G. Achaz, Frequency Spectrum Neutrality Tests: One for All and All for One, Genetics, vol.183, issue.1, pp.249-258, 2009.
DOI : 10.1534/genetics.109.104042

C. [. Achaz, A. Delaporte, and . Lambert, Sample genealogy and mutational patterns for critical branching populations, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053343

]. D. Ald93 and . Aldous, The continuum random tree III. The Annals of Probability, pp.248-289, 1993.

L. [. Aldous and . Popovic, A critical branching process model for biodiversity Advances in applied probability, pp.1094-1115, 2005.

]. J. Ber91 and . Bertoin, Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum, Annales de l'IHP Probabilités et statistiques, pp.537-547, 1991.

J. Bertoin, An extension of Pitman's theorem for spectrally positive Lévy processes. The Annals of Probability, pp.1464-1483, 1992.

]. J. Ber96 and . Bertoin, Lévy processes, 1996.

J. Bertoin, A limit theorem for trees of alleles in branching processes with rare neutral mutations, Stochastic Processes and their Applications, pp.678-697, 2010.
DOI : 10.1016/j.spa.2010.01.017

URL : https://hal.archives-ouvertes.fr/hal-00373262

R. [. Chaumont and . Doney, Invariance principles for local times at the maximum of random walks and Lévy processes. The Annals of Probability, pp.1368-1389, 2010.

]. N. Cl12a, A. Champagnat, and . Lambert, Splitting trees with neutral Poissonian mutations I: Small families, Stochastic Processes and their Applications, pp.1003-1033, 2012.

]. N. Cl12b, A. Champagnat, and . Lambert, Splitting trees with neutral Poissonian mutations II: Largest and Oldest families, Stochastic Processes and their Applications, 2012.

N. Champagnat, A. Lambert, and M. Richard, Birth and death processes with neutral mutations Mode. A general age-dependent branching process. I, International Journal of Stochastic Analysis Journal of Mathematical Analysis and Applications, vol.24, issue.3, pp.494-508, 1968.
DOI : 10.1155/2012/569081

URL : http://doi.org/10.1155/2012/569081

]. C. Del13a and . Delaporte, Lévy processes with marked jumps I: Limit theorems, Journal of Theoretical Probability, 2013.

]. C. Del13b and . Delaporte, Lévy processes with marks II : Application to a population model with mutations at birth, 2013.

J. [. Duquesne and . Gall, Random trees, Lévy processes and spatial branching processes, 2002.

H. [. David, . A. Nagarajadon07-]-r, and . Doney, Order statistics Wiley Online Library Fluctuation theory for Lévy processes: École D'Été de Probabilités de Saint-Flour XXXV-2005, 1970.

]. R. Dur08 and . Durrett, Probability models for DNA sequence evolution, 2008.

A. Eriksson, B. Mehlig, M. Rafajlovic, and S. Sagitov, The Total Branch Length of Sample Genealogies in Populations of Variable Size, Genetics, vol.186, issue.2, pp.601-611, 2010.
DOI : 10.1534/genetics.110.117135

W. J. Ewens, The sampling theory of selectively neutral alleles, Theoretical Population Biology, vol.3, issue.1, pp.87-112, 1972.
DOI : 10.1016/0040-5809(72)90035-4

]. J. Gei96 and . Geiger, Size-biased and conditioned random splitting trees. Stochastic processes and their applications, pp.187-207, 1996.

]. T. Ger08 and . Gernhard, New analytic results for speciation times in neutral models, Bulletin of mathematical biology, vol.70, issue.4, pp.1082-1097, 2008.

G. [. Geiger and . Kersting, Depth???First Search of Random Trees, and Poisson Point Processes, Classical and modern branching processes, pp.111-126, 1997.
DOI : 10.1007/978-1-4612-1862-3_8

S. [. Griffiths and . Tavare, Sampling Theory for Neutral Alleles in a Varying Environment, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.344, issue.1310, pp.403-410, 1310.
DOI : 10.1098/rstb.1994.0079

]. P. Jag69 and . Jagers, A general stochastic model for population development, Scandinavian Actuarial Journal, vol.1969, issue.12, pp.84-103, 1969.

A. [. Jacod and . Shiryaev, Limit theorems for stochastic processes, 1987.
DOI : 10.1007/978-3-662-02514-7

]. O. Kal02 and . Kallenberg, Foundations of modern probability, 2002.

]. A. Kar75 and . Karr, Weak convergence of a sequence of Markov chains. Probability Theory and Related Fields, pp.41-48, 1975.

M. Kimura, The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations, Genetics, vol.61, issue.4, p.893, 1969.

M. Kimura, The neutral theory of molecular evolution, 1984.

J. F. Kingman, On the genealogy of large populations, Journal of Applied Probability, pp.27-43, 1982.

J. F. Kingman, The coalescent. Stochastic processes and their applications, pp.235-248, 1982.

A. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applications, 2006.

J. Lamperti, The limit of a sequence of branching processes. Probability Theory and Related Fields, pp.271-288, 1967.

]. A. Lam08 and . Lambert, The allelic partition for coalescent point processes, Markov Proc. Relat. Fields, pp.359-386, 2008.

]. A. Lam10 and . Lambert, The contour of splitting trees is a Lévy process. The Annals of Probability, pp.348-395, 2010.

]. A. Lam11, ]. A. Lambertls12, F. Lambert, and . Simatos, Species abundance distributions in neutral models with immigration or mutation and general lifetimes Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case, Journal of mathematical biology Journal of Theoretical Probability, vol.63, issue.1, pp.57-72, 2011.

]. M. Nag64 and . Nagasawa, Time reversions of Markov processes, Nagoya Mathematical Journal, vol.24, pp.177-204, 1964.

M. [. Ob?ój and . Pistorius, On an Explicit Skorokhod Embedding for Spectrally Negative L??vy Processes, Journal of Theoretical Probability, vol.14, issue.2, pp.418-440, 2004.
DOI : 10.1007/s10959-008-0157-7

]. M. Ric14 and . Richard, Splitting trees with neutral mutations at birth. Stochastic Processes and their Applications, pp.3206-3230, 2014.

]. T. Sta08 and . Stadler, Lineages-through-time plots of neutral models for speciation, Mathematical biosciences, vol.216, issue.2, pp.163-171, 2008.

]. T. Sta09 and . Stadler, On incomplete sampling under birth?death models and connections to the sampling-based coalescent Branching processes and neutral evolution [Uni10] United Nations Population Division. The World at Six Billion, Journal of Theoretical Biology, vol.261, issue.1, pp.58-66, 1992.

J. Wakeley, Coalescent theory: an introduction, 2009.