Mise en forme par extrusion de supports de catalyseurs à base d’alumine et à microstructure multi-échelles: Effet de la composition granulaire et du liant sur les propriétés des matériaux
Stefania Cassiano Gaspar

To cite this version:

HAL Id: tel-01077955
https://tel.archives-ouvertes.fr/tel-01077955
Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mise en forme par extrusion de supports de catalyseurs à base d'alumine et à microstructure multi-échelles : effet de la composition granulaire et du liant sur les propriétés des matériaux
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés

Table de matières

Introduction ... 6

Chapitre I : Étude bibliographique ... 9
1.1. Catalyseurs hétérogènes ... 11
1.1.1. Catalyseurs d'hydrotraitement ... 12
1.1.2. Procédé de mise en forme par extrusion .. 14
 1.1.2.1. Malaxage ... 15
 1.1.2.2. Extrusion ... 20
 1.1.2.3. Séchage ... 22
 1.1.2.4. Calcination ... 23
1.1.3. Supports traditionnels d'alumine (α-Al$_2$O$_3$) ... 24
 1.1.3.1. Généralités sur la boehmite et les alumines de transition ... 24
 1.1.3.2. Mise en forme de la boehmite pour l'obtention de supports d'alumine 27
1.2. Développement de nouveaux supports à microstructure multi-échelles 36
 1.2.1. Définition du matériau cible .. 36
 1.2.2. Choix d'un nouveau liant ... 38
 1.2.2.1. Classification des liants .. 38
 1.2.2.2. Critères de choix .. 39
 1.2.2.3. Domaines d'utilisation du phosphate d'aluminium comme liant 40
 1.2.2.4. Aspects chimiques des phosphates d'aluminium .. 42
 1.2.3. Exemples de matériaux à microstructure multi-échelles ... 46
 1.2.4. Généralités sur l'empilement granulaire ... 48
 1.2.4.1. Mélange monomodal ... 48
 1.2.4.2. Mélange bimodal ... 49
 1.2.4.3. Facteurs qui influencent l'empilement .. 52
1.3. Bilan ... 53

Chapitre II : Procédures expérimentales et Techniques de caractérisation ... 55
2.1. Stratégie expérimentale .. 56
 2.1.1. Malaxage ... 57
 2.1.2. Extrusion ... 62
 2.1.3. Séchage ... 62
 2.1.4. Calcination ... 63
2.2. Techniques de caractérisation ... 63
 2.2.1. Poudres .. 63
 2.2.1.1. Granulométrie à diffraction laser .. 63
 2.2.1.2. Microscopie électronique à balayage (observation directe) ... 63
 2.2.1.3. Microscopie électronique en transmission ... 64
 2.2.1.4. Diffraction des rayons X ... 64
 2.2.1.5. Physisorption d'azote ... 64
 2.2.1.6. Porosimétrie au mercure ... 65
 2.2.1.7. Micro-tomographie aux rayons X .. 65
 2.2.1.8. Mesures de compacité ... 66
 2.2.2. Pâtes ... 68
 2.2.2.1. Propriétés rhéologiques .. 68
 2.2.2.2. Propriétés texturales .. 78
 2.2.3. Extrudés ... 81
 2.2.3.1. Microscopie électronique à balayage (sections polies) .. 81
 2.2.3.2. Test d'écrasement grain-à-grain (EGG) .. 83
 2.2.3.3. Test de flexion 3 points .. 85
<table>
<thead>
<tr>
<th>Chapitre III : Empilement de poudres</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Poudres d'alumine</td>
<td>88</td>
</tr>
<tr>
<td>3.1.2. Caractérisation des alumines à l'échelle des cristallites</td>
<td>89</td>
</tr>
<tr>
<td>3.1.2.1. Structure cristalline et morphologie des cristallites</td>
<td>89</td>
</tr>
<tr>
<td>3.1.2.2. Mésoporosité</td>
<td>91</td>
</tr>
<tr>
<td>3.1.3. Caractérisation des alumines à l'échelle micrométrique</td>
<td>93</td>
</tr>
<tr>
<td>3.1.3.1. Morphologie et distribution granulométrique</td>
<td>93</td>
</tr>
<tr>
<td>3.1.3.2. Macroporosité</td>
<td>96</td>
</tr>
<tr>
<td>3.1.3.3. Empilement de poudres seules</td>
<td>100</td>
</tr>
<tr>
<td>3.2. Mélanges de poudres d'alumine</td>
<td>103</td>
</tr>
<tr>
<td>3.2.1. Caractérisation à l'échelle des cristallites nanométriques</td>
<td>103</td>
</tr>
<tr>
<td>3.2.1.1. Mésoporosité</td>
<td>103</td>
</tr>
<tr>
<td>3.2.2. Caractérisation à l'échelle des granules micrométriques</td>
<td>105</td>
</tr>
<tr>
<td>3.2.2.1. Distribution granulométrique</td>
<td>105</td>
</tr>
<tr>
<td>3.2.2.2. Macroporosité</td>
<td>107</td>
</tr>
<tr>
<td>3.2.2.3. Empilement de mélanges de poudres</td>
<td>111</td>
</tr>
<tr>
<td>3.3. Conclusions</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre IV : Liants</th>
<th>119</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Caractérisation du précurseur d'aluminium (Pural SB3)</td>
<td>121</td>
</tr>
<tr>
<td>4.2. Boehmite peptisée et neutralisée (AlOOH)</td>
<td>125</td>
</tr>
<tr>
<td>4.2.1. Démarche expérimentale</td>
<td>125</td>
</tr>
<tr>
<td>4.2.2. Effet du taux d'acide</td>
<td>126</td>
</tr>
<tr>
<td>4.2.3. Effet du taux de neutralisation</td>
<td>131</td>
</tr>
<tr>
<td>4.3. Phosphate d'aluminium (AlPO)</td>
<td>140</td>
</tr>
<tr>
<td>4.3.1. Démarche expérimentale</td>
<td>140</td>
</tr>
<tr>
<td>4.3.2. Choix de la formulation</td>
<td>140</td>
</tr>
<tr>
<td>4.3.3. Caractérisation de la structure cristalline</td>
<td>142</td>
</tr>
<tr>
<td>4.3.3.1. Liant séché et calciné</td>
<td>142</td>
</tr>
<tr>
<td>4.3.3.2. Suivi de la transition de phase</td>
<td>144</td>
</tr>
<tr>
<td>4.3.4. Propriétés texturales</td>
<td>156</td>
</tr>
<tr>
<td>4.3.5. Microstructure</td>
<td>156</td>
</tr>
<tr>
<td>4.4. Conclusions</td>
<td>159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre V : Matériaux à microstructure multi-échelles</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Choix du ratio S/L de la teneur en liant</td>
<td>163</td>
</tr>
<tr>
<td>5.1.1. Critères de sélection</td>
<td>163</td>
</tr>
<tr>
<td>5.1.1.1. Ratio S/L</td>
<td>163</td>
</tr>
<tr>
<td>5.1.1.2. Teneur en liant</td>
<td>163</td>
</tr>
<tr>
<td>5.1.2. Conditions optimales</td>
<td>164</td>
</tr>
<tr>
<td>5.1.2.1. Optimisation du ratio S/L</td>
<td>165</td>
</tr>
<tr>
<td>5.1.2.2. Optimisation de la teneur en liant</td>
<td>167</td>
</tr>
<tr>
<td>5.2. Caractérisation du P et de la structure cristalline des supports Al₂O₃ + AlPO</td>
<td>170</td>
</tr>
<tr>
<td>5.2.1. Cartographie du P</td>
<td>170</td>
</tr>
<tr>
<td>5.2.2. Analyse quantitative de la teneur en P</td>
<td>172</td>
</tr>
<tr>
<td>5.2.3. Analyse de la structure cristalline des supports AlPO + Al₂O₃</td>
<td>173</td>
</tr>
<tr>
<td>5.2.4. Discussion</td>
<td>174</td>
</tr>
<tr>
<td>5.3. Effet de l'empilement sur le procédé de mise en forme</td>
<td>176</td>
</tr>
<tr>
<td>5.4. Effet de l'empilement sur les propriétés du support</td>
<td>178</td>
</tr>
<tr>
<td>5.4.1. Microstructure</td>
<td>178</td>
</tr>
<tr>
<td>5.4.2. Mésoporosité</td>
<td>188</td>
</tr>
<tr>
<td>5.4.3. Macroporosité</td>
<td>190</td>
</tr>
<tr>
<td>5.4.4. Tenue mécanique</td>
<td>192</td>
</tr>
<tr>
<td>5.4.4.1. Écrasement grain à grain (EGG)</td>
<td>192</td>
</tr>
<tr>
<td>5.4.4.2. Flexion trois points</td>
<td>195</td>
</tr>
</tbody>
</table>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar, [2013], INSA de Lyon, tous droits réservés
5.5. Conclusion .. 199

Conclusion générale et Perspectives .. 202

Annexe A... 208
Définition des entités du milieu granulaire ... 208
Annexe B... 210
Détermination du facteur critique d'intensité de contrainte (K_{IC}).. 210
Annexe C... 212
Quantification des différentes phases cristallines du liant "AlPO" calciné.. 212
Annexe D... 216
Analyse de la structure cristalline formée par réaction entre Al_{2}O_{3} et H_{3}PO_{4}............................. 216

Références bibliographiques ... 218

Résumé: .. 226

Abstract: .. 226
Introduction

Les opérations de raffinage des coupes pétrolières visent à améliorer leur qualité et à obtenir les bases des produits d'intérêt commercial. En particulier, les procédés d'hydrotraitement permettent d'éliminer les impuretés telles que le soufre, l'azote et les métaux et, d'augmenter le ratio H/C par hydorgénation des composés insaturés (oléfines et aromatiques). Il s'agit de procédés qui mettent en œuvre des catalyseurs spécifiques afin que les produits soient en accord avec les spécifications légales et environnementales.

Les catalyseurs d'hydrotraitement sont, généralement, constitués d'une phase active métallique dispersée sur un support poreux d'alumine. Les propriétés texturales du support (volume poreux, taille de pores et surface spécifique) doivent être adaptées aux caractéristiques de coupes à traiter (coupes légères ou lourdes) et la tenue mécanique doit être suffisamment importante pour résister aux différentes sollicitations au cours du remplissage et l'utilisation des réacteurs (compression, attrition et cisaillement). Ces caractéristiques sont notamment apportées par le support.

Traditionnellement, ces matériaux se présentent sous forme d'objets millimétriques issus de la mise en forme de pâtes de boehmite par malaxage-extrusion. Les extrudés crus humides sont séchés et, ensuite, calcinés à des températures voisines à 600°C de manière à permettre la transformation topotactique de la boehmite en alumine gamma (γ-Al₂O₃). La microstructure de ces matériaux est alors constituée d'agrégats nanométriques de cristallites ou bien mélangés avec de granules micrométriques issues de la sous-peptisation de la boehmite avec l'acide lors du malaxage.

Ce travail de thèse s'intéresse alors à développer de nouveaux supports dont la microstructure est fondée sur l'empilement hiérarchique et maîtrisé de petites et grosses granules d'alumine poreuses assemblées par un liant. Ce type de microstructure multi-échelles est rencontré, par exemple, dans les bétons à hautes performances (BHP) pour laquelle la cohésion de l'empilement de granulats (graviers, sable et fumée de silice) est rassemblée par le ciment.

L'empilement granulaire optimisé est connu pour apporter de bonnes résistances mécaniques du fait des compacités élevées et donc de la minimisation de la porosité inter-granulaire. Par ailleurs, la maîtrise de l'agencement de petites et grosses granules permet de minimiser la teneur en liquide utilisée dans la formulation tout en gardant une bonne fluidité qui est attribuée à l'effet de roulement à billes. Dans le cas des BHP notamment, l'emploi
d'une population d'ultra fines permet de minimiser le ratio eau/ciment (E/C) et de garder des propriétés d'écoulement adaptées à leur mise en œuvre.

Dans ce contexte, il nous est apparu intéressant de transposer ce concept à la préparation de matériaux pour la catalyse pour lesquels les propriétés d'écoulement à la mise en forme et les propriétés finales des supports doivent être optimales. Par ailleurs, on s'intéresse à avancer dans la compréhension de l'effet du type de liant utilisé sur leur mode d'interaction avec les granules d'alumine permettant d'assurer la cohésion de l'empilement et la solidité du support.

Le manuscrit s'articule ainsi en cinq chapitres :

Le premier présente une étude bibliographique qui nous permettra d'acquérir des renseignements généraux sur les catalyseurs et, principalement, sur les catalyseurs d'hydrotraitement classiques (application catalytique première envisagée) et leur mode de préparation. Dans un deuxième temps, on définit les caractéristiques du matériau cible. Deux liants aux compositions chimiques, propriétés structurales et texturales très distinctes seront utilisés dans la mise en forme de ces nouveaux matériaux. Il s'agit d'un liant traditionnel, la boehmite peptisée et d'un liant plus original, le phosphate d'aluminium. Les critères de choix de ce dernier liant et les motivations sont également abordées dans la deuxième partie de l'étude bibliographique. Ensuite, on présente quelques exemples de matériaux à microstructure multi-échelles dans différents domaines et ce qu'elle peut les apporter. Enfin, les généralités sur l'empilement granulaire sont reportées ce qui nous permettra d'avoir les bases sur l'agencement de populations de différentes tailles.

Le deuxième chapitre aura pour but d'exposer la stratégie expérimentale adoptée, les procédures et les diverses techniques de caractérisations employées permettant de caractériser le milieu granulaire sec à l'état de poudre, les pâtes humides à l'issue du malaxage et les propriétés microstructurales, texturales et mécaniques des matériaux finaux.

Le troisième chapitre est dédié uniquement aux poudres d'alumine. On présente les critères de choix de ces matières premières, leurs propriétés et les résultats de l'étude sur l'empilement de ces poudres en réalisant une comparaison entre la compacité expérimental et le modèle de Furnas (1928) (un des pionniers à établir les bases mathématiques de l'empilement granulaire).

Le quatrième chapitre est dédié uniquement aux deux liants : la boehmite et le phosphate d'aluminium. Les deux liants étant très distinctes, nous avons établi des démarches adaptées à leurs caractéristiques afin de choisir la formulation la mieux adaptée à la mise en forme des nouveaux matériaux. La boehmite conduisant à un liant poreux après calcination (alumine γ),
nous sommes intéressés à réaliser une étude qui couple les propriétés rhéologiques de pâtes de boehmite à leurs propriétés texturales et à celles obtenues après calcination. Le choix de la formulation sera alors un compromis entre la rhéologie adaptée à la mise en forme et la texture. En revanche, le phosphate d'aluminium étant un liant non-poreux, nous nous sommes plutôt intéressés à caractériser ses propriétés structurales et, notamment, ses changements de phase cristalline en fonction de la température. La formulation de ce liant est choisie à partir des informations issues de la littérature.

Enfin, le dernier chapitre est dédié aux matériaux à microstructure multi-échelles. On s'intéresse alors à évaluer l'effet combiné de l'empilement maîtrisé de granules d'alumine et du liant utilisé sur le procédé de mise en forme (couple de malaxage et pression d'extrusion), l'aspect de la microstructure, les propriétés texturales et mécaniques des supports. L'objectif est de conclure sur la faisabilité de ce type de matériau pour la catalyse et ce que la microstructure multi-échelles peut apporter particulièrement à ce domaine.
Chapitre I : Étude bibliographique
Chapitre I

Étude bibliographique

Le développement de nouveaux supports de catalyseur à microstructure multi-échelles nécessite une revue bibliographique de domaines très variés. L'originalité de ce travail repose sur la création de nouveaux matériaux pour la catalyse inspirés du concept de l'empilement maîtrisé de granules de différentes tailles. Ce concept est retrouvé, par exemple, dans la formulation des bétons à hautes performances et dans la fabrication de pièces céramiques.

L'étude bibliographique présente ainsi une synthèse des points indispensables à l'établissement d'une démarche scientifique adaptée pour mener à la préparation de ces nouveaux supports.

Dans un premier temps, nous présentons le contexte d'utilisation de ces matériaux ainsi que quelques généralités sur l'application catalytique envisagée, à savoir, l'hydrotraitement (HDT) des coupes pétrolières. Ensuite, on s'intéresse au procédé de mise en forme par extrusion avec ses différentes étapes car la forme des supports utilisés dans les opérations d'HDT est généralement cylindrique.

Dans la deuxième partie de ce chapitre, nous nous concentrons sur les caractéristiques du matériau cible. D'abord, nous présentons le concept souhaité et les justifications guidant sa transposition à des matériaux pour la catalyse. Ensuite, l'étude bibliographique se poursuit de manière à acquérir les informations sur un "nouveau" liant potentiel à employer dans la mise en forme de supports de catalyseurs.

Les bénéfices des microstructures multi-échelles dans les domaines du génie civil et des céramiques sont présentés ainsi que les bases sur l'empilement granulaire nécessaires afin de comprendre comment les populations de différentes tailles peuvent s'organiser.

Enfin, le bilan final résume les principaux points abordés.
1.1. Catalyseurs hétérogènes

Un catalyseur est défini comme étant un composé capable d'accélérer une réaction chimique sans apparaître dans les produits finaux. Les catalyseurs existants peuvent être divisés en trois grandes familles selon le domaine d'utilisation, à savoir : ceux destinés aux opérations de raffinage du pétrole (ex.: hydrotraitement, hydrocraquage…), ceux utilisés dans le contrôle de l'émission de polluants (ex.: pots catalytiques d'automobiles) et ceux employés dans les réactions nécessaires à la production chimique (ex.: réactions de polymérisation, oxydation…).

Les catalyseurs solubles dans le milieu réactionnel sont désignés comme catalyseurs homogènes, tandis que ceux qui constituent une phase différente de la phase réactionnelle sont les catalyseurs hétérogènes. Ces derniers sont les matériaux d'intérêt de cette étude.

Les catalyseurs hétérogènes sont constitués d'une phase active dispersée dans la porosité d'un support solide. La phase active est généralement constituée d'un métal choisi selon le type de réaction et le support poreux est souvent à base d'oxydes. La texture du support doit permettre une bonne dispersion de la phase active et assurer la diffusion des réactifs et produits entre le milieu réactionnel (liquide ou gazeux) et les sites actifs (Figure 1.1).

Les propriétés fondamentales d'un catalyseur sont définies en termes d'activité (grande activité = productivité élevée), de sélectivité (obtention de bons rendements du produit désiré et limitation des réactions secondaires ou parasites) et de stabilité (durée de vie).

D'autres propriétés dites techniques sont nécessaires afin que les catalyseurs soient intéressants d'un point de vue industriel. Il s'agit de la processabilité (la formule mise au point au laboratoire doit être extrapolable à l'échelle industrielle), de la résistance thermique (régénération par brûlage), de la résistance mécanique (attrition, cisaillement et compression) et bien sûr, le coût.
La morphologie et la taille des catalyseurs sont choisies en fonction de l'application et du type de réacteur (Figure 1.2 et Tableau 1.1). Le meilleur choix est conditionné par l'hydrodynamique, par les limitations des transferts de masse et de chaleur, et par la perte de charge au sein du réacteur.

![Figure 1.2 – Différentes morphologies de catalyseurs.](image)

<table>
<thead>
<tr>
<th>Forme</th>
<th>Mise en forme</th>
<th>Diamètre</th>
<th>Réacteur</th>
<th>Exemple d'application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poudre</td>
<td>Atomisation</td>
<td>10 - 700 µm</td>
<td>lit fluidisé</td>
<td>craquage catalytique</td>
</tr>
<tr>
<td>Pastille</td>
<td>Pressage</td>
<td>1 – 10 mm</td>
<td>lit fixe</td>
<td>oxydation sélective</td>
</tr>
<tr>
<td>Extrudés</td>
<td>Extrusion</td>
<td>0,7 – 5 mm</td>
<td>lit fixe</td>
<td>Hydrotraitement</td>
</tr>
<tr>
<td>Billes</td>
<td>Egouttage</td>
<td>1 – 3 mm</td>
<td>lit mobile</td>
<td>reformage catalytique</td>
</tr>
<tr>
<td>Granules</td>
<td>Granulation</td>
<td>1,5 – 8 mm</td>
<td>lit fixe</td>
<td>hydrogénation sélective, adsorbants</td>
</tr>
</tbody>
</table>

Dans le cadre de cette thèse, nous nous sommes intéressés particulièrement au développement de nouveaux supports destinés à la préparation de catalyseurs d'hydrotraitement.

1.1.1. Catalyseurs d'hydrotraitement

Le pétrole brut est soumis à une opération de distillation atmosphérique qui permet de séparer les différentes coupes pétrolières en fonction de leur température d'ébullition. Ensuite, les unités de raffinage permettent d'améliorer la qualité de ces coupes et d'obtenir les bases des produits d'intérêt commercial tels que le GPL, les carburants, les fuels entre autres (Figure 1.3). Ces unités mettent en jeu des catalyseurs adaptés afin que les caractéristiques des produits soient en accord avec les spécifications légales et environnementales.
Les procédés d'hydrotraitement (HDT) sont les opérations de raffinage qui, au moyen d'un traitement catalytique et sous pression d'hydrogène, visent à éliminer les impuretés (soufre, azote, métaux) présentes dans les coupes pétrolières et à augmenter le rapport hydrogène/carbone par hydrogénation des composés insaturés (ex.: oléfines et aromatiques).

Les catalyseurs d'hydrotraitement sont constitués d'un support d'alumine poreuse sur laquelle est déposée la phase active. Cette-ci est constituée de sulfures métalliques des groupes VIB (Mo, W) promus par les sulfures des métaux des groupes VIIIB (Ni, Co principalement). Les divers couples possibles (CoMo, NiMo, CoW, NiW) sont choisis en fonction de la réaction recherchée.

L'alumine et, plus précisément, l'alumine gamma (γ-Al_2O_3) est traditionnellement utilisée dans la préparation de supports de catalyseurs d'HDT. Outre son prix abordable, différentes propriétés texturales comme la surface spécifique, le volume et la taille des pores peuvent être optimisées notamment en fonction des conditions de synthèse et de mise en forme des précurseurs d'alumine. Les propriétés texturales du support doivent être adaptées aux
Caractéristiques des coupes pétrolières à traiter et la variété d'alumines disponibles justifie l'intérêt de cet oxyde comme support de catalyseur [Oberlander, 1984 ; Wefers, 1990].

Dans le cas des coupes légères, les supports d'alumine γ-Al₂O₃ présentant une surface spécifique élevée et une porosité prédominante dans le domaine des méso pores (2 à 50 nm) sont préférés du fait d'une meilleure dispersion de la phase active au sein des pores.

En revanche, dans le traitement des coupes lourdes, afin d'éviter l'obstruction des pores par les grosses molécules, un support à la fois méso poreux (pores entre 2 à 50 nm) et macro poreux (pores > 50 nm) est plus adapté.

En outre, la pureté de l'alumine constituant le support est aussi un paramètre à prendre en compte. En effet, la présence d'impuretés inorganiques comme les métaux alcalins et alcalino-terreux, est nuisible à la qualité de l'imprégnation des sels précurseurs de la phase active et réduit, par ailleurs, l'acidité du support [Le Page, 1978].

Les catalyseurs d'hydrotraitement se présentent traditionnellement sous forme d'extrudés millimétriques qui sont adaptés aux réacteurs de type lit fixe. Compte-tenu des conditions opératoires très sévères (T = 320 à 420°C et P = 20 à 200 bar), il est nécessaire que ces catalyseurs présentent de bonnes résistances thermiques et mécaniques qui sont apportées majoritairement par le support.

1.1.2. Procédé de mise en forme par extrusion

L'extrusion est le procédé de mise en forme le plus répandu dans la préparation de supports de catalyseurs pour l'HDT [Le Page, 1978 ; Euzen et al., 2002]. Il s'agit d'une technique de mise en forme par "voie plastique" pour laquelle une pâte (matière malléable) est forcée à traverser une filière de laquelle elle sort sous la forme d'un profilé continu appelé extrudé. Cette technologie présente l'avantage de fournir des extrudés de diamètre précis et maîtrisé dont la forme est acquise via la géométrie de la filière utilisée (cylindrique, trilobée, multilobée…). Ce procédé met en jeu quatre étapes principales : le malaxage des réactifs de manière à obtenir un mélange plastique et homogène, l'extrusion de la pâte obtenue pour obtenir la forme souhaitée, le séchage des pièces crues pour évaporer l'eau et enfin la calcination à haute température pour conférer les propriétés texturales et mécaniques voulues aux supports (Figure 1.4). Les extrudés obtenus sont de l'ordre de 3 à 6 mm de longueur.
Les sections suivantes présentent, dans un premier temps, les caractéristiques générales de chacune des étapes de mise en forme par extrusion. Ensuite, on aborde spécifiquement la préparation de supports d'alumine destinés aux catalyseurs d'hydrotraitement.

1.1.2.1. Malaxage

Le malaxage consiste à obtenir un mélange pâteux et homogène à partir de l'assemblage d'une poudre avec un liquide via un processus d'agglomération en voie humide. Les mouvements des pâles du malaxeur ont pour effet d'homogénéiser le liquide additionné mais également d'induire la rencontre des granules humidifiées de la poudre qui vont alors pouvoir s'agglomérer progressivement au cours du malaxage. Ainsi, le mouillage de la poudre associé au cisaillement lors du malaxage se traduit par un changement d'échelle du milieu de départ comme schématisé sur la figure 1.5.
Conformément à la description d'Iveson et al. (2001), le mouillage de la poudre va entraîner la formation des nuclei dont la taille dépend de celle des granules de la poudre et de celle des gouttes du liquide ainsi que du mode de distribution du liquide à la surface des granules. Généralement, les nuclei formés sont de taille micrométrique [Wildeboer, 2005]. Les nuclei vont ensuite s'associer par coalescence afin de générer des agglomérats dont la taille caractéristique s'étend de plusieurs centaines de microns à quelques millimètres. Au cours de la formation des nuclei et des agglomérats, le milieu se présente sous la forme d'un ensemble composé d'éléments discrets (régime d'agglomérats). Une continuité apparaîtra à des teneurs en liquide plus importantes permettant la formation d'une pâte (régime pâteux). L'échelle caractéristique de la pâte dépend de la taille de la cuve du malaxeur et de l'intensité du cisaillement généré. Pour un malaxeur de laboratoire alimenté avec des quantités inférieures au kilogramme, les morceaux de pâte sont de l'ordre du centimètre.

Dans ce travail on s'intéresse particulièrement à ce régime pâteux afin d'obtenir une matière malléable adaptée à une mise en forme par extrusion. Les paragraphes suivants décrivent les différents régimes de mouillage rencontrés lorsqu'une poudre est mise en contact avec un liquide et ce, sous cisaillement, jusqu'à la formation d'une pâte.

Régimes de mouillage :

La pâte est formée par saturation du milieu granulaire par le liquide en remplaçant le volume de gaz présent dans la porosité de la poudre [Schulze, 2008]. La saturation du milieu granulaire évolue en fonction de la teneur en liquide et peut être divisée en 5 régimes de mouillage comme illustré sur la figure 1.6 [Newitt et Conway-Jones, 1958 ; York et Rowe, 1994].
Lors du malaxage, le liquide est additionné progressivement à la poudre ce qui permet le mouillage et la nucléation des granules. Il s'agit de mettre le liquide en contact avec la poudre sèche et de le distribuer de façon homogène ce qui entraîne la formation des nuclei initiaux. Cette opération se produit dans le régime pendulaire dans lequel la quantité de liquide à la surface des granules forme des ponts liquides (ponts pendulaires) aux points de contact entre les granules (Figure 1.6).

Selon la taille des gouttes, deux mécanismes de nucléation peuvent avoir lieu. Si la taille des gouttes est supérieure à celle des granules, la nucléation se fait par immersion des granules dans le liquide. En revanche, lorsque la taille des gouttes est inférieure à celle des granules, la nucléation se fait par distribution des gouttes à la surface des granules. Les nuclei sont alors formés par collision des granules mouillées entre elles.

Dans le régime funiculaire, la majorité des points de contact entre les granules sont déjà reliés par des ponts liquides et la porosité inter-granulaire des agglomérats formés dans le régime précédent est progressivement remplie par le liquide introduit (Figure 1.6).

Dans le régime capillaire, la porosité du système granulaire est complètement saturée par le liquide (Figure 1.6). Le liquide introduit forme des nouveaux ponts liquides entre tous les agglomérats. Il y a la formation d'un agglomérat unique au sein duquel toutes les interfaces coalescent au fur et à mesure que la quantité de liquide augmente.

Quand le volume de liquide ajouté est supérieur au volume poreux initial, on atteint le régime de la goutte ("droplet"). Si le liquide n'est pas mouillant vis-à-vis de la poudre, il peut exister un régime de pseudo-goutte ("pseudo-droplet") pour lequel de l'air est emprisonné à l'intérieur (Figure 1.6).

Figure 1.6 – Différents régimes de mouillage d'un milieu granulaire.
Au début du malaxage, la quantité de liquide est encore suffisamment faible pour former de ponts (I – Figure 1.7). Ensuite, à l'état II, la quantité de liquide additionnée est plus importante et on rentre dans le régime pendulaire. La formation de ponts liquides entre les granules rend le milieu plus cohésif et donc plus difficile à malaxer ce qui se traduit par une augmentation rapide de la puissance consommée par le malaxeur.

Nous observons une stabilisation de la puissance à l'état III correspondant au régime funiculaire. Il s'agit d'un régime de transition entre les régimes pendulaire et capillaire pour lequel la résistance des agglomérats évolue peu avec la quantité de liquide introduit.

L'état IV est attribué au régime capillaire correspondant à la création d'un agglomérat unique proche de l'état pâteux. La puissance demeure élevée traduisant la résistance au malaxage du milieu. A cet état très cohésif, il est possible qu'une partie de la matière humide se colle aux parois de la cuve du malaxeur ou sur les pâles entraînant ainsi des variations de la puissance consommée, comme observé sur la figure 1.7 [Mackaplow, 2000].

La diminution rapide de la puissance observée dans la région V est attribuée au régime de la goutte. Le milieu devient en effet beaucoup moins résistant au brassage réalisé par les pâles du malaxeur en présence de liquide excédentaire.

D'après Iveson et Litster (1998), la résistance d'un milieu granulaire humide est la résultante de l'expression de trois principaux types de forces indépendantes : les forces capillaires, les forces visqueuses et les forces frictionnelles générées par le rapprochement des granules sous l'effet des ponts capillaires. Le lecteur intéressé pourra se reporter au modèle de Rumpf (1962), qui fait référence dans ce domaine, ou à la théorie de Kendall (1988), plus
récemment, qui proposent des modèles permettant de calculer la résistance d'un agglomérat en considérant des hypothèses différentes.

Formulation :

En plus de bien choisir la teneur en liquide permettant d'assurer un régime de mouillage adapté à l'obtention de l'état pâteux, il est nécessaire que la pâte ait un comportement rhéologique convenable à l'extrusion et que les extrudés maintiennent leur forme aussi bien à la sortie de la filière qu'à la fin des traitements thermiques. La formulation des pâtes n'est donc pas une étape triviale et le choix des réactifs introduits lors du malaxage doit prendre en compte les propriétés physico-chimiques du milieu ainsi que les contraintes liées au procédé de mise en forme. Dans ce contexte, il existe quatre principaux types d'additifs décrits ci-dessous.

a) Liants :

Les liants organiques comme par exemple les polymères hydrosolubles (méthyl cellulose, éthyl cellulose, hydroxyéthyl cellulose (dérivés de cellulose), alcool polyvinylique…) sont utilisés majoritairement pour leur effet sur la rhéologie du mélange. Ces liants assurent également la cohésion de la pièce crue lors de la mise en forme. Lors des traitements thermiques, ces liants se décomposent et sont pour cela aussi appelés liants temporaires.

Les liants inorganiques peuvent aussi modifier la rhéologie du milieu mais surtout assurent la cohésion des extrudés crus après le séchage et la calcination. Ils sont donc appelés liants permanents. Leur rôle principal est de relier les granules et de conférer de la cohésion aux matériaux par le biais des ponts solides. Il s'agit des colloïdes issus de la dispersion d'oxydes métalliques, des argiles, des ciments, des verres entre autres [Morris et al., 1977].

b) Dispersants :

Les dispersants sont utilisés pour contrôler l'état de dispersion, la stabilité et le comportement rhéologique du milieu en mettant en œuvre différents mécanismes (électrostatique, stérique ou électrostatique). Ces additifs permettent de diminuer la viscosité du mélange et d'augmenter la concentration volumique en solide. Le dispersant peut être un homopolymère ou, un copolymère organique ou inorganique, neutre ou chargé (dans ce cas, il s'agit d'un polyélectrolyte) et de faible masse moléculaire (10000 à 40000 g/mol) [Boch, 2001].
c) Plastifiants :

Les plastifiants permettent de modifier et d'adapter le comportement rhéologique intrinsèque du liant. Par exemple, dans le cas de l'emploi de liants temporaires comme les polymères hydrosolubles, des molécules organiques de faible masse moléculaire rendent ces liants plus ductiles à la température de mise en forme grâce à l'abaissement de leur température de transition vitreuse [Boch, 2001].

d) Lubrifiants :

Les lubrifiants minimisent les frottements entre le mélange et les outils de mise en forme. Ces additifs sont surtout intéressants lors de l'extrusion afin d'éviter la formation de défauts de surface. Il s'agit généralement d'huiles, de paraffines ou de stéarates.

D'autres additifs peuvent encore être utilisés afin de moduler les propriétés texturales des matériaux. Certains composés, appelés porogènes (polystyrène, charbon…), sont introduits à la formulation afin d'assurer la formation d'une porosité maîtrisée lors de leur décomposition pendant la calcination. La taille des pores formés est liée à la taille ou à la masse moléculaire du composé ajouté [Trimm et Stanislaus, 1986].

1.1.2.2. Extrusion

L'étape d'extrusion consiste à pousser la pâte issue du malaxage à travers une filière de géométrie donnée sous effet de la pression comme montré précédemment sur la figure 1.4 (extrudeuse à piston).

La pâte doit présenter un comportement rhéologique de type rhéofluidifiant (pseudoplastique) afin de remplir les conditions nécessaires à la mise en forme. En effet, ce comportement permet à la pâte d'être visqueuse pendant l'étape de mélange ce qui assure une bonne dispersion sous l'effet de forces de cisaillement élevées; d'être plus fluide pendant l'extrusion pour assurer un bon écoulement; et de retrouver une viscosité élevée à la sortie de la filière permettant ainsi de maintenir la forme de la pièce crue avant les traitements thermiques [Benbow et Bridgwater, 1993].

De plus, si la formulation de la pâte est mal maîtrisée, il est possible que la mise en forme ne soit pas possible (pâte non "extrudable") ou que les profilés obtenus présentent des défauts après l'opération d'extrusion. Par exemple, si la pâte n'est pas homogène ou s'il existe un problème de mouillage entre la poudre et la phase aqueuse (et/ou organique), il est possible qu'une migration de phases ait lieu pendant l'extrusion. Sous effet de la pression, les phases vont s'écouler à différentes vitesses et la phase liquide aura tendance à migrer vers l'extérieur.
du matériau (exsudation). La migration de phases est la principale cause des problèmes liés à la formation des "bouchons" et au blocage des extrudeuses [Benbow et Bridgwater, 1993].

Les instabilités de l'écoulement peuvent aussi générer des défauts de surface connus sous le nom de "peau de requin" (Figure 1.8.a). Ces déformations se présentent sous forme de rayures à la surface de l'extrudé qui peuvent être périodiques ou non.

Les défauts de volume diffèrent de ceux de surface et sont présents dans tout l'extrudé. Ces déformations peuvent avoir un aspect onduleux de forme hélicoïdale et la surface est souvent lisse. À des débits très élevés, l'extrudé peut devenir fortement tordu ou prendre une forme irrégulière (défaut chaotique) (Figure 1.8.b) [Benbow et Bridgwater, 1993 ; Koopmans, 2002 ; Goutille et al., 2002].

Figure 1.8 – Déformations de surface (a) et de forme (b) pour des extrudés émergeant d'une filière capillaire [Koopmans, 2002].

En catalyse, la présence de ces défauts de surface ou de forme dégrade la tenue mécanique des supports. Ces matériaux défectueux sont en effet plus sensibles aux effets d'attrition et de collision lors de leur chargement au sein des réacteurs ou en opération. Il en résulte notamment une augmentation de la perte de charge dans le lit, des difficultés de régénération du catalyseur et des pertes de matériau catalytique [Le Page, 1978].

Le paramètre critique de la mise en forme par extrusion réside donc sur la maîtrise de la formulation par le choix de composants appropriés à l'obtention d'une pâte homogène et aux
propriétés rhéologiques adaptées afin de minimiser les instabilités d'écoulement lors de l'extrusion et le risque de formation de défauts sur les pièces crues.

1.1.2.3. Séchage

L'opération de séchage consiste à éliminer le liquide (eau, solvants,...) contenu dans les extrudés crus. Dans l'industrie, le mode de séchage par entraînement est le plus utilisé. Pour celui-ci, la température utilisée est comprise entre 80 et 200°C et les effluents gazeux sont entraînés par l'air. Le séchage est donc défini comme étant un double transfert de chaleur et de masse où l'air cède sa chaleur au produit humide et reçoit l'humidité extraite de celui-ci [Scherer, 1990]. Des informations sur les mécanismes de transfert et sur la cinétique de séchage peuvent être retrouvées dans divers travaux de la littérature [Kowalski, 2001 ; Laurindo et Prat, 1998 ; Goyeneche, 2001 ; Scherer, 1990 ; Whitaker, 1977].

Les milieux poreux, comme les supports de catalyseur, présentent du liquide à différents niveaux. L'eau libre remplit la majeure partie des pores et les interactions avec la matrice solide sont d'origine hydrodynamique ou capillaire. L'eau liée est physisorbée en couche multimoléculaire par des forces de type Van der Waals ou de nature électrostatique. L'eau peut aussi être retenue dans le matériau par des forces capillaires fortes si les pores sont inférieurs ou de l'ordre du micromètre. La vapeur d'eau se retrouve mélangée avec l'air sec et occupe les espaces libres laissés par l'eau libre, l'eau liée et la matrice du support [Pourcel, 2003 ; Scherer, 1990]. Le séchage peut éliminer ces trois "types" d'eau. En revanche, l'eau de constitution, c'est-à-dire celle qui fait partie de la structure cristalline du matériau, ne peut être évacuée que lors d'une opération de calcination (section 1.1.2.4).

Le séchage provoque un retrait volumique du matériau qui évolue avec la quantité de liquide évaporé jusqu'à ce que la structure se consolide et la texture du matériau soit révélée. Au cours du séchage, il existe des gradients de teneurs en eau dans le matériau qui génèrent également des gradients de retrait. Comme le matériau possède une tenue mécanique propre, ces gradients se traduisent par l'apparition de contraintes qui perturbent le retrait. La figure 1.9 schématisé l'évolution des contraintes au cours du séchage.
Figure 1.9 – Évolution des contraintes de compression et de traction au cours du séchage.

Au début du séchage, la teneur en eau à la surface est inférieure à celle au cœur du matériau. La surface se contracte alors que le cœur garde sensiblement ses dimensions. Cet état de déformation provoque une mise en traction de la surface qui est compensée par une compression au cœur. Avec l'évolution du séchage, le retrait en surface se stabilise alors que le cœur continue à se contracter. Ce dernier applique donc un effort de compression sur la surface qui répond avec un effort de traction sur le cœur (inversion de contraintes) (Figure 1.9).

A la fin du séchage, les matériaux peuvent reprendre leur forme initiale mais à une échelle réduite. Cependant, en fonction des conditions du séchage, les contraintes générées au sein du matériau deviennent intenses et, peuvent alors favoriser l'apparition de fissures afin de relâcher les contraintes et libérer l'énergie mécanique emmagasinée [Chemkhi, 2008].

Il convient de rappeler que si les extrudés crus présentent des hétérogénéités ou des défauts dans la microstructure, le séchage peut "aggraver" encore plus l'état du matériau du fait d'un retrait hétérogène qui contribue à la fissuration [Boch, 2001].

1.1.2.4. Calcination

La calcination est réalisée à plus hautes températures que le séchage et vise l'obtention de la structure finale du matériau, l'ajustement de la texture (surface spécifique et volume poreux) et la consolidation de la tenue mécanique. Comme cité dans la section précédente, la calcination permet l'évacuation de l'eau faisant partie de la structure cristalline du matériau (eau de constitution) et, par conséquent, des transformations de phase peuvent aussi avoir lieu lors de cette étape. La décomposition des additifs organiques éventuellement introduits lors du malaxage a également lieu.

Dans la prochaine section, on s'intéresse particulièrement aux supports traditionnels d'alumine afin de situer les enjeux des nouveaux supports de catalyseur à microstructure multi-échelles développés dans le cadre de cette thèse.
1.1.3. Supports traditionnels d'alumine (γ-Al₂O₃)

1.1.3.1. Généralités sur la boehmite et les alumines de transition

L'alumine gamma (γ-Al₂O₃) est obtenue par calcination sous air de la boehmite (AlOOH) ou oxyhydroxyde d'aluminium. Les caractéristiques de l'alumine dépendent donc des conditions de calcination et des paramètres inhérents à son précurseur, tels que : le degré de cristallinité, la taille des cristallites et la pureté. Les propriétés des alumines sont ainsi prédéterminées dès la synthèse de la boehmite.

Il existe aussi des boehmites qui présentent un excès d'eau (AlOOH.nH₂O ; 0 < n < 0,5) [Papée et al., 1958] et qui sont désignées comme "pseudoboehmites". Nous utilisons dans ce travail uniquement le terme boehmite car l'eau excédentaire présente dans les dites "pseudoboehmites" ne modifie pas la structure du matériau [Rebours et al., 1997 ; Bellotto et al., 1998].

Synthèse de la boehmite :

La boehmite peut être synthétisée par différentes voies comme par traitement hydrothermal d'un trihydroxyde d'aluminium (Al(OH)₃) [Inoue et al., 1989] ou d'un hydroxyde amorphe [Dzis'ko et al., 1976 ; Krivoruchko et al., 1982], à partir de l'acidification d'aluminate ou de la neutralisation de sels d'aluminium [Poisson et al., 1987] ou encore, à partir du Procédé Ziegler.

Ce dernier procédé vise premièrement la production d'alcools linéaires supérieurs à partir de l'éthylène, de l'hydrogène et de l'aluminium métallique. La boehmite est le produit secondaire obtenu à partir de l'hydrolyse de l'alcoolate d'aluminium. Un des intérêts majeurs de cette voie de synthèse est l'obtention d'une boehmite très pure où l'impureté minérale possiblement rencontrée est le TiO₂ présent dans le catalyseur utilisé dans l'étape de formation du trialkylaluminium (polymérisation).

La figure 1.10 résume les principales voies de synthèse de la boehmite.

![Figure 1.10 – Les principales voies de synthèse de la boehmite [adaptées de Poisson et al., 1987].](image-url)
Les caractéristiques de l'alumine souhaitée peuvent ainsi être modulées lors de la synthèse de la boehmite. Le pH du milieu réactionnel, la température, le temps de mûrissement, le solvant de lavage utilisé sont quelques exemples de paramètres opératoires qui peuvent influencer les propriétés de la boehmite et, par conséquent, celles de l'alumine obtenue lors de la calcination [Hochepied et Nortier, 2002 ; Liu et al., 2008 ; Rashidi et al., 2010].

Filiation des alumines :

L'alumine gamma (γ-Al₂O₃) est une alumine de transition. Cette terminologie est liée au fait que, selon la température de calcination utilisée, différentes formes intermédiaires d'alumine peuvent être obtenues jusqu'à atteindre la forme la plus stable thermodynamiquement, à savoir, l'alumine alpha (α-Al₂O₃) ou corindon (Figure 1.11).

Dans la boehmite, les aluminiums sont en coordination octaédrique et les oxygènes forment un sous-réseau cubique faces centrées. La cellule élémentaire présente des feuilllets Al – O – Al dont la cohésion est assurée par des liaisons hydrogène [Euzen et al., 2002 ; Digne et al., 2004]. Au cours de la transition de la boehmite en alumine γ, il y a élimination d'eau par condensation d'un proton et d'un groupement hydroxylique entre les feuilllets (Équation 1.1).

\[
2 \gamma - AlO(OH) \rightarrow \gamma - Al₂O₃ + H₂O \quad (Équation 1.1)
\]

Durant la séquence de transformation des phases polymorphiques γ → δ → θ-Al₂O₃, l'arrangement des oxygènes dans un système cubique à faces centrées se maintient tandis que, l'emplacement des aluminiums varie entre les sites octaédriques et tétraédriques. Le passage d'une structure à l'autre peut se faire sans qu'il y ait une modification notable de la structure et sans requérir une énergie considérable. La transformation des différentes phases polymorphiques de l'alumine représente ainsi une déformation topotactique de réseau, c'est-à-dire, la structure cristalline se transforme sans modification de la morphologie du cristal d'origine (Figure 1.12).
Figure 1.12 – Transformation topotactique de la boehmite en alumine γ.

La transformation de phase θ-$\text{Al}_2\text{O}_3 \rightarrow \alpha$-$\text{Al}_2\text{O}_3$ est différente de celle rencontrée avec les alumines de transition. En fait, cette transformation se fait par changement de position des oxygènes de l'arrangement cubique à faces centrées vers un empilement hexagonal compact. Il s'agit dans ce cas d'une transformation reconstructive.

Il existe encore d'autres variétés d'alumine de transition (χ, κ, η, ρ) issues de la gibbsite ou hydargillite (γ-Al(OH)_3), bayerite (α-Al(OH)_3) et diaspore (α-AlOOH) [Poisson et al., 1987 ; Euzen et al., 2002] comme le montre le diagramme de filiation des alumines de transition ci-dessous.

Figure 1.13 – Filiation des alumines de transition.
1.1.3.2. Mise en forme de la boehmite pour l'obtention de supports d'alumine

Afin que l'alumine γ puisse être utilisée comme support de catalyseur dans les unités d'HDT, il est nécessaire de transposer les propriétés de l'oxyde sous forme de poudre à des objets millimétriques afin d'éviter des problèmes de perte de charge et d'hydrodynamique au sein des réacteurs. Cette transposition est possible à partir de la mise en forme par extrusion de son précurseur, la poudre de boehmite [Diblitz, 1998].

Elle se présente sous forme d'agglomérats "de granules" de l'ordre de la dizaine de microns (\pm 40 μm). Les granules sont formées par l'agencement d'agrégats nanométriques pour lesquels les plus petites unités sont les cristallites (Figure 1.14). Plus de précisions sur les définitions utilisées dans ce travail pour les entités d'un milieu granulaire sont présentées dans l'Annexe A.

Figure 1.14 – Les différentes entités qui constituent la poudre de boehmite.

a) *Dispersion de la boehmite*

La première étape du procédé de mise en forme consiste à disperser la poudre de boehmite lors du malaxage afin d'obtenir une pâte homogène adaptée à la mise en forme par extrusion. La dispersion (aussi dénommée peptisation) de la boehmite a lieu à partir de l'action mécanique, apportée par le cisaillement des pâles du malaxeur, et de l'action chimique assurée par l'agent dispersant [Euzen *et al.*, 2002]. Cette action commune permet de briser les agglomérats "de granules" et de les disperser jusqu'à l'échelle des agrégats nanométriques.

Les acides sont les agents dispersants les plus utilisés. La littérature reporte l'emploi de l'acide acétique (CH$_3$COOH) [Ayral et Droguet, 1989 ; Lamberov *et al.*, 2003 ; Levin *et al.*, 1997], oxalique (C$_2$H$_2$O$_4$), et citrique (C$_6$H$_8$O$_7$) [Tregubenko *et al.*, 2011], mais c'est l'acide nitrique (HNO$_3$) qui est le plus couramment employé [Drouin *et al.*, 1988 ; Euzen *et al.*, 2002 ; Fauchadour, 2000 ; Mange *et al.*, 1999 ; Poisson *et al.*, 1987 ; Trueba et Trasatti, 2005].

L'acide permet la création de charges positives à la surface de la boehmite conduisant à l'apparition de forces répulsives d'ordre électrostatique. La charge de surface apparaissant en
milieu aqueux est une propriété caractéristique des oxydes et oxy-hydroxydes comme la boehmite [Jolivet, 1994]. En effet, leur surface est constituée de groupements hydroxyles (Al-OH) dont le caractère amphotère permet, selon le pH du milieu, de libérer ou capter des protons comme le montrent les expressions d'équilibre ci-dessous.

\[
\text{Al} - \text{OH}_2^+ + \text{H}^+ \rightleftharpoons \text{Al} - \text{OH} \rightleftharpoons \text{Al} - \text{OH}^- + \text{H}_2\text{O} \quad (Équation 1.2)
\]

Le pH pour lequel la charge globale à la surface est nulle est défini comme le Point de Charge Nulle (PCN) [Jolivet, 1994]. Dans le cas de la boehmite, le PCN se situe vers un pH de 8,5 à 9,5 [Evanko et al., 1997 ; Wood et al., 1990]. Il en résulte ainsi qu'en milieu acide (pH < PCN), la charge superficielle est positive tandis qu'en milieu basique (pH > PCN), elle est négative (Équation 1.2).

Lorsque le pH du milieu se rapproche de celui du PCN, les forces répulsives d'origine électrostatique sont plus faibles et les forces attractives de Van der Waals sont prédominantes. Ces dernières sont omniprésentes et ne dépendent que de la nature du matériau. Dans ces conditions, l'agglomération prend le pas sur la dispersion de la poudre de boehmite.

En outre, la dissolution partielle de la boehmite peut aussi avoir lieu lors de la dispersion de la poudre par attaque chimique avec l'acide [Drouin et al., 1988 ; Ramsay et al., 1978]. Certains auteurs évoquent la présence de complexes polycationiques de type [Al\(_{13}\)O\(_4\)(OH)\(_{28}\)]\(^{3+}\) à pH < 5 [Bottero et al., 1982] et, pour des pH < 3,7, les monomères [Al(H\(_2\)O)\(_6\)]\(^{3+}\) et [Al(H\(_2\)O)\(_5\)(OH)]\(^{2+}\) sont identifiés comme produit de la dissolution de la boehmite [Fauchadour, 2000 ; Morgado et al., 1995].

L'apparition d'une charge électrique à la surface de la boehmite implique une compensation de cette charge par le milieu afin d'assurer la stabilité de la dispersion colloïdale. Cette compensation est réalisée par des ions (contre-ions) de charge opposée à celle de la surface. Le modèle de la double couche de Stern schématisé sur la figure 1.15 permet d'illustrer cette notion [Jolivet, 1994].
La théorie DLVO (Dejarguin, Landau, Verwey, Overbeek) établit le bilan entre les forces attractives de Van der Waals et les forces répulsives résultantes de l'interaction des couches électriques et gouvernées par la physico-chimie du système (pH et force ionique) [Jolivet, 1994]. Cette théorie énonce qu'une barrière énergétique résultant des forces répulsives empêche deux particules de s'approcher et d'adhérer l'une à l'autre. Si les particules entrent en collision avec une énergie suffisante pour passer la dite barrière énergétique, la force d'attraction les attirera jusqu'à les mettre en contact et les coller très fortement l'une à l'autre. La répulsion électrostatique agit donc comme une barrière de potentiel contre l'agglomération due aux forces de Van der Waals. Ces dernières dominent aux courtes distances alors que la répulsion électrostatique domine aux longues distances. La théorie DLVO permet ainsi de décrire la stabilité des dispersions colloïdales [Kobayashi et al., 2005].
Figure 1.16 – Variation de l'énergie d'interaction des particules en fonction de leur distance selon la théorie DLVO. L'énergie totale ("Net Energy") correspond à la somme des énergies d'attraction et de répulsion.

Effets d'acide sur la texture finale des supports :

La dispersion partielle de la boehmite par l'emploi d'une concentration en acide insuffisante pour peptiser complètement la poudre en agrégats nanométriques, est un moyen permettant d'obtenir un support avec une porosité bimodale. Il s'agit d'un support avec une porosité dans le domaine des macropores (> 50 nm) et dans le domaine des mésopores (2 à 50 nm). Les granules micrométriques non peptisées apportent de la macroporosité tandis que l'agencement des unités nanométriques (agrégats de cristallites) génère de la mésoporosité. La diminution de la taille des agglomérats "de granules" par augmentation de la teneur en acide est largement citée dans la littérature [Lamberov et al., 2003 ; Levin et al., 1997 ; Tregubenko et al., 2011] comme montre l'exemple de la figure 1.17 [Garderen et al., 2012].
Figure 1.17 – Effet de la peptisation sur la distribution granulométrique. Les échantillons analysés sont la poudre de boehmite telle comme livrée par le fournisseur et deux pâtes issues de la dispersion avec différentes concentrations d’acide (pH = 4 et 6) et 1 heure de malaxage. La distribution granulométrique a été mesurée par granulométrie à diffraction laser après avoir solubilisé les pâtes dans un bain à ultrasons [Garderen et al., 2012].

L’optimisation des conditions de dispersion permet de moduler les propriétés texturales du support final selon les besoins de l’application catalytique. Les supports avec deux échelles de porosités sont particulièrement intéressants pour les opérations d’hydrotraitement car les petits pores permettent le maintien d’une surface spécifique élevée et les grands pores favorisent le transport et la diffusion des réactifs et des produits au sein du catalyseur.

Le degré de dispersibilité d’une boehmite dépend de la teneur en acide introduit mais également des caractéristiques intrinsèques de la poudre. En effet, selon les conditions de synthèse de la boehmite, des agglomérats plus ou moins résistants à la dispersion peuvent être formés [Euzen et al., 2002]. Il en résulte que les supports avec une porosité bimodale peuvent être obtenus soit en modulant la teneur en acide soit en utilisant des boehmites avec un faible indice de dispersibilité1. Le mélange de granules d’alumine calcinées à la pâte de boehmite permet aussi d’obtenir ce même type de support.

Selon l’acide choisi pour la dispersion, de la macroporosité pourra être introduite dans le matériau du fait de la taille de leur groupement fonctionnel. C’est le cas, par exemple, des acides polycarboxyliques [Jiratova et al., 1983 ; Trimm et Stanislaus, 1986].

En outre, la neutralisation des charges positives à la surface de la boehmite favorise l’agglomération. Il s’agit en fait de la déstabilisation du milieu par diminution de la répulsion électrostatique conduisant à la flocculation [Allain et Senis, 1997 ; Campanati et al., 2003 ; Sato et Ruch, 1980]. Ceci est accompagné de l’emprisonnement de liquide à l’intérieur des flocons comme le montre le schéma de la figure 1.18.

1 L’indice de dispersibilité est un paramètre qui permet de distinguer les différents types de boehmite par rapport à leur capacité de peptisation. Il détermine le pourcentage de boehmite dispersée en dimensions colloïdales pour une concentration d’acide donnée.
La taille des unités élémentaires qui constituent les flocs demeure la même que dans le milieu non neutralisé. Cependant, ces unités sont organisées différemment du fait de la floculation. La texture du futur matériau est ainsi prédéterminée par les caractéristiques des flocs formés. L'ammoniaque, les polyacrylamides, l'oxyde d'éthylène sont quelques exemples d'agents floculants rencontrés dans la littérature pour la préparation de supports de catalyseur [Trimm et Stanislaus, 1986 ; Trueba et Trasatti, 2005].

Effet de l'acide sur la rhéologie des pâtes de boehmite :

Drouin *et al.* (1987) ont étudié l'évolution des propriétés rhéologiques de pâtes de boehmite en fonction de la concentration d'acide nitrique. Des essais oscillatoires avec un rhéomètre équipé d'une géométrie plan-plan ont permis de mesurer les paramètres viscoélastiques de chacune des pâtes (section 2.2.2.1 – Chap. 2).

La caractérisation de la porosité des pâtes à l'état humide a été possible à partir de la thermoporosimétrie (section 2.2.2.2 – Chap. 2). À partir de cette technique et d'autres caractérisations complémentaires (RMN 1H, physisorption d'azote sur des pâtes lyophilisées, mesures de pH), Drouin *et al.*, ont établi un lien entre les propriétés macroscopiques (rhéologie) et la texture de pâtes de boehmite peptisées. La figure 1.19 montre quelques résultats présentés dans cette publication.
Figure 1.19 – (a) Propriétés viscoélastiques : Modules de conservation (G') et de perte (G'"") et (b) Fraction volumique de liquide (φ_Li) présente dans la porosité de la pâte en fonction de la concentration d'acide nitrique exprimée en ratio molaire HNO_3/AlOOH. Le paramètre S/L indique le ratio massique de solide (S) et liquide (L) constituant la pâte [Drouin et al., 1987].

Le graphe (a) montre que G' (module de conservation) est beaucoup plus élevé que G'" (module de perte). Ceci montre que le comportement rhéologique des pâtes de boehmite se rapproche plus de celui d'un solide que d'un liquide. Les pâtes présentent donc un caractère très élastique ce qui explique leur intérêt dans les procédés de mise en forme par extrusion.

De plus, on observe que les paramètres rhéologiques évoluent de manière non-monotone en fonction de la teneur en acide. La variation de la fraction volumique de liquide présent dans la porosité de la pâte (φ_Li) suit le même comportement que celui des modules G' et G'" comme le montre le graphe (b). Les valeurs maximales (G', G" et φ_Li) sont observées à une teneur d'acide d'environ 0,02 mol/mol (HNO_3/AlOOH) et les minimales à 0,03 mol/mol.

Les auteurs expliquent cela par le fait qu'aux faibles concentrations en acide la peptisation n'est pas complète, il persiste des agglomérats et la quantité de liquide environnant le milieu est encore importante. Au fur et à mesure que le ratio HNO_3/AlOOH augmente, la dispersion devient plus effective, le milieu est constitué principalement par des espèces de taille colloïdale et on s'approche de l'état de gel avec un caractère très élastique (G' maximum). Les agrégats nanométriques forment à cet état un réseau tridimensionnel continu emprisonnant du liquide dans leur porosité (φ_Li maximal) (Figures 1.19.a et 1.19.b).

L'augmentation progressive de la teneur en acide favorise la dissolution partielle de la boehmite et la formation des polycations Al_{13}. Les auteurs citent les observations de Ramsay et al. (1978) qui considèrent que ces espèces aluminiques peuvent rester liées chimiquement à
la surface des agrégats. Si c'est bien le cas, des interactions répulsives très fortes entre ces agrégats favoriseraient la formation d'une microstructure très ouverte permettant le relargage de liquide dans le milieu qui deviendrait par conséquent moins élastique. Ces considérations expliqueraient la diminution de G' et de ϕ_L jusqu'à un ratio molaire d'acide de 0,03 mol/mol (HNO₃/AlOOH).

Au-delà de cette teneur en acide, le graphe (a) de la figure 1.19 montre une nouvelle montée de G'. Cette variation n'est pas clairement discutée dans l'article de Drouin et al.. Cependant, il est connu que la dissolution devient de plus en plus importante vers les plus bas pH et donc à des teneurs en acide encore plus élevées [Fauchadour, 2000]. Il en résulte une augmentation de la force ionique du fait d'une concentration plus importante d'espèces aluminiques dans le milieu. L'épaisseur de la double couche électrique diminue, favorisant ainsi l'agglomération [Jolivet, 1994]. Ceci pourrait expliquer la nouvelle montée de G' du fait de la formation d'une nouvelle structure plus élastique.

Cette étude ne nous permet pas de conclure sur la nature des polycations présents dans la pâte ou sur leur localisation exacte vis-à-vis de la surface des agrégats. Néanmoins, les résultats de Drouin et al. démontrent clairement que l'acide influence les conditions de dispersion de la boehmite modifiant la texture des pâtes obtenues et, par conséquent, leur comportement rhéologique.

En effet, les comportements macroscopiques des systèmes dispersés concentrés comme les colloïdes, sont considérés comme résultant des modifications de la structure interne du matériau (fraction volumique de la phase dispersée, propriétés physico-chimiques des composants et, notamment, de la phase continue, propriétés des interfaces…) et/ou des conditions externes (température, régime d'écoulement…) [Bailey et al., 1989 ; Coussot et Van Damme, 1997 ; Genovese, 2012 ; Quemada, 1998].

D'autres auteurs ont également étudié l'effet de l'acide sur la rhéologie de gels ou sols de boehmite et les discussions reportées sont similaires à celles de la publication de Drouin et al. [Islam et al., 2011 ; Yang et al., 2000].

Hormis l'acide, d'autres paramètres également liés à la première étape du procédé de mise en forme peuvent aussi influencer la texture finale des supports et la rhéologie des pâtes. Il s'agit, par exemple, des conditions de malaxage (temps et vitesse de rotation des bras) [Landers et al., 2010] et de la séquence d'ajout des réactifs [Wei et al., 1998]. Nous avons cependant priorisé la discussion sur l'effet de l'acide dans cette étude bibliographique du fait de son importance dans l'étape de dispersion de la boehmite par rapport aux paramètres liés aux conditions opératoires du mélange.

b) Extrusion et post-traitement thermiques

À l'issue de l'étape de dispersion, une pâte de boehmite est obtenue, dont les caractéristiques sont dépendantes de la formulation et des conditions du malaxage. Il en
résulte que les propriétés microstructurales, texturales et mécaniques du futur matériau sont prédéterminées dès la première étape du procédé de mise en forme.

L'extrusion permet de donner une forme à la pâte selon la géométrie de la filière utilisée. En hydrotraitement, les extrudés cylindriques sont les plus courants mais des formes plus spéciales comme les trilobes ou quadrilobes sont aussi rencontrées car ces géométries augmentent la surface de contact avec les réactifs (Figure 1.20).

![cylindrical & trilobe](image)

Figure 1.20 – Différentes morphologies de supports utilisés dans les catalyseurs d'hydrotraitement.

Les dernières étapes sont les traitements thermiques des pièces crues. Le séchage permet l'évaporation du liquide utilisé dans le malaxage comme expliqué dans la section 1.1.2.3. À cette étape, la boehmite subit un retrait volumique important [Pourcel, 2003]. Les conditions de séchage (température, débit de gaz, temps…) doivent être contrôlées afin de limiter le risque de fissuration due aux contraintes de traction et compression au sein du matériau.

Après le séchage (80 à 200°C), le matériau acquiert déjà une certaine solidité. La calcination permet de consolider encore la tenue mécanique et de révéler la texture finale du support. De plus, cette dernière étape joue un rôle très important car c'est pendant la calcination que nous obtiendrons enfin le support d'alumine par transformation topotactique de la boehmite.

La température de calcination est ainsi définie de manière à assurer la transition complète de la boehmite en alumine gamma (γ-Al₂O₃). Cette alumine de transition est préférée dans la préparation de matériaux pour la catalyse du fait de sa porosité et de sa surface spécifique élevée. La calcination est donc réalisée aux alentours de 500 à 750°C car ces températures permettent le changement majoritaire de la phase cristalline tout en contrôlant la taille des pores et la surface spécifique et en limitant les phénomènes de frittage.

En effet, le frittage devient de plus en plus prononcé au fur et à mesure que la température augmente conduisant à une densification (retrait) importante du matériau accompagnée d'une diminution significative de la porosité (Figure 1.21). Ce phénomène est souhaité pour obtenir les alumines alpha ou corindon (α-Al₂O₃) qui sont les plus stables thermodynamiquement et formées au-delà de 1000°C [Boch, 2001].
Figure 1.21 – Schéma illustrant le frittage : les surfaces solide – solide augmentent tandis que les surfaces solide – vapeur diminuent afin de minimiser l'énergie de surface du système et gagner en stabilité thermodynamique.

A ce stade, les extrudés obtenus sont prêts pour le dépôt de la phase active, par imprégnation d'une solution contenant les sels métalliques et, pour les étapes d'activation du catalyseur (sulfuration pour les catalyseurs d'HDT) [Le Page, 1978]. Nous n'aborderons pas ces étapes car cette thèse est dédiée au développement uniquement des nouveaux supports.

Cette première partie de l'étude bibliographique nous a permis de comprendre les diverses étapes du procédé de mise en forme de supports par extrusion ainsi que leur complexité due aux nombreux paramètres influençant la formulation (et les conditions opératoires) et, par conséquent, les propriétés des matériaux finaux. Nous avons choisi d'étudier l'élaboration des supports d'alumine car ils sont les plus rencontrés dans les catalyseurs d'hydrotraitement et cette opération de raffinage présente des enjeux économiques et environnementaux très importants dans ce secteur.

L'objectif de cette thèse est le développement de nouveaux supports d'alumine à partir d'une nouvelle approche. La section suivante présente le concept que l'on souhaite appliquer dans la préparation de ces nouveaux matériaux ainsi que la bibliographie associée.

1.2. Développement de nouveaux supports à microstructure multi-échelles

1.2.1. Définition du matériau cible

Les supports de catalyseur sont préparés selon une démarche classique pour laquelle on vise l'obtention de propriétés texturales et mécaniques spécifiques. Ces propriétés sont alors une conséquence des conditions de mise en forme et, plus particulièrement, de la formulation.

Ce travail de thèse propose ainsi une nouvelle approche pour la préparation des supports de catalyseur fondée sur l'empilement organisé de petites et grosses granules. Ce type de microstructure multi-échelles est rencontré dans différents domaines, tels que le génie civil.
dans l'élaboration de bétons à hautes performances, ou dans la confection de céramiques techniques.

L'objectif est donc de préparer des nouveaux supports de catalyseurs constitués par l'empilement hiérarchique d'au moins deux populations de granules d'alumine (petites et grosses) et d'évaluer ce que cette microstructure peut apporter en termes de texture et tenue mécanique. Le schéma de la figure 1.22 illustre le concept de ces matériaux à microstructure multi-échelles destinés aux applications catalytiques.

Les granules seront des alumines de transition (γ-Al₂O₃) afin de respecter les besoins de l'application catalytique (HDT) envisagée. Ces granules seront de deux tailles micrométriques différentes organisées de manière hiérarchique pour laquelle les petites remplissent les espaces résiduels laissés par l'empilement des grosses. La cohésion de cet assemblage sera assurée par la présence d'un liant qui en plus, remplit les vides interstitiels entre les petites et grosses granules (Figure 1.22).

Le liant utilisé doit être un liant permanent et également compatible avec l'opération d'hydrotraitement afin de ne pas "polluer" le futur catalyseur. D'après la bibliographie de la section précédente, la boehmite apparaît comme une option évidente. Dans ce cas, à la fin de la calcination, le support sera constitué uniquement d'alumine γ du fait de la transformation de la boehmite.

Afin d'évaluer comment les interactions entre le liant et les granules d'alumine peuvent gouverner l'agencement de l'empilement et assurer ainsi la cohésion du support, nous avons décidé d'étudier deux liants permanents différents. Cette démarche devra nous permettre
d'évaluer à la fois l'apport de la microstructure multi-échelles mais aussi du type de liant utilisé sur les caractéristiques des supports.

La suite de l'étude bibliographique présente dans une première partie, les critères de choix du deuxième liant (le premier étant la boehmite), quelques exemples de matériaux à microstructure multi-échelles (bétons à hautes performances et céramiques techniques) et ce que celle-ci peut apporter. Dans la dernière partie, les bases de l'empilement granulaire nécessaires afin d'obtenir un agencement hiérarchique de granules d'alumine et de liant au sein des nouveaux supports sont abordées.

1.2.2. Choix d'un nouveau liant

1.2.2.1. Classification des liants

Le liant est défini comme étant un composé capable de maintenir ensemble différents éléments apportant ainsi de la cohésion et de l'élasticité à un matériau au sein duquel il est présent en proportion mineure, ceci tout en conservant les propriétés des éléments rassemblés [Morris et al., 1977].

La cohésion de l'empilement de granules d'alumine dans le matériau à microstructure multi-échelles doit être assurée par un liant permanent afin que l'assemblage soit maintenu après calcination. On s'intéresse donc aux liants minéraux. Sychev (1970) classe ces liants en deux grandes catégories : les adhésifs et les ciments (Figure 1.23).

![Figure 1.23 – Classification des liants minéraux selon Sychev (1970). Les carrés indiquent les deux classes de liants choisies pour l'étude.](image)

Les adhésifs sont les liants souhaités pour un usage immédiat, comme par exemple, le silicate de sodium (Na$_2$SiO$_3$) ou water glass et les phosphates acides métalliques. La seconde
classe, les ciments, regroupe une gamme plus importante de liants qui peut être subdivisée en deux autres catégories selon leur processus de durcissement.

Le premier sous-groupe inclut tous les systèmes colloïdaux typiques. Il s'agit, par exemple, des argiles et oxydes pour lesquels l'eau est présente dans la dispersion. Lorsque l'eau s'évapore, des forces capillaires agissent dans les pores favorisant le rapprochement des particules et le durcissement se fait par formation d'une structure de coagulation. La pâte de boehmite ou gel s'inscrit dans cette classe de liants minéraux.

Le deuxième sous-groupe comprend les ciments qui durcissent par formation d'une nouvelle phase sous l'effet d'une réaction chimique. Parmi ces ciments, nous distinguons ceux qui réagissent avec l'eau comme les liants hydrauliques, les ciments de Portland et, ceux résultant d'une réaction acido-basique. Ces derniers sont les ciments formés à partir d'une réaction entre un oxyde ou hydroxyde métallique avec l'acide phosphorique (H₃PO₄) et les ciments formés à partir des oxydes et water glass (ex. : ZnO + Na₂SiO₃).

1.2.2.2. Critères de choix

La boehmite fait partie de la classe de liants de type ciments et compte-tenu de la variété de liants dans cette catégorie nous avons choisi de rester dans cette même classe mais dans un autre sous-groupe (Figure 1.23 ci-avant). Le choix s'est ainsi guidé par le processus de durcissement mis en jeu. La boehmite étant parmi les ciments qui se consolident par évacuation d'eau, il nous reste ceux dont le durcissement se fait par formation d'une nouvelle phase par le biais de réactions chimiques (réactions d'hydratation ou acido-basique).

Le deuxième critère de choix s'est donc porté sur la viabilité du liant par rapport aux étapes de mise en forme afin de ne pas modifier la structure de production déjà présente chez les fabricants.

L'emploi des liants hydrauliques n'est pas envisageable pour générer des modifications importantes dans les étapes de fabrication. Par exemple, le contrôle du processus de durcissement (réactions d'hydratation du ciment), l'optimisation du temps de malaxage et d'extrusion afin que la pâte ne durcisse pas au sein des équipements sont quelques considérations importantes à prendre en compte et qui altèrent la chaîne naturelle de production des supports.

Nous avons donc choisi d'utiliser comme deuxième liant dans la préparation des nouveaux supports à microstructure multi-échelles, les liants issus des réactions acido-basiques. Les phosphates d'aluminium apparaissent comme une bonne alternative. Ils sont issus des réactions entre un oxyde ou hydroxyde d'aluminium et l'acide phosphorique pour lesquelles la basicité est apportée par l'oxyde [Kingery, 1950].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf © [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
1.2.2.3. Domaines d'utilisation du phosphate d'aluminium comme liant

La littérature reporte l'emploi des phosphates d'aluminium dans différents domaines. Ils peuvent être utilisés comme liant des céramiques réfractaires (ex. : Al₂O₃-SiC) qui sont destinées au revêtement de surfaces pour les protéger de la corrosion et des environnements à hautes températures. Le rôle du liant est de faire adhérer les granules céramiques entre elles mais aussi au substrat qui sera revêtu. Le phosphate d'aluminium apporte une très bonne résistance mécanique, stabilité thermique et résistance à l'abrasion [Chen et al., 2003 ; Vippola et al., 2001, 2002].

Dans le domaine de la catalyse, Lee et al. (2010) reportent l'emploi du phosphate d'aluminium comme liant afin de mettre en forme des zéolites (ZSM-5) pour la préparation de catalyseurs utilisés dans la conversion du méthanol en propylène (MTP) (Figure 1.24). Le liant a été obtenu par réaction de la boehmite (AlOOH) avec l'acide phosphorique (H₃PO₄) et mélangé ensuite aux zéolithes. Après l'extrusion, les crus ont été séchés à 110°C et calcinés à 600°C. La séquence des étapes du procédé de mise en forme est donc la même que celle avec les liants "classiques". Par rapport au support préparé avec la boehmite comme liant, les matériaux avec le phosphate d'aluminium ont présenté une résistance mécanique à la compression environ 3 fois supérieure (P/Al = 0,8).

Figure 1.24 – Images de microscopie électronique à balayage (MEB) : (a) poudre de zéolithe ZSM-5, (b) mise en forme avec la boehmite et (c) avec le phosphate d'aluminium (P/Al = 0,8) [Lee et al., 2010].
Freiding et al. (2011) ont également reporté les performances des catalyseurs zéolitiques pour lesquels le support a été mis en forme avec le phosphate d'aluminium comme liant. L'application envisagée était aussi la conversion du méthanol en oléfines. Les matériaux ont présenté une bonne sélectivité et résistance au dépôt de coke. De plus, l'avantage de mettre en forme des zéolithes avec ce liant est que, d'après les auteurs, leur ratio Si/Al est préservé. La mise en forme de zéolithes avec la boehmite, par exemple, peut provoquer l'alumination de la zéolithe modifiant, par conséquent, l'acidité du support.

Marturano et al. (1997) ont étudié l'effet de différents liants (argile, phosphate d'aluminium et boehmite) dans la mise en forme de supports d'alumine. L'application envisagée était le reformage catalytique du méthane en gaz de synthèse (mélange H2 et CO). Dans ce travail, les matériaux obtenus avec le phosphate d'aluminium se distinguent aussi par leur résistance mécanique élevée.

À notre connaissance, l'utilisation du phosphate d'aluminium comme liant dans la préparation de supports pour les catalyseurs d'hydrotraitement (HDT), application envisagée dans cette étude, n'est pas reportée dans la littérature. Néanmoins, il est connu que le phosphore est considéré comme un deuxième promoteur (ou additif) des catalyseurs d'HDT dont la phase active métallique est composée du molybdène [Eijsbouts et al., 1991 ; Fitz et Rase, 1983 ; Iwamoto et Grimblot, 2000 ; Mangnus et al., 1991 ; Tischer, 1987].

D'après la littérature, les effets positifs du phosphore dans les catalyseurs d'HDT dépendent de ses conditions de préparation et de la teneur en phosphore introduite qui affecte fortement les performances catalytiques. La plupart des effets bénéfiques du phosphore ont été observés dans les réactions d'hydrodéazotation (HDN). Ces effets sont influencés par la nature des réactifs et des produits intermédiaires, et par les différents sites actifs mis en jeu dans les diverses réactions d'hydrotraitement [Iwamoto et Grimblot, 2000].

Le phosphore peut être introduit dans ces catalyseurs par imprégnation à sec² du support d'alumine avec une solution contenant son précurseur (P2O5, H3PO4 ou NH4H2PO4) ou par co-imprégnation avec les sels métalliques ; par imprégnation en excès³ ; par précipitation ou voie

² Le support est imprégné avec une solution contenant les éléments à déposer et le volume de cette solution est égal au volume poreux du support qui peut être rempli par de l'eau.
³ Le support est mis en contact avec un volume de solution largement supérieur à celui de son volume poreux.
L'application du phosphate d'aluminium comme liant, comme utilisé par Lee et al. dans la mise en forme de zéolithes, en vue de la préparation de supports de catalyseurs pour l'HDT semble donc nouveau et nous allons évaluer sa faisabilité dans le cadre de cette thèse.

Nous nous focaliserons dans un premier temps sur les effets de ce liant par rapport à la microstructure et aux propriétés texturales et mécaniques des matériaux obtenus. L'évaluation des effets du liant sur les performances catalytiques ne fait donc pas partie de cette étude dédiée au développement des nouveaux supports.

La section suivante présente les principaux aspects liés à la chimie du phosphate d'aluminium afin de comprendre l'origine de ses propriétés adhérentes qui justifient leur emploi comme liant.

1.2.2.4. Aspects chimiques des phosphates d'aluminium

L'acide phosphorique (H₃PO₄) réagit avec les oxydes et hydroxydes pour former des composés phosphatés très utilisés comme liant dans différents domaines. Les oxydes amphotères comme les précurseurs d'aluminium (Al₂O₃, AlOOH, Al(OH)₃) sont les plus adaptés car les réactions peuvent être plus facilement contrôlées tandis qu'avec les oxydes basiques (ex. : ZnO) la réaction est très violente [Morris et al., 1977].

Yutina et al. (1966) ont reporté que la réaction du H₃PO₄ avec les différentes formes d'alumine (alumines de transition et α-Al₂O₃) et avec les espèces hydratées d'aluminium (AlOOH et Al(OH)₃) conduisent à des produits similaires. Cependant, la cinétique de la réaction est influencée par le degré d'hydratation, par la cristallinité et par la surface spécifique des précurseurs d'aluminium. La réaction étant plus rapide avec les oxydes sous les formes hydratées, moins cristallisées et présentant une surface spécifique élevée [Bothe et Brown, 1993].

La réaction acido-basique met en jeu la dissolution du précureseur d'aluminium (formation d'espèces Al³⁺) du fait du pH très faible de la solution aqueuse d'acide phosphorique [Wagh, 2004]. D'après la littérature, les phosphates d'aluminium (liant dans la classe des ciments) sont

4 Les composés métalliques et les espèces contenant le phosphore sont directement introduits dans un précureseur du support d'alumine (ex. : alumina hydrogel).
5 Le phosphore est introduit simultanément avec les composés métalliques de la phase active avant ou pendant l'hydrolyse de l'alcoxyde d'aluminium.
formés à partir d'un ratio P/Al proche de 1 tandis que les phosphates acides d'aluminium (liant dans la classe des adhésifs) sont issus de proportions très élevées en acide (1 < P/Al < 3).

Dans un premier temps, se produit la formation d'espèces hydratées de phosphates d'aluminium dont la composition chimique peut être très variable (Al(H₂PO₄)₃, AlH₃(x-y)(PO₄)y H₂O, AlPO₄ₓH₂O...) en fonction du ratio P/Al des réactifs, du pH du milieu, de la température de réaction, des conditions de préparation entre autres. Pour ces raisons, il est difficile d'affirmer avec précision la nature exacte des produits intermédiaires formés [Gonzalez et Halloran, 1980]. L'équation 1.3 montre un exemple de réaction possible [Wagh, 2004].

$$\text{Al}^{3+} + H_2PO_4^- + HPO_4^{2-} + H_2O \rightarrow AlH_3(PO_4)_2.H_2O$$ \hspace{1cm} (Équation 1.3)

Les espèces hydratées de phosphate d'aluminium sont reportées dans la littérature comme étant amorphes [Kingery, 1950]. D'après Morris et al., les phases amorphes présentent une continuité et sont plus flexibles que les structures cristallines (plutôt rigides).

La formation de la phase amorphe est favorisée par le petit rayon du cation métallique Al³⁺ (r = 0,39 Å) [Shannon, 1976]. En effet, si le cation est grand, il aura tendance à former des structures avec un grand nombre de coordination et donc plus régulières. En revanche, des structures aléatoires sont plus facilement obtenues avec des petits cations dont le nombre de coordination est faible permettant la formation d'une structure variable par la connexion de polyèdres comme dans le cas des verres [Kingery, 1950 ; Morris et al., 1977].

Ces phases amorphes peuvent encore présenter des groupes fonctionnels comme les hydroxyles permettant la formation de liaisons d'hydrogène avec les oxygènes présents à la surface du substrat comme c'est le cas des phosphates d'aluminium hydratées. Cette structure aléatoire serait donc l'origine des propriétés adhésives du phosphate d'aluminium aux faibles températures (< 100°C).

La déshydratation des espèces hydratées (ex. : AlPO₄ₓH₂O) conduit à la formation de l'orthophosphate d'aluminium (AlPO₄) dès 150°C [Bothe et al. (1990)]. En présence d'un substrat comme l'alumine et sous traitement thermique (> 100°C), l'AlPO₄ peut aussi être formé par réaction de condensation entre l'espèce hydratée et l'alumine [Cassidy, 1977 ; Gonzalez et Halloran, 1980 ; Wagh, 2004] comme le montre l'équation 1.4 [Wagh, 2004]. La cohésion est alors assurée par un réseau covalent continu d'oxygènes alternant tétraèdres PO₄ et AlPO₄.

$$\text{Al}_2O_3 + 2AlH_3(PO_4)_2.H_2O \xrightarrow{>100°C} 4AlPO_4 + 4H_2O$$ \hspace{1cm} (Équation 1.4)

La littérature reports que l'AlPO₄ présente une structure cristalline isomorphe à celle de la silice (SiO₂) due à la même structure tridimensionnelle formée par des tétraèdres
interconnectés où chaque atome d'oxygène est partagé entre un atome d'aluminium et un atome de phosphore [Beck, 1948].

L'orthophosphate d'aluminium (AlPO₄), tout comme la silice (SiO₂), présente des transitions de phase reconstructives et displacives (Figure 1.25). Les premières ont lieu à partir de la rupture de liaisons et de leur réarrangement permettant la formation d'une nouvelle structure cristalline. Ces transitions dites reconstructives sont à l'origine des formes cristallines berlinite (analogue au quartz), type-tridymite ou type-cristobalite. D'autre part, les transitions displacives sont rapides et liées au déplacement d'un atome par rapport à l'autre sans pour autant modifier leur position dans la structure cristalline. Il s'agit uniquement d'une altération des angles et des longueurs des liaisons. Les phases formées sont désignées α et β et correspondent, respectivement, aux formes cristallines à basse et à haute température.

Figure 1.25 – Stabilité thermique des polymorphes (a) AlPO₄ et (b) SiO₂ et leurs températures (°C) de transition respectives d'après Beck (1948).

Par rapport à la silice, l'AlPO₄ présente des températures de transition de phase plus faibles (Figure 1.25). Cela peut être expliqué par le fait que les longueurs des liaisons Si-O qui forment la structure tétraédrique de la silice sont toutes de la même taille (1,61 Å). En revanche, les tétraèdres de l'AlPO₄ sont formés par des liaisons Al-O et P-O, qui présentent des longueurs différentes et égales à 1,73 Å et 1,52 Å, respectivement [Shannon, 1976]. Par conséquent, le positionnement alterné des atomes Al et P dans la structure tétraédrique de l'AlPO₄ diminue la symétrie des phases formées par rapport à celles de la silice, et donc, les transitions ont lieu à des températures plus basses [Graetsch, 2007].

Les températures indiquées sur la figure 1.25 lors des transitions de phase de l'AlPO₄ [Beck, 1948] peuvent varier selon l'origine de la berlinite ou du mode de synthèse du phosphate d'aluminium de départ (conditions opératoires et précurseur d'aluminium). Plusieurs travaux reportent, par exemple, la formation des phases cristallines AlPO₄ à faibles températures (150 – 300°C) [Gonzalez et Halloran, 1980 ; Bothe et Brown, 1990 ; Grover et al., 1999 ; Lee et al., 2010].

Lee et al. qui ont utilisé le phosphate d'aluminium comme liant afin de mettre en forme des zéolithes, ont montré la formation des phases type-cristobalite (C) et type-tridymite (T)

Figure 1.26 – Diffractogrammes des liants seuls (Al : alumine issue de la calcination de la boehmite et AIPO 0.8 : phosphate d'aluminium préparé avec un ratio P/Al = 0.8) et des supports zéolithes liant (ZAI : ZSM-5/Al et ZAIPO x : ZSM-5/AIPO x avec x = P/Al). Les phases type-cristobalite (C), type-trydimite (T) et d'alumine (A) sont également identifiées [Lee et al., 2010].

Certains auteurs indiquent aussi la formation du métaphosphate d'aluminium (Al(PO₃)₃) aux plus hautes températures (> 400°C) [Gonzalez et Halloran, 1980]. Il serait issu des réactions de déshydratation de certaines phases hydratées avec la formation de produits intermédiaires comme l'indique l'équation 1.5.

\[
Al(H₂PO₄)₃ \xrightarrow{230°C} AlH₂PO₄ + 2H₂O \xrightarrow{500°C} Al(PO₃)₃ + H₂O \quad (Équation 1.5)
\]

Nous observons donc que le phosphate d'aluminium se différencie énormément de la classique boehmite. En plus d'appartenir à une autre classe de liant de type ciment, les phases formées évoluent en fonction de la composition et, principalement, de la température. La texture de ce liant est également très différente de celle issue de la boehmite. Tandis que celle-ci peut conduire à une alumine mésoporeuse sous calcination à température contrôlée, le phosphate d'aluminium, tel que préparé dans les travaux de Lee et al., est quasiment non-poreux avec une surface spécifique faible, voisine de 1 m²/g.
La prochaine section présente quelques exemples de matériaux à microstructure multi-échelles et ce que l'organisation hiérarchique de granules de différentes tailles peut apporter à leurs propriétés.

1.2.3. **Exemples de matériaux à microstructure multi-échelles**

Dans le domaine du génie civil, la maîtrise de l'empilement granulaire a permis le développement des bétons à hautes performances (BHP). La résistance mécanique à la compression de ces matériaux est de l'ordre de 120 MPa tandis que les bétons ordinaires présentent une résistance modérée de 40 MPa [Le Roy, 1996].

La présence d'une porosité importante dans les bétons ordinaires est à l'origine de leur faible tenue mécanique. Lors de la prise, l'eau qui ne participe pas aux réactions d'hydratation du ciment s'évapore progressivement laissant place à la porosité. Ces pores vont communiquer entre eux et forment un réseau de micro galeries restant en contact avec l'environnement (eau ambiante, l'air, le CO$_2$...). Le béton alors trop poreux présente une faible résistance aux sollicitations mécaniques externes.

Afin d'améliorer la résistance du béton, sans perdre la fluidité nécessaire pour la mise en œuvre, l'empilement granulaire est optimisé permettant de remplacer une partie de l'eau par des grains ultra fins.

Les bétons ordinaires sont constitués par l'assemblage de granulats de différentes tailles tels que les graviers (cm) et les sables (mm) qui forment un squelette rigide à l'intérieur d'une pâte cimentaire qui joue le rôle de liant (Figure 1.27.a et 1.27.b). En revanche, dans les bétons à hautes performances, l'ajout des ultra fines comme les fumées de silice (~ 0,1 µm) permet de combler encore plus la porosité de l'assemblage de granulats (Figure 1.27.c).
Grâce à un dosage précis de chacune des populations granulométriques, il est donc possible d'avoir des empilements très compacts pour lesquels les petites remplissent les espaces entre les grosses et les ultra fines la porosité résiduelle. D'autre part, cet assemblage très compact des BHP permet de minimiser la quantité d'eau nécessaire à la fluidification. En effet, avant la prise, les fines séparent les gros grains et sont-elles mêmes séparées par les ultra fines. Il s'agit du principe de roulement à billes [Farris, 1968] qui permet de garder la fluidité du mélange même à moindre quantité d'eau.

L'empilement granulaire est aussi beaucoup utilisé dans l'élaboration de pièces céramiques (Figure 1.28). Il est souhaitable de disposer d'une poudre céramique dont les granules sont les plus sphériques possibles, de surfaces peu rugueuses et dont les tailles puissent assurer à la fois un empilement compact, homogène et réactif au frittage [Boch, 2001].

En plus de maximiser la compacité de l'empilement granulaire, l'emploi de granules de différentes tailles permet de minimiser le retrait lors du frittage et de gagner en résistance mécanique par rapport aux pièces constituées uniquement de grosses granules [Kwon et Messing, 1998].

Figure 1.27 – (a) Microstructure multi échelles des bétons, (b) image de microscopie électronique à balayage d'un béton ordinaire montrant sa porosité importante et (c) d'un béton à hautes performances pour lequel les fines et les ultra fines permettent d'obtenir une microstructue très compacte [Collection technique cimbéton].
Figure 1.28 – (a) Céramique constituée uniquement par une population de petites issues du frittage d'une boehmite dispersée (sol) et (b) Céramique présentant une microstructure multi-échelles formée par l'empilement de ces petites avec grosses granules d'alumine α [Kwon et Messing, 1998].

A partir de ces exemples, on peut constater les avantages de l'empilement granulaire dans deux domaines distincts. La maximisation de la compacité d'empilement, le gain en tenue mécanique et la diminution de la viscosité même à faibles teneurs en liquide (effet de roulement à billes) sont quelques bénéfices identifiés avec la maîtrise de l'organisation hiérarchique de populations de différentes tailles.

La dernière section nous présente quelques généralités sur l'empilement granulaire à sec qui nous permettront d'avoir les bases nécessaires pour la conception des nouveaux supports de catalyseur à microstructure multi-échelles.

1.2.4. Généralités sur l'empilement granulaire

1.2.4.1. Mélange monomodal

L'empilement de sphères monomodales est le cas le plus simple et on distingue cinq types d'empilements réguliers possibles, c'est-à-dire un nombre identique à celui des structures cristallines (Figure 1.29.a) [German, 1989].

L'empilement rhomboédrique donne la densité d'empilement ou compacité maximale de 0,74. Cependant, en pratique, les empilements de sphères sont aléatoires et la compacité maximale d'empilement avoisine 0,64. D'autre part, plus les granules s'éloignent du format sphérique moins l'empilement sera compact comme le montre la figure 1.29.b.
1.2.4.2. Mélange bimodal

Le mélange de deux populations de tailles différentes permet d'augmenter la compacité d'empilement car les plus petites granules comblent les interstices laissés par les plus grosses. La compacité obtenue sera alors fonction du rapport de taille entre les granules et de la proportion de chacune des populations.

Furnas (1928) a été un des premiers à établir les bases de l'empilement granulaire au travers de modèles mathématiques. L'approche est simple et fondée sur des observations expérimentales.

D'après sa théorie, l'évolution du volume spécifique (inverse de la masse volumique) d'un empilement aléatoire de sphères de deux classes de diamètres est non-monotone et il existe une composition optimale de petites et grosses sphères pour laquelle le volume spécifique est minimal comme représenté sur la figure 1.30. Le volume spécifique minimal se traduit par l'empilement le plus compact.
Figure 1.30 – Évolution du volume spécifique d'un empilement bimodal en fonction de la proportion de petites et grosses de sphères [German, 1989].

Hors de la composition optimale du mélange bimodal, nous avons deux systèmes d'assemblage possible. Soit la proportion de petites sphères n'est pas suffisante pour combler tous les espaces résiduels laissés par l'empilement des grosses (extrême droite de la courbe), soit la proportion de petites est trop importante et desserre l'agencement des grosses sphères (extrême gauche de la courbe).

Cumberland et Crawford (1987) ont démontré que la théorie de Furnas, écrite en terme de volume spécifique, est la même que celle de McGeary (1967) mais écrite à partir de la compacité et de la fraction massique des deux populations. Les expressions sont les suivantes :

\[
c = \frac{f_m^G \rho_g^p + (1 - f_m^G) \rho_g^G}{f_m^G \rho_g^p \rho_g^p + (1 - f_m^G) \rho_g^G} \quad \text{(Équation 1.6)} \quad \text{pour } 0 \leq f_m^G \leq f_{m_{\text{sat}}}^G
\]

\[
c = \frac{f_m^G \rho_g^p + (1 - f_m^G) \rho_g^G}{f_m^G \rho_g^p} \quad \text{(Équation 1.7)} \quad \text{pour } f_{m_{\text{sat}}}^G \leq f_m^G \leq 1
\]

Où :

\[
f_{m_{\text{sat}}}^G = \frac{c^G \rho_g^G}{c^G \rho_g^G + (1 - c^G) \rho_g^p}
\]

Avec :

\[c : \text{compacité d'empilement (mL/mL)}\]
fm: fraction massique (g/g)
ρ_g: masse volumique (g/mL)
G: population de grosses
P: population de petites
sat: saturation (au point optimal)

Les équations 1.6 et 1.7 permettent de tracer deux droites dont l'intersection correspond à la composition optimale de la population de grosses pour laquelle la compacité est maximale. La théorie de Furnas (et McGeary) permet ainsi de définir le domaine optimal du mélange bimodal. Les équations décrivent le cas idéal où le ratio de diamètres $d_{petites}/d_{grosses}$ tend vers zéro. Par conséquent, l'évolution de la compacité des mélanges réels (résultats expérimentaux) doit se situer en-dessous des droites théoriques comme le montre la figure 1.31.

![Figure 1.31 – Evolution de la compacité d'un mélange bimodal en fonction de la proportion massique de grosses sphères [McGeary, 1967].](image)

La figure montre que la compacité maximale d'un empilement idéal de sphères est de 0,86 atteinte à une proportion massique de grosses de 73%. Il s'agit du mélange bimodal de sphères dont les grosses et les petites seules présentent la même compacité d'empilement (~ 0,63) et dont la taille des petites est infiniment inférieure à celle des grosses permettant un remplissage optimal des interstices sans désorganiser le réseau formé par les sphères les plus larges.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
1.2.4.3. Facteurs qui influencent l'empilement

La compacité d'un empilement dépend de nombreux paramètres. Au niveau des propriétés des granules, la distribution de tailles et la forme sont les deux principales propriétés qui affectent l'empilement. Pour des granules sphériques monomodales supérieures à 100 microns, la compacité est indépendante du diamètre moyen et ne dépend que de l'énergie de serrage. Au contraire, pour des granules inférieures à 100 µm, on observe une diminution de la compacité avec une diminution du diamètre moyen. Ceci est causé par la prépondérance des forces cohésives de Van der Waals par rapport aux forces gravitationnelles.

En ce qui concerne les mélanges réels, constitués de granules de formes irrégulières et présentant des distributions granulométriques larges, la compacité diminue si leur forme s'éloigne de la sphéricité (Figure 1.29.b). D'autre part, la compacité augmente avec l'étalement de la distribution granulométrique car les petites granules peuvent se loger dans les interstices créés entre les plus grosses [Cumberland, 1987 ; German, 1989].

D'autres facteurs affectent la compacité comme l'effet de paroi, le phénomène de ségrégation ou l'énergie de serrage. Contre et près de la paroi du récipient, le positionnement des granules n'est pas libre et des irrégularités dans l'empilement apparaissent. La compacité y est donc plus faible qu'au milieu du récipient. Cet effet, plus prononcé au niveau des coins du récipient ou pour des granules irrégulières, disparaît pour un rapport « diamètre du récipient /diamètre des granules d > 10 » [Cumberland, 1987 ; German, 1989].

La ségrégation est principalement causée par des différences de tailles (à partir d'un ratio de tailles supérieur à 6) et de masses volumiques vraies entre les granules. Ceci se traduit par une séparation entre les grosses qui migrent à la surface de l'empilement, et les plus fines qui se retrouvent au fond du récipient en passant à travers le squelette granulaire formé par les grosses. Ce phénomène est cependant moins marqué pour des granules cohésives (d < 100 µm) et de formes irrégulières [German, 1989].

Enfin, le fait d'appliquer une énergie de serrage sur l'empilement, par exemple à l'aide de vibrations ou de chocs appliqués sur le récipient, permet d'augmenter la compacité. Ceci favorise la migration des fines dans les interstices formés entre les grosses granules [Cumberland, 1987 ; German, 1989].
1.3. Bilan

La pluridisciplinarité de ce sujet de thèse nous a menés à une étude bibliographique très variée. Cette étude a abordé les points essentiels des différents domaines de compétence nécessaires à la conception des nouveaux supports de catalyseur à microstructure multi-échelles.

La catalyse, le procédé de mise en forme de supports par extrusion, les propriétés des alumines (composé de base des supports d'HDT), la démarche pour choisir un nouveau liant adapté, les matériaux à microstructure multi-échelles et l'empilement granulaire sont les divers domaines d'étude qui font partie de ce travail.

La microstructure des nouveaux supports est inspirée de celle rencontrée dans les bétons à hautes performances et dans les céramiques techniques. L'empilement hiérarchique de granules de différentes tailles est connu pour apporter de meilleures résistances mécaniques au fait de la minimisation de la porosité inter-granulaire. De plus, l'effet de roulement à billes promu par le glissement des granules les unes sur les autres permet d'améliorer les capacités d'écoulement d'un mélange granulaire humide même à faibles teneurs de liquide. Le schéma représentant cette transposition de concept est montré sur la figure 1.32.

![Figure 1.32 – Schéma de la transposition du concept d'empilement granulaire maîtrisé rencontré dans les bétons à hautes performances vers les nouveaux supports de catalyseur qui sont les matériaux cibles de cette thèse.](image)

L'objectif premier consiste à obtenir des matériaux constitués de l'empilement hiérarchique de granules d'alumine poreuses (alumines de transition) de différentes tailles mis en forme avec les deux liants retenus pour l'étude : la boehmite et le phosphate d'aluminium.

L'emploi de deux liants aux propriétés très distinctes nous permettra d'évaluer comment les interactions granules d'alumine-liant peuvent influencer l'organisation hiérarchique. En outre la microstructure, la caractérisation des propriétés texturales et mécaniques des supports doit nous permettre d'identifier l'effet du liant utilisé et de l'empilement granulaire sur les propriétés finales du support. Enfin, on souhaite se positionner sur les bénéfices de ces nouveaux matériaux pour la catalyse en identifiant ce que la microstructure multi-échelles peut apporter par rapport aux supports traditionnels d'alumine.
La partie critique de cette étude concerne la formulation des pâtes lors du malaxage afin qu'elles soient adaptées à l'extrusion mais aussi que la microstructure finale du support calciné présente bien l'organisation hiérarchique illustrée sur la figure 1.32 ci-avant. De plus, il faudra s'assurer de la préparation de matériaux avec le minimum de défauts/ fissures afin que les propriétés texturales et mécaniques ne soient pas affectées par des paramètres autres que l'empilement et le type de liant utilisé.

Afin d'établir une démarche expérimentale la plus scientifique possible permettant d'identifier les meilleures conditions de mise en forme, nous avons mené deux études principales : une uniquement sur l'empilement de poudres (Chapitre III) et l'autre sur la formulation des liants (Chapitre IV). Les résultats obtenus ont été utiles à l'élaboration des supports à microstructure multi-échelles (Chapitre V) avec des paramètres de formulation optimisés.

Dans la prochaine section, on présente la procédure expérimentale adoptée ainsi que les diverses techniques de caractérisations utilisées. Ensuite, on abordera les résultats issus de chacune des études citées dans le paragraphe précédent.
Chapitre II : Procédures expérimentales et Techniques de caractérisation
Chapitre II

Procédures expérimentales et Techniques de caractérisation

Les supports de catalyseur à microstructure multi-échelles sont préparés à partir des techniques classiques de malaxage et extrusion. Ces matériaux sont constitués d’un empilement de granules micrométriques et poreuses d'alumine dont l'assemblage est assuré par la présence d'un liant à base d'aluminium. Nous utilisons deux types de liants : la boehmite peptisée et neutralisée et le phosphate d'aluminium. Ces liants se distinguent par leurs propriétés texturales et par leurs interactions avec les granules d'alumine. Pour simplifier la nomenclature, nous allons utiliser les termes AIOOH et AIPO, qui n'ont pas de rapport avec la composition chimique du milieu, pour désigner les deux liants qu'ils soient à l'état humide (pâte) ou à l'état calciné.

La stratégie expérimentale ainsi que les moyens employés pour mettre en forme et caractériser les supports à microstructure multi-échelles, sont présentés dans cette partie. Les caractéristiques des granules d'alumine et la formulation de chacun des liants choisis seront décrites dans les Chapitres III et IV respectivement.

2.1. Stratégie expérimentale

Le schéma de la figure 2.1 résume la stratégie expérimentale adoptée pour la préparation des supports à microstructure multi-échelles. D'abord, nous étudions l'empilement à sec des granules d'alumine et la formulation et caractérisation des deux liants. Enfin, les effets de l'empilement granulaire et du liant utilisé sur les propriétés texturales et mécaniques des matériaux sont évalués. Ces domaines d'étude et leurs résultats seront décrits séparément dans les chapitres suivants :

Chapitre III : Étude sur l'empilement à sec des poudres (Al₂O₃)
Chapitre IV : Étude sur le liant (AIOOH et AIPO)
Chapitre V : Matériaux à microstructure multi-échelles (AIOOH + Al₂O₃ et AIPO + Al₂O₃)
2.1.1. Malaxage

a) Description de l'outil

L'étape de mélange des réactifs est réalisée dans un malaxeur de laboratoire de type "batch", Brabender® Plastograph® EC modèle 50 EHT (Figure 2.2.a).
La chambre de mélange est constituée d'une cuve (Figure 2.2.b), dont la capacité volumique est de 80 mL et de deux pâles rotatives, ou bras, de type "came" (Figure 2.2.c). Le malaxeur est aussi constitué d'une unité dynamométrique pour la mesure du couple et le contrôle de la vitesse de rotation des bras. Un bras est mis en rotation directement par le moteur du Plastograph® (puissance de 3,8 kW) générant la rotation du second bras. Le rapport de vitesse entre le bras "moteur" et le bras "libre" est de 3/2. La température dans la cuve de malaxage est mesurée par une sonde Pt100. Une carte d'acquisition AT-485/2 permet le pilotage intégral par ordinateur à partir du logiciel de mixage WINMIX. L'énergie spécifique E (J/g) apportée à la pâte au cours du malaxage est calculée en fonction du couple, de la vitesse de rotation des bras et du temps de malaxage comme indiqué dans l'équation 2.1.

\[
E = \frac{\int C(t)V(t)dt}{M} \quad \text{(Équation 2.1)}
\]

C : intensité du couple (Nm)
V : vitesse de rotation des bras (s\(^{-1}\))
t : durée totale du malaxage (s)
M : masse totale des réactifs dans la cuve (g)

L'avantage d'utiliser ce type d'appareil instrumenté est qu'il peut être utilisé comme un rhéomètre. Il est, en effet, possible d'obtenir les propriétés rhéologiques des pâtes (viscosité) à partir des acquisitions obtenues au cours du malaxage comme décrit dans la section 2.2.2.1 (ci-après) sur les moyens de caractérisation des pâtes.
b) **Protocole**

La procédure de malaxage est divisée en trois étapes :

i) mélange de poudres à sec

ii) ajout de la solution acide

iii) malaxage du milieu granulaire humide

Ces étapes sont visualisées sur la figure 2.3 avec deux exemples de suivi d'évolution du couple en fonction du temps : un correspondant à une pâte préparée avec le liant AlOOH et l'autre avec le liant AIPO.

Équation 2.2

\[
T_r = \frac{V_p}{V_c}
\]

\(V_p\) : volume de poudre (mL)

\(V_c\) : volume de la cuve (80 mL)
Le volume de poudre est calculé à partir de la masse et de la densité de remplissage tassée (DRT) de la poudre :

\[V_p = \frac{M_s}{DRT} \]
(Équation 2.3)

\(M_s \): masse de poudre (g)
\(DRT \): densité de remplissage tassée de la poudre (g/mL)

Le choix de \(T_r \) est réalisé de façon à assurer un mélange homogène à sec et un malaxage convenable pendant l'étape d'agglomération humide (bon échange de pâte entre les bras). Les poudres sont mélangées dans le malaxeur pendant 2 min à une vitesse de rotation de bras de 10 tours/min.

ii) Ajout de la solution acide : Une solution aqueuse d'acide nitrique (HNO₃, 60% pd) et une solution d'acide phosphorique (H₃PO₄, 85% pd) sont utilisées pour préparer, respectivement, les liants AlOOH et AlPO. La boehmite Pural SB3 (AlOOH.nH₂O) (Sasol), dont les caractéristiques sont décrites dans le chapitre IV, est utilisée comme précurseur d'aluminium pour les deux types de liants étudiés. Le taux d'acide (Ta) définit la proportion d'acide par rapport à la quantité de matière sèche de boehmite (quantité d'alumine formée après un traitement à 1000°C - perte au feu) comme le montre l'équation 2.4.

\[Ta (\%pd) = \frac{m_a C_a}{m_{AlOOH} (1 - PAF_{AlOOH} / 100)} \]
(Équation 2.4)

\(m_a \): masse de solution acide (g)
\(C_a \): concentration d'acide (\%)
\(m_{AlOOH} \): masse de boehmite (g)
\(PAF_{AlOOH} \): perte au feu = \(m_{volatils} / m_{totale} = 25,7\% \)

La solution acide est ajoutée progressivement au mélange de poudres (granules d'alumine et précurseur d'aluminium du liant), avec un débit contrôlé, à l'aide d'un pousse-seringue alimentant le malaxeur. L'ajout automatisé du liquide permet d'assurer une bonne reproductibilité des essais. Le débit est réglé de manière à introduire la totalité de la solution acide dans un temps de 5 min. La vitesse de rotation des bras est maintenue constante à 10 tours/min. Ces conditions de mélange sont choisies afin d'établir un bon contact entre la solution introduite et les poudres et ainsi, favoriser le début de l'agglomération par création de ponts liquides entre les granules (régime pendulaire), et la consolidation et coalescence des agglomérats formés (régime funiculaire) (réf. : section 1.1.2.1 – Chapitre I).
La quantité d'eau utilisée pour préparer la solution acide est définie de manière à atteindre le régime capillaire au cours de la dernière étape de malaxage (iii). La quantité de liquide est, dans ce cas, suffisamment importante pour saturer la porosité de la poudre et conduire à la formation d'un agglomérat unique (pâte). Cet état est caractérisé par la stabilisation du couple (apparition d'un palier) ou de la résistance au mélange.

En plus d'atteindre l'état pâteux, la quantité de liquide mise en jeu doit permettre la formation d'une pâte extrudable (sans problèmes de drainage de liquide, sans formation de "bouchon" de pâte au cours de l'extrusion...), et d'extrudés mis en forme sans défauts de surface ("peau de requin") ou de forme ("tronc de palmier") (réf. : section 1.1.2.2 – Chapitre I). Le critère d'extrudabilité est donc lié aux différentes caractéristiques de la pâte, telles que la malléabilité et la cohésion de l'agglomérat formé. Le rapport massique S/L (m_{solide total}/m_{liquide total}) est le paramètre utilisé pour définir la quantité de liquide (acide, eau...) employé dans la préparation de la pâte.

iii) Malaxage du milieu granulaire humide : Après l'ajout progressif de la solution acide décrit dans l'étape (ii), le malaxage est poursuivi pendant 30 min à une vitesse de rotation de bras de 16 tours/min. Ces conditions de malaxage sont satisfaisantes pour atteindre la stabilisation du couple.

Une deuxième étape de malaxage est réalisée si le liant formé est l'AlOOH. Comme décrit dans la section 1.1.3.2 (Chapitre I), l'action physico-chimique de l'acide nitrique (HNO₃) associée à l'énergie mécanique apportée par le malaxage permet de peptiser les agglomérats "de granules" qui constituent la poudre de boehmite jusqu'à l'échelle des agrégats nanométriques. Après cette première étape de malaxage acide, une solution d'ammoniaque (NH₄OH, 20% pds) est incorporée à la pâte et le malaxage est poursuivi pendant encore 5 min à la même vitesse de rotation des bras. Cette deuxième étape de malaxage basique est aussi appelée neutralisation. L'intérêt de cette étape complémentaire est de modifier la rhéologie de la pâte et la texture du matériau final [Drouin et al., 1987].

Le chapitre IV aborde plus largement l'effet de la neutralisation sur les propriétés rhéologiques et texturales des pâtes de boehmite. La quantité de base introduite est déterminée par le taux de neutralisation (TN) défini par l'équation 2.5. Les pâtes préparées avec le liant AIPO sont soumises à une seule étape de malaxage acide de 30 min (i.e. sans neutralisation).

\[
TN (\% mol) = \frac{n_b}{n_a} \times 100 \quad (Équation \ 2.5)
\]

\(n_b\) : nombre de moles d'ammoniaque (mol)
\(n_a\) : nombre de moles d'acide nitrique (mol)
2.1.2. Extrusion

La pâte préparée par malaxage est ensuite mise en forme par extrusion. Le dispositif utilisé est une extrudeuse à piston associée à un appareil de compression MTS modèle 4/M (Figure 2.4). La pâte est extrudée à partir d'un réservoir (fourreau) sous l'action d'un piston se déplaçant à une vitesse constante \(v = 10 \text{ mm/min} \). On force ainsi la pâte à s'écouler au travers d'une fûrière de géométrie cylindrique (diamètre \(D = 3 \text{ mm} \) et longueur \(L = 6 \text{ mm} \)). La pression d'extrusion est mesurée par un capteur (ENTRAN série EPX – 0 à 200 bars) placé au niveau de la fûrière. Le suivi de la force appliquée est réalisé par intermédiaire d'une cellule dynamométrique (MTS – 0 à 20kN) fixée à la traverse mobile. Les logiciels TestWorks® et Acquisition Standard permettent, respectivement, de piloter automatiquement l'extrudeuse et d'enregistrer l'évolution de la pression d'extrusion en fonction du temps ou du déplacement du piston. Les conditions d'extrusion sont les mêmes, indépendamment du type de liant (AlOOH ou AIPO) employé.

![Figure 2.4 - Machine MTS utilisée pour la mise en forme par extrusion (rhéomètre capillaire).](image)

2.1.3. Séchage

Les extrudés "crus" humides sont alors placés dans une étuve de laboratoire ventilée (BINDEER) à 80°C pendant 1 nuit. Les conditions opératoires choisies sont des conditions d'usage dans la préparation des supports à IFPEN.
2.1.4. Calcination

L’étape de calcination est réalisée dans un four à mufle (Nabertherm) sous air. La montée en température se fait avec une rampe à 3°C/min jusqu’à 600°C, température à laquelle un palier de 2h est imposé. Ensuite, le refroidissement est libre. Ces conditions sont identiques pour tous les matériaux préparés et la température choisie est adaptée à la structure du liant final.

2.2. Techniques de caractérisation

Les techniques employées pour caractériser les poudres, les pâtes et les extrudés sont décrites dans les paragraphes suivants. Par ailleurs, des caractérisations spécifiques à chaque liant (AlOOH et AIPO) et type de matériau seront décrites dans les chapitres concernés.

2.2.1. Poudres

2.2.1.1. Granulométrie à diffraction laser

La distribution granulométrique des poudres est déterminée par diffraction laser à l’aide d'un appareil Malvern® Mastersizer 2000. Dans cette étude, les poudres sont dispersées sous air (voie sèche) en utilisant un aspirateur à effet venturi. La pression optimisée de dispersion est de 2 bars.

Le calcul de la polydispersité (ou "span") renseigne sur l’étalement de la distribution granulométrique à partir des diamètres caractéristiques d_{v10}, d_{v50} et d_{v90} comme l'indique l'équation 2.6.

\[
\text{span} = \frac{d_{v90} - d_{v10}}{d_{v50}} \quad (\text{Équation 2.6})
\]

d_{vi} : i% du volume total des granules ont un diamètre inférieur au d_{vi} ($i = 10, 50$ ou 90)

2.2.1.2. Microscopie électronique à balayage (observation directe)

La morphologie des granules est caractérisée par Microscopie Électronique à Balayage (MEB). Les observations sont réalisées en "mode direct" dans lequel la poudre est simplement placée sur un support recouvert d'une pastille conductrice en carbone.

Le microscope utilisé est un appareil JEOL JSM 6340F et les conditions d'observation pour l'imagerie en électrons secondaires sont les suivantes : tension d'accélération d'électrons entre 1 et 15 kV, et une distance de l'échantillon au détecteur comprise entre 3 et 25 mm.
2.2.1.3. Microscopie électronique en transmission

La Microscopie Électronique en Transmission (MET) permet de caractériser une poudre au niveau de ses unités élémentaires, c'est-à-dire, les cristallites. La poudre est dispersée dans l'éthanol en utilisant un bain à ultrasons. Une goutte de cette dispersion est placée sur une grille de cuivre (Cu) contenant une membrane en carbone trouée. La préparation est alors séchée sous une lampe IR jusqu'à l'évaporation totale du solvant.

Les observations sont réalisées à l'aide d'un appareil JEOL JEM 2100F avec une tension d'accélération de 200 kV.

2.2.1.4. Diffraction des rayons X

La structure cristalline des poudres est caractérisée par Diffraction des Rayons X. Le diffractomètre type Bragg-Brentano utilisé est de marque PANalytical X'Pert PRO MPD muni d'un tube à rayons X au cuivre, d'un porte échantillon fixe et d'un détecteur ponctuel mobile. Les diffractogrammes sont obtenus en mode θ/θ.

Une estimation de la taille des cristallites est possible à partir de la largeur des raies en utilisant la relation de Scherrer (Équation 2.7) corrigée de la largeur expérimentale.

\[
D_{hkl} = \frac{K\lambda}{(B^2 - b^2) \cos \theta}
\]
(Équation 2.7)

- D_{hkl} : dimension des cristallites mesurée perpendiculairement au plan (hkl) considéré
- K : facteur de forme qui dépend de la manière dont on mesure la largeur de la raie ($K = 0,9$ si on considère la largeur à mi-hauteur)
- λ : longueur d'onde du faisceau incident ($\lambda_{Cu} = 1,5402$ Å)
- B : largeur de la raie à mi-hauteur
- b : largeur instrumentale obtenue en analysant du LaB6 certifié
- θ : angle de Bragg de la raie mesurée.

2.2.1.5. Physisorption d'azote

La physisorption d'azote permet de caractériser la microporosité (< 2 nm) et la mésoporosité (de 2 à 50 nm) d'un matériau et d'accéder à la surface spécifique à l'aide du modèle de physisorption multicouche développé par Brunauer, Emmett et Teller (BET) [Brunauer et al., 1938]. La distribution de la taille des mésopores est obtenue à partir de la méthode BJH développée par Barret, Joyner et Halenda [Barret et al., 1951].

L'allure des isothermes (à -196°C) peut avoir différentes formes et boucles d'hystérésis à la désorption selon les caractéristiques (ex. taille, forme et type de connectivité des pores) de la surface étudiée. Ces isothermes et boucles d'hystérésis sont classées en fonction de leur
forme par l'IUPAC. Des explications très complètes sur la description des différents types d'isothermes, leur interprétation et les théories associées peuvent être obtenues dans l'ouvrage "Adsorption by powders and porous solids" [Rouquerol et al., 1999].

Les analyses sont réalisées à l'aide d'un appareil ASAP 2420 (Micromeritics). L'échantillon est préalablement soumis à un prétraitement comprenant une étape de chauffage à 350°C (montée à 5°C/min) pendant 3h, et une étape de dégazage sous vide primaire pendant 1 nuit de manière à enlever tout gaz adsorbé. Le protocole des mesures suit la norme ASTM D 3663-03.

Cette technique est utilisée à la fois pour la caractérisation de poudres comme pour les extrudés.

2.2.1.6. Porosimétrie au mercure

La porosimétrie au mercure permet de balayer un domaine d'interconnectivité poreuse compris entre 3,6 nm et 140 µm. Il s'agit donc d'une technique de caractérisation complémentaire à la physisorption d'azote car en plus de la mésoporosité (de 3,6 à 50 nm), elle permet d'accéder à la macroporosité (> 50 nm). La relation de Washburn donne la relation entre le diamètre des interconnexions et la pression d'intrusion de mercure (hypothèse : connectivité cylindrique) [Washburn, 1921]. Le mercure est utilisé car il s'agit d'un liquide non mouillant et ne dissolvant pas la surface des solides.

L'appareil utilisé est de type AUTOPORE IV (Micromeritics). L'échantillon de masse connue est préalablement soumis à un traitement thermique à 250°C pendant 2h. Le protocole de mesures suit la norme ASTM D 4284-03.

Cette technique est aussi utilisée pour la caractérisation des extrudés mais dans le domaine de 3,6 à 7000 nm.

2.2.1.7. Micro-tomographie aux rayons X

La micro-tomographie aux rayons X est ici utilisée pour caractériser l'empilement des poudres. Les composants principaux d'un micro-tomographe sont la source de rayons X, le porte-échantillon rotatif et un système de détection des rayons X (Figure 2.5). L'appareil utilisé est un micro-scanner X Nanotom GE de la société Phoenix X-Ray. La source de rayons X est générée par le bombardement d'une cible mince par un faisceau d'électrons focalisé, c'est-à-dire, une source ponctuelle divergente avec émission isotrope. La taille du spot (taille de la source X) utilisée est de 1 µm. La géométrie divergente de la source induit un agrandissement de l'image de l'objet selon le ratio M = DSD / DSO = D/d (réf. nomenclature de la Figure 2.5). Le détecteur utilisé est un détecteur plan Hammamatsu (dimensions D = 110 mm x 110mm) de 2304 x 2304 pixels de taille P = 50 µm.
La poudre est placée dans un tube en plastique ("crayon") et transparent aux rayons X de 0,5 cm de diamètre et 10,5 cm de longueur. Les tubes sont remplis avec une spatule de manière à éviter une ségrégation des granules et d'assurer un remplissage maximal des "crayons". Les acquisitions sont réalisées avec un pas d'une fraction de degré sur une révolution complète (pas de 0,2° pour 1800 projections) et une résolution de 3,5 µm (taille voxel = P/M). La reconstruction de tout le volume scanné avec la résolution d'origine (3,5 µm) génère des volumes très importants de l'ordre de 12,8 Go très difficiles à manipuler. Nous avons donc reconstruit les volumes entiers avec une taille de voxel double (soit 7 µm).

![Diagramme de micro-tomographie aux rayons X](image)

Figure 2.5 – Principe de fonctionnement de la micro-tomographie aux rayons X.

2.2.1.8. Mesures de compacité

La compacité des poudres a été déterminée par de mesures de densité de remplissage tassée à l'aide d'un cristallisoir de volume connu ($V_{cristallisoir} = 26$ cm3) et dont le diamètre ($D_{cristallisoir} = 3,5$ cm) est suffisamment important par rapport au diamètre médian des granules d'alumines ($d_{cristallisoir} / d_{granules} > 10$) afin d'éviter l'effet de paroi [German, 1989].

Le cristallisoir est rempli avec la poudre par étapes successives à l'aide d'une spatule, et ce jusqu'au remplissage complet du récipient. Un pilon en verre est utilisé de manière à faciliter le tassement de la poudre et réaliser des compressions au fur et à mesure du remplissage. La méthode employée est supposée effective dans la minimisation de la ségrégation granulaire [Bridgwater, 1994]. Cette procédure est réalisée jusqu'à l'obtention d'une surface plate et rigide au bord du cristallisoir (Figure 2.6.a).
Figure 2.6 – (a) Schéma de l’empilement de poudres dans le cristallisoir utilisé pour déterminer la densité apparente et (b) schéma du remplissage de la porosité inter-granules (macroporosité) par le mercure dans le pénétromètre aux pressions intermédiaires. Aux très basses pressions (0,003 MPa), il est possible de déterminer le volume occupé par la poudre en vrac dans le pénétromètre en connaissant le volume de la cellule et de mercure introduit.

À partir de la masse de poudre nécessaire au remplissage total du cristallisoir et du volume de ce récipient, la densité apparente \(\rho_a \) est calculée (Équation 2.8).

\[
\rho_a = \frac{M_{poudre\ cristallisoir}}{V_{cristallisoir}} \quad \text{(Équation 2.8)}
\]

La densité vraie du mélange de poudres contenant les petites et grosses granules est déterminée à partir de l’équation 2.9.

\[
\rho_{mélange} = \frac{M_{poudre\ cristallisoir}}{\sum_{i=1}^{n} m_i \rho_{gi}} = \frac{M_{poudre\ cristallisoir}}{\sum_{i=1}^{n} \rho_{gi}} \quad \text{(Équation 2.9)}
\]

Où :

- \(i \) : référence aux populations présentes dans la poudre dans le cas d'un mélange (\(i = \) petites ou grosses)

Le volume réel occupé par le mélange de poudres dans le cristallisoir (\(V_{poudres\ cristallisoir} \) – Équation 2.9) est obtenu à partir de \(\rho_{gi} \) qui correspond à la densité de la granule incluant sa mésoporosité. Nous avons déterminé la densité des granules à partir de la porosimétrie au mercure. En effet, si on soustrait le volume d'intrusion de mercure correspondant au remplissage de la porosité inter-granules (Vmacro) du volume occupé par la poudre dans la cellule de mesure aux basses pressions (à 0,003 MPa), on obtient le volume de la granule.
incluant la mésoporosité comme décrit au dénominateur de l'équation 2.10. Le schéma de la figure 2.6 ci-avant permet de mieux visualiser cette notion.

\[
\rho_{gi} = \frac{m_{poudre\penetromètre}}{V_{poudre\penetromètre(0,003MPa)} - V_{\text{macro}}} \quad \text{(Équation 2.10)}
\]

Enfin, la compacité de l'empilement de poudres correspond au rapport entre la densité apparente et la densité vraie.

\[
c = \frac{\rho_a}{\rho_{mélange}} \quad \text{(Équation 2.11)}
\]

Trois séries de mesures sont réalisées pour chaque mélange de poudre et les compacités calculées sont répétables avec un écart type de ± 0,02. L'utilisation d'un appareil automatisé permettant de régler la pression appliquée ou le nombre de compressions serait un plus lors de la détermination de la compacité d'empilement.

2.2.2. Pâtes

2.2.2.1. Propriétés rhéologiques

Le couple de malaxage est une grandeur macroscopique qui permet d'accéder aux informations liées au comportement rhéologique des pâtes. C'est le principe de la rhéologie "systémique" qui considère les systèmes complexes dans les conditions "réelles" de leur élaboration [Choplin et Marchal, 2007]. D'autre part, la rhéologie "traditionnelle" emploie des géométries bien définies (cône-plan, plan-plan, cylindres coaxiaux). Ces deux approches sont utilisées dans l'étude de la rhéologie de pâtes de boehmite peptisée et neutralisée (AlOOH) (Chapitre IV).

Rhéologie systémique : Analogie de Couette

Bousmina et al. (1999) ont développé un modèle permettant d'estimer directement le taux de cisaillement (\(\gamma\)) et la viscosité (\(\eta\)) à partir de données issues du malaxage (vitesse de rotation des bras et couple). Le modèle considère un écoulement laminaire et sous conditions isothermes. L'hypothèse de non-glissement du fluide à la paroi est supposée valide (parfaite adhérence : vitesse nulle du fluide à la surface des cylindres). Ce modèle est inspiré des travaux de Goodrich et Porter (1967) qui ont été parmi les premiers à convertir les données de
malaxage en paramètres rhéologiques à partir de corrélations fondées sur les dimensions de l'équipement.

Le mouvement de la pâte dans la cuve est généré par la rotation des deux pales (bras) (système réel). L'équivalent macroscopique correspond à l'écoulement généré par deux cylindres adjacents en rotation dans une chambre cylindrique stationnaire (analyse virtuel) et qui exercent un couple identique à celui des bras du système réel. La figure 2.7 montre l'équivalence entre la géométrie réelle du malaxeur et du système Couette équivalent.

Chaque chambre cylindrique est considérée comme une simple géométrie Couette avec un rotor de rayon R_i et une paroi externe de rayon R_e. La paroi est stationnaire et chaque cylindre tourne à des vitesses de rotations différentes : V_1 (vitesse de rotation du cylindre entraîné directement par le moteur) et V_2 (vitesse de rotation du cylindre entraîné par le cylindre "moteur").

Le rayon R_e de la chambre cylindrique externe et la longueur L du rotor correspondent aux dimensions du système réel et sont facilement obtenues par mesure directe. Le rayon interne R_i peut être obtenu à partir d'une procédure d'étalonnage réalisée à l'aide d'un fluide dont la loi de comportement rhéologique est connue (indice de consistance K et indice de pseudoplasticité n connus). Bousmina et al. expliquent que cette calibration peut être réalisée avec n'importe quel fluide à loi de puissance 6 y compris les fluides newtoniens. Ceci suppose que R_i est un paramètre géométrique indépendant de la nature du fluide et des conditions du procédé de mélange (vitesse de rotation, température). L'expression utilisée pour le calcul de R_i est la suivante :

\[\tau = K \gamma^n \]

6 avec τ : contrainte de cisaillement, K : indice de consistance et n : indice de pseudoplasticité.

Figure 2.7 – Équivalence entre l'assemblage pales de rotation et cuve du malaxeur (système réel) avec la géométrie de Couette (analyse virtuel) [Bousmina et al., 1999].
\[Ri = \frac{Re}{\left[1 + \frac{4\pi V}{n} \left(2\pi K n L e^2 \left(1 + \frac{g}{C} \right) \right)^{1/n^2} \right]} \]
(Équation 2.12)

Avec :

- \(Re \) : rayon externe de la chambre
- \(n \) : indice de pseudoplasticité du fluide d'étalonnage
- \(K \) : indice de consistance du fluide d'étalonnage
- \(V = V_1 \) : vitesse de rotation du rotor entraîné par le moteur
- \(C \) : couple
- \(L \) : longueur du rotor
- \(g = V_2/V_1 \)

Dans cette étude, nous n'avons pas réalisé la procédure de calibration et nous avons utilisé le même rayon interne \(Ri \) que celui déterminé par Bousmina et al. (\(Ri = 17,6 \) mm) car ceux-ci ont travaillé avec le même type de malaxeur que celui de ce travail.

Le calcul du taux de cisaillement (\(\gamma \)) et de la viscosité (\(\eta \)) peut être simplifié si l'entrefer entre \(Re \) et \(Ri \) est étroit. Si la condition \([(Re - Ri)/Ri << 1] \) est respectée, les paramètres rhéologiques \(\gamma \) et \(\eta \) peuvent être déterminés à partir des expressions 2.13 et 2.14, respectivement. Bousmina et al. ont démontré que dans ces conditions, à la position \(r = R_{1/2} = (Ri + Re)/2 \) dans la cuve, \(\gamma \) et \(\eta \) sont indépendantes de l'indice de pseudoplasticité \(n \) du fluide à caractériser.

\[\gamma = \gamma_{1/2} = 16\pi V \frac{\beta^2}{(1 + \beta^2)(\beta^2 - 1)} \approx \frac{2\pi V}{\ln \beta} \]
(Équation 2.13)

\[\eta = \frac{C}{V \cdot 8\pi L e^2 \left(1 + \frac{g}{C} \right)} \]
(Équation 2.14)

Avec : \(\beta = Re/Ri \)

Le tableau 2.1 reporte les paramètres nécessaires à l'application de l'analogie de Couette pour la caractérisation de nos pâtes de boehmite.
Tableau 2.1 – Paramètres de malaxage et dimensions nécessaires à l'application de l'analogie Couette.

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>g</th>
<th>Re^2</th>
<th>Ri^3</th>
<th>β</th>
<th>L^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>15</td>
<td>0,65</td>
<td>19,4</td>
<td>17,6</td>
<td>1,10</td>
<td>47,5</td>
</tr>
</tbody>
</table>

*Vitesse de rotation mesurée à l'aide d’un tachymètre (consigne = 16 tours/min).
*Dimensions du malaxeur Brabender® modèle 50 EHT analogues à celles de Bousmina et al.
*Rayon interne déterminé par Bousmina et al. suite à une procédure d'étalonnage.

L'entrefer entre Re et Ri respecte la condition nécessaire à l'application des expressions simplifiées [$(Re – Ri)/Ri = 0,1 << 1$]. La viscosité (η) des pâtes de boehmite à un taux de cisaillement (γ) donné peut donc être déterminée à partir des équations 2.13 et 2.14 qui sont indépendantes de l'indice de pseudoplasticité n du fluide. L'analogie Couette nous permet donc d'avoir un ordre de grandeur de la viscosité de fluides dont la loi de comportement rhéologique est inconnue (comme les pâtes de boehmite), en moyennant certaines hypothèses, à partir des mesures de couple.

Rhéologie "traditionnelle" : Fluage et analyse oscillatoire

Le comportement rhéologique des pâtes de boehmite selon l'approche de la rhéologie "traditionnelle", est caractérisé à partir d'un rhéomètre à contrainte imposée AR2000 (TA Instruments) (Figure 2.8). Il peut aussi opérer à déformation ou vitesse de déformation imposée. Ce type de rhéomètre est adapté à la caractérisation rhéologique de milieux fluides, visqueux ou pâteux, en régime permanent, transitoire ou dynamique.

![Rhéomètre à contrainte imposée AR2000 (TA Instruments).](image)

La géométrie (cône-plan, plan-plan, cylindres coaxiaux (Couette)...) choisie doit être adaptée au produit analysé. Les pâtes de boehmite sont des produits consistants et parfois très peu malléables à forte concentration en solide. La géométrie plan-plan est donc la plus adaptée à la caractérisation de ce type de fluide complexe car elle permet une variation
continue de l'entrefer conduisant à des performances plus étendues et adaptées aux dimensions de l'échantillon. Afin de limiter les phénomènes de glissement, le plateau mobile supérieur est strié et a un diamètre de 20 mm (Figure 2.9). L'emploi d'une géométrie striée avec un petit diamètre permet d'augmenter la contrainte accessible. Le plateau fixe inférieur est un plan non strié et thermo-régulé par effet Peltier.

Du fait de la consistance de la pâte et de manière à assurer la répétabilité des mesures, les pâtes de boehmite sont pré-moulées sous forme de pastille cylindrique (Figure 2.10.c) avant d'être placées entre les plans du rhéomètre. Des pastilles de pâte de 40 mm de diamètre et 4 mm d'épaisseur sont réalisées à l'aide d'un moulage sous presse comme le montre la figure 2.10 (a et b). Le moule est effectué en utilisant le minimum de pression afin d'éviter une modification importante de la structure interne de la pâte.

La pâte de boehmite est un fluide non-newtonien de comportement rhéofluidifiant \(n < 1 \) caractérisé par une diminution de la viscosité lorsque le taux de cisaillement augmente. La courbe d'écoulement \(\eta = f(\gamma) \) typique de ce type de fluide est schématisée sur la figure 2.11.
Figure 2.11 – Courbe d'écoulement \(\log(\eta) = f(\log(\gamma)) \) typique d'un fluide rhéofluidifiant.

Les deux zones extrêmes I et III correspondent respectivement à des taux de cisaillement \(\gamma \) très faibles \((< 10^{-2} \text{ s}^{-1})\) et très élevés \((> 10^{8} \text{ s}^{-1})\). Elles sont respectivement caractérisées par les coefficients de viscosité "newtonienne" \(\eta_0 \) (viscosité à "cisaillement nul") et \(\eta_\infty \) (viscosité à "cisaillement infini"). Ces deux régions sont aussi appelées "plateaux newtoniens".

La région intermédiaire correspond à une zone pseudoplastique ou rhéofluidifiante (zone II) pour laquelle la viscosité diminue avec l'augmentation du taux de cisaillement. Ceci peut être expliqué par une modification de la structure du fluide en fonction du cisaillement appliqué. Pour les bas gradients de cisaillement, la contrainte est trop faible pour modifier la structure et la viscosité est donc "constante" et égale à \(\eta_0 \). L'augmentation progressive du taux de cisaillement provoque la déstructuration du fluide (comme par exemple une orientation des unités le constituant dans le sens de l'écoulement) ce qui provoque le phénomène de rhéofuidification. Enfin, à des taux de cisaillement très élevés, la structure du fluide ne peut plus être modifiée et la viscosité demeure donc constante \(\eta_\infty \).

La caractérisation du comportement rhéologique d'un fluide dans les trois régions de la figure 2.11 n'est pas possible avec un seul type d'essai. Néanmoins, il est possible d'étudier cette plage de taux de cisaillement à partir de données issues des trois régimes d'essais conventionnels : permanent\(^7\), transitoire, ou dynamique. Dans le cadre de ce travail, nous

\(^7\) Un essai permanent ou statique utilise la rotation continue pour appliquer la déformation et produire une vitesse de cisaillement constante. Lorsqu'on atteint une vitesse de cisaillement stable, la contrainte \(\tau \) est mesurée en fonction de la vitesse de cisaillement. Le rapport entre la contrainte et la vitesse de cisaillement donne la viscosité apparente de cisaillement.
avons caractérisé les pâtes de boehmite à partir d'essais de fluage (régime transitoire) et d'oscillations (régime dynamique).

L'essai de fluage a une signification physique uniquement si le matériau ne présente pas de modification de sa structure microscopique lors de l'essai. L'essai de fluage permet donc de caractériser le premier plateau newtonien localisé à des taux de cisaillement très faibles (région I – Figure 2.11).

Les mesures rhéologiques dans la zone pseudoplastique (région II – Figure 2.11) et donc, à des taux de cisaillement plus élevés, sont plus adaptées et accessibles par des mesures en régime dynamique. Compte-tenu de la nature viscoélastique des pâtes de boehmite, l'application d'une contrainte élevée correspondant à des taux de cisaillement plus importants, peut générer des fractures au sein du matériau. L'artifice consiste donc à simuler les mesures aux taux de cisaillement élevés par de mesures en oscillation.

Le principe de chacun de ces essais ainsi que les conditions de mesure sont décrits dans les paragraphes suivants.

i) **Fluage**

L'essai de fluage est une expérience au cours de laquelle une contrainte constante d'amplitude τ est appliquée à l'échantillon à partir d'un instant initial t. La contrainte imposée est maintenue durant un certain temps et la déformation $\gamma(t)$ correspondante est mesurée. Lorsque la contrainte τ est ramenée à zéro, il est possible de mesurer le degré de recouvrance de l'échantillon.

Les matériaux viscoélastiques, comme les pâtes de boehmite [Drouin et al., 1988], présentent un comportement intermédiaire entre celui d'un solide élastique et d'un liquide visqueux. Ces types de matériaux présentent une recouvrance incomplète à la fin de l'application de la contrainte.

La figure 2.12 montre l'exemple d'une courbe de déformation en fonction du temps lors d'un essai de fluage et recouvrance.
La viscosité à "cisaillement nul" (η_0) et le module de fluage (E) sont calculés à partir des équations ci-dessous :

$$\eta_0 = \frac{\tau}{\gamma} \quad \text{(Équation 2.15)}$$

$$E(t) = \frac{\tau}{\gamma(t)} \quad \text{(Équation 2.16)}$$

Avec :
- τ: contrainte appliquée (Pa)
- γ: déformation
- $\gamma = \frac{\Delta \gamma}{\Delta t}$ (pente de la partie linéaire de la courbe $\gamma = f(t)$, en s$^{-1}$)

L'inverse du module de fluage (E) est la complaisance (J) : $J(t) = \gamma(t)/\tau$. À l'instant $t = 0$, on obtient le module instantané E_0 et la complaisance instantanée J_0 qui renseignent sur l'élasticité du matériau.

L'essai de fluage sur les pastilles de pâtes de boehmite est réalisé avec des contraintes variant dans la gamme de 2 à 25 kPa. Pour chaque contrainte, l'essai est réalisé sur un nouvel
échantillon moulé. Le rhéomètre utilisé dans ce travail génère une contrainte en torsion par application d'un couple au plateau strié supérieur. La gamme de contraintes balayée est restreinte à cause de la limite de couple supportée par l'appareil (200 mN.m). Compte-tenu de la consistance des échantillons, au-delà de 25 kPa, l'appareil n'arrive plus à appliquer un cisaillement par torsion.

Chaque contrainte est appliquée pendant une durée de 2 minutes. La pente (γ) pour le calcul de la viscosité (η_0) est déterminée dans l'intervalle de temps 40 – 80 s qui correspond à la partie linéaire de la courbe (Figure 2.12). Cet intervalle a été choisi suite à des essais de fluage de longue durée (30 min) qui ont montré que l'allure des courbes obtenues en réponse aux contraintes appliquées était similaire. Ces courbes ne montraient pas de changement de pente significatif entre 40 – 600 s. Les réponses en termes de viscosité sont donc identiques sur ces gammes de temps. En revanche, il est impossible d'imposer des temps plus longs que 10 min car l'échantillon s'assèche et ce phénomène donne lieu à une perte de contact entre la pâte et la géométrie. Le protocole des mesures de fluage a été ainsi établi avec une exploitation des données entre 40 – 80 s.

ii) **Analyse oscillatoire**

Dans un essai dynamique d'oscillations, on impose une déformation sinusoïdale γ qui génère une contrainte τ dont l'amplitude varie sinusoïdalement avec un déphasage δ par rapport à la déformation. Les matériaux viscoélastiques d'intérêt dans cette étude sont caractérisés par un déphasage δ compris entre 0° et 90° (Figure 2.13).

![Graphique des courbes de réponse en contrainte](image)

Figure 2.13 – Réponse en contrainte d'un matériau élastique, d'un matériau visqueux et d'un matériau viscoélastique à une déformation sinusoïdale.
Les valeurs obtenues expérimentalement sont les modules G' et G'' ainsi que le déphasage δ. Le paramètre G' est le *Module de Conservation* et correspond à l'énergie élastique emmagasinée pendant une période. Il s'agit de la quantification du comportement solide du matériau. Le paramètre G'' est appelé *Module de Perte* et caractérise l'énergie dissipée sous forme de frottements visqueux lors de l'expérience. Ce dernier correspond à la composante liée au comportement liquide du matériau analysé. Le matériau est plus élastique que visqueux lorsque la tangente de perte ($\tan \delta = G''/G'$) est inférieure à 0,5 ce qui correspond à un déphasage $\delta < 45^\circ$.

Les équations 2.17 et 2.18 permettent de relier les mesures des modules aux valeurs de viscosité. La viscosité complexe η^* est une somme vectorielle des viscosités dynamiques élastique η' et visqueuse η''. Elle signifie une mesure de la résistance générale du matériau à l'écoulement.

\[\eta^* = \eta' + i \eta'' \quad (Équation 2.17) \]

avec :
\[|\eta^*| = \left[(\eta')^2 + (\eta'')^2 \right]^{1/2} \quad (Équation 2.18) \]

où :
\[\eta' = \frac{G''}{\omega} \quad \text{viscosité dynamique élastique (Pa.s)} \]
\[\eta'' = \frac{G''}{\omega} \quad \text{viscosité dynamique visqueuse (Pa.s)} \]
\[\omega \quad \text{fréquence angulaire (rad s}^{-1}) \]
\[G' = \left(\frac{\tau_0}{\gamma_0} \cos \delta \right) \quad \text{(Pa)} \]
\[G'' = \left(\frac{\tau_0}{\gamma_0} \sin \delta \right) \quad \text{(Pa)} \]
\[\tau_0 \quad \text{amplitude maximale de la contrainte (Pa)} \]
\[\gamma_0 \quad \text{amplitude maximale de la déformation} \]

L'essai oscillatoire est réalisé sur les pâtes de boehmite moulées avec une déformation γ imposée de 0,04%, et une fréquence angulaire ω variant entre 0,1 et 300 rad.s$^{-1}$ (limite supérieure du rhéomètre).

Les mesures des propriétés rhéologiques en régime transitoire (fluage) et dynamique (oscillations) sont toutes réalisées sous conditions isothermes à 10°C, en prenant toutes les précautions possibles pour éviter que les pâtes sèchent.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
2.2.2.2. Propriétés texturales

La porosité des pâtes de boehmite est caractérisée par thermoporosimétrie comme dans le travail de Drouin et al. (1988). Cette méthode est fondée sur le fait que les conditions d'équilibre des phases liquide, solide et gaz d'un corps pur sont déterminées par la courbure de leurs interfaces. Pour un corps pur non divisé, ces trois phases ne coexistent qu'à une température appelée point triple (T_0), l'interface étant plane. Dans le cas d'un liquide contenu dans un matériau poreux, l'interface solide-liquide n'est plus plane et dépend de la taille du pore. La température de cristallisation, ou de fusion, est de ce fait différente pour chaque taille de pore [Brun M. et al., 1977].

La mesure est effectuée par calorimétrie différentielle à balayage (DSC – Differential Scanning Calorimetry). L'échantillon humide est soumis à refroidissement à vitesse constante et le flux de chaleur enregistré fournit des thermogrammes de solidification à partir desquels la taille des pores peut être calculée. De la même manière, des thermogrammes de fusion peuvent également être obtenus avec le même objectif. Cependant, la position des pics est légèrement décalée car la courbure de l'interface solide-liquide n'est pas la même en fusion et solidification.

La thermoporosimétrie appliquée aux pâtes ou gels, fournit deux pics exothermiques (Figure 2.14) : un pic à la température T_0 et un pic à la température T_1 inférieure à T_0. Le pic à T_0 correspond à la transition de phase du liquide libre ("bulk"). Le pic à T_1 renseigne sur la taille des petits pores dans le domaine des mésopores (vides intra-agrégats) et il correspond à la température de transition de phase du liquide présent dans ce domaine de porosité.
Figure 2.14 – Thermogrammes de fusion d'une pâte de boehmite (S/L = 0,9) peptisée à différentes concentrations en acide nitrique (HNO$_3$/AlOOH mol/mol) et avec un temps de mélange (tm) de 300 s. Les températures indiquées correspondent à T_0 (liquide libre – "bulk") et T_1 (liquide présent dans les petits pores) [adapté de Drouin et al., 1987].

Dans ce travail, les mesures ont été effectuées en exploitant les thermogrammes obtenus lors de la fusion. Dans ce cas, la taille moyenne des pores peut être calculée à partir de la relation de Brun et al. (1973 et 1977) valable dans le cas de pores sphériques remplis par de l'eau. Le rayon R est corrélé à la différence de température ΔT entre T_0 et T_1 par l'expression suivante:

$$R(nm) = 0,68 - (32,33/\Delta T) \quad (Équation 2.19)$$

L'intégrale des pics du thermogramme permet de calculer les fractions volumiques respectives de l'eau contenue dans la porosité et de l'eau libre. Néanmoins, si la surface du pic de fusion de l'eau libre correspond directement à l'énergie de fusion de cette dernière, quelques corrections doivent être apportées lors de l'exploitation du pic de fusion de l'eau contenue dans la porosité. Il existe une couche de liquide adsorbée à la surface du solide qui ne participe pas à la transition de phase. L'épaisseur de cette couche a été mesurée par calorimétrie par Brun et al. et est de 8 Å, cette valeur étant indépendante de la taille du pore. On observe donc une variation de l'énergie de changement d'état en fonction de la taille des pores.
pores et donc de ΔT. L'enthalpie de fusion (ΔH_f), exprimée en J.g$^{-1}$, pour $\Delta T \neq 0$ peut être calculée suivant la relation donnée par Brun et al., soit :

$$\Delta H_f = -0.155 \Delta T^2 - 11.39 \Delta T - 332 \quad (\text{Équation 2.20})$$

La masse d'eau incluse dans la porosité peut ainsi être calculée :

$$M_{Li} = \sum_{t=t_1}^{t=t_2} \frac{mW \Delta t}{\Delta H(T_i-T_0)} \quad (\text{Équation 2.21})$$

avec :
- t_1 et t_2 : les bornes en temps du pic de fusion de l'eau incluse
- mW_i : le signal DSC en mW au temps t
- Δt : la période d'acquisition du signal en secondes
- ΔH : l'énergie de fusion de l'eau à la température T_i calculée par l'équation 2.20, T_0 étant la température de fusion de l'eau libre ($0°C$).

La fraction volumique de liquide ϕ_{Li} remplissant les petits pores (vides intra-agrégats) est calculée à partir de l'équation 2.22 [Ehrburger et al., 1984 et 1985]. Le volume de liquide V_{SL} non-congelable localisé à la surface des agrégats est considéré comme faisant partie de la fraction de liquide ϕ_{Li}.

$$\phi_{Li} = \frac{V_1 + V_{SL}}{V_0 + V_1 + V_{SL}} \quad (\text{Équation 2.22})$$

où :
- V_0 : volume de liquide "libre" (inter-agrégats)
- V_1 : volume de liquide dans les vides intra-agrégats (mésopores)
- V_{SL} : volume de liquide non-congelable à la surface des agrégats

Le volume de liquide contenu dans la porosité ($V_1 + V_{SL}$) peut être calculé à partir de M_{Li} comme le montre l'équation suivante :

$$V_1 + V_{SL} = M_{Li} / \rho_L \quad (\text{Équation 2.23})$$

avec :
$$\rho_L \approx 10^3 \text{kg.m}^{-3} : \text{masse volumique de l'eau pure.}$$

Le volume de liquide libre (V_0) est lui directement proportionnel à la surface A_0 (J.g$^{-1}$) du pic à T_0 et l'on a :

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf

© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
\[V_0 = \frac{PE \times A_0}{\Delta H_0 \times \rho_L} \quad \text{(Équation 2.24)} \]

avec :

- \(PE \) : masse de l'échantillon (g)
- \(\Delta H_0 = 333 \, \text{J.g}^{-1} \) : énergie de fusion de l'eau pure.

En outre, à partir de \(\phi_{Li} \), il est possible d'estimer la fraction volumique effective \(\phi_g \) dans les pâtes de boehmite comme le montre l'équation 2.25. Ce paramètre correspond à la contribution volumique de trois composantes : \(V_s \), le volume occupé par le solide ; \(V_{Sl} \), le volume occupé par le liquide non-congelable, et le volume de liquide présent dans les mésopores exprimé en terme de \(\phi_{Li} \).

\[
\phi_g = \phi_{Li} + \frac{(S/L)(\rho_s/\rho_L)}{1+(S/L)(\rho_s/\rho_L)} \quad \text{(Équation 2.25)}
\]

où :

- \(\rho_s = 3,07 \times 10^6 \, \text{g m}^{-3} \) : densité structurale de la boehmite déterminée par pycnométrie à l'hélium

La caractérisation de la porosité des pâtes de boehmite par thermoporesimétrie est réalisée à l'aide d'un appareil DSC7 (Mettler). D'abord l'échantillon est mis en équilibre à 25°C, et ensuite, il est soumis à une étape de refroidissement de 25°C à -70°C (-5°C/min). Le thermogramme est alors obtenu lors de l'étape de chauffage de -70°C à 25°C (1°C/min).

2.2.3. Extrudés

2.2.3.1. Microscopie électronique à balayage (sections polies)

La caractérisation de la microstructure des extrudés est réalisée par MEB. Des sections polies sont préparées afin de mieux observer la texture et le contraste chimique des matériaux. La préparation des échantillons est réalisée en trois étapes : enrobage, polissage et métallisation.

Enrobage : Les extrudés sont placés à la verticale à l'intérieur d'un cylindre de plexiglas® (diamètre = 25 mm), qui a été préalablement fixé sur une plaque, elle aussi en plexiglas® (Figure 2.15.a). Les extrudés sont alors enrobés par un mélange préparé avec 10,5 volumes de résine époxy (Specifix) pour 5 volumes de durcisseur (Specifix-40 Curing Agent). La plaque est alors placée dans un dessiccatore sous vide afin de dégazer les extrudés et faciliter la pénétration du mélange au sein de la porosité du matériau. Enfin, l'échantillon est
placé dans un four à 50°C pendant 1 nuit afin de permettre la polymérisation à chaud de la résine (Figure 2.15.b). Ce type d'enrobage est adapté à des échantillons méso et macroporeux.

Polissage : Cette étape permet d'obtenir des surfaces planes en vue de l'analyse locale et d'une meilleure observation des contrastes au sein du matériau. Le polissage est réalisé à l'eau à l'aide d'une polisseuse automatique modèle ROTOPOL-11 (Struers) équipé d'un support d'échantillons ROTO FORCE-1 (Figure 2.15.c.1 et c.2). Cet équipement permet de régler la force (15 N) appliquée sur la section polie, la vitesse de rotation (150 tours/min) et le temps de polissage. Des papiers abrasifs (BUEHLER) de 20 cm de diamètre à différentes tailles de grain (320, 800, 1200, 2500 et 4000) sont utilisés progressivement de manière à parfaire le polissage.

Métallisation : La dernière étape est le dépôt de carbone par évaporation sur les sections polies. Le carbone déposé favorise la conduction des électrons à la surface de l'échantillon, et évite ainsi, des effets de charge qui rendent l'observation au MEB difficile. Une couche de laque d'argent est également mise au bord de la section polie de manière à favoriser le contact avec la masse du microscope. L'appareil utilisé est une enceinte d'évaporation Edwards Auto 306 adaptée au dépôt de couches métalliques (Figure 2.15.d.1). L'outil est équipé de deux électrodes connectées à un porte-crayon où le carbone est placé. Afin d'établir un bon contact entre les deux crayons de carbone, le premier est taillé en biseau à l'aide d'une feuille de polissage, et le deuxième, en pointe avec un taille crayon (Figure 2.15.d.2). Les sections polies sont placées sous la cloche de l'enceinte et le système est mis sous vide jusqu'à atteindre un vide inférieur à 5x10⁻⁵ Torr. L'appareillage est alors mis sous tension et l'intensité de courant est réglée à l'aide d'un potentiomètre. Le dépôt est effectif lorsqu'on observe une forte lumière et des fines particules de carbone diffuser à partir des crayons (Figure 2.15.d.3).

La figure 2.15 illustre les étapes de préparation des sections polies.

![Figure 2.15](http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf)
Les observations sont réalisées à l'aide d'un microscope JEOL JSM 6340-F. Les conditions d'analyse permettant une caractérisation satisfaisante de la microstructure des extrudés sont : tension d'accélération d'électrons de 15kV, intensité de courant entre 10 – 12 µA et une distance de l'échantillon au détecteur de 15 mm. L'observation en mode électrons rétrodiffusés, permettant une imagerie de contraste chimique, est la configuration la plus adaptée à l'analyse de nos échantillons.

2.2.3.2. Test d'écrasement grain-à-grain (EGG)

La tenue mécanique des extrudés est déterminée par le test d'écrasement grain-à-grain (EGG) ou test brésilien [Carneiro et al., 1953 ; Akazawa, 1953 ; Fairbairn, 2002]. Il s'agit d'un test qui permet de déterminer la résistance à la rupture d'un solide soumis à une charge de compression (F) appliquée en deux points de contact diamétralement opposés (Figure 2.16.a). La compression exercée sur le grain génère des contraintes de compression (σ_c) mais aussi des contraintes de traction transverses (σ_t) au centre du solide. Ces dernières sont responsables de la rupture en traction, si la résistance en traction du matériau est bien inférieure à la résistance en compression. Dans le cas des matériaux de l'étude, la rupture est fragile et les valeurs à la rupture sont distribuées. La méthode est pratiquée sur un nombre de solides considéré suffisant à la détermination d'une force à la rupture moyenne qui soit représentative du matériau testé.

Le test est réalisé à l'aide d'une machine composée d'un plateau sur lequel on place l'extrudé à l'horizontal. Le deuxième point de contact est assuré par un piston (Figure 2.16.b) qui descend à vitesse constante jusqu'à la rupture de l'échantillon. Le moment de la rupture est facilement identifié par une chute significative de force sur la courbe force de compression en fonction du déplacement du piston (Figure 2.16.c.1). La valeur EGG correspond au ratio F/L, exprimée en daN/mm, où F est la force maximale avant la rupture et L la longueur de l'extrudé. En outre, la contrainte à la rupture en traction (σ_t) est donnée par l'équation 2.26 [Frocht, 1948] qui suppose un échantillon parfaitement cylindrique et un contact élastique de Hertz.

$$\sigma_t (MPa) = \frac{2F}{\pi DL} \quad \text{(Équation 2.26)}$$

F : force à la rupture (N)
D : diamètre de l'extrudé (mm)
L : longueur de l'extrudé (mm)
Figure 2.16 - (a) Contraintes de compression (σ_c) et de traction (σ_t) exercées au centre du matériau ; (b) Exemple de test brésilien ; (c.1) Exemple de courbe obtenue lors du test mécanique et (c.2) Cliché d’un extrudé après rupture.

L’appareil d’écrasement utilisé, commercialisé par Vinci Technologies, est équipé du logiciel Vinci EGG qui permet le pilotage automatique de l’équipement et l’enregistrement des courbes force-déplacement. Le capteur de force (FGP – type 2391) utilisé est capable de mesurer des charges jusqu’à 25 daN avec une précision de ± 0,1 daN.

Les extrudés sont tout d’abord "équilibrés" aux conditions contrôlées du laboratoire (20°C et 50% d’hygrométrie), en les plaçant dans un bécher ouvert 24h avant l’essai. Ces précautions sont prises afin d’assurer que toutes les mesures seront faites dans les mêmes conditions externes. Les échantillons sont ensuite triés en longueur (entre 3 et 6 mm max) à l’aide d’un pied à coulisse, en forme (extrudés les plus droits possible) et en aspect de surface (extrudés les plus lisses possible). La présence de défauts de forme (ex. : extrudés courbés) ou de surface (ex. : "peau de requin") peut fausser le résultat du test mécanique, car ils peuvent accélérer la rupture du matériau.

L’échantillon trié est alors placé sur le plateau après avoir rentré dans le logiciel le diamètre et la longueur de l’extrudé qui ont été mesurés au pied à coulisse. Le piston descend ensuite à vitesse constante de 0,5 mm/min jusqu’à la rupture. Seuls les extrudés ayant subi une rupture en traction transverse comme le montre la figure 2.16.c.2, sont considérés dans le calcul de l’EGG moyen (F/L). Les matériaux qui ont subi un autre type de rupture, par flexion ou par fragmentation, ne sont pas pris en compte, car dans ces cas on s’éloigne des conditions d’interprétation définies par le test brésilien. Toute autre forme de rupture est probablement liée à des défauts de forme (extrudés tordus ou trop longs) ou de surface (rugosités non perçues à l’œil), et ainsi, la valeur d’EGG obtenue est plutôt une conséquence de ces défauts que des propriétés mécaniques intrinsèques du matériau.

L’ensemble de précautions prises (tri en forme, longueur, aspect de surface et mode de rupture) est justifié suite à une pré-étude qui a permis de mettre au point la technique et d’assurer ainsi une comparaison fiable (distribution gaussienne et étroite des valeurs d’EGG) entre chaque type de matériau (formulation). Nous avons retenu pour chaque lot un EGG moyen calculé à partir d'au moins 10 éprouvettes.
2.2.3.3. Test de flexion 3 points

L'essai de flexion 3 points permet d'accéder à des propriétés mécaniques complémentaires à celles déterminées par le test EGG. L'échantillon est supporté par deux supports cylindriques parallèles et situés dans le même plan horizontal (Figure 2.17.a). L'application de la charge se fait par intermédiaire d'un cylindre ayant les mêmes formes et dimensions que le support. La force est appliquée aux centres des supports cylindriques et parallèlement à ceux-ci. L'échantillon est placé symétriquement sur les extrémités du support de manière à ce que la direction de la force soit perpendiculaire à l'axe longitudinal de l'éprouvette (Figure 2.17.b). L'essai est réalisé avec une vitesse de la traverse constante (0,2 µm/s) jusqu'à la rupture. On enregistre la force de chargement en fonction du déplacement de la traverse comme pour le test EGG (Figure 2.16.c1 ci-avant). Les essais sont réalisés avec une machine Bose (ElectroForce® 3200) à l'INSA-Lyon (Laboratoire MATEIS) et les extrudés sont sélectionnés selon les mêmes critères de forme et aspect de surface utilisés pour le test EGG.

![Figure 2.17 – (a) Schéma de l'essai de flexion 3 points et (b) extrudé soumis au test de flexion 3 points.](image)

La contrainte à la rupture (σ_{Flexion}) et le module d'Young (E) sont calculés à partir des équations suivantes :

\[
\sigma_{\text{Flexion}} = \frac{8FL}{\pi D^3} \quad \text{(Equation 2.27)}
\]

\[
E = \frac{4L^3}{3\pi D^4} \frac{dF}{d\mu_c} \quad \text{(Equation 2.28)}
\]

- F : force à la rupture
- L : longueur entre appuis inférieurs (20,2 mm)
D : diamètre de l'échantillon

u_e : flèche de l'échantillon

La résistance à la propagation des fissures d'un matériau ou tenacité est caractérisée par le facteur critique d'intensité de contrainte (K_{IC}). Pour cela, nous avons réalisé des essais de flexion 3 points sur des échantillons entaillés. Les entailles sont faites manuellement avec une lame de rasoir recouverte d'une solution diamantée et leurs tailles sont comprises entre 100 et 500 µm de profondeur. Les éprouvettes sont alors placées sur le support de manière à ce que l'entaille se trouve alignée au rouleau supérieur et orientée vers le bas.

Après rupture, les faciès de rupture obtenus sont observés au microscope optique et la longueur de fissure est mesurée sur les deux morceaux. La valeur de K_{IC} a été calculée à partir des abaques de facteur de correction géométrique établis par Shin et Cai (2004) (Annexe B).

Les essais de flexion 3 points sans et avec entailles ont été réalisés uniquement sur certains matériaux afin d'obtenir des renseignements complémentaires sur leurs propriétés mécaniques. Dans ces cas, les mesures ont été réalisées sur 5 éprouvettes.
Chapitre III : Empilement de poudres
Chapitre III

Empilement de poudres

Le développement de nouveaux supports de catalyseur à microstructure multi-échelles passe par la compréhension du système granulaire avant l'étape de mise en forme, c'est-à-dire, l'empilement à sec de granules d'alumine de différentes tailles. L'étude sur l'empilement de poudres a été réalisée de manière à répondre aux questions suivantes :

- L'étape de mélange de poudres à sec dans le malaxeur conduit-elle à un système homogène ?
- Comment la compacté de l'empilement évolue-t-elle en fonction de la formulation du mélange ?
- Peut-on prédire cette compacté avec des modèles de mélanges granulaires (modèle de Furnas, par exemple) ?

Les réponses à ces questions permettent donc de comprendre l'organisation des mélanges de granules d'alumine à sec et d'évaluer par la suite, si le liant présent lors de la mise en forme (malaxage-extrusion) modifie ou non l'empilement.

Ce chapitre présente les caractéristiques des granules d'alumine utilisées et les caractérisations des mélanges de poudres. L'empilement des granules est quantifié par des mesures de compacté et les résulats sont comparés au modèle de Furnas.

3.1. Poudres d'alumine

Les poudres d'alumine ont été choisies de manière à répondre à certains critères liés à la texture, à la forme et à la taille des grains. Des granules mésoporeuses, de morphologie plutôt sphérique et dont le ratio R (d_{petites}/d_{groses}) entre les diamètres médians soit d'environ 1/10 ont été retenues.

Les critères de forme et de taille ont été adoptés suite à l'étude bibliographique qui montre que le respect de telles conditions favorise l'obtention d'un empilement compact. En outre, l'objectif étant de préparer des supports de catalyseur, nous avons choisi des alumines de transition de façon à assurer la présence d'une mésoporosité convenable.

Trois alumines de transition ont été retenues pour cette étude : deux poudres commercialisées par Sasol Germany GmbH et dénommées "Puralox Scfa-140" (lot n° B23063) et "Puralox SCCa-150/200" (lot n° B21546), et une poudre préparée en interne (IFPEN) dénommée "Atom".

La poudre "Atom" est préparée par séchage par atomisation d'un sol colloïdal de boehmite (Pural SB3, Sasol). Le sol issu de la dispersion de la poudre Pural SB3 dans une solution
d'acide nitrique (taux d'acide, Ta= 4% pds) est séché à l'aide d'un atomiseur de laboratoire (BÜCHI B-290) équipé d'une buse bi-fluide. Les conditions d'atomisation (débit de la solution d'alimentation, débit d'air comprimé, température de l'air à l'entrée et à la sortie) ont fait l'objet d'une étude de mise au point du procédé afin d'assurer la préparation de granules sphériques, pleines et dont la taille soit d'environ 1,7 µm.

Le produit sec est alors calciné à 600°C pendant 2h dans un four à moufle (sous air) afin de transformer la boehmite (AlOOH.0,45H2O) en alumine gamma (γ-Al2O3). Ce produit obtenu à l'issue de la calcination est la poudre dénommée en interne "Atom". Nous la nommerons IFPEN-1,7µm dans la suite du manuscrit pour des raisons de clarté de nomenclature. Les poudres commerciales (Puralox Scfa-140 et Puralox SCCa 150/200) sont elles aussi obtenues par calcination d'une boehmite [Sasol]. A nouveau pour plus de clarté dans la dénomination (fournisseur-taille des granules), ces poudres seront nommées Sasol-19 µm et Sasol-160 µm.

Le tableau 3.1 présente les principales impuretés chimiques rencontrées dans ces trois alumines.

<table>
<thead>
<tr>
<th>Alumine</th>
<th>Fournisseur – d_{50}^1</th>
<th>SiO2 (%)</th>
<th>Fe2O3 (%)</th>
<th>TiO2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom</td>
<td>IFPEN – 1,7 µm</td>
<td>< 0,01</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>Puralox Scfa-140</td>
<td>Sasol – 19 µm</td>
<td>< 0,01</td>
<td>-</td>
<td>0,08</td>
</tr>
<tr>
<td>Puralox SCCa 150/200</td>
<td>Sasol – 160 µm</td>
<td>0,02</td>
<td>< 0,01</td>
<td>0,10</td>
</tr>
</tbody>
</table>

*Nomenclature de chacune des granules adoptée par la suite.

Les trois poudres d'empilement sont très pures avec quelques traces de silice et de titane. La pureté de ces alumines est due au procédé de synthèse de leur précurseur. En effet, les trois alumines sont issues de la calcination d'une boehmite synthétisée par l'hydrolyse d'alcoolate d'aluminium [Sasol] dont l'avantage est qu'elle conduit à des produits qui ne contiennent pratiquement pas d'impuretés chimiques. La présence de titane sous forme d'oxyde (TiO2) s'explique par le fait que cet élément rentre dans la composition d'un catalyseur utilisé dans l'étape de polymérisation [Poisson et al., 1987] [Sasol].

3.1.2. Caractérisation des alumines à l'échelle des cristallites

3.1.2.1. Structure cristalline et morphologie des cristallites

Les diffractogrammes de rayons X des trois poudres sont présentés sur la figure 3.1. Ils confirment que les phases présentes sont bien celles correspondantes aux alumines de transition.
Les phases cristallographiques des poudres IFPEN - 1,7 µm et Sasol - 160 µm sont identiques (Figures 3.1.a et 3.1.c) et caractéristiques de l'alumine gamma cubique (γ-Al₂O₃). On observe l'aspect raisonnablement symétrique des raies 400 et 440.

L'alumine Sasol - 19 µm (Figure 3.1.b) présente une structure cristallographique caractéristique de l'alumine delta (δ-Al₂O₃) peu évoluée. Ce diffractogramme ressemble beaucoup à ceux de l'alumine gamma cubique (a et c), mais une observation fine du profil montre que les raies 400 et 440 sont dissymétriques. Le dédoublement des raies 400 et 440, bien que peu développé, est caractéristique du caractère quadratique de la structure de l'alumine δ.

L'alumine de transition δ se forme à des températures supérieures à celles de l'alumine γ (réf. : Figure 1.11 – Chapitre I). La poudre Sasol - 19 µm a donc probablement subi une calcination à température plus élevée que celle des alumines IFPEN - 1,7 µm et Sasol - 160 µm.

Des traces d'alumine thêta (0-Al₂O₃) sont aussi identifiées sur le diffractogramme de la Sasol - 19 µm par des raies fines à environ 32 – 33° (2θ). L'alumine θ se forme à une température supérieure que pour la formation de l'alumine δ et ces traces sont probablement dues à des hétérogénéités de flux de chaleur lors de la calcination qui forment des zones à plus hautes températures.

A partir des diffractogrammes obtenus et de la formule de Scherrer (Équation 2.7 – Chapitre II), il est possible d'estimer la taille des unités élémentaires ou cristallites qui constituent les poudres d'alumine.
La largeur à mi-hauteur de la raie 400 de l'alumine gamma cubique (IFPEN - 1,7 µm et Sasol - 160 µm) et le doublet 400/0012 de l'alumine delta (Sasol - 19 µm) sont utilisés dans ce calcul. En effet, l'intensité diffractée par ces raies provient majoritairement du réseau compact d'oxygènes et, comme l'empilement d'oxygènes est considéré comme assez régulier, l'élargissement de ces raies est essentiellement lié à la taille des cristallites. L'effet des défauts structuraux peut donc être négligé. Les dimensions déterminées pour les trois alumines sont reportées dans le tableau 3.2.

<table>
<thead>
<tr>
<th>Tableau 3.2 - Taille moyenne des cristallites des alumines déterminée par la formule de Scherrer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille moyenne des cristallites (nm)</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>6,3 ± 0,6</td>
</tr>
</tbody>
</table>

La microscopie électronique en transmission (MET) permet de caractériser la morphologie de ces unités élémentaires. Les clichés obtenus sont présentés sur la figure 3.2.

Figure 3.2 – Clichés de MET des poudres d'alumine : (a) IFPEN - 1,7 µm, (b) Sasol - 19 µm et (c) Sasol - 160 µm.

Les trois alumines de transition sont constituées de cristallites qui se présentent sous forme de plaquettes enchevêtrées. Ces unités élémentaires mesurent environ de 5 à 40 nm de longueur sur environ 5 à 15 nm de largeur. Compte-tenu de l'agencement désordonné des cristallites, il est difficile d'extraire, à partir des images MET, des mesures plus précises et notamment celles de l'épaisseur des feuillets.

3.1.2.2. Mésoporosité

La mésoporosité est issue de l'agencement des cristallites (et agrégats de cristallites). La porosité et les surfaces spécifiques développées par les alumines de transition sont des propriétés intéressantes car elles sont adaptées à leur utilisation en tant que supports de
catalyseur. Cette partie présente les résultats de la caractérisation de la mésoporosité (2 nm < d_{pore} < 50 nm) des poudres par physisorption d'azote.

Les isothermes d'adsorption-désorption et la distribution de la taille des mésopores sont présentées sur la figure 3.3.

Figure 3.3 – (a) Isothermes d'adsorption-désorption d'azote et (b) Distributions de la taille des mésopores déterminée par la méthode BJH sur la branche de désorption.
Selon le classement de l'IUPAC, les isothermes de la figure 3.3.a sont de type IV avec une boucle d'hystérésis de type B. Le format de la boucle est habituellement mis en relation avec la forme des pores présents dans le matériau. Les poudres comprennent ainsi des pores en fente constitués par la superposition de plaquettes cristallines parallèles, ou des pores de très grand diamètre terminés par une ouverture étroite en forme de "bouteille".

La répartition poreuse des mésopores (Figure 3.3.b) est déterminée à partir de la méthode BJH sur la branche de désorption. En effet, à la désorption, l'azote condensé est en contact avec une surface déjà "mouillée" et on peut ainsi admettre que l'angle de contact est nul.

La surface spécifique déterminée par la méthode BET, le volume des mésopores (Vméso) à la pression relative P/P₀ maximale et le diamètre des mésopores (dmésoBJH) sont reportés dans le tableau 3.3 ci-dessous.

Tableau 3.3 – Propriétés texturales des poudres d'alumine déterminées par adsorption-désorption d'azote.

<table>
<thead>
<tr>
<th>Poudre d'alumine Al₂O₃</th>
<th>S_BET (m²/g)</th>
<th>V_mésos (P/P₀ max) (mL/g)</th>
<th>d_mésoBJH (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFPEN - 1,7 µm</td>
<td>212</td>
<td>0,43</td>
<td>6,8</td>
</tr>
<tr>
<td>Sasol - 19 µm</td>
<td>144</td>
<td>0,51</td>
<td>11,2</td>
</tr>
<tr>
<td>Sasol - 160 µm</td>
<td>199</td>
<td>0,50</td>
<td>8,0</td>
</tr>
</tbody>
</table>

L'alumine Sasol - 19 µm qui présente une structure cristalline typique d'une alumine delta (δ-Al₂O₃) peu évoluée car traitée à une température plus élevée par rapport aux deux autres poudres (γ-Al₂O₃), est caractérisée par la plus faible surface spécifique (S_BET = 144 m²/g) et le diamètre plus important de mésopores (11,2 nm).

La caractérisation des poudres à l'échelle des cristallites nous a donc permis d'identifier leurs propriétés structurales et texturales. Le critère de choix lié à la nature mésoporeuse des granules d'alumine est bien respecté. Par la suite, on s'intéresse à leur caractérisation à l'échelle micrométrique ce qui nous permettra d'évaluer les deux autres critères de choix des poudres, à savoir, la morphologie sphérique et la taille des grains.

3.1.3. Caractérisation des alumines à l'échelle micrométrique

3.1.3.1. Morphologie et distribution granulométrique

Les granules des trois alumines choisis présentent une morphologie sphérique comme le montrent les clichés de MEB de la figure 3.4. Une étape de séchage par atomisation, comme celle utilisée dans la préparation de la poudre IFPEN - 1,7 µm, a donc probablement été employée dans la mise en forme des poudres commerciales.
Figure 3.4 – Clichés de MEB des poudres d'alumine obtenus par observation directe : (a) IFPEN - 1,7 µm, (b) Sasol - 19 µm et (c) Sasol - 160 µm.

Un ordre de grandeur de la taille moyenne des granules a été déterminé à partir des images de MEB et des mesures sur environ 150 granules. Les granules de la poudre IFPEN - 1,7 µm (Figure 3.4.a) présentent bien un diamètre moyen d'environ 2 µm. Compte-tenu de sa faible taille, il est possible d'observer la présence d'agglomérats "de granules" formés sous l'influence de forces attractives faibles (forces de Van der Waals).

La poudre Sasol - 19 µm présente des granules dont le diamètre moyen est de l'ordre de la dizaine de microns. Le cliché de la figure 3.4.b montre également la présence d'une fraction de plus petites granules dont le diamètre varie entre 1 et 5 µm.

L'alumine Sasol - 160 µm est constituée de granules dont la taille est comprise entre 100 et 200 µm et, d'après l'image de la figure 3.4.c, elles présentent une distribution de taille étroite.

La présence de défauts de forme, observés surtout pour les poudres commerciales, est probablement liée aux conditions opératoires de l'étape séchage par atomisation (ex.: cavités de surface dues à une température de séchage trop élevée), aux conditions de stockage, transvasement ou transport (ex.: brisures des granules par impact ou attrition).

Les mesures de taille des granules par MEB ont été complétées par des mesures de granulométrie par diffraction laser. La figure 3.5 reporte l'évolution de la répartition granulométrique en volume de chacune des poudres.
Les poudres IFPEN – 2 µm et Sasol – 160 µm présentent une distribution quasi-monomodale tandis que celle Sasol – 19 µm est bimodale. Les diamètres caractéristiques déterminés sont présentés dans le tableau 3.4.

La distribution granulométrique de la poudre IFPEN - 1,7 µm est centrée sur 1,7 µm. Même si cette poudre a tendance à s'agglomérer comme vu précédemment (Figure 3.4.a), la pression d'air comprimé (2 bars) employée lors de l'analyse granulométrique en voie sèche (section 2.2.1.1 – Chapitre II) est suffisante pour disperser la poudre.

On observe aussi sur la figure 3.5 la présence d'une population de fines dans la poudre Sasol - 19 µm qui contribue à l'étalonnage de la distribution vers les plus petits diamètres. Cette deuxième population a également été observée sur les images de MEB (Figure 3.4.b).

La poudre Sasol - 160 µm est constituée des plus grosses granules avec un diamètre médian de 160 µm et une distribution étroite quantifiée par une polydispersité inférieure à 1 (span = 0,9).

| Tableau 3.4 – Diamètres caractéristiques des poudres d'alumines déterminées par granulométrie à diffraction laser en voie sèche. |
|-------------------|---|---|---|---|
| Diamètre (µm) | dv₁₀ | dv₅₀ | dv₉₀ | span |
| IFPEN - 1,7 µm | 0,7 | 1,7 | 3,4 | 1,6 |
| Sasol - 19 µm | 6,3 | 19 | 37 | 1,6 |
| Sasol - 160 µm | 104 | 160 | 247 | 0,9 |
Les résultats ci-dessus ont montré que les tailles des granules observées par MEB sont en accord avec les diamètres médians de l'analyse granulométrique. En outre, de ces analyses d'imagerie et de granulométrie à diffraction laser, il résulte que les critères liés à la morphologie sphérique des granules et au ratio R \(\frac{d_{petites}}{d_{grosses}} \leq 0,1 \) établis afin d'assurer les meilleures conditions pour l'empilement de poudres sont respectés.

3.1.3.2. Macroporosité

La macroporosité est issue des espaces formés entre les granules micrométriques, c'est-à-dire, la porosité inter-granulaire. En fonction de la taille de ces granules, des agglomérats "de granules" peuvent être formés par le biais de forces attractives comme les forces de Van der Waals. Comme vu précédemment, c'est le cas de la poudre IFPEN - 1,7 µm dont les granules sont de l'ordre de 2 µm.

Les espaces formés entre les agglomérats font également partie de la macroporosité et il s'agit de la porosité inter-agglomérats. Le schéma de la figure 3.6 (et l'Annexe A) permet de mieux visualiser les différents niveaux de porosité rencontrée dans les poudres en comparaison avec un cliché de MEB de la poudre IFPEN - 1,7 µm.
La macroporosité (> 50 nm) des poudres est caractérisée par porosimétrie au mercure. Cette technique permet également d'accéder à la mésoporosité dans le domaine de taille de pores compris entre 3,6 et 50 nm. La figure 3.7 reporte les distributions de taille des pores (volume poreux cumulatif).
La mésoporosité des poudres a déjà été discutée précédemment à partir des données issues de la physisorption d'azote qui permet la caractérisation dans un domaine de mésopores plus large (2 à 50 nm). Dans cette section, nous allons nous concentrer sur l'analyse du domaine des macropores (> 50 nm) accessible par porosimétrie au mercure.

La figure 3.7 révèle que la poudre IFPEN - 1,7 µm présente en effet deux niveaux de macroporosités identifiés par la présence de deux paliers. Le premier apparaît à un diamètre supérieur à 1000 nm et correspond au volume macroporeux inter-agglomérats égal à 0,28 mL/g. Le deuxième palier est observé entre 50 et 500 nm et correspond au volume inter-granulaire égal à 0,48 mL/g.

Un épaulement à partir de 10000 nm de l'ordre de 0,07 mL/g est observé sur la courbe de la Sasol - 19 µm et est probablement dû à une légère agglomération de la population de fines. Cette agglomération peut être négligée et la macroporosité prédominante dans cette poudre est la porosité inter-granulaire de l'ordre de 0,34 mL/g entre 50 et 1100 nm (Figure 3.7).

La seule macroporosité observée avec la Sasol - 160 µm est due aux espaces présents entre les grosses granules micrométriques. Dans ce cas, un seul palier est observé à partir de 50 nm avec un volume macroporeux inter-granulaire de 0,57 mL/g (Figure 3.7).

Le tableau 3.5 résume les paramètres caractéristiques de la macroporosité (Vmacro et dmacro) des trois poudres d'empilement.
Tableau 3.5 – Macroporosité des poudres d'alumine déterminée par porosimétrie au mercure.

<table>
<thead>
<tr>
<th>Al2O3</th>
<th>Macroporosité inter-granulaire</th>
<th>Macroporosité inter-agglomérats</th>
<th>Vmacro total2 (mL/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFPEN - 1,7 µm</td>
<td>Vmacro (mL/g) dmacro1 (µm)</td>
<td>Vmacro (mL/g) dmacro1 (µm)</td>
<td></td>
</tr>
<tr>
<td>0,48 0,7</td>
<td>0,28 68</td>
<td></td>
<td>0,76</td>
</tr>
<tr>
<td>Sasol - 19 µm</td>
<td>0,34 4,7</td>
<td>0,07* 21</td>
<td>0,41</td>
</tr>
<tr>
<td>Sasol - 160 µm</td>
<td>0,57 55</td>
<td>X X</td>
<td>0,57</td>
</tr>
</tbody>
</table>

1dmacro = diamètre déterminé à Vmacro/2
2Vmacro total = Vmacro inter-granulaire + Vmacro inter-agglomérats

La taille des macropores est liée à la taille des granules (et agglomérats "de granules") et à la façon dont elles sont empilées [German, 1989]. Si on admet l'hypothèse d'un certain agencement, il est possible d'estimer la taille des granules et des agglomérats à partir de l'espace formé entre les unités empilées.

D'après la littérature, dans le cas d'un empilement aléatoire de sphères monomodales, les sphères sont empilées majoritairement selon un arrangement tétraédrique [Finney, 1970 ; German, 1989]. Dans la cellule unitaire de l'empilement tétraédrique, on retrouve une cellule de forme rhomboïdale qui peut contenir une sphère de taille 0,29D (Figure 3.8).

Figure 3.8 – Cellule d'empilement tétraédrique de forme rhomboïdale et détail de l'espace qui peut contenir une sphère de taille 0,29D.

Nous avons ainsi émis l'hypothèse que nos granules et agglomérats "de granules" sont empilés selon un arrangement tétraédrique dont la cellule d'empilement est de forme rhomboïdale. Ceci nous permet d'estimer la taille des agglomérats présents dans la poudre IFPEN - 1,7 µm et accessoirement de confirmer la taille de nos granules déjà déterminée par d'autres techniques (MEB et diffraction laser).

La cellule d'empilement est supposée être de même ordre de grandeur que le diamètre des macropores mesuré par porosimétrie au mercure (d_{cellule} = d_{macro} = 0,29D). Nous avons ainsi appliqué ce calcul avec le diamètre médian (d_{macro} à V_{macro}/2) indiqué dans le tableau 3.5, mais également avec les diamètres de macropores à 10 et 90% du volume macroporeux (0,1xV_{macro}}
et $0,9V_{macro}$ de manière à avoir un aperçu de la largeur de la distribution de taille des unités empilées. Les résultats obtenus sont présentés dans le tableau 3.6.

Tableau 3.6 – Diamètres des unités empilés (D) (granules et agglomérats) estimés à partir des diamètres de macropores (d_{macro}) et en supposant un empilement tétraédrique de sphères monomodales.

<table>
<thead>
<tr>
<th></th>
<th>Diamètre des macropores (d_{macro}) (µm) à:</th>
<th>Diamètre des unités empilés (D) (µm)1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1xV_{macro}</td>
<td>D_{10} D_{50} D_{90}</td>
</tr>
<tr>
<td>Granules</td>
<td>IFPEN - 1,7 µm</td>
<td>0,9 0,7 0,4 3,1 2,4 1,4</td>
</tr>
<tr>
<td></td>
<td>Sasol - 19 µm</td>
<td>14 4,7 2,2 48 16 8</td>
</tr>
<tr>
<td></td>
<td>Sasol - 160 µm</td>
<td>103 55 36 355 190 124</td>
</tr>
<tr>
<td>Agglomérats "de granules"</td>
<td>IFPEN - 1,7 µm</td>
<td>233 68 9 803 234 31</td>
</tr>
</tbody>
</table>

$^1D = d_{macro}/0,29$

Le tableau 3.6 montre que l'hypothèse d'empilement tétraédrique conduit à des diamètres caractéristiques (D_{10}, D_{50} et D_{90}) des unités empilés proches de ceux déterminés par granulométrie à diffraction laser (1,7 µm, 19 µm et 160 µm). Il en résulte que le volume macroporeux inter-granulaire déterminé par porosimétrie au mercure correspond bien à la porosité formée entre les granules micrométriques.

En outre, l'estimation de la taille des agglomérats, montre que la poudre IFPEN - 1,7 µm présente des unités agglomérées dont la taille varie de 30 à 800 µm avec un diamètre médian d'environ 200 µm. La taille de ces unités doit être considérée avec prudence car l'état d'agglomération est influencé par la manière dont la poudre est empilée dans la cellule de porosimétrie au mercure et elle évolue également au cours de l'analyse.

L'empilement de ces poudres seules a été caractérisé par imagerie à l'aide de la microtomographie. Les résultats obtenus ainsi que la compacité d'empilement de chacune de ces poudres sont présentés dans la section suivante.

3.1.3.3. Empilement de poudres seules

Les clichés de la figure 3.9 montrent l'empilement des poudres d'alumine observé à partir de la micro-tomographie aux rayons X.
La résolution des acquisitions ne permet pas d'avoir une observation nette des plus petites granules (1,7 µm et 19 µm). Les zones d'agglomération sont cependant identifiées à partir du contraste de niveaux de gris qui sont liés à l'absorption des rayons X et à l'épaisseur de l'échantillon. Ces zones moins denses sont attribuées aux régions en gris foncé présentes notamment sur le cliché (a) de la figure 3.9.

Un traitement d'image réalisé sur ce cliché permet de mieux visualiser les contrastes de niveaux de gris et d'observer les contours des zones agglomérées. Les tailles de ces régions sont de l'ordre de la centaine de microns. L'analyse par imagerie permet ainsi d'avoir un ordre de grandeur des agglomérats de la poudre IFPEN - 1,7 µm et qui est comparable aux estimations faites à partir de la porosimétrie au mercure (de 30 à 800 µm).

La poudre Sasol - 19 µm semble ne pas présenter des zones d'agglomération importantes et les régions plus claires correspondent aux plus grosses granules (zones plus denses) (Figure 3.9.b).
L’empilement aléatoire de la poudre Sasol - 160 µm est très bien visualisé par microtomographie comme l’illustre la figure 3.9.c. Compte-tenu de leur taille, il est possible d’observer les granules individuellement ainsi que leur morphologie plutôt sphérique avec quelques granules creuses attribuées aux conditions de séchage par atomisation.

La caractérisation quantitative de l’empilement des poudres est réalisée à partir de mesures de densité de remplissage tassée et du calcul de la compacité selon la procédure décrite dans le Chapitre II (section 2.2.1.8). Le tableau 3.7 reporte les valeurs de la densité apparente (ρa) et de la densité vraie de la granule (ρgi) nécessaires à ce calcul ainsi que les compacités (c) obtenues.

Tableau 3.7 – Paramètres utilisés dans le calcul de la compacité des poudres et le résultat obtenu.

<table>
<thead>
<tr>
<th>Poudre</th>
<th>ρa (g/mL)</th>
<th>ρgi (g/mL)</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFPEN - 1,7 µm</td>
<td>0,61</td>
<td>1,27</td>
<td>0,48</td>
</tr>
<tr>
<td>Sasol - 19 µm</td>
<td>0,77</td>
<td>1,18</td>
<td>0,65</td>
</tr>
<tr>
<td>Sasol - 160 µm</td>
<td>0,83</td>
<td>1,33</td>
<td>0,62</td>
</tr>
</tbody>
</table>

Compacité des poudres seules \(c = \rho_a/\rho_g \)

L’empilement des granules de Sasol - 160 µm peut être comparé à un empilement aléatoire compact (*Random Dense Packing*) de sphères où la compacité avoisine 0,64 [German, 1989]. La morphologie sphérique, même avec quelques tortuosités, et la distribution granulométrique étroite de cette poudre sont des facteurs qui favorisent un agencement proche de celui retrouvé dans la littérature (Figure 3.9.c). De plus, comme le diamètre médian de ces granules est supérieur à 100 µm, l’empilement subit davantage les forces gravitationnelles que les forces de cohésion inter-granulaires [Krupp, 1967 ; Rietema *et al.*, 1977], ce qui correspond bien aux conditions de la littérature.

La compacité de la Sasol - 19 µm est légèrement plus élevée (0,65 ± 0,02) que celle de la poudre Sasol - 160 µm (0,62 ± 0,02). La population de fines présentes dans cette première favorise un empilement plus compact du fait du remplissage des espaces résiduels par une fraction des granules plus petites.

La faible compacité d’empilement (0,48 ± 0,02) de la poudre IFPEN - 1,7 µm est attribuée à la formation des agglomérats.

Ces trois alumines sont utilisées comme poudres "d’empilement" dans la préparation des supports de catalyseur à microstructure multi-échelles. Des mélanges de poudres ont été réalisés afin de caractériser le milieu granulaire multi-échelles à sec, c’est-à-dire, avant les étapes de mise en forme. Les résultats des caractérisations de ces mélanges sont présentés dans la section suivante.
3.2. Mélanges de poudres d'alumine

Pour rappel, les mélanges de poudres d'alumine ont été réalisés à sec dans le malaxeur à une vitesse de rotation des bras de 10 tours/min pendant 2 min. Trois systèmes binaires sont étudiés et dénommés à partir du diamètre médian (d_{v50}) des granules, à savoir : 1,7 µm + 19 µm, 19 µm + 160 µm et 1,7 µm + 160 µm.

Par la suite, on entend par fraction massique de petites granules le ratio exprimé par l'équation suivante :

$$\% \text{massique}(\text{petites}) = \frac{M_{\text{petites}}}{M_{\text{petites}} + M_{\text{groses}}} \times 100$$ \hspace{1cm} (Équation 3.1)

où :

M_{petites} : masse de la poudre composée des granules plus petites (g)

M_{groses} : masse de la poudre composée des grosses granules (g)

Le tableau 3.8 reporte les formulations des mélanges de poudres préparés.

<table>
<thead>
<tr>
<th>Systèmes</th>
<th>Petites (P) / Grosses (G) (% massique)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,7 µm (P) + 19 µm (G)</td>
<td>0/100 – 10/90 – 20/80 – 30/70 – 40/60 – 60/40 – 100/0</td>
</tr>
<tr>
<td>19 µm (P) + 160 µm (G)</td>
<td>0/100 – 20/80 – 40/60 – 60/40 – 80/20 – 100/0</td>
</tr>
<tr>
<td>1,7 µm (P) + 160 µm (G)</td>
<td>0/100 – 20/80 – 40/60 – 60/40 – 80/20 – 100/0</td>
</tr>
</tbody>
</table>

Les caractéristiques des mélanges de poudres à l'échelle des cristallites nanométriques (mésoporosité) et à l'échelle des granules micrométriques (distribution granulométrique, macroporosité et empilement) sont présentées dans les paragraphes suivants. Les objectifs de ces caractérisations sont de vérifier si les conditions de mélange employées conduisent à des systèmes homogènes et de comprendre comment les granules s'empilent en fonction de la formulation (taille et proportion de petites granules).

3.2.1. Caractérisation à l'échelle des cristallites nanométriques

3.2.1.1. Mésoporosité

L'évolution de la mésoporosité du mélange des poudres en fonction de la formulation a été caractérisée par physisorption d'azote. La figure 3.10 présente la variation de la surface spécifique (S_{BET}) en fonction de la fraction massique en petites granules.
La surface spécifique augmente avec la fraction massique de petites granules pour le système 1,7 µm + 19 µm. Ceci est dû à la surface spécifique de la poudre IFPEN - 1,7 µm ($S_{BET} = 212$ m²/g) qui est plus importante que celle de la poudre Sasol - 19 µm ($S_{BET} = 144$ m²/g).

La tendance est inversée pour le système 19 µm + 160 µm où la surface spécifique décroit de 199 m²/g à 144 m²/g avec l'augmentation de la proportion de petites granules.

Le système 1,7 µm + 160 µm présente une évolution presque constante, indépendamment de la formulation, car la surface spécifique des poudres IFPEN - 1,7 µm et Sasol - 160 µm sont quasi identiques (212 m²/g et 199 m²/g).

Le volume mésoporeux ($V_{més}$) en fonction de la composition du mélange de poudres est reporté sur la figure 3.11.
Figure 3.11 – Évolution du volume mésoporeux des mélanges binaires de poudres en fonction de la fraction massique de petites granules.

Le volume mésoporeux diminue vers les concentrations plus importantes en petites granules pour les mélanges 1,7 µm + 19 µm et 1,7 µm + 160 µm du fait du plus faible volume mésoporeux de la poudre IFPEN - 1,7 µm (0,43 mL/g). On n'observe quasiment pas de variation si le mélange est constitué de poudres dont le volume mésoporeux est comparable comme pour le système 19 µm + 160 µm.

Ces résultats illustrent la propriété d'additivité (loi des mélanges) de la mésoporosité, c'est-à-dire, que la surface spécifique (S_{BET}) et le volume mésoporeux ($V_{méso}$) évoluent proportionnellement à la composition du mélange.

3.2.2. Caractérisation à l'échelle des granules micrométriques

3.2.2.1. Distribution granulométrique

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
Comme vu dans la section 3.1.3.1, la pression d'air comprimé utilisée lors de l'analyse granulométrique (2 bars) favorise la dispersion des agglomérats formés par les petites granules. Les distributions granulométriques ci-dessus correspondent donc à l'évolution en volume des granules non-agglomérées et sont représentatives de la composition des mélanges binares.

3.2.2.2. Macroporosité

La variation du volume poreux en fonction de la taille des pores pour les trois systèmes binaires, est présentée sur la figure 3.13. Nous allons nous concentrer dans cette partie sur l'analyse des porogrammes dans le domaine des macro pores (> 50 nm).
Porosité inter-agglomérats

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
Les porogrammes des mélanges 1,7 µm + 19 µm et 1,7 µm + 160 µm (Figures 3.13.a et 3.13.b) montrent la présence d'un volume poreux (palier) lié à la porosité inter-agglomérats à partir de 1000 nm. Cette porosité augmente avec la proportion de petites granules et, plus précisément, au-dessus de 20% dans les deux systèmes.

Le porogramme du mélange 19 µm + 160 µm (Figure 3.13.c) montre essentiellement une macroporosité liée aux espaces inter-granulaires (un seul palier majoritaire). Les poudres dans ce cas, sont constituées de granules plus grosses moins affectées par des forces attractives responsables de l'agglomération.

De plus, on observe sur les trois porogrammes que le volume macroporeux total (palier > 50 nm) varie en fonction de la composition du mélange. L'évolution du volume macroporeux total en fonction de la fraction massique des petites granules est reportée sur la figure 3.14.
Les courbes de la figure 3.14 montrent une évolution non-monotone de Vmacro en fonction de la proportion de petites granules avec la présence d'un domaine de composition optimale où le volume macroporeux est minimal.

Les deux systèmes binaires contenant la poudre IFPEN - 1,7 μm (1,7 μm + 19 μm et 1,7 μm + 160 μm), présentent une augmentation importante de Vmacro à partir de 40% de petites. A partir de cette composition, les effets de l'agglomération des fines deviennent plus importants et la porosité inter-agglomérats est responsable de l'augmentation du volume macroporeux total dans ces systèmes.

Le mélange 19 μm + 160 μm présente le plus faible volume macroporeux total avec une composition optimale de 40 à 60% de petites (Figure 3.14). En effet, ce système étant moins sensible à l'agglomération de petites, le volume macroporeux est essentiellement issu de la porosité inter-granulaire. Par ailleurs, les fines présentes dans la poudre de 19 μm occupent l'espace résiduel formé entre les plus grosses granules et contribuent également à diminuer le volume de macropores.

Nous avons estimé l'évolution de la taille des agglomérats formés dans les mélanges binaires (1,7 μm + 19 μm et 1,7 μm + 160 μm) en fonction de la proportion de petites selon la même démarche décrite précédemment, pour laquelle on suppose un empilement de sphères selon un arrangement tétraédrique (section 3.1.3.2). Les résultats obtenus sont présentés sur la figure 3.15.
Figure 3.15 – Évolution du diamètre des agglomérats en fonction de la fraction massique de petites granules estimé en supposant un empilement de sphères selon un arrangement tétraédrique.

D'après nos estimations, les agglomérats des mélanges binaires présentent une taille moyenne qui varie de 100 à 250 µm. Dans le mélange 1,7 µm + 19 µm, la taille de ces entités semble être peu influencée par la population de 19 µm. Dès 20% de petites, les agglomérats sont de l'ordre de 230 µm et cette taille varie peu même pour les mélanges plus riches en granules de 1,7µm (d_{50}).

En revanche, pour le système 1,7 µm + 160 µm, on observe une évolution croissante de la taille des agglomérats avec la teneur de petites. Ces agglomérats ont une taille inférieure à ceux présents dans le mélange 1,7 µm + 19 µm à une même composition granulaire. Il est donc possible que l'état d'agglomération soit modifié en fonction de la deuxième population présente et que les grosses granules (> 100 µm) "cassent" plus facilement les agglomérats.

La macroporosité des mélanges binaires de poudres est donc liée à l'agencement de petites et grosses granules. Cet agencement est une conséquence de la proportion de chacune des populations et de la présence ou non de forces cohésives responsables de la formation d'agglomérats. L'empilement de ces mélanges binaires est quantifié en termes de compacité comme reporté dans la section suivante.

3.2.2.3. Empilement de mélanges de poudres

Les compacités des mélanges de poudres ont été déterminées à partir de mesures de densité de remplissage tassée dans un cristallisor comme décrit le Chapitre II (section 2.2.1.8). Les résultats ont été comparés avec les compacités du mélange de poudres
dans la cellule de porosimétrie mercure\(^8\). Ceci nous permettra d'évaluer si la méthode de tassement modifie ou non l'empilement par rapport à l'agencement de la poudre en vrac dans le pénétromètre. L'évolution de ces résultats expérimentaux est mise en relation avec le modèle de Furnas (section 1.2.4.2 – Chapitre I). Nous présentons d'abord les résultats obtenus avec les deux systèmes contenant la poudre IFPEN - 1,7 µm et ensuite ceux du mélange 19 µm + 160 µm.

Systèmes : 1,7 µm + 19 µm et 1,7 µm + 160 µm

La figure 3.16 présente l'évolution de la compacité en fonction de la teneur en petites granules.

\[\rho_{\text{mélange}} = \frac{\rho_{\text{a, Poro Hg}}}{\rho_{\text{mélange}}} \]

\(^8\) Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf

© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés.
Figure 3.16 – Compacité d'empilement des mélanges de poudres en fonction de la fraction massique de petites granules : comparaison entre les compacités expérimentales ($C_{\text{cristallisoir}}$ et $C_{\text{Poro \ Hg}}$) et le modèle de Furnas appliqué aux systèmes : (a) 1,7 µm + 19 µm et (b) 1,7 µm + 160 µm.

Les systèmes 1,7 µm + 19 µm et 1,7 µm + 160 µm présentent tous les deux une composition optimale autour de 20% de petites (1,7 µm). Le gain en compacité ($C_{\text{cristallisoir}}$) est cependant plus important avec le mélange 1,7 µm + 160 µm où la compacité passe de 0,62 pour les grosses (0% petites) à 0,72 pour la composition optimale, tandis que le système 1,7 µm + 19 µm passe de ~ 0,65 à seulement 0,69.

Au-delà de la composition optimale, la compacité décroît vers des valeurs voisines de 0,5 et 0,6 pour les deux systèmes. Ce résultat est proche de celui observé avec les compacités estimées à l'intérieur de la cellule de porosimétrie mercure ($C_{\text{Poro \ Hg}}$). Le mélange 1,7 µm + 160 µm présente cependant un écart plus important entre ces compacités vers les plus faibles proportions de petites. En effet, même aux faibles pressions, il est possible que le mercure ait pénétré dans les plus grosses granules (160 µm) ce qui peut fausser la densité apparente et par conséquent la compacité ($C_{\text{Poro \ Hg}}$) des mélanges plus riches en grosses granules.

De plus, comme les compacités $C_{\text{cristallisoir}}$ et $C_{\text{Poro \ Hg}}$ sont proches, on peut en déduire que les agglomérats ne se dispersent pas complètement lors du tassement dans le cristallisoir. Ceci peut être confirmé par les clichés de micro-tomographie où le remplissage des tubes a été effectué de façon similaire à la procédure de tassement (Figure 3.17).
La fissuration de l’empilement observée sur les images peut correspondre à des effets d’arche ou dus au remplissage séquentiel des tubes pour l’analyse. Les images montrent que les systèmes sont homogènes et qu’il n’y a pas eu de ségrégation entre les deux populations de granules.

Les zones en gris foncé observées sur les clichés de la figure 3.17 correspondent à des régions moins denses liées à l’agglomération des petites (1,7 µm). Malgré la résolution de ces images, il semble que la taille de ces régions soit du même ordre de grandeur que les estimations faites à partir des données de porosimétrie au mercure (Figure 3.15).

Les clichés (a) et (b), correspondant à l’empilement des deux systèmes à leur composition optimale, montrent que les agglomérats sont plus petits dans le mélange 1,7 µm + 160 µm et ils remplissent les espaces résiduels conduisant ainsi à un empilement plus compact. Par rapport au système 1,7 µm + 19 µm, il est difficile d’en conclure sur la localisation des
granules de 19 µm par rapport aux zones d'agglomération de petites du fait de la résolution de l'analyse.

Les clichés (c) et (d) montrent que l'excès de petites granules contribue au desserrement de l'empilement. Ceci est plus facilement observé sur le cliché (d) où les fortes teneurs en petites favorisent la formation de grosses entités agglomérées qui éloignent les granules de 160 µm les unes des autres. La compacité diminue alors et la valeur obtenue est également influencée par la présence de structures aérées (porosité inter-agglomérats) liées à l'agglomération.

La comparaison des résultats expérimentaux avec le modèle de Furnas montre un bon accord avec les deux systèmes. Il convient de rappeler que ce modèle est fondé sur des observations expérimentales et prend en compte la compacité d'empilement de chacune des poudres seules (Équations 1.6 et 1.7 – Chapitre I). Les points extrêmes (0 et 100% petites) du modèle sont donc toujours superposés aux points expérimentaux et les points expérimentaux intermédiaires doivent se localiser en-dessous des courbes du modèle où le ratio de diamètres \(\frac{d_{petites}}{d_{grosses}} \) tend vers zéro.

Compte-tenu de la présence d'agglomérats, l'évolution de la compacité des systèmes 1,7 µm + 19 µm et 1,7 µm + 160 µm est plutôt une conséquence de cet effet. Il est donc difficile de conclure uniquement en termes d'effet de ratio de diamètres sur la compacité de ces systèmes plus complexes.

Système : 19 µm + 160 µm

La figure 3.18 montre l'évolution de la compacité du système 19 µm + 160 µm.
Figure 3.18 – Compacité d'empilement en fonction de la fraction massique de petites granules : comparaison entre les compactes expérimentales ($C_{\text{Cristallisoir}}$ et $C_{\text{Poro Hg}}$) et les modèles de Furnas et de Yerazunis appliqués au système 19 µm + 160 µm.

Le système 19 µm + 160 µm présente les compactes les plus élevées parmi les trois mélanges étudiés avec un maximum de $0,75 \pm 0,02$ ($C_{\text{Cristallisoir}}$) aux compositions intermédiaires de petites (entre 40 et 60%)

Les compactes déterminées par tassement ($C_{\text{Cristallisoir}}$) et en considérant l'agencement dans la cellule de porosimétrie au mercure ($C_{\text{Poro Hg}}$) sont comparables à l'exception des mélanges plus riches en grosses granules (160 µm) du fait de la possible intrusion du mercure même aux faibles pressions comme discuté précédemment.

Le cliché de micro-tomographie de la figure 3.19 montre l'empilement à la composition optimale de ce système.
Figure 3.19 - Clichés de micro-tomographie aux rayons X du mélange 19 µm + 160 µm à la composition optimale : 19 µm (60%) + 160 µm (40%).

L’image ci-dessus montre un mélange homogène avec remplissage des espaces formés entre les grosses granules (160 µm) par les plus petites (19 µm). Ce système est constitué de poudres moins sensibles aux problèmes d’agglomération comme discuté précédemment. Par ailleurs, les fines présentes dans la poudre de 19 µm contribuent à accroître encore plus la compacité car ces plus petites granules remplissent les vides résiduels.

La compacité plus élevée atteinte avec ce système est également due aux compacités des poudres seules (0 et 100% petites) qui sont toutes les deux comparables (0,62 et 0,65) et proches de celle obtenue dans le cas d’un empilement aléatoire de sphères (0,64).

La comparaison des résultats expérimentaux avec le modèle de Furnas montre qu’en effet les points se retrouvent dans le domaine d’existence délimité par le modèle (Figure 3.18). Ce système étant le plus proche de l’empilement bimodal de sphères, l’écart observé par rapport à la composition optimale du modèle (26% petites) est expliqué par des effets de taille. D’après la littérature, plus le ratio d petites/d grosses augmente plus la composition optimale est décalée vers les compositions intermédiaires (40 à 60% petites) et plus le sommet du dôme est localisé à des compacités faibles (Figure 1.31 – Chapitre I).

Afin de confirmer si les résultats obtenus avec le système 19 µm + 160 µm peuvent être attribués à des effets liés à la taille des granules, nous avons utilisé le modèle de Yerazunis [Yerazunis et al., 1965] (Figure 3.18). Ce modèle est fondé sur des observations expérimentales et est appliqué dans le cas d’un empilement bimodal de sphères en prenant en compte le ratio de taille ($d_{petites}/d_{grosses} = 0,12$). Le modèle permet cependant de tracer l’évolution de la compacité dans un domaine restreint de grosses granules allant de 0% grosses (100% petites) jusqu’à environ 70% grosses (30% petites).
La compacité maximale (0,75) atteinte à environ 40 - 60% de petites est en accord avec le modèle de Yerazunis (Figure 3.18). Différemment des systèmes contenant la poudre IFPEN - 1,7 µm qui a tendance à s'agglomérer, l'évolution de la compacité du système 19 µm + 160 µm est influencée davantage par la taille des granules empilées.

3.3. Conclusions

Les poudres d'alumine qui seront utilisées dans la préparation des supports de catalyseur à microstructure multi-échelles, sont des granules de morphologie sphérique et mésoporeuses. Le critère lié à la forme a été privilégié par rapport aux propriétés texturales de façon à optimiser l'empilement granulaire.

La caractérisation des mélanges de poudres nous a permis de fixer les conditions opératoires de la première étape de mise en forme, à savoir, le mélange à sec. Les systèmes sont homogènes, sans ségrégation granulaire, et présentent une évolution granulométrique et texturale représentatives de la formulation.

L'étude sur la compacité des mélanges de poudres nous a permis de tracer l'évolution de l'agencement des granules d'empilement en fonction de la composition. Les systèmes contenant les plus petites granules sont davantage soumis aux effets de l'agglomération et les compactités d'empilement sont plus faibles. En revanche, celui contenant les granules plus grosses présente un comportement attribué aux différences de taille entre les granules.

La comparaison des résultats expérimentaux avec le modèle de Furnas est utile pour une première évaluation de l'empilement. Compte-tenu des conditions simplifiées du modèle par rapport aux caractéristiques réelles des poudres d'empilement, il serait intéressant d'étudier des modèles plus adaptés à nos granules qui prennent en compte la distribution granulométrique (Andreasen, 1928; Ouchiyama et al., 1986) et les effets de l'agglomération (Yu et al., 1994; Yu et al., 1997).

Ce chapitre nous a ainsi permis de mieux comprendre notre système à sec et d'évaluer les facteurs qui affectent l'empilement des poudres d'alumine et d'identifier les proportions des poudres différentes pour atteindre la compacité maximale. Par la suite, nous allons nous intéresser aux liants employés pour assurer la cohésion de l'empilement, et enfin, aux matériaux préparés à partir de l'assemblage granules d'alumine – liant.
Chapitre IV : Liants
Chapitre IV

Liants

La cohésion de l'empilement de granules d'alumine est assurée par la présence d'un liant. Cet assemblage (granules + liant) conduira aux nouveaux supports de catalyseur à microstructure multi-échelles présentés dans le chapitre suivant.

La boehmite peptisée et neutralisée (AlOOH) et le phosphate d'aluminium (AlPO) sont utilisés comme liants dans cette étude. Ces deux liants inorganiques se différencient par leur composition chimique et, par conséquent, par leurs propriétés texturales, structurales et leur mode d'interaction avec les granules d'alumine. Il convient de rappeler que les nomenclatures (AlOOH et AlPO) utilisées sont simplifiées et ne représentent pas précisément leur composition ou structure cristalline.

D'après l'étude bibliographique, la boehmite peptisée et neutralisée conduit à un liant mésoporeux, alors que le liant à base de phosphate d'aluminium est non poreux. Par rapport à la transition de phase qui a lieu lors de la calcination (600°C), le premier subit une transformation topotactique et devient ainsi une alumine de transition (γ-Al$_2$O$_3$), tandis que le phosphate d'aluminium forme une phase cristalline à partir d'une phase amorphe.

Compte tenu de ces caractéristiques, l'étude sur les liants a été réalisée selon deux démarches distinctes. Le liant issu de la peptisation et neutralisation de la boehmite étant poreux, la démarche a consisté à évaluer l'effet de la formulation sur ses propriétés rhéologiques et texturales. Cette stratégie a été inspirée des travaux de Drouin et al. L'objectif est ainsi de choisir la formulation la mieux adaptée à la conduite de la mise en forme et à l'obtention des caractéristiques désirées des supports à microstructure multi-échelles.

La formulation du liant AlPO a été définie d'après les informations issues de la littérature. La formulation de ce liant étant fixée au préalable, nous ne nous sommes pas intéressés à l'évaluation du comportement rhéologique en fonction de sa composition. Nous avons focalisé notre attention sur la caractérisation de sa structure cristalline et sur la compréhension des mécanismes de transition de phase, encore peu décrits.
4.1. Caractérisation du précurseur d'aluminium (Pural SB3)

La poudre Pural SB3 (Sasol) est utilisée comme précurseur d'aluminium pour les deux liants (boehmite peptisée et neutralisée et phosphate d'aluminium). Il s'agit d'une boehmite (AlOOH.0,45H₂O) issue de l'hydrolyse d'alcoolate d'aluminium. Le titane (Ti) est une des seules impuretés inorganiques rencontrées et a été détecté par fluorescence X avec une teneur inférieure à 0,1% pds.

La Pural SB3 se présente sous forme de granules micrométriques isolées ou rassemblées sous forme d'agglomérats, comme le montre les images obtenues par microscopie électronique à balayage (MEB) (Figure 4.1.1).

Les granules sont caractérisées par une morphologie sphérique typique du procédé de mise en forme par séchage par atomisation. La présence de tortuosités et de défauts de surface est due aux conditions opératoires et/ou générés par attrition lors du transvasement et transport.

D'après les clichés de MEB, les entités de la poudre Pural SB3 présentent une large distribution en taille pouvant aller de \(~1\ \mu\text{m}\) jusqu'à \(~80\ \mu\text{m}\) (granules et agglomérats "de granules"). L'analyse granulométrique par diffraction laser en voie sèche permet de déterminer les diamètres caractéristiques et les comparer avec les observations faites par MEB comme le montre la figure 4.1.2.
Figure 4.1.2 – Distribution granulométrique de la poudre Pural SB3 déterminée par granulométrie à diffraction laser en voie sèche.

L’étalement de la distribution granulométrique est caractérisé par une polydispersité ou "span" de 2,2, avec les diamètres caractéristiques d_{v10}, d_{v50} et d_{v90} égaux à 8,8 µm, 36,4 µm et 87,4 µm, respectivement. La largeur de la distribution observée par MEB est donc en accord avec les résultats issus de l'analyse granulométrique par diffraction laser.

Les granules micrométriques de la poudre Pural SB3 sont composées elles-mêmes d'unités élémentaires ou cristallites. Ces objets sont de taille nanométrique, comme observé sur les clichés de microscopie électronique en transmission (MET) (Figure 4.1.3).

Figure 4.1.3 – Clichés de MET de la poudre Pural SB3 : (a) cristallites enchevêtrées et (b) détail sur la morphologie de type plaquettes des cristallites.
Les cristallites se présentent sous forme de plaquettes enchevêtrées et dont la morphologie est assez irrégulière (Figure 4.1.3). Une représentation schématique de la géométrie des plaquettes est illustrée sur la figure 4.1.4, où les axes a, b et c correspondent à la direction de ces dimensions : longueur, épaisseur et largeur, respectivement. Les valeurs indiquées sont un ordre de grandeur de ces dimensions puisque les superpositions de plaquettes et les interconnexions rendent difficile une mesure précise de la taille de ces objets élémentaires.

![Figure 4.1.4 – Répresentation schématique d'une cristallite de boehmite.](image)

L'analyse de la poudre Pural SB3 par diffraction des rayons X permet d'identifier les phases présentes. Le diffractogramme obtenu est présenté sur la figure 4.1.5 et il correspond bien à celui de la boehmite [Rebours et al., 1997 ; Belloto et al., 1998 ; Fauchadour, 2000].

![Figure 4.1.5 – Diffractogramme de rayons X de la boehmite Pural SB3 (Sasol).](image)

La largeur des raies est liée en première approximation à la taille des cristallites par la relation de Scherrer vue dans le Chapitre II (Équation 2.7). La dimension mesurée dans la direction perpendiculaire aux plans (020) représente l'épaisseur des cristallites (axe b) et la valeur obtenue est de 3,0 ± 0,3 nm.

La longueur (axe a) et la largeur (axe c) pourraient être estimées à partir des plans (200) et (002). Cependant, ces raies sont superposées avec les raies (051) et (231), respectivement.
L'alternative consiste à extraire ces informations sur l'étendue des raies toujours mesurables comme la raie (120) ou (031) [Rebours et al., 1997].

Les plans (120) sont inclinés d'un angle α égal à 58,8° par rapport aux plans (020) et, en connaissant l'épaisseur (e) de la plaquette, la taille mesurée dans la direction perpendiculaire aux plans (120) (D_{120}) est reliée à la longueur (L) de la plaquette par la relation [Rebours et al., 1997] :

$$D_{120} = \frac{eL}{(L \cos \alpha + e \sin \alpha)} \quad \text{(Equation 4.1)}$$

D_{120} est calculé à partir de la relation de Scherrer et la valeur trouvée pour la Pural SB3 est $D_{120} = 4,5 \pm 0,5$ nm. A partir de cette valeur et de l'équation 4.1, la longueur des cristallites peut varier de 9 à 25 nm en considérant l'imprécision des mesures de D_{120} et e.

La présence de ces unités élémentaires et la façon dont elles sont empilées génèrent une porosité au sein des granules. Plus précisément, il s'agit de mésoporosité. Les propriétés texturales de la Pural SB3 ont donc été caractérisées par physisorption d'azote.

Les isothermes d'adsorption-désorption d'azote obtenues sont présentées sur la figure 4.1.6.a.

![Figure 4.1.6 – (a) Isotherme d'adsorption-désorption d'azote et (b) Distribution de la taille des mésopores déterminée par la méthode BJH sur la branche de désorption.](image)

D'après le classement de l'IUPAC, l'isotherme d'adsorption est de type IV avec une boucle d'hystérésis de type B. L'allure de la courbe est caractéristique des solides mésoporeux classiques. La surface spécifique déterminée à partie de la méthode BET est de 323 m²/g, et le volume des mésopores à pression relative P/P_0 maximale est de 0,44 mL/g.

La distribution de la taille des mésopores est illustrée sur la figure 4.1.6.b. La répartition poreuse est centrée sur 5,4 nm. La taille des mésopores est la conséquence de l'agencement des cristallites et de leurs dimensions. Les propriétés texturales de la Pural SB3 sont résumées sur le tableau 4.1.1.
Tableau 4.1.1 – Propriétés texturales de la poudre de boehmite Pural SB3.

<table>
<thead>
<tr>
<th></th>
<th>S_{BET} (m²/g)</th>
<th>Vméso (P/P₀ max) (mL/g)</th>
<th>dmesoBJH (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pural SB3</td>
<td>323</td>
<td>0,44</td>
<td>5,4</td>
</tr>
</tbody>
</table>

4.2. Boehmite peptisée et neutralisée (AlOOH)

4.2.1. Démarche expérimentale

Le schéma de la démarche expérimentale adoptée afin de relier l’effet des conditions de dispersion de la poudre de boehmite aux propriétés rhéologiques et texturales du liant est présenté sur la figure 4.2.1.

La teneur en acide nécessaire pour disperser les granules de la poudre de boehmite (Pural SB3) jusqu’à l’échelle des agrégats nanométriques est considérée comme un paramètre fixe. La détermination de ce domaine de taux d’acide (Ta) optimal est présentée dans la section 4.2.2. L’acide employé est l’acide nitrique (HNO₃, 60%) afin d’éviter la présence d’impuretés ou d’un hétéroatome qui altère la transformation de la boehmite en alumine (γ-Al₂O₃) pendant la calcination. Lors de ce traitement thermique, l’azote est éliminé du matériau sous forme de dioxyde d’azote (NO₂).

La modification des interactions dans le milieu est réalisée par l’introduction d’une base (agent neutralisant) après l’étape de dispersion de la poudre avec l’acide. L’ammoniaque...
(NH₄OH, 20%) est utilisée et différentes formulations sont préparées en faisant varier le taux de neutralisation (TN) dans la gamme de 0 à 120% mol/mol (NH₄OH/HNO₃).

Les étapes de dispersion et neutralisation sont réalisées pour des périodes de malaxage différentes et désignées malaxage acide et malaxage basique (Figure 4.2.1). Les conditions de mélange sont décrites dans le Chapitre II (section 2.1.1). Le taux de remplissage du malaxeur est constant pour toutes les formulations (Tr = 0,7) et le ratio S/L (m_{solide total}/m_{liquide total}) varie entre 0,8 et 1,1.

Les propriétés rhéologiques du liant à l'issue des séquences de malaxage sont déterminées par deux méthodes : par analogie de Couette en utilisant le couple de malaxage et à partir d'un rhéomètre en régime transitoire (fluage) ou dynamique (oscillations) (section 2.2.2.1 – Chapitre II).

La texture du liant à l'état pâteux (humide) est caractérisée par thermoporosimétrie (section 2.2.2.2 – Chapitre II). Ces résultats sont comparés à la texture du liant calciné déterminée par physisorption d’azote ou par porosimétrie au mercure (pour caractériser le domaine de macropores).

La démarche expérimentale présentée dans cette section est inspirée du travail de Drouin et al. (1988). Il s'agit d'une étude complémentaire à leurs travaux car ils se sont concentrés sur l'effet de la concentration d'agent dispersant (acide) (Chapitre I – section 1.1.3.2) tandis que cette étude analyse plus en détail l'effet de la neutralisation.

4.2.2. Effet du taux d'acide

Dans un premier temps, nous avons évalué l'effet du taux d'acide de manière à identifier la concentration optimale permettant d'obtenir un liant constitué uniquement d'entités nanométriques. Le domaine de 1 à 4% pds. de taux d'acide (Ta) a été balayé et les pâtes ont été préparées à ratio S/L de 1,1. Cette concentration en solide nous permet d'obtenir une pâte suffisamment consistante pour être mise en forme et la microstructure des extrudés de liant peut alors être analysée par imagerie (MEB).

La figure 4.2.2 montre l'évolution du couple de malaxage (pris au plateau au bout de 30 min de malaxage acide) et de la pression d'extrusion en fonction du taux d'acide.
Figure 4.2.2 – Évolution du couple à la fin de 30 min de malaxage et de la pression d'extrusion en fonction du taux d'acide.

Le couple de malaxage diminue avec l'augmentation de la concentration d'acide dans le domaine analysé. La pression d'extrusion suit le même comportement que le couple car il s'agit également d'une signature des propriétés rhéologiques de la pâte. Ce même résultat été observé par Garderen *et al.* (2012).

Les extrudés crus ont été séchés (80°C) et calcinés (600°C) et la microstructure observée par MEB comme le montre la figure 4.2.3 ci-dessous. La bande sombre présente dans les bords des extrudés correspond à la région jusqu'où la résine utilisée dans la préparation des sections polies a pénétré lors de l'enrobage.
La présence de grains sous-dispersés entre 10 et 40 µm est encore observée aux plus faibles taux d'acide (Ta) comme le montrent les clichés (a) et (b) où, Ta = 1 et 2% pds. respectivement. A partir d'un taux d'acide de 3% pds., l'extrudé est essentiellement constitué d'unités nanométriques (Figures 4.2.3.c et d). Cette matrice mésoporeuse est considérée comme optimale dans cette étude pour que l'empilement de granules d'alumine ne soit pas "perturbé" par une population supplémentaire de granules micrométriques provenant du liant.

Ce résultat est confirmé par porosimétrie au mercure (Figure 4.2.4 ci-après) qui montre que le liant préparé à Ta = 4% pds. présente uniquement de la mésoporosité (< 50 nm) tandis que celui à Ta = 1% présente en plus une faible macroporosité due à la sous-peptisation de la boehmite aux faibles concentrations d'agent dispersant.
D'après les caractérisations microstructurales et texturales précédentes, le taux d'acide choisi comme optimal pour la peptisation de la boehmite Pural SB3 est de 4% pds. Cette concentration d'acide nitrique correspond en ratio molaire à 0,03 mol/mol (HNO$_3$/AlOOH) et fait également partie du domaine étudié par Drouin et al. Les pâtes caractérisées dans leur travail sont cependant moins concentrées en solide (0,7 $<$ S/L $<$ 0,95).

Afin d'avoir un point de repère par rapport à littérature et de valider nos mesures rhéologiques, nous avons fait varier le ratio S/L entre 0,8 et 1,1 (Ta = 4%). Ainsi comme Drouin et al., les propriétés rhéologiques de ces pâtes ont été déterminées par des mesures en régime dynamique (analyse oscillatoire).

Les données expérimentales issues des mesures oscillatoires sont les modules G' et G" à partir desquels la viscosité complexe (η^*) peut être calculée (Équation 2.18 – Chapitre II). La figure 4.2.5 montre le comportement de ces paramètres rhéologiques selon le ratio S/L des pâtes de boehmite peptisées à 4% de taux d'acide.
Le module de conservation G' est beaucoup plus important que le module de perte G''. Ceci signifie que l'échantillon se rapproche plus du comportement d'un solide élastique que de celui d'un fluide visqueux (liquide). Ces modules sont constantes avec le balayage en fréquence angulaire (ω) et donc la tangente de perte ($\tan \delta = G''/G'$) reste stable durant l'essai. Ces observations sont valables pour les deux ratios S/L étudiés. Les pâtes de boehmite même aux plus faibles ratios S/L sont très consistantes avec une viscosité complexe de l'ordre de 10^6 Pa.s (Tableau 4.2.1). Le tableau rassemble nos résultats expérimentaux en comparaison avec ceux de Drouin et al. Un bon accord est observé.

Tableau 4.2.1 – Comparaison entre nos résultats expérimentaux et ceux de Drouin et al. sur les propriétés rhéologiques de pâtes de boehmite.

<table>
<thead>
<tr>
<th></th>
<th>HNO$_3$/AIOOH (mol/mol)</th>
<th>Ta (% pds.)</th>
<th>S/L (g/g)</th>
<th>G'^1 (Pa)</th>
<th>G''^1 (Pa)</th>
<th>η^*^1 (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drouin et al.</td>
<td>0,03</td>
<td>4</td>
<td>0,9</td>
<td>5,0 x 107</td>
<td>5,0 x 104</td>
<td>1,3 x 106</td>
</tr>
<tr>
<td>Cette étude</td>
<td>0,8</td>
<td>0,8</td>
<td>4,3 x 103</td>
<td>3,3 x 104</td>
<td>1,1 x 106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1</td>
<td>6,6 x 104</td>
<td>9,0 x 103</td>
<td>2,3 x 106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Valeurs à fréquence angulaire $\omega = 0,4$ rad.s$^{-1}$

La section suivante aborde l'effet du taux de neutralisation sur les propriétés rhéologiques et texturales du liant. Par la suite, toutes les pâtes de boehmite seront préparées à 4% pds. d'acide.
4.2.3. Effet du taux de neutralisation

La figure 4.2.6 reporte l'évolution du couple de malaxage en fonction du temps lors de la préparation de pâtes de boehmite à deux concentrations en solide (S/L = 0,8 et 1,1) et taux de neutralisation (TN = 0,4 et 1,2) (NH₄OH/HNO₃ mol/mol).

Une première montée du couple est observée entre 2 et 5 min. Elle correspond au moment de l'ajout de la solution d'acide nitrique après 2 min de mélange à sec. Après le mouillage de la poudre de boehmite et la formation des ponts liquides, le malaxage acide est poursuivi pendant 30 min. A la fin de cette étape, la base (solution d'ammoniaque) est introduite dans le malaxeur et une montée immédiate du couple est observée à environ 37 min. Le malaxage basique continue encore durant 5 min avant la fin du processus de mélange.

Par ailleurs, on observe que l'intensité du plateau du couple à la fin du malaxage basique augmente avec le ratio S/L et le taux de neutralisation TN. La caractérisation des propriétés rhéologiques des pâtes neutralisées par mesures en régime transitoire (fluage) et dynamique (oscillations) a été possible uniquement sur certaines pâtes. En effet, du fait de la consistance très importante des échantillons, il a été parfois impossible de les caractériser dans la gamme de mesure du rhéomètre. La figure 4.2.7 présente les résultats obtenus.
Figure 4.2.7 - Plateau newtonien et zone pseudoplastique obtenus, respectivement, à partir des essais de fluage et oscillatoires pour les pâtes de boehmite à différents taux de neutralisation (TN = 0 et 0,4 mol/mol) et concentrations en solide (S/L = 0,8 et 1,1 g/g).

Les essais de fluage permettent de caractériser la zone I de la courbe d'écoulement correspondant aux faibles cisaillements (plateau newtonien). La zone pseudoplastique ou rhéofluidifiante (zone II), localisée à des cisaillements plus importants, est caractérisée par des essais dynamiques (oscillations). L'analyse d'un domaine plus étendu de taux de cisaillement à partir de ces deux essais nous renseigne donc sur les courbes d'écoulement comme expliqué dans le chapitre II (section 2.2.2.1).

Les viscosités de cisaillement (η) déterminées à partir des essais de fluage et les viscosités complexes (η^*) issues des mesures oscillatoires sont représentées sur le même graphe parce que l'on admet la validité de la loi de Cox-Merz\(^9\) ($|\eta^*(\omega)| \equiv \eta(\gamma) \left|_{\gamma=\dot{\gamma}}\right.$) dans nos systèmes.

L'essai de fluage représente une signification physique si les contraintes appliquées fournissent un taux de cisaillement suffisamment faible ($< 10^{-3}$ s\(^{-1}\)) pour que le matériau ait un comportement linéaire, c'est-à-dire, une viscosité indépendante du cisaillement. La viscosité

\(^9\) La règle de Cox-Merz est une loi empirique qui identifie la viscosité complexe η^* à la viscosité d'écoulement η, et la fréquence angulaire ω au taux de cisaillement $\dot{\gamma}$. Cette relation peut être utilisée à condition que le matériau ne subisse pas de modification chimique pendant l'essai oscillatoire, et si la valeur de la tangente de perte reste stable pendant le balayage en fréquence.
determinée dans cette région correspond au coefficient de viscosité à "cisaillement nul" (η_0) observée sur la figure 4.2.7 à partir d'un plateau entre 10^{-6} s$^{-1}$ et 10^{-3} s$^{-1}$.

Les fluctuations observées dans le domaine du plateau newtonien sont liées aux incertitudes des mesures qui peuvent être influencées entre autres, par des problèmes de glissement et des imperfections à la surface des échantillons moulés. De plus, il est difficile d'observer l'effet de la neutralisation sur la viscosité des pâtes à faibles cisaillements. En effet, indépendamment de la formulation, la viscosité à cisaillement nul (η_0) est très élevée, de l'ordre de 10^8 Pa.s pour les quatre pâtes testées (Figure 4.2.7).

A partir des données expérimentales obtenues directement à partir des essais de fluage et de recouvrance il est cependant possible de mieux discriminer l'effet des différentes formulations. Un exemple est montré sur la figure ci-dessous pour deux pâtes présentant la même concentration en solide et des taux de neutralisation différents.

![Figure 4.2.8](image)

Figure 4.2.8 – Exemples de données expérimentales issues des essais de fluage et de recouvrance pour une contrainte de 12,5 kPa appliquée à deux pâtes avec un même ratio S/L = 0,8 et deux taux de neutralisation (TN) différents (0 et 0,4).

D'après le graphe ci-dessus, la déformation (γ) mesurée pour l'échantillon neutralisé (TN = 0,4) est environ 8 fois inférieure à celle de la pâte non-neutralisée (TN = 0). En effet, comme déjà observé à partir de l'évolution du couple de malaxage (Figure 4.2.6 ci-avant), les pâtes neutralisées sont plus visqueuses et donc plus résistantes à la déformation que les pâtes non neutralisées.
L'analyse de la zone pseudoplastique de la figure 4.2.7 ci-avant confirme ce résultat pour un même ratio S/L et à un même taux de cisaillement. On observe une augmentation de la viscosité complexe (η^*) d'environ 5 fois en passant d'une pâte non neutralisée (TN = 0) à une pâte neutralisée (TN = 0,4).

L'indice de pseudoplasticité n estimé à partir des courbes issues des oscillations (entre 0,1 et 300 s$^{-1}$) mesure l'écart du matériau par rapport au comportement d'un fluide newtonien. Les pâtes de cette étude présentent une valeur de n d'environ 0,02 et donc très inférieure à celle d'un fluide idéal ($n = 1$). Même si les pâtes s'éloignent du comportement d'un fluide newtonien, la valeur trouvée est très faible et probablement influencée par les incertitudes des mesures expérimentales (ex.: glissement, défauts à la surface des pâtes moulées…).

Il existe d'autres techniques qui permettent de déterminer l'indice de pseudoplasticité de manière plus précise afin de s'affranchir de ces perturbations. La caractérisation du comportement rhéologique des fluides non-newtoniens par rhéomètre capillaire et application des corrections de Rabinovitch et Bagley est la technique traditionnellement utilisée. Des travaux réalisés en interne (IFPEN) sur la caractérisation de pâtes de boehmite à partir de ces corrections, ont permis d'estimer un indice de pseudoplasticité d'environ 0,1.

Compte tenu de la consistance très importante des échantillons et des difficultés pour caractériser les propriétés rhéologiques des pâtes à des taux de neutralisation plus élevés, nous nous sommes concentrés sur l'exploration des couples de malaxage afin d'évaluer les propriétés rhéologiques des pâtes de boehmite.

L'estimation de la viscosité de pâtes de boehmite à partir de données issues du malaxage est possible à partir de l'application de l'analogie de Couette (Équation 2.14 – Chapitre II). Les résultats obtenus pour l'ensemble de pâtes préparées sont présentés sur la figure 4.2.9.
Figure 4.2.9 – Viscosités déterminées à partir de données obtenues lors du malaxage et par application de l’analogie de Couette.

Les résultats ci-dessus correspondent aux viscosités déterminées à partir du couple de malaxage final (fin du malaxage basique) mesuré à une vitesse de rotation des bras \(V_1=V_2=23 \) tours/min et qui fournit un taux de cisaillement \(\dot{\gamma} \) égal à 24,6 s\(^{-1}\) (Équation 2.13 – Chapitre II).

La viscosité augmente avec la concentration en solide et le taux de neutralisation. À partir d'un ratio NH\(_4\)OH/HNO\(_3\) compris entre 0,4 et 0,6 mol/mol, la viscosité se stabilise et demeure quasi-constante jusqu'à la fin de la gamme étudiée. On essayera de mieux évaluer ce résultat à l'aide de caractérisations complémentaires sur la texture des pâtes de boehmite présentées dans les paragraphes suivants.

À partir des données issues de la thermoporosimétrie (section 2.2.2.2 – Chapitre II), il est possible de calculer la fraction volumique de liquide \(\phi_{Li} \) remplissant les petits pores au sein de la pâte comme réalisé par Drouin et al.. La figure 4.2.10 montre l'évolution de \(\phi_{Li} \) en fonction du taux de neutralisation.
La quantité de liquide présente au sein des mésopores des pâtes varie de manière comparable à celle de la viscosité (Figure 4.2.9 ci-avant). On observe une montée croissante de ϕ_{Li} jusqu'à 0,4 – 0,6 de taux de neutralisation à partir duquel la variation devient moins importante.

Ces résultats peuvent être expliqués par le fait que lorsqu'on introduit la solution basique, on augmente le pH du milieu et on diminue ainsi les interactions répulsives générées par l'acide nitrique. Ceci favorise la flocculation du milieu et les agglomérats formés emprisonnent du liquide dans leur structure lâche et volumineuse.

Le liquide piégé peut être appelé "volume exclu" car il ne fait pas partie du fluide environnant le milieu ne contribue donc pas avec l'écoulement. Ce liquide piégé peut donc être correlé à la fraction volumique de liquide ϕ_{Li} présent à l'intérieur des mésopores des pâtes. Par conséquent, l'évolution parallèle de ce paramètre avec la viscosité peut être attribuée au fait que plus il y a de liquide piégé dans la porosité interne de la pâte, moins il y a de liquide libre favorisant l'écoulement et donc la viscosité augmente.

La fraction volumique effective définie par ϕ_e (équation 2.25 – Chapitre II) rassemble les contributions volumiques du solide, du liquide non congelable à la surface et du liquide présent à l'intérieur des mésopores. La variation de ce paramètre avec le taux de neutralisation est reportée sur la figure 4.2.11.
Figure 4.2.11 - Évolution de la fraction volumique effective (ϕ_g) en fonction du taux de neutralisation ($\text{NH}_4\text{OH}/\text{HNO}_3$) et du ratio S/L.

Comme ϕ_g prend en compte les trois contributions volumiques citées précédemment, il est attendu que ce paramètre varie de manière similaire à ϕ_{Li} (Figure 4.2.11) pour les pâtes à même ratio S/L. De plus, les fractions volumiques ϕ_g sont très élevées et proches de 1. Ceci signifie que les agrégats nanométriques de boehmite sont multi-connectés entre eux et forment un réseau continu en remplissant quasiment tout l'espace. Il est donc probable que du fait de cette consistance importante des pâtes, il existe des problèmes d'encombrement géométrique qui empêchent une variation importante de ϕ_g avec le taux de neutralisation.

A partir de la thermoporosimétrie, il est aussi possible de calculer la taille des petits pores présents à l'intérieur des pâtes (Équation 2.19 – Chapitre II). La figure 4.2.12 ci-après montre que le rayon de ces pores varie en fonction du taux de neutralisation selon le même comportement observé avec la viscosité et la fraction volumique de liquide emprisonné dans les pores ϕ_{Li}.
Figure 4.2.12 - Évolution du rayon de mésopores localisés au sein des pâtes de boehmite en fonction du taux de neutralisation (NH₄OH/HNO₃) et du ratio S/L.

Afin d'évaluer comment la porosité de la pâte humide évolue après calcination, nous comparons les diamètres de pores des pâtes humides (thermoporosimétrie) avec ceux des pâtes calcinées mesurés par physisorption d'azote (méthode BJH) comme le montre la figure 4.2.13 ci-dessous.

Figure 4.2.13 – Comparaison entre le diamètre de mésopores de pâtes de boehmite à l'état humide et à l'état calciné. La ligne guide en pointillé représente une droite de pente égale à un.
Les techniques utilisées pour caractériser la porosité des pâtes de boehmite à l'état humide et à l'état calciné ne se fondent pas sur les mêmes principes. Néanmoins, et assez logiquement, la texture rencontrée sur le matériau calciné est directement reliée à la texture du matériau cru.

L'augmentation du diamètre des mésopores en fonction du taux de neutralisation se traduit également par une variation croissante du volume mésoporeux des pâtes calcinées comme l'illustre la figure 4.2.14. Par exemple, on observe un gain de presque 40% sur la valeur de Vméso du liant calciné si la pâte de boehmite à une concentration en solide S/L de 1,1 est neutralisée à 0,4 mol/mol.

La dispersion de la boehmite à 4% pds. d'acide suivie d'une étape de neutralisation à 0,4 mol/mol a été choisie comme formulation optimale dans cette étude. La concentration d'acide est justifiée par le fait qu'à cette condition le liant est constitué uniquement d'unités nanométriques. La neutralisation réalisée à 40% mol/mol est suffisante pour obtenir un gain significatif de volume mésoporeux sur le liant calciné.

Par rapport au ratio S/L, les pâtes les plus concentrées en solide (S/L = 1,1 g/g) sont également celles qui ont présenté des textures plus intéressantes. En outre, du fait de la consistance de ces pâtes, elles sont plus adaptées à la mise en forme par extrusion que celles à S/L = 0,8. En effet, les pâtes à ce ratio ne retiennent pas bien leur forme à la sortie de la filière.

Figure 4.2.14 - Évolution du volume des mésopores des pâtes calcinées en fonction du taux de neutralisation (NH₄OH/HNO₃).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
Le meilleur compromis entre propriétés rhéologiques et texturales est atteint avec le liant préparé à S/L = 1,1, Ta = 4% pds. et TN = 0,4 mol/mol. Cette formulation sera donc fixée et utilisée lors de la mise en forme des matériaux à microstructure multi-échelles avec le liant boehmite peptisée et neutralisée (AlOOH).

4.3. Phosphate d'aluminium (AIPO)

4.3.1. Démarche expérimentale

Le choix de la formulation du liant AIPO a été réalisé à partir des informations issues de la littérature. Ainsi, nous ne nous sommes pas intéressés à évaluer l'effet de la formulation sur les propriétés rhéologiques comme réalisé pour le liant AlOOH.

L'étude de ce liant se concentre sur la caractérisation de ses propriétés de manière à comparer les résultats obtenus avec ceux rencontrés dans la littérature et avancer dans l'étude des transitions de phases encore peu décrites.

4.3.2. Choix de la formulation

Les liants de type phosphate font partie des liants minéraux classés comme ciments et dont la formation est possible grâce à des réactions chimiques (section 1.2.2 – Chapitre I). En particulier, le phosphate d'aluminium est formé à partir d'interactions acido-basiques entre l'oxyde d'aluminium (accepteur de protons – base) et l'acide phosphorique (donneur de protons) [Sychev, 1970].

D'après la littérature [Yutina, 1966], les phosphates d'aluminium formés à partir de l'oxyde ou d'un (oxy)-hydroxyde d'aluminium présentent une composition similaire. Malgré cette similarité, la cinétique de réaction est différente et varie en fonction de la cristallinité du précureur d'aluminium, de sa surface spécifique, de la teneur en acide phosphorique et de la température [Bothe et Brown, 1993]. Les poudres "d'empilement" étant à base d'alumine et compte tenu de la réactivité de l'acide avec cet oxyde, il a été préférable d'utiliser un deuxième précureur d'aluminium dont la cinétique de réaction soit différente de celle des granules d'alumine.

La Pural SB3 étant un oxy-hydroxyde d'aluminium et présentant une surface spécifique plus importante (323 m²/g) que celle des poudres d'alumine (maximum 210 m²/g – Chapitre III), il est attendu qu'elle réagisse plus rapidement en présence de l'acide phosphorique, et a été choisie comme précureur d'aluminium dans la préparation du liant AIPO.

Selon la stœchiométrie des réactifs, les phosphates d'aluminium existent sous différentes formes. Lesdits phosphates d'aluminium (ciment) sont formés à partir d'un ratio molaire \(P_2O_5 : Al_2O_3 \) (ou ratio molaire P/Al) ≤ 1 tandis que pour les phosphates acides d'aluminium (adhésifs) le ratio varie entre 1 ≤ \(P_2O_5 : Al_2O_3 \).
Dans le cadre de ce travail, la proportion d'acide phosphorique a été définie de manière à favoriser la formation des phosphates d'aluminium. Lee et al. (2010) ont montré qu'il est possible de former l'AlPO, sous les formes cristallines similaires à celles de la silice (quartz, tridymite et cristobalite), à un ratio molaire P/Al = 0,8. Dans leur travail, ils ont également utilisé comme précurseur d'aluminium une boehmite (AlOOH) et le traitement thermique a été réalisé à 600°C. Le taux d'acide (Ta) égal à 169% correspond à la proportion d'acide phosphorique nécessaire à l'obtention d'un ratio molaire P/Al = 0,8, où Al provient uniquement de la boehmite (Pural SB3). En outre, l'emploi d'un ratio P/Al < 1, limite l'excès d'acide phosphorique. La présence d'acide "libre" occasionne la détérioration de l'action liante du phosphate d'aluminium par réhydratation, du fait du caractère extrêmement hygroscopique de cet acide [Morris et al., 1977].

La mise en contact entre les réactifs (boehmite et acide phosphorique) est réalisée dans le malaxeur selon la procédure de mélange décrite dans la section 2.1.1. L'évolution du couple de malaxage et de la température du milieu réactionnel en fonction du temps sont présentées sur la figure 4.3.1.

![Figure 4.3.1– Évolution du couple de malaxage et de la température en fonction du temps lors de la préparation du liant AlPO.](image)

Les deux premières minutes sont dédiées au mélange de la boehmite à sec de manière à bien repartir la poudre au sein de la cuve. Ensuite, la solution d'acide phosphorique est introduite progressivement à l'aide d'un pousse-seringue (temps d'ajout = 5 min). Dès que la poudre est mise en contact avec la solution acide, il est possible d'observer la montée du couple ce qui correspond au début de la formation des ponts liquides. En parallèle, la montée du couple coïncide avec l'augmentation de la température du milieu réactionnel qui passe de
26°C à 53°C. À la fin de l'ajout du liquide, le couple de malaxage et la température du mélange sont stabilisés à ~ 2 N.m et ~ 30°C respectivement (Figure 4.3.1).

La réaction acido-basique est exothermique, ce qui explique la montée brusque de température observée sur la figure 4.3.1. De plus, on observe que la stabilisation du couple et de la température est atteinte après seulement 6 min de la fin de l'ajout de la solution d'acide phosphorique. Dans notre cas, la réaction semble être très rapide du fait de la forte concentration de la solution acide (pH < 1), et de l'apport mécanique généré par la rotation des bras du malaxeur. De tels facteurs doivent favoriser l'interaction entre les réactifs, et par conséquent, la cinétique de la réaction.

Le produit obtenu à la fin du malaxage est une pâte très collante difficile à mettre en forme par extrusion. Les extrudés de liant AlPO seul s'effondrent facilement du fait d'une trop grande coulabilité. Cette pâte très collante est ensuite soumise aux mêmes traitements thermiques appliqués ultérieurement aux supports à microstructure multi-échelles (séchage à 80°C pendant 1 nuit et calcination à 600°C pendant 2 heures).

Les sections suivantes sont dédiées à la caractérisation structurale et texturale du liant séché et calciné, afin de vérifier si les propriétés obtenues sont en accord avec celles décrites dans la littérature.

4.3.3. Caractérisation de la structure cristalline

4.3.3.1. Liant séché et calciné

La caractérisation de la structure cristalline du liant AlPO séché (80°C) et calciné (600°C) est réalisée selon les conditions décrites dans le Chapitre II (section 2.2.1.4). Les diffractogrammes sont obtenus à température ambiante et ils sont présentés sur la figure 4.3.2.
Figure 4.3.2 – Diffractogrammes du liant AlPO (a) séché à 80°C et (b) calciné à 600°C. Les indices indiquent les phases de boehmite (BH), berlinite (B), type-cristobalite (C) et type-tridymite (T).

Le liant AlPO séché présente des traces de boehmite (BH) et de la matière amorphe attribuée par la présence des raies larges et mal définies (Figure 4.3.2.a). En revanche, l'AlPO calciné est cristallin et les phases identifiées sont les suivantes : AlPO₄ sous les formes berlinite (B), type-tridymite (T) et type-cristobalite (C), et des traces d'Al(PO₃)₃ (Figure 4.3.2.b).

En accord avec Lee et al., la formulation utilisée dans la préparation du liant (ratio molaire P/Al = 0,8) conduit bien aux phases cristallines analogues à celles de la silice (quartz, tridymite et cristobalite) après calcination. Comme vu dans l'étude bibliographique, la structure tridimensionnelle de l'AlPO₄ formée par des tétraèdres interconnectées, où chaque atome d'oxygène est partagé entre un atome d'aluminium et un atome de phosphore est à l'origine du polymorphisme avec la silice.

Le tableau 4.3.1 reporte les paramètres de maille de la phase AlPO₄ type-cristobalite. Les paramètres de maille de la phase type-tridymite ne sont pas indiqués car nous n'avons pas pu extraire la position des raies sur un nombre suffisamment important. En effet, comme le montre la figure 4.3.2.b, on identifie uniquement une raie isolée correspondant à la phase AlPO₄ type-tridymite (T) et une raie qui sort à la même position que la phase AlPO₄ type-cristobalite (C) (∼ 20°).
Tableau 4.3.1 – Paramètres de maille de l’AlPO₄ type-cristobalite.

<table>
<thead>
<tr>
<th>Matériau</th>
<th>AlPO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase cristalline</td>
<td>type-cristobalite α</td>
</tr>
<tr>
<td>Système cristallin</td>
<td>orthorhombique</td>
</tr>
<tr>
<td>Paramètres de maille</td>
<td>a = 7,084 Å; b = 7,082; c = 6,999 Å</td>
</tr>
</tbody>
</table>

Nous avons essayé de réaliser une analyse quantitative des différentes phases présentes à partir d’un affinement de Rietveld. Néanmoins, compte tenu des défauts structurels, nous nous sommes heurtés à un problème de simulation du profil de raie de l’une des phases. Cette étude est discutée en Annexe C.

4.3.3.2. Suivi de la transition de phase

Les différentes transitions de phase que peut subir le liant AlPO en fonction de la température sont analysées à partir de la DRX (Diffraction des rayons X) in situ et de la DSC (Differential Scanning Calorimetry).

L’étude vise à déterminer à partir de quelle gamme de température la phase amorphe AlPO devient cristalline, et s’il existe des étapes intermédiaires (transition lente ou instantanée). L’acquisition des diffractogrammes in situ au cours d’un cycle thermique permet d’identifier les transitions displacives (phases α et β) de chacune des phases cristallines.

La DSC est utilisée comme une technique complémentaire à la DRX in situ car elle permet de mettre en évidence la présence ou non de transition vitreuse lors du passage de la phase amorphe à la phase cristalline. Les résultats obtenus sont décrits dans les sections suivantes et permettent de vérifier les similarités décrites dans la littérature entre AlPO₄ et SiO₂.

a) DRX in situ

Les acquisitions in situ sont réalisées à partir d’un diffractomètre PANalytical X’Pert PRO MPD qui diffère de celui utilisé pour les acquisitions à température ambiante (section 2.2.1.4 – Chapitre II) par la présence d’une cellule de "réaction" (chambre XRK900 - Anton Paar), et par le porte échantillon qui est muni d’un filtre poreux pour la circulation de gaz (configuration "lit traversé"). L’autre différence est le type de détecteur, qui est ici un détecteur rapide Xcelerator. Les acquisitions sont ainsi réalisées au cours d’un cycle thermique, au cours du temps, à différentes températures et sous air.

L’AlPO séché, constitué majoritairement d’une phase amorphe (Figure 4.3.2.a), est soumis à deux cycles de montée et de descente en température (chauffage - refroidissement). La réalisation de cycles permet de conclure sur la réversibilité des transitions de phases. Les diffractogrammes sont enregistrés au fur et à mesure, de manière à obtenir l’évolution de la structure cristalline en fonction de la température.
La figure 4.3.3 montre le profil de température des deux cycles. La montée en température est effectuée de 25°C à 800°C (3°C/min), avec des acquisitions aux paliers intermédiaires tous les 100°C. Le premier cycle, présente un palier de température à 600°C de 6 heures. Cette température ayant été choisie comme notre température de travail, nous avons voulu savoir si des modifications de la structure cristalline peuvent avoir lieu en fonction du temps de calcination. L'échantillon calciné est ensuite refroidi de 800°C jusqu'à 25°C, avec des acquisitions aux paliers intermédiaires tous les 50°C. Le deuxième cycle est identique au premier, mise à part l'absence du palier de 6 heures à 600°C.

![Figure 4.3.3 – Profil de température des deux cycles de montée-descente utilisé pour les acquisitions des diffractogrammes in situ.](image)

Premier cycle :

L'évolution de la structure cristalline du liant AlPO lors du premier cycle de calcination – refroidissement est illustrée sur la figure 4.3.4. Il faut remarquer que les lignes de base des diffractogrammes remontent aux petits angles 2θ (< 20°). Ce signal de diffusion important est probablement lié à la fenêtre capton-béryllium de la cellule de "réaction" que le faisceau de rayons X doit traverser pour atteindre l'échantillon. Le système d'acquisition qui emploie le détecteur rapide Xcelerator peut également intensifier ce signal, car il génère un fond de diffusion plus important aux petits angles qu'un détecteur proportionnel.
Figure 4.3.4 – Diagrammes de diffraction par DRX \textit{in situ} du liant AlPO au cours du premier cycle de montée-descente en température. Les indices indiquent AlPO$_4$-berlinite (B), type-cristobalite cubique (C$_c$) ou orthorhombique (C$_o$), type-tridymite monoclinique (T$_m$) ou triclinique (T$_t$).

L’AlPO amorphe (acquisition à 25°C) commence à se cristalliser autour de 100°C quand on observe le début de formation d’une raie plus fine à ~22° (2θ). À 200°C, le liant AlPO est complètement cristallisé. Les phases identifiées à cette température sont les suivantes : traces d’AlPO$_4$-berlinite (B) (hexagonal), AlPO$_4$- type-cristobalite (C$_c$) (cubique) et AlPO$_4$-type-tridymite (T$_m$) (monoclinique). Ensuite, les diffractogrammes obtenus de 200°C jusqu’à 600°C ne présentent pas de variation significative de la structure cristalline. À l’exception de la présence de traces d’Al(PO$_3$)$_3$ (monoclinique) à ~13° (2θ) dès 600°C. Les acquisitions
faites pendant le palier de 6 heures à 600°C, n'ont présenté aucun changement. De même, aucune évolution de l'échantillon n'a été observée lors des analyses réalisées à 700°C et à 800°C (Figure 4.3.4).

A partir de 800°C, l'échantillon calciné est refroidi jusqu'à 25°C. Les phases cristallines restent les mêmes jusqu'à 150°C. Par contre, l'acquisition faite à 100°C montre clairement que la transition displacive $\beta \rightarrow \alpha$ (raies 20 entre 41° et 49°) de la phase AlPO$_4$-type cristobalite a eu lieu et celle-ci est passée d'un système cristallin cubique (C_c) à un système orthorhombique (C_o). La transition $\beta \rightarrow \alpha$ de la phase AlPO$_4$-type-tridymite est plus difficile à identifier sur les diffractogrammes de la figure 4.3.4. Néanmoins, si on compare très attentivement la raie à ~21° (20) de l'acquisition à 150°C avec celle à 100°C (Figure 4.3.5.a), on observe que les deux raies sont décalées. Étant donné l'ampleur du saut de position de raie, le coefficient d'expansion thermique est négligeable et le décalage est attribué à un changement de système cristallin. L'AlPO$_4$ type-tridymite passe ainsi d'un système monoclinique (T_m) à un système triclinique (T_t). Les traces d'AlPO$_4$-berlinite (hexagonal) (B) et d'Al(PO$_3$)$_3$ (monoclinique) sont toujours présentes à 100°C sans changement perceptible du système cristallin. Le refroidissement de l'échantillon se poursuit jusqu'à 25°C et les diffractogrammes acquis restent semblables à celui obtenu à 100°C.

(a)
(b)

10 20 21 19 20 21

Figure 4.3.5 – Détail de la transition displacive ($\alpha \leftrightarrow \beta$) de la phase AlPO$_4$-type-tridymite : (a) au cours du premier cycle de descente en température entre 150 et 100°C (β (T_m) \rightarrow α (T_t)) et (b) au cours du deuxième cycle de montée en température entre 100 et 200°C (α (T_t) \rightarrow β (T_m)).

Deuxième cycle :

Les diffractogrammes de la figure 4.3.6 montrent l'évolution des phases cristallines lors du deuxième cycle de montée et descente de température.
L'échantillon ayant subi le premier cycle thermique a été soumis à une nouvelle montée et descente en température afin d'observer si les transitions displacives identifiées lors du premier cycle sont ou non réversibles. On observe que de 25°C à 100°C les phases cristallines restent inchangées. Par contre, l'acquisition à 200°C montre que la transition displacive $\alpha \rightarrow \beta$ (raies 20 entre 41° et 45°) de la phase AlPO$_4$-type-cristobalite a eu lieu et celle-ci est passée d'un système cristallin orthorhombique (C_o) à un système cubique (C_c). La transition $\alpha \rightarrow \beta$ de la phase AlPO$_4$-type-tridymite peut être observée plus clairement sur la
figure 4.3.5.b (ci-avant). Le système cristallin de cette phase passe d'une forme triclinique (Tt) à monoclinique (Tm). En revanche, la montée en température n'a pas modifié les systèmes cristallins des deux phases minoritaires AlPO₄-berlinite (hexagonal) (B) et Al(PO₃)₃ (monoclinique). Ensuite, aucun changement ne semble avoir lieu jusqu'à 800°C.

Enfin, les transitions de phase observées lors du refroidissement de l'échantillon calciné jusqu'à 25°C sont identiques à celles déjà identifiées lors de la même étape du premier cycle.

Le tableau 4.3.2 résume les transitions de phase décrites ci-dessus.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Étape</th>
<th>T (°C)</th>
<th>Transitions de phase</th>
<th>Type de transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er</td>
<td>montée</td>
<td>25 → 100</td>
<td>début de cristallisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 → 200</td>
<td>amorphe → AlPO₄ (B + C + Tm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 → 800</td>
<td>apparition de traces Al(PO₃)₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>descente</td>
<td>800 → 150</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 → 100</td>
<td>Cc → Cc ; Tm → Tt displacive β → α</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 → 25</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2ème</td>
<td>montée</td>
<td>25 → 100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 → 200</td>
<td>Cc → Cc ; T₁ → Tm displacive α → β</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 → 800</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>descente</td>
<td>800 → 150</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 → 100</td>
<td>Cc → Cc ; Tm → T₁ displacive β → α</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 → 25</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*X : Aucun changement de phase ; B : AlPO₄ – berlinite (hexagonal) ; Cc : AlPO₄ – type-cristobalite (cubique) ; Co : AlPO₄ – type-cristobalite (orthorhombique) ; Tm : AlPO₄ - type-tridymite (monoclinique) ; Tt : AlPO₄ - type- tridymite (triclinique).

L'analyse du premier cycle met en évidence la cristallisation du liant AlPO entre 100 et 200°C. Ce résultat est en accord avec la littérature qui reporte la possibilité de formation de l’AlPO₄ cristallin dès les basses températures [Gonzalez et Halloran, 1980 ; Bothe et Brown, 1990 ; Grover et al., 1999]. En outre, la réalisation d'un deuxième cycle de montée et descente en température permet de confirmer le caractère réversible des transitions displacives (α ↔ β), qui ont par ailleurs lieu aux mêmes intervalles de température (entre 100°C et 200°C).

Le tableau 4.3.3 compare les systèmes cristallins des formes α et β de l’AlPO₄.
L'ordre croissant de symétrie des systèmes cristallins est le suivant : triclinique < monoclinique < orthorhombique < trigonal < tétragonal < hexagonal < cubique. Les phases β formées à température élevée, présentent un système cristallin plus symétrique que celui des phases α générées à température faible (Tableau 4.3.3). La montée en température doit donc favoriser les altérations des angles et des longueurs de liaisons qui évoluent vers une configuration cristalline plus symétrique et donc plus stable.

La DRX in situ a permis de caractériser le système cristallin du liant AlPO ainsi que la réversibilité des transitions de phases. En complément à cette étude, la section suivante est dédiée à l'étape qui précède la cristallisation, à savoir, le passage de la phase amorphe à la phase cristalline.

b) DSC – ATG

L'AlPO séché à 80°C est un solide amorphe qui évolue vers une structure cristalline dans un domaine de température précis (100 – 200°C). D'un point de vue thermodynamique, l'état amorphe (ou état vitreux) n'est pas stable par rapport à une forme cristalline.

La DSC (Differential Scanning Calorimetry) est un des moyens les mieux adaptés pour la caractérisation de l'évolution de l'état amorphe à l'état cristallin des matériaux. La transition vitreuse se présente en effet sous la forme d'un 'saut' dans le sens endothermique tandis que la cristallisation est un phénomène (pic) exothermique.

Nous nous sommes ainsi intéressés à déterminer la température de transition vitreuse T_g du liant AlPO. Le domaine de balayage de température choisi est entre 25°C et 300°C car, comme vu précédemment, l'AlPO sous forme cristalline est observé dès 200°C par DRX. La montée en température a été réalisée avec la même rampe (3°C/min) appliquée lors des acquisitions in situ et des traitements de calcination habituels. La figure 4.3.7 montre l'évolution de la chaleur spécifique en fonction de la température.
Deux pics endothermiques à ~ 100°C et à ~ 130°C sont observés. Compte tenu de leur intensité, il est probable qu'il s'agit de pics endothermiques liés à l'évaporation de l'eau encore présente sur l'échantillon. Comme le liant AIPO a été séché à 80°C, il est très probable qu'il reste encore des quantités significatives d'eau libre (et/ou occluse) sur l'échantillon.

L'AIPO séché a été donc caractérisé par ATG (Analyse thermogravimétrique) (thermo-balance TGA 851 - Mettler), afin de vérifier si l'évaporation du liquide encore présent a lieu dans le même intervalle de température que celui des pics endothermiques observés par DSC. La composition de la substance volatile, a été déterminée par spectrométrie de masse (SM) (spectromètre de masse quadripolaire - Thermostar/Pfeiffer). Ces deux analyses ont été réalisées avec la même rampe de montée en température appliquée lors de la DSC mais dans un domaine plus large allant jusqu'à 600°C. La figure 4.3.8 montre l'évolution de la perte de masse déterminée par ATG accompagnée du suivi de la masse moléculaire de l'eau réalisé par SM.
La perte de masse de l'échantillon a lieu à deux moments principaux : le premier est observé entre 100-110°C, et ceci correspond à une réduction de poids d'environ 9,6%. Le deuxième est responsable d'une perte de masse plus importante (~ 20,5%) et observé entre 140-150°C. Au-dessus de 200°C, il n'y a pas de variation de la masse de l'échantillon (Figure 4.3.8).

L'analyse par SM des effluents gazeux indique la présence unique d'eau, ce qui permet de montrer que les pertes de masse correspondent bien à l'évaporation de l'eau. Cette eau est supposée occluse au sein d'une porosité fermée dans le matériau.

Les deux pics endothermiques observés sur les courbes de DSC sont ainsi dus au départ de l'eau de l'échantillon. L'inconvénient de ces pics est qu'ils empêchent l'observation de la transition vitreuse (variation de pente) et de la cristallisation (pic exothermique) car leur intensité est trop importante.

Un traitement thermique préalable supplémentaire a été réalisé de façon à éliminer le maximum de l'eau présente dans l'AIPO séché. L'échantillon a été ainsi mis dans une étuve à 80°C sous vide dynamique, pendant une nuit. La figure 4.3.9 reporte le résultat de l'analyse DSC obtenu suite à cette procédure.
Le pic endothermique à environ 130°C est toujours présent même après l'étape de traitement de chauffage sous vide mentionné ci-dessus. Il reste donc probablement de l'eau physisorbée. Le départ de cette eau semble possible uniquement à des températures au-delà de 80°C, comme ont montré précédemment les résultats d'ATG-SM (Figure 4.3.8).

L'analyse de la courbe ci-dessus à une échelle plus fine, nous permet d'observer une variation de pente entre 80°C et 95°C comme le montre la figure 4.3.10. Ce phénomène est un indice de l'occurrence de la transition vitreuse. La température T_g a été déterminée par la méthode de tangentes et on obtient $T_g \approx 85°C$. Il faut remarquer qu'il s'agit d'une transition de nature cinétique, et par conséquent, la température de transition vitreuse (T_g) d'un matériau peut varier en fonction de la rampe de chauffage.

Figure 4.3.9 – Analyse calorimétrique différentielle (DSC) de l'AIPO séché à 80°C puis à 80°C sous vide dynamique.
La formation de l'AlPO cristallin a lieu à faibles températures (entre 100°C et 200°C). Le pic exothermique relatif à la cristallisation est donc forcément "inclus" dans le pic endothermique (~130°C) de la figure 4.3.9. Comme le phénomène lié à l'évaporation de l'eau présente une endothermicité importante, l'observation de la cristallisation n'est pas possible.

À la fin de l'acquisition des thermogrammes à 300°C, l'AlPO est déjà cristallisé et les effets calorimétriques associés n'ont pas été observés par les raisons décrites dans le paragraphe précédent. À cette température, il n'y a plus d'eau dans l'échantillon et nous nous sommes intéressés à identifier les phénomènes calorimétriques liés aux transitions displacives ($\alpha \leftrightarrow \beta$) du matériau cristallin comme reporté sur la figure 4.3.11.

\[
\Delta C_p = 0.146 \text{ J/g°C}
\]
Figure 4.3.11 – Analyse calorimétrique différentielle (DSC) de l’AlPO séché à 80°C puis à 80°C sous vide correspondant à la première montée en température suivie de l’analyse de la descente en température de l’AlPO cristallisé obtenu. Le deuxième cycle de montée et descente en température permet l’observation des transitions displacives $\alpha \leftrightarrow \beta$.

Les cycles indiqués sur la figure 4.3.11 ont été réalisés à une rampe de 30°C/min parce qu'avec une rampe plus lente (3°C/min), les variations thermiques seraient moins marquées et l'observation des transitions displacives moins nettes. L'échantillon utilisé a été soumis au même traitement sous vide dynamique et à 80°C pendant une nuit.

La courbe associée à la première montée en température présente la même allure que celle de la figure 4.3.9, mis à part un léger décalage du pic endothermique qui est localisé entre 140°C et 150°C. À la fin de cette étape, l'échantillon est cristallin. La première descente présente un pic exothermique entre 130°C et 140°C. Ce phénomène correspond probablement à une réponse calorimétrique liée aux transitions $\beta \rightarrow \alpha$ des phases AlPO$_4$-type-cristobalite et type-tridymite. D'après les caractérisations faites par DRX in situ, cette transition de phase a bien lieu dans cet intervalle de température (Tableau 4.3.2).

Le deuxième cycle démarre avec une nouvelle montée en température, et un pic endothermique est présent entre 150°C et 160°C. Ceci est peut être lié à la transition $\alpha \rightarrow \beta$ des phases cristallines d'AlPO$_4$. Comme montré dans la section précédente, ces transitions sont réversibles, et ont lieu dans des plages de température proches. Lors de la deuxième étape de refroidissement, le pic exothermique ($\beta \rightarrow \alpha$) est donc à nouveau présent entre 130°C et 140°C.
Les résultats obtenus par DSC présentent donc un bon accord avec ceux de la DRX in situ. D'autre part, cette technique nous a permis d'identifier le domaine de température lié à la transition vitreuse T_g.

4.3.4. Propriétés texturales

Le phosphate d'aluminium calciné (600°C/ 2h) a été caractérisé par physisorption d'azote. L'isotherme d'adsorption obtenue est présentée sur la figure 4.3.12.

![Figure 4.3.12 – Isotherme d'adsorption-désorption d'azote de l'AIPO calciné à 600°C.](image)

La branche d'adsorption correspond à une isotherme du type III (sans boucle d'hystérésis) d'après la classification d'IUPAC. Le liant AIPO calciné est donc un matériau non poreux (microporosité et mésoporosité négligeables). Plus précisément, le matériau ne présente aucune porosité accessible par l'azote. La surface spécifique, déterminée par la méthode BET, est inférieure à 1 m²/g.

La texture de l'AIPO obtenue est en accord avec les résultats de Lee et al. (2010).

4.3.5. Microstructure

L'aspect morphologique de l'AIPO calciné à 600°C a été analysé par MEB. Les clichés des observations directes sont présentés sur la figure 4.3.13.
Figure 4.3.13 – Clichés MEB du liant AlPO calciné obtenus par observation directe : (a) aspect d'un bloc et (b) détail sur les pores présents sur une région dense.

Les images de la figure 4.3.13 montrent une surface plus rugueuse et une région plus lisse avec quelques macropores. La morphologie observée est probablement influencée par l'opération de broyage qui a été réalisée afin de mettre les "blocs" d'AlPO sous forme de poudre : les surfaces lisses correspondent à des faciès de rupture.

Compte tenu du diamètre des pores (de la centaine de nanomètre au micron) observés en détail sur le cliché (b), on peut émettre l'hypothèse qu'ils sont formés lors du départ de l'eau pendant les traitements thermiques ou bien, lors de l'écoulement visqueux pendant la transition vitreuse.

L'analyse complémentaire de la microstructure du liant AlPO a été faite par MET. Les images sont présentées sur la figure 4.3.14.
Les observations MET montrent que les unités ne se présentent pas sous forme de cristaux avec une morphologie définie. Au contraire, les formes sont aléatoires et influencées par le broyage (Figures 4.3.14.a et 4.3.14.b).

D'autre part, les unités semblent ne pas être constituées par des entités cristallines encore plus petites ou cristallites. L'absence de ces entités de petite taille ne permet pas d'avoir de la mésoporosité ($2 \text{ nm} < d_{\text{pore}} < 50 \text{ nm}$), et ceci est en accord avec le caractère non poreux du liant.

Les images réalisées à un grandissement plus important (Figure 4.3.14.c et 4.3.14.d), mettent en évidence les plans cristallins ce qui confirme la nature cristalline de l'AIPO calciné. La zone amorphe observée en périphérie est probablement issue de l'amorphisation rapide de zones fines par le faisceau électronique (Figure 4.3.14.d).
4.4. Conclusions

Ce chapitre a présenté les caractéristiques du précurseur d'aluminium (Pural SB3) utilisé dans la préparation des deux liants AlOOH (boehmite peptisée et neutralisée) et AlPO (phosphate d'aluminium).

La poudre de boehmite génère un liant poreux. Nous nous sommes attachés à préparer un liant avec une mésoporosité et rhéologie convenables afin de l'utiliser lors de la mise en forme des matériaux à microstructure multi-échelles. De manière à réaliser le meilleur choix, une étude qui relie l'effet de la formulation sur les propriétés rhéologiques et texturales a été menée. L'objectif premier était de fixer le taux d'acide optimal permettant de disperser la totalité de granules micrométriques afin qu'elles ne soient pas présentes lors de la préparation des matériaux multi-échelles où ces grains résiduels auraient pu perturber l'empilement des granules d'alumine. Ensuite, la neutralisation des pâtes de boehmite peptisées déstabilise le bilan de forces électrostatiques dans le milieu provoquant la flocculation. L'effet du taux de neutralisation sur les propriétés rhéologiques et texturales des pâtes de boehmite a été étudié selon une procédure inspirée du travail de Drouin et al.

La rhéologie systémique et la rhéologie traditionnelle ont conduit à des résultats similaires et ont montré que les pâtes neutralisées sont plus visqueuses que celles non neutralisées. La modification de la viscosité des pâtes de boehmite est directement liée à un changement de leur structure. Ceci a été confirmé par la caractérisation des propriétés texturales des pâtes humides.

Enfin, la formulation choisie (Ta = 4%, TN = 40% et S/L = 1,1) est un compromis entre les propriétés texturales et rhéologiques adaptées à la mise en forme des matériaux à microstructure multi-échelles.

Il serait intéressant de poursuivre cette étude afin de mieux comprendre la relation entre la viscosité et la structure des milieux colloïdaux concentrés. Il existe des modèles [Krieger et Dougherty, 1972; Roscoe, 1952; Quemada, 1998] qui permettent d'accéder aux informations structurelles utiles à la description de leurs propriétés rhéologiques et permettent ainsi de faire le lien entre l'organisation à l'échelle microscopique et les propriétés macroscopiques à grande échelle. Ces modèles relient la viscosité à la fraction volumique effective à partir d'une courbe maîtresse.

Les échantillons de cette étude sont très concentrés en solide et le domaine analysé n'est pas suffisant pour l'application des modèles et une interprétation fine des résultats. Des mesures rhéologiques complémentaires sur des milieux plus dilués seraient nécessaires afin d'élargir la gamme de fraction volumique effective et ainsi mieux comprendre comment l'évolution de la structure interne des milieux peut modifier leurs propriétés rhéologiques.

D'autre part, la caractérisation des objets constituant ces milieux comme la taille des agrégats (et cristallites) et leur facteur d'interaction (et de forme) nous permettrait de mieux comprendre l'évolution des propriétés rhéologiques en fonction des propriétés structurales des...
milieux concentrés. La technique la plus adaptée à la caractérisation de l'organisation de tels milieux constitués de particules colloïdales est la diffusion des rayons X aux petits angles (SAXS).

D'autre part, le deuxième liant étudié, le phosphate d'aluminium est un liant formé à partir de la réaction acido-basique entre un oxyde ou oxy-hydroxyde d'aluminium et l'acide phosphorique. Les produits intermédiaires et finaux dépendent des caractéristiques du précurseur d'aluminium utilisé ainsi que des conditions opératoires mises en œuvre lors de la réaction. Nous avons retenu la même formulation utilisée par Lee et al. dans la préparation d'un liant pour la mise en forme de zéolithes.

Nous nous sommes alors attachés à caractériser de manière plus détaillée les changements de phase de ce liant qui est au départ amorphe et évolue ensuite vers des structures cristallines similaires à celles de la silice en fonction de la température.

Les études menées à partir de la DRX in situ ont montré que cette transition a lieu dans un domaine de température faible (« 200°C) et que la structure cristalline semble ne pas évoluer jusqu'à 800°C. Par ailleurs, les cycles de montée et descente en température, ont mis en évidence les transitions displacives $\alpha \leftrightarrow \beta$ des phases AlPO$_4$-type-cristobalite et type-tridymite.

Le suivi des altérations calorimétriques qui ont lieu lors du passage de l'état amorphe à l'état cristallin a été réalisé par DSC. La température de transition vitreuse T_g a été identifiée aux alentours de 85°C. À cette température, la viscosité du matériau diminue considérablement ce qui facilite la restructuration du système vers une structure cristalline.

Le liant calciné a été identifié comme étant un matériau non poreux ($S_{BET} < 1 \text{ m}^2/\text{g}$), et les observations faites par MEB et MET confirment, respectivement, son caractère dense et cristallin.

Les informations obtenues dans cette étude sur le liant AIPO sont en accord avec la littérature. En revanche, la caractérisation approfondie des transitions de phase des phosphates d'aluminium à partir de la DRX in situ et de la DSC est, à notre connaissance, encore peu décrite dans la littérature. L'identification plus précise de la composition chimique de la phase amorphe, des produits finaux et intermédiaires peut être réalisée par exemple par la RMN du ^{31}P.

L'étude des chacun des liants individuellement nous a permis donc, pour l'AlOOH, de choisir la formulation la mieux appropriée pour notre étude et, pour l'AIPO, de mieux comprendre les changements de structure en fonction de la température. Les informations obtenues nous permettront d'évaluer dans le Chapitre V l'effet du liant sur les propriétés microstructurales, texturales et mécaniques des matériaux à microstructure multi-échelles et d'analyser comment les caractéristiques des liants peuvent influencer les capacités d'adhésion avec les granules d'alumine et, par conséquent, la cohésion du support final.
Chapitre V : Matériaux à microstructure multi-échelles
Chapitre V

Matériaux à microstructure multi-échelles

Ce chapitre présente les matériaux à microstructure multi-échelles préparés à l'issue des études sur l'empilement de poudres (Chapitre III) et sur les liants (Chapitre IV). L'objectif est d'évaluer la faisabilité de ce type de matériau dans la préparation de nouveaux supports de catalyseur, et d'analyser ce que l'empilement granulaire peut apporter au procédé de mise en forme et aux caractéristiques finales du support.

Dans un premier temps, nous présentons les critères de choix de la teneur en liant et de la teneur en liquide employés lors de l'étape de malaxage. Les conditions optimales en liant et liquide sont fixées et les matériaux sont préparés à différentes proportions de petites et grosses granules d'alumine.

L'analyse des données issues du procédé de malaxage-extrusion renseigne sur l'effet de l'empilement granulaire sur les propriétés d'écoulement.

Ensuite, l'observation de la microstructure nous indique comment les granules et le liant sont agencés au sein du matériau et si l'empilement hiérarchique est atteint. Les propriétés texturales et mécaniques des supports sont également discutées.

Enfin, les résultats reportés dans les paragraphes suivants doivent nous permettre de conclure sur la viabilité de ces nouveaux matériaux pour la catalyse.
5.1. Choix du ratio S/L de la teneur en liant

Le malaxage-extrusion est un procédé de mise en forme qui nécessite l'optimisation de la formulation de manière à obtenir une pâte extrudable et des extrudés sans défauts de forme, de surface ou de microstructure (fissures).

Les teneurs en liquide (ratio S/L) et en liant nécessaires à la préparation des supports à microstructure multi-échelles sont optimisées de manière à obtenir une formulation fixe avec chacun des liants utilisés (AlOOH et AIPO).

Les critères de choix et les conditions optimales retenues sont décrits dans les paragraphes suivants pour chaque système.

5.1.1. Critères de sélection

5.1.1.1. Ratio S/L

D'après la littérature, l'eau totale introduite doit être suffisante pour remplir la mésoporosité des poudres et la macroporosité de manière à former les ponts liquides nécessaires à la formation d'une pâte (régime capillaire), et contribuer à l'écoulement lors de l'extrusion. Si l'eau remplit uniquement la mésoporosité des poudres, le milieu est trop concentré en solide et l'état pâteux n'est pas atteint. En revanche, si la teneur en eau est très supérieure au volume poreux total (VPT) des poudres, on s'éloigne de l'état de pâte et le mélange est trop liquide pour être mis en forme. Il existe donc un domaine optimal, correspondant au régime capillaire, dépendant des caractéristiques des poudres et qui doit être optimisé au cas par cas.

La masse de liquide (L) comprend l'acide et la base destinés à la formation du liant, l'eau nécessaire au remplissage du volume mésoporeux des poudres d'alumine, l'eau destinée à la formation in situ du liant et l'eau complémentaire pour atteindre l'état pâteux. La masse de solide (S) prend en compte les poudres d'alumine et de Pural SB3 (précurseur d'aluminium des deux liants utilisés).

5.1.1.2. Teneur en liant

L'objectif est d'avoir une quantité de liant permettant de remplir les espaces vides à l'état humide sans être en excès, pour ne pas desserrer l'empilement, ni déficitaire, pour assurer la cohésion des grains et la solidité du support.

A partir de la compacité (c) de l'empilement de poudres (Chapitre III), il est possible de calculer la porosité (ε) comme le montre l'équation 5.1. A partir de la porosité et du volume de poudre correspondant, on obtient le volume de vides résiduels (Vvides) à l'aide de l'équation 5.2. Selon le critère défini précédemment, le volume de liant employé doit donc être égal au volume de vides restant (Vliant = Vvides).
\[\varepsilon = 1 - c \] (Équation 5.1)

\[V_{\text{vides}} = \frac{\varepsilon V_{\text{poudre}}}{(1 - \varepsilon)} \] (Équation 5.2)

Parmi les trois systèmes binaires étudiés dans le chapitre III, nous avons retenu le mélange de poudres 1,7 µm + 19 µm pour préparer les supports à microstructure multi-échelles. La teneur en liant est définie en considérant l'empilement de la poudre Sasol – 19 µm seule dont la compacité est de 0,65 (Chapitre III).

Le volume de liant (V_{liant}) nécessaire est alors estimé à partir de l'équation 5.2 en supposant que celui-ci est égal au volume de vides résiduels (V_{vides} = V_{liant} = 18 mL). La masse de liant (M_{liant}) correspondante est calculée à partir de la densité du liant (\rho_{liant}) sous forme de pâte (M_{liant} = V_{liant} \times \rho_{liant}).

La teneur en liant est estimée à l'état humide (pâte) parce que lors du séchage, on observe un retrait volumique qui évolue avec la quantité d'eau évaporée jusqu'à ce que la structure se consolide. Cette consolidation se traduit par un arrêt ou un ralentissement du retrait et par l'apparition d'une macroporosité. Lors de la calcination, le liant peut aussi se rétrécir en raison, par exemple, de transitions de phases qui densifient la matrice liante.

Les conditions optimales (ratio S/L et teneur en liant) retenues d'après ces critères pour chacun des systèmes sont présentées dans les sections suivantes.

5.1.2. Conditions optimales

La boehmite peptisée et neutralisée, selon les conditions retenues dans le chapitre IV (Ta = 4%, TN = 40% et S/L = 1,1), est un liant dont la densité de la pâte10 est égale à 1,4 ± 0,05 g/mL. D'après les calculs présentés dans la section 5.1.1.2, la proportion massique de Pural SB3 (poudre de boehmite) doit être de 24%, et le complément est la poudre d'alumine (76%).

La densité de la pâte d'AlPO est difficile à déterminer avec précision par des moyens simples car la pâte est très "collante". Nous avons ainsi considéré, même si nous convenons que c'est une approximation discutable, que sa densité est comparable à celle de la pâte de boehmite peptisée et neutralisée (1,4 g/mL). Les matériaux du système AlPO + Al₂O₃ sont

10La densité du liant pâteux est déterminée par pesée et à partir des dimensions (diamètre et hauteur) d'un cylindre de pâte de liant obtenu par extrusion à travers le fourreau de l'extrudeuse (sans filière). Les cylindres préparés ont environ 2,5 cm de diamètre et 3,5 cm de hauteur.
donc préparés avec la même proportion de Pural SB3 (24% pds.) (précurseur d'aluminium pour le liant AlPO) que celle du système AlOOH + Al₂O₃.

5.1.2.1. Optimisation du ratio S/L

La figure 5.1 montre l'évolution du couple en fonction du temps au cours du malaxage des pâtes préparées à deux ratios S/L pour chacun des systèmes ((a) AlOOH + Al₂O₃ et (b) AlPO + Al₂O₃). Les pâtes présentent une composition en granules d'alumine (76% pds.) et en précurseur de liant (Pural SB3) (24% pds.) constante.

![Figure 5.1](image)

Figure 5.1 – Évolution du couple en fonction du temps au cours du malaxage des pâtes préparées à différents ratios S/L et constituées de granules de 19 µm (dv₅₀) et du liant (a) AlOOH (boehmite peptisée et neutralisée) et (b) AlPO (phosphate d'aluminium).
La figure ci-dessus montre, qu'indépendamment du système, la pâte plus concentrée en solide présente un couple de malaxage plus élevé. On observe également que le signal du couple est très saccadé, ce qui est caractéristique d'un milieu hétérogène avec des zones partiellement saturées en liquide ou d'un mauvais malaxage (teneur en liquide insuffisante, matériau collé aux parois…). En revanche, le signal est plus stable lorsque les pâtes ont un ratio S/L plus faible ce qui indique la formation de l'état pâteux et un bon malaxage.

Pour le système AlOOH + Al₂O₃ (Figure 5.1.a), on observe que pendant le malaxage basique (t > 37 min), le couple diminue pour la pâte plus concentrée en solide (S/L = 1,4). En revanche, le couple augmente rapidement à l'ajout de la solution basique si le ratio S/L est plus faible (S/L = 1,3). Il y a donc un effet de dilution et un effet de flocculation en fonction de la concentration en solide des pâtes.

Le tableau 5.1 reporte les couples de malaxage finaux (C), leur viscosité (η) respective obtenue par analogie de Couette (section 2.2.2.1 – Chapitre II) et la pression d'extrusion (P) de chacune de ces pâtes.

<table>
<thead>
<tr>
<th>Système</th>
<th>S/L</th>
<th>C (N.m)</th>
<th>η (Pa.s)</th>
<th>P (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlOOH + Al₂O₃ (19µm)</td>
<td>1,3</td>
<td>14</td>
<td>3,9 x 10⁻³</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>19</td>
<td>5,3 x 10⁻³</td>
<td>35</td>
</tr>
<tr>
<td>AlPO + Al₂O₃ (19 µm)</td>
<td>1,1</td>
<td>13</td>
<td>3,6 x 10⁻³</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1,2</td>
<td>16</td>
<td>4,4 x 10⁻³</td>
<td>pâte non extrudable</td>
</tr>
</tbody>
</table>

La pâte préparée avec un ratio S/L de 1,4 du système AlOOH + Al₂O₃ est mise en forme à une pression d'extrusion plus élevée que celle à ratio S/L plus faible (Tableau 5.1). Les extrudés issus de cette pâte présentent des défauts de surface (ex. : "peau de requin", "tronc de palmier"…). En effet, plus la pâte est concentrée en solide, plus la résistance à la déformation est importante et la mise en forme difficile. Cette résistance peut être liée à la viscosité de la pâte qui se traduit par des pressions d'extrusions plus élevées. Lors de la mise en forme, ces pâtes sont donc plus sujettes à la formation de défauts dus, entre autres, à des instabilités de l'écoulement à la jonction de la filière avec le fourreau, et à la faible cohésion entre les "morceaux" de pâte adjacents [Benbow et Bridgwater, 1993].

D'autre part, les pâtes préparées avec le liant AlPO présentent un domaine d'extrudabilité très étroit. La pâte à ratio S/L de 1,2 ne peut pas être mise en forme même si le couple de malaxage est inférieur à celui de la pâte plus concentrée du système AlOOH + Al₂O₃.

Le drainage ou l'exsudation de liquide est observé lors de l'extrusion de cette pâte. Ce phénomène de migration a lieu quand les différentes phases du milieu (solide, liant et liquide) se déplacent à différentes vitesses sous l'effet de la pression. Le liquide coule au travers des
parois de la filière, la pâte devient de plus en plus sèche et la pression monte jusqu’à ce que l'extrusion soit interrompue [Benbow et Bridgwater, 1994]. Ceci montre que la cohésion du milieu granulaire humide, en plus de la viscosité, influence le caractère extrudable de la pâte.

Les extrudés issus des pâtes préparées au ratio S/L plus faible sont plus lisses et le lot obtenu plus homogène.

D’après ces observations, nous avons retenu les ratios S/L de 1,3 et 1,1 comme étant optimaux pour les systèmes AlOOH + Al₂O₃ et AlPO + Al₂O₃, respectivement. En-dessous de ces teneurs, les pâtes deviennent trop molles et les extrudés crus ne retiennent pas leur forme à la sortie de la filière.

5.1.2.2. Optimisation de la teneur en liant

Les clichés de la figure 5.2 montrent l'effet de la teneur en liant sur la microstructure des matériaux AlOOH + Al₂O₃ et AlPO + Al₂O₃. Ces matériaux ont été préparés au ratio S/L optimal de chaque système comme défini dans la section précédente. Les granules d'alumine (Sasol – 19 µm) sont facilement identifiés par leur morphologie sphérique et leur taille.
Figure 5.2 - Clichés de MEB sur section polie des extrudés calcinés préparés avec les granules de 19 µm (dv_{50}) et différentes teneurs en liant. Les images (a), (b) et (c) correspondent aux matériaux du système AlOOH + Al₂O₃ dont la proportion de précurseur de liant est de 18%, 24% et 43% pds., respectivement. Les images (d) et (e) sont des matériaux du système AlPO + Al₂O₃ préparés à partir de 24% et 30% pds. de précurseur de liant. Les flèches indiquent les défauts allongés de type fissure présents notamment sur les supports mis en forme avec AlOOH et avec AlPO si la teneur en liant est en excès.
Les images (b) et (d) correspondent à celles des matériaux dont la teneur en précurseur de liant (24\% pds) a été calculée en supposant le remplissage de la porosité inter-granulaire par le liant sous forme de pâte : boehmite peptisée et neutralisée et phosphate d'aluminium, respectivement. Ces images se caractérisent par la présence de cavités et quelques fissures au niveau de l'interface granule – liant sont aussi observées notamment sur le cliché b (AlOOH + Al₂O₃).

L'emploi d'une quantité encore plus faible de précurseur de liant (18\%), se traduit par des cavités encore plus importantes associées au manque de liant (Figure 5.2.a). La mise en forme de matériaux avec le liant AIPO n'a pas été possible avec des teneurs de précurseur de liant inférieures à 24\% pds.

L'empilement de granules d'alumine est desserré avec une teneur en liant excédentaire pour le remplissage de la porosité inter-granulaire comme le montre les figures 5.2.c et 5.2.e. Des défauts allongés de type fissure sont encore plus visibles dans ces matériaux. Lors du séchage, la présence d'un squelette rigide de granules d'alumine qui ne rétrécit pas, contribue au retrait hétérogène de la matrice liante et favorise la formation de fissures plutôt à l'interface granules-liant. La calcination aggrave encore plus ce phénomène du fait de la densification du liant (changement de phase cristalline).

Ces résultats nous ont montré que le choix de la teneur en liant fondé sur le remplissage de la porosité inter-granulaire avec le liant sous forme de pâte est l'option qui permet de se rapprocher le plus des microstructures d'intérêt dans ce travail (empilement hiérarchique de granules avec une teneur en liant ni déficitaire ni en excès).

La formulation "optimale" de chacun des systèmes (AlOOH + Al₂O₃ et AIPO + Al₂O₃) qui correspond au mieux au compromis nécessaire entre le malaxage, l'extrusion et la qualité de la microstructure des supports calcinés est donc identifiée avec cette étude d'optimisation du ratio S/L et de la teneur en liant.

Cette formulation est fixée pour la suite et les granules d'alumine sont introduites à différentes fractions entre petites et grosses de manière à évaluer l'effet de leur empilement sur le procédé de mise en forme, la microstructure, la texture et la tenue mécanique.

Avant d'aborder ces résultats, il convient de présenter les caractérisations de quelques supports mis en forme avec l'AIPO afin de d'analyser la distribution et la teneur en P dans ces matériaux. Ce liant étant "nouveau" dans la mise en forme de supports d'alumine, il nous est apparu nécessaire de caractériser plus finement ces supports. Ceci sera utile a posteriori dans l'interprétation des résultats sur la texture et la tenue mécanique des extrudés (en comparaison avec ceux mis en forme avec AlOOH).
5.2. Caractérisation du P et de la structure cristalline des supports Al₂O₃ + AlPO

5.2.1. Cartographie du P

La figure 5.3 montre la cartographie des éléments Al et P au sein d'un support contenant uniquement les grosses granules (Sasol - 19 µm), et d'un support multi-échelles avec les petites (IFPEN - 1,7 µm) (20%) et grosses granules (80%). Ces deux matériaux sont mis en forme avec la même proportion de précurseur de liant (24% pds.) et d'acide phosphorique (Ta = 169% , P/Al = 0,8).

![Figure 5.3 – Cartographie du phosphore (rose) et de l'aluminium (bleu), déterminée par MEB-EDS, sur les supports (a) 19 µm + AlPO et (b) 1,7 µm + 19 µm + AlPO.](image)

L'image (a) montre que le phosphore est présent à l'intérieur des granules d'alumine et plus densément en surface, sous la forme d'une couche non-continue, non homogène d'épaisseur moyenne 1 µm.

Le phosphore est plutôt concentré en surface et à l'intérieur des petites granules dans le support multi-échelles de l'image (b). Les grosses granules présentent également du phosphore à l'intérieur, mais en quantité plus faible.

D'après ces cartographies, il semble que les points de contact dans le support avec l'unique population de granules d'alumine à 19 µm sont formés grâce aux couches de liant qui entourent les granules. En revanche, dans le support multi-échelles, les zones les plus concentrées en phosphore se retrouvent entre les grosses granules et la cohésion semble être plutôt assurée par la formation d'une configuration de type pendulaire où les petites granules sont insérées dans le liant et contribuent ainsi à augmenter le nombre de points de contact.
Afin de caractériser l'accessibilité à la mésoporosité des grains, les deux supports de la figure 5.3 ont été imprégnés avec du cobalt, détectable par micro-analyse X (EDS).

En catalyse, le support final est imprégné avec un métal, responsable de l'activité catalytique et choisi selon l'application souhaitée. Nous avons donc choisi ce même principe de manière à observer à partir des cartographies si le cobalt peut ou non se répartir à l'intérieur des granules. Dans ce travail, le choix du cobalt est fondé uniquement sur les critères de contraste chimique nécessaire à la qualité de l'imagerie et non lié à une application spécifique.

La figure 5.4 présente les cartographies des supports imprégnés.

![Figure 5.4 – Cartographie du phosphore (rose), de l'aluminium (bleu) et du cobalt (verte), déterminée par MEB-EDS, sur les supports imprégnés (a) 19 µm + AlPO et (b) 1,7 µm + 19 µm + AlPO.](a) (b)

Les images (a) et (b) montrent que le métal (couleur verte) se retrouve reparti sur l'ensemble du matériau y compris à l'intérieur des granules avec des zones plus ou moins concentrées. Ces hétérogénéités peuvent être attribuées aux différences de texture rencontrées d'une granule à l'autre ou bien, influencées par les conditions de séchage après l'imprégnation.

Ces résultats montrent que l'accès à la mésoporosité des granules n'est pas obstrué par le liant AlPO ce qui est rassurant pour l'emploi de ces matériaux comme supports de catalyseur.

Les cartographies nous permettent d'avoir une analyse qualitative "rapide" de la composition chimique de la région balayée. Nous nous sommes alors intéressés à réaliser une analyse quantitative permettant de tracer le ratio P/Al en fonction de la zone analysée.

Il faut rappeler que la teneur en acide phosphorique est calculée de manière à respecter le ratio P/Al de 0,8 afin d'assurer la formation du liant AlPO comme décrit dans le Chapitre IV. L'aluminium utilisé dans le calcul est celui provenant uniquement du précurseur de liant (Pural SB3) or, d'après les cartographies, il existe une partie de l'acide qui ne réagit pas avec ce précurseur.
L'objectif de l'analyse quantitative est donc de déterminer la proportion de phosphore présent à l'intérieur des granules d'alumine et la proportion résiduelle qui réagit avec le précurseur.

5.2.2. Analyse quantitative de la teneur en P

L'analyse quantitative est réalisée sur le support contenant les grosses granules (Figure 5.3.a) de manière à tracer un profil de concentration de phosphore en fonction des différentes zones à l'intérieur et à l'extérieur des granules d'alumine. Cette analyse est réalisée par MET ce qui permet d'observer la morphologie de la structure formée autour des grains, à l'échelle nanométrique. Le support est d'abord broyé et ensuite enrobé avec une résine de manière à préparer des échantillons ultra-minces par ultramicrotomie.

La figure 5.5 montre l'image d'une granule d'alumine observée après coupe à l'ultramicrotome. La difficulté est de retrouver des granules d'alumine entières après broyage de l'extrudé et utilisables pour l'analyse quantitative.

![Figure 5.5 – (a) Cliché de MET d'une granule d'alumine du support 19 µm + AlPO préparé par coupe à l'ultramicrotome et (b) détail des trois morphologies observées à l'extrême bord, au bord et à cœur.](image)

L'image ci-dessus montre que le cœur de la granule d'alumine ne présente pas la même morphologie par rapport au bord. L'analyse en détail d'une partie du grain révèle qu'en effet le cœur est constitué de cristallites tandis que le bord présente un aspect massif sans, a priori, d'unités élémentaires visibles. On observe également qu'à l'extrême bord, la morphologie diffère de celle du bord qui comprend quelques cristallites. Les rayures observées sur la granule sont formées lors de la coupe avec le couteau en diamant.
La figure 5.6 reporte un exemple de suivi de l'évolution de la concentration du phosphore et de l'aluminium selon un profil de ligne sur une granule d'alumine, déterminée par EDS.

![Figure 5.6](image.png)

Figure 5.6 – (a) Cliché MET avec un exemple d'analyse quantitative sur profil de ligne et (b) évolution de la concentration des éléments chimiques P et Al en fonction de la région de la granule d'alumine.

La figure ci-dessus montre que le bord y compris l'extrême bord de la granule sont les régions les plus riches en phosphore (0,27 < P/Al < 0,59). Le cœur contient également du phosphore mais en plus faibles quantités (0,05 < P/Al < 0,11).

Cette analyse quantitative a été réalisée sur une dizaine de granules et les tendances observées par rapport au ratio P/Al sont reportées sur le tableau 5.2.

Tableau 5.2 – Variation du ratio P/Al en fonction de la région analysée sur les granules d'alumine.

<table>
<thead>
<tr>
<th>P/Al</th>
<th>Valeur</th>
<th>Cœur</th>
<th>Bord</th>
<th>Extrême bord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale</td>
<td>0,03</td>
<td>0,19</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Maximale</td>
<td>0,24</td>
<td>0,59</td>
<td>0,32</td>
<td></td>
</tr>
</tbody>
</table>

Le tableau ci-dessus confirme la tendance observée sur la figure 5.6. Le cœur présente les plus faibles concentrations en phosphore avec des zones plus riches (P/Al = 0,24) localisées ponctuellement et distribuées de façon hétérogène en fonction de la texture de la granule.

5.2.3. Analyse de la structure cristalline des supports AlPO + Al₂O₃

La figure 5.7 reporte le diffractogramme du support (19 µm + AlPO – Figure 5.3.a) séché (80°C) et calciné (600°C).
Figure 5.7 – Diffractogrammes du support 19 µm + AlPO après séchage (80°C) et calcination (600°C).

Le support séché est constitué de l'alumine (δ-Al₂O₃ peu évoluée) issue de la poudre d'empilement, de la boehmite (BH) (précurseur de liant) n'ayant pas réagi avec l'acide phosphorique, de la matière amorphe visualisée sur le diffractogramme comme un fond de diffusion entre 20° et 30° (2θ), et de traces d'AlPO cristallin comme le montre la raie de faible intensité entre 21° et 22° (2θ) (Figure 5.7).

Après calcination à 600°C, les raies de boehmite (BH) ne sont plus observées et les raies caractéristiques du liant AlPO cristallin sont plus intenses et identifiées à environ 20,5° et 21,8° (2θ). Ces deux raies correspondent à l'AlPO₄-type tridymite (triclinique) et à l'AlPO₄-type cristobalite (orthorhombique), respectivement. Le fond de diffusion attribué à la présence d'une phase amorphe est toujours présent après calcination.

Les diffractogrammes confirment donc que le liant AlPO s'est formé in situ en présence des granules d'alumine, et ce, même à un ratio P/Al plus faible que celui obtenu quand l'acide phosphorique réagit uniquement avec la boehmite comme décrit dans le Chapitre IV (P/Al = 0,8).

5.2.4. Discussion

A l'aide des caractérisations précédentes, on peut émettre l'hypothèse que la solution acide (H₃PO₄) diffuse au sein des granules d'alumine et la solution restante réagit avec la boehmite.
Nous avons réalisé des calculs en considérant ces hypothèses, et le ratio P/Al déterminé dans les granules est de 0,09, tandis que le ratio P/Al à l'extérieur des granules, considérant la réaction de l'acide restant avec la boehmite, est de 0,46. Les valeurs trouvées sont du même ordre de grandeur que celles déterminées par analyse quantitative à cœur et au bord des granules d'alumine, respectivement.

Il en résulte que le liant AlPO se localise autour des grosses granules d'alumine (19 µm + AlPO) et provient majoritairement de la réaction de l'acide (H₃PO₄) avec la boehmite. La région d'aspect massif observée sur la figure 5.5 (ci-avant) au bord de la granule est similaire à la microstructure du liant seul présentée dans le chapitre précédent (section 4.3.5).

Le phosphore présent à l'intérieur des granules peut être sous forme de P₂O₅, comme produit de la déshydratation de l'acide phosphorique lors de la calcination, ou sous forme de phosphate d'aluminium. Mise à part la répartition et la concentration du phosphore, on ne peut rien affirmer sur la nature du composé phosphoré au sein des granules d'alumine. Il serait pour cela nécessaire de réaliser des caractérisations complémentaires telles que la diffraction électronique.

La matière amorphe et les raies attribuées au liant (AlPO) sur le diffractogramme de la figure 5.7 peuvent donc provenir du phosphate d'aluminium formé à partir de la boehmite, ou à partir de l'alumine puisque ce liant peut également être formé à partir d'un oxyde d'aluminium [Bothe et Brown, 1993]. L'annexe E montre un diffractogramme du liant calciné où le phosphate d'aluminium est issu de la réaction de l'alumine (Sasol – 19 µm) avec l'acide phosphorique.

Les mêmes hypothèses sont valables dans le cas des supports préparés avec les petites et grosses granules d'alumine (1,7 µm + 19 µm + AlPO). Cependant, le phosphore est principalement concentré sur les petites granules, comme cela est montré sur la figure 5.3.b. Ceci peut être expliqué par la surface spécifique des petites qui est plus importante que celle des grosses granules (212 m²/g au lieu de 144 m²/g) leur conférant ainsi une plus grande réactivité avec l'acide. Nous n'avons pas réalisé d'analyse quantitative sur coupe à l'ultramicromote de ce support puisqu'après broyage de l'extrudé, il serait difficile de distinguer les petites granules des "morceaux" du liant et de retrouver des petites granules entières.

L'analyse de la structure cristalline de ce support (Figure 5.8 ci-après), montre qu'elle est comparable à celle du support contenant uniquement les grosses granules. Le liant AlPO est donc bien formé in situ dans les deux types de matériau.
Les sections suivantes abordent, dans un premier temps, l'effet de l'empilement granulaire (et du liant) sur le procédé de mise en forme et, ensuite, sur la microstructure et les propriétés texturales et mécaniques des supports.

5.3. Effet de l'empilement sur le procédé de mise en forme

La figure 5.9 reporte l'évolution du couple final de malaxage (couple final mesuré à la fin du malaxage basique pour le système AlOOH + Al₂O₃) et de la pression d'extrusion en fonction du taux de petites granules (IFPEN – 1,7 µm).
Figure 5.9 – Évolution du couple final de malaxage et de la pression d’extrusion en fonction de la proportion de petites granules présentes au sein des pâtes : (a) AlOOH + Al₂O₃ et (b) AlPO + Al₂O₃.

Le graphe correspondant au liant AlOOH montre que la pression d'extrusion et le couple final de malaxage évoluent parallèlement. De plus, l'augmentation du taux de petites granules conduit à une diminution de ces paramètres jusqu'à environ 60 à 80% pds. de petites où le couple et la pression d'extrusion commencent à ré-augmenter.

La diminution progressive de ces paramètres en fonction de la composition granulaire est moins marquée avec les pâtes contenant le phosphate d'aluminium (AlPO) comme liant. En
effet, dès 20% pds. de petites le couple diminue de 14 Nm (0% pds.) à environ 3 Nm et cette valeur demeure presque constante jusqu'à 80% pds. de petites (Figure 5.9.b).

Ces résultats montrent que les pâtes intégrant des petites granules conduisent à un procédé de mise en forme où le malaxage et l'extrusion sont réalisés selon des conditions plus "douces" (couple et pression plus faibles).

L'effet de roulement à billes apporté par les petites granules insérées entre les grosses peut être l'une des explications, cette population favorisant le réarrangement des grosses granules les unes par rapport aux autres et améliorant ainsi l'écoulement.

Il convient également de rappeler que nous avons choisi de travailler à ratio S/L constant et par conséquent, au fur et à mesure que la proportion de petites augmente, la quantité de liquide environnant (relié aux propriétés d'écoulement des pâtes) augmente elle aussi car le volume mésoporeux des petites granules est plus faible (0,43 mL/g) que celui des grosses (0,51 mL/g) (section 3.1.2.2 – Chapitre III).

Compte tenu des réactifs présents dans nos pâtes l'effet de roulement à billes et l'excès de liquide environnant aux fortes teneurs en petites, ne peuvent pas être considérés comme étant les seuls responsables de l'évolution des paramètres liés au procédé de mise en forme. Les phénomènes physico-chimiques intervenant lors de la formation in situ des liants (AlOOH et AlPO) pendant le malaxage influencent également les propriétés rhéologiques.

En effet, le processus de dispersion de la boehmite modifie la rhéologie, comme discuté dans le chapitre précédent, et ce plus particulièrement lors de l'étape de neutralisation. La modification du pH à partir de l'ajout d'une solution basique favorise la floculation du milieu et le couple de malaxage a tendance à augmenter. Le comportement observé sur la figure 5.9.a est donc le résultat d'un effet combiné de la composition granulaire, de la teneur en liquide "libre" variable à chacune des compositions et de la modification de la structure des pâtes (formation de flocs) due à la neutralisation.

Pour les pâtes contenant le liant à base de phosphate d'aluminium, la forte réactivité de l'acide phosphorique avec le précurseur d'aluminium (boehmite Pural SB3) et les granules d'alumine semble modifier davantage la rhéologie des pâtes du fait des réactions de dissolution qui ont lieu dans le milieu. La cinétique de ces réactions est gouvernée par divers facteurs y compris la surface spécifique des oxydes qui est plus importante pour les petites granules. Il en résulte que la montée du couple et de la pression d'extrusion aux alentours de 80% pds petites semble être plutôt due à cette réactivité (Figure 5.9.b).

5.4. Effet de l'empilement sur les propriétés du support

5.4.1. Microstructure

La figure 5.10 montre les différentes microstructures obtenues en fonction de la proportion de petites granules (IFPEN - 1,7 µm) avec chacun des liants utilisés : boehmite...
peptisée et neutralisée (AlOOH) et phosphate d'aluminium (AIPO). Le ratio S/L optimal pour chaque système (S/L = 1,3 ou 1,1) et la proportion de précurseur de liant (24% poids) sont constantes et seulement la composition granulaire (petites et grosses) varie.
Cette thèse est accessible à l’adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf
© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
AlOOH + Al₂O₃
30% 1,7 µm + 70% 19 µm

AlPO + Al₂O₃
40% 1,7 µm + 60% 19 µm
(i) $\text{AlOOH} + \text{Al}_2\text{O}_3$
$\text{80}\% \text{ 1,7 } \mu\text{m} + \text{20}\% \text{ 19 } \mu\text{m}$

(j) $\text{AlPO} + \text{Al}_2\text{O}_3$
$\text{80}\% \text{ 1,7 } \mu\text{m} + \text{20}\% \text{ 19 } \mu\text{m}$
Figure 5.10 – Clichés MEB sur section polie des extrudés calcinés préparés avec 24%pds. de précurseur de liant et différents taux de petites (1,7 µm) et grosses (19 µm) granules d’alumine comme l’indiquent les pourcentages massiques sur les images.
Les images ci-dessus montrent que la formulation fixe (ratio S/L et teneur en liant) utilisée pour la mise en forme des différents supports conduit à des microstructures dont l'agencement de petites et grosses granules est similaire avec les deux liants à une même composition granulaire. Les fissures micrométriques à l'interface granule-liant sont surtout observées sur les clichés des extrudés du système AlOOH + Al₂O₃ et, principalement, aux plus faibles teneurs en petites.

On observe que les petites et grosses granules d'alumine conservent leur morphologie sphérique et leurs tailles (réf. : caractérisation des poudres seules - Chapitre III). L'apport de l'énergie mécanique et l'acide introduits lors du malaxage permettent de disperser les agglomérats de la poudre IFPEN – 1,7 µm et les petites granules séparément peuvent être observées (au lieu d'agglomérats "de granules"). Les microstructures obtenues sont représentatives de la composition granulaire.

La teneur optimale en petites permettant de s'approcher le plus de l'empilement hiérarchisé semble être entre 40 et 60% pds. pour les deux liants utilisés. A cette teneur, les petites comblent les espaces entre les grosses granules qui sont quasi jointives entre elles. Au-delà de cette proportion, l'excès de petites desserre l'empilement et les grosses s'éloignent les unes des autres.

Une analyse des images à partir du logiciel Analysis Auto nous a permis de quantifier en partie ceci. Nous avons en effet décidé de déterminer une distance moyenne entre les grosses granules en fonction de la teneur de petites. Les mesures ont été faites par pointage manuel entre le bord de chacune des grosses granules adjacentes. La figure 5.11 présente deux exemples de clichés obtenus à l'issu de cette analyse quantitative.
Figure 5.11 – Exemple de mesures des distances entre les grosses granules adjacentes obtenues par pointage manuel à l’aide du logiciel Analysis Auto : (a) 1,7 µm + 19 µm + AlOOH et (b) 1,7 µm + 19 µm + AlPO. Composition granulaire : Petites / Grosses = 20/80 % pds et 24% pds. de précurseur de liant.

A partir de ces mesures, il est possible de déterminer une distance moyenne entre les grosses granules en fonction de la formulation. La figure 5.12 présente cette distance en fonction de la proportion massique de petites granules et ce pour chacun des liants.
Figure 5.12 – Évolution de la distance entre les grosses granules en fonction de la proportion de petites.

Le graphe ci-dessus montre une augmentation faible et régulière de la distance entre les grosses granules jusqu'à 60% pds de petites où un changement de régime semble avoir lieu (changement de pente) du fait du desserrement de l'empilement de grosses par les petites. Les distances mesurées sur les matériaux préparés avec la boehmite et le phosphate d'aluminium sont comparables pour une même composition. Ceci peut indiquer, de manière quantitative, que les microstructures hiérarchiques obtenues avec les deux liants sont similaires.

La détermination de la composition granulaire optimale pour laquelle la distance entre les grosses est la minimale possible serait possible avec une caractérisation plus fine sur un nombre plus important de clichés (au lieu d'un seul) ou à partir de la micro-tomographie à haute résolution. Cette dernière technique de caractérisation pourrait être utilisée également pour comparer la compacité d'empilement de granules au sein de l'extrudé avec celle des poudres à sec (Chapitre III). Cette étude n'a pas été menée dans le cadre de ce travail du fait du temps important imparti pour la maîtrise de la formulation des matériaux.

Les sections suivantes présentent les propriétés texturales et mécaniques de ces supports de manière à l'évaluer comment l'empilement de petites et grosses granules et le liant peuvent influencer les caractéristiques des matériaux.
5.4.2. Mésoporosité

Nous avons montré dans le Chapitre III la propriété d'additivité de la mésoporosité pour les mélanges de poudres d'alumine. Cette propriété peut être utilisée afin de vérifier si le liant formé *in situ*, en présence des granules d'alumine, présente les mêmes propriétés texturales que celles du liant préparé séparément (Chapitre IV). En supposant l'additivité des volumes mésoporeux des granules d'alumine et du liant calciné, il est possible d'estimer le volume mésoporeux du support comme le montre l'équation 5.3.

\[
V_{\text{méso calculé}} = x_{\text{Al}_2\text{O}_3} V_{\text{méso Al}_2\text{O}_3} + x_{\text{liant calciné}} V_{\text{méso liant calciné}} \quad (\text{Équation 5.3})
\]

où :

- \(V_{\text{méso calculé}}\) : volume mésoporeux du support calciné estimé par calcul (mL/g)
- \(x_{\text{Al}_2\text{O}_3}\) : fraction massique des granules d'alumine (g/g)
- \(x_{\text{liant calciné}} = 1 - x_{\text{Al}_2\text{O}_3}\) : fraction massique du liant calciné (g/g)
- \(V_{\text{méso Al}_2\text{O}_3}\) : volume mésoporeux des granules d'alumine (mL/g)
- \(V_{\text{méso liant calciné}}\) : volume mésoporeux du liant calciné (mL/g)

La figure 5.13 reporte l'évolution du volume mésoporeux des supports calcinés, mesuré par porosimétrie au mercure (3,6 nm < \(d_{\text{pore}}\) < 50 nm), en fonction du taux de petites granules d'alumine. Ces points expérimentaux sont comparés au volume mésoporeux estimé à l'aide de l'équation 5.3.

![Figure 5.13](image)

Figure 5.13 – Évolution du volume mésoporeux \(V_{\text{méso}}\) mesuré par porosimétrie au mercure et calculé à partir de l'équation 5.3, des extrudés calcinés en fonction de la proportion de petites granules.
La figure ci-dessus montre l'accord entre les points expérimentaux (Vméso mesuré) et le volume mésoporeux calculé des matériaux préparés avec le liant AIOOH. En revanche, un écart d'environ 25% est observé entre les valeurs mesurées et les valeurs calculées pour les extrudés préparés avec le liant AlPO.

Ces résultats montrent que le liant AIOOH formé in situ présente des caractéristiques comparables à celles du liant préparé séparément selon les conditions retenues dans le Chapitre IV (Ta = 4%, TN = 40% et S/L = 1,1). L'acide et la base introduits interagissent préférentiellement avec la poudre de boehmite et peu avec les granules d'alumine.

Tandis que le liant AIOOH conduit à une alumine de transition (γ-Al2O3) mésoporeuse après calcination, l'AlPO est un liant non poreux. Ceci explique la mésoporosité moins importante des extrudés préparés avec ce liant par rapport à ceux mis en forme avec la boehmite (AIOOH) (Figure 5.13).

Le volume mésoporeux obtenu par analyse est encore plus faible que celui calculé à partir des caractéristiques des granules d'alumine et du liant AlPO.

La figure 5.14 reporte la taille des mésopores (dméso) en fonction de la composition granulaire.

![Figure 5.14 - Évolution du diamètre de mésopores (dméso), mesuré par porosimétrie au mercure, des extrudés calcinés en fonction de la proportion de petites granules.](image)

Le diamètre des mésopores évolue de manière décroissante avec l'augmentation de la proportion de petites granules dont la taille des mésopores est inférieure à celle des grosses (dméso = 7,5 nm pour 1,7 µm et dméso = 11,5 nm pour 19 µm) (Chapitre III). Ce comportement est observé quel que soit le liant considéré.
Néanmoins, les mésopores des supports mis en forme avec le liant AlPO, sont légèrement plus petits que ceux préparés avec l'AlOOH pour une même proportion de petites granules. Ce résultat, ainsi comme celui du volume mésoporeux (Figure 5.13), confirme l'analyse faite dans la section 5.2. L'acide phosphorique provoque une dissolution partielle des granules d'alumine affectant ainsi leur mésoporosité. Celle-ci semble ne pas être obstruée par le liant non poreux et reste accessible à l'intrusion du mercure (d'après la cartographie du Co – Figure 5.4).

5.4.3. Macroporosité

La macroporosité est issue du retrait du liant lors des traitements thermiques et notamment lors du séchage. Des études sur les gels de boehmite ont montré qu'elle présente un retrait volumique de l'ordre de 50% au séchage et d'environ 10% supplémentaire lors de la calcination [Pourcel, 2003]. Nous n'avons pas obtenu des informations précises sur le retrait volumique de l'AlPO à la formulation utilisée (P/Al = 0,8) et, du fait sa nature très collante à l'état humide seul, il a été difficile de déterminer ce retrait par des techniques simples.

Le retrait linéaire, déterminé par mesure directe du diamètre des extrudés (Al₂O₃ + liant) crus et calcinés, est cependant plus important pour les supports mis en forme avec le liant AlPO (~ 20% au lieu de 10% avec AlOOH). Ceci est cohérent avec sa texture non-poreuse qui résulte en une matrice très dense.

Le diamètre des macropores et la comparaison des volumes macroporeux des extrudés (> 50 nm) avec ceux des mélanges de poudres sont reportés sur la figure 5.15.

![Diagramme de comparaison de diamètre et de volume macroporeux](a)
Figure 5.15 – (a) Évolution du diamètre de macropores (dmacro) des extrudés calcinés en fonction de la proportion de petites granules et (b) Volume macroporeux (> 50 nm) des extrudés mis en forme avec les deux liants (AlOOH et AlPO) en comparaison avec le volume macroporeux des mélanges de poudres.

La figure 5.15.a montre que le diamètre de macropores diminue progressivement avec la teneur de petites granules et semble atteindre une stabilisation entre 40 et 60% pds. de petites. En effet, les macropores sont directement liés à la taille des granules et à la façon dont ces granules et le liant sont agencés. Ce comportement est observé avec les deux systèmes et les diamètres sont aussi de même ordre de grandeur, confirmant ainsi que les microstructures obtenues sont équivalentes avec les deux liants à une même composition granulaire comme déjà observé par MEB et par l'analyse quantitative des distances entre les grosses granules.

Le figure 5.15.b montre qu'après mise en forme le volume macroporeux des supports est beaucoup plus faible que celui à l'état de poudre pour les deux types de support. La proportion de liant utilisé a permis donc de remplir au mieux la porosité inter-granulaire, d'assurer la cohésion de l'empilement et d'obtenir des microstructures dont l'aspect est proche de la microstructure multi-échelles cible (teneur en liant minimale et empilement granulaire maîtrisé).

Les volumes macroporeux sont plus faibles pour les matériaux contenant les petites granules. Ceci est davantage observé pour le système AlPO + Al2O3 pour lequel Vmacro passe de 0,26 mL/g (0% 1,7 µm) à environ 0,14 mL/g entre 20 et 40% de petites. Ce phénomène est moins marqué pour le système AlOOH + Al2O3 dans le même domaine de composition granulaire (de 0,21 à 0,18 mL/g) et peut être dû au fait que le retrait différentiel de la boehmite génère des microfissures au sein de la matrice liante et à l'interface des granules d'alumine (Figures 5.10 et 5.11). La fissuration est aggravée lors de la calcination.
augmentant encore plus Vmacro. Le bénéfice de l'empilement granulaire sur la minimisation du retrait est donc moins évident pour ces matériaux.

Malgré le retrait plus important de l'AIPO par rapport à l'AlOOH, le retrait de la matrice liante semble ne pas "fissurer" de manière importante à l'interface granule-liant si l'AIPO n'est pas présent en excès (Figures 5.10 et 5.11). La résistance des points de contact générée par ce liant semble donc être beaucoup plus importante que dans le cas de la boehmite. Ceci sera discuté plus amplement dans la section suivante sur la tenue mécanique des extrudés.

5.4.4. Tenue mécanique

5.4.4.1. Écrasement grain à grain (EGG)

La tenue mécanique des extrudés est analysée à partir du test d'écrasement grain à grain (EGG) comme décrit dans le chapitre II (section 2.2.3.2). La valeur d'EGG, exprimée en terme de force à la rupture par rapport à la longueur de l'extrudé (EGG = F / L), est évaluée en fonction du taux de petites granules et du volume de macropores (Vmacro) comme reporté sur la figure 5.16 avec chacun des liants.

(a)

![Diagramme EGG et Vmacro](image-url)
Figure 5.16 – Résistance à la rupture (EGG) et volume macroporeux (Vmacro) en fonction de la proportion de petites granules des supports mis en forme avec la boehmite peptisée et neutralisée ((a) AlOOH + Al₂O₃) et le phosphate d'aluminium ((b) AIPO + Al₂O₃). Les barres d’erreur représentent l’écart-type.

L'EGG évolue de manière inverse au volume de macropores (Vmacro). Ce comportement est plus marqué pour le système AIPO + Al₂O₃. Pour ce système, on observe qu'en effet l'EGG passe de 0,8 à 1,9 ± 0,3 daN/mm quand Vmacro diminue de 0,26 à 0,13 mL/g, soit une augmentation de la proportion de petites granules de 0 à 30% pds.

L'EGG passe de 0,3 à 0,5 ± 0,1 daN/mm pour une diminution de Vmacro de 0,21 à 0,18 mL/g si la teneur de petites augmente de 0 à 30% pds (AlOOH + Al₂O₃). Compte-tenu de l'écart-type sur la mesure de l'EGG (± 0,1 daN/mm), ce gain en tenue mécanique est moins significatif par rapport aux systèmes avec l'AIPO. Comme discuté précédemment, le retrait différentiel de la boehmite conduit à la formation de fissures localisées principalement à l'interface granule-liant et, ces défauts, peuvent influencer davantage la résistance mécanique en fonction de leur taille, forme et distribution.

La figure 5.16 montre également que les matériaux mis en forme avec l'AIPO présentent les valeurs d'EGG en moyenne 4 fois plus élevées que celles des matériaux préparés avec l'AlOOH. Ceci met en évidence le fait que les propriétés du liant influencent la cohésion de l'empilement et la résistance des points de contact conduisant à des propriétés mécaniques très différentes même si la microstructure et la macroporosité des matériaux sont similaires.

L'analyse par MEB des débris recueillis à l'issue du test EGG nous renseigne sur le mode de rupture de ces matériaux soumis aux contraintes de traction transverses. Les images sont présentées sur la figure 5.17.
Les clichés (a) et (b) sont les débris du support préparé avec la boehmite (AlOOH) et les granules de 19 µm. D'après ces images, la rupture a lieu au sein de la matrice liante et à l'interface granule-liant.

En revanche, le matériau mis en forme avec le phosphate d'aluminium (AlPO) et les mêmes granules d'alumine, présente majoritairement une rupture intra-granulaire comme le montre les images (c) et (d) de la figure 5.17.
La rupture du support multi-échelles (1,7 µm + 19 µm) préparé avec l'AlPO a lieu également au sein des grosses granules tandis que l'intégrité des petites semble être maintenue (Figures 5.17.e et 5.17.f).

L'analyse par MEB des débris issus du test EGG montre que la rupture et la propagation ont lieu à différents endroits en fonction du liant utilisé pour la mise en forme. On peut alors en déduire que les phénomènes physiques et/ou chimiques qui ont lieu lorsque deux surfaces (liant et granules) sont mises en contact peuvent être à l'origine des différents modes de rupture observés.

L'empilement de granules d'alumine mises en forme avec le liant AIOOH conduit à un support composé uniquement d'alumine mésoporeuse à l'issue de la calcination. Les granules et les interfaces ont donc des résistances intrinsèques similaires. En revanche, le séchage génère un retrait important de la matrice liante (plus hydratée) ce qui fragilise les interfaces granules-liant, par exemple, par la formation de microfissures. Cette fragilisation justifie la rupture inter-granulaire observée sur les clichés a et b de la figure 5.17.

D'autre part, le support préparé avec le phosphate d'aluminium est constitué de deux composés distincts (granules d'alumine et AIPO) dont le liant est le produit d'une réaction chimique. Le liant au sein de ce matériau forme un réseau continu par interaction avec les granules où leur interface est très résistante du fait des liaisons covalentes qui assurent la cohésion de l'empilement. La rupture est donc intra-granulaire et, plus spécifiquement, au sein des grosses granules.

L'analyse des débris issus du test EGG nous a donc permis de mieux comprendre l'influence du liant sur les propriétés mécaniques des supports. Nous retiendrons notamment la résistance mécanique beaucoup plus importante des matériaux mis en forme avec l'AIPO par rapport à ceux préparés avec l'AIOOH.

5.4.4.2. Flexion trois points

a) **Essais de flexion 3 points sur extrudés non entaillés** :

Les essais de flexion ont été réalisés avec trois échantillons : AIPO + 19 µm et AIPO + 1,7 µm + 19 µm présentant le même volume macroporeux (~ 0,15 mL/g) et un support AIOOH + 19 µm considéré ici comme référence par rapport à l'évaluation de l'effet du liant.

La préparation de deux matériaux à même Vmacro mais avec des compositions granulaires différentes a été possible à partir de l'emploi d'une teneur en liant plus importante pour la mise en forme du support contenant de grosses granules (19 µm).

L'intérêt de caractériser ces échantillons est justement d'analyser si la microstructure peut ou non apporter à la tenue mécanique alors que le volume macroporeux est identique.
La figure 5.18 reporte les courbes de la force appliquée en fonction du déplacement de la traverse obtenues pour les trois échantillons testés.

![Courbes de la force appliquée en fonction du déplacement](image)

Figure 5.18– Courbes de la force appliquée en fonction du déplacement issues du test de flexion 3 points.

L'allure des courbes de la figure ci-dessus confirme que les supports testés présentent un comportement élastique-fragile, avec une rupture brutale. La force à la rupture des matériaux mis en forme avec l'AIPO est presque 5 fois plus élevée que celle du support de référence préparé avec la boehmite. La pente des courbes de ces matériaux est aussi plus raide que celle de la référence.

La contrainte à la rupture (σ_t) et le module d'Young (E) sont calculés à partir des équations présentées dans le Chapitre II. Le tableau 5.4 reporte les résultats obtenus, comparés à ceux des tests EGG, ainsi que les caractéristiques de la macroporosité des matériaux testés.

Tableau 5.4 – Macroporosité et propriétés mécaniques déterminées à partir de l'essai de flexion 3 points et du test d'écrasement grain à grain.

<table>
<thead>
<tr>
<th>Support</th>
<th>Précurseur liant (% pds.)</th>
<th>Petites / Grosses (% / % pds.)</th>
<th>Dmacro (µm)</th>
<th>Vmacro (mL/g)</th>
<th>σ_t^{EGG} (MPa)</th>
<th>$\sigma_t^{Flexion}$ (MPa)</th>
<th>$E^{Flexion}$ (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO + Al$_2$O$_3$</td>
<td>24</td>
<td>20 / 80</td>
<td>1,0</td>
<td>0,14</td>
<td>4,3 ± 0,8</td>
<td>10,6 ± 1,8</td>
<td>7,0 ± 2,0</td>
</tr>
<tr>
<td>AlPO + 19 µm</td>
<td>30</td>
<td>0 / 100</td>
<td>2,9</td>
<td>0,15</td>
<td>4,8 ± 0,8</td>
<td>12,1 ± 0,8</td>
<td>8,2 ± 0,5</td>
</tr>
<tr>
<td>AlOOH + 19 µm</td>
<td>24</td>
<td>0/100</td>
<td>2,5</td>
<td>0,21</td>
<td>0,7 ± 0,1</td>
<td>2,2 ± 0,1</td>
<td>1,0 ± 0,1</td>
</tr>
</tbody>
</table>

Les contraintes à la rupture déterminées à partir de deux types de tests mécaniques présentent des valeurs différentes : les valeurs issues des essais de flexion 3 points ($\sigma_t^{Flexion}$)
sont presque trois fois plus importantes que celles calculées à partir du test EGG (σ_{t}^{EGG}). Même si dans les deux types d'essais, la rupture des matériaux est due à des contraintes de traction, le chargement de l'échantillon diffère significativement ce qui conduit à des différences sur la répartition des contraintes au sein du matériau. Le volume sollicité en traction et sa position sont différents d'un essai à l'autre, et il n'est donc pas illogique de trouver des valeurs de contrainte maximale admissible différentes.

Cependant, les deux types d'essais convergent vers les mêmes résultats :

- Quel que soit le type d'essai, la résistance mécanique des matériaux mis en forme avec l'AIPO est beaucoup plus importante que celle de la référence (AlOOH + Al$_2$O$_3$), d'un facteur compris entre 5 et 6.
- Les matériaux à même volume macroporeux (Vmacro ~ 0,14 mL/g) présentent des contraintes à la rupture comparables (à la fois pour σ_{t}^{EGG} et pour $\sigma_{t}^{\text{Flexion}}$). Il en résulte que l'une des avantages des matériaux à microstructure multi-échelles est leur préparation avec un minimum de liant et dont la résistance à la rupture est identique à celle des matériaux contenant plus de liant.

Le tableau 5.4 montre encore que le module d'Young (E) du support référence (AlOOH + Al$_2$O$_3$) est très faible par rapport aux extrudés mis en forme avec l'AIPO. Les propriétés d'adhésion entre les granules sont directement liées à la capacité de déformation élastique des supports et, par conséquent, le module d'Young reflète l'effet du liant sur ces propriétés. De plus, la présence de la population de petites (1,7 µm) semble ne pas contribuer à l'élasticité du matériau puisqu'on observe que le module du support multi-échelles (7 GPa) est très proche de celui contenant uniquement les grosses granules (8 GPa) et présentant le même volume macroporeux.

$b)$ **Essais de flexion 3 points sur extrudés entaillés :**

L'essai réalisé sur les échantillons entaillés permet de déterminer le facteur critique d'intensité de contrainte (K_{IC}) selon la relation de Shin et Cai (2004) présenté en annexe B. La figure 5.19 reporte les valeurs de K_{IC} et sa dispersion obtenues pour chacun des échantillons testés (Tableau 5.4).
Figure 5.19 – Dispersion de valeurs de K_{IC} obtenues à partir des essais de flexion 3 points sur des échantillons entaillés et calculées selon la méthode de Shin et Cai (2004).

Le paramètre K_{IC} est une caractéristique physique qui renseigne sur la ténacité du matériau. Il mesure la résistance à la propagation des défauts et il s'agit d'une caractéristique plus intrinsèque que la contrainte à la rupture.

La figure ci-dessus montre que le K_{IC} du support multi-échelles (AlPO + 1,7 µm + 19 µm) est presque 2 fois plus important que celui du matériau contenant uniquement les grosses granules (AlPO + 19 µm) et présentant le même volume macroporeux.

Le support de référence (AlOOH + 19 µm) présente une ténacité très faible par rapport aux extrudés mis en forme avec le phosphate d'aluminium (AlPO). Ceci met encore en évidence l'effet du liant utilisé sur les propriétés mécaniques des matériaux. L'AlPO est le liant qui confère des meilleures propriétés adhésives au support conduisant ainsi à un matériau plus résistant à la propagation des fissures.

L'essai de flexion sur les échantillons entaillés permet de distinguer l'apport de la microstructure multi-échelles sur la ténacité des matériaux. En effet, d'après ces résultats, on peut en déduire que la ténacité d'un matériau peut être améliorée par l'agencement hiérarchique de granules de différentes tailles qui conduit à une microstructure présentant plus de points de contact.

L'interaction du liant AlPO avec les poudres d'empilement confère une meilleure cohésion entre les granules, et donc une meilleure résistance à l'interface granule-liant comme démontré précédemment, où la rupture a lieu au sein des grosses granules d'alumine. La ténacité élevée du support 1,7 µm + 19 µm + AlPO par rapport aux deux autres supports testés, peut donc être attribuée à l'effet combiné de la microstructure multi-échelles associé aux propriétés du liant AlPO.
Des caractérisations complémentaires seraient intéressantes afin de compléter cette étude. En particulier, la réalisation d'essais de flexion sur des extrudés multi-échelles entaillés mis en forme avec la boehmite peptisée et neutralisée afin d'évaluer si l'empilement granulaire peut améliorer davantage la ténacité et ce indépendamment du liant utilisé.

De plus, considérant que dans les supports préparés avec l'AlPO le phosphore est aussi rencontré à l'intérieur des grains, il est possible que les propriétés intrinsèques des granules d'alumine soient modifiées. Ceci peut influer sur les propriétés mécaniques d'autant plus que la rupture de ces matériaux a lieu à l'intérieur des grains. Des essais de micro ou nano-indentation pourraient nous renseigner sur les caractéristiques des granules d'alumine à l'intérieur de ces supports en comparaison avec celle des poudres. Ce même type de caractérisation serait utile afin de mesurer la résistance à l'interface granule-liant en fonction du type de matrice liante.

5.5. Conclusion

L'ensemble des résultats obtenus nous a permis d'avancer dans la compréhension de l'apport de l'empilement granulaire et de la nature du liant dans la préparation de supports de catalyseur. Le concept de l'organisation hiérarchique est retrouvé sur la microstructure des matériaux obtenus, où il existe une composition granulaire optimale conduisant à l'agencement optimal de petites et grosses granules. Ceci est possible grâce à l'action du malaxage et de l'acide qui permettent de disperser les fines et favorisent ainsi le remplissage des espaces résiduels entre les granules plus grosses.

Les formulations fixées à partir de l'étude d'optimisation des paramètres (teneur en liant et ratio S/L) ont permis d'obtenir des microstructures comparables avec les deux liants utilisés. Ceci a été démontré quantitativement à partir des mesures des distances entre les grosses granules adjacentes en fonction du taux de petites, et de l'analyse du diamètre des macropores.

Les propriétés texturales sont influencées par les précurseurs liquides du liant, comme l'acide et la base pour la neutralisation de la boehmite. Du fait de la propriété d'additivité de la mésoporosité, la texture finale du support est liée à la mésoporosité du liant formé ainsi qu'aux caractéristiques des granules d'alumine. Les supports mis en forme avec la boehmite présentent donc de meilleures propriétés texturales puisque ce liant conduit à une matrice mésoporeuse tandis que le phosphate d'aluminium est non poreux. De plus, la forte concentration d'acide phosphorique employé dans la préparation de l'AIPO conduit à une dissolution partielle des granules d'alumine.

La résistance mécanique des supports augmente avec la diminution de la macroporosité qui peut être contrôlée soit par ajustement de la teneur en liant, soit par l'ajout de petites granules. Les matériaux présentant des microstructures et macroporosités comparables peuvent présenter des résistances mécaniques très distinctes en fonction des propriétés du liant utilisé. Les propriétés mécaniques sont ainsi conditionnées par les interactions du liant.
avec les granules d'alumine responsables de la cohésion de l'empilement, et donc, de la résistance à l'interface granule-liant.

Les matériaux possédant les meilleures tenues mécaniques sont ceux mis en forme avec le phosphate d'aluminium. Ceci est attribué à la formation d'une nouvelle phase (AlPO₄) à l'interface granule-liant qui augmente la cohésion du matériau et donc la résistance à la rupture qui a lieu au sein des grosses granules.

Le phosphate d'aluminium confère d'excellentes propriétés mécaniques en détriment d'une dégradation partielle des propriétés texturales des granules d'alumine. Il serait donc intéressant d'étudier des voies de protection de la mésoporosité des charges par imprégnation, par exemple, avec un composé qui peut être éliminé lors des traitements thermiques de manière à conserver les propriétés du liant sans pour autant dissoudre les alumines. L'optimisation du procédé de mise en forme de manière à limiter la réaction de l'acide phosphorique avec les alumines serait aussi une voie d'amélioration. De plus, le phosphate d'aluminium est un liant intéressant pour la mise en forme de matériaux sensibles à la température du fait de sa cristallisation dès 200°C.

L'effet combiné de l'empilement granulaire, qui diminue le volume macroporeux, et des propriétés adhésives du liant permet d'améliorer les propriétés mécaniques. Par ailleurs, des essais de flexion 3 points sur des échantillons entaillés ont démontré que les matériaux multi-échelles contenant l'AlPO présentent une meilleure résistance à la propagation des fissures. Afin de confirmer si ceci est possible grâce uniquement à l'agencement hiérarchique et indépendamment du liant, des caractérisations complémentaires sur les matériaux mis en forme avec la boehmite sont nécessaires.

Les propriétés d'écoulement lors du procédé de mise en forme ainsi que les propriétés mécaniques, ne peuvent pas être analysées en considérant l'apport de l'empilement granulaire de manière isolée. L'évolution du couple de malaxage et de la pression d'extrusion en fonction de la proportion de petites est une conséquence de l'effet combiné de la formulation fixe, de l'agencement hiérarchique de petites et grosses granules, et des phénomènes physico-chimiques liés à la formation in situ de chacun de liants.

Enfin, nous avons démontré la faisabilité des matériaux à microstructure multi-échelles avec des granules d'alumine "modèles" dont le choix a été fondé sur la morphologie sphérique et leur taille. L'empilement hiérarchique permet la préparation de supports à une teneur en liant minimal ce qui représente un avantage incontestable dans la préparation des matériaux pour la catalyse où le taux maximal de granules poreuses est important.

Le concept semble donc être intéressant à transposer à la préparation de différents supports de manière à répondre aux besoins spécifiques de chaque application catalytique. Il s'agit, par exemple, du remplacement des granules d'alumine utilisées par d'autres avec une texture adaptée (grand volume poreux), de l'emploi d'autres oxydes ou même, du choix de poudres d'empilement de façon à préparer des matériaux composites multi-fonctionnels. La
préparation de supports à partir de granules de différentes tailles peut aussi être intéressante pour le recyclage des catalyseurs ce qui permettrait de diminuer les coûts de production.
Conclusion générale et Perspectives
Conclusion générale et Perspectives

L'objectif de cette thèse était de transposer le concept d'empilement hiérarchisé de granules rassemblé par un liant, très répandu dans le génie civil, pour la formulation des bétons à hautes performances et, dans divers autres domaines de mise en forme de poudres, à la préparation de matériaux pour la catalyse. L'apport de cette microstructure multi-échelles et du type de liant utilisé au procédé de mise en forme et aux propriétés des supports ont été alors évalués.

Le matériau cible était des nouveaux supports de catalyseur pour l'hydrotraitement constitué de l'empilement de petites (1,7 µm) et grosses (19 µm) granules d'alumine mésoporeuses. La cohésion de cet empilement était fournie soit par la boehmite peptisée et neutralisée (AlOOH) soit par le phosphate d'aluminium (AlPO). Ces deux liants appartenant à la classe de liants de type ciment mais se distinguant par leur conditions de formation et possédant par ailleurs de propriétés structurales et texturales très distinctes.

Compte-tenu de la pluridisciplinarité de ce travail, l'étude bibliographique a abordé des sujets appartenant à des divers domaines dont l'originalité se reposait justement sur le fait de rassembler les informations essentielles de chacun de ces domaines (les supports de catalyseurs et d'alumine spécifiquement, le procédé mise en forme par extrusion, les liants minéraux, les bétons à hautes performances, les céramiques techniques et l'empilement granulaire) permettant d'établir une stratégie la plus scientifique possible capable de conduire au développement des nouveaux supports de catalyseurs à microstructure multi-échelles.

Dans un premier temps, on s'est concentré à l'étude d'empilement de poudres d'alumine à sec. Nous avons priorisé le choix de poudres composées de granules plutôt sphériques et dont leur taille respectait un ratio d'au moins 10 entre les grosses et les petites de façon à favoriser l'agencement hiérarchique pour lequel les petites remplissaient les espaces laissés entre les plus grosses. Les critères liés à la morphologie et à la taille ont été prioritaires par rapport aux propriétés texturales (volume poreux et surface spécifique) des alumines car l'objectif premier de cette thèse était d'évaluer la faisabilité de ce type de matériaux et l'obtention de la microstructure multi-échelles.

La caractérisation de l'empilement de poudres seules et des mélanges binaires nous a montré que les conditions de mélange au sein du malaxeur conduisaient à des mélanges à sec homogènes et sans ségrégation entre les populations et nous a permis de définir ainsi les conditions de mélange à sec (temps de mélange, vitesse de rotation des bras) lors de la mise
en forme. Par ailleurs, les caractérisations par micro-tomographie et le calcul de la compacité nous ont montré qu'il existait une agglomération de la poudre plus fine (IFPEN-1,7µm), du fait de forces attractives de type Van der Waals, responsables des compacités plus faibles. En effet, le système le plus compact a été celui composé du mélange de poudres Sasol-19 µm et Sasol-160 µm moins sensibles aux effets des forces cohésives. La comparaison de l'évolution de la compacité avec le modèle de Furnas nous a montré que l'agglomération des petites granules (1,7 µm) gouverne l'arrangement dans le cas des systèmes 1,7 µm + 19 µm et 1,7 µm + 160 µm tandis que la compacité est plutôt liée à la taille des granules pour le mélange 19 µm + 160 µm. Cette étude a été utile pour nous permettre de comprendre le comportement de nos poudres avant mise en forme et d'avoir un ordre de grandeur de leur compacité. Celle-ci a été utilisée à posteriori (Chapitre V) dans l'optimisation de la teneur en liant de manière à éviter que le liant soit déficitaire ou en excès ce qui avait pour effet de desserrer l'empilement dès la mise en forme.

Il serait intéressant pour parfaire l'étude sur l'empilement de poudres à sec, de réaliser des analyses de micro-tomographie à plus haute résolution et sur un volume plus petit permettant une meilleure visualisation de l'empilement de granules et une analyse quantitative plus précise de la compacité. Ces résultats à l'état de poudre auraient pu être comparés plus tard avec les matériaux à microstructure multi-échelles afin d'évaluer précisément comment l'empilement peut évoluer avec la procédure de mise en forme et les traitements thermiques.

Ensuite, on s'est intéressé à l'étude des deux liants afin de choisir la meilleure formulation fondée sur le comportement rhéologique et les propriétés texturales dans le cas de la boehmite et, d'avancer sur l'évolution de la structure cristalline du liant phosphate d'aluminium en fonction de la température par des techniques (DRX in situ et DSC), à notre connaissance, encore peu décrites dans le cas de la formulation adoptée (à partir de Lee et al., P/Al = 0,8). Cette démarche distincte est expliquée par le fait que la boehmite conduit à un liant poreux à l'issue de la calcination à 600°C alors que le liant à base de phosphate d'aluminium est quasiment non-poreux.

Nous avons observé que la neutralisation de la pâte peptisée permet d'obtenir des meilleures propriétés texturales pour le liant AlOOH. Ceci est dû au fait que la floculation permet d'agglomérer les agrégats de cristallites du milieu et les flocs formés sont des structures volumineuses qui emprisonnent du liquide environnant à leur intérieur. Cette modification de la structure a directement un effet sur la viscosité du milieu qui augmente avec le taux de neutralisation (TN) jusqu'à atteindre une certaine stabilisation dans la gamme de TN balayée probablement influencée par les fortes concentrations en solide du milieu (fractions volumiques effectives proches de 1). Le couplage entre la rhéologie et la texture de pâtes de boehmite a été inspiré du travail de Drouin et al. et il s'agit d'une étude...
complémentaire car ils ont analysé l'effet du taux acide tandis qu'on s'est concentré sur l'effet du taux de neutralisation. Il serait intéressant d'approfondir dans la caractérisation de ces milieux très polydisperses par SANS, par exemple, couplée à des modèles rhéologiques [Quemada, 1998] afin de faire un lien entre l'organisation à l'échelle des agrégats nanométriques et les propriétés macroscopiques à grande échelle.

Nous avons confirmé la nature quasi-non-poreuse du liant AlPO en accord avec Lee et al qui ont utilisé la même formulation (P/Al = 0,8) pour la mise en forme de zéolithes. En outre, les résultats des caractérisations des propriétés structurales par DRX in situ ont montré que ce liant est plutôt amorphe après séchage (80°C) et dès les faibles températures de calcination (150°C) il se cristallise sous les formes polymorphiques à celles de la silice. Cette technique a mis également en évidence les transformations reconstructives et displacives (α ↔ β) des phases constituant le liant. Par ailleurs, la DSC nous a permis d'identifier leur température de transition vitreuse (Tg) aux alentours de 85°C. Il en résulte que ce liant peut être particulièrement intéressant pour la mise en forme de matériaux sensibles aux températures élevées.

Enfin, nous avons présenté les caractéristiques des matériaux à microstructure multi-échelles préparés à partir de l'assemblage entre les granules d'alumine et chacun des liants. Leur effet combiné sur le procédé de mise en forme a été évalué et, l'évolution des paramètres (couple et pression d'extrusion) est une résultante à la fois de la composition granulaire (taux de petites) comme des nombreux phénomènes physico-chimiques qui ont lieu lors du malaxage (formation in situ des liants).

La microstructure multi-échelles a été obtenue avec chacun des liants. Cependant, la présence de fissures à l'interface granule-liant est principalement observée avec le liant AlOOH du fait du retrait différentiel de la boehmite lors des traitements thermiques et, principalement, du séchage. Malgré le retrait plus important du phosphate d'aluminium, leurs points de contact avec les granules sont beaucoup plus résistants du fait de la présence d'une nouvelle phase au sein du matériau par le biais des réactions chimiques entre l'acide phosphorique, la boehmite et probablement, les propres granules d'alumine.

Le liant AlPO présentant des meilleures propriétés adhésives que la boehmite conduit également à des matériaux beaucoup plus résistants avec des valeurs d'EGG presque quatre fois supérieures à celles des supports mis en forme avec la boehmite. En effet, la rupture a lieu à l'interface granule-liant pour ce dernier alors qu'elle est intra-granulaire (et donc plus difficile) dans le cas du phosphate d'aluminium.
L'empilement granulaire permet un meilleur remplissage des espaces par les petites et les grosses granules et, lors du retrait du liant, celui-ci est minimisé conduisant à des macroporosités plus faibles par rapport aux matériaux constitués uniquement d'une population. L'effet combiné des propriétés du liant et de l'empilement granulaire permet donc d'accroître la tenue mécanique des supports. Des essais mécaniques complémentaires, par des tests de flexion trois points avec entailles, ont montré par ailleurs que les matériaux à microstructure multi-échelles mis en forme avec l'AlPO présentent une meilleure ténacité, soit une meilleure résistance à la propagation des fissures, par rapport aux supports ne contenant que des grosses et à un même volume macroporeux.

L'autre avantage de l'empilement granulaire est la mise en forme de matériaux avec une teneur en liant minimale. Ceci permet d'augmenter la proportion de charges tout en gardant de propriétés mécaniques similaires à celles des matériaux mis en forme avec plus de liant et dont la macroporosité est comparable. Il en résulte que ce résultat est très intéressant dans la préparation de matériaux pour la catalyse où on s'intéresse justement à maximiser la proportion de charges qui porteront par la suite la phase active.

Ce travail visait la faisabilité de la transposition d'un concept ce qui a été confirmé. La préparation de divers matériaux pour la catalyse semble donc possible à partir de la maîtrise de l'empilement granulaire et ce avec n'importe quel type de charges (alumines, silices, zéolithes...). Le concept ouvre donc plein de possibilités (supports, adsorbants, matériaux composites multi-fonctionnels, recyclage...). Par rapport à l'application cible de départ, soit l'hydrotraitement, nous n'avons pas pu évaluer les performances catalytiques des matériaux par tests par exemple, avec des molécules modèles. Il serait pour cela nécessaire d'analyser l'acidité du support et ce, particulièrement pour les matériaux mis en forme avec l'AlPO car les teneurs en phosphore employées sont trop importantes par rapport aux teneurs usuelles dans les supports d'HDT.
Annexes
Annexe A

Définition des entités du milieu granulaire

Plusieurs définitions peuvent être proposées dans la description d'entités d'un milieu granulaire formé à partir de poudres. Les définitions choisies dans ce travail sont données ci-dessous. Elles sont sans doute discutables (notion d'agglomérat de granules), mais permettent dès le début de proposer de manière constante une dénomination qui nous paraît logique.

Les **cristallites** sont les plus petites subdivisions identifiables du milieu granulaire. Elles sont aussi souvent appelées unités élémentaires. L'assemblage de ces unités par le biais de liaisons chimiques (ex. : Al-O-Al) permet la formation des **agrégats** dont la taille peut varier de la dizaine à la centaine de nanomètres.

Les **granules** sont quant à elles constituées de plusieurs agrégats de cristallites agglomérées dont la morphologie est liée au procédé de mise en forme choisi. Dans cette étude, les poudres d'alumine (et de boehmite) utilisées sont issues d'un processus de séchage par atomisation qui permet l'obtention de granules sphériques.

Selon la taille des granules, elles peuvent aussi s'agglomérer dû à la présence de forces attractives faibles de type Van der Waals. L'effet de ces forces attractives est d'autant plus important que la surface spécifique des granules est élevée et leur masse est faible [German, 1989]. Les granules de l'ordre de l'unité de micron sont donc les plus sensibles à la formation de ce qu'on définit comme "**agglomérats de granules**".

Compte-tenu de cette diversité d'échelles dans le milieu granulaire, l'agencement de ces entités peut générer également des différents niveaux de porosité. Les granules utilisées dans cette étude sont dites mésoporeuses. Ceci signifie que l'agencement des cristallites (et agrégats) à l'intérieur des granules génère une **porosité inter-cristallites** ou mésoporosité (Figure A.2).

![Figure A.1 – Différents entités du milieu granulaire.](image-url)
L'empilement de granules micrométriques est responsable de la porosité inter-granules dans le domaine des macropores (> 50 nm) et, si les granules s'agglomèrent, un troisième niveau de porosité peut apparaître et il s'agit de la porosité inter-agglomérats. La figure A.2 schématise ces différentes porosités en fonction de l'entité du milieu granulaire.

Figure A.2 – Niveaux de porosités issues de l'agencement des différentes entités granulaires.
Annexe B

Détermination du facteur critique d'intensité de contrainte (K_{IC})

![Maillage utilisé par Shin et Cai (2004) pour calculer le facteur critique d'intensité de contraintes avec la méthode des éléments finis.](image1)

Compte tenu des dimensions géométriques définies sur la figure B.2, le facteur critique d’intensité de contraintes au niveau du front de fissure peut être exprimé selon la relation suivante :

\[K_I = F_I \sigma \sqrt{a} \] \hspace{1cm} (Équation B.1)

avec \(\sigma \) la contrainte maximale en flexion, \(a \) la profondeur de fissure, et \(F_I \) le facteur de correction géométrique. Ce dernier dépend de la forme de la fissure, et varie le long du front de fissure. Il peut donc être écrit sous la forme :

\[F_I = F_I (a/b, a/D, x/h) \] \hspace{1cm} (Équation B.2)

où \(a/b \) est le rapport caractérisant l’aspect de la fissure, \(a/D \) est le rapport caractérisant la profondeur de fissure, et \(x/h \) caractérise l’emplacement de différents points sur le front de
fissure. Le facteur de correction géométrique a donc été calculé pour différentes profondeurs et formes de fissure, et à différentes localisations sur le front de fissure.

Dans notre cas, le front de fissure est droit donc $a/b=0$ et on s’intéresse au facteur critique d’intensité de contraintes au centre de l’extrudé donc $x/h=0$. En utilisant les valeurs correspondantes de F_I, ainsi que les valeurs de contraintes à rupture obtenues lors des essais de flexion 3 points sur barreaux entaillés, on peut recalculer les valeurs de K_{IC} à partir de la formule B.1.

![Diagramme de fissure elliptique](image.png)

Figure B.2 : Nomenclature utilisée par Shin et Cai (2004) pour un front de fissure elliptique.
Annexe C

Quantification des différentes phases cristallines du liant "AlPO" calciné

Le but de cette étude est de quantifier les phases cristallines dans l'échantillon du liant AlPO calciné à 600°C qui contient quatre phases clairement identifiées et dont les caractéristiques sont les suivantes :

Tableau C.1 – Phases cristallines présentes dans l'AlPO calciné (600°C) et leur fiche ICDD respective.

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>fiche ICDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO</td>
<td>triclinique</td>
<td>04-012-4467</td>
</tr>
<tr>
<td>AlPO</td>
<td>orthorhombique</td>
<td>04-014-2298</td>
</tr>
<tr>
<td>AlPO</td>
<td>hexagonal</td>
<td>04-014-4627</td>
</tr>
<tr>
<td>Al(PO₃)₃</td>
<td>monoclinique</td>
<td>04-008-9730</td>
</tr>
</tbody>
</table>

Diagramme enregistré :

Figure C.1 – Difractogramme du liant AlPO (P/Al = 0,8) calciné à 600°C.
Nous avons réalisé un affinement de Rietveld à l'aide du logiciel TOPAS disponible au laboratoire de DRX de l'IFPEN. L'étude a été entièrement menée par I. Clemençon et V. Moizan et a fait l'objet d'une fiche d'étude et développement dans la direction Caractérisation et Analyses.

L'affinement se fait en 2 étapes :
- analyse en "full pattern matching" qui permet d'affiner d'abord les paramètres de maille et les profils de raies, mais pas l'intensité des raies.
- analyse "Rietveld" après introduction des positions atomiques issues des fiches ICDD pour affiner les facteurs d'échelles et extraire les proportions des différentes phases cristallines.

Nous nous sommes heurtés à un problème de simulation du profil de raie pour la phase AlPO₄ triclinique.

En effet, les raies de cette phase n'ont pas un profil identique sur toutes les raies. Sur la figure ci-dessous où la phase AlPO₄ triclinique est représentée par les bâtonnets roses, nous pouvons observer que la raie (0 4 0) située vers 20.5° 2θ est très fine alors que la raie (0 4 10) située vers 23° 2θ est très large.

Or, nous utilisons un seul profil de raie pour une même phase; c'est une fonction mathématique de type pseudo-voigt qui comporte une contribution gaussienne (liée à la taille des domaines de cohérence) et une contribution lorentzienne (liée à la présence de contraintes).
Si l'échantillon est anisotrope (taille différente suivant la direction donc largeur de raie différente), un seul profil ne suffit pas à simuler correctement la phase et l'affinement n'est pas bon.

Voici le meilleur affinement obtenu (nous avons occulté la phase Al(PO_3)_3, pour simplifier le système) :

![Diagramme de Rietveld de l'affinement de l'AlPO calciné à 600°C.](image)

Nous ne sommes pas satisfaits de cet affinement où le diagramme expérimental en bleu est très différent du diagramme simulé en rouge. Les teneurs calculées ne sont donc pas très fiables.

Pour améliorer cet affinement, nous avons essayé d'introduire d'autres paramètres plus complexes mais nous ne maîtrisons pas assez les fonctions qui s'y réfèrent pour traiter correctement les données (une demande de formation spécifique a été effectuée pour améliorer ce point ...).

Nous avons alors utilisé une autre méthodologie pour effectuer une estimation des proportions de chaque phase : l'utilisation des facteurs de réponse I/I_c de chaque phase donnés dans les fiches ICDD qui sont les suivants :

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>Fiche ICDD</th>
<th>I/I_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO_4</td>
<td>triclinique</td>
<td>04-012-4467</td>
<td>1,34</td>
</tr>
<tr>
<td>AlPO_4</td>
<td>orthorhombique</td>
<td>04-014-2298</td>
<td>5,12</td>
</tr>
<tr>
<td>AlPO_4</td>
<td>hexagonal</td>
<td>04-014-4627</td>
<td>2,98</td>
</tr>
<tr>
<td>Al(PO_3)_3</td>
<td>monoclinique</td>
<td>04-008-9730</td>
<td>1,31</td>
</tr>
</tbody>
</table>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf © [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés
Nous pouvons noter que pour la structure AlPO₄ orthorhombique I/Ic est très grand ce qui signifie qu'à teneur équivalente cette phase répond beaucoup plus que les autres.

Sur les raies les plus isolées de chaque phase (pointées sur la figure ci-dessous), nous avons décomposé le signal pour extraire une aire de raie.

A partir des facteurs de réponses I/Ic et des aires mesurées, nous obtenons les pourcentages relatifs d'erreur suivants pour chaque phase :

<table>
<thead>
<tr>
<th>Type</th>
<th>structure</th>
<th>fiche ICDD</th>
<th>I/Ic</th>
<th>% erreur (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlPO₄</td>
<td>triclinique</td>
<td>04-012-4467</td>
<td>1,34</td>
<td>60 +/- 10 %</td>
</tr>
<tr>
<td>AlPO₄</td>
<td>orthorhombique</td>
<td>04-014-2298</td>
<td>5,12</td>
<td>40 +/- 10 %</td>
</tr>
<tr>
<td>AlPO₄</td>
<td>hexagonal</td>
<td>04-014-4627</td>
<td>2,98</td>
<td>9 +/- 2 %</td>
</tr>
<tr>
<td>Al(PO₃)₃</td>
<td>monoclinique</td>
<td>04-008-9730</td>
<td>1,31</td>
<td>1 +/- 0,5 %</td>
</tr>
</tbody>
</table>

\(^1\) L'erreur sur la mesure n'est pas issue d'une étude statistique. Elle est seulement estimée à partir des différents essais de décomposition des raies effectués et des variations observées après traitement des données.
Annexe D

Analyse de la structure cristalline formée par réaction entre Al₂O₃ et H₃PO₄

Nous avons voulu ici préciser si l'AlPO pouvait aussi être formé à partir de la réaction de l'acide phosphorique avec l'alumine (Sasol – 19 µm), comme c'est le cas avec la boehmite (Pural SB3). Les diffractogrammes de ces deux produits (obtenus en utilisant le même ratio P/Al de 0,8) après calcination à 600°C sont présentés ci-dessous.

![Figure D.1 – Superposition des diffractogrammes des composés obtenus par réaction entre l'acide phosphorique et la boehmite ou avec l'alumine (Sasol – 19 µm) au même ratio P/Al = 0,8.](image)

Nous constatons que les diffractogrammes se superposent et on retrouve exactement les mêmes phases cristallines (AlPO₄ – berlinite, type-cristobalite et type-tridymite).

Par ailleurs, la physisorption d'azote confirme également que les deux composés sont presque non-poreux avec une surface spécifique aux alentours de 1 m²/g comme le montre la figure ci-après.

Ces résultats confirment donc que le phosphate d'aluminium peut être obtenu à partir des oxydes ou oxy-hydroxydes d'aluminium présentant les mêmes caractéristiques structurales et texturales comme évoqué dans la littérature. La cinétique de réaction est cependant différente puisqu'elle dépend, entre autres, du degré de cristallinité et de la surface spécifique des précurseurs d'aluminium.
Figure D.2 – Isothermes d'adsorption d'azote des composés obtenus par réaction entre l'acide phosphorique et la boehmrite (AlOOH + H₃PO₄) ou avec l'alumine (Sasol – 19 µm) (Al₂O₃ + H₃PO₄) au même ratio P/Al = 0,8.
Références bibliographiques

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf

© [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés

Le Roy R., Déformations instantanées et différées des bétons à hautes performances, Laboratoire Central des Ponts et Chaussées, p. 15-78, 1996.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0056/these.pdf © [S. Cassiano Gaspar], [2013], INSA de Lyon, tous droits réservés

Résumé:
L'empilement maîtrisé de granules de différentes tailles est un concept utilisé dans la plupart de procédés de mise en forme de matériau. Cette organisation hiérarchique est connue pour améliorer les propriétés d'écoulement à l'étape de mise en forme et les caractéristiques mécaniques du matériau final. Il est apparu intéressant d'appliquer ce concept à la mise en forme par extrusion de supports de catalyseurs avec des petites (2 µm) et grosses (19 µm) granules d'alumine poreuse dont l'assemblage est assuré par un liant traditionnel, la boehmite peptisée et neutralisée, ou par un liant plus original, le phosphate d'aluminium. L'étude vise ainsi à évaluer l'effet du liant et de la microstructure multi-échelles apportée par l'organisation hiérarchique des granules, sur les propriétés texturales et mécaniques des supports.

Le contrôle des conditions de mise en forme et l'optimisation de la formulation des deux liants ont permis d'obtenir des extrudés à microstructure comparable entre la boehmite et le phosphate d'aluminium et variable en fonction de la proportion de petites. Cette population remplit les espaces entre les grosses granules de manière optimale entre 40 et 60% pds et les desserre aux plus fortes teneurs. La rétraction du liant au cours des traitements thermiques génère un volume de macropores qui est minimisé lorsque les petites granules comblent les espaces formés par les grosses. La macroporosité minimale conduit à de meilleures résistances à la rupture (par tests d'écrasement de type brésilien) et les matériaux les plus résistants sont ceux mis en forme avec le phosphate d'aluminium. Ce résultat est expliqué par la nature très cohésive de ce liant formée in situ par réaction de l'acide phosphorique avec la boehmite et la périphérie des granules d'alumine. Dans ce cas, la rupture a lieu au sein des granules diffèrentes des supports mis en forme avec la boehmite peptisée à l'acide nitrique qui présentent une rupture à l'interface granule-liant. Les matériaux à microstructure multi-échelles présentent également une meilleure ténacité déterminée par des essais de flexion trois points. Le phosphate d'aluminium étant un liant non-poreux conduit à des supports avec une mésoporosité plus faible. Les nouveaux supports à microstructure multi-échelles semblent prometteurs pour des nombreuses applications catalytiques sensibles aux propriétés diffusionnelles et mécaniques.

Mots clés : support de catalyseur, alumine, boehmite, phosphate d'aluminium, empilement, résistance mécanique.

Abstract:
The controlled packing of different sized-granules is a concept widely used in most of the shaping material processes. This hierarchical organization is known to improve the flow properties during shaping and the mechanical characteristics of the finished material. It seemed interesting to apply this concept in order to prepare catalyst supports by extrusion containing small (2 µm) and large (19 µm) porous alumina granules assembled by a traditional binder, the peptized and neutralized boehmite, or by a more original, an aluminum phosphate binder. This study aims to investigate the effect of binder type and of the multiscale microstructure achieved by the packing of different granules size on textural and mechanical support properties. The control of kneading and extrusion conditions associated with the optimized binder formulation, conducted to similar microstructures with both binders according to the amount of each granular population. Small granules fills better the residual spaces between the larges between 40 and 60 wt.% and loosens them with strongest contents. Binder shrinkage during heat treatment generates a macroporosity which is minimized when small granules fills the voids formed by the larger ones. Minimal macroporosity leads to better crushing resistance (by Brazilian test) and the most resistant materials are the ones shaped with the aluminum phosphate. This result is explained by the high cohesive capacity of this binder obtained in situ by reaction of the phosphoric acid with the boehmite and the border of the alumina granules. In this case, the breakage takes place inside the granules differently from the supports shaped with the peptized boehmite by nitric acid which present a breakage at the granule-binder interface. Also, the multiscale microstructure materials present a better tenacity determined by three point bending. Aluminum phosphate being a non-porous binder, leads to supports with a weaker mesoporosity. The new multiscale microstructure supports seem interesting for several catalytic applications that are sensitive to diffusivity and mechanical properties.

Keywords: catalyst support, alumina, boehmite, aluminum phosphate, packing, mechanical strength.