db3ba7dd8ee3e9910f105f57d 2
54b657ce3d7042fc0adc13130400322b5dd70779 18
97402a3401c6cc2d45d395c0d9d636f483b5571c 70
1d86784cd452e8d9e30d812255cadb75ef8dae15 13
496ee866a46f783d145b649a688df57cbf79490e 64
5f7fddf537e551109ffd6241a00c87a2b3521523 70
309edadfd8a7169e99571d36ec31cacfaabb2fe1 18
7ffc23078cc11ce7502c375242b66d6a745ac9a1 13
a64ef43fc5d2a019d5cebd17a3c7ecb3341e5dfa 1
ab51452ac565d286b7bbd5a13767253c317bb29f 12
b5fb9c92dfb1380b8a8b0b53aea3e7f7627ee03c 22
0b2483896d93e5a26cf433b52c463e9aff9ea022 7
28ef5cb783d9e4b8239f7984696a9c5080c126a7 7
ab2395c8c07077bed6aa5b673bf05197627bad3f 4
4041354a3a7629b74970e0624b7564736c20e1e3 7
5f25ca318bc2b35ecf8526c08a1e3b3e17d375da 5
e7a0111ce26bbce9c81f471ff925653fe0ead70d 22
7f6173aa593b07856c1ca73ffaf87ff10ea15d4c 20
766343797294634c86186664c519d65d7d984c96 22
9d8bb069f68e2194db742981972c8930381b62c2 10
d6ccf5b0fa4e0d62eac42425a593b870af1247bd 37
d494698a44291098aff33bd77b1ea501fe38be82 4
a49240ade1974b948b20cf2c45d9129f04122735 61
4610330ca7fca16df7da1b7d09ea065d071cf9b8 6
3c7c3b78065f1fc85f655bb60b3dad4ed33854a0 28
00301d674fcfd8c94f67cba675a4644597f523aa 14
96a6ba68d16d00940d58151be5cb2ab642f6d51d 3
dfd0bba58bfdacfd8802ee07c8f83ee794a51aba 7
5eee07b3e21f196b8cb937fb88eb8cf4be694f76 5
a4c5380ffe636edc0acbab144080adbc709d668c 15
82a70910d902ffa5c63d68f78481da18aa580a94 7
8782efa08abf5d47afdc16740678661443706740 17
0333e7efdc9ecf81df4212f82c3a59c6ff0fab19 35
d6f71260512973e70417b999f1efa9757659b1e1 6
eef732f8e686d719c109a1ca66aed0dc8bba8808 1
b4fc7138cbf62c471ab5526d86a89757acffd755 12
a19e98f00e972333edd2bbbde8270612aa588c42 8
da545cc5f425dd1392ffaa7d2cb8be3b2ef8a179 26
5c4d8c62e341acb7d46eff730a19b2ce041c2dfe 3
e55796904be214741701070b723acd895b25e995 13
5d9e0022d3f6db1367d530579de6332b9c8802e3 6
df70c1087de9d3827656ede187371bbe29d2a974 3
143c33485395a64b795da13ca1e74897666d5df4 1
1cff207ea15039aea63ea63254a056d516ca690b 2
eb307fa6f37ac8ec695b2f556e543969503418f5 7
2cd3988479ae1195dcd38be325d2be1ea7d780e5 12
5f2ecdacca8db679081ff6dede52cb0d8970d730 6
0b62513fa20ea3975a580e5b89dad265f54d6112 2
d28f98205384c7c987b79b2b088507ab8b029c6d 2
b1068dc55c95d1000e07b71d3a9d9a2fd26bfff9 7
d9cccce5034bb9876221d271914471b205220061 23
44e64ced4b33fd4b4c52fa6a587b9552fae41068 1
6d551f321d7bdcdafc2acbe0b5a3988bdc91b10f 1
4f1dbfc8619f5827a919106d14d42777b838638a 7
8b9dfefada78a74b6b1fa34ff0bab298267f8210 4
a0eea1357f0a0f4faea1245197f20ceee5ca3a5a 4
f3ae021fb078fc3b1576febbce1b02e249329516 4
a1b61ff5fa353842f57a4b9773c336f164f24f00 7
c7f5669a59fd42f887e02664e2709b7522a0302d 35
c2bdb1a2d89a61edc6c5cf7dd2a07b3f2119eea2 10
7b47d564b120c92855e9d64536a6c17dc742a4c4 1
e01ccf14711bfcb6b0c2fb5ec4bf541e8e78b721 38
fa80b68e34e82129367f6075ddfef4392cdc4d86 7
93346b959c96b3e90e4f3f3b015f7049ed4624ed 2
39d30b21b3a632f158274c6937c13499cd0758f3 38
3637f328439c9c8ab2d165cbf328fb131f8716a2 1
72e10d3ca80ae76af8920091736882a6dc0a5036 3
8d783ef4a517cfa7d6dbe7d1a13113d72489f485 27
811b0efc7f90a75b2913f8ecea0011b2434cd4ff 47
2b4ea7d30d22341fb488df73901277a5194fd424 4
347c60e3dc0120029e2a3ad566b1ad2b0aac411f 14
24da9244b61f2dce4664a602e73ad060a4f68ce7 11
17f7dfc72624253461022acff1d3aa6b9c4056cf 155
80d4bc3616b1024b627a968b18d03b86516de69b 1
688854ba468c53884b74952f4daf938a99c44e8c 30
aff46c491d590ff2fcc43d0eaa0049593f6169b4 1
32330b13f2ded8603665264f8400ddf1f6dd969a 7
14f9868962aee5bcba8a7595287be1d5fed54b7d 22
2e699926f4e8c79407338e5973ec198bd3844212 1
67e43ab827da24baa6477e33e4e883a36dfcf645 13
45aed05bb9e75bc8228af8ffbb44d39626d02dd5 3
ee037247a9a03d8ac2e584d52a544b9733f2c016 109
185a219148564ff905fc8d5d721115313d431c9f 11
ab9caa3650a262ef4399cfd7f0d7fdc366d6e327 7
303d2e64aa53a6563e57ecb3d1a6e84bdcfb28c3 19
2568203bdebd5a4a4ad9aa74b1d8369d22f668a3 2
56b5463c6adf89a03f489f3525a9a343bc43d960 1
1827bfd929d49e0f397b425e8d681c18a3518196 3
4604008957de5f2dca07666c5c52092983b08853 9
23e6e92b774e1e3910acc6a903293972bc562500 3
390d5e365ab47c770c36cbee45f282d5a0d62f26 9
e8f86f3e2660804adca60d739e5794862ce01c02 2
dde798f89fbd1295bf7345ccfab17242ae9d01c0 1
7898dd861deabd8afca60614f4bb546828c28d70 1
30f2b16525dabb477373be9ed3e76bb98b200806 42
dc44abf520611a8722e75ba1d32df6a28183e4e3 2
bb91daf8e0939d787ffb5a3eda05c2d626cd9851 2
3791a960b08c0f14e2d6cb1c72b243f97d0a28e6 1
467dd0725eb20d018339ae843e895f9cabcfb988 21
cc87f655c2fe666d0f4e3322f37c570449ded9ff 3
c87b2e11d9e239cc7fae658b196b9a744b208ac3 1
c4e3854ae71d7dd8b624a977712bee3e29d5bcdd 13
27f927c42f251399899b39de89936f02529dc50e 5
3a02b8d7fa7ef1b79c4fd4644b5383899b82ae9f 20
298cc4459cf76298f4b790a903fbdb6e6d20887d 1
6384edfffe7f8a2850d2bcde9a16a8e780734ebe 16
736c9226f2d963b439f38e4ad6074c4ed1dac5df 1
e81be4536f5156b105fff4b7328fc3e4e7a24931 3
535ad1c6a96d338518ad5a9fd4142640cda1b931 1
236883d575f709a6311cec6b2fa34aeabc3835c6 8
f5c7fe43447b008b4db13e031b7c0c3551ae9ddd 2
0030e51f286ed52ad4c2c44857c4a28525c83f93 5
26d34db6c2c12b0fee9ae3d307b3f18fe0ee62da 20
45524a9ddcd387fde3a20740e9c9c90ed71fec3a 1
dbe8a972fadaed5d2b88f4dfa44328fa323b59a2 9
2ade5fd3aad123d6507b59ed5d48c8f030314f00 29
278d76f285c4729700276e875ff8d69ea2ecfbc2 19
15c6048229bd16c4bfdd80b23f37357a58226d20 3
38d91308c302eb4f0b5ed24e064ee56395f9fc01 9
74cab2dc9b8c32482d2c86a66a0dd9318930b4bc 1
40b8761099da900ad219fe9b06060cda1e212f83 2
93d773835c0c6f70bc89bbf5e4d273c289423a64 91
6faa0075887c8b51a46b347dab54bbd37ece362d 8
b0c0aafae2f3008c27ba06babd2b2dec15af53e8 12
0ce71108da6f487d76c0f4dc46cde41e11dd3daa 31
c85a267605d4484121afeccef972a7266481ee7c 4
cfaceb6d34390d999ff238d53fcb73898b32f98f 12
4c1758d3b8003d4b3589fe80af16f590c2e6abe8 2
fa5df4e972db64249046b789b3dc730657f11c58 1
ede492496de0f3c0872216ac9c9b88a00fdef09e 20
68b4e393388627201265eb3924f3628b1c27e6ff 9
e1bf14b4d5b7aecf4611fd400417359424121544 3
fc2d506725525f81ba61c1cd1bd830d7cf246b36 4
810536929044271a608e019255e87c756235bb97 1
53e940c3a1eafc32996135025655d3c91d0dcf5e 1
9cf5b64d8dbbb064fed3d4ee88eced2b6a7d50fe 22
1273a35689bdcb3304f6634cdc3889c61f9b1b1f 39
e02beea07c6d3798e2db532d6c7cebe6cc21f30d 10
df88873d5013e400489550cf15e9b51dc438eb4b 10
d9054149988487750679e35a349df7e0e2df5870 15
063004dca462777a969ab1e0002dd3053014381c 12
9ac4cc842d70dc7ef266f4d677d90d9b177e4be6 7
bb13b318cd79a68470e93c79635090c7bb565475 1

COMMIT - #Redundant fragments
8076b782f8c9ac1df6569bbfa479db2da9e6cbcf 4
591fcae09c6470a03ade7d608773f8f633409bc2 1
58c50f297ca8e97e76fd3851d9eef13bd0cf73e2 1
9c83dfacb901788211a479dd275f00f6cbc8f00f 1
a24fe64ac4c88a0bc449df76c627405faa100b6b 1
23ab51791a15063027d70ec2894927f14ac9868c 1
22a6c6857eaef07a5d54fecfaea8db7c66f65de7 6
35f5f3a78cdc49954e9542dafeea86f13705fdf8 2
2bb6d5de002052680d443065e1c26f59be212e4b 1
2b56dbb49ba6595e54baa0285b76ddaae35f0c33 3
248bdb8248d80ac57d8b485ef73e758103a0c312 6
1fb24143dc38d0b00f7e7b13b23e6619cc216f9b 3
f49fb25b6fbffcc7a68b28824ed3856ffa9d6fdd 4
6664bd272c43bcdf00f9ef9ce6f2d73af82036b1 29
d6c79c0f626afd12506b6a5a672cdec84683c3ca 92
95da39292ea777ec3ff99be2bb23d46f704f683a 18
8e20f520565dc52f5599eafd54b603043bfecbaf 3
70986438ca98df55899e293a72931fc12bb737d9 11
469dcc78a7610916ffa29e2cefc21f80430df8c0 1
b5e9885854a0d594451800b9127eb50afb645433 1
912e94cafbc1f7074c39dbbd286a487c7ebe7ace 15
503a3b0d79d395ae5c05fee40cd4de2b927b7808 1
3e06324ab77f9b9f7dbfe60b41324bcea06f7824 1
6c942aec322e039d2c6fc82c4d5c1a63cf6fb244 23
764c97d22e5a71fbfd6e545e6db34b277629da0a 1
4eec09ae1d6eb5cecfa82e222f0e7d085e96f0ba 9
44e2ed65cd904fc03aecd3b0763856009294bdec 28
000826663788e16d0670edf5b8967f82b9ca551e 1
f5a10efbbdffec756bc055710ebf6b8169e9dbca 9
30a17cfdc3e58d7b0bc9723f86098c2a06a77c23 1
fdc9cd5ea91f5ae1d7e5991abadd1b3f989626f7 4
31cbeb4f3c141295d0b0703ccff2b2ffbee780f4 4
b77d9de8e3e2894fc6120c95a8e7766c38912d49 1
796e723caa0a1f75bb7b48b2454bea633fbf8e4e 35
6aa1fb428b0b6de82ca6288863ce7571b0563017 8
73e8fa8187a58a3ad4c96e6d2f010f8d77d723cb 4
13bda470bfa1fe989ce80d616fb096af1b937146 54
ac837502e0a755850e80bb9feea2071707b5446d 4
3bcf273c37bc31e1f13986b02977cadbcd2b5a76 6
7b94e3de5c8eab7e25c8b3be0e822ae6d4175bf0 8
96fd024b563859eee75b68b071cb736026c47ea1 1
b5573b70809bed76a0397bb5bb196b6b2144d3d4 5
356a069f8cbbad2a368fdbc6ceee4e94200e7140 36
5261a76c3014edc93f568ac76e8012d59dc2c831 9
fb7e47081b37842a814e9f35013b9b12a33b3fc3 25
26a9910d4df6899107d78f77795f4aba2eadde12 43
695ae54ef17fc658734119b5378b19ff754a9951 1
52e61a55e8ffcaab2586ea8fec28e4b01336cd30 23
96635b8788e3d089450c2791dd2f11100244d9e1 2
8a9c52df0ef4c0667a3a54bd4c6387c149577c2e 4
a5aa7cf7d61162947504060c9d3b6d4db6c073cf 5
79b7c3e8f1d725460212c659524b9bbf5d8a1461 6
c9e0f1a3a519bdab2d71b48635a9cc7df3cff3fa 3
a423117429dc71bf3068eeae38c6443672beda7f 18
7c6809f47fde700f345ded8faaff468dc2d53c08 9
077d4657cce12a38d4f34266fc62c190b28235a9 23
be06ab8bfe4991ce64d4dae0655833b060362cda 2
23cee0d142da2296c7a1dad7129da784ad9eb3f7 10
b4a19d903c5ec7e5ddad0776e8f611338b58be08 7
58723f03198f62f079cd242f7110a94713a5a90b 8
c1fb11d4e5280cda98c84a910545703b15b1cf67 2
24466485d2dfb58818ac3abf222558a230cbf4cb 7
9218455d51cd94b21b4536af793dd4c4c6820bf7 8
dee8a47af11dd88139f4d46a1ebee7fc613e367e 22
003f66a2e928691100fbe719d7253b5213e99698 16
d8da2f699a89857292e5e5b92945b2fe3c0a039a 18
303f74183714223503216efa037373bfb04bfe1a 14
734ab5187c068599352e5fdc7374c1334d484fef 11
54917b88aab026dabb4541276ed875117c1e1faa 37
c8657376d5706cb7cf9e357a152d1263d71fa82d 3
a68ae0886c1c6274943e6f99d70816d162273d9c 1
81821e83c425202b86c27d6be9c9ebe453e6d507 2
4abb65c56382cdd4ff453ddceb70b5944e6e0b38 38
71980abb3edfbdd988b4b4714c508e4db86787f4 2
9eab1418bf073556414f8654a8b66d65d784ed71 38
4a678cd73cdc5f0330da0b57d42f7fb0c564d73c 34
02fc1f509a670de3632417bbf33168989bfcf872 13
86abf33f863fee1db3ba7dd8ee3e9910f105f57d 3
97402a3401c6cc2d45d395c0d9d636f483b5571c 73
496ee866a46f783d145b649a688df57cbf79490e 24
5f7fddf537e551109ffd6241a00c87a2b3521523 73
309edadfd8a7169e99571d36ec31cacfaabb2fe1 7
7ffc23078cc11ce7502c375242b66d6a745ac9a1 6
a64ef43fc5d2a019d5cebd17a3c7ecb3341e5dfa 1
b5fb9c92dfb1380b8a8b0b53aea3e7f7627ee03c 19
e7a0111ce26bbce9c81f471ff925653fe0ead70d 5
7f6173aa593b07856c1ca73ffaf87ff10ea15d4c 15
9d8bb069f68e2194db742981972c8930381b62c2 3
d6ccf5b0fa4e0d62eac42425a593b870af1247bd 17
d494698a44291098aff33bd77b1ea501fe38be82 1
a49240ade1974b948b20cf2c45d9129f04122735 26
82a70910d902ffa5c63d68f78481da18aa580a94 1
2cd3988479ae1195dcd38be325d2be1ea7d780e5 4
b1068dc55c95d1000e07b71d3a9d9a2fd26bfff9 1
44e64ced4b33fd4b4c52fa6a587b9552fae41068 1
a0eea1357f0a0f4faea1245197f20ceee5ca3a5a 1
c7f5669a59fd42f887e02664e2709b7522a0302d 13
7b47d564b120c92855e9d64536a6c17dc742a4c4 1
e01ccf14711bfcb6b0c2fb5ec4bf541e8e78b721 21
93346b959c96b3e90e4f3f3b015f7049ed4624ed 2
39d30b21b3a632f158274c6937c13499cd0758f3 21
72e10d3ca80ae76af8920091736882a6dc0a5036 3
8d783ef4a517cfa7d6dbe7d1a13113d72489f485 8
811b0efc7f90a75b2913f8ecea0011b2434cd4ff 32
688854ba468c53884b74952f4daf938a99c44e8c 8
185a219148564ff905fc8d5d721115313d431c9f 1
1827bfd929d49e0f397b425e8d681c18a3518196 1
23e6e92b774e1e3910acc6a903293972bc562500 1
298cc4459cf76298f4b790a903fbdb6e6d20887d 2
6384edfffe7f8a2850d2bcde9a16a8e780734ebe 5
535ad1c6a96d338518ad5a9fd4142640cda1b931 1
0030e51f286ed52ad4c2c44857c4a28525c83f93 1
dbe8a972fadaed5d2b88f4dfa44328fa323b59a2 2
15c6048229bd16c4bfdd80b23f37357a58226d20 1
e1bf14b4d5b7aecf4611fd400417359424121544 3
53e940c3a1eafc32996135025655d3c91d0dcf5e 1

COMMIT - #Redundant fragments
a8ec4efa178afdbc7844e94d08ab38b811c7409a 3
04f4f3197084ad9ad7c050ce1a40d6f4421662f4 2
8076b782f8c9ac1df6569bbfa479db2da9e6cbcf 16
591fcae09c6470a03ade7d608773f8f633409bc2 1
58c50f297ca8e97e76fd3851d9eef13bd0cf73e2 1
f7e1007ff23c57400a6b81361def3da5906cfb77 2
0f8075aba2fc1bba1b0c145e28bb99b5da31928f 2
4e8768dd8ffe28efea98454338f79ee40d8d3ebe 33
9c83dfacb901788211a479dd275f00f6cbc8f00f 1
a24fe64ac4c88a0bc449df76c627405faa100b6b 1
3b5085dec3f1fd578c5109114bd02370bea48fda 121
f26e25b88affec8717d8edee8df35fe771d44033 1
23ab51791a15063027d70ec2894927f14ac9868c 1
a7d3b25c9224f0d9f8998d01ed9b28cbf3860105 1
2d1e224c4e596521345d0af05b8f0997c18ecd50 6
10b674dbba2a8ceadb65dfc8e8033072f41fc2aa 2
071887a1353d6e34de306e93ef0a9818cf75fdea 17
52b67dfe70a717223859a20d389302303e22c681 1
22a6c6857eaef07a5d54fecfaea8db7c66f65de7 12
0174b15e97908a4a68625cb029a07e8f7d593afc 12
2bb6d5de002052680d443065e1c26f59be212e4b 2
1350d0562466adbea1a9f8408084acdd005bfc13 5
833a511d59e2cc5314283d5ce27ff6fd6514b459 1
f94a70c6572e98cddd45d741c83bb7c410b3d109 4
6b3b9ebab7ffe91bc231ab43521a6844ad030f92 1
81ef67251efba98fd6bb1065e9ab97c102dbcc24 5
2b56dbb49ba6595e54baa0285b76ddaae35f0c33 26
9a5dfd996ab7007994fcf60752441835dbdbb5d0 14
4892e000aa5b890795b5082f636d6623b6f3820d 8
23415d78793163c399ec376bed6c72cc86d885e3 13
1796fa2ddd8ab6e2551d40b1b1a63cd954837b19 8
2a6d6365c593149da094d7512028a2d008ea6cff 3
09fcafc04e07b3481ef60159de2d6ae3464b98ac 10
b067fc9b47471e5b3561b545cb63ea1ec892922d 10
248bdb8248d80ac57d8b485ef73e758103a0c312 37
1fb24143dc38d0b00f7e7b13b23e6619cc216f9b 8
6ff2381af213bf699e62244315debec66b373d81 11
217bb1bf62aafc466cb5ee794983e589513650fb 1
65ff7563cc41bc7158d05e69ea0e1ec7bc0f6bd5 19
f49fb25b6fbffcc7a68b28824ed3856ffa9d6fdd 10
8c61443793e4c2e90a4056ee528c3880febb53d2 3
29f117914afa33c2538479c785f349daa787bf60 5
3dd6b9fca5ccbd02a4d1cb5c5b3c921e369662a0 13
d6662fcc06ec7b07c696eb703c47d3731e4e11c7 15
6664bd272c43bcdf00f9ef9ce6f2d73af82036b1 74
d6c79c0f626afd12506b6a5a672cdec84683c3ca 162
95da39292ea777ec3ff99be2bb23d46f704f683a 11
8e20f520565dc52f5599eafd54b603043bfecbaf 3
70986438ca98df55899e293a72931fc12bb737d9 53
469dcc78a7610916ffa29e2cefc21f80430df8c0 1
b5e9885854a0d594451800b9127eb50afb645433 1
912e94cafbc1f7074c39dbbd286a487c7ebe7ace 25
503a3b0d79d395ae5c05fee40cd4de2b927b7808 1
ac7a1f1b2cb3ed60f87cc081fe61017f8bb8e93e 5
3e06324ab77f9b9f7dbfe60b41324bcea06f7824 1
6c942aec322e039d2c6fc82c4d5c1a63cf6fb244 106
764c97d22e5a71fbfd6e545e6db34b277629da0a 1
4eec09ae1d6eb5cecfa82e222f0e7d085e96f0ba 24
44e2ed65cd904fc03aecd3b0763856009294bdec 97
000826663788e16d0670edf5b8967f82b9ca551e 1
f5a10efbbdffec756bc055710ebf6b8169e9dbca 37
30a17cfdc3e58d7b0bc9723f86098c2a06a77c23 1
fdc9cd5ea91f5ae1d7e5991abadd1b3f989626f7 2
31cbeb4f3c141295d0b0703ccff2b2ffbee780f4 2
b77d9de8e3e2894fc6120c95a8e7766c38912d49 1
796e723caa0a1f75bb7b48b2454bea633fbf8e4e 86
6aa1fb428b0b6de82ca6288863ce7571b0563017 34
73e8fa8187a58a3ad4c96e6d2f010f8d77d723cb 1
13bda470bfa1fe989ce80d616fb096af1b937146 108
ac837502e0a755850e80bb9feea2071707b5446d 1
3bcf273c37bc31e1f13986b02977cadbcd2b5a76 28
7b94e3de5c8eab7e25c8b3be0e822ae6d4175bf0 18
b3ee106f9f95e1f4093adb505e13a163df77f341 12
96fd024b563859eee75b68b071cb736026c47ea1 1
b5573b70809bed76a0397bb5bb196b6b2144d3d4 12
356a069f8cbbad2a368fdbc6ceee4e94200e7140 127
5261a76c3014edc93f568ac76e8012d59dc2c831 38
fb7e47081b37842a814e9f35013b9b12a33b3fc3 72
26a9910d4df6899107d78f77795f4aba2eadde12 80
695ae54ef17fc658734119b5378b19ff754a9951 1
52e61a55e8ffcaab2586ea8fec28e4b01336cd30 74
fd925dc6b23c4fa68de2eab06dc162c4f06ff224 3
96635b8788e3d089450c2791dd2f11100244d9e1 3
8a9c52df0ef4c0667a3a54bd4c6387c149577c2e 31
a5aa7cf7d61162947504060c9d3b6d4db6c073cf 34
79b7c3e8f1d725460212c659524b9bbf5d8a1461 7
c9e0f1a3a519bdab2d71b48635a9cc7df3cff3fa 4
a423117429dc71bf3068eeae38c6443672beda7f 42
7c6809f47fde700f345ded8faaff468dc2d53c08 27
077d4657cce12a38d4f34266fc62c190b28235a9 99
be06ab8bfe4991ce64d4dae0655833b060362cda 1
fea583afc60dfdd67dec3349f0e0203d6cb3a69f 9
23cee0d142da2296c7a1dad7129da784ad9eb3f7 38
b4a19d903c5ec7e5ddad0776e8f611338b58be08 34
58723f03198f62f079cd242f7110a94713a5a90b 30
c1fb11d4e5280cda98c84a910545703b15b1cf67 1
24466485d2dfb58818ac3abf222558a230cbf4cb 9
9218455d51cd94b21b4536af793dd4c4c6820bf7 20
dee8a47af11dd88139f4d46a1ebee7fc613e367e 54
003f66a2e928691100fbe719d7253b5213e99698 50
d8da2f699a89857292e5e5b92945b2fe3c0a039a 54
303f74183714223503216efa037373bfb04bfe1a 6
734ab5187c068599352e5fdc7374c1334d484fef 18
54917b88aab026dabb4541276ed875117c1e1faa 77
c8657376d5706cb7cf9e357a152d1263d71fa82d 40
df85817595e97082eaf8d6c95e2c269b86afff20 3
a68ae0886c1c6274943e6f99d70816d162273d9c 3
81821e83c425202b86c27d6be9c9ebe453e6d507 10
4abb65c56382cdd4ff453ddceb70b5944e6e0b38 120
71980abb3edfbdd988b4b4714c508e4db86787f4 2
9eab1418bf073556414f8654a8b66d65d784ed71 127
4a678cd73cdc5f0330da0b57d42f7fb0c564d73c 90
7cd277620b4c888ae4101bb3f4768af83b85313a 44
c503e40d9ec79ba76b69dd31d7dd32648fa13cf2 10
02fc1f509a670de3632417bbf33168989bfcf872 33
86abf33f863fee1db3ba7dd8ee3e9910f105f57d 2
54b657ce3d7042fc0adc13130400322b5dd70779 18
97402a3401c6cc2d45d395c0d9d636f483b5571c 108
496ee866a46f783d145b649a688df57cbf79490e 85
5f7fddf537e551109ffd6241a00c87a2b3521523 108
309edadfd8a7169e99571d36ec31cacfaabb2fe1 18
7ffc23078cc11ce7502c375242b66d6a745ac9a1 13
a64ef43fc5d2a019d5cebd17a3c7ecb3341e5dfa 1
b5fb9c92dfb1380b8a8b0b53aea3e7f7627ee03c 22
0b2483896d93e5a26cf433b52c463e9aff9ea022 7
28ef5cb783d9e4b8239f7984696a9c5080c126a7 7
ab2395c8c07077bed6aa5b673bf05197627bad3f 4
5f25ca318bc2b35ecf8526c08a1e3b3e17d375da 5
e7a0111ce26bbce9c81f471ff925653fe0ead70d 34
7f6173aa593b07856c1ca73ffaf87ff10ea15d4c 33
9d8bb069f68e2194db742981972c8930381b62c2 10
d6ccf5b0fa4e0d62eac42425a593b870af1247bd 44
d494698a44291098aff33bd77b1ea501fe38be82 4
a49240ade1974b948b20cf2c45d9129f04122735 73
4610330ca7fca16df7da1b7d09ea065d071cf9b8 12
96a6ba68d16d00940d58151be5cb2ab642f6d51d 3
dfd0bba58bfdacfd8802ee07c8f83ee794a51aba 7
5eee07b3e21f196b8cb937fb88eb8cf4be694f76 5
82a70910d902ffa5c63d68f78481da18aa580a94 7
8782efa08abf5d47afdc16740678661443706740 17
e55796904be214741701070b723acd895b25e995 13
2cd3988479ae1195dcd38be325d2be1ea7d780e5 12
0b62513fa20ea3975a580e5b89dad265f54d6112 2
d28f98205384c7c987b79b2b088507ab8b029c6d 2
b1068dc55c95d1000e07b71d3a9d9a2fd26bfff9 7
44e64ced4b33fd4b4c52fa6a587b9552fae41068 1
4f1dbfc8619f5827a919106d14d42777b838638a 15
8b9dfefada78a74b6b1fa34ff0bab298267f8210 5
a0eea1357f0a0f4faea1245197f20ceee5ca3a5a 4
f3ae021fb078fc3b1576febbce1b02e249329516 4
a1b61ff5fa353842f57a4b9773c336f164f24f00 7
c7f5669a59fd42f887e02664e2709b7522a0302d 43
7b47d564b120c92855e9d64536a6c17dc742a4c4 1
e01ccf14711bfcb6b0c2fb5ec4bf541e8e78b721 38
93346b959c96b3e90e4f3f3b015f7049ed4624ed 2
39d30b21b3a632f158274c6937c13499cd0758f3 38
3637f328439c9c8ab2d165cbf328fb131f8716a2 1
72e10d3ca80ae76af8920091736882a6dc0a5036 3
8d783ef4a517cfa7d6dbe7d1a13113d72489f485 27
811b0efc7f90a75b2913f8ecea0011b2434cd4ff 47
2b4ea7d30d22341fb488df73901277a5194fd424 4
24da9244b61f2dce4664a602e73ad060a4f68ce7 11
688854ba468c53884b74952f4daf938a99c44e8c 30
aff46c491d590ff2fcc43d0eaa0049593f6169b4 1
32330b13f2ded8603665264f8400ddf1f6dd969a 7
2e699926f4e8c79407338e5973ec198bd3844212 1
67e43ab827da24baa6477e33e4e883a36dfcf645 13
185a219148564ff905fc8d5d721115313d431c9f 11
303d2e64aa53a6563e57ecb3d1a6e84bdcfb28c3 19
2568203bdebd5a4a4ad9aa74b1d8369d22f668a3 2
56b5463c6adf89a03f489f3525a9a343bc43d960 1
1827bfd929d49e0f397b425e8d681c18a3518196 3
4604008957de5f2dca07666c5c52092983b08853 9
23e6e92b774e1e3910acc6a903293972bc562500 3
390d5e365ab47c770c36cbee45f282d5a0d62f26 9
e8f86f3e2660804adca60d739e5794862ce01c02 2
dde798f89fbd1295bf7345ccfab17242ae9d01c0 1
7898dd861deabd8afca60614f4bb546828c28d70 1
30f2b16525dabb477373be9ed3e76bb98b200806 164
dc44abf520611a8722e75ba1d32df6a28183e4e3 2
bb91daf8e0939d787ffb5a3eda05c2d626cd9851 2
3791a960b08c0f14e2d6cb1c72b243f97d0a28e6 1
467dd0725eb20d018339ae843e895f9cabcfb988 21
c87b2e11d9e239cc7fae658b196b9a744b208ac3 1
c4e3854ae71d7dd8b624a977712bee3e29d5bcdd 13
3a02b8d7fa7ef1b79c4fd4644b5383899b82ae9f 20
298cc4459cf76298f4b790a903fbdb6e6d20887d 1
6384edfffe7f8a2850d2bcde9a16a8e780734ebe 16
736c9226f2d963b439f38e4ad6074c4ed1dac5df 1
e81be4536f5156b105fff4b7328fc3e4e7a24931 3
535ad1c6a96d338518ad5a9fd4142640cda1b931 1
f5c7fe43447b008b4db13e031b7c0c3551ae9ddd 2
0030e51f286ed52ad4c2c44857c4a28525c83f93 5
26d34db6c2c12b0fee9ae3d307b3f18fe0ee62da 20
dbe8a972fadaed5d2b88f4dfa44328fa323b59a2 18
15c6048229bd16c4bfdd80b23f37357a58226d20 3
74cab2dc9b8c32482d2c86a66a0dd9318930b4bc 1
6faa0075887c8b51a46b347dab54bbd37ece362d 8
0ce71108da6f487d76c0f4dc46cde41e11dd3daa 40
4c1758d3b8003d4b3589fe80af16f590c2e6abe8 2
fa5df4e972db64249046b789b3dc730657f11c58 1
e1bf14b4d5b7aecf4611fd400417359424121544 3
fc2d506725525f81ba61c1cd1bd830d7cf246b36 4
53e940c3a1eafc32996135025655d3c91d0dcf5e 1
9cf5b64d8dbbb064fed3d4ee88eced2b6a7d50fe 22
e02beea07c6d3798e2db532d6c7cebe6cc21f30d 14
df88873d5013e400489550cf15e9b51dc438eb4b 10
063004dca462777a969ab1e0002dd3053014381c 12
9ac4cc842d70dc7ef266f4d677d90d9b177e4be6 7

COMMIT - #Redundant fragments
a54b0dbefd299b91fb52a6f7c4bf610bbaeaf7f3 1
4bea2aeb6d3740d312137592d95d13484a723a15 1
7f777a2d4760b7057854d6c345946697b1b1a4d4 2
4649eee6fc9a5efa1253be942d21a239b2a71227 9
ddbdfb346c8fb064c48905114373d4370f5a2d69 4
28110a72cd253e6850375dea73e5cc5ade394fd8 11
dedb00d84062aace09036aa60bc9e242304aca50 1
65636a12569fe17d3f4f7adc00adc75a59e29944 1
bda95ba0da88f49c7b20c23c52e1dda07dbc2019 1
ea93b0dc7e19e1b8c2fc66a6a55540d89b7fd444 1
cf34e38978bc04fdb1690753891a538a025f83e0 1
90ae9d5e2b3e1a929e1de4af193b6905c6254b8b 5
a798ef8a6fa9a7c1aae03c29606282043a77f90e 24
81a6806bf63582f3144bfe723a58fe4ece0a9802 29
1cda514e7460cb91e09d33b9c5ca5e28f10ea7ea 1
87293e40b7b708b7e020f1d15b7ee01f3a247851 29
81fa564f313fbf9ab7760e3107bcb06917370c62 1
045c3cee6ce6dfe5b027436c4ec0f240f1b8ae50 3
b33386f37ba8415446d6b74aac6b9b2b6af61b2b 42
6f96fd3be87f95249c30c461e3f96500cfd6f48a 11
845587e28fa6c3c38bcc0133b2d9ae6649fd1d47 1
fe4b30de5f80fb858792b088e72d28abf28c160e 1
bbcfd5659ee89014ba829c65e0799441e36f914a 1
2b9ba08592e554d1967b010057d9c7d8e854071e 9
02a03b82ed92948e45544c3304f8347edff4e4a5 2
6fbbe497d320043d27f6acbba59bada580201bad 1
5e213212a2e2f2dd824c72dc0ac4dcfd5be0c3ef 4
13660435d2c86ee143fa52acce8178879a773c16 1
4187dac813d06747314fd06cb4c10ec137ee9283 1
179f2e3590857144775b78be3107d399f10199d7 20
426bd217a15e3616d1bf364223ebd11e6a24db32 1
53fd4f2d60e8f4367bf565dbb14baccd268941f2 2
fe18e1c7cd9e42628827e1b2b9346a5974167730 1
aeca3bd94e87809fe58075c432e0bbec17216670 8
85320352bb468b5a859d5a568aeed47c1d7ce725 1
3545ce9840b6bdb091a16c2c62fe74dcd131d2c4 1
782f1bc333b8cb9b79c4ea6d9c5b21aeff24ffce 23
16e7e967c20e9448a27239c1671df4753873d29b 67
20f644f4a3b06cc670b6c17fef6bc67daf99700d 67
ca0c239d51a6e700558a9693ad34a9da81e2bce3 5
37670e3aeef82e76c065d403992537e721699e57 3
6a0c8889731b38cc7066b6c3c05427de04d3f27e 2
d41e534d76e5de09badde17cfd4a9b292401135d 1
4d125ff63352a84aff0571485d5af3c2d82c7a42 1
6e3006431ed3da9b8f190103263e9ca2c5ac381d 1
cf61a36c8e452da6a5342aeb1425a5ae4d3ed36b 3
885a71714f76a735cbf182265e2df88428627fb3 2
2a5ebbf678ab1a7bb50c6bb8a105a86d2e3cd9ef 1
23a7c94ac88ed1bc2311a317419e7485d6df3d47 1
c2fb63b969f9d5851bdc3bf46bf2a22fc316616a 12
93c322bea110cdb406c38b3dfe4259518b45d3c1 1
b6400c6ea9848e02ae40852ed64dca0413447bb2 2
230cba0cf4b418141f5eeead56b3f8dfd2f290ec 2
163ae440036ccc591f8b78a0b5a33ed91492cdd4 1
010abfcfd77421441649e8c0d5188eb8fdf45f98 1
3e7ec52e4a3072c22a7e089cb1a04e437f8accb4 2
a0ecf019a75b847fafc2d0ce413964ef8314aac0 2
3308c98393512a99e1577ee52ac3ad27e8b87784 1
0c10342f90783fde2e34faa145616d21784069c0 1
b3cc993242aa1e8a0edc1168c524346641a1c84e 3
9e7987588e264bd37b3dbd41106c48c4c191b025 3
3e5850f0f0e11944b02a53a0cbd04a12260bdf9d 2
12ac41f2913e80db40f000959f16c5451284b3d2 1
2a88d8f9c6ef5fa2f286af3d44c7cbe39784a5e9 19
eae062dfbc1aec12ee0b76545d5a70b88edc5aac 1
03b255e969839ae62bf41b21380ed36b58800259 4
14e63a2f288d1bf56d65127deec8ef1b0c22f7f6 5
d420837bafda6705eefb9c3da3330a71c05be769 1
a397594ff794f28f9852b4d55717e774e1868926 3
30aa2d05b8689eab3aa5637f0b97c2c8658a2f8f 4
92b1dfa73928e5dee4bef585d29f63c290fab954 1
92a2259bb055b2195ac234a4cb7a0067667bec82 1
141e90c4dbd49b30d6314c8a8fca8af100d6c915 1
1b9c973c482138e47755f2adc06c30752e899fb2 1
88e1315b10d862df7307b629b2eac4217833d564 1
ff597fc1c8a9d9bba6911778ae3da67d533fce38 2
834066bf1a6ebae4fcbf04295d3e80b5f1930410 2
bde75f3d75b82fe719da15f02c27fde820f92068 2
d43f5081fc7c12832d8cd942dae4a6031446d74f 6
372929f76cda47497da882865bbf50218bb0c277 1
d74a4ee6e4e082cb05e3be69b0ced5a121529489 6
7999a885f25e315057b4785c324f3abb09e32d6e 196
ae65664f028bcfbe06e617e19de528ae4dabf330 36
acfb8a6c8da9f938524cffb6c04a5c838eda5e8d 1
0b7fec7068ed12ad5153f11c5412a4893f0372e0 4
2b6dc1113c8d76046535e3d188723fe12ec1a7f2 2
20f6194cf1a2082449b9b89994e4355548263ab7 4
d3aeccce36e4f6ffde787e2ff80e4290a0566819 4
e7211252c1abe005758e8ccb17d37f7352951c4b 2
86bf7bbc3768d8d227c0f25fac69a87ec50a8f14 1
9cfcbe93abad462705e89a42a373254e0c5aee7a 6
a228572273adb5decc75c366f4b05b623ae2ab2b 1
0bccb727fcc66aea5fdb08eeb88c49e225e1be6f 10
79c799fdbd4d410fefc47f70c6adbca31f63ed95 6
85071304fa8cdcb4b72eda6d2107687ab34db4f2 8
6e9e0a4282480739cb0c3c97fdac2e9467f6c4b8 5
5b6004e36fa09674e172256f4822d251e45864da 9
8dc9fac19fb48a250bcd40ae3bd5ff76465729d3 14
935ea17ba1cef97e5061d6c5a897c31e9547b8b4 1
943fe6bb34f770fb4b5c6cdbed31fe82483e9c4f 91
078f3e610bbc65fc3163fc5061baa7186d8ad599 60
811ab345b07624b08236c386c6611f2559c5a001 375
49b6b1e807f67e2451a7f49b0cbd71bfe583643d 1
2e42a97e9fd77698cf0d302092eed429ea5be573 1
ea8eb485580182526f7cae527df343a317a7eea5 1
cb1cb6678944ebf08e21c73ca5655bea9db2f959 31
9ee6769fb4cbe7c1bedae7589aad920a6eff0bee 1
798ab03d7cdaccb61b38ea336ecd25d97e70ae8d 1
2fe8e9d92a368e64c1690ac5b49ef636f4ea30c1 1
1357be0fceb050ede4104ba64ea019f6b2889697 1
ea6caa1a3431fdaf960f4e561e574eb57242f1ee 1
17eb23df525e8b287af97220be25c82a00318c07 2
4786eb333b71493100012164a4c25319ba7990f5 22
fd5dd572461e87389f77599a36fb5d4cc5d8faf8 1
8e3322455e704104854363125624898afdd2532e 1
b2025e969e403d6624adc22e49726d4c7d34b433 30
09c0d997b86d4f0e947adb547eed3f46666dfeee 1
061ca3f5cc66d1e8ea94ba29c0bca07e6be7be39 5
fd38178ce51ad40624799d7a0dab6e7bc6cf02fb 1
46021366bb6e7ea5b6f98d66d0b78b84e4fa1138 1
99b6802805fef5f703473db69db4fea06b8f2b58 1
7544538a2e334eb578fa2b2d9a8576d4e95b3b74 1
b66834002bd301db9f7f67334394d3e77583c6f6 1
fcf05e97b86224a1ea0657933ecdca1eee0895c2 1
f28634aa4fc44104933a4cd1ba953c63627a6fe3 1
32781126d8f3ac8b0678012c719bff9f90c67d5c 9
7cbd45b63f8a3fc48e5bfe9b27892bce8689a602 3
d81a253d19a445262d1469e8f0956ee0c50d88e2 44
62da6bda45f2eaa810b32c6f2b9132abf3f09e91 1
676af4dd7b9912afc09a5adc70ecf6ecfe45eacb 1
25d6aed165192bba00212628c572597e48e4d91c 1
710099c2de683e2defc7fd4703e9f552260fea4d 36
8c5e67fb38068b41be378ea166789b1763c98d1b 6
3e88e6fd9d65aa5b77d7be10c2ec092ff2df2711 2
0cce594111c848e6a909d7fe9ee672ac8d40570a 4
1c49718e3a8e8b6130465ab6daefb5219cf7ae94 1
94d9f6078d73da7b18cbe4a7aa818061ccfcd340 1
2ad0671488e203eaa057923b3e11ed6705fbccc4 1
9f4b7a269d900d57dfcc5db112161d02486186b5 1
62ba7f9d5f77258002d8e9027a4bc22574d6ad72 2
774feaab5c0020d87c6fdd7f2a2441f0d403e702 2
0d6f0f07a6838caf69f6e2b6b6e2fd2535d48a05 2
5eb9e88b78bd0e08c00e254d81aebe5a2284c59f 12
1891567b3f228f59b7b728d07fdf1b879b1495f7 1
77292083aee5b794bb7124dfd18d90cc78d7c5c4 24
7724953a7e40c24db1b4c510519f25593b47e058 8
52d2f38583cf1fa84a84dba1d2453c320f9f0109 3

COMMIT - #Redundant fragments
3e087d6d8d5f12039aec7791f4538f6e9c6158c7 6
697b7ed861fcd76ac20db28d9778391a6f1d7611 3
5b78ffe04c143e4cfb22a5be72acc63ead4f9b4f 18
16c7d6ebff62465be67475ef74f1b1e7c00026b4 6
73d0e81fbcc2b484c9732de7050ff3600fad011a 11
c6a764997a71915547c1d37a994331afd8f67f89 9
0faf610fdd727ecff473021ff361cda6aed01340 6
045e16d7630da29e1ac8e06c0778e9affd9a2094 2
29bbb63e9dadf237898a496c4f6a63199abf0b79 2
19a387cfa43be5682c591d35cc9d0645560dad2d 14
93a0c0696026297b634bbaf763a013a66f2a11bc 2
e0a0474a9edf4df9af33aee245a2b696c777da2c 7
a90b09ac8289ef959053e0d12b9d5240cab129ed 7
c88eec54658b3cbcd9c6296cda8fe77f0928ea88 3
dc19dfb53ec61e362eb8d23097e7712c35f47e0f 7
6e2301b8f41ec4cf4fe485ff92edeb98e458abb8 18
00702af33048505467c066576d7678c354af760f 22
e0be91cdce849a4b8b54429ca013cd3c13eb5e60 16
a54b0dbefd299b91fb52a6f7c4bf610bbaeaf7f3 1
08495bc0298babf9c5221a75d86621b341930123 1
4bea2aeb6d3740d312137592d95d13484a723a15 4
a70b7c4997173e467cb4e498b58b1e7af1a7a8b1 2
7f777a2d4760b7057854d6c345946697b1b1a4d4 7
a53588c36ebfe2847c3ec1a7f279da4e6394a493 2
8b2a3fc1f4771a0f68723de7eb8d2ae79b41f2da 5
4649eee6fc9a5efa1253be942d21a239b2a71227 22
d335d990030c7c48f86b53b44ed93d3fe871758f 13
3975e61123770843e7d01a92ab2862b8756504e9 20
ddbdfb346c8fb064c48905114373d4370f5a2d69 14
48bc84717b52d20ff23ceaa71ba429f73b49f18f 66
28110a72cd253e6850375dea73e5cc5ade394fd8 27
f1c474ba70c981db53df80ef750f6845885a0363 74
1f40d2675a7e7246daa64db3b71ad476a78a5651 131
dcaa226dbe799ec07de7e21627bc840d3090343d 9
8f58b5d6d42b92adac793d4dc853698a7c526be0 68
a642a1c2d444e4d862ca0f8a4838183440dbaa8a 8
9519599b3af89a745ef512e9282050fa8b1aa9b6 1
dedb00d84062aace09036aa60bc9e242304aca50 1
7b472c640584b9ee912d2255386670cebf3d2018 18
3319a8eb02fde32270e0da708cf5fd40ab97831d 1
87bdd06e6345416d2e15c3d90c3afe8e61a3d4fc 18
9b8bdcaaa20e56085819a3a50b734721526ca7b9 22
f5db94e77d082419e19abb9e8908626a62d1c7e6 27
cc4f2dc4bcd78ab98d9f9751dcd1769bd9709da6 28
ac03580765941e9cb63d7289fd4f9bc9d564a4cc 1
097a759c5caaf97ff447418b051743a6fa950b97 1
65636a12569fe17d3f4f7adc00adc75a59e29944 1
bda95ba0da88f49c7b20c23c52e1dda07dbc2019 3
936620dfc36d88c7312cae6b763cf8fee07214d4 2
f4aea750a54ff02495ac35f22e9ce5284286b057 13
d0b5c18ccc4f3847b4da9be913dc2bb1f80aea74 1
ea93b0dc7e19e1b8c2fc66a6a55540d89b7fd444 1
cf34e38978bc04fdb1690753891a538a025f83e0 1
4070196277e87090439253f119eed339b180423f 13
e5bf1b194c9176e212f510b6f1e18ac54615e9d8 18
a7ade4faf85280b170c6e2217ef036d84ec0de54 16
61d1a5ff8e6fd97fb85a26f290367d46e72306d0 16
7503e4658b6f37289256f69c37086d369f114ac1 1
eed4e6394996b7a76d3caa04635121c9345f4699 13
aa1e8af20dc3f8c303208c512d948c44ccc89e4a 47
db451258c9d7f8724d6543c8c02b786b6abdee79 1
130043f850a7ec964c83078d333b16c31a20f166 82
5a3a4455ec68bee19a15d6ca7af371cbb20d661e 60
5c845eabdb68a3e7971b7ae3b7cbc033bb39bde9 1
90ae9d5e2b3e1a929e1de4af193b6905c6254b8b 28
b1ca7b0d5de63ab8128f2378abba0dee0c3393d6 14
73633ee316f51fe8d2674a90f488eb74c3ae797d 30
8f9c67e53376a7f92acbc511eca5dc37e9f5f48d 2
60ec929878d410a5ecd027d5f7f28adfb28631f5 25
25fcb6ea22fcf0345de84d3ba563dc8d7c14ebe8 1
e5c566e02eba058b8026f7fd3be96a7732b82a9d 19
f2324c2f991f64b978d41e3207158a7e564767a1 1
b4649dda44e5d3d60c8bff4aa1e0d4ced30bc470 7
1d1f7573a53214d02656211567194cda6e4c4757 2
a798ef8a6fa9a7c1aae03c29606282043a77f90e 57
32d9820ffb2392c8b66ad5a309a2175de641f887 5
5a5b68e0a48db7de53b3d590074d12833f7744ea 5
433d5b7560e0675f61a5ea97460ac47034e34cf1 1
79c5fc5ceb514fe9fb811664c7559fa9e1305b95 1
adfb951bb03e45405db04c3aff011636ea7b76ba 16
11ab8ea2d5d93fd775843d32ab71ae45329d88da 16
9e9499a5e1359b8e1936c559620468eb48968694 7
125e7c9747b2a0bab32e2b3fb08e950149742e96 17
5bfb2a12a875c29b841028acf00c7ee46ae0e485 6
af79ba891a4618188135fb56cdeb16fc86747c3c 2
baafd44ce5c51f32b8d5ed2e8196d17d5daf0fc6 29
1a703bb4cd8859f67c7eaca256b3c663875b0127 14
c43489d9a24c75764484aeec949a905ec0a52a83 61
81a6806bf63582f3144bfe723a58fe4ece0a9802 61
1c6ba0a60172ab0a49ab0f5d07f506ec3083cbcc 19
83e7cd869dbaeeb5653cd26a4406a3ecc7cb6a75 12
1cda514e7460cb91e09d33b9c5ca5e28f10ea7ea 1
2ad9566455a98c15a8884b1462b29dae5c20a3dc 234
2878529ec79a86fe2492fa6cd243566e1ea7b296 5
f6da1d88bcc2a7e4dcfd67375d5c7ff4f215a1c5 5
32e106aec116ed0aa3236472fc10196e63381f72 3
ceeeaaeab71cc09a7e7374003c81863030d8340b 126
87293e40b7b708b7e020f1d15b7ee01f3a247851 73
7bd0c413a7902328b3e48de73486b7076ae0efbb 49
9962c0059976f55a0887229dd57706590aa0c506 5
2150b43b6b6dc27cdeae47c7a0022eac889f7e5b 1
81fa564f313fbf9ab7760e3107bcb06917370c62 8
63bc014b2aca6fbbee8f95a78af9487999477b04 7
4147df387f90d735d44403707d0979719570b2ac 31
045c3cee6ce6dfe5b027436c4ec0f240f1b8ae50 24
b33386f37ba8415446d6b74aac6b9b2b6af61b2b 70
6f96fd3be87f95249c30c461e3f96500cfd6f48a 1
cfb6b405823a5c437d5666a524baf85435fcb9b5 38
845587e28fa6c3c38bcc0133b2d9ae6649fd1d47 1
fe4b30de5f80fb858792b088e72d28abf28c160e 1
ddb6842d3282bb9cebb8b7bceb58644a914b3b55 6
e6d7b3792f271f34f7be45272840dad4a03e7fff 2
bbcfd5659ee89014ba829c65e0799441e36f914a 1
e9ceff30f2dce14a450e677ea8f10360e8b031a2 11
f425f87d7e698b9509226690286c44d3e94d1ef5 20
762562b898c995dca6a18489db2b701ee05096dc 4
29b59049275efe692d818dd262f442c67ae44804 2
b8b2d434de426995aa4dd9d563dba3f314d2b05d 300
101060fa4ea4e4fcc89aa7758c5223a30cf16e22 14
73a3c68538314edf302722eddcea1a0f6275e53b 4
a1c6ab9df7a3ff00a83c22b6db3ddd946d6a2933 1
e601c220cb579389a22a76f9d240121a89fac6cf 2
2b9ba08592e554d1967b010057d9c7d8e854071e 38
2d712c190193fa8f40973e37ec3c736c1238e718 4
82286c014e06e884e2cd4c46e3ec800bb79e8a33 15
2ba618f5145e39cd6f2700a7a162a04f5a9387be 13
fd406ff946fc106a0053f2b78e789f2352562203 10
97f4baf939a69d8075059dad5edd79f010d8dba4 2
dee62c7ec6f73284572cc3dcc010c8b1502d6d9c 1
aad701f2b07efc1b5fb4ebd76b869dd2d1d03209 11
02a03b82ed92948e45544c3304f8347edff4e4a5 4
fe6d1254a71a44a71ab893d9fd066839cec490a6 1
fad71cd976e94a76af024f88cdf2bd1f63bc44f1 13
e87c632e10235c397fcc485cca3b94b8d9fed593 26
0fbebe984cf6749052fdc3bf4faa0129fdfe2fb8 26
d289a222fe812d7f65cd3fb3eae6daeafda6e30a 5
6fbbe497d320043d27f6acbba59bada580201bad 5
9aee017c9f90b704541947c5eae0e11885d8935a 8
529b2769ad179979c37f3c2c804f7a8d59edf66b 1
72b342960011d06937a0b4118c42b25dec545083 19
9bea173ad0684cd425c468d55310cccc5a96e8a0 128
5e213212a2e2f2dd824c72dc0ac4dcfd5be0c3ef 13
6f2ea5fbf6f4440fef98cfe2559c03a779f52a16 17
13fa21f316749bf4f916ea35ad62fd4da78852f7 69
028649f7a6e74b0592e6133cfd87b842ac197de0 33
5e753105e802077fc2338b724b7e831715d86419 74
6a738776fa47c86ecbd96a32879848f132045fa1 46
43e09d6abead9f6bcc99e03da922b4de63d84c94 16
b637fc2884930c670b94d1840d835203e628cebf 1
c103590f792034d47ef92db48d654cb590f20b2e 7
e3019df20c06453704bca0f5335a8113523f0fc8 1
81550aca6d10185b38b167382a6ec44f5cfe988c 12
94798ed54a27ff64b8a1ee971072ab8437c5169b 13
75b7ee81d5490aeb1104707c39e4d4d89491cd78 27
48503714924d94bef112eba9dca7c2a1cc5e4728 11
9ad8e9dabcb0d0eb81c4102b89c5094e91123e20 28
32b5dceddf764f50bfdbd4788615c1336f04a61d 23
8ba07f047aa4b62411055044025eccd2cd58b20e 41
13660435d2c86ee143fa52acce8178879a773c16 5
d4270d0d903fe0224141cb0c212352bd536813a0 9
ae7067ec7d703da916f28344ee88f37b44227aba 1
417dc463fc18b1da4102c5b4bb7971a877f8709f 18
65e154c707dbf7c1069eff911d5f66f33fab7917 1
56244460338fd98b166726334c1388be62c8a3e3 6
8b689acb61ff6c06e7729faf9576b5986f142510 10
b4e5c4e407db02d84f81b8522a5fb2603fd39432 17
e122e326ec52edae0d3932082d2cadf0136ed385 12
339fc7636c7792612ed958f02b060d20a5937289 12
5dc09aaf7ccb34edae913051f0e08b99971b66a3 7
4187dac813d06747314fd06cb4c10ec137ee9283 1
e2e6bdba976791d5ee70df9fd70025966935736d 2
2ed47c015aa684115812319637f966bcf449eaa7 5
fc7d28ed7bbfda08a35f743138c3469dbe29920d 7
ef26bb80f65640fc20dafba8d8b2cae05de8507d 1
179f2e3590857144775b78be3107d399f10199d7 51
6a9f2bdf4e3c8882aea9ddbbbb3ba60b6c825d05 9
cd4524d7e50644d9ea3a7b14a3ccb9c3e1d62100 3
e4080424aa700ea13590847757788e688cff630c 19
c08eff4cd122038541c38554fe958e3796e035e0 9
17ef52d21d3a0459ee292ea59e5e5d1f7401f3f0 8
1672b02eb269209e396ac6db0d5f8cb5454397b7 7
fa6ff76b3d8d127d7fb9869a2c05dc9b77276cbf 12
426bd217a15e3616d1bf364223ebd11e6a24db32 1
b11d7acdd16656fd5b8a0b670e50222b661c331d 1
6e9b97520df945fe08c291adf52922ab196f9233 1
eed6e7e684d72e2f9d06d89dbd7ac2593dc71107 5
d41228cc95ab66bc19e91207f2093bd6cbfd09dc 58
1adf98db280b51d516d795cd9d4ab7bb65c75f51 7
7fbf9acb44b0156d21d2d7073139c4e4346a960d 25
b3367be9712badaacdc6f21a8f61f29d379abce8 1
d8a6a93d106e9df5a7b294c7a913904ee6d7aec6 43
37af04dd88270f8b99df94276ab72d1f4b2e24c6 6
3bfbedca38cb1adcd650ec0b24c70e2502c42e3c 13
a3ce5ef9917b80f0f8fc93788973fc79a1c70d13 6
5b17dd0c0108881febbfdfe4f77395cd6516f89f 15
38e8d7c5719807886d0978c469d36cdeddb95d74 5
e605cfc6abff5075e3a18358bbf6d4d3ce146798 6
8d932463756aa56a8e08b244dad07779a1f2c83a 22
7422eed5cd61aa43b40ac8d729c97224137d92ff 17
941587c63ad0eb3898b9fa399c5be422c50fe34b 5
4b739de0b92f85ecafd65f7d658aefb074dcbea7 20
81e5fbd9748747a966c7c3a9c5cc246147f456b1 29
b3a6f32f75ade5ef33b97a626d9ff94965ff25ba 1
53fd4f2d60e8f4367bf565dbb14baccd268941f2 10
bb604dd51103ceb15119030f522ad203ac055b14 35
4fe890b2b269094c3b60eb9489ff9f43ec9bb63e 10
a755ee04d60ac5957032d1a81bfb7d710f7f5e40 25
88c620560a4d713b71b78d1b9f5ec608ac7447b8 11
fe18e1c7cd9e42628827e1b2b9346a5974167730 7
53a315279bd3541c2bcbece3a4a9d6ba5c5bcd7d 12
3f1ab2ac077e3dab9d33d733a7ed1979905cef93 14
8e29de6775770ee5e7a37936d9ce60515e86fa5f 1
47d734d1fa22bc863baf91ac7dafc5a19936ebf1 29
4bead834160632e5a5bede50421810337a3d353e 15
e0186f7223c7f944484109e6efeda8d4e3e261d0 1
aeca3bd94e87809fe58075c432e0bbec17216670 25
29be43a985c8dfc07b6ccf68acb4f424b9c20ca2 16
fdb043dc6944f7c0eae97d449a95ba06cbc59b9d 29
4903013831acec34499887e7f6014471278db5b4 4
222eccb398eb1e450b221e178cfd12ce7797e164 25
84db07ebbd461f01445146e94aa2d2bde59381c6 11
c8eb9a422a8323c4fc43b4420c2c99bfcc57df08 42
ddc795541cf3ff48ac520371e3501e3108c20ec0 6
85320352bb468b5a859d5a568aeed47c1d7ce725 10
52a2c36800a71cf9a9447301c856ebcc1132c908 13
3c6393ae962728242556b540c322c0e8973e303b 10
3545ce9840b6bdb091a16c2c62fe74dcd131d2c4 9
2369146d42e5baef31804f38b1360583b45cf0da 8
376bbcf979c642e49231946524af2c7b18c53cab 21
383ff33666d7163fbf85b9436628b990549c6d1e 13
782f1bc333b8cb9b79c4ea6d9c5b21aeff24ffce 65
479b02772bd0ed67f03ad1d78d08a7ee4e2faec2 6
60cb6c549aa186bdf4e6c922e27854b3b47c29de 6
96724e8697b9c64cfddf968d440511bce17066bb 9
02a25a9a1b94bed68ef1f80e7764c8c3442ea928 15
16e7e967c20e9448a27239c1671df4753873d29b 120
3cfe08ba6ccbfb3d222e69d9cd573f4e1c186fed 10
7c09324820921ead71557c28836a4595e80fe2de 10
7e251f9ddd1e16117e5ae936490fdc6f5b2eddad 31
b4c5f48a69244d82e6e6a5fe302e31bfe91a2f61 27
440fc81ab8a6b88349dd9203ab1b8748adb4c7b3 4
ec1499373f9b62b2ae08408e483d4ca404527694 1
00051ae8eae10ef592524003b628be6e0324e163 1
56a11664e590d15f0b2b158904fa9ae804ff4d09 7
b69f5a0287d520d26fce6c63cc4ea90cbfb17e1b 11
7fbe2b195487ad3950d3baa0c09205c418cad952 7
3c863bad2116bd70fc6fb5d434e7bf12f1ad76b7 1
3a221f9204ebb0914ad45e5e878a505390b1bcef 14
f4b45a74c6b528ad7c647df80a9a82377e5a4ca7 9
cba47c3ede5ff4a5035204111211b8ade7eb0ceb 6
3887c7a9b2b289a6a8b4fb794c2b3e0f8d0872e8 8
3dbefef02aa828920be8d48aa2b4f482d1174e9e 9
20f644f4a3b06cc670b6c17fef6bc67daf99700d 120
59d0acd22fc3b0505226f16f568fdf3f79bb0ec2 8
ca0c239d51a6e700558a9693ad34a9da81e2bce3 17
aa2c2475e04dd006102bd263a209da017de8d707 7
c18f4c898b87b9c3fc2e2aeb37159a42a16bc79c 9
37670e3aeef82e76c065d403992537e721699e57 5
5774e9c010a48201c4a520483a0b44a70f23303b 12
9ffbfbb4d2b55be3dcabff8ff1be784fd863f708 16
64916adb6ce7fb0961ed071191b1516fe08076eb 9
0847540aba2086775516dd1951d7ad2fc0203b2c 2
d36cecdf077db438ba4550e3602d3b435042c6a0 26
6a0c8889731b38cc7066b6c3c05427de04d3f27e 4
bb65bd788f4199eb7ae91d980a0c6730836dc2e5 11
bfc765251f42930f7625f9a8e5df1225e1caf22c 12
d41e534d76e5de09badde17cfd4a9b292401135d 1
ab4abfb7f644370f53f824e07ec9cd48e15e3b69 2
8f55f410667ca4cb8384d9a2dce6c519fdb604da 12
d8fff6b23330f931ad8f8ba666185ce105c50e72 11
8b24d35f23a68dc4f84d4f36a68429f517636d01 14
c8e7ddfe2d94545e41a78a76f5681547704b169a 14
4d125ff63352a84aff0571485d5af3c2d82c7a42 6
719b7e34f94e3a7b0a71258da9762047e448dd6a 6
1995e0b15d7fe8ae633c88aca8b0237c9f247645 11
6e3006431ed3da9b8f190103263e9ca2c5ac381d 1
9bd90e73e3dd5c9df037f3c3f8ea27b20e0fa4ca 3
cf61a36c8e452da6a5342aeb1425a5ae4d3ed36b 12
885a71714f76a735cbf182265e2df88428627fb3 5
65f5de104fa5b0c81068658128d8b88f38ed1dd7 6
81914805abd7301fe58c5b386900b1662bb77be3 12
613880cf7fefe6a2b5ae3b007f46ca234d5f8f3c 5
88daa129763c908154a2f470d0f9ecfa49904c1d 1
41c70b4540cb91d0fc9b92c9cd544df113011520 18
891c2cd2c534c86886216909ca4aac8647a64b94 9
2e8f6c2ba592847534b71430cb5ee83d38444d90 10
251e4cc85f02c59f26ef2a97aa4c57936fe7f5a6 19
2a5ebbf678ab1a7bb50c6bb8a105a86d2e3cd9ef 1
3f9c9d000bf163d239d70b7a7e8f3005ab95ee5a 12
02dee466970b580a5f43a82b0d902df738fea1e1 3
23a7c94ac88ed1bc2311a317419e7485d6df3d47 1
9ef488eaaa153a635d969eaa4bd92035d718e7e4 25
a1d858e57403bd741f7283451551370685f0aebc 11
92539f8c59f23f9153965c64790935b5c10652ba 10
d2e892396c67446174f80f2d0f9a7dc5c1232237 5
3fdac77946d7129b95d196ed406fa84857e3cc8b 7
de81960e96dfda28a9b77ae360fb30309c0359c4 42
ceb37bd5402aefdc6bd0ecdb4e028f5d78dd0e41 3
3e8fa487f117532590adcd5bf076a64f323f473b 4
5ccbf5beffc52bb0c736cacf945c53172a44b301 22
2bca57c122cff06f787eef9abfa1871a82e0f2e3 14
f9e7f1132ec69e03700ab4946f361fef4c1af77f 8
f1010316c40ee9cf8446362c57731957e38834e9 8
3cabd01d694e73f7765d475c92b41e5025ec39c2 1
52a9f298e4f16590add0baf983c75b0cf086f420 1
c2fb63b969f9d5851bdc3bf46bf2a22fc316616a 36
61cfc559d042f6bb2ac4abb9961a45c67914e7e8 35
986387faa59730ace53c37303612d6f4db1def81 1
93c322bea110cdb406c38b3dfe4259518b45d3c1 1
6ffa0eaccbe680ab81d52b1e6db9e68a20dba8e6 10
ed62b08f6ff56ee5c0bb5d6255ac16dc5224506d 8
a709e76c787f44786d718c366b2c477de8b7bc6f 6
ec94f456bf72408e8dc9353eeaabe2cafb2533fc 26
b6400c6ea9848e02ae40852ed64dca0413447bb2 13
3276a97fba7d205cb688dce6962494b479cda79b 17
99280b150fc0be9d348cb70ee58d540ef2a139ab 4
60bd3dbdf1bc7f5cb335fddea5d1159cc626d6bf 34
fb0a088188fe3db3cb03fb29b08c56fd18394eec 1
75b21a5b1126b80fc0fea60edca1921dedad3790 17
e2291916c0d482aa47143da6bd078e9253b6f17e 20
a7a7df44a834221f7cac6dc85d48d94cf5a97dac 2
19eb7822548df45790f7801f6dd83fa85ae36e1c 27
3a93ef0bbbf0332c0f8e34c6b588298d9d9087ed 50
09ec42ced2caa8673229e1bd9896b2e2c33771ff 8
38ac75578d1a31226fbd62670885ed151480633d 1
d72802de3b60be18ee1ec7acdd1e1172929e4f90 10
230cba0cf4b418141f5eeead56b3f8dfd2f290ec 14
43a355b3e9cac7d6e9dcbb9048b3bdc0819b95b5 3
3cac8d44ac31779ca6e6993d271b5ca032a5fb4d 16
87abeb3f4b1540cd998f944d2994185754e0c660 20
a9981efa6fa49d5c9ab12638bdda62eba20dc81c 6
4e59328ec9197f25cfebff67821599280d056479 20
163ae440036ccc591f8b78a0b5a33ed91492cdd4 4
010abfcfd77421441649e8c0d5188eb8fdf45f98 1
3e7ec52e4a3072c22a7e089cb1a04e437f8accb4 10
243e407efbbe01b15e4081d148a700de36856ddf 12
0594d5f0dc8346f1b5951114d2d9411f37135791 7
a0ecf019a75b847fafc2d0ce413964ef8314aac0 9
88bcadda73766fe459fb7d9cf385da87c76da345 1
a5fce5ff381dee534f07509883d9e3bbbddb333e 15
b897bf080ad2a69a62c17749afa3431d507f00f2 12
9fc0f4eebc479c1e01cc0abff977e6cbe4d913ff 18
1e12f6771ed563d793934ebe7b3fcf529cdf1660 4
9ab2734e74db77e73b460afc379c7f75269cbbb8 11
73cf9ad678288ad3e1b9e63d2847f978352f11c2 38
6c227f9c9a41f36ae1ea8f9833e75d3ee87e6fe1 10
b5a1b51cd6f64c2b85b77217e3a6c51360c59e4b 6
d1b5fe1c6f71c50b3b8bf636ab1aa52ef668f868 28
22231da62983d9ad362b872acfbcc936d04ac54e 1
ad5c4c7a1a08050aa7f654810c92f8650591987d 1
12df57e973d52667d2dc724926aa25055b9ffdea 26
3308c98393512a99e1577ee52ac3ad27e8b87784 1
3c3f42695fb72d999a065071e617b8874b0c7fbd 1
2836c0e20a4269913d45ab35bb4ed6865fb63080 13
9acb4e462ff6afb6115b6dae881ac39639832bcd 39
0c10342f90783fde2e34faa145616d21784069c0 1
dabf3bf05b312340b66d281b0148d9b15d8ac7a2 39
512d9d5a03a7d7c88bf437c15d1380b1fe00d7b7 1
e5d1984728fa4a68200c6b28f9b6057221275b1b 21
68d68c3b312fb0fb6ccf4dc30f4a2e59d6d5ef94 1
ef7f50746172f3609c30769b3ad945698e7fa99c 2
4332334eac64259c5acf801f67a50e2edc7185a8 3
76784e135ca28d0a534d395f0b2b17580419b2f9 5
c066f8b76cde52286b92182e05cee6319a10b37f 1
a1c0b0861b2d59d5697c31b147bfa1bf3abd3aca 3
b55c05f27f7235592bd3d389d1df683524e3f8dc 2
0f6b569909808d6bf0b5b1686dd9fd10e999869d 4
2b3348873c80e84110b756eca7f1a086108d2bbe 1
7b3960bea6dbf28076745c63b4289d6198978b34 16
b3cc993242aa1e8a0edc1168c524346641a1c84e 18
62f83f06f5d5a0edcf3049c391f1e45d2602a7a5 20
9e7987588e264bd37b3dbd41106c48c4c191b025 9
73a4cba53c7ed4419635f705b69acafe4fd7e6d7 5
b5c1220df9562821baa60d9a9b3c5f4d7a1c76e9 175
3fe9096fc968d65faef2fab0ff5335462a7b3425 2
2da4d0d85ce1e5c29accedeaf0f22b938f08b0de 176
3e5850f0f0e11944b02a53a0cbd04a12260bdf9d 2
12ac41f2913e80db40f000959f16c5451284b3d2 3
42a1d9c06ded8d1bbb40f12c7f9f70252d5be299 1
6617d7c416eafed20a87f8a15a004b183825f2eb 5
2a88d8f9c6ef5fa2f286af3d44c7cbe39784a5e9 49
3dbf11a81f6d37c567b44c9468c6627259fc220a 5
7af2412380fbe4689b1641d03d838b420d120b6b 19
87c2838def42bc25fa7239fa5a29b9a0ae78cb8e 5
74bb5b402c2d76128a4459a422f4854fa1bb375e 1
a165a020c60550ff3fc7a37a9d7c41f6378bc297 10
5ce8c4d34da5f4ff1dff4092589833e8fa6c56a9 6
32f2fd99af76c24b022ddf57af24da489b2d445d 21
a699ce8e892c5e9e914dde1740a3777d84b35cc9 5
eae062dfbc1aec12ee0b76545d5a70b88edc5aac 1
63ecac6e8033bb89a6b8d15d9afeaf01b36b789a 3
74440d490094875589276bca0cc4a2d25b130dad 16
03b255e969839ae62bf41b21380ed36b58800259 10
c0023ba5249202cc0af0764de172aed02e50d222 19
c892a457675f883194681d28ea1688bf166461e3 10
c19e81e47cdd336eb77d7dff5cc0b3a009f202ff 21
14e63a2f288d1bf56d65127deec8ef1b0c22f7f6 22
6ae98218d52ad3b877baa03fa4c72785dbba4a7f 4
4c731997a242b3f337590321f254027d2999921c 7
e68cf6f78cd76057963cf11a69ad039e0b221558 60
fdf37eb5d1bd2de915197d0c0035ed3ccf7769a9 23
7b7b98998bfe10b0ab441af481711a2f4d12480c 6
b35a350134965f94cceee31f7a9e341bd9331155 1
8a1825f5b7d01f2d4ebc198a342ac78b267fa2ff 3
698014826a4549b23726f0069aa754e7485ffbce 11
6a52a53dbac44fe90a2a9df909a8e8409a466347 6
4a0e7de52faafae0fdaa2918ddb0cbdafca2cfd9 7
a819b5308172b6822dad403edfa71a5ea17c8a2c 17
67c7996042d73878cd656516e61db90b28f9293a 8
858496bff9451efca40018963e601a6d1637b9b5 12
3f115031345ce2c89260b1cb8ad11d8dbf642e62 1
d420837bafda6705eefb9c3da3330a71c05be769 8
a397594ff794f28f9852b4d55717e774e1868926 27
30aa2d05b8689eab3aa5637f0b97c2c8658a2f8f 28
9094230d66f367e3a237cc93907ee99306cb829c 12
dab460c84f02d2be77ac47c856d38bcc3364d9d5 13
92b1dfa73928e5dee4bef585d29f63c290fab954 7
7817b8477a40ae2831fc76dc2f347c04171da803 6
d1e45c1cb24c49b871215b70d7c9a25295988a5b 7
92a2259bb055b2195ac234a4cb7a0067667bec82 3
c94d9d71d3932eb463a7c160b6ee12584818bf3e 1
141e90c4dbd49b30d6314c8a8fca8af100d6c915 6
634332bda680e3119a886e0f890837f0b0864552 4
1a1b760549cc20413b5a8ea5183945038bdce61e 15
f895a27ab11e83d2c77e72719276b5b79b9fa181 4
a8e84505356b4e916b4923460ee5adb38745bd44 8
1b9c973c482138e47755f2adc06c30752e899fb2 4
659185206b31a5ee1d50c9800f1f43e403d3fc55 4
de638b7fbab4dfb879d9efb51ffb6241a58986ae 2
e4fc7b7bb35979107a0944c119f916babf35f038 25
0267a31ded09545f3314b79fd864278949186ba9 5
d9bc7106e999a66c7b09bdd14be0483d8bfb24ff 25
86dcb54ec6afeb2ed8e3332e243db749a0d44b2b 12
3467325911644ba7c823d49278f7b5a6f1c0a830 10
f38cbc44ea0a6a50cf288436ef8e8b4f8a7362db 5
c0302dcd5557c790c0b48ae73c18c5597fde6fa7 3
f6635bf178fc59eddab7153816b6f76e4573c04b 10
0129e7d99da9e6ffab253f8416b51d500d63196b 8
f50529b81f80a1680460d416a8b01155b66afd7b 9
b1e8a53c3042b2c01bc9bb1104404125572eeb58 1
f64dc00b4caf5b8043f9ebbd568ac5fd990dbfd1 15
4d735d9762e0acb248f97b2ac7b55a9ec3b0ac23 15
06140f79f3318b6ae6174eeb4e474c67a305d834 1
7e48b600d17509dd0683b008c38bb082b6ad5adf 20
b57664eedb4fcb798910b31cf7986e185f0c1cc9 22
6e636eebbcc46431fe15821866d2518f3ca9840d 21
762747b049bad709707f93ad35a6f5b0ae32a47b 25
f00625e1407cd9b08a71bb31dd90a98721bb02df 10
ceb21d3b417fd81c3f39316e5d249090ffdb8768 7
0db46c49dc1c195b50feb9e3db59ae26fec623cc 31
e4d4ffd95c3caa0f7583087459532d97dbafed84 17
5a48a217031614d92a7662553fba03a1544b140d 10
2231a36c562eb8147cbf3f8279f71e06a205f968 1
d192ca52485990a035b7ef84cea67a6743ad3d47 20
f575c79fc5994a177a3b8eead4036651819a1bc6 24
854d5783482dfdce8b245542990ed71ed959e037 21
88e1315b10d862df7307b629b2eac4217833d564 1
59be73e69a956e143e5dd075a553b9ef356a991d 46
fc51df33ae8e81a9b6f4aab4ed3873f31796cb2e 17
91ee8d3e8615c471e3fa2dbf0d1e01895293c88d 13
f22a0cd76804a7ab43b7efe12586c6d17895d945 1
485e16b46365c12c96ab35a833468bdf9779996a 7
036a45e20650113307ebba7ddcd79fb1c9c2520a 20
5e0c20a97eec87402e08acd60a8f7f86cb5e9b0c 19
282790289aa05be7d8648a6f3a8305a83667a0cd 44
ff597fc1c8a9d9bba6911778ae3da67d533fce38 5
d0edd1a0f5acc79749f07445528b5366c380cfcc 34
896701030a2f2ab47c60e07617ea933505664a7e 2
06dad7b6679db4358b6a577a4078aba5a7981202 14
f4fb69e0a6dd58d377b48598f234159e72f198c1 12
834066bf1a6ebae4fcbf04295d3e80b5f1930410 5
c6eb2fa401b2c5279257861d91e011e2b6206da8 31
bde75f3d75b82fe719da15f02c27fde820f92068 9
b2bc395f6a0b216b8771cc53db62b1535b43edd1 8
674214b329416a800aca0fed45f20652476fcd39 29
d43f5081fc7c12832d8cd942dae4a6031446d74f 14
372929f76cda47497da882865bbf50218bb0c277 1
200bdbf75b61b68118ab32bd793ef035846b78f5 28
d74a4ee6e4e082cb05e3be69b0ced5a121529489 25
177ce0f0b55ea39d9dc6aca1c2b7bc4415310879 1
dc5c2ae60ebd119ef5e88bfe5ed4c52f661b9739 1
7999a885f25e315057b4785c324f3abb09e32d6e 178
ae65664f028bcfbe06e617e19de528ae4dabf330 52
fd907492f7e7b875c04924eb5fcdcb2132ceb690 91
c1543f0f99855769e5d2cc42825a7ea0a15a27ed 5
f808b2965da5ccc9c56c3f40ce5dae4577cd4f5b 1
aca2f29e11f1146b39c88663cd9e5597c76c22fa 9
baf521f7dd4845a5a4cc5845eb30f6a37a394d68 18
ea6704648b57827da66ecf385a737373311fe4b4 15
516c6d479aa2f52b5ddf826068bb538eacdcbc34 51
a4c167d25ebfffbe0c14b728bd28baa43055abad 9
27869ae8c877c9d21e11137bba4912c767988178 36
acfb8a6c8da9f938524cffb6c04a5c838eda5e8d 1
ac180bc598e60dec68bb16a7102a6d3c9b062deb 39
955fcff35eb68dcb4c0a2feaa5c62730f2d90357 10
0b7fec7068ed12ad5153f11c5412a4893f0372e0 10
192e60d7f0f65ad713d30290e869758b9ba0d139 54
c55542214cb7d4c2aa6c8274146db002cbfd629c 4
d9ab1565c8e5af89fc1e82ea7b38a27650716fcd 5
344ad2e6ec27556a3bbf566bab8d9ad9bb408fa7 7
9043b7138653944b796a5e3e41cbd64a65f92a13 14
e181c509121b6f21eeacb530158ba2755c33832e 4
2b6dc1113c8d76046535e3d188723fe12ec1a7f2 4
20f6194cf1a2082449b9b89994e4355548263ab7 14
ae95c5dfc8c398aa4359a95bf02f02cfcb49f68c 32
251d01eb96b04951362b8f1aaa78b01d34c5b598 44
582b4fa24dd899162a3d04085137802cf3c12df7 49
d3aeccce36e4f6ffde787e2ff80e4290a0566819 14
3e99b43947c79a081cbdd46d866d205b4c4ac538 14
e7211252c1abe005758e8ccb17d37f7352951c4b 14
db7b05d54560644902c2d83d568a55959bbac660 2
86bf7bbc3768d8d227c0f25fac69a87ec50a8f14 8
e5dccc4b144caa737e2f6a87766e95df330aad45 19
b8a9d45e059c05acbe753a279a7cc05724f19602 3
9cfcbe93abad462705e89a42a373254e0c5aee7a 15
a228572273adb5decc75c366f4b05b623ae2ab2b 1
0bccb727fcc66aea5fdb08eeb88c49e225e1be6f 27
79c799fdbd4d410fefc47f70c6adbca31f63ed95 3
e3d014665da3253e04723159b1dddfd69f845b6d 34
c1469be31d9a85eab18a8945bdbef0ec8614fe50 2
85071304fa8cdcb4b72eda6d2107687ab34db4f2 19
319ca625596a34cf07c33843466e38fe229fd1ca 123
943932182707a535e4db0e2847ee1fd56bb544a2 99
530aaa3db01e2851bff500867af047a42f53a0ef 12
6e9e0a4282480739cb0c3c97fdac2e9467f6c4b8 10
5a4a4533440ca84605677065dd562f5d550995a4 14
629e2af7b28428336165f6a0030a2c5b6ad7bac8 1
5b6004e36fa09674e172256f4822d251e45864da 32
8dc9fac19fb48a250bcd40ae3bd5ff76465729d3 35
3e4807f5943b64e9520100637942c3b20930a809 9
f7f80cc975075e04d54b96bd89777e4bf9f90de1 16
abbd9d3d8b7b16aa02f45679753c1e20886bc49f 23
efc2560c755d5391398b4091d7a572bee19c2844 9
935ea17ba1cef97e5061d6c5a897c31e9547b8b4 32
943fe6bb34f770fb4b5c6cdbed31fe82483e9c4f 128
8e6a4f1fb8bcbf8f63c5870f21c9e58237f0c34b 1
078f3e610bbc65fc3163fc5061baa7186d8ad599 96
811ab345b07624b08236c386c6611f2559c5a001 375
49b6b1e807f67e2451a7f49b0cbd71bfe583643d 5
2d4949b556aa705f140923f2b371b9fb5f69ff97 7
ab1f73cee6917839e30114ece8103f131ec8291e 10
887bcc64c1a2854652bd7a140750b039ae9251d7 9
1bd1423318870249f3ae2e07ed52f86365882d31 8
2e42a97e9fd77698cf0d302092eed429ea5be573 1
4311600dc532367e57710ef90a8a55cc2a6ae244 8
c2d71b179a1ed35b13a2f35533831c7cd5dbce3e 3
ea8eb485580182526f7cae527df343a317a7eea5 6
9664266fb15f708dc8927be0097975e85144a727 231
a1a4571ce0ba03993fdeb66e293fc1d2c5c37ab6 138
cb1cb6678944ebf08e21c73ca5655bea9db2f959 61
90cf55eef78f0e1301a8f539fd3fdf451fc80dda 22
34dc91b2d25505b0abfccba742ab4d59379424f2 4
d3d21476e2252b94d55e46d2e1aca362edf4b556 8
9ee6769fb4cbe7c1bedae7589aad920a6eff0bee 8
798ab03d7cdaccb61b38ea336ecd25d97e70ae8d 8
7e60d7f030578cc723ea218f68c158ddeedf3a89 6
2fe8e9d92a368e64c1690ac5b49ef636f4ea30c1 6
1357be0fceb050ede4104ba64ea019f6b2889697 1
ea6caa1a3431fdaf960f4e561e574eb57242f1ee 3
17eb23df525e8b287af97220be25c82a00318c07 19
23e9a36051b8557b024f17c6d7ae795306955363 52
4786eb333b71493100012164a4c25319ba7990f5 45
fd5dd572461e87389f77599a36fb5d4cc5d8faf8 5
8e3322455e704104854363125624898afdd2532e 5
b2025e969e403d6624adc22e49726d4c7d34b433 54
09c0d997b86d4f0e947adb547eed3f46666dfeee 1
e6ffc5e799b9fd9e991a4dec2f8867b2811d3c79 13
061ca3f5cc66d1e8ea94ba29c0bca07e6be7be39 13
fd38178ce51ad40624799d7a0dab6e7bc6cf02fb 7
46021366bb6e7ea5b6f98d66d0b78b84e4fa1138 6
99b6802805fef5f703473db69db4fea06b8f2b58 6
4e50dc21c412af8ea73bff412461d4a0dd545590 3
7544538a2e334eb578fa2b2d9a8576d4e95b3b74 9
b66834002bd301db9f7f67334394d3e77583c6f6 9
fcf05e97b86224a1ea0657933ecdca1eee0895c2 5
f28634aa4fc44104933a4cd1ba953c63627a6fe3 1
609bc85e8c1ca1c321c7cf227b54d25378d42a1a 5
37ee1865e42da6d723e499bd1c60a307f4ac87e9 2
32781126d8f3ac8b0678012c719bff9f90c67d5c 29
8bb0e4522b1d7d7fd1e0f3a8c31d7580826cba5c 17
7cbd45b63f8a3fc48e5bfe9b27892bce8689a602 4
9eefb54ec68f0a80c95bfbf50ae7580e5e5e3880 1
b6b80ee6262fe2ac7b3ce1032044700c6394cfda 37
29962892ed2e9fdd676e8e6197e6644d9b4461d9 21
49de19a97ad7acd540b691aa5b437c10742a055c 22
bc7ace697b7097329c5f4f7ffb978b0bd7f4dda2 19
92a661379c9ab0a4cce26fb6ece6c1529f9158e5 54
62e2898e5501c78480d742041c39cb719a5032e4 7
d81a253d19a445262d1469e8f0956ee0c50d88e2 50
62da6bda45f2eaa810b32c6f2b9132abf3f09e91 1
676af4dd7b9912afc09a5adc70ecf6ecfe45eacb 3
11f49efe81ed4bc369f7c8d8471194d38f4534eb 85
210059990075fc61e68c286b5a9ac4c06b77b4af 18
a62d7f759f56671df2021807ec6fae0b557059e2 19
75aed2cf444f0654fd7f596dbd3e0e5bf24f9416 23
9b83dcfdbc613a281c1e30d7c148eff4038db25e 24
c4a094c9e6d82f28c75e6b47f50974c5bfa86701 12
2875f6846d43ea9fbe068a03f27622359b223e01 7
31aababef4f9fcfdb81c7600a58e793b59f77358 21
a9d39fe90fcfad79afd7f817061d815d9a95023c 45
25d6aed165192bba00212628c572597e48e4d91c 4
397e5f50c3313f8c757495beb771d6ed9db92838 4
2009597d4051efbf4860c678946cc93921674f84 1
93b7a36e051535898a0bc8f4818e6bdc2c68be6f 1
1c74f988fd560834de3c1336e1ad10fe3865f2dd 9
710099c2de683e2defc7fd4703e9f552260fea4d 83
e061512ae90467620044363f41a0ecb51d1c35b6 4
8c5e67fb38068b41be378ea166789b1763c98d1b 16
3e88e6fd9d65aa5b77d7be10c2ec092ff2df2711 14
5777e4c72d17d3c01842e72b93102040f2d7cf86 1
87b2904ebfab03c2a2f2901adbef1c8f2befb8da 56
612f6287fda8178626ba6625b257c790f65de5f8 9
38eb2806a1d389f026abdd4bf98dc65df0c82fdd 14
05859969880741072892099c7e5064a49de751d2 30
8fa536e6344528b0aa20668ede6b59fe412e7643 4
a85a439da2aa9a68b99f1c1c5f3d858ee46ee193 91
de5a6cb912d4aa6ce58d79b83af3149768bf3a4b 13
2809a7cd4b23cad035d066616336b89515096da5 1
9da486143038a74c9b02907e9966d547348df188 2
4175ef674eab77a5c8acd5447e65e4169fe393eb 2
0cce594111c848e6a909d7fe9ee672ac8d40570a 15
1c49718e3a8e8b6130465ab6daefb5219cf7ae94 5
94d9f6078d73da7b18cbe4a7aa818061ccfcd340 8
afcdeedd373c1426eba3f2d7189371222b674c44 40
b820b92d5f959204aec3834ffc4f2729dee018fb 61
d1e1517baa9f9719680d0226c614484b42bdf0d1 23
aeba17fe4f7cdcded1a6ea34a70ccf153bd3f558 16
f46129bd9c292fd9e997a26c11b32d431890c4e8 14
c3fcd32e9df7fcb22d0a64defbf4efb54c0105aa 12
2ad0671488e203eaa057923b3e11ed6705fbccc4 8
5c7223af8ffd3001b3f3eab4f12806c34724ea3e 50
dd5817f5def3605e7625547c90f130db1e302154 5
9f4b7a269d900d57dfcc5db112161d02486186b5 8
5fb291510db4705c5521b06484ef844c2038b522 3
7c8d2d6732c10a519ac231edb406c97a38abc182 79
cb64779c549c930d64c12555436afadd4133e4de 7
62ba7f9d5f77258002d8e9027a4bc22574d6ad72 4
774feaab5c0020d87c6fdd7f2a2441f0d403e702 6
29d7f6c1c84fb7a2d8eb9dc425517fd54fc8c2cb 45
d2e0a33670fdbd35a4046aa6f2fa4e5071eae30f 10
35dd07002cc12e73448374748fbbdf5141717f1e 17
ec415a5e191dd6a8bd9ba36c91c750a71c4c2bb1 8
51b058ee10b5e9ff4eba2d337c8da912b3d65c45 2
1ede23081c040a1134af458d9457dee4e41a6b32 13
0d6f0f07a6838caf69f6e2b6b6e2fd2535d48a05 8
5eb9e88b78bd0e08c00e254d81aebe5a2284c59f 25
cea8f4d9bf4a38715b1a12c54ab709ce51646fd0 41
39ed1f8b6b74dc7f64eefe9aa490f1d0b179ff2d 3
1891567b3f228f59b7b728d07fdf1b879b1495f7 1
269f78adefdb4294c1a999a5566a82d0f51b244e 4
eb94ecb378be47166e3ef8cb4ca9e134600af442 149
17d019d9dcfd6ba36e5bf6a463bd89592e3e33c7 1
77292083aee5b794bb7124dfd18d90cc78d7c5c4 59
25586dcd191e3ae41e7379a29d9171d852e7e7c3 13
7724953a7e40c24db1b4c510519f25593b47e058 17
654497240faeaaf491ae9b643a96369f97517c6b 9
dd41072886f4330f8a18990350c041bb9cc4459d 5
075defe3f8be2b7fb28319115a15d76b21580644 6
52d2f38583cf1fa84a84dba1d2453c320f9f0109 10
01448b673179e257bd8cb163173c40510e1faebe 9
b9ba98fa09f84d917e428bfe13325688505ec245 2
8780e36116b415c071f95c6bf642fbc196478c58 8

COMMIT - #Redundant fragments
4bea2aeb6d3740d312137592d95d13484a723a15 1
7f777a2d4760b7057854d6c345946697b1b1a4d4 2
ddbdfb346c8fb064c48905114373d4370f5a2d69 4
28110a72cd253e6850375dea73e5cc5ade394fd8 11
bda95ba0da88f49c7b20c23c52e1dda07dbc2019 1
ea93b0dc7e19e1b8c2fc66a6a55540d89b7fd444 1
cf34e38978bc04fdb1690753891a538a025f83e0 1
90ae9d5e2b3e1a929e1de4af193b6905c6254b8b 5
81a6806bf63582f3144bfe723a58fe4ece0a9802 29
1cda514e7460cb91e09d33b9c5ca5e28f10ea7ea 1
87293e40b7b708b7e020f1d15b7ee01f3a247851 31
81fa564f313fbf9ab7760e3107bcb06917370c62 1
b33386f37ba8415446d6b74aac6b9b2b6af61b2b 42
6f96fd3be87f95249c30c461e3f96500cfd6f48a 11
845587e28fa6c3c38bcc0133b2d9ae6649fd1d47 1
fe4b30de5f80fb858792b088e72d28abf28c160e 1
bbcfd5659ee89014ba829c65e0799441e36f914a 1
2b9ba08592e554d1967b010057d9c7d8e854071e 9
6fbbe497d320043d27f6acbba59bada580201bad 1
5e213212a2e2f2dd824c72dc0ac4dcfd5be0c3ef 4
13660435d2c86ee143fa52acce8178879a773c16 1
426bd217a15e3616d1bf364223ebd11e6a24db32 1
aeca3bd94e87809fe58075c432e0bbec17216670 8
3545ce9840b6bdb091a16c2c62fe74dcd131d2c4 1
16e7e967c20e9448a27239c1671df4753873d29b 67
20f644f4a3b06cc670b6c17fef6bc67daf99700d 67
37670e3aeef82e76c065d403992537e721699e57 3
6a0c8889731b38cc7066b6c3c05427de04d3f27e 2
4d125ff63352a84aff0571485d5af3c2d82c7a42 1
6e3006431ed3da9b8f190103263e9ca2c5ac381d 1
cf61a36c8e452da6a5342aeb1425a5ae4d3ed36b 3
885a71714f76a735cbf182265e2df88428627fb3 2
2a5ebbf678ab1a7bb50c6bb8a105a86d2e3cd9ef 1
23a7c94ac88ed1bc2311a317419e7485d6df3d47 1
c2fb63b969f9d5851bdc3bf46bf2a22fc316616a 12
93c322bea110cdb406c38b3dfe4259518b45d3c1 1
163ae440036ccc591f8b78a0b5a33ed91492cdd4 1
3e5850f0f0e11944b02a53a0cbd04a12260bdf9d 2
12ac41f2913e80db40f000959f16c5451284b3d2 1
03b255e969839ae62bf41b21380ed36b58800259 4
d420837bafda6705eefb9c3da3330a71c05be769 1
a397594ff794f28f9852b4d55717e774e1868926 3
30aa2d05b8689eab3aa5637f0b97c2c8658a2f8f 4
92b1dfa73928e5dee4bef585d29f63c290fab954 1
92a2259bb055b2195ac234a4cb7a0067667bec82 1
141e90c4dbd49b30d6314c8a8fca8af100d6c915 1
ff597fc1c8a9d9bba6911778ae3da67d533fce38 2
d43f5081fc7c12832d8cd942dae4a6031446d74f 8
d74a4ee6e4e082cb05e3be69b0ced5a121529489 6
7999a885f25e315057b4785c324f3abb09e32d6e 255
ae65664f028bcfbe06e617e19de528ae4dabf330 36
acfb8a6c8da9f938524cffb6c04a5c838eda5e8d 1
0b7fec7068ed12ad5153f11c5412a4893f0372e0 4
2b6dc1113c8d76046535e3d188723fe12ec1a7f2 2
20f6194cf1a2082449b9b89994e4355548263ab7 4
d3aeccce36e4f6ffde787e2ff80e4290a0566819 4
e7211252c1abe005758e8ccb17d37f7352951c4b 2
9cfcbe93abad462705e89a42a373254e0c5aee7a 6
a228572273adb5decc75c366f4b05b623ae2ab2b 1
0bccb727fcc66aea5fdb08eeb88c49e225e1be6f 10
79c799fdbd4d410fefc47f70c6adbca31f63ed95 6
85071304fa8cdcb4b72eda6d2107687ab34db4f2 8
5b6004e36fa09674e172256f4822d251e45864da 9
935ea17ba1cef97e5061d6c5a897c31e9547b8b4 1
943fe6bb34f770fb4b5c6cdbed31fe82483e9c4f 91
078f3e610bbc65fc3163fc5061baa7186d8ad599 60
811ab345b07624b08236c386c6611f2559c5a001 603
49b6b1e807f67e2451a7f49b0cbd71bfe583643d 1
2e42a97e9fd77698cf0d302092eed429ea5be573 1
ea8eb485580182526f7cae527df343a317a7eea5 1
cb1cb6678944ebf08e21c73ca5655bea9db2f959 31
798ab03d7cdaccb61b38ea336ecd25d97e70ae8d 1
2fe8e9d92a368e64c1690ac5b49ef636f4ea30c1 1
1357be0fceb050ede4104ba64ea019f6b2889697 1
ea6caa1a3431fdaf960f4e561e574eb57242f1ee 1
17eb23df525e8b287af97220be25c82a00318c07 2
4786eb333b71493100012164a4c25319ba7990f5 22
8e3322455e704104854363125624898afdd2532e 1
b2025e969e403d6624adc22e49726d4c7d34b433 30
061ca3f5cc66d1e8ea94ba29c0bca07e6be7be39 5
fd38178ce51ad40624799d7a0dab6e7bc6cf02fb 1
99b6802805fef5f703473db69db4fea06b8f2b58 1
7544538a2e334eb578fa2b2d9a8576d4e95b3b74 1
b66834002bd301db9f7f67334394d3e77583c6f6 1
32781126d8f3ac8b0678012c719bff9f90c67d5c 9
7cbd45b63f8a3fc48e5bfe9b27892bce8689a602 3
d81a253d19a445262d1469e8f0956ee0c50d88e2 59
62da6bda45f2eaa810b32c6f2b9132abf3f09e91 1
676af4dd7b9912afc09a5adc70ecf6ecfe45eacb 1
25d6aed165192bba00212628c572597e48e4d91c 1
710099c2de683e2defc7fd4703e9f552260fea4d 36
3e88e6fd9d65aa5b77d7be10c2ec092ff2df2711 2
0cce594111c848e6a909d7fe9ee672ac8d40570a 4
1c49718e3a8e8b6130465ab6daefb5219cf7ae94 1
94d9f6078d73da7b18cbe4a7aa818061ccfcd340 1
2ad0671488e203eaa057923b3e11ed6705fbccc4 1
9f4b7a269d900d57dfcc5db112161d02486186b5 1
62ba7f9d5f77258002d8e9027a4bc22574d6ad72 2
77292083aee5b794bb7124dfd18d90cc78d7c5c4 24

COMMIT - #Redundant fragments
697b7ed861fcd76ac20db28d9778391a6f1d7611 3
0faf610fdd727ecff473021ff361cda6aed01340 6
045e16d7630da29e1ac8e06c0778e9affd9a2094 2
29bbb63e9dadf237898a496c4f6a63199abf0b79 2
93a0c0696026297b634bbaf763a013a66f2a11bc 2
e0a0474a9edf4df9af33aee245a2b696c777da2c 7
a90b09ac8289ef959053e0d12b9d5240cab129ed 7
c88eec54658b3cbcd9c6296cda8fe77f0928ea88 3
dc19dfb53ec61e362eb8d23097e7712c35f47e0f 7
08495bc0298babf9c5221a75d86621b341930123 1
4bea2aeb6d3740d312137592d95d13484a723a15 4
7f777a2d4760b7057854d6c345946697b1b1a4d4 7
a53588c36ebfe2847c3ec1a7f279da4e6394a493 2
4649eee6fc9a5efa1253be942d21a239b2a71227 22
d335d990030c7c48f86b53b44ed93d3fe871758f 13
28110a72cd253e6850375dea73e5cc5ade394fd8 32
dcaa226dbe799ec07de7e21627bc840d3090343d 9
dedb00d84062aace09036aa60bc9e242304aca50 1
cc4f2dc4bcd78ab98d9f9751dcd1769bd9709da6 28
ac03580765941e9cb63d7289fd4f9bc9d564a4cc 1
097a759c5caaf97ff447418b051743a6fa950b97 1
65636a12569fe17d3f4f7adc00adc75a59e29944 1
bda95ba0da88f49c7b20c23c52e1dda07dbc2019 3
936620dfc36d88c7312cae6b763cf8fee07214d4 2
f4aea750a54ff02495ac35f22e9ce5284286b057 14
ea93b0dc7e19e1b8c2fc66a6a55540d89b7fd444 1
cf34e38978bc04fdb1690753891a538a025f83e0 1
a7ade4faf85280b170c6e2217ef036d84ec0de54 16
7503e4658b6f37289256f69c37086d369f114ac1 1
90ae9d5e2b3e1a929e1de4af193b6905c6254b8b 28
73633ee316f51fe8d2674a90f488eb74c3ae797d 30
8f9c67e53376a7f92acbc511eca5dc37e9f5f48d 4
25fcb6ea22fcf0345de84d3ba563dc8d7c14ebe8 1
f2324c2f991f64b978d41e3207158a7e564767a1 1
b4649dda44e5d3d60c8bff4aa1e0d4ced30bc470 7
1d1f7573a53214d02656211567194cda6e4c4757 2
79c5fc5ceb514fe9fb811664c7559fa9e1305b95 1
adfb951bb03e45405db04c3aff011636ea7b76ba 16
11ab8ea2d5d93fd775843d32ab71ae45329d88da 16
9e9499a5e1359b8e1936c559620468eb48968694 7
5bfb2a12a875c29b841028acf00c7ee46ae0e485 6
baafd44ce5c51f32b8d5ed2e8196d17d5daf0fc6 35
83e7cd869dbaeeb5653cd26a4406a3ecc7cb6a75 12
1cda514e7460cb91e09d33b9c5ca5e28f10ea7ea 1
2ad9566455a98c15a8884b1462b29dae5c20a3dc 234
f6da1d88bcc2a7e4dcfd67375d5c7ff4f215a1c5 5
87293e40b7b708b7e020f1d15b7ee01f3a247851 95
81fa564f313fbf9ab7760e3107bcb06917370c62 8
b33386f37ba8415446d6b74aac6b9b2b6af61b2b 70
6f96fd3be87f95249c30c461e3f96500cfd6f48a 1
845587e28fa6c3c38bcc0133b2d9ae6649fd1d47 1
fe4b30de5f80fb858792b088e72d28abf28c160e 1
bbcfd5659ee89014ba829c65e0799441e36f914a 1
29b59049275efe692d818dd262f442c67ae44804 2
b8b2d434de426995aa4dd9d563dba3f314d2b05d 618
a1c6ab9df7a3ff00a83c22b6db3ddd946d6a2933 1
e601c220cb579389a22a76f9d240121a89fac6cf 2
fd406ff946fc106a0053f2b78e789f2352562203 10
dee62c7ec6f73284572cc3dcc010c8b1502d6d9c 1
fe6d1254a71a44a71ab893d9fd066839cec490a6 1
fad71cd976e94a76af024f88cdf2bd1f63bc44f1 13
d289a222fe812d7f65cd3fb3eae6daeafda6e30a 5
6fbbe497d320043d27f6acbba59bada580201bad 5
72b342960011d06937a0b4118c42b25dec545083 19
9bea173ad0684cd425c468d55310cccc5a96e8a0 219
5e213212a2e2f2dd824c72dc0ac4dcfd5be0c3ef 13
028649f7a6e74b0592e6133cfd87b842ac197de0 33
5e753105e802077fc2338b724b7e831715d86419 98
c103590f792034d47ef92db48d654cb590f20b2e 11
94798ed54a27ff64b8a1ee971072ab8437c5169b 13
75b7ee81d5490aeb1104707c39e4d4d89491cd78 27
48503714924d94bef112eba9dca7c2a1cc5e4728 11
8ba07f047aa4b62411055044025eccd2cd58b20e 48
13660435d2c86ee143fa52acce8178879a773c16 5
ae7067ec7d703da916f28344ee88f37b44227aba 2
65e154c707dbf7c1069eff911d5f66f33fab7917 1
56244460338fd98b166726334c1388be62c8a3e3 6
e122e326ec52edae0d3932082d2cadf0136ed385 13
5dc09aaf7ccb34edae913051f0e08b99971b66a3 7
4187dac813d06747314fd06cb4c10ec137ee9283 1
ef26bb80f65640fc20dafba8d8b2cae05de8507d 1
cd4524d7e50644d9ea3a7b14a3ccb9c3e1d62100 3
426bd217a15e3616d1bf364223ebd11e6a24db32 1
6e9b97520df945fe08c291adf52922ab196f9233 1
7fbf9acb44b0156d21d2d7073139c4e4346a960d 25
b3367be9712badaacdc6f21a8f61f29d379abce8 1
d8a6a93d106e9df5a7b294c7a913904ee6d7aec6 43
a3ce5ef9917b80f0f8fc93788973fc79a1c70d13 6
38e8d7c5719807886d0978c469d36cdeddb95d74 5
4b739de0b92f85ecafd65f7d658aefb074dcbea7 20
81e5fbd9748747a966c7c3a9c5cc246147f456b1 29
b3a6f32f75ade5ef33b97a626d9ff94965ff25ba 1
53fd4f2d60e8f4367bf565dbb14baccd268941f2 10
4fe890b2b269094c3b60eb9489ff9f43ec9bb63e 10
88c620560a4d713b71b78d1b9f5ec608ac7447b8 11
3f1ab2ac077e3dab9d33d733a7ed1979905cef93 14
8e29de6775770ee5e7a37936d9ce60515e86fa5f 1
e0186f7223c7f944484109e6efeda8d4e3e261d0 1
aeca3bd94e87809fe58075c432e0bbec17216670 25
fdb043dc6944f7c0eae97d449a95ba06cbc59b9d 29
4903013831acec34499887e7f6014471278db5b4 4
ddc795541cf3ff48ac520371e3501e3108c20ec0 6
52a2c36800a71cf9a9447301c856ebcc1132c908 13
3c6393ae962728242556b540c322c0e8973e303b 10
3545ce9840b6bdb091a16c2c62fe74dcd131d2c4 9
383ff33666d7163fbf85b9436628b990549c6d1e 13
479b02772bd0ed67f03ad1d78d08a7ee4e2faec2 6
16e7e967c20e9448a27239c1671df4753873d29b 154
440fc81ab8a6b88349dd9203ab1b8748adb4c7b3 4
ec1499373f9b62b2ae08408e483d4ca404527694 2
7fbe2b195487ad3950d3baa0c09205c418cad952 7
3c863bad2116bd70fc6fb5d434e7bf12f1ad76b7 1
cba47c3ede5ff4a5035204111211b8ade7eb0ceb 6
20f644f4a3b06cc670b6c17fef6bc67daf99700d 154
c18f4c898b87b9c3fc2e2aeb37159a42a16bc79c 9
37670e3aeef82e76c065d403992537e721699e57 5
5774e9c010a48201c4a520483a0b44a70f23303b 12
9ffbfbb4d2b55be3dcabff8ff1be784fd863f708 32
6a0c8889731b38cc7066b6c3c05427de04d3f27e 4
ab4abfb7f644370f53f824e07ec9cd48e15e3b69 2
c8e7ddfe2d94545e41a78a76f5681547704b169a 14
4d125ff63352a84aff0571485d5af3c2d82c7a42 6
1995e0b15d7fe8ae633c88aca8b0237c9f247645 11
6e3006431ed3da9b8f190103263e9ca2c5ac381d 1
9bd90e73e3dd5c9df037f3c3f8ea27b20e0fa4ca 3
cf61a36c8e452da6a5342aeb1425a5ae4d3ed36b 12
885a71714f76a735cbf182265e2df88428627fb3 5
2e8f6c2ba592847534b71430cb5ee83d38444d90 10
251e4cc85f02c59f26ef2a97aa4c57936fe7f5a6 19
2a5ebbf678ab1a7bb50c6bb8a105a86d2e3cd9ef 1
3f9c9d000bf163d239d70b7a7e8f3005ab95ee5a 12
02dee466970b580a5f43a82b0d902df738fea1e1 3
23a7c94ac88ed1bc2311a317419e7485d6df3d47 1
9ef488eaaa153a635d969eaa4bd92035d718e7e4 25
a1d858e57403bd741f7283451551370685f0aebc 11
d2e892396c67446174f80f2d0f9a7dc5c1232237 5
3fdac77946d7129b95d196ed406fa84857e3cc8b 7
3cabd01d694e73f7765d475c92b41e5025ec39c2 1
52a9f298e4f16590add0baf983c75b0cf086f420 1
c2fb63b969f9d5851bdc3bf46bf2a22fc316616a 36
93c322bea110cdb406c38b3dfe4259518b45d3c1 1
b6400c6ea9848e02ae40852ed64dca0413447bb2 13
09ec42ced2caa8673229e1bd9896b2e2c33771ff 8
38ac75578d1a31226fbd62670885ed151480633d 1
d72802de3b60be18ee1ec7acdd1e1172929e4f90 10
163ae440036ccc591f8b78a0b5a33ed91492cdd4 4
0594d5f0dc8346f1b5951114d2d9411f37135791 7
a0ecf019a75b847fafc2d0ce413964ef8314aac0 9
88bcadda73766fe459fb7d9cf385da87c76da345 1
b897bf080ad2a69a62c17749afa3431d507f00f2 12
9fc0f4eebc479c1e01cc0abff977e6cbe4d913ff 18
1e12f6771ed563d793934ebe7b3fcf529cdf1660 4
9ab2734e74db77e73b460afc379c7f75269cbbb8 11
6c227f9c9a41f36ae1ea8f9833e75d3ee87e6fe1 10
b5a1b51cd6f64c2b85b77217e3a6c51360c59e4b 6
3308c98393512a99e1577ee52ac3ad27e8b87784 1
2836c0e20a4269913d45ab35bb4ed6865fb63080 13
9acb4e462ff6afb6115b6dae881ac39639832bcd 46
4332334eac64259c5acf801f67a50e2edc7185a8 3
c066f8b76cde52286b92182e05cee6319a10b37f 2
0f6b569909808d6bf0b5b1686dd9fd10e999869d 4
2b3348873c80e84110b756eca7f1a086108d2bbe 1
3fe9096fc968d65faef2fab0ff5335462a7b3425 5
2da4d0d85ce1e5c29accedeaf0f22b938f08b0de 178
3e5850f0f0e11944b02a53a0cbd04a12260bdf9d 2
12ac41f2913e80db40f000959f16c5451284b3d2 3
42a1d9c06ded8d1bbb40f12c7f9f70252d5be299 1
a165a020c60550ff3fc7a37a9d7c41f6378bc297 10
32f2fd99af76c24b022ddf57af24da489b2d445d 21
a699ce8e892c5e9e914dde1740a3777d84b35cc9 5
eae062dfbc1aec12ee0b76545d5a70b88edc5aac 1
63ecac6e8033bb89a6b8d15d9afeaf01b36b789a 3
03b255e969839ae62bf41b21380ed36b58800259 10
c892a457675f883194681d28ea1688bf166461e3 10
6ae98218d52ad3b877baa03fa4c72785dbba4a7f 7
8a1825f5b7d01f2d4ebc198a342ac78b267fa2ff 3
698014826a4549b23726f0069aa754e7485ffbce 18
6a52a53dbac44fe90a2a9df909a8e8409a466347 6
67c7996042d73878cd656516e61db90b28f9293a 8
858496bff9451efca40018963e601a6d1637b9b5 12
d420837bafda6705eefb9c3da3330a71c05be769 8
a397594ff794f28f9852b4d55717e774e1868926 27
92b1dfa73928e5dee4bef585d29f63c290fab954 7
7817b8477a40ae2831fc76dc2f347c04171da803 6
92a2259bb055b2195ac234a4cb7a0067667bec82 3
c94d9d71d3932eb463a7c160b6ee12584818bf3e 1
141e90c4dbd49b30d6314c8a8fca8af100d6c915 6
1a1b760549cc20413b5a8ea5183945038bdce61e 15
a8e84505356b4e916b4923460ee5adb38745bd44 8
659185206b31a5ee1d50c9800f1f43e403d3fc55 4
de638b7fbab4dfb879d9efb51ffb6241a58986ae 2
86dcb54ec6afeb2ed8e3332e243db749a0d44b2b 12
c0302dcd5557c790c0b48ae73c18c5597fde6fa7 3
f6635bf178fc59eddab7153816b6f76e4573c04b 10
f50529b81f80a1680460d416a8b01155b66afd7b 9
5a48a217031614d92a7662553fba03a1544b140d 10
2231a36c562eb8147cbf3f8279f71e06a205f968 1
854d5783482dfdce8b245542990ed71ed959e037 21
88e1315b10d862df7307b629b2eac4217833d564 1
ff597fc1c8a9d9bba6911778ae3da67d533fce38 5
896701030a2f2ab47c60e07617ea933505664a7e 2
d43f5081fc7c12832d8cd942dae4a6031446d74f 25
372929f76cda47497da882865bbf50218bb0c277 1
dc5c2ae60ebd119ef5e88bfe5ed4c52f661b9739 1
7999a885f25e315057b4785c324f3abb09e32d6e 460
ae65664f028bcfbe06e617e19de528ae4dabf330 55
aca2f29e11f1146b39c88663cd9e5597c76c22fa 14
baf521f7dd4845a5a4cc5845eb30f6a37a394d68 19
ea6704648b57827da66ecf385a737373311fe4b4 48
516c6d479aa2f52b5ddf826068bb538eacdcbc34 58
a4c167d25ebfffbe0c14b728bd28baa43055abad 14
27869ae8c877c9d21e11137bba4912c767988178 36
acfb8a6c8da9f938524cffb6c04a5c838eda5e8d 1
ac180bc598e60dec68bb16a7102a6d3c9b062deb 39
955fcff35eb68dcb4c0a2feaa5c62730f2d90357 10
0b7fec7068ed12ad5153f11c5412a4893f0372e0 10
c55542214cb7d4c2aa6c8274146db002cbfd629c 4
d9ab1565c8e5af89fc1e82ea7b38a27650716fcd 5
e181c509121b6f21eeacb530158ba2755c33832e 4
2b6dc1113c8d76046535e3d188723fe12ec1a7f2 4
20f6194cf1a2082449b9b89994e4355548263ab7 14
ae95c5dfc8c398aa4359a95bf02f02cfcb49f68c 32
251d01eb96b04951362b8f1aaa78b01d34c5b598 54
d3aeccce36e4f6ffde787e2ff80e4290a0566819 14
3e99b43947c79a081cbdd46d866d205b4c4ac538 14
e7211252c1abe005758e8ccb17d37f7352951c4b 14
db7b05d54560644902c2d83d568a55959bbac660 2
e5dccc4b144caa737e2f6a87766e95df330aad45 19
9cfcbe93abad462705e89a42a373254e0c5aee7a 15
a228572273adb5decc75c366f4b05b623ae2ab2b 1
0bccb727fcc66aea5fdb08eeb88c49e225e1be6f 27
79c799fdbd4d410fefc47f70c6adbca31f63ed95 3
c1469be31d9a85eab18a8945bdbef0ec8614fe50 4
85071304fa8cdcb4b72eda6d2107687ab34db4f2 24
943932182707a535e4db0e2847ee1fd56bb544a2 173
530aaa3db01e2851bff500867af047a42f53a0ef 25
5a4a4533440ca84605677065dd562f5d550995a4 14
629e2af7b28428336165f6a0030a2c5b6ad7bac8 1
5b6004e36fa09674e172256f4822d251e45864da 32
8dc9fac19fb48a250bcd40ae3bd5ff76465729d3 35
3e4807f5943b64e9520100637942c3b20930a809 9
f7f80cc975075e04d54b96bd89777e4bf9f90de1 16
abbd9d3d8b7b16aa02f45679753c1e20886bc49f 23
efc2560c755d5391398b4091d7a572bee19c2844 9
943fe6bb34f770fb4b5c6cdbed31fe82483e9c4f 128
8e6a4f1fb8bcbf8f63c5870f21c9e58237f0c34b 1
078f3e610bbc65fc3163fc5061baa7186d8ad599 96
811ab345b07624b08236c386c6611f2559c5a001 927
49b6b1e807f67e2451a7f49b0cbd71bfe583643d 5
ab1f73cee6917839e30114ece8103f131ec8291e 10
887bcc64c1a2854652bd7a140750b039ae9251d7 9
2e42a97e9fd77698cf0d302092eed429ea5be573 1
4311600dc532367e57710ef90a8a55cc2a6ae244 8
c2d71b179a1ed35b13a2f35533831c7cd5dbce3e 3
ea8eb485580182526f7cae527df343a317a7eea5 6
9664266fb15f708dc8927be0097975e85144a727 315
cb1cb6678944ebf08e21c73ca5655bea9db2f959 61
34dc91b2d25505b0abfccba742ab4d59379424f2 4
9ee6769fb4cbe7c1bedae7589aad920a6eff0bee 8
798ab03d7cdaccb61b38ea336ecd25d97e70ae8d 8
2fe8e9d92a368e64c1690ac5b49ef636f4ea30c1 6
1357be0fceb050ede4104ba64ea019f6b2889697 1
ea6caa1a3431fdaf960f4e561e574eb57242f1ee 3
17eb23df525e8b287af97220be25c82a00318c07 19
4786eb333b71493100012164a4c25319ba7990f5 45
8e3322455e704104854363125624898afdd2532e 5
b2025e969e403d6624adc22e49726d4c7d34b433 54
061ca3f5cc66d1e8ea94ba29c0bca07e6be7be39 13
fd38178ce51ad40624799d7a0dab6e7bc6cf02fb 7
46021366bb6e7ea5b6f98d66d0b78b84e4fa1138 6
99b6802805fef5f703473db69db4fea06b8f2b58 6
7544538a2e334eb578fa2b2d9a8576d4e95b3b74 9
b66834002bd301db9f7f67334394d3e77583c6f6 9
fcf05e97b86224a1ea0657933ecdca1eee0895c2 10
f28634aa4fc44104933a4cd1ba953c63627a6fe3 1
609bc85e8c1ca1c321c7cf227b54d25378d42a1a 5
32781126d8f3ac8b0678012c719bff9f90c67d5c 29
7cbd45b63f8a3fc48e5bfe9b27892bce8689a602 4
9eefb54ec68f0a80c95bfbf50ae7580e5e5e3880 1
b6b80ee6262fe2ac7b3ce1032044700c6394cfda 37
bc7ace697b7097329c5f4f7ffb978b0bd7f4dda2 19
d81a253d19a445262d1469e8f0956ee0c50d88e2 99
62da6bda45f2eaa810b32c6f2b9132abf3f09e91 1
676af4dd7b9912afc09a5adc70ecf6ecfe45eacb 3
9b83dcfdbc613a281c1e30d7c148eff4038db25e 24
a9d39fe90fcfad79afd7f817061d815d9a95023c 45
25d6aed165192bba00212628c572597e48e4d91c 4
397e5f50c3313f8c757495beb771d6ed9db92838 4
2009597d4051efbf4860c678946cc93921674f84 1
93b7a36e051535898a0bc8f4818e6bdc2c68be6f 1
1c74f988fd560834de3c1336e1ad10fe3865f2dd 9
710099c2de683e2defc7fd4703e9f552260fea4d 102
e061512ae90467620044363f41a0ecb51d1c35b6 4
5777e4c72d17d3c01842e72b93102040f2d7cf86 1
612f6287fda8178626ba6625b257c790f65de5f8 9
8fa536e6344528b0aa20668ede6b59fe412e7643 4
a85a439da2aa9a68b99f1c1c5f3d858ee46ee193 104
de5a6cb912d4aa6ce58d79b83af3149768bf3a4b 13
9da486143038a74c9b02907e9966d547348df188 2
0cce594111c848e6a909d7fe9ee672ac8d40570a 15
1c49718e3a8e8b6130465ab6daefb5219cf7ae94 5
94d9f6078d73da7b18cbe4a7aa818061ccfcd340 8
2ad0671488e203eaa057923b3e11ed6705fbccc4 8
9f4b7a269d900d57dfcc5db112161d02486186b5 8
62ba7f9d5f77258002d8e9027a4bc22574d6ad72 4
d2e0a33670fdbd35a4046aa6f2fa4e5071eae30f 10
51b058ee10b5e9ff4eba2d337c8da912b3d65c45 2
269f78adefdb4294c1a999a5566a82d0f51b244e 4
eb94ecb378be47166e3ef8cb4ca9e134600af442 408
77292083aee5b794bb7124dfd18d90cc78d7c5c4 59
654497240faeaaf491ae9b643a96369f97517c6b 9
dd41072886f4330f8a18990350c041bb9cc4459d 5
075defe3f8be2b7fb28319115a15d76b21580644 6
b9ba98fa09f84d917e428bfe13325688505ec245 2
8780e36116b415c071f95c6bf642fbc196478c58 8

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of au-
tomated program repair: Fixing 55 out of 105 bugs for $8 each,” in Proceedings of the
34th International Conference on Software Engineering, ICSE "12, (Piscataway, NJ, USA),
pp- 3-13, IEEE Press, 2012.

V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object behavior anoma-
lies,” in Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE 09, (Washington, DC, USA), pp. 550-554, IEEE Computer Society,
2009.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
E. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Ri-
nard, “Automatically patching errors in deployed software,” pp. 87-102, 2009.

Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer, “Code-based automated program
fixing,” in Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ASE "11, (Washington, DC, USA), pp. 392-395, IEEE Computer
Society, 2011.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from
human-written patches,” in Proceedings of the 2013 International Conference on Software
Engineering, ICSE "13, (Piscataway, NJ, USA), pp. 802-811, IEEE Press, 2013.

A. Carzaniga, A. Gorla, N. Perino, and M. Pezze, “Automatic workarounds for web
applications,” in Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE "10, (New York, NY, USA), pp. 237-246, ACM,
2010.

H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact,” Empirical Softw. Engg.,
vol. 10, pp. 405-435, Oct. 2005.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of au-
tomated program repair: Fixing 55 out of 105 bugs for $8 each,” in Proceedings of the
34th International Conference on Software Engineering, ICSE "12, (Piscataway, NJ, USA),
pp- 3-13, IEEE Press, 2012.

135

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

136

K. Pan, S. Kim, and E.]. Whitehead, Jr., “Toward an understanding of bug fix patterns,”
Empirical Softw. Engg., vol. 14, pp. 286-315, June 2009.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program repair
via semantic analysis,” in Proceedings of the 2013 International Conference on Software
Engineering, ICSE 13, (Piscataway, NJ, USA), pp. 772-781, IEEE Press, 2013.

M. Martinez and M. Monperrus, “Mining software repair models for reasoning on the
search space of automated program fixing,” Empirical Software Engineering, pp. 1-30,
2013.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches us-
ing genetic programming,” in Proceedings of the 31st International Conference on Software
Engineering, ICSE "09, (Washington, DC, USA), pp. 364-374, IEEE Computer Society,
2009.

V. Debroy and W. E. Wong, “Using mutation to automatically suggest fixes for faulty
programs,” in Proceedings of the 2010 Third International Conference on Software Testing,
Verification and Validation, ICST "10, (Washington, DC, USA), pp. 65-74, IEEE Computer
Society, 2010.

E. W. Myers, “An o(nd) difference algorithm and its variations,” Algorithmica, vol. 1,
pp- 251-266, 1986.

Z. Xing and E. Stroulia, “Umldiff: An algorithm for object-oriented design differenc-
ing,” in Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE 05, (New York, NY, USA), pp. 54-65, ACM, 2005.

J. I. Maletic and M. L. Collard, “Supporting source code difference analysis,” in Pro-
ceedings of the 20th IEEE International Conference on Software Maintenance, ICSM 04,
(Washington, DC, USA), pp. 210-219, IEEE Computer Society, 2004.

T. Zimmermann, “Fine-grained processing of cvs archives with apfel,” in Proceedings
of the 2006 OOPSLA Workshop on Eclipse Technology eXchange, eclipse 06, (New York,
NY, USA), pp. 16-20, ACM, 2006.

S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine, “Dex: a semantic-
graph differencing tool for studying changes in large code bases,” in 20th IEEE Inter-
national Conference on Software Maintenance, 2004.

I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code evolution using
abstract syntax tree matching,” vol. 30, (New York, NY, USA), pp. 1-5, ACM, May
2005.

B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change distilling: Tree differencing for
fine-grained source code change extraction,” IEEE Transactions on Software Engineering,
vol. 33, pp. 725 =743, nov. 2007.

T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting similar java classes using
tree algorithms,” in Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 06, (New York, NY, USA), pp. 65-71, ACM, 2006.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

B. Fluri and H. C. Gall, “Classifying change types for qualifying change couplings,”
in Proceedings of the 14th IEEE International Conference on Program Comprehension, ICPC
'06, (Washington, DC, USA), pp. 35-45, IEEE Computer Society, 2006.

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. Nguyen, and H. Rajan, “A study of
repetitiveness of code changes in software evolution,” in Automated Software Engineer-
ing (ASE), 2013 IEEE/ACM 28th International Conference on, pp. 180-190, Nov 2013.

B. Fluri, E. Giger, and H. C. Gall, “Discovering patterns of change types,” in Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering,
ASE 08, (Washington, DC, USA), pp. 463—466, IEEE Computer Society, 2008.

B. Livshits and T. Zimmermann, “Dynamine: Finding common error patterns by min-
ing software revision histories,” in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-13, (New York, NY, USA), pp. 296-305, ACM, 2005.

S.Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig, “Is it dangerous to use version
control histories to study source code evolution?,” in ECOOP 2012 — Object-Oriented
Programming (J. Noble, ed.), vol. 7313 of Lecture Notes in Computer Science, pp. 79-103,
Springer Berlin Heidelberg, 2012.

R. Robbes, M. Lanza, and M. Lungu, “An approach to software evolution based on
semantic change,” in In FASE '07: Proceedings of the 10th Conference on Fundamental
Approaches to Software Engineering, pp. 27-41, 2007.

R. Robbes, “Mining a change-based software repository,” in Proceedings of the Fourth In-
ternational Workshop on Mining Software Repositories, MSR 07, (Washington, DC, USA),
pp- 15—, IEEE Computer Society, 2007.

R. Robbes, Of Change and Software. PhD thesis, University of Lugano, 2008.

T. Mens and T. Tourwe, “A declarative evolution framework for object-oriented design
patterns,” in Software Maintenance, 2001. Proceedings. IEEE International Conference on,
pp. 570-579, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1995.

B. S. Baker, “On finding duplication and near-duplication in large software systems,”
in Proceedings of the Second Working Conference on Reverse Engineering, WCRE '95, (Wash-
ington, DC, USA), pp. 86—, IEEE Computer Society, 1995.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 7, pp. 654-670, 2002.

M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of code clone
genealogies,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, 2005.

137

Bibliography

[35] Z.Li,S.Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste and related bugs
in large-scale software code,” IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp- 176-192, 2006.

[36] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 10, (New York, NY, USA), pp. 147-156, ACM, 2010.

[37] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of soft-
ware,” in Proceedings of the 34th International Conference on Software Engineering, ICSE
12, (Piscataway, NJ, USA), pp. 837-847, IEEE Press, 2012.

[38] A. Alali, H. Kagdi, and J. Maletic, “What’s a typical commit? a characterization of
open source software repositories,” in IEEE International Conference on Program Com-
prehension, 2008.

[39] L. Hattori and M. Lanza, “On the nature of commits,” in Automated Software Engineer-
ing - Workshops, pp. 63 =71, sept. 2008.

[40] D. M. German, “An empirical study of fine-grained software modifications,” Empirical
Softw. Engineering, vol. 11, pp. 369-393, Sept. 2006.

[41] A.Hindle, D. M. German, and R. Holt, “What do large commits tell us?: a taxonomical
study of large commits,” in Proceedings of the International Working Conference on Mining
Software Repositories, 2008.

[42] A. Hindle, D. German, M. Godfrey, and R. Holt, “Automatic classication of large
changes into maintenance categories,” in International Conference on Program Compre-
hension, 2009.

[43] B.Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-evolve? on the relation
between source code and comment changes,” pp. 70-79, 2007.

[44] B. Fluri, M. Wiirsch, E. Giger, and H. Gall, “Analyzing the co-evolution of comments
and source code,” Software Quality Journal, vol. 17, no. 4, pp. 367-394, 2009.

[45] A. Mockus and L. Votta, “Identifying reasons for software changes using historic
databases,” in Software Maintenance, 2000. Proceedings. International Conference on,
pp- 120-130, 2000.

[46] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database from ver-
sion control and bug tracking systems,” in Proceedings of the International Conference
on Software Maintenance, ICSM 03, (Washington, DC, USA), pp. 23—, IEEE Computer
Society, 2003.

[47] C.Bird, A. Bachmann, E. Aune,]. Dufty, A. Bernstein, V. Filkov, and P. Devanbu, “Fair
and balanced?: bias in bug-fix datasets,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ESEC/FSE "09, (New York, NY, USA), pp. 121-130,
ACM, 2009.

138

[48] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a bug or an
enhancement?: A text-based approach to classify change requests,” in Proceedings of
the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds, CASCON ’08, (New York, NY, USA), pp. 23:304-23:318, ACM, 2008.

[49] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links between bugs
and changes,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE "11, (New York, NY, USA),
pp. 15-25, ACM, 2011.

[50] A.Murgia, G. Concas, M. Marchesi, and R. Tonelli, “A machine learning approach for
text categorization of fixing-issue commits on cvs,” in Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, 2010.

[51] A.Sureka, S. Lal, and L. Agarwal, “Applying fellegi-sunter (fs) model for traceability
link recovery between bug databases and version archives,” in Proceedings of the 2011
18th Asia-Pacific Software Engineering Conference, APSEC "11, (Washington, DC, USA),
pp- 146-153, IEEE Computer Society, 2011.

[52] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?,” SIG-
SOFT Softw. Eng. Notes, vol. 30, pp. 1-5, May 2005.

[53] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic identification of
bug-introducing changes,” in Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, ASE "06, (Washington, DC, USA), pp. 81-90, IEEE
Computer Society, 2006.

[564] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr., “Mining version archives
for co-changed lines,” in Proceedings of the 2006 International Workshop on Mining Soft-
ware Repositories, MSR 06, (New York, NY, USA), pp. 72-75, ACM, 2006.

[55] R. Purushothaman and D. Perry, “Toward understanding the rhetoric of small source
code changes,” IEEE Transactions on Software Engineering, vol. 31, pp. 511 — 526, june
2005.

[56] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri,
“Challenges in software evolution,” in Principles of Software Evolution, Eighth Interna-
tional Workshop on, pp. 13-22, Sept 2005.

[67] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer and changedis-
tiller,” IEEE Softw., vol. 26, pp. 26-33, Jan. 2009.

[58] J. Bevan, E. J. Whitehead, S. Kim, and M. Godfrey, “Facilitating software evolution
research with kenyon,” ACM SIGSOFT Software Engineering Notes, vol. 30, p. 177, Sept.
2005.

[59] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project memory for
software development,” IEEE Transactions on Software Engineering, vol. 31, pp. 446—465,
June 2005.

[60] A. M. Daniel German, “Automating the measurement of open source projects,” in In
Proceedings of the 3rd Workshop on Open Source Software Engineering, pp. 63—67, 2003.

139

Bibliography

[61] D. E. Knuth, “The errors of tex,” Softw., Pract. Exper., vol. 19, no. 7, pp. 607-685, 1989.

[62] R.Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and M.-
Y. Wong, “Orthogonal defect classification - a concept for in-process measurements,”
IEEE Trans. Software Eng., vol. 18, no. 11, pp. 943-956, 1992.

[63] T.]. Ostrand and E. J. Weyuker, “Collecting and categorizing software error data in
an industrial environment,” Journal of Systems and Software, vol. 4, no. 4, pp. 289-300,
1984.

[64] S. K. Nath, R. Merkel, and M. E. Lau, “On the improvement of a fault classification
scheme with implications for white-box testing,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC 12, (New York, NY, USA), pp. 1123-1130, ACM,
2012.

[65] S. Kim, K. Pan, and E. E.]. Whitehead, Jr., “Memories of bug fixes,” in Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT "06/FSE-14, (New York, NY, USA), pp. 3545, ACM, 2006.

[66] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen, “Recurring
bug fixes in object-oriented programs,” in Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ICSE "10, (New York, NY, USA),
pp- 315-324, ACM, 2010.

[67] V. R. Basili and B. T. Perricone, “Software errors and complexity: An empirical inves-
tigation0,” Commun. ACM, vol. 27, pp. 42-52, Jan. 1984.

[68] R. A. Demillo and A. P. Mathur, “A grammar based fault classification scheme and its
application to the classification of the errors of tex,” tech. rep., Software Engineering
Research Center, Purdue University, 1995.

[69] A. Arcuri, “Evolutionary repair of faulty software,” Appl. Soft Comput., vol. 11,
pp- 3494-3514, June 2011.

[70] M. Harman, U. Ph, and B. E. Jones, “Search-based software engineering,” Information
and Software Technology, vol. 43, pp. 833-839, 2001.

[71] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1989.

[72] The Unified Modeling Language User Guide. Pearson Education, 2005.
[73] B. Meyer, “Applying 'design by contract’,” Computer, vol. 25, pp. 40-51, Oct 1992.

[74] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller, “Automated
fixing of programs with contracts,” in Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA "10, (New York, NY, USA), pp. 61-72, ACM, 2010.

[75] S.Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic programming approach
to automated software repair,” in Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pp. 947-954, ACM, 2009.

140

[76] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search on au-
tomated program repair,” in Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, (New York, NY, USA), pp. 254-265, ACM, 2014.

[77] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object behavior anoma-
lies,” in Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE "09, (Washington, DC, USA), pp. 550-554, IEEE Computer Society,
2009.

[78] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence for adaptive pro-
gram repair: Models and first results,” in Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pp. 356-366, Nov 2013.

[79] X.Mao, Y. Lei, and Y. Qi, “Making automatic repair for large-scale programs more effi-
cient using weak recompilation,” in Proceedings of the 2012 IEEE International Conference
on Software Maintenance (ICSM), ICSM "12, (Washington, DC, USA), pp. 254-263, IEEE
Computer Society, 2012.

[80] Y. Qi, X. Mao, Y. Wen, Z. Dai, and B. Gu, “More efficient automatic repair of large-scale
p 8
programs using weak recompilation,” Science China Information Sciences, vol. 55, no. 12,
pp- 2785-2799, 2012.

[81] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through fault-recorded
testing prioritization,” in Proceedings of the 2013 IEEE International Conference on Soft-
ware Maintenance, ICSM 13, (Washington, DC, USA), pp. 180-189, IEEE Computer
Society, 2013.

[82] J. A.Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist fault
localization,” in Proceedings of the 24th International Conference on Software Engineering,
ICSE '02, (New York, NY, USA), pp. 467-477, ACM, 2002.

[83] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-
localization technique,” in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ‘05, (New York, NY, USA), pp. 273-282, ACM,
2005.

[84] S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing software his-
tory,” in Proceedings of the Fourth International Workshop on Mining Software Repositories,
MSR ‘07, (Washington, DC, USA), pp. 27—, IEEE Computer Society, 2007.

[85] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not., vol. 39, pp. 92—
106, Dec. 2004.

[86] S. S. Heckman and L. Williams, “On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques.,” in ESEM (H. D. Rombach,
S. G. Elbaum, and J. Miinch, eds.), pp. 41-50, ACM, 2008.

[87] S. Lu, Z. Li, E. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench: Benchmarks for evalu-
ating bug detection tools,” in In Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

141

Bibliography

[88] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy, M. Mounteney, and
B. Scholz, “Begbunch: Benchmarking for ¢ bug detection tools,” in ISSTA 2009, DE-
FECTS "09, (New York, USA), pp. 16-20, ACM, 2009.

[89] V. Dallmeier and T. Zimmermann, “Extraction of bug localization benchmarks from
history,” in Proceedings of the Twenty-second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE "07, (New York, NY, USA), pp. 433-436, ACM, 2007.

[90] M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting instances of
code change patterns with ast analysis,” in Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, pp. 388-391, Sept 2013.

[91] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained source code changes
and code churn for bug prediction,” in Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR "11, (New York, NY, USA), pp. 83-92, ACM, 2011.

[92] M. Monperrus and M. Martinez, “CVS-Vintage: A Dataset of 14 CVS Repositories of
Java Software,” tech. rep.

[93] C. Spearman, “The proof and measurement of association between two things,” The
American Journal of Psychology, vol. 15, no. 1, pp. pp. 72-101, 1904.

[94] E. Galton, “Regression towards mediocrity in hereditary stature.,” Journal of the Anthro-
pological Institute of Great Britain and Ireland, pp. 246-263, 1886.

[95] D. of Mathematics of the University of York, “Statistical tables.” http://www.york.
ac.uk/depts/maths/tables/, Last visited: April 9 2013.

[96]]J. Cohen et al., “A coefficient of agreement for nominal scales,” Educational and psycho-
logical measurement, vol. 20, no. 1, pp. 37-46, 1960.

[97]]J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical
data.,” Biometrics, vol. 33, pp. 159-174, Mar. 1977.

[98] F. L. Joseph, “Measuring nominal scale agreement among many raters,” Psychological
bulletin, vol. 76, no. 5, pp. 378-382, 1971.

[99] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic method for
automatic software repair,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 54-72, 2012.

[100] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients already exist? an
empirical inquiry into the redundancy assumptions of program repair approaches,” in
Companion Proceedings of the 36th International Conference on Software Engineering, ICSE
Companion 2014, (New York, NY, USA), pp. 492-495, ACM, 2014.

[101] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE "11, (New York, NY, USA), pp. 1-10, ACM,
2011.

[102] H. Kagdi, M. L. Collard, and]. I. Maletic, “A survey and taxonomy of approaches
for mining software repositories in the context of software evolution,” J. Softw. Maint.
Evol., vol. 19, pp. 77-131, Mar. 2007.

142

http://www.york.ac.uk/depts/maths/tables/
http://www.york.ac.uk/depts/maths/tables/

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

M. Monperrus, “A critical review of "automatic patch generation learned from human-
written patches": Essay on the problem statement and the evaluation of automatic soft-
ware repair,” in Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, (New York, NY, USA), pp. 234-242, ACM, 2014.

E. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic repair of buggy if
conditions and missing preconditions with smt,” in Proceedings of the 6th International
Workshop on Constraints in Software Testing, Verification, and Analysis, CSTVA 2014, (New
York, NY, USA), pp. 30-39, ACM, 2014.

V. Debroy and W. E. Wong, “Combining mutation and fault localization for automated
program debugging,” Journal of Systems and Software, vol. 90, no. 0, pp. 45 — 60, 2014.

Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program repair for evaluating
the effectiveness of fault localization techniques,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA 2013, (New York, NY, USA), pp. 191-
201, ACM, 2013.

R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An evaluation of similarity coeffi-
cients for software fault localization,” in Proceedings of the 12th Pacific Rim International
Symposium on Dependable Computing, PRDC '06, (Washington, DC, USA), pp. 3946,
IEEE Computer Society, 2006.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for re-
gression testing,” Software Engineering, IEEE Transactions on, vol. 27, no. 10, pp. 929—
948, 2001.

Y. Ledru, A. Petrenko, and S. Boroday, “Using string distances for test case priori-
tisation,” in Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE ‘09, (Washington, DC, USA), pp. 510-514, IEEE Computer
Society, 2009.

Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test cases with string
distances,” Automated Software Engg., vol. 19, pp. 65-95, Mar. 2012.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family of
empirical studies,” IEEE Trans. Softw. Eng., vol. 28, pp. 159-182, Feb. 2002.

M. Béna, A Walk Through Combinatorics: An Introduction to Enumeration and Graph The-
ory. World Scientific, 2011.

143

	Introduction
	Context
	Problem
	Thesis Contribution
	Outline
	Publications

	State of the Art
	Definitions
	Studying Software Evolution
	Studying How Source Code Evolves
	Empirical Studies of Commits
	Defining Infrastructures for Software Evolution Analysis
	Study of Bugs and Fixes

	Automatic Software Repair
	Test Suite-based Repair Approaches
	Optimizing Repair Runtime
	Bug Benchmarks and Datasets for Evaluation of Repair Approaches
	Conclusion

	Summary

	Learning from Human Repairs by Mining Source Code Repositories
	A Novel Way to Describe Versioning Transactions using Change Models
	Abstract Syntax Tree Differencing
	Definition of Change Models
	Empirical Evaluation

	Techniques to Filter Bug Fix Transactions
	Slicing Based on the Commit Message
	Slicing Based on the Change Size in Terms of Number of AST Changes
	Do Small Versioning Transactions Fix Bugs?

	Learning Repair Models from Bug Fix Transactions
	Methodology
	Empirical Results
	Discussion

	Defining a Repair Model of Bug Fix Patterns
	Defining Bug Fix Patterns
	A Novel Representation of Bug Fix Patterns based on AST changes.
	Defining the Importance of Bug Fix Patterns
	An Novel Algorithm to Identify Instances of Commit Patterns from Versioning Transactions
	Evaluating the Genericity of the Pattern Specification Mechanism
	Evaluating the Accuracy of AST-based Pattern Instance Identifier
	Learning the Abundance of Bug Fix Patterns
	Discussion

	Recapitulation

	Two Strategies to Optimize Search-based Software Repair
	Adding Probabilities to the Search Space to Optimize the Space Navigation
	Decomposing Repair Search Space
	A Strategy to Optimize Shaping Space Navigation
	Evaluation
	Summary

	Reducing Synthesis Search Space for Software Redundancy-based Repair
	Software Redundancy-based Repair Approaches
	Defining Search Spaces for Redundancy-based Repair Approaches
	A Strategy to Reduce the Size of the Redundancy-based Synthesis Search Space
	Definition of Evaluation Procedure
	Empirical Results
	Summary

	Conclusion

	 A Unified Repair Framework for Unbiased Evaluation of Repair Approaches
	Defining Defect Datasets for Evaluating Repair Approaches
	Defining a Defect Class
	Bias in Evaluation Datasets
	A Methodology to Define Defect Datasets
	Methodology Implementation
	Dataset of If Condition fixing Defects

	A Repair Framework for Fixing If Condition Defects
	Repair Approaches that Target If Condition Defects
	A Repair Framework to Replicate Repair Approaches
	Summary

	Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects
	Measures
	Evaluation Goals
	Evaluation Protocol
	Evaluation Results
	Summary

	Conclusion

	Conclusion and Perspectives
	Summary
	Future Directions
	Study of Software Evolution
	Repair Approaches Design
	Datasets and Repair Approaches Evaluations

	Mining Software Repair Models for Reasoning on the Search Space of Automated Program Fixing
	Mathematical Formula for Computing the Median Number of Repair of MCShaper
	Empirical results
	Bug Fix Survey Summary

	Measuring Software Redundancy
	Dataset
	Temporal Redundant commits

	Bibliography

