M. S. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Magnetoencephalography???theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, vol.65, issue.2, pp.413-497, 1993.
DOI : 10.1103/RevModPhys.65.413

H. Hallez, B. Vanrumste, R. Grech, J. Muscat, W. De-clerq et al., Review on solving the forward problem in EEG source analysis, Journal of NeuroEngineering and Rehabilitation, vol.4, issue.1, 2007.
DOI : 10.1186/1743-0003-4-46

A. Gramfort, Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00426852

J. S. Ebersole, Noninvasive Localization of Epileptogenic Foci by EEG Source Modeling, Epilepsia, vol.119, issue.s3, pp.24-33, 2000.
DOI : 10.1109/10.704867

I. Merlet, Dipole modeling of interictal and ictal EEG and MEG, Epileptic Disord Special Issue, pp.11-36, 2001.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli et al., EEG source imaging, Clinical Neurophysiology, vol.115, issue.10, pp.2195-2222, 2004.
DOI : 10.1016/j.clinph.2004.06.001

URL : https://hal.archives-ouvertes.fr/hal-00617795

M. Gavaret, J. Badier, P. Marquis, A. Mcgonigal, F. Bartolomei et al., Electric Source Imaging in Frontal Lobe Epilepsy, Journal of Clinical Neurophysiology, vol.23, issue.4, pp.358-370, 2006.
DOI : 10.1097/01.wnp.0000214588.94843.c2

C. Plummer, A. S. Harvey, and M. Cook, EEG source localization in focal epilepsy: Where are we now?, Epilepsia, vol.1, issue.2, pp.201-218, 2008.
DOI : 10.1016/j.clinph.2006.07.319

F. Bijma, Mathematical modelling of magnetoencephalographic data, 2005.

H. H. Jasper, The ten-twenty electrode system of the International Federation, Electroencephalography Clinical Neurophysiology, vol.10, pp.371-375, 1958.

G. E. Chatrian, E. Lettich, and P. L. Nelson, Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity, American Journal of EEG Technology, vol.25, pp.83-92, 1985.

R. Oostenveld and P. Praamstra, The five percent electrode system for high-resolution EEG and ERP measurements, Clinical Neurophysiology, vol.112, issue.4, pp.713-719, 2001.
DOI : 10.1016/S1388-2457(00)00527-7

A. M. Dale and M. I. Sereno, Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach, Journal of Cognitive Neuroscience, vol.14, issue.2, pp.162-176, 1993.
DOI : 10.1007/BF02442317

D. Cosandier-rimélé, J. Badier, P. Chauvel, and F. Wendling, A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy, IEEE Transactions on Biomedical Engineering, vol.54, issue.3, pp.380-388, 2007.
DOI : 10.1109/TBME.2006.890489

G. Birot, L. Albera, F. Wendling, and I. Merlet, Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach, NeuroImage, vol.56, issue.1, pp.102-113, 2011.
DOI : 10.1016/j.neuroimage.2011.01.054

URL : https://hal.archives-ouvertes.fr/inserm-00588305

L. Albera, A. Ferréol, D. Cosandier-rimélé, I. Merlet, and F. Wendling, Brain Source Localization Using a Fourth-Order Deflation Scheme, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.490-501, 2008.
DOI : 10.1109/TBME.2007.905408

URL : https://hal.archives-ouvertes.fr/inserm-00255994

Y. Cointepas, D. Geoffrey, N. Souedet, I. Denghien, and D. Rivière, The Brain- VISA project: a shared software development infrastructure for biomedical imaging research, Proc. of 16th HBM, 2010.

D. Rivière, J. Régis, Y. Cointepas, D. Papadopoulos-orfanos, A. Cachia et al., A freely available Anatomis/BrainVISA package for structural morphometry of the cortical sulci, NeuroImage, vol.19, issue.2, p.934, 2003.

F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, Brainstorm: A User-Friendly Application for MEG/EEG Analysis, Computational Intelligence and Neuroscience, vol.57, issue.1, 2011.
DOI : 10.1002/hbm.20781

A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, OpenMEEG: opensource software for quasi static bioelectromagnetics, BioMedical Engineering OnLine, vol.45, issue.9, 2010.

J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven et al., A common formalism for the Integral formulations of the forward EEG problem, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.12-28, 2005.
DOI : 10.1109/TMI.2004.837363

D. Cosandier-rimélé, I. Merlet, J. Badier, P. Chauvel, and F. Wendling, The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy, NeuroImage, vol.42, issue.1, pp.135-146, 2008.
DOI : 10.1016/j.neuroimage.2008.04.185

R. Vigario and E. Oja, BSS and ICA in Neuroinformatics: From Current Practices to Open Challenges, IEEE Reviews in Biomedical Engineering, vol.1, pp.50-61, 2008.
DOI : 10.1109/RBME.2008.2008244

T. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. Mckeown et al., Removing electroencephalographic artifacts by blind source separation, Psychophysiology, vol.37, issue.2, pp.163-178, 2000.
DOI : 10.1111/1469-8986.3720163

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Vigario, J. Sarela, V. Jousmaki, M. Hämäläinen, and E. Oja, Independent component approach to the analysis of EEG and MEG recordings, IEEE Transactions on Biomedical Engineering, vol.47, issue.5, pp.589-593, 2000.
DOI : 10.1109/10.841330

E. Urrestarazu, J. Iriarte, M. Alegre, M. Valencia, C. Viteri et al., Independent Component Analysis Removing Artifacts in Ictal Recordings, Epilepsia, vol.42, issue.9, pp.1071-1078, 2004.
DOI : 10.1097/00004691-200203000-00002

W. De-clerq, A. Vergult, B. Vanrumste, W. Van-paesschen, and S. Van-huffel, Canonical correlation analysis applied to remove muscle artefacts from the electroencephalogram, IEEE Transactions on Biomedical Engineering, pp.2583-2587, 2006.

B. W. Mcmenamin, A. J. Shackman, J. S. Maxwell, D. R. Bachhuber, A. M. Koppenhaver et al., Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG, NeuroImage, vol.49, issue.3, pp.2416-2432, 2010.
DOI : 10.1016/j.neuroimage.2009.10.010

A. Belouchrani, K. Abed-meraim, J. Cardoso, and E. Moulines, A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.434-444, 1997.
DOI : 10.1109/78.554307

L. Albera, A. Kachenoura, P. Comon, A. Karfoul, F. Wendling et al., ICA-based EEG demonising: a comparative analysis of fifteen methods, Special Issue of the Bulletin of the Polish Academy of Sciences -Technical sciences, vol.60, issue.3, pp.407-418, 2012.

A. Delorme, J. Palmer, J. Onton, T. Oostenveld, and S. Makeig, Independent EEG Sources Are Dipolar, PLoS ONE, vol.16, issue.3, 2012.
DOI : 10.1371/journal.pone.0030135.t001

URL : https://hal.archives-ouvertes.fr/hal-00674521

P. Comon, Independent component analysis, A new concept?, Signal Processing, vol.36, issue.3, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283

W. Lu and J. C. Rajapakse, Approach and Applications of Constrained ICA, IEEE Transactions on Neural Networks, vol.16, issue.1, pp.203-212, 2005.
DOI : 10.1109/TNN.2004.836795

W. Lu and J. C. Rajapakse, Constrained independent component analysis, Advances in Neural Information Processing Systems, pp.570-576, 2000.

A. Adib, E. Moreau, and D. Aboutajdine, Source Separation Contrasts Using a Reference Signal, IEEE Signal Processing Letters, vol.11, issue.3, pp.312-315, 2004.
DOI : 10.1109/LSP.2003.822894

URL : https://hal.archives-ouvertes.fr/hal-01479847

W. Lu and J. C. Rajapakse, ICA with Reference, Neurocomputing, vol.69, issue.16-18, pp.2244-2257, 2006.
DOI : 10.1016/j.neucom.2005.06.021

D. S. Huang and J. Mi, A New Constrained Independent Component Analysis Method, IEEE Transactions on Neural Networks, vol.18, issue.5, pp.1532-1535, 2007.
DOI : 10.1109/TNN.2007.895910

J. Mi, A Novel Algorithm for Independent Component Analysis with Reference and Methods for Its Applications, PLoS ONE, vol.17, issue.5, 2014.
DOI : 10.1371/journal.pone.0093984.t004

A. Hyvärinen and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, vol.13, issue.4-5, pp.411-430, 2000.
DOI : 10.1016/S0893-6080(00)00026-5

P. A. Regalia, An adaptive unit norm filter with applications to signal analysis and Karhunen-Loeve transformations, IEEE Transactions on Circuits and Systems, vol.37, issue.5, 1990.
DOI : 10.1109/31.55009

N. Delfosse and P. Loubaton, Adaptive blind separation of independent sources: A deflation approach, Signal Processing, vol.45, issue.1, pp.59-83, 1995.
DOI : 10.1016/0165-1684(95)00042-C

A. Vergult, W. De-clerq, A. Palmini, B. Vanrumste, P. Dupont et al., Improving the Interpretation of Ictal Scalp EEG: BSS?CCA Algorithm for Muscle Artifact Removal, Epilepsia, vol.42, issue.5, pp.950-958, 2007.
DOI : 10.1046/j.1528-1157.2002.37501.x

X. Luciani and L. Albera, Canonical Polyadic Decomposition based on joint eigenvalue decomposition, Chemometrics and Intelligent Laboratory Systems, vol.132, pp.152-167, 2014.
DOI : 10.1016/j.chemolab.2013.12.009

URL : https://hal.archives-ouvertes.fr/hal-00949746

T. W. Lee, M. Girolami, and T. J. Sejnowski, Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources, Neural Computation, vol.28, issue.46, pp.417-441, 1999.
DOI : 10.1109/72.536322

J. F. Cardoso and A. Souloumiac, Blind beamforming for non-gaussian signals, IEE Proceedings F Radar and Signal Processing, vol.140, issue.6, pp.362-370, 1993.
DOI : 10.1049/ip-f-2.1993.0054

A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions on Neural Networks, vol.10, issue.3, pp.626-634, 1999.
DOI : 10.1109/72.761722

V. Zarzoso and P. Comon, Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size, IEEE Transactions on Neural Networks, vol.21, issue.2, pp.248-261, 2010.
DOI : 10.1109/TNN.2009.2035920

URL : https://hal.archives-ouvertes.fr/hal-00457300

A. Ferréol, L. Albera, and P. Chevalier, Fourth order blind identification of underdetermined mixtures of sources (FOBIUM), IEEE Transactions on Signal Processing, vol.53, issue.3, pp.1254-1271, 2005.

L. De-lathauwer, J. Castaing, and J. F. Cardoso, Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures, IEEE Transactions on Signal Processing, vol.55, issue.6, pp.2965-2973, 2007.
DOI : 10.1109/TSP.2007.893943

V. Zarzoso, P. Comon, and R. Phlypo, A Contrast Function for Independent Component Analysis Without Permutation Ambiguity, IEEE Transactions on Neural Networks, vol.21, issue.5, pp.863-868, 2010.
DOI : 10.1109/TNN.2010.2045128

URL : https://hal.archives-ouvertes.fr/hal-00543058

L. Albera, A. Ferréol, P. Chevalier, and P. Comon, ICAR: a tool for blind source separation using fourth-order statistics only, IEEE Transactions on Signal Processing, vol.53, issue.10, pp.3633-3643, 2005.
DOI : 10.1109/TSP.2005.855089

URL : https://hal.archives-ouvertes.fr/hal-00743890

A. Karfoul, L. Albera, and L. De-lathauwer, Iterative methods for the canonical decomposition of multi-way arrays: Application to blind underdetermined mixture identification, Signal Processing, vol.91, issue.8, pp.1789-1802, 2011.
DOI : 10.1016/j.sigpro.2011.02.003

URL : https://hal.archives-ouvertes.fr/hal-00591824

V. Zarzoso, P. Comon, and M. Kallel, How fast is FastICA?, European Signal Processing Conference (EUSIPCO), 2006.

P. Comon, Séparation de mélanges de signaux, XIIème Colloque Gretsi, Juan les Pins, pp.12-16, 1989.

P. Comon, Analyse en Composantes Indépendantes et identification aveugle, Numero special non lineaire et non gaussien, pp.435-450, 1990.

L. Albera, P. Comon, and H. Xu, SAUD, un algorithme d'ICA par déflation semialgébrique, Colloque GRETSI, pp.1013-1016, 2007.

P. Comon, X. Luciani, and A. L. De-almeida, Tensor decompositions, alternating least squares and other tales, Journal of Chemometrics, vol.78, issue.8, pp.393-405, 2009.
DOI : 10.1016/j.laa.2009.01.014/

URL : https://hal.archives-ouvertes.fr/hal-00410057

B. Makki-abadi, D. Jarchi, and S. Sanei, Simultaneous localization and separation of biomedical signals by tensor factorization, IEEE Proc. of 15th Workshop on Statistical Signal Processing, pp.497-500, 2009.

B. Makkiabadi, D. Jarchi, and S. Sanei, Blind separation and localization of correlation P300 subcomponents from single trial recordings using extended PARAFAC2 tensor model, Proc. of 33rd Annual International Conference of the IEEE EMBS, pp.6955-6958, 2011.

M. Weis, D. Jannek, F. Römer, T. Günther, M. Haardt et al., Multidimensional PARAFAC2 component analysis of multi-channel EEG data including temporal tracking, IEEE Proc. of EMBC, 2010.

M. Weis, D. Jannek, T. Günther, P. Husar, F. Römer et al., Temporally resolved multi-way component analysis of dynamic sources in event-related EEG data using PARAFAC2, IEEE Proc. of EUSIPCO, pp.696-700, 2010.

K. H. Knuth, A. S. Shah, W. A. Truccolo, M. Ding, S. L. Bressler et al., Differentially Variable Component Analysis: Identifying Multiple Evoked Components Using Trial-to-Trial Variability, Journal of Neurophysiology, vol.95, issue.5, pp.3257-3276, 2006.
DOI : 10.1152/jn.00663.2005

M. Morup, L. K. Hansen, S. M. Arnfred, L. Lim, and K. H. Madsen, Shift-invariant multilinear decomposition of neuroimaging data, NeuroImage, vol.42, issue.4, pp.1439-1450, 2008.
DOI : 10.1016/j.neuroimage.2008.05.062

M. Morup, L. K. Hansen, and K. H. Madsen, Modeling latency and shape changes in trial based neuroimaging data, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011.
DOI : 10.1109/ACSSC.2011.6190037

J. Möcks, Decomposing event-related potentials: A new topographic components model, Biological Psychology, vol.26, issue.1-3, pp.199-215, 1988.
DOI : 10.1016/0301-0511(88)90020-8

J. Möcks, Topographic components model for event-related potentials and some biophysical considerations, IEEE Transactions on Biomedical Engineering, vol.35, issue.6, pp.482-484, 1988.
DOI : 10.1109/10.2119

A. S. Field and D. Graupe, Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition, Brain Topography, vol.59, issue.4, pp.407-423, 1991.
DOI : 10.1007/BF01129000

F. Miwakeichi, E. Martinez-montes, P. A. Valdes-sosa, N. Nishiyama, H. Mizuhara et al., Decomposing EEG data into space???time???frequency components using Parallel Factor Analysis, NeuroImage, vol.22, issue.3, pp.1035-1045, 2004.
DOI : 10.1016/j.neuroimage.2004.03.039

M. Morup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred, Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG, NeuroImage, vol.29, issue.3, pp.938-947, 2006.
DOI : 10.1016/j.neuroimage.2005.08.005

M. D. Vos, L. De-lathauwer, V. Vanrumste, S. Van-huffel, and W. Van-paesschen, Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulations study, Computational Intelligence and Neuroscience, 2007.

M. D. Vos, A. Vergult, L. De-lathauwer, W. De-clercq, S. Van-huffel et al., Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone, NeuroImage, vol.37, issue.3, pp.844-854, 2007.
DOI : 10.1016/j.neuroimage.2007.04.041

P. Visser and . Govaert, Neonatal seizure localization using Parafac decomposition, Clinical Neurophysiology, vol.120, pp.1787-1796, 2009.

M. Weis, F. Römer, M. Haardt, D. Jannek, and P. Husar, Multi-dimensional space-time-frequency component analysis of event related EEG data using closedform PARAFAC, IEEE Proc. of ICASSP, pp.349-352, 2009.

T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

R. Bro, Multi-way analysis in the food industry: Models, algorithms and applications, 1998.

N. D. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, Journal of Chemometrics, vol.14, issue.3, pp.229-239, 2000.
DOI : 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.3.CO;2-E

L. Lim and P. Comon, Blind Multilinear Identification, IEEE Transactions on Information Theory, vol.60, issue.2, pp.1260-12801212, 2013.
DOI : 10.1109/TIT.2013.2291876

URL : https://hal.archives-ouvertes.fr/hal-00763275

A. H. Phan, P. Tichavský, and A. Cichocki, Low Complexity Damped Gauss--Newton Algorithms for CANDECOMP/PARAFAC, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.1, pp.126-147, 2013.
DOI : 10.1137/100808034

L. Sorber, M. Van-barel, and L. De-lathauwer, Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-$(L_r,L_r,1)$ Terms, and a New Generalization, SIAM Journal on Optimization, vol.23, issue.2, pp.695-720, 2013.
DOI : 10.1137/120868323

F. Römer and M. Haardt, A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI), Signal Processing, vol.93, issue.9, pp.2462-2473, 2013.
DOI : 10.1016/j.sigpro.2013.02.016

S. Hajipour-sardouie, L. Albera, M. B. Shamsollahi, and I. Merlet, From simultaneous Schur decomposition to canonical polyadic decomposition of complexvalued multi-way arrays, 2013.

X. Luciani and L. Albera, Semi-algebraic canonical decomposition of multi-way arrays and Joint Eigenvalue Decomposition, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4104-4107, 2011.
DOI : 10.1109/ICASSP.2011.5947255

URL : https://hal.archives-ouvertes.fr/hal-00595092

X. Luciani and L. Albera, Joint Eigenvalue Decomposition of Non-Defective Matrices Based on the LU Factorization With Application to ICA, IEEE Transactions on Signal Processing, vol.63, issue.17, 2014.
DOI : 10.1109/TSP.2015.2440219

URL : https://hal.archives-ouvertes.fr/hal-01479797

M. Unser, A. Aldroubi, and S. J. Schiff, Fast implementation of the continuous wavelet transform with integer scales, IEEE Transactions on Signal Processing, vol.42, issue.12, 1994.
DOI : 10.1109/78.340787

O. Rioul and P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.569-586, 1992.
DOI : 10.1109/18.119724

P. Comon and G. H. Golub, Tracking a few extreme singular values and vectors in signal processing, Proceedings of the IEEE, vol.78, issue.8, pp.287-314, 1990.
DOI : 10.1109/5.58320

R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri et al., Review on solving the inverse problem in EEG source analysis, Journal of NeuroEngineering and Rehabilitation, vol.5, issue.1, 2008.
DOI : 10.1186/1743-0003-5-25

J. C. Mosher, P. S. Lewis, and R. M. Leahy, Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Transactions on Biomedical Engineering, vol.39, issue.6, pp.541-557, 1992.
DOI : 10.1109/10.141192

J. C. Mosher and R. M. Leahy, Source localization using recursively applied and projected (RAP) MUSIC, IEEE Transactions on Signal Processing, vol.47, issue.2, pp.332-340, 1999.
DOI : 10.1109/78.740118

K. Sekihara, M. Sahani, and S. S. Nagarajan, Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction, NeuroImage, vol.25, issue.4, pp.1056-1067, 2005.
DOI : 10.1016/j.neuroimage.2004.11.051

J. Tao, S. Hawes-ebersole, and J. Ebersole, Intracranial EEG Substrates of Scalp EEG Interictal Spikes, Epilepsia, vol.60, issue.5, pp.669-676, 2005.
DOI : 10.1023/A:1012944913650

I. Merlet and J. Gotman, Reliability of dipole models of epileptic spikes, Clinical Neurophysiology, vol.110, issue.6, pp.1013-1028, 1999.
DOI : 10.1016/S1388-2457(98)00062-5

J. S. Ebersole, Magnetoencephalography/Magnetic Source Imaging in the Assessment of Patients with Epilepsy, Epilepsia, vol.34, issue.s4, pp.1-5, 1997.
DOI : 10.1016/0896-6974(95)00021-5

N. Mikuni, T. Nagamine, A. Ikeda, K. Terada, W. Taki et al., Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy, NeuroImage, vol.5, issue.4, pp.298-306, 1997.
DOI : 10.1006/nimg.1997.0272

M. Oishi, H. Otsubo, S. Kameyama, N. Morota, H. Masuda et al., Epileptic Spikes: Magnetoencephalography versus Simultaneous Electrocorticography, Epilepsia, vol.19, issue.suppl 3, pp.1390-1395, 2002.
DOI : 10.1046/j.1528-1157.2002.10702.x

H. Shigeto, T. Morioka, K. Hisada, S. Nishio, H. Ishibashi et al., Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: Simultaneous recording of magnetic fields and electrocorticography, Neurological Research, vol.24, issue.6, pp.531-536, 2002.
DOI : 10.1109/10.245606

M. S. Hämäläinen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: Estimates of current distributions, 1984.

A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau et al., Dynamic Statistical Parametric Mapping, Neuron, vol.26, issue.1, pp.55-67, 2000.
DOI : 10.1016/S0896-6273(00)81138-1

R. D. Pascual-marqui, C. M. Michel, and D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain, International Journal of Psychophysiology, vol.18, issue.1, pp.49-65, 1994.
DOI : 10.1016/0167-8760(84)90014-X

M. Wagner, M. Fuchs, H. A. Wischmann, and R. Drenckhahn, Smooth reconstruction of cortical sources from EEG or MEG recordings, NeuroImage, vol.3, issue.3, p.168, 1996.
DOI : 10.1016/S1053-8119(96)80170-4

F. Lin, J. W. Belliveau, A. M. Dale, and M. S. Hämäläinen, Distributed current estimates using cortical orientation constraints, Human Brain Mapping, vol.10, issue.1, pp.1-13, 2006.
DOI : 10.1002/hbm.20155

P. Xu, Y. Tian, H. Chen, and D. Yao, Lp Norm Iterative Sparse Solution for EEG Source Localization, IEEE Transactions on Biomedical Engineering, vol.54, issue.3, 2007.
DOI : 10.1109/TBME.2006.886640

I. F. Gorodnitsky, J. S. George, and B. D. Rao, Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm, Electroencephalography and Clinical Neurophysiology, vol.95, issue.4, pp.231-251, 1995.
DOI : 10.1016/0013-4694(95)00107-A

I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing, vol.45, issue.3, pp.600-615, 1997.
DOI : 10.1109/78.558475

K. Matsuura and Y. Okabe, Selective minimum-norm solution of the biomagnetic inverse problem, IEEE Transactions on Biomedical Engineering, vol.42, issue.6, pp.608-615, 1995.
DOI : 10.1109/10.387200

K. Matsuura and Y. Okabe, A robust reconstruction of sparse biomagnetic sources, IEEE Transactions on Biomedical Engineering, vol.44, issue.8, pp.720-726, 1997.
DOI : 10.1109/10.605428

K. Uutela, M. Hämäläinen, and E. Somersalo, Visualization of Magnetoencephalographic Data Using Minimum Current Estimates, NeuroImage, vol.10, issue.2, pp.173-180, 1999.
DOI : 10.1006/nimg.1999.0454

M. Huang, A. M. Dale, T. Song, E. Halgren, D. L. Harrington et al., Vector-based spatial???temporal minimum L1-norm solution for MEG, NeuroImage, vol.31, issue.3, pp.1025-1037, 2006.
DOI : 10.1016/j.neuroimage.2006.01.029

L. Ding and B. He, Sparse source imaging in EEG with accurate field modeling, Human Brain Mapping, vol.19, 2008.

M. Vega-hernández, E. Martínes-montes, J. M. Sánchez-bornot, A. Lage-castellanos, and P. A. Valdés-sosa, Penalized least squares methods for solving the EEG inverse problem, Statistics Sinica, vol.18, pp.1535-1551, 2008.

W. Chang, A. Nummenmaa, J. Hsieh, and F. Lin, Spatially sparse source cluster modeling by compressive neuromagnetic tomography, NeuroImage, vol.53, issue.1, 2010.
DOI : 10.1016/j.neuroimage.2010.05.013

S. Haufe, V. Nikulin, A. Ziehe, K. Mueller, and G. Nolte, Combining sparsity and rotational invariance in EEG/MEG source reconstruction, NeuroImage, vol.42, issue.2, 2008.
DOI : 10.1016/j.neuroimage.2008.04.246

L. Ding, Reconstructing cortical current density by exploring sparseness in the transform domain, Physics in Medicine and Biology, vol.54, issue.9, pp.2683-2697, 2009.
DOI : 10.1088/0031-9155/54/9/006

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, vol.20, issue.12, pp.89-97, 2004.

G. Adde, M. Clerc, and R. Keriven, Imaging methods for MEG/EEG inverse problem, Proc. Joint Meeting of 5th International Conference on Bioelectromagnetism and 5th International Symposium on Noninvasive Functional Source Imaging, 2005.

K. Liao, M. Zhu, L. Ding, S. Valette, W. Zhang et al., Sparse imaging of cortical electrical current densities via wavelet transforms, Physics in Medicine and Biology, vol.57, issue.21, pp.6881-6901, 2012.
DOI : 10.1088/0031-9155/57/21/6881

URL : https://hal.archives-ouvertes.fr/hal-00822508

K. Liao, M. Zhu, and L. Ding, A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems, Computer Methods and Programs in Biomedicine, vol.111, issue.2, pp.376-388, 2013.
DOI : 10.1016/j.cmpb.2013.04.015

M. Zhu, W. Zhang, D. L. Dickens, and L. Ding, Reconstructing spatially extended brain sources via enforcing multiple transform sparseness, NeuroImage, vol.86, pp.280-293, 2014.
DOI : 10.1016/j.neuroimage.2013.09.070

F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming, vol.95, issue.1, 2001.
DOI : 10.1007/s10107-002-0339-5

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

A. Gramfort, M. Kowalski, and M. Hämäläinen, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine and Biology, vol.57, issue.7, pp.1937-1961, 2012.
DOI : 10.1088/0031-9155/57/7/1937

URL : https://hal.archives-ouvertes.fr/hal-00690774

E. Ou, M. Hämäläinen, and P. Golland, A distributed spatio-temporal EEG/MEG inverse solver, NeuroImage, vol.44, 2009.

J. Montoya-martínez, A. Artés-rodríguez, M. Pontil, and L. K. Hansen, A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem, EURASIP Journal on Advances in Signal Processing, vol.2014, issue.1, 2014.
DOI : 10.1186/1687-6180-2014-97

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

T. S. Tian and Z. Li, A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods, Statistics and Its Interface, vol.4, issue.4, pp.521-533, 2011.

A. Gramfort, D. Strohmeier, J. Haueisen, M. Hämäläinen, and M. Kowalski, Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations, NeuroImage, vol.70, pp.410-422, 2013.
DOI : 10.1016/j.neuroimage.2012.12.051

URL : https://hal.archives-ouvertes.fr/hal-00773276

A. Bolstad, B. Van-veen, and R. Nowak, Space???time event sparse penalization for magneto-/electroencephalography, NeuroImage, vol.46, issue.4, pp.1066-1081, 2009.
DOI : 10.1016/j.neuroimage.2009.01.056

D. Wipf and S. Nagarajan, A unified Bayesian framework for MEG/EEG source imaging, NeuroImage, vol.44, issue.3, pp.947-966, 2009.
DOI : 10.1016/j.neuroimage.2008.02.059

J. Daunizeau and K. Friston, A mesostate-space model for EEG and MEG, NeuroImage, vol.38, issue.1, pp.67-81, 2007.
DOI : 10.1016/j.neuroimage.2007.06.034

K. J. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips et al., Multiple sparse priors for the M/EEG inverse problem, NeuroImage, vol.39, issue.3, pp.1104-1120, 2008.
DOI : 10.1016/j.neuroimage.2007.09.048

K. J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton et al., Classical and Bayesian Inference in Neuroimaging: Theory, NeuroImage, vol.16, issue.2, pp.465-483, 2002.
DOI : 10.1006/nimg.2002.1090

C. Phillips, J. Mattout, M. Rugg, P. Maquet, and K. Friston, An empirical Bayesian solution to the source reconstruction problem in EEG, NeuroImage, vol.24, issue.4, pp.997-1011, 2005.
DOI : 10.1016/j.neuroimage.2004.10.030

J. Mattout, C. Phillips, W. Penny, M. Rugg, and K. Friston, MEG source localization under multiple constraints: An extended Bayesian framework, NeuroImage, vol.30, issue.3, pp.753-767, 2006.
DOI : 10.1016/j.neuroimage.2005.10.037

D. Wipf, J. Owen, H. Attias, K. Sekihara, and S. Nagarajan, Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG, NeuroImage, vol.49, issue.1, pp.641-655, 2010.
DOI : 10.1016/j.neuroimage.2009.06.083

J. P. Owen, D. Wipf, H. Attias, K. Sekihara, and S. Nagarajan, Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data, NeuroImage, vol.60, issue.1, pp.305-323, 2012.
DOI : 10.1016/j.neuroimage.2011.12.027

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statisitcal Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

J. Gross, J. Kujala, M. Hämäläinen, L. Timmermann, A. Schnitzler et al., Dynamic imaging of coherent sources: Studying neural interactions in the human brain, Proceedings of the National Academy of Sciences, vol.98, issue.2, pp.694-699, 2001.
DOI : 10.1073/pnas.98.2.694

B. C. Van-veen, W. Van-drongelen, M. Yuchtman, and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Transactions on Biomedical Engineering, vol.44, issue.9, 1997.
DOI : 10.1109/10.623056

K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique, IEEE Transactions on Biomedical Engineering, vol.48, issue.7, pp.760-771, 2001.
DOI : 10.1109/10.930901

K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, Application of an MEG eigenspace beamformer to reconstructing spatio-temporal activities of neural sources, Human Brain Mapping, vol.43, issue.4, pp.199-215, 2002.
DOI : 10.1002/hbm.10019

K. Sekihara, S. S. Nagarajan, D. Poeppel, and A. Marantz, Performance of an MEG adaptive-beamformer technique in the presence of correlated neural activities: effects on signal intensity and time-course estimates, IEEE Transactions on Biomedical Engineering, vol.49, issue.12, pp.1534-1546, 2002.
DOI : 10.1109/TBME.2002.805485

S. S. Dalal, K. Sekihara, and S. S. Nagarajan, Modified Beamformers for Coherent Source Region Suppression, IEEE Transactions on Biomedical Engineering, vol.53, issue.7, pp.1357-1363, 2006.
DOI : 10.1109/TBME.2006.873752

M. J. Brookes, C. M. Stevenson, G. R. Barnes, A. Hillebrand, M. I. Simpson et al., Beamformer reconstruction of correlated sources using a modified source model, NeuroImage, vol.34, issue.4, pp.1454-1465, 2007.
DOI : 10.1016/j.neuroimage.2006.11.012

M. Popescu, E. Popescu, T. Chan, S. Blunt, and J. Lewine, Spatio&#x2013;Temporal Reconstruction of Bilateral Auditory Steady-State Responses Using MEG Beamformers, IEEE Transactions on Biomedical Engineering, vol.55, issue.3, pp.1092-1102, 2008.
DOI : 10.1109/TBME.2007.906504

H. B. Hui, D. Pantazis, S. L. Bressler, and R. M. Leahy, Identifying true cortical interactions in MEG using the nulling beamformer, NeuroImage, vol.49, issue.4, pp.3161-3174, 2010.
DOI : 10.1016/j.neuroimage.2009.10.078

M. A. Quraan and D. Cheyne, Reconstruction of correlated brain activity with adaptive spatial filters in MEG, NeuroImage, vol.49, issue.3, pp.2387-2400, 2010.
DOI : 10.1016/j.neuroimage.2009.10.012

A. Moiseev, J. M. Gaspar, J. A. Schneider, and A. T. Herdman, Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity, NeuroImage, vol.58, issue.2, pp.481-496, 2011.
DOI : 10.1016/j.neuroimage.2011.05.081

T. Limpiti, B. D. Van-veen, and R. T. Wakai, Cortical patch basis model for spatially extended neural activity, IEEE Transactions on Biomedical Engineering, vol.53, issue.9, pp.1740-1754, 2006.
DOI : 10.1109/TBME.2006.873743

P. Chevalier, A. Ferréol, and L. Albera, High-Resolution Direction Finding From Higher Order Statistics: The<tex>$2rm q$</tex>-MUSIC Algorithm, IEEE Transactions on Signal Processing, vol.54, issue.8, pp.2986-2997, 2006.
DOI : 10.1109/TSP.2006.877661

P. and M. Cullagh, Tensor methods in statistics, chapter Monographs on statistics and applied probability, 1987.

C. Grova, J. Daunizeau, J. M. Lina, C. G. Bénar, H. Benali et al., Evaluation of EEG localization methods using realistic simulations of interictal spikes, NeuroImage, vol.29, issue.3, pp.734-753, 2006.
DOI : 10.1016/j.neuroimage.2005.08.053

URL : https://hal.archives-ouvertes.fr/inserm-00140782

J. Cho, S. B. Hong, Y. Jung, H. Kang, H. D. Kim et al., Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy, Brain Topography, vol.42, issue.Suppl D, pp.91-104, 2011.
DOI : 10.1007/s10548-011-0173-2

J. Bourien, F. Bartolomei, J. J. Bellanger, M. Gavaret, P. Chauvel et al., A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy, Clinical Neurophysiology, vol.116, issue.2, pp.443-455, 2005.
DOI : 10.1016/j.clinph.2004.08.010

H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling et al., A performance study of various brain source imaging approaches, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5910-5914, 2014.
DOI : 10.1109/ICASSP.2014.6854729

URL : https://hal.archives-ouvertes.fr/hal-00990273

L. Baldassarre, J. Mourao-miranda, and M. Pontil, Structured Sparsity Models for Brain Decoding from fMRI Data, 2012 Second International Workshop on Pattern Recognition in NeuroImaging, pp.5-8, 2012.
DOI : 10.1109/PRNI.2012.31

A. Gramfort, B. Thirion, and G. Varoquaux, Identifying Predictive Regions from fMRI with TV-L1 Prior, 2013 International Workshop on Pattern Recognition in Neuroimaging, 2013.
DOI : 10.1109/PRNI.2013.14

URL : https://hal.archives-ouvertes.fr/hal-00839984

R. Tibshirani and N. Saunders, Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.99, issue.1, pp.91-108, 2005.
DOI : 10.1016/S0140-6736(02)07746-2

S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, An efficient algorithm for compressed mr imaging using total variation and wavelets, IEEE Proc. of CVPR, pp.1-8, 2008.

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, vol.2, issue.1, pp.17-40, 1976.
DOI : 10.1016/0898-1221(76)90003-1

R. Glowinski and A. Marrocco, Sur l'approximation, par ??l??ments finis d'ordre un, et la r??solution, par p??nalisation-dualit?? d'une classe de probl??mes de Dirichlet non lin??aires, Revue Française d'Automatique, Informatique, et Recherche Opérationelle, pp.41-76, 1975.
DOI : 10.1051/m2an/197509R200411

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2010.
DOI : 10.1561/2200000016

S. Baillet, J. C. Mosher, and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal Processing Magazine, vol.18, issue.6, pp.14-30, 2001.
DOI : 10.1109/79.962275

K. Wendel, O. Väisänen, J. Malmivuo, N. G. Gencer, B. Vanrumste et al., EEG/MEG Source Imaging: Methods, Challenges, and Open Issues, Computational Intelligence and Neuroscience, vol.16, issue.8, 2009.
DOI : 10.1002/hbm.20056

URL : http://doi.org/10.1155/2009/656092

R. A. Chowdhury, J. M. Lina, E. Kobayashi, and C. Grova, MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches, PLoS ONE, vol.2011, issue.2, pp.1-9, 2013.
DOI : 10.1371/journal.pone.0055969.s004

M. Benidir, Higher-order statistical signal processing, chapter Theoretical foundations of higher-order statistical signal processing and polyspectra, 1994.

M. Fuchs, M. Wagner, H. Wischmann, T. Köhler, A. Theissen et al., Improving source reconstructions by combining bioelectric and biomagnetic data, Electroencephalography and Clinical Neurophysiology, vol.107, issue.2, pp.93-111, 1998.
DOI : 10.1016/S0013-4694(98)00046-7

F. Babiloni, F. Carducci, F. Cincotti, C. Del-gratta, V. Pizzella et al., Linear inverse source estimate of combined EEG and MEG data related to voluntary movements, Human Brain Mapping, vol.70, issue.4, pp.197-209, 2001.
DOI : 10.1002/hbm.1052

A. K. Liu, A. M. Dale, and J. W. Belliveau, Monte Carlo simulation studies of EEG and MEG localization accuracy, Human Brain Mapping, vol.85, issue.1, pp.47-62, 2002.
DOI : 10.1002/hbm.10024

D. Sharon, M. S. Hämäläinen, R. Bh-tootell, E. Halgren, and J. W. Belliveau, The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex, NeuroImage, vol.36, issue.4, pp.1225-1235, 2007.
DOI : 10.1016/j.neuroimage.2007.03.066

A. Molins, S. M. Stufflebeam, E. N. Brown, and M. S. Hämäläinen, Quantification of the benefit from integrating MEG and EEG data in minimum ???2-norm estimation, NeuroImage, vol.42, issue.3, pp.1069-1077, 2008.
DOI : 10.1016/j.neuroimage.2008.05.064

R. N. Henson, E. Mouchlianitis, and K. J. Friston, MEG and EEG data fusion: Simultaneous localisation of face-evoked responses, NeuroImage, vol.47, issue.2, pp.581-589, 2009.
DOI : 10.1016/j.neuroimage.2009.04.063

L. Ding and H. Yuan, Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging, Human Brain Mapping, vol.49, issue.Suppl. 3, pp.775-795, 2013.
DOI : 10.1002/hbm.21473

P. Comon and M. Rajih, Blind identification of under-determined mixtures based on the characteristic function, Signal Processing, vol.86, issue.9, pp.2271-2281, 2006.
DOI : 10.1016/j.sigpro.2005.10.007

URL : https://hal.archives-ouvertes.fr/hal-00263668

A. Karfoul, L. Albera, and B. Birot, Blind Underdetermined Mixture Identification by Joint Canonical Decomposition of HO Cumulants, IEEE Transactions on Signal Processing, vol.58, issue.2, pp.638-649, 2010.
DOI : 10.1109/TSP.2009.2031731

URL : https://hal.archives-ouvertes.fr/hal-00593307

L. Albera, P. Comon, P. Chevalier, and A. Ferréol, Blind identification of underdetermined mixtures based on the hexacovariance, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.29-32, 2004.
DOI : 10.1109/ICASSP.2004.1326186

B. H. Jansen and V. G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biological Cybernetics, vol.580, issue.4, pp.357-366, 1995.
DOI : 10.1007/BF00199471

H. Becker, Tensor-based techniques for EEG source localization, 2010.

L. and D. Lathauwer, Decompositions of a Higher-Order Tensor in Block Terms???Part II: Definitions and Uniqueness, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.3, pp.1033-1066, 2008.
DOI : 10.1137/070690729

F. Römer and M. Haardt, A closed-form solution for Parallel Factor (PARAFAC) Analysis, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2365-2368, 2008.
DOI : 10.1109/ICASSP.2008.4518122

P. L. Combettes and V. R. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
DOI : 10.1137/050626090

URL : https://hal.archives-ouvertes.fr/hal-00017649

P. L. Combettes and J. Pesquet, Proximal splitting methods in signal processing , " in Fixed-point algorithms for inverse problems in science and engineering, pp.185-212, 2011.

J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, CR Acad. Sci. Paris Sér. A Math, vol.255, pp.2897-2899, 1962.

P. L. Combettes and J. Pesque, A proximal decomposition method for solving convex variational inverse problems, Inverse Problems, vol.24, issue.6, 2008.
DOI : 10.1088/0266-5611/24/6/065014

URL : https://hal.archives-ouvertes.fr/hal-00692901

I. Daubechies, M. Defrise, and C. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, pp.1431-1457, 2004.
DOI : 10.1002/cpa.20042