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General Introduction 

 

Europe is still at the moment the most attractive market place for paper and its derivative 

products. In order to increase growth, the European paper industry has to beat the product 

commoditization trap and renew its product base with more value-added products to gain 

competitive advantage against the low-cost producers in emerging countries.  

Moreover, consumers demand for bio-based, recyclable and/or biodegradable products is 

increasing strongly. This is why even if bio-based polyolefin are being developed; waste 

management and end of life will still be selective parameters. Indeed, the idea is to develop 

new wood-based products with higher properties than those reached currently in order to 

increase competiveness of Europe regarding emerging countries. That is why Europe gave 

founding for three years R&D cycle research in this field which has led to SUNPAP project 

birth (Scale-Up of Nanoparticles in modern PAPmaking).  

The European SUNPAP project addresses the strengthening of paper industry 

competitiveness by using nanocellulose based process to provide radical product 

performance improvements, new efficient manufacturing methods and the introduction of 

new added value functionalities.  

NanoFibrillated Cellulose (NFC) is the most promising nano-material for wide applications 

in papermaking or composite for instance. However, today it is only prepared and applied in 

lab-scale. Also, some main targets of SUNPAP project are to: 

 
- Develop and up-scale a novel process for the production of NFC limiting the energy 

production consumption. 

- Develop and up-scale NFC modification processes to address the challenges of 

papermaking and to provide new added-value active functionalities limiting the use of 

organic solvent. 

 

*Extracted from Description of work of SUNPAP project 

 

In the framework of the project, NFC was involved to implement new bio-based products. 

Our task consisted in development of 3 innovative strategies for chemical modification of 

NFC and selected one of them for up-scale phase.  
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A cellulose fibril called NanoFibrillated Cellulose (NFC), with dimension between 5 and 50 

nm for diameter and several micrometers in length, are described as long flexible nano-

filaments composed of crystalline and amorphous part.  

They are obtained after a strong mechanical shearing applied on cellulose slurry which is 

pump trough a homogenizer or grinder device. Comparing to cellulose fiber-based 

suspension, NFC displayed higher specific area which leads to a higher amount of hydrogen 

interactions and as a consequence a gel-like structure at very low solid content (2-5%). 

NFCs are mechanically interesting due to their high Young modulus equivalent to Kevlar  

 

(Ewood < Ealuminium < ENFC  ≈ Ekevlar < Ecarbon nanotubes). 

 
Regarding literature available, subject dealing with NFC are daily increasing in spite wide 

terminologies are used to speak about cellulose nanofibrils. Updated from Lavoine et al. 

2012, Figure 1 presents all terminologies employed in scientific papers and their 

corresponding number of publication per year since 1993 up to end of September 2012. 

 

 
Figure 1 : Cumulative scientific document (papers, review and patent) for the period 1993/01-2012/09 from 

SciFinder data base 
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As shown in Figure 1, an exponential interest for NFC starts just few years ago at the 

beginning of the project. This project is then very interesting and can be considered as a 

pioneer in the field. 

More precisely, this PhD study is involved in a specific WorkPackage (WP5) dedicated to 

the chemical surface modification of NFCs with the following targets: 

- Development of hydrophobic NFC suspensions in order to increase the solid content 

of the material suspension. 

- Development of NFC-based products with active properties for special papers.  

The chemical surface modification of NFC is then very innovative and can be one route to 

answer all the previous questions  

Also it is interesting to firstly:  

(i)      Well understand the raw material used for this project (Chapter 1) 

(ii) Adapt existing procedure for chemical grafting and then develop new 

processes for chemical grafting in non-toxic solvents or using water based 

process and develop new methods for characterization (Chapter 2) 

(iii) Propose some applications using the previous chemically modified NFC 

(Chapter 3) 

Thus, the manuscript was organized in three chapters as presented in Figure 2. 

 
Figure 2 : Manuscript organization 
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Chapter 1 allows identifying the main challenges to overcome before developing new 

procedure of chemical grafting onto NFC.  

Chapter 2 aims to develop new process in order to chemically modify the surface of NFC. 

Three main strategies have been followed: either using carbanilation reaction (Paper 1) or 

esterification based on anhydride reaction within ionic liquid medium (Paper 2) or 

modification using a process in aqueous media (Paper 3) but not detailed in this manuscript 

due to patenting in progress. 

Chapter 3 assesses the potential use of neat and modified NFC in several applications 

like papermaking applications (Paper 4), or all-cellulosic composites (Paper 5) or new 

application in antibacterial activity (Paper 6). 

Chapters are mainly based on scientific papers in order to present a homogeneous 

manuscript. All chapters are tightly linked to each other. Consequently, we hope that the 

complete manuscript and studies inside bring a global comprehension and potential 

applications of modified NFC.  

All promising results achieved during this study enhance interests onto NFC but also 

assess new challenges and perspectives. Some of them have also been achieved during this 

PhD and have been developed in appendix. Indeed Appendix 1 is dedicated to a drying 

method in order to re-disperse NFC in water once dried (Patent and Paper 7). 

 
In conclusion, before any considerations, we should start with a literature review 

presenting the state of the art of such nanocellulosic materials.   
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1. Cellulose 

 

1.1 Chemical structure 

Cellulose is the most abundant biopolymer produced in earth. According FAO structure 

(http://faostat.fao.org 2012), there is approximately 1011 – 1012 tons of cellulose annually 

produced by photosynthesis. As early as in 1838, Anselme Payen (1795-1871), a French 

chemist, established that the fibrous component of all higher plant cells had a unique 

chemical structure which he named cellulose. He first discovered and isolated cellulose from 

green plants. Cellulose is also produced by some algae, bacteria, fungi and animal tunicates. 

The macromolecular structure of cellulose was established in 1930 (Freudenberg et al. 1932; 

Freudenberg and Blomqvist 1935), and revealed that cellulose is a polymer composed of 

glucose units. 

Glucose is a hexose, i.e. a six atoms hetero-ring. In the conventional representation 

(Fisher representation), the carbon atoms are numbered from 1 to 6 (Figure I-1). Carbon 1 is 

the potentially aldehydic carbon (when located as end group), and carbon 6 is the carbon 

atom standing out of the chain. In this form, the sugar is called a pyranos, giving to glucose 

its formal name: glucopyranose. Both and  forms of glucose exist. The form  has its –OH 

group attached to the carbon 1 above the ring, on the same side as the carbon 4, whereas  

has the same –OH group below the ring (Figure I-1)(Stewart 1974). It could have either a 

boat or chair form but the chair form is more stable. Also, a C1 conformation where the 

hydroxyl groups lie nearly in the ring plane (equatorial hydroxyls) is preferred. 

 

 

Figure I-1 : Fisher and chair representation of glucose  and  form 
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When two hydroxyl groups are attached to the carbons (C1 or C4) of two glucose rings 

come sufficiently close in the presence of the appropriate enzyme, a C-O-C group can be 

formed and a water molecule is expelled. This reaction is also referred as condensation. The 

link is called  or  depending on whether the hexoses are in the  or  form. Usually the  

form leads to less labile molecules compared to the  form. The condensation reaction 

between two glucopyranoses in their  form leads to the creation of a C1-O-C4 link and the 

disaccharide cellobiose. This link is annotated as the -1,4-link. The creation of cellobiose 

requires the tilting of one of the glucose units for stereo-chemical reasons (Figure I-2). 

 

Figure I-2 : Chemical structure of cellobiose unit 

Then, cellulose is a linear polymer of D-anhydroglucopyranose units linked together by 

-glucosidic bonds. This conformation gives each molecule a flat ribbon-like structure. 

Cellulose is also very stable due to this -1-4-link that is reinforced by an intramolecular 

hydrogen bond between the ring oxygen atom and the C3 hydroxyl group of the adjacent 

molecule (Figure I-3). Intermolecular hydrogen bonds are also found between the 

hydroxymethyl group oxygen and C2 hydroxyl group. The equatorial positions of the 

glucopyranose residues stabilize the structure of cellulose, increasing its rigidity and resulting 

in extensive intra and intermolecular hydrogen bonding that also causes insolubility in water. 

The existence of this bond for the crystalline states has been proven by both FTIR 

spectroscopy and X-ray diffraction.  

 

Figure I-3 : Intra and inter molecular hydrogen bonds for several macromolecules of cellulose 
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According to Sjöström (Sjöström 1993) native cellulose in wood has a degree of 

polymerization (DP) of approximately 10,000 glucopyranose units and it is around 15,000 for 

native cellulose in cotton. As reported by Daniel (Daniel 1985) valonia fibers present a DP of 

26,500, while cotton fibers present a DP ranging from 20,000 and 14,000 depending on the 

part of the fiber where the analysis was performed. The DP also varies tremendously from 

about 20 in the case of laboratory synthetized cellulose to about 4000 for wood (eucalyptus, 

pines, spruce…) and up to 8000 for ramie (Krässig et al. 2004). Bledzki and Gassan (Bledzki 

and Gassan 1999)  show that purification procedures (namely used in pulp and paper 

industry) can classically reduce the DP in native cellulose from 14000 to about 2,500. 

Summaries of typical DPs are available in the literature (e.g. (Krässig et al. 2004)). Cellulose 

chains are highly hydrophilic due to the presence of large numbers of hydroxyl groups. In the 

natural state, approximately 40 to 70 of these chains are held together via O6-O3 hydrogen 

bonding to form a crystalline fibrous structure having approximately 3 nm in diameter. 

1.2 Physical Structures: from cellulose to wood 

The cellulose microfibril is the basic structural component of cellulose fibers, formed 

during the biosynthesis. Actually, the chains of poly-β-(1→4)-D-glucosyl residues aggregate 

to form a fibril, which is a long thread-like bundle of molecules as shown in Figure I-4. 

 

Figure I-4 : From plant to macromolecular chain of cellulose (taken from Siquiera Gilberto PhD)  
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Individual cellulose microfibrils or nanofibrils have diameters ranging from 2 to 5 nm 

depending on the source and pre-treatment applied for their production. Each microfibril can 

be considered as a string of cellulose crystals linked along the microfibril axis by disordered 

amorphous domains (e.g. twists and kinks). Infra-red spectroscopy and X-ray diffraction 

studies of cellulose organization in plants have shown that the main portion of native 

cellulose is constituted by crystallites with interspersed amorphous regions of low degree of 

order. A model of a wood cellulose microfibril by Fengel and Wegener (Fengel and Wegener 

1989) is shown in Figure I-5. This cross-sectional view shows several elementary fibrils 

(microfibrils) with a width of 3 nm surrounded by hemicelluloses. A bundle of elementary 

fibrils combined in a parallel arrangement constitutes the cellulose aggregate (called 

sometimes micro-fibrillated cellulose, MFC) that has a width of about 30 nm. Although the 

validity of this model is uncertain, it explains the difference in dimensions of nanofibrillated 

cellulose (NFC) obtained by different extraction routes and which are the main raw materials 

studied during this PhD. 

 

Figure I-5 : Model of cellulose microfibrils proposed by Fengel et Wegener (1989) 

Cellulose displays two main polymorphs. Almost all native cellulose consists of cellulose I, 

i.e. the crystalline cellulose. Cellulose II is used to refer to cellulose dissolved and 

precipitated (regeneration) or treated with a concentrated alkaline solution and washed with 

water (mercerization). Indeed cellulose I is not the most stable form of cellulose. An 

additional hydrogen bond per glucose residue in cellulose II makes this allomorph as the 

most thermodynamically stable form. The transformation of cellulose I to cellulose II is a 

subject of interest of many studies since the time when Mercer discovered this 

transformation in 1850, by submitting native cellulose to a strong alkali treatment. Dinand et 

al. (Dinand et al. 2002b) have shown that mercerization started as soon as the NaOH 

concentration became higher than 8% for a sample purified by an acid treatment, and 9% for 

another resulting from alkaline disencrustation. Moreover, they found that cellulose from the 
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primary wall presented a higher susceptibility toward aqueous alkali treatment. Such a higher 

susceptibility may be related to the specific parameters of the primary wall, like the lack of 

organization and the lateral size of the crystalline microfibrils. 

In this project, one key requirement is to keep the native fibrillar morphology and the 

native crystallinity after any treatment, thus limiting the occurrence of mercerization process. 

That is why understanding of the dissolution processes and the different cellulose 

polymorphs is necessary.  

1.2.1 Dissolution of cellulose and polymorphs 

Dissolution of natural cellulosic materials, followed by cellulose regeneration, has provided 

more consistent material than can be achieved using natural fibers directly from the field. 

Features like drapability, coloration potential, texture and tenacity can be tailored for the 

intended application. Furthermore, the use of cheap wood pulp (with low DP) as a starting 

material is a cost-effective alternative to high quality natural fibers. Amongst the known 

processing routes for cellulose dissolution, only a few are used at an industrial scale. The 

Viscose process was the first of these processes to be discovered and developed at around 

the turn of the 20th century. Social pressures to seek more eco-friendly alternatives due to 

the environmental impacts of the Viscose process have been raised in the last decade. 

Indeed, the Viscose process is a long, complicated, inefficient process. Moreover, it 

produces sulphur-containing by-products (Chanzy et al. 1990; Krässig et al. 2004).  

A dissolution process based on the use of the tertiary aliphatic amine N-oxide hydrates 

was the subject of extensive research in the seventies. N-methylmorpholine-N-oxide 

(NMMO) is now successfully used as an organic solvent in an industrial process that 

produces spun cellulosic fibers under the generic name of “Lyocell”. Other dissolution 

methods have been used with success to produce textile fibers. Cellulose can, for example, 

be dissolved with LiCl/DMAc to produce high tenacity fibers (Hong et al. 1998; McCormick et 

al. 1985).  

More recently, attention has been focused on a sustainable process taking advantage of 

the Q-region in the NaOH, (NaOH concentration around 9% and temperature below 4°C) 

cellulose phase diagram. In the Q region, cellulose can be completely dissolved under 

certain conditions (Cai et al. 2007b; Cai et al. 2004; Ruan et al. 2006; Ruan et al. 2004). The 

uses of cellulose dissolution goes beyond fiber spinning and is found in a broad range of 

applications ranging from sponges to synthesis of cellulose derivatives. Ionic liquids (ILs) 

have also recently gained much attention due to their high efficiency and non-volatility which 

makes them relatively safe to work with (Kosan et al. 2008; Swatloski et al. 2002; Turner et 

al. 2005; Zhang et al. 2005; Zhu et al. 2006). This quite original solvent (in the present 
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context) will be used in our study and more details about their interaction with cellulose will 

be given at the end of the present chapter (cf. Chapter 2.3.2). 

Other solvents for cellulose include dimethyl sulfoxide/ammonium fluorides (Heinze et al. 

2000; Köhler and Heinze 2007), dimethyl sulfoxide/formaldehyde, inorganic complexes like 

cuprammonium cuene or cadoxene (Turbak et al. 1977), molten salt hydrates such as 

LiClO4/3H2O, ZnCl2/4H2O or LiSCN/2H2O (Leipner et al. 2000), metal complexes 

(Saalwächter et al. 2000), LiOH/urea (Cai et al. 2007a; Cai and Zhang 2005), ethylene 

diamine/potassium thiocyanate (Frey et al. 2006), NH4SCN/NH3 (Frey et al. 1996), N2O4-

dimethylformaldehyde and concentrated protonic acids (Turbak et al. 1977).  

Actually, there are several crystalline arrangements of cellulose. Each one presents a 

distinctive diffraction pattern. These polymorphs of cellulose are denoted as cellulose I, II, IIII, 

IIIII, IVI and IVII and they can be inter-converted depending on the chemical treatment and 

source, as shown in Figure I-6. 

 

Figure I-6 : Polymorphs of cellulose and inter-connection between them 

Crystalline cellulose exists as different allomorphs featuring distinct lattice dimensions, 

chain orientation and group conformation as summarized in Figure I-6. The distinction 

between crystalline and amorphous can be made using acid hydrolysis or water sorption in 

combination with gravimetric methods; it can also be made using spectroscopy tools such as 

Segal’s crystallinity index, Herman’s background analysis, and relative absorption bands in 

infrared spectra or differences in solid-state NMR proton-spin relaxation. However, these 

techniques provide only a relative gage of the crystallinity. Indeed, it is still quite difficult to 

quantify the crystalline cellulose vs. amorphous counterpart with such experiments which 

indicate only the crystal quality. 
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As already said, cellulose is the most abundant biopolymer produced by nature. However 

only a small amount is used today and most of time this available industrial cellulose comes 

from wood for paper industry and cotton for textile.  

In our project, we have focused our attention on the former raw material, because it 

constitutes the biggest industrial source. 

1.2.2 Wood’s structure 

Trees are the most exploited resource for cellulose due to their wide availability, 

renewability, and large-scale infrastructure for their converting into several commodities. As 

the skeletal component in all plants, cellulose is organized in a cellular hierarchical structure. 

Microfibrils are packed to larger bundles (fibril bundles, fibril agglomerates); hold together 

thanks to other “matrix” substances like hemicelluloses, lignin and pectin. The wood cell 

walls (Figure I-7) are divided in several “cell wall layers”. The first “cell wall layer” is 

constituted of middle lamella and primary cell wall layer. The secondary cell wall layer is 

divided into S1, S2 and S3 with the S2 layer containing the main quantity of cellulose (Core 

et al. 1979; Fengel and Wegener 1989). 

 

Figure I-7 : Structure of wood (adapted from Eyholzer PhD) 

Wood can be defined as a porous, hydrated, and three-dimensional biocomposite 

composed of an interconnected network of cellulose, hemicelluloses and lignin with dry 

cellulose content of about 40%. The outermost layer of the cell wall is the middle lamella 

which is made of lignin and provides adhesion between the layers. The middle lamella is the 

thin primary wall characterized by a largely random orientation of cellulose microfibrils. In the 

primary cell wall, hemicelluloses are associated tightly with cellulose fibrils and form a load-

bearing network providing mechanical function to the plant (Figure I-8).  
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Figure I-8 : Simplified cell wall structure in plant (taken from Rodionova PhD) 

The remaining cell wall domain is the secondary cell wall which is composed of three 

layers: S1, S2 and S3 as already mentioned. S1 and S3 layers are composed mainly of 

microfibrils glued by lignin and hemicellulose “matrices”. The thick S2 layer, being the richest 

in cellulose, is arguably the most important in determining the properties of the cell and thus 

those of the wood at a macroscopic level. The void space in the interior of the cell is called 

the lumen, which reflects the space available for water conduction. 

In wood three main components are present: lignin, hemicelluloses and cellulose. The 

“matrix” substances in the natural composite of wood are the lignins. Lignins are amorphous 

polymers of aromatic phenylpropane units. In addition to the propane group, the phenyl rings 

are often substituted with hydroxyl, methoxy, alkoxy or aryloxy groups. In wood, there are 

typically two main phenylpropane units. Guaiacyl lignin occurs in almost all softwoods and is 

largely a polymerization product of coniferyl alcohol, containing a hydroxyl and a methoxy 

group at the phenylpropane unit (Sjöström 1993). Only relatively few phenolic hydroxyl 

groups are free, most of them are occupied through linkages to neighboring phenylpropane 

units. In an attempt to illustrate a general structure of lignin, Adler’s formula represents a 

segment of a lignin macromolecule with some examples of typical phenylpropane units 

(Figure I-9) (Sjöström 1993).  

In our case, all cellulose fibers have been bleached so almost all lignin macromolecules 

have been removed. Consequently, they will not play any role in our chemical grafting. It is 

not always the case in literature about NFC (Spence et al. 2010). 
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Figure I-9 : Chemical composition of typical lignin according to Adler (taken from Wiki-Lignin 

web page) 

The second component of cellulose fibers is the hemicelluloses. The main function of the 

hemicelluloses is to crosslink the cellulose fibrils with the lignin matrix. The hemicelluloses 

and celluloses together are often referred as holocellulose. Contrary to cellulose, the 

hemicelluloses are a family of heteropolysaccharides, with several monomeric components 

like anhydrohexoses (D-glucose, D-mannose and D-galactose), anhydropentoses (D-xylose 

and L-arabinose) and Anhydrouronic acids (D-glucuronic acid, D-galacturonic acid). Finally, 

hemicelluloses can include some acetyl groups in their structures. The quantity and type of 

each monomer will depend on the type of wood (Tenkanen et al. 2004; Heinze et al. 2006). 

Most hemicelluloses have a low DP of only 200. Some wood hemicelluloses are extensively 

branched and are readily soluble in water. 

In softwood, the principal hemicelluloses are galactoglucomannans (about 20%). Their 

backbone consists of a linear chain built up by  (14) linked D-glucopyranose and  (14) 

linked D-mannopyranose units (Figure I-10). The -D-galactopyranose units are linked as a 

single unit side chain to the framework by (16) bonds. The galactoglucomannans can be 

roughly divided in two groups, one with low galactose content (galactose:glucose:mannose 

0.1:1:4), whereas the other contains a higher amount of galactose (1:1:4). In addition to 

galactoglucomannans, softwoods also contain arabinoglucuronoxylan (about 5-10%). It is 
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composed of a linear framework of (14) linked D-xylopyranose units. Partially, they are 

substituted at the C2 by 4-O-methyl--D-glucuronic acid groups. In addition, the framework 

contains also some -L-arabinofuranose units. 

 

Figure I-10 : Main hemicelluloses present in (a) and (b) softwood and (c) hardwood (Adapted 
from Eyholzer PhD) 

In hardwood, the major hemicellulose component is an O-acetyl-4-O-methylglucurono-- 

D-xylan, sometimes called glucuronoxylan. Depending on the hardwood species, the xylan 

content varies within 15-30% w/w of the dry wood. The backbone consists of (14) linked 

D-xylopyranose units (Figure I-10). About seven of ten xylose units contain an O-acetyl 

group at the C2 or C3. In addition, there is on average one (12) linked 4-Omethyl--D-

glucuronic acid residue per ten xylose units. In addition to xylan, hardwoods also contain 

glucomannan (about 2-5%). It is composed of a linear framework of (14) linked D-

glycopyranose and D-mannopyranose units. The ratio between glucose and mannose varies 

between 1:1 and 1:2. The structure of glucomannan is the same as for galactoglucomannan 

when omitting the galactopyranose residue. As for the softwoods, there are minor amounts of 

other polysaccharides present in hardwoods, partly of the same type (Sjöström 1993). 

Such components are still present in small amount on cellulose fibers after bleaching 

treatment. That is why we have to keep in mind their chemical structure when considering 

surface treatment especially for adsorption processes. 
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Depending on bleaching process used such hemicelluloses cannot be extracted. Thus, we 

feel that the description of such operations is necessary.  

1.3 Extraction’s processes of cellulose fibers 

Only cotton can provide quite easily pure cellulose fibers (about 27millions tons produced 

per year). Usually extraction processes are required and they influence the quality and the 

chemistry of final cellulose fibers. We can consider different extraction process of cellulose 

fibers. They depend mainly on two families of the used raw material: (i) the annual plant 

(Leaf, hemp, jute, kenaf, flax, ramie ….) or (ii) wood and wood-like material.  

(i) Annual plant 

Even if this raw material has generally low amount of lignin, a drawback of cellulose 

obtained from higher plants is its chemical impurity, namely the content of residual minerals, 

especially silica. Pure cellulose can be extracted from the cell wall by using various 

mechanical, chemical and enzymatic processes. Field retting is a traditional method that 

consists of discarding the cut fiber stems in the field and leaving the micro-organisms, water, 

oxygen and UV to aid the release of single fibers from the stems. Carding, also called 

mechanical decortication, is another common preliminary step aiming at breaking down large 

fiber aggregates into smaller ones before further treatment is carried out. It has 

consequences for the fiber integrity such as strain-hardening for example. Progressive 

reorientation of the microfibrils under stretching is thought to be the mechanism behind this 

phenomenon (Baley 2002). Thermomechanical pulping, steam explosion, enzymatic retting 

and mercerization are all four possible treatments that may follow mechanical decortication. 

They are all aimed at separating the fiber bundles in elementary fibers by extracting 

amorphous components from the cell wall. Steam explosion consists in placing the wet fibers 

in a high-pressure environment and suddenly releasing the pressure and temperature down 

to atmospheric conditions. As a result, fiber bundles break down into single fibers and up to 

20% of the fiber mass is removed as hemicellulose and pectin (Baley 2002; Dreyer et al. 

2002; Kohler and Nebel 2006). Enzymatic methods are aimed at depolymerizing the 

hemicellulose and breaking the covalent link between lignin and other carbohydrates 

(Krässig et al. 2004). Hemicelluloses can also be removed by treatment in hot alkaline 

solutions followed by neutralization in a mineral acid. When this process is accompanied by 

fiber stretching, it is commonly referred to as mercerization. However, all this treatments are 

archaic (and some ancestral) and concern only a small amount of cellulose fiber (ab. 30 

million tons). Nevertheless, they could be of high interest for countries in which such plants 

are abundant. In our case, we have focused our work on wood pulp, because they are the 

major source of cellulose fibers in Europe.  
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(ii) Wood & woody plant 

Pulp consists of cellulose fibers, usually acquired from wood. The liberation of these fibers 

from the wood matrix can be done mainly in two ways, either mechanically or chemically. 

Mechanical methods are energy consuming; however they make use of almost the whole 

wood material and so asses high yield. In chemical pulping, only approximately half of the 

wood is converted in pulps, the other half is dissolved. However, chemical pulping mills 

efficiently recover the chemicals and burn the remaining residues. The resulting combustion 

heat covers the whole energy consumption of the pulp mill (Ek et al. 2009). 

The production of pulp for paper was 183 million tons in 2010 (according FAO stats) and 

92% of it coming from wood. As represented in Figure I-11, several kinds of pulp can be 

used for paper production.   

 

Figure I-11 : World production of pulp coming from different source used for paper application 

in 2010  

The mechanical pulping: Thermomechanical pulping is a common method used to 

mechanically separate fibers in a liquid media kept at temperatures above 100 °C. 

Mechanical pulps account for 20% of the world pulp production. Ground wood pulp is 

produced by pressing round wood chips against a rotating cylinder made of sandstone, 

scraping the fibers off. Another type of mechanical pulp is refiner pulp, obtained by feeding 

wood chips into the center of rotating, refining discs in the presence of water spray. The 

disks are grooved, the closer the wood material gets the edge of the disk, the finer the pulp. 

Apart from fibers released from the wood matrix, mechanical pulp also contains fines. These 

are smaller particles, such as broken fibers, giving the mechanical pulp its specific optical 

characteristics (Ek et al. 2009; Sjöström 1993). The pulp yield is high but there are still lignins 

and hemicelluloses. 

The chemical pulping: The most often applied strategy to isolate cellulose fibers from the 

wood components is to remove the lignin matrix. Delignification is done by degrading the 
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lignin molecules, bringing them into solution and removing them by washing. However, there 

are no chemical reagents being entirely selective towards lignin. Therefore, also a certain 

amount of the carbohydrates (cellulose and hemicelluloses) is lost in this process. In 

addition, complete removal of lignin is not possible without severely damaging the 

carbohydrates structure. After delignification, some lignin is therefore remaining in the pulp 

and this amount is determined by the pulp’s kappa number. Of all pulp produced worldwide 

(ab. 300 million tons/year), almost three quarters are chemical pulp, of which the major part 

is produced by Kraft process (Sjöström 1993; Ek et al. 2009). 

The kraft process (or sulphate process) is the dominant chemical pulping method 

worldwide. The cooking chemicals used are sodium hydroxide (NaOH) and sodium sulfide 

(Na2S), with OH- and HS- as the active anions in the cooking process. The hydrogen sulfide 

is the main delignifying agent and the hydroxide keeps the lignin fragments in solution. 

Optionally, only sodium hydroxide can be used as cooking chemical and this process is 

called soda cooking (Sjöström 1993; Ek et al. 2009). 

The sulfite process involves dissolving lignin with sulfurous acid (H2SO3) and 

hydrogensulfite ions (HSO3
-) as active anions in the cooking process. More recently 

developed pulping methods include the use of organic solvents as ethanol, methanol and 

peracetic acid (CH3CO3H) for delignification (Sjöström 1993; Ek et al. 2009). They are called 

organosolv processes. 

As a final step, the pulp can be bleached, to obtain a whiter product with lower amounts of 

impurities and improved ageing resistance (yellowing and brittleness resistance). These 

effects are mainly connected to lignin in chemical pulp. Several stages are classically 

required and different chemicals are used for bleaching, e.g. hydrogen peroxide (H2O2), 

chlorine dioxide (ClO2), ozone (O3) or peracetic acid (Sjöström 1993; Ek et al. 2009). 

Comparing the kraft process and the sulfite process, there are numerous differences 

between the final pulps obtained. Sulfite pulps are more readily bleached and are obtained in 

higher yields. They are also more readily refined and require less power for refinement. On 

the other hand, paper from Kraft pulps is generally stronger compared to paper from sulfite 

pulp, even though the degree of polymerization is lower in Kraft pulp cellulose (Young 1994). 

Indeed DP usually decreases with pulp treatment and can pass from 14000 to ab. 2500 as 

mentioned in section 1.1.1. 

 

In our study, we have used kraft and sulfite pulps and found that the latter is more suitable 

for NFC production. We, therefore, focused our effort on sulfite pulps, as a raw material to 

produce NFC. 
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1.4 Cellulose Applications 

Up today, we consider several areas of application of cellulose fibers (Figure I-12). These 

elements could be used as such (paper, reinforcing elements, textile...) or after total 

dissolution (the fiber structure is totally lost), in order to prepare cellulose derivatives and/or 

regenerated cellulose materials. Table I-1 and give an idea about the different applications. 

In our case, native cellulose and cellulose derivatives have been uses either as reinforcing 

elements or matrix in composite, or in papermaking stream. It is also important to note that 

the highest tonnage is related to paper industry. This industry still grows every year globally 

and is one of the pioneers for sustainable forest management. 

 

 
Figure I-12 : Example of cellulose based materials application sector in 2010 
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Table I-1 : Applications of cellulose in different fields  

APPLICATION WITH NATIVE CELLULOSE 

Chemistry Filtration 
Filter paper (acid-hydro cotton 
linters) 

Civil engineering Concrete reinforcement Fibers 

Commodity 

Generic paper, Kraft, cartoon Paper pulp from hemp, linen, 
wood, 

Cosmetic use Cotton wool 

Filtration Filter paper (acid-hydro cotton 
linters) 

Hi-fi 
Bacterial cellulose audio 
membranes, loudspeaker or MP3 
player composite cases 

Electrical 
Conductive mats Cellulose doped with carbon 

nanotubes 

Transformer insulation Paper impregnated with insulation 
oil 

Energy production Heat by direct combustion Wood 

Food Texturizer, stabilizer and fat 
replacer Microcrystalline cellulose 

Mechanical 
Polymer composites reinforcement Fibers, whiskers, microcrystals… 

Smart paper Electroactive paper 

Medical Excipient/drug carriers Compressed microcrystalline 
cellulose 

Optical Chiral nematic suspensions of 
cellulose 

Liquid 

Textile 
Disposable towels, tissues, 
underwear Non-woven soft fabrics 

Natural fibers (cotton, hemp, flax…) Natural fibers 

APPLICATION WITH REGENERATED CELLULOSE 

Biochemistry 

Ultrafiltration membranes 

Membranes Fractionation membranes 

Dialysis membranes 

Biomedical 

Artificial blood vessels 

Hydrogels Cartilage scaffolds 

Bacterial cellulose wound dressing 

Wound dressing Cotton wool 

Commodity 
Cleaning, liquid absorption Sponges 

Packaging Cellophane 

Mechanical Composite matrix Regenerated cellulose 

Optical Contact lens Hydrogel 

Textile 
Man-made fibers (viscose, 
Lyocel,…) 

Regenerated wet-spun cellulose 
fibers 

APPLICATION WITH MODIFIED CELLULOSE 

Chemistry Purification of chemical systems Clouding polymers 

Civil engineering 

Water balance control in building 
industry materials (concrete) Cellulose ethers 

Tunneling and slurry supported 
excavations Carboxymethyl cellulose 

Energy production 
Biofuel Ethanol 

Electricity Microbial fuel cells to generate 
electricity by digesting cellulose 

Mechanical Composite matrix Cellulose derivatives 
Paint Stabilizer Resin, gels, additives 

Textile Smart textiles Modified regenerated cellulose 
fibers 



Chapter 1: Literature review 

40 
Karim Missoum - 2012            

Cellulose is widely used in papermaking industry. Paper is produced from fibrous raw 

materials such as wood and annual non-wood plants by a process resumed in Figure I-13. 

The quality of the paper formed depends on the source of the raw material, the refining 

process used, the additives and aids present in the papermaking formulation and the 

pressing and drying processes. Converting steps (online and/or offline) can also affect 

largely the quality of the produced paper.  

 

Figure I-13: Schematization of papermaking process (Taken from Denneulin PhD) 

The bleached pulp suspension can be purified and refined, before injection on a formation 

table where the larger amount of water is removed. To eliminate more water and allow 

hydrogen bond formation (giving the cohesion of the paper), the “wet” web passes through 

the press section, before entering into a first dryer section. After what, the paper is reeled or 

sized if needed to impart special properties. A calendaring step can also be applied before 

reeling to reduce the surface defects and increase the density of the paper.  

Paper is well studied material and its main properties are well known. Nowadays, this 

sector is suffering from a big crisis and two main challenges can boost its economic issues 

and industrial relevance (i) impart new functionalities to papers without decreasing their 

properties and (ii) development of new materials based on cellulose destined for other 

industrial sectors. Chemical modification of cellulose is one of the most promising 

approaches aiming at providing new functionalities to this raw material. The following chapter 

will give the state of the art of the different strategies reported in the field.  
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That’s why researchers have focused their work on the development of polysaccharide-

based nanoparticles coming (cellulose (NFC or NCC) or starch nanocrystals (Le Corre et al. 

2010). Since several decades these bio-based nanoparticles have known a growing interest 

due to their good properties of reinforcing polymeric matrices or their barrier properties, for 

example. Several projects were developed and got European financial support for 

development of these nanoparticles like FlexPackRenew (focused on Starch NanoCrystals) 

SUSTAINCOMP or SUNPAP projects promoting the development of NFC.  

In this report we have worked only with NFC as raw materials. However for a better 

comprehension of these cellulosic a nanoparticle, the next subchapter is dedicated to NFC 

and NCC to understand the main difference between these two materials. 
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2. Chemical modification of cellulosic fibers 

 

Chemical modification of cellulose started more than 100 years ago in order to provide 

new lignocellulosic functions and to overcome the 2 main drawbacks associated with this raw 

polymeric material, i.e. the non-solubility and the non-melting ability. Thus, starting from 

cellulose fibers, two main strategies can be followed: either a “homogeneous” grafting of 

cellulose, also called derivatization, or a “heterogeneous” grafting of fibers, the so-called 

surface chemical modification. In fact, the latter keeps the fiber structure of cellulose and 

concerns only the surface of cellulose fiber.  

The idea developed in this context aims at taking benefits from the good performance of 

the native cellulose fibers, which imposes limiting the modification to the surface. In our 

study, we have applied this approach to nanofibrillated cellulose, which has roughly the same 

surface chemistry, but it differs from morphological point of view. 

The first strategy (“homogeneous” grafting) consists in solubilizing the cellulose before or 

during the chemical reaction. A completely different polymer is obtained. Called cellulose 

derivatives, they can be used in several applications, e.g. foods, cosmetics, plastics, 

pharmaceutics, coatings etc…  

In our study we will use them, in order to prepare nanocomposites, which justify their 

description (at least briefly) in the following subchapter. The second one will be devoted to 

detailed description of heterogeneous surface cellulose fiber grafting. 

 

2.1 Cellulose Derivatives: General considerations 

Chemical modifications of cellulose generally involve reaction with its hydroxyl groups 

carried borne by C2, C3 and C6. These –OH reactive groups undergo most of the reactions 

usually assessed with alcohols. Esterification and etherification of cellulose are the most 

studied in literature and used in industry.  

 

2.1.1 Cellulose nitrates and esters 

In the literature, several esterification reactions are proposed. Inorganic and organic 

cellulose can be produced. In term of inorganic cellulose, we can found as an example:  

(i) Cellulose Nitrate (cf. Figure I-14) is the oldest cellulose derivative (called also 

Nitrocellulose) and commercially the most important of “inorganic” ester of cellulose. It is well 

known that applications are in the field of explosives, photography, cosmetics and varnishes. 
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Figure I-14 : Cellulose nitrate reaction 

Nitration is usually carried out by treating cellulose with nitric acid in the presence of 

sulfuric acid and water, as shown in Figure I-14. The amount of water controls the degree of 

substitution. Table I-3 displays main properties of this cellulose derivative. 

 

(ii) The most important family of organic celluloses esters are obtained by using acyl 

chlorides or acid anhydrides, as shown for example with cellulose triacetate in Figure I-15. 

 

Figure I-15 : Cellulose triacetate preparation using acetic anhydride  

Cellulose acetates (CA) are one of the most widely produced cellulose esters. It is an 

acetylated cellulosic material, in which the hydroxyl groups along the cellulose chain are fully 

or partially acetylated (Altena and Smolders 1981; Bochek and Kalyuzhnaya 2002; Wang 

and Fried 1992). Its wide applications in textile fibers, cigarette filters, plastics, films, 

separation membranes and coating make it the most used cellulose derivatives in industry. 

All cellulose acetates are generally obtained by reacting high purity cellulose with acetic 

anhydride, using acetic acid, as reaction solvent and sulfuric acid, as a catalyst. The 

industrial processes to manufacture a fully substituted cellulose triacetate use, as the solvent 

medium, glacial acetic acid alone or in combination with methylene chloride as the primary 

product (DS>2.9, or 92% of hydroxyl group are acetylated). Cellulose triacetate is then 

isolated and processed as such, or hydrolyzed (by the addition of water, dilute acetic acid or 

NaOH), in order to “de-substitute” the cellulose triacetate and form secondary cellulose 

acetate. Thus, a DS between 1.8 and 2.5 can be achieved. These materials are similar to 

some common plastics and exhibit good mechanical properties, good stability under 

atmospheric conditions and water resistance (Table I-2). However, melting is almost 

simultaneous with decomposition. This is the reason why longer grafting moieties or mix of 

different grafted moieties can be used, in order to introduce internal plasticizer. 
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Esters of higher aliphatic acids such as cellulose propionate, butyrate or hexanoate are 

prepared similarly to the acetates derivatives, utilizing either the acid anhydride or the acyl 

chloride, as the grafting agent. Table I-2 summarizes the different physical and chemical 

properties of tri-substituted cellulose derivatives. 

 
Table I-2 : Physical properties of cellulose tri-esters grafted with higher carbon number in the 
aliphatic chains (IDES prospector plastics database) 

Number of 
carbon grafted Melting point (°C) Tensile strength 

(MPa) 
Density 
(kg.m-3) 

Water sorption 
(%) 

2 306 71.6 1280 2 

3 234 48 1230 0.5 

4 183 30.4 1170 0.2 

5 112 18.6 1130 0.2 

6 94 13.7 1100 0.1 

10 87 7.5 1030 0.1 

12 91 5.9 1000 0.1 

14 106 5.9 990 0.1 

16 106 4.9 990 0.1 

As illustrated in this table, the melting point and the tensile strength of the cellulose esters 

decrease with increasing length of the ester group. Cellulose butyrate melts without 

decomposition at 192°C, and therefore can be processed via melt state. The cellulose esters 

with a side chain length containing 3 to 16 carbons can be used to produce increasingly 

hydrophobic film. But in this case, mechanical properties are also decreased. 

Currently, lots of mixed derivatives can be found as Cellulose Acetate Propionate (CAP) 

or Cellulose Acetate Butyrate (CAB). These mixed derivatives are produced firstly by an 

acetylation process controlling the DS and then the reaction between the ensuing cellulose 

acetate and propylic or butyric anhydride is performed. As presented in the Table I-2, 

cellulose acetate butyrate or propionate can be used as polymeric matrices. 

Regarding the large application fields of all these cellulose derivative materials, cellulose 

acetate derivatives seem to be promising candidates for composite applications. Thus, their 

mechanical properties, runnability and processability motivate us to produce all cellulose 

nanocomposites reinforced with NFC and modified, NFC which, to the best of our 

knowledge, has never been studied in literature. This reinforcement will consist of preparing 

“all cellulose composites”. This point will be investigated in the last chapter of the present 

report. 
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2.1.2 Cellulose ethers 

Cellulose ethers are a wide range of cellulose derivatives such as carbomethylcellulose 

(CMC), methyl cellulose (MC), hydroxyethyl cellulose (HEC) hydroxypropylcellulose (HPC), 

hydroxyethylmethylcellulose (HEMC) and hydroxypropylmethylcellulose (HPMC). Their main 

property is their solubility in aqueous solutions. They are used, as additives in various 

industries including food, paint, oil, paper, cosmetics, adhesives, printing, textile… Cellulose 

ethers act as thickeners water retention agents, film former or thermoplastics in these 

applications.  

(i) Alkyl ethers of cellulose, as methylcellulose or ethylcellulose are obtained following 

the process detailed in Figure I-16.  

 

Figure I-16 : Chemical reaction to obtain methyl or ethyl cellulose derivatives 

It results from a nucleophilic attack of the alkoxide group of cellulose on the acceptor 

carbon of methyl or ethyl chloride. It requires high temperature and high amount of NaOH 

(40%) in comparison to the viscose process which, instead, requires only 18%. Reactions 

are occurred preferentially at the C2 and C6 hydroxyl sites. Hydrophobicity of alkylcelluloses 

increases with the length of the alkyl chain and with the DS of the derivative (cf. Table I-3). 

 

(ii) Carboxymethylcellulose or CMC is a water-soluble anionic polymer achieved by 

introducing carboxymethyl groups along the cellulose chain (Figure I-17). CMC is usually 

synthesized by the alkali-catalyzed reaction of cellulose with chloroacetic acid (Heinze and 

Koschella 2005). The functional properties of CMC depend on the degree of substitution of 

the cellulose structure and on the chain length of the cellulose backbone.  

 
Figure I-17 : Chemical reaction for preparation of carboxymethylcellulose 
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The degree of substitution (DS) of CMC is usually in the range of 0.6 to 0.95 derived 

groups per monomer unit. CMC is generally considered as a water-soluble polymer down to 

DS 0.3 (Fox et al. 2011; Horsey 1947). CMC displays interesting properties, as shown in 

Table I-3. Aqueous solution of CMC acts as thickener, rheology control agent, binder, 

stabilizer, film former and water retention aid. Thus, it can be employed in various industries 

as cosmetic, pharmaceutical, food, paper, adhesives, coatings… Such a material has similar 

chemistry as TEMPO oxidized NFC (detailed previously), which justify a brief discussion of 

CMC family. In fact, our studies on TEMPO oxidized NFC (NFC-TE) will take advantage from 

such an insight. Nevertheless, the main difference is that CMC is in aqueous solution, 

whereas NFC-TE particles are in water suspension. In this case we will speak about 

heterogeneous grafting.  

 
Table I-3: Some physical properties of carboxymetylcellulose (Wertz et al. 2011) 

Properties Nitro 
cellulose 

Tri 
acetate 

2nd 
acetate 

CAB 
(DS=3.2) 

CAP  
(DS=3) 

Methyl 
cellulose 

Ethyl 
cellulose 

Carboxy 
methyl 

cellulose 

Mechanical Properties 

Tensile 
strength(MPa) 35-70 137-245 157-177 24-76 / 10-12 42-62 55-105 

Elongation 
(%) 10-40 20-35 2-16 8-80 / 7-14 0.1-0.4 8-14 

Physical Properties 

Melting point 
(°C) 145-152 >  260 230 115-165 185-230 290-305 240-255 / 

Glass temp. 
(°C) 70-80 / / 56-94 115-145 140-165 80-130 -40-70 

Density 
(kg.m-3) 1.3-1.4 1.27-1.29 1.28-1.32 1.15-1.22 1.28-1.32 1.01-1.10 1.07-1.18 1.59 

Water sorption 0.6-2 2.5-3.2 2-10 / / Soluble 1-3 Soluble 
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2.2 Heterogeneous grafting in solvent media 

Several reactions dealing with the surface chemical grafting of cellulose fibers can be 

found in the literature. Various authors have reviewed research related to this field, especially 

those by which macroscopic cellulosic fibers can be rendered less hydrophilic and more 

compatible with hydrophobic matrices (Belgacem and Gandini 2005; Bledzki et al. 1998; 

Eichhorn et al. 2001; Jacob et al. 2005; Lindström and Wagberg 2002; Lu et al. 2000; 

Mohanty et al. 2001; Trejo-O’Reilly et al. 1997).  

 

In this report we are focused our attention on only 2 types of modification i.e. carbanilation 

using isocyanate and esterification of cellulose using anhydride moieties (aliphatic anhydride 

and Alkyl Ketone Dimer (AKD) reaction). That is why, in the next chapter, only these two 

reactions will be studied.  

 

However research on sylilation (Belgacem and Gandini 2011), etherification and many 

others are available in the literature, as recently review by Gandini and Belgacem (Gandini 

and Belgacem 2011) 

The following chapter deals with chemical grafting and will be divided into two main 

sections. The first one will cover grafting with small molecules, whereas the second will be 

devoted the polymer-assisted grafting. 

 

2.2.1 Molecule chemical grafting 

Isocyanates or di-isocyanates are known in polymer chemistry (e.g. polyurethane) but 

also in wood chemistry, as wood binders with successful applications. The -N=C=0 group of 

isocyanate is highly reactive with the -OH group of cellulose and it yields urethane linkage. 

Extensive experimental work on the application of isocyanate, as coupling agents for 

different types of cellulose materials and polymers, has been carried out by Kokta and co-

workers (Kokta et al. 1990). Composites were manufactured with cellulosic material, which 

was either pre-coated with an isocyanate polymer mixture, or the isocyanate was added 

directly into the mixture of the fibers and the polymers. Thomas’ group (George et al. 1997; 

Joseph et al. 1996) also reported on the mechanical properties of isocyanate treated fiber 

reinforced thermoplastics composites. Sisal fibers were treated by urethane derivatives of 

cardanol and found that such a treatment improves the compatibility between fiber and 

matrix. The poly(methylene1 poly(pheny1) isocyanate (PMPPIC) treatment has significant 

influence on the properties of the composites, i.e., increased thermal stability, reduced water 

absorption and mechanical properties (George et al. 1996; Mishra et al. 2004). PMPPIC is 

chemically linked to the cellulose matrix through strong covalent bonds. More recently, Krouit 
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et al. (Krouit et al. 2010) compared these chemically grafted fibers with extracted fibers for 

compatibilizing in biocomposites and proved the beneficial effect of such a treatment. Ly et 

al. (Ly et al. 2008) and Bessadok et al. (Bessadok et al. 2010) also demonstrated the positive 

impact of using di-isocyanate regarding mechanical properties of biocomposite. Joly et al. 

(Joly et al. 1996a) studied the effect of alkyl isocyanate treatment on the water absorption 

behavior of cotton cellulose-reinforced composites by varying the length of alkyl chains. Their 

results showed the importance of critical length of the alkyl chain for reducing the amount of 

adsorbed water when working with isocyanate. It is worth to notice that, in the presence of 

traces of humidity, isocyanates will react preferably with water instead of hydroxyl group of 

cellulose to produce amine (R-NH2). The ensued amine could react with other isocyanate 

and to form di-substituted urea, which can be considered as by-products, as schemed in 

Figure I-18.  

 

 
Figure I-18 : Secondary reaction occurred with isocyanate 

Because of their basic character, these moieties can further react with isocyanates, 

yielding side chains called allophanate. Rensch and Reidl (Rensch and Riedl 1992) modified 

chemo-thermo-mechanical-pulp (CTMP) with various isocyanates such as n-butyl isocyanate 

(BUI), phenyl isocyanate (PHI), hexamethylene di-isocyanate (HMDI) and poly(methylene) 

poly(pheny) isocyanate (PMPPIC) in DMF, in the absence of catalyst. The effect of such a 

treatment on the thermoanalytical behavior of CTMP was investigated. Aliphatic isocyanates 

such as BUI and HMDI showed a low potential of reaction with CTMP, compared to MDI and 

PHI. The use of MDI and its oligomeric homologues PMPPIC, as coupling agent, resulted in 

an increased thermal stability of modified pulp when compared to untreated counterpart. 

The esterification of cellulose is very old reaction which first applied to the synthesis of 

cellulose acetate, as described previously. This reaction can be limited to the surface of 

cellulose fibers, by using non-swelling solvents. The most extensively explored reagents are 

acetic anhydride, alkyl ketene dimer (AKD), alkenyl succinic anhydride (ASA) and different 

fatty acids (with carbon number of the aliphatic chain varying from 6 to 22) or their chlorides. 

Ester formation is a popular way to impart hydrophobic nature of cellulosic surfaces (Alvarez 
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et al. 2007; Belgacem and Gandini 2009; Caulfield et al. 1993; Felix and Gatenholm 1991; 

Gandini and Belgacem 2011; Joly et al. 1996b; Matsumura and Glasser 2000; Pasquini et al. 

2008; Pasquini et al. 2006; Zafeiropoulos et al. 2002a; Zafeiropoulos et al. 2002b). As 

proposed by Freire et al.  (Freire et al. 2005), in specific conditions (non-swelling solvent), 

cellulose fibers can be modified at their surface with several fatty acyl chlorides (hexanoic C6, 

dodecanoic C12, octadecanoic C18 and docosanoic C22). As shown in the Table I-4, several 

times of reaction and solvents were applied. 

Table I-4 : Surface chemical modification of cellulose fibers by esterification (adapted from 
Freire et al. 2005) 

Fatty acid 
chloride Solvent Reaction time DS 

Hexanoic 

Toluene 
 
 

DMF 
 

0.5 
1 
2 
4 
6 
6 

0.43 
0.51 
0.85 
0.80 
0.75 
1.06 

Dodecanoic 

0.5 
1 
2 
4 
6 
6 

0.18 
0.40 
0.73 
1.13 
1.43 
1.37 

Octadecanoic 

0.5 
1 
2 
4 
6 
6 

/ 
/ 

0.076 
0.12 
0.30 
0.94 

Docosanoic 

0.5 
1 
4 
6 
6 

/ 
/ 

0.022 
0.067 
1.22 

 

In this paper, authors used TGA and contact angle measurements to demonstrate that 

materials with increased thermal resistance and hydrophobic character could be obtained.. 

Depending on the solvent used, cellulose fibers seem to be more reactive in DMF. However 

the crystallinity index is strongly reduced for lower aliphatic fatty chlorides (i.e. C6 and C12) 

even if the fiber structure is conserved. We can suppose that reactions have been performed 

at the surface of fiber but also in depth of the materials.  

 

In our study different length of anhydride will be investigated and compared from C2 to 

C6. (See Chapter 2.2) 
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In 2007, Cunha et al. published three papers dealing with the surface esterification of 

cellulose fibers with different perfluorinated reagents, viz. trifluoroacetic anhydride (TFA) 

(Cunha et al. 2007c), pentafluorobenzoyl chloride, PFB (Cunha et al. 2007a), and 3,3,3-

trifluoropropanoyl chloride, (TFP) (Cunha et al. 2007b), under controlled heterogeneous 

conditions. The occurrence of the grafting was demonstrated by direct techniques, such as 

FTIR, XPS and ToF-SIMS, whereas the hydrophobic and lipophobic character of the fluorine-

containing modified surfaces were found to increase significantly compared with those of the 

pristine fibers. The degree of substitution of the pentafluorobenzoylated substrate ranged 

from 0.014 to 0.39, whereas that of the trifluoropropanoylated counterpart ranged from less 

than 0.006 to 0.30. The thermal stability decreased only slightly following this treatment, 

whereas the degree of crystallinity decreased significantly under the most severe 

experimental conditions.  

 

This esterification of cellulose surface can also occur with di-anhydride as coupling agent 

in biocomposite. Positive effect on mechanical properties has been achieved by Ly et al. (Ly 

et al. 2008). The main problem with such molecule grafting is the need:  

(i) of non-aqueous solvent to avoid the secondary reaction or deactivation of reagents; 

and  

(ii) of non-swelling solvent to limit the occurrence of the reactions inside the fiber cell wall, 

thus avoiding the destruction of the fibers and the loss of their physical and mechanical 

properties.   

2.2.1 Polymer grafting 

Several strategies can be detailed for grafting cellulose by polymeric architectures: (i) the 

use of mono-activated polymer (“grafting onto”) or (ii) in-situ polymerization of monomer 

starting from an active site of the solid under investigation (“grafting from”). The latter one 

has similar issues, as those associated with small molecules grafting and can occur into 

homopolymer. Such strategy will be presented more in details when discussing NFC grafting 

(Chapter 1.3) and at the end of this subsection with specific polymerization mechanisms. 

Concerning the first strategy, it was recently showed that cellulose fibers can be 

successfully modified with functionalized activated polymer or oligomer. Ly et al. (Ly et al. 

2010) activated poly(ethylene), poly(propylene) and poly(tetrahydrofuran) glycols by 

converting them mono-NCO-terminating macromolecules. The ensuing mono-activated 

polymer has reacted with cellulose fibers in DMF and the resulting fibers have been analyzed 

by SEM as shown in Figure I-19. These macromolecules were coupled with cellulose surface 

and then characterized using FTIR, contact angle and XPS measurements. 
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Figure I-19 : SEM observation of (a) non grafted and (b) grafted whatman fibers with 

Poly(Propylene)Glycol (Ly et al. 2010) 

Others characterizations showed clear cut evidences about the occurrence of grafting (i.e. 

surface energy decrease, water contact angle stiffed from 40° to 90°, detection of nitrogen 

signal by elemental analysis and XPS measurements). The same idea has been successfully 

achieved by using poly-caprolactone (PCL), as grafted polymer (Paquet et al. 2010). The 

XPS deconvolution of C1s signal show clearly the occurrence of grafting.  

Other technique using “click chemistry” was developed in heterogeneous conditions 

(Hafrén et al. 2006; Vogt and Sumerlin 2006; Zhao et al. 2010). Krouit et al. (Krouit et al. 

2008) grafted successfully using this method PCL onto cellulosic fibers following three steps, 

as presented in Figure I-20. 

 

Figure I-20 : Strategy of cellulose surface modification by click chemistry (Krouit et al. 2008) 
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In this work, the first step consisted of the esterification of cellulose in a mixture 

toluene/DMAc in order to use non-swelling solvent conditions. XPS characterizations showed 

the grafting thank to deconvolution of C1s signal. The second step was to convert PCL-diol 

into azido-PCL. Last step was dedicated to the “click” reaction between azido-PCL and 

cellulose ester was monitored by FTIR spectroscopy. XPS data showed clearly the grafting 

and the successful reaction between PCL and cellulose. 

Concerning the second strategy, i.e. “grafting from”, cellulose fibers were grafted with 

poly(styrene) by RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization 

(Roy et al. 2005) and the ensuing materials were thoroughly characterized to prove the 

occurrence of the desired modification, which reached high yield of polymerization. The 

results suggest that the hydrophobic character of the grafted copolymers increased with 

increasing percentage of the grafting (from 11% to 26%). Static contact angle values for all 

the grafted copolymers were found to be around 130° with water. 

ATRP (Atom Transfer Radical Polymerization) grafting from cellulose has been the 

subject of several investigations aimed at preparing liquid crystalline grafts (Carlmark and 

Malmström 2002; Westlund et al. 2007) and thermo- and pH-sensitive materials (Ifuku and 

Kadla 2008; Lindqvist et al. 2008). Recently, cellulose was also grafted with various 

monomers using activators regenerated by electron transfer (ARGET), a version of ATRP 

(Hansson et al. 2009). Cellulose membranes were modified using surface-initiated 

polymerization (ATRP) for blood compatibility improvement (Liu et al. 2009) calling upon a 

two-step process consisting of grafting, first, 2-bromoisobutyl bromide and then polymerizing 

p-vinylbenzyl sulfobetaine (DMVSA) from it. The modified cellulose membrane substrates 

were characterized by FTIR, XPS, water contact angle measurements, AFM and TGA, which 

showed that the grafted brushes had been successfully appended onto the cellulose 

membrane surfaces, and that their density had increased gradually with increasing 

polymerization time. 

 

So, as presented before there are several methods to chemically modify cellulose fibers. 

But in our work we are focused only on green process which involved less solvents or water-

based reaction media. This objective will be investigated in the next section. 
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2.3  “Green” processes for modification 

2.3.1 Without solvent 

An interesting and environmentally surface treatment concerns the use of atmospheric air 

pressure plasma (AAPP), which was recently applied to various lignocellulosic fibers (abaca, 

flax, hemp and sisal) limited to a few minutes to render fibers more hydrophobic. Plasma 

treatment has been used for a while in textile industry but barely in paper and composite. 

The wettability of the treated fibers surface (Baltazar-y-Jimenez et al. 2008) was determined 

using the capillary rise technique, whereas the changes in the surface chemistry were 

characterized by zeta-potential measurements. The surface energy of the lignocellulosic 

fibers was found to remain practically constant, even for prolonged treatment times, with the 

exception of the abaca fibers, for which this parameter decreased with increasing AAPP 

treatment time. Recently, Gaiolas et al. published two papers dealing with the treatment of 

cellulose samples with cold plasma in the presence of several coupling agents, namely vinyl 

trimethoxysilane, g-methacrylopropyl trimethoxysilane, (Gaiolas et al. 2008), myrcene and 

limonene (Gaiolas et al. 2009). The modified substrate was extracted, in order to remove the 

physically adsorbed unbound molecular moieties, before being characterized. Contact angle 

measurements and XPS showed that the surface cellulose chains had indeed been 

chemically grafted, as indicated by an increase in the water contact angle from 40° to more 

than 100° and the corresponding decrease of the polar component to the surface energy 

from about 23mJ.m–2, to almost zero, for all the treated samples. Other authors developed 

several methods using plasma discharge to modify cellulosic substrates. A superhydrophobic 

cellulose surface was reported (Balu et al. 2009), as a result of a double plasma treatment. 

Contact angles as high as 167º were attained under optimized conditions. Vesel et al. (Vesel 

et al. 2009) treated viscose textiles with oxygen, nitrogen or hydrogen plasmas for 5 s. 
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Figure I-21 : SEM images and C1s high-resolution of viscose textile (a) untreated, and after 5s 
with (b) oxygen plasma, (c) nitrogen plasma and (d) hydrogen plasma (adapted from Vesel et 

al. 2009) 

High-resolution XPS (Figure I-21) showed that the use of oxygen and nitrogen 

atmospheres induced a strong oxidation of the surface, whereas hydrogen, as expected, 

caused a substantial decrease in oxidized moieties. Moreover, plasma treatment under a 

stream of nitrogen caused the fixation of N atoms, as detected by XPS. SEM images showed 

an increase in the fiber surface roughness after treatment with hydrogen or oxygen plasma. 

Other possibility for grafting cellulose without any solvent is to use volatile reagent 

molecule. Recently, Belgacem’s group (Cunha et al. 2010) managed grafting volatile silanes 

onto Whatman paper by using gas-solid reaction of reagent located in the other side of the 

sample to be grafted. In this case, water vapor was added to achieve silane grafting. Results 

were promising and similar strategy have been used for nanocellulose (Berlioz et al. 2009; 

Rodionova et al. 2010) and will be detailed in next subchapter. 

It is also possible to add directly the reagent onto paper and to activate reaction by 

increasing the temperature. This solution is well known for acyl chloride since the 90’s and 

some researchers called it chromatogeny (Samain 2002). Indeed the reagent is coated on 

the substrate surface and the reaction proceeds by its evaporation and elution through the 

sample thickness thank to a stream of a vector gas. Very recently, the “Centre Technique du 

Papier” (CTP) in France build a pilot roll-to-roll on this strategy with very promising first 

samples. To the best of our knowledge, such an approach has never been used for 

nanocellulose grafting.  
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2.3.1 Ionic liquids as green solvent 

Ionic liquids or “molten salts” are in general defined as liquid electrolytes composed 

entirely of ions. Recently, the melting point criterion has been proposed to distinguish molten 

salts (“high melting point, high viscosity and corrosive medium”) and Ionic Liquids (“liquid 

below 100°C and lower viscosity”) (Baker et al. 2005; Hardacre 2007; Holbrey and Seddon 

1999). The most important features of ILs are their non-measurable vapor pressure. Indeed, 

they are defined as “green” solvents mainly because they are non-volatile organic 

compounds (VOC). In addition to this property, ILs have other attractive properties such as 

chemical and thermal stability (Blake et al. 2006; Chiappe and Pieraccini 2005; Zhang et al. 

2006), non-toxicity for humans regarding inhalation, non-flammability and high ionic 

conductivity which constitute interesting parameters for chemical modification. They could be 

also easily recyclable and reused due to their low melting point (comprising -60°C to 60°C) 

just by solidification decreasing the temperature or by distillation (e.g. evaporation of by-

products). For these reasons, ILs are very promising for replacement of traditional volatile 

organic solvents. There is a wide variety of ILs, each of them are composed of a cation, 

mainly two type imidazolium or pyridinium salts, and an anion (e.g. chloride, 

tetrafluoroborate, hexafluorophosphate…), as presented in Figure I-22.  

 

 

 
Figure I-22 : Different type of Ionic liquids 

 

The decomposition temperatures reported in the literature are generally superior to 400°C, 

with minimal vapor pressure below their decomposition temperature (De Azevedo and 

Esperanca 2005a; De Azevedo and Esperanca 2005b; Cropsthwaie and Fredlake 2004). ILs 

are denser than water and arise high viscosity (Tomida et al. 2006) which can reduce the 

diffusion rate of reagent molecules for chemical reaction. The Table I-5 represents different 

ILs and their properties. 
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Table I-5 : Ionic liquids properties 

 

 

The chemistry and the interactions between cellulose and ionic liquids have been 

investigated during the ten past years, but mainly for solubilization or homogeneous 

derivatization of cellulose (Biswas et al. 2006; Feng and Chen 2008; Swatloski et al. 2002). 

Ionic liquids are promising solvent for  homogeneous chemical reaction on cellulose, but they 

have also the capacity to degrade cellulose fibers (Heinze et al. 2008). To limit this 

phenomenon, a hydrophobic IL could be used and different parameters must be considered 

(i.e. viscosity, polarity, affinity with water, dissolution in water) (Freire et al. 2007; Rivera-

Rubero and Baldelli 2004; Shvedene et al. 2005; Wong et al. 2002). For instance, Liebert 

and Heinze (Liebert and Heinze 2008) reviewed several methods using IL for the 

esterification of cellulose fibers in homogeneous cellulose. Figure I-23 displayed some 

derivatives obtained after homogeneous chemical reaction. 

IL 

abbreviation 

Molecular weight 

(g.mol-1) 

Melting point 

(°C) 

Viscosity 

(mPa.s) 

Solubility in 

water 

[bmim][Cl] 174,67 ~ 60 Solid C.S* 

[emim][BF4] 197,97 ~ 15 ~ 37-66 C.S* 

[bmim][BF4] 226,02 ~ -70 ~ 132-233 C.S* 

[omim][BF4] 282,13 / ~ 325-400 9,14 %wt. 

[emim][PF6] 256,13 ~ 59 / 5,09 %wt. 

[bmim][PF6] 284,18 ~ 12 ~ 385-450 2,12 %wt. 

[omim][PF6] 340,29 ~ -71 ~ 682-847 0,95 %wt. 

[emim][Tf2N] 391,32 ~ -16 ~ 28-39 1,37 %wt. 

[bmim][Tf2N] 419,37 ~ -3 ~ 52-69 1,10 %wt. 

[omim][Tf2N] 447,42 / ~ 80-93 0,75 %wt. 
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Figure I-23 : Cellulose tri-esters prepared in the solvent N-benzylpyridinium chloride/pyridine 

(Liebert and Heinze 2008) 

The DS obtained was close to 3 for all the samples for 2 hours of reaction. Among a large 

variety of ILs, only few of them are immiscible with water and could perform heterogeneous 

media surface modification of cellulose. To our knowledge nobody has already grafted 

cellulose fiber surface by heterogeneous reaction within ionic liquid in spite of the promising 

“green” properties of these solvents. The hydrophilic / hydrophobic balance is important for 

the solvatation properties of ILs but it is also relevant for the recovery of products by solvent 

extraction for example. 

Several procedures have been developed to recycle ILs with an acceptable degree of 

purity. Liquid-liquid extraction or cooling has been used to remove impurities (Chapeaux et 

al. 2008; Dupont et al. 2002; Earle and Seddon 2000; Muthusamy and Gnanaprakasam 

2005; Zhao et al. 2005). After heterogeneous reaction, modified materials could be easily 

removed by filtration and the impurities, by-products and unreacted moieties can be removed 

by liquid extraction or distillation. 

In Chapter 2, the chemical surface modification of nanofibrillated cellulose in ionic liquids 

will be investigated in heterogeneous conditions for the first time in literature. 

 

2.3.2 Water-based modifications 

(i) Silanation in water is a silane-based reaction, which can be used to attach a wide 

range of functional groups on the surface of cellulose fibers. Numerous studies have dealt 

with the modification of cellulosic materials with silanes to improve their performance when 

used in composite (Abdelmouleh et al. 2007; Abdelmouleh et al. 2005; Bledzki and Gassan 

1999; Gassan et al. 2000; Matuana et al. 1999; Pothan et al. 2007; Singh et al. 1996). The 

mechanism of silanation coupling reaction has been described by Castellano et al. 

(Castellano et al. 2004). In the strict absence of water, SiOR groups apparently do not react 
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with cellulosic hydroxyl groups. Thus, moisture and water can lead to partial hydrolysis of the 

silane rendering it reactive with hydroxyl groups of cellulose fibers by deshydratation when 

the samples are dried. The fundamental mechanisms of this reaction have been detailed 

very recently (Paquet et al. 2012). It is one of the main reactions in aqueous media. Other 

possibilities are (i) either grafting oxidized cellulose with alcohol or amine for example or (ii) 

working with emulsions. 

(ii) Indeed, the AKD emulsion is widely used in papermaking industry to impart 

hydrophobic behavior to the treated cellulosic substrates (Lindstrom and Larsson 2008). The 

typical structures used to this context are satured or unsatured fatty acids, with a dominant 

molecule: stearic acid. The AKD emulsions are prepared by adding a colloidal stabilizer 

such, as cationic starch or a cationic polymer. Even if the covalent bond between AKD and 

cellulose is still under investigation and discussion, some methods exist to check the 

bounded and the unbounded AKD on cellulose fibers (Kumar et al. 2012). The model 

involves a 4 steps process, as presented in Figure I-24. 

 

 
Figure I-24 : Schematic presentation of the mechanism of sizing with AKD 

First, the AKD is retained in the web of paper thanks to electrostatic interactions between 

the anionic fibers and the cationic charge of the protective colloidal macromolecule around 

the AKD micelles (cationic starch or polymer). Then, in pressing and drying steps of paper, 

the adsorbed AKD enters in contact with the cellulose fibers and spreads. The spreading of 
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AKD leads to the formation of “monolayer” and finally the reaction occurred and the aliphatic 

tails of AKD are oriented to the air interface, thus achieving the sizing of the fiber surface.  

Several reviews are available (Cunha and Gandini 2010; Zhang et al. 2007) dealing with 

the AKD sizing on cellulosic surface to impart hydrophobic behavior. The reaction between 

AKD and cellulosic fibers is well-known since 70’s. Reactions occur during modification are 

given in Figure I-25. Several reviews are available in literature to described the possible 

interactions and the modification of cellulose fibers using AKD (Lindstrom and Glad-

Nordmark 2007; Lindstrom and Larsson 2008; Mattsson 2002). 

 

 

Figure I-25 : Reactions between cellulose and AKD 

More recently Song et al. (Song et al. 2012) studied the interactions of AKD with cellulose 

in homogeneous and heterogeneous conditions. The reaction products were characterized 

by FTIR, SEM, TGA-DTA and WXRD. In homogeneous conditions after dissolution of 

cellulose fibers using DMAc/LiCl as solvent, the crystalline region of cellulose, as well as the 

intra and intermolecular hydrogen bonds were destroyed. FTIR showed that hydroxyl groups 

were able to react with AKD to generate ester bonds. In heterogeneous conditions, the 

activity and accessibility of free hydroxyl groups were restricted and no ester bonds were 

detected by FTIR. Reaction and interactions will be investigated more deeply in the chapter 

section 2.3. Other reaction can be found in literature as polymer grafting onto cellulose fibers 

which limits the reaction inside the fibers. This point will be detailed in next section. 

As presented below, there is a lot of chemical surface reaction available in literature involving 

cellulose fibers. But the main raw material used during this PhD is nanofiber which is 

expected to exhibit different behaviors.  
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3. Nanofibrillated Cellulose and its modification 

 

Two types of nanocellulose are usually considered: (i) NanoCrystalline Cellulose (NCC) 

and (ii) NanoFibrillated Cellulose (NFC). The preparation of NCC and NFC are completely 

different. Figure I-26 schematizes the main steps to obtain these two nanocelluloses from 

unbleached pulp. 

 

The extraction of crystalline cellulosic regions, in the form of nanowhiskers, is a simple 

process based on acid hydrolysis. Azizi et al. (Azizi et al. 2005) described cellulose whiskers 

as nanofibers which have been grown under controlled conditions that lead to the formation 

of high-purity single crystals. As indicated in Figure I-26, many different terms have been 

used in the literature to designate these nanocelluloses which enhance misunderstanding.  

 

Concerning NCC, the amorphous regions are susceptible to acid attacks, and, under 

controlled conditions, they may be removed leaving crystalline regions intact. Beck-

Candanedo (Beck-Candanedo et al. 2005) mentioned (Rånby and Ribi 1950; Rånby et al. 

1949) as the pioneers in the production of stable suspensions of colloidal-sized cellulose 

crystals by sulfuric acid hydrolysis of wood and cotton cellulose. De Souza Lima and Borsali 

(De Souza Lima and Borsali 2004) described the principle of the disruption of the amorphous 

regions of cellulose. The hydronium ions can penetrate the material in these amorphous 

domains promoting the hydrolytic cleavage of the glycosidic bonds and releasing individual 

crystallites.  

 

Dong at al. (Dong et al. 1998) and Beck-Candanedo et al., (Beck-Candanedo et al. 2005) 

studied the influence of hydrolysis time and acid-to-pulp ratio in order to obtain cellulose 

nanocrystals from softwood and hardwood pulps. They explained that the reaction time is 

one of the most important parameters to be considered. Araki et al. (Araki et al. 1998) 

compared the effects of using sulfuric acid or hydrochloridric acid to produce stable 

suspensions of cellulosic nanocrystals. 
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These authors (Araki et al. 1998) explained that sulfuric acid provides more stable 

aqueous suspensions than hydrochloridric acid because sulfuric acid-prepared nanocrystals 

present a negatively charged surface (sulfate groups).  

Cellulose whiskers can be prepared from a variety of sources, e.g. microcrystalline 

cellulose, bacterial cellulose, algal cellulose (valonia), hemp, tunicin, cotton, ramie, sisal, 

sugar beet, and wood. To a certain extent, geometrical characteristics such as size, 

dimensions and shape of cellulose nanocrystals depend on the source of cellulose as well as 

the hydrolysis conditions. Typical dimensions of whiskers range from 5 to 10 nm in diameter 

and from 100 to 500 nm in length. Contrary to NFC, above a critical concentration, the rod-

like shape of the charged cellulose nanocrystals leads to the formation of an anisotropic 

liquid crystalline phase. This chiral nematic organization can give coloration without any 

pigment and opens new challenges and applications.  

NFC can be viewed as a cellulosic material, composed of expanded high-volume 

cellulose, moderately degraded and greatly expanded in surface area, obtained by a 

homogenization process. Contrary to straight cellulose whiskers, cellulose nanofibrils are 

long and flexible highly elongated nano-element. NFC is composed of more or less 

individualized cellulose nanofibrils, that present lateral dimensions in the order of 10 to 100 

nm, and length generally in the micrometer scale, and consisting themselves of alternating 

crystalline and amorphous strings.  

NFCs are the key raw materials used during this PhD so before discussing its chemical 

modification, their preparation and properties will be detailed in coming sub-chapters. 
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3.1 Generalities: Definition and preparation of NFC 

3.1.1 Definitions 

NanoFibrillated Cellulose (NFC) refers to cellulose fibers that have been fibrillated to 

achieve agglomerates of cellulose microfibrils units, as described in Chapter 1 (section 1.1). 

NFCs have nanoscale (less than 100nm) diameter and typical length of several micrometers. 

Several denominations exist for describing such material and most often MicroFibrillated 

Cellulose (MFC) is used. An ISO standard group is working on an international denomination 

and first results has been more developed during the last TAPPI conference 2012 in 

Montreal (Canada) (Bilodeau 2012; Ensor and Nieh 2012). In spite of this working group, 

number of denomination used is still high and is increasing. We will keep NFC (SUNPAP 

project denomination) as the main denomination all along this report. Nanofibrillated cellulose 

is described as a long and flexible cellulosic nano-material and is obtained from cellulose 

fiber by mechanical disintegration. Several methods are currently used and will be detailed 

latter, but main principle is described in Figure I-27. 

 
Figure I-27 : From wood to NanoFibrillated Cellulose (adapted from Lavoine et al. 2012) 

Field Emission – Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy 

(AFM) and Transmission Electron Microscopy (TEM) analyses are usually performed to 

determine NFC diameters and to assess the morphology of NFC, as proposed in Figure I-28. 
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Figure I-28 : FE-SEM (Missoum et al. 2012), AFM (Innventia 2009) and TEM (Meyer et al. 2011) 
pictures of neat NanoFibrillated Cellulose  

The first successful isolation of cellulose microfibrils was reported 30 years ago by Turbak 

et al. and Herrick et al. (Herrick et al. 1983; Turbak et al. 1983) using a Gaulin laboratory 

homogenizer. Dilute suspensions of cut cellulose fibers from softwood pulp were treated by 

high shear forces to yield individualized cellulose microfibrils. The resulting suspensions 

showed a clear increase in viscosity after several passes through the homogenizer. Indeed, 

NFCs tend to form an aqueous gel at very low concentration (2%wt.) due to the strong 

increase of specific surface area and consequently the higher number of hydrogen bonds 

(arising from surface hydroxyl groups) for a same volume in comparison to the native 

cellulosic fibers. Since 80’s, other mechanical treatments have been performed and different 

raw materials, pre-treatments or post treatments have been tested. This will be detailed in 

following sub-chapters. 

Nanofibrillated cellulose displays two main drawbacks, which are associated with its 

intrinsic physical properties. The first one is the high number of hydroxyl groups, which lead 

to strong hydrogen interactions between two nanofibrils and to the gel-like structure once 

produced. The second drawback is the high hydrophilicity of this material, which limits its 

uses in several applications such as in paper coating (increase of dewatering effect) or 

composites (tendency to form agglomerates in petro-chemical polymers). The most feasible 

solution to this is chemical surface modification to reduce the number of hydroxyl interactions 

and also to increase the compatibility with several matrices. This review details firstly the 

different devices and pretreatments to produce NFC followed by the surface modification of 

this material. To the best of our knowledge, only one review (Missoum et al. 2013) is 

available in this field and has been conducted in order to sum-up all the strategies available. 

3.1.2 Preparation 

Nanofibrillated cellulose is currently manufactured from a number of different cellulosic 

sources. Wood is obviously the most important industrial source of cellulosic fibers, and is 

thus the main raw material used to produce NFC. Bleached Kraft pulp is most often used as 
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a starting material for NFC production (Iwamoto et al. 2005; Saito et al. 2007; Saito et al. 

2006a; Spence et al. 2010; Taipale et al. 2010), followed by bleached sulfite pulp (Ahola et 

al. 2008; Pääkkö et al. 2007; Stenstad et al. 2008). In the literature, diverse non-wood 

sources have already been used to produce NFC. For example, it can be extracted from 

sugar beet pulp (Dinand et al. 2002a; Habibi and Vignon 2008), wheat straw and soy hulls 

(Alemdar and Sain 2008), sisal (Siqueira et al. 2008), bagasse (Bhattacharya et al. 2008), 

palm trees (Bendahou et al. 2010), ramie, carrots (Siqueira et al. 2010d), luffa cylindrica 

(Siqueira et al. 2010a), etc. Up to date, it seems that, contrary to NCC, the raw materials 

have only little influence on the final NFC properties, even though they play a significant role 

on the processing energy consumption. Very recently, Rodionova et al. (Rodionova et al. 

2012) analyzed more in detail 2 different bleached pulps (Norway Spruce and Eucalyptus 

pulps) for specifically pretreated (TEMPO pretreatment) NFC. Authors claimed that the self-

standing films made from oxidized Norway spruce showed better transparency, visual 

appearance and tensile strength compared to the Eucalyptus pulp. 

The NanoFibrillated Celluloses used in this project are obtained from a mechanical 

disintegration of enzymatically pre-treated the Domsjö® bleached wood pulp or Eucalyptus 

bleached wood pulp, as described in next section. This choice was due to the large 

availability of this kind of pulp in north of Europe (Finland), where, eventually, company 

should be built-up if the results obtained by SUNPAP co-workers are promising, according to 

objectives of SUNPAP project.  

NFC is manufactured from a pulp suspension mainly using a mechanical treatment 

(Figure 2). Since the first production of nanofibrillated cellulose in the 80s, several methods 

have been developed to increase the production yield and the quality of the NFC. Up to now, 

three main families of devices have been used for the production of NFC, as presented in 

Figure I-29. The (i) homogenizer system grouping Gaulin® homogenizer machine (from 

APV a SPX Inc. brand, West Sussex, UK) or the GEA® homogenizer (sold by Niro Soavi, 

Parma, Italy); (ii) the Microfludizer® (developed by Microfludics Inc., Newton, MA, USA) 

(Figure 3); and (iii) the grinder devices like Masuko® systems. Each Figure is presented and 

the corresponding device is described. 

All the first three machines are based on a high pressure homogenizing system. From a 

cellulose fiber suspension, the slurry is pumped through valves and injected into pistons (for 

Gaulin® and GEA®) or a high pressure chamber fibrillation (for microfluidizer®) around 8000 

psi (55 MPa), 17,000–22,000 psi (120–150 MPa) and 10,000–30,000 psi (70–210 MPa) for 

Gaulin®, GEA® and Microfluidizer® machines respectively. 
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Figure I-29 : Devices available for NFC production 

(i) For the homogenizer systems (Figure I-29) (i.e., Gaulin and GEA devices), the strong 

mechanical shearing, combined with the high pressure, initiates the fibrillation of fibers. The 

non-homogenized product enters into the valve area at high pressure and low velocity. The 

pressure is increased when pressure is applied by the pneumatic valve shaft, closing the 

adjustable gap between the impact head and the passage head. The homogenizing effect is 

caused by the product entering the valve inlet at pressure. As it passes through the minute 

gap, the velocity quickly increases while the pressure rapidly decreases to atmospheric 

pressure. The homogenized product impinges on the impact ring and exits at a sufficient 

pressure for moving to the next processing stage. The ensuing fibrillated fibers are cooled at 

room temperature. A very recent review, proposed by Lavoine et al. 2012, summarizes all 

the studies using such treatments before 2012 [25] as presented in Table I-6. Their review 

provides a new interest with development of a pilot machine like the GEA system. Before that 

period, the Microfluidizer was mainly used at the lab scale. We can notice that even if it is the 

first process studied in the 80’s, 67% of scientific papers were not published at the start of 

our project in 2009.  
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Table I-6 : Pre- and post-treatments applied in literature to different sources with homogenizer 
as mechanical treatment (Lavoine et al. 2012) 

 

(ii) The microfluidizer is equipment that also allows the defibrillation of cellulosic pulps 

(Figure I-29). The fiber suspension is placed in an inlet reservoir, and then thanks to a pump 

intensifier generating high pressure, the slurry is accelerated and led into the interaction 

chamber. When the pressurized product enters into the interaction chamber and passes 

through geometrically fixed micro-channels, very high velocities are achieved. Thin Z-shaped 

chambers with different sizes (400–200–100 µm) have to be used for the fibrillation process. 

The lower the chamber size, the higher the degree of fibrillation. At the end of the process, a 

heat exchanger cools down the product stream to ambient temperature. Lavoine et al. 2012 

give an overview of scientific works with such an apparatus (Table I-7) which has been 

largely performed in France and Scandinavia, place where the first well-fibrillated NFC have 

been studied. 



C
ha

pt
er

 1
: L

ite
ra

tu
re

 r
ev

ie
w

 

69
 

K
ar

im
 M

is
so

um
 -

 2
01

2 
   

   
   

  

T
ab

le
 I-

7 
: 

P
re

- 
&

 p
o

st
-t

re
at

m
en

ts
 a

p
p

lie
d

 t
o

 d
if

fe
re

n
t 

so
u

rc
es

 w
it

h
 m

ic
ro

fl
u

d
iz

er
 a

s 
m

ec
h

an
ic

al
 t

re
at

m
en

t 
(L

av
o

in
e 

et
 a

l. 
20

12
) 



Chapter 1: Literature review 

70 
Karim Missoum - 2012            

(iii) The grinder device (Figure I-29), first proposed and developed by Masuko© (Tokyo, 

Japan), involves the breakdown of the cell wall structure thanks to the shearing forces 

generated by two grinding stones with countersense rotation. The pulp is passed between a 

static grinding stone and a rotating grinding stone revolving at about 1500 rpm. Lavoine et al. 

2012 sums-up also the different pre/post treatments applied to different cellulosic fibers to 

obtain NFC using a grinder device as presented in Table I-8. 

Table I-8 : Pre- & post-treatments applied to different sources with Grinder as mechanical 
treatment (Lavoine et al. 2012) 

 

 

(iv) Other systems (Table I-9) like cryo-crushing (Alemdar and Sain 2008) refiners 

(Heiskanen et al. 2011a) or extruders (Heiskanen et al. 2011b) have been performed based 

on the same idea. But up to know, they are not at all commonly used. 
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Table I-9 : Pre- & post-treatments applied to different sources with other systems as 
mechanical treatment (Lavoine et al. 2012) 

 

Without any pre-treatment, the number of passes of cellulose fibers into the fibrillation 

chamber is approximately 20, 10 and 5 to reach a good quality and a homogeneous 

fibrillation for Gaulin, GEA and Microfludizer apparatus respectively. The energy 

consumption is usually high and varies according to the devices used for the fibrillation. This 

is one of the main drawbacks related to the process of NFC production. Some pretreatments 

were developed by researchers in order to solve this problem and facilitate production at a 

larger-scale, as shown with a homogenizer. 

3.1.3 Pre-treatments 

Nowadays, 2 main pretreatments could be applied on cellulose fibers to produce NFC, i.e. (i) 

Enzymatic or (ii) TEMPO pretreatment.  

(i) Enzymatic pre-treatment 

Enzymatic pre-treatments enable NFC manufacture with significant reduced energy 

consumption. Inspired by nature, the idea is to limit interactions between microfibrils. Indeed, 

cellulose is degraded in nature by a set of enzymes called cellulases. They can be classified 

as A- and B- type cellulases, termed cellobiohydrolases, which are able to attack highly 

crystalline cellulose, or as C- and D-type cellulases or (endoglucanases) which generally 

require some disorder in the structure in order to degrade cellulose (Henriksson et al. 2005; 
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Henriksson et al. 1999)]. Cellobiohydrolases and endoglucanases can show also strong 

synergistic effects (Berghem and Pettersson 1973; Henriksson et al. 2007). During 

preparation of NFC, isolated cellulases can be applied to modify the structure rather than 

degrading the cellulose. Some authors (Henriksson et al. 2007; Pääkkö et al. 2007) found 

that endoglucanase pre-treatment facilitates disintegration of cellulosic wood fiber pulp into 

cellulosic nanofibers. Pretreated fibers subjected to the lowest enzyme concentration 

(0.02%) were successfully disintegrated while molecular weight and fiber length were well 

preserved. Between two refining steps, Pääkkö et al. 2007 performed an enzymatic 

treatment with endoglucanase before passing the pulp slurry through the microfluidizer which 

promotes cell wall delamination, and thus prevents the z-shaped chamber in the 

microfluidizer from blocking or clogging. They compared enzyme-pretreated NFC with non-

pretreated NFC, as well as with a gentle and strong hydrolysis of pretreated NFC. 

Endoglucanase pre-treatment facilitates the disintegration of cellulosic wood fiber pulp by 

increasing its swelling in water. Moreover, this environmentally friendly pre-treatment confers 

a more favorable structure on the NFC, as it reduces the fiber length and increases the 

extent of fine material, compared to the result of acid hydrolysis pre-treatment. Their results 

showed that enzymatic pre-treatment gives much more homogeneous NFC suspensions. 

Thus, enzymatic pre-treatment is a very promising method for industrial applications and 

larger-scale NFC production. It is also one of the key steps in the first pilot production of NFC 

that was announced by Lindstr m’s group from Innventia (“Press Release: Nanocellulose—

for the first time on a large scale—Innventia,” 2011).  

A quite recent study that was subdivided into two scientific papers (Siqueira et al. 2010e; 

Siqueira et al. 2011c) gave a more detailed analysis of the impact of enzymatic treatment on 

the final properties of the NFC obtained. In the experiments, two kinds of enzymes at 

different concentrations were tested as post- and pre-treatments. The results showed the 

importance of precisely detailing such post- or pre-treatment. Indeed depending on cellulase 

concentration, the morphology of ensuing NFC and their reinforcing effect in a matrix can be 

totally different. The authors insist on the need for precise manufacturing protocols when 

discussing NFC. 

 

(ii) TEMPO mediated oxidation pre-treatment 
Currently, the more commonly used chemical pre-treatment is TEMPO-mediated 

oxidation. Indeed, the TOCNs, or TEMPO-oxidized cellulose nanofibers, represent an entire 

category of nanocellulose worthy of consideration.  

TEMPO-mediated oxidation is a well-known method for modifying selectively the surface 

of native cellulose under aqueous and mild conditions (Saito et al. 2007; Saito et al. 2006a; 

Saito et al. 2006b; Saito and Isogai 2004).  



Chapter 1: Literature review 

73 
Karim Missoum - 2012            

The basic principle of this form of pre-treatment consists of the oxidation of cellulose fibers 

via the addition of NaClO to aqueous cellulose suspensions in the presence of catalytic 

amounts of 2,2,6,6 tetramethyl-1-piperidinyloxy (TEMPO) and NaBr at pH 10–11 at room 

temperature (Figure I-30). The C6 primary hydroxyl groups of cellulose are thus selectively 

converted to carboxylate groups via the C6 aldehyde groups, and only NaClO and NaOH are 

consumed. 

 

Figure I-30 : Regioselective oxidation of cellulose by TEMPO process (Isogai 2011) 

The higher the quantity of NaClO in the reaction medium, the higher is the number of 

carboxylic groups formed at the surface of the NFC and the stronger is the decrease in the 

degree of polymerization (DP). Isogai’s group (Saito et al. 2006a; Saito et al. 2006b) applied 

this treatment to many diverse sources: wood pulp, cotton linters, tunicate, bacterial 

cellulose, ramie, and spruce holocellulose etc. They defined the oxidation efficiency of their 

pre-treatment by the following equation (Saito et al. 2006b):  

Oxidation efficiency (%) = 100 × {2 × (CT − CO) + (AT − AO)}/MNaClO 

where MNaClO is the quantity of NaClO added (mmol/g); CO and CT are the carboxylate 

contents (mmol/g) before and after oxidation, respectively, and AT and AO are the 

corresponding aldehyde contents (mmol/g), respectively. 

Another TEMPO-mediated oxidation system has been reported with different conditions in 

comparison to the first one. This system operates at pH 7, NaClO replaces NaBr, and the 

primary oxidant is NaClO2 instead of NaClO.  
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Recently, a TEMPO electro-mediated reaction was also developed as an alternative 

method to oxidize the C6-primary hydroxyls of cellulose (Isogai et al. 2011b). The authors 

applied two new systems to softwood bleached Kraft pulp: electro-mediated oxidation with 

TEMPO at pH 10, and 4-acetamido-TEMPO at pH 6.8 in a buffer solution. This new 

sustainable method could well replace the first two systems, although longer oxidation times 

are required. The yield is quite high (more than 80%). Moreover, it preserves the main 

characteristics of TEMPO-oxidized NFC produced from bleached softwood Kraft pulp (Isogai 

et al. 2011b) or from annual plant (Sbiai et al. 2011). 

More details about TEMPO treatment, processes and application are summarized in a 

very recent review paper by Isogai (Isogai et al. 2011a).  

Even if the washing step of these tempo-treated fibers is still the main drawback for their 

industrialization, they have several advantages. Indeed, compared to the energy 

consumption of repeated cycles of a high pressure homogenizer (700–1400 MJ/kg), TEMPO-

mediated oxidation pre-treatment drastically decreases the consumption to values less than 

7 MJ/kg. The nanofibrils within the fibers separate from each other more easily due to the 

repulsive forces of the ionized carboxylate groups, which overwhelm the hydrogen bonds 

holding them together (Eichhorn et al. 2010). TEMPO oxidation pre-treatment is usually 

followed by a mechanical treatment, which can be performed using the devices mentioned 

before but also with a simpler system like a mixer. However, it is worth keeping in mind that, 

one key step in this process is the “post-separation” of smaller NFC and bigger NFC by 

centrifugation. Only the supernatant (smaller NFC) is usually considered as TOCN. The 

ensuing TOCN material is shorter and thinner than with enzymatic pretreatment which 

presents other properties completely different from those obtained by the enzymatic way. 

(iii) Other Pre-Treatments in the Literature  

Other pre-treatments exist such as carboxymethylation (Aulin et al. 2010) or acetylation 

(Okahisa et al. 2009) but they are less used. Lavoine et al. 2012 summarized all pre- or post-

treatments and devices used to obtain NFC. The work constitutes an exhaustive list of all 

sources used for the production of NFC. The publication deals with NFC barriers and gives 

an overview of all the grades available of NFC and the influence on barrier properties.  

Cellulose surface modification, as briefly discussed in the introduction, has already been 

studied for several applications and several reviews have given a clear overview of the 

different existing strategies. However, none exists regarding NFC surface modification. The 

next section discusses the different strategies developed to physically or chemically modify 

NFCs. 
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In our project we have used enzymatically and TEMPO pre-treated NFC for chemically 

grafting them. Cellulose surface modification, as presented before, has already been studied 

for several applications and several reviews give clear overview of different existing 

strategies (Belgacem and Gandini 2009; Belgacem and Gandini 2008; Belgacem and 

Gandini 2005).  

NFC surface modification strategies will be detailed at the end of this Chapter, but before, 

NFC properties and application have to be described in order to understand the modification 

objectives and requirements. 

 

3.2 Properties and application 

 

There is several applications and properties target when using NFC. This NFC can be 

used as 100% NFC standing films, or in surface or bulk in paper and in composites. The 

Figure I-31 shows these potential applications. 

 

 
Figure I-31 : Potential application on NFC in different fields 

One of the more visual properties of NFC is their capacity to form a gel at low 

concentration and their capacity to be converted into film either by casting (Andresen et al. 

2007; Andresen et al. 2006; Dufresne et al. 1997; Saito et al. 2006b) or using a handsheet 

former / vacuum filtered (Henriksson et al. 2008; Iwamoto et al. 2007; Iwamoto et al. 2005; 

Nakagaito and Yano 2008; Nakagaito and Yano 2004; Seydibeyoğlu and Oksman 2008). 

When the water is removed from the NFC gel, stiffer and stronger 100% NFC standing films 

are formed thanks to the nanofibrillar network and interfibrillar hydrogen bonding formed 

during the drying process. 



Chapter 1: Literature review 

76 
Karim Missoum - 2012            

3.2.1 Mechanical Properties  

Mechanical properties of NFC films prepared from different cellulose sources and by 

different procedures are summarized in Table I-10. 

Table I-10 : Mechanical properties of NFC films obtained by casting or vacuum filtering 
(adapted from Lavoine et al. 2012) 

Raw materials Processes 
Max. Stress 

(MPa) 

E modulus 

(GPa) 

Strain at 

break (%) 
References 

Sugar beet pulp 

Casting 

/ 2.5 – 3.2 ND 
(Dufresne et al. 

1997) 

Softwood sulfite pulp 80 – 100 6 1mm 
(Zimmermann et 

al. 2005) 

Bleached Softwood 

sulfite pulp 
180 13 2.1 

(Svagan et al. 

2007) 

Bleached sulfite 

softwoodpulp 

Vaccum 

filtering 

129 – 214 10.4 – 13.7 3.3 – 10.1 
(Henriksson et 

al. 2008) 

Holocellulose pulp 213 – 240 12.8 – 15.1 3.2 – 4.4 
(Iwamoto et al. 

2009) 

Soft /Hardwood pulp 

bleached Kraft pulp 
222-233 6.2-6.9 7.0 – 7.6 

(Fukuzumi et al. 

2008) 

Bleached spruce 

sulfite pulp 
104 – 154 15.7 – 17.5 5.3 – 8.6 

(Syverud and 

Stenius 2009) 

Taniguchi and Okamura (Taniguchi and Okamura 1998) were among the first whose 

succeeded transforming NFC suspension into homogeneous, strong and translucent films 

with thickness of 3–100µm by solvent casting. The tensile strength of wood pulp NFC was 

2.5 times that of print-grade paper and 2.7 times that of polyethylene (PE). However, the 

measured tensile strength values were not specified. Henriksson et al. (Henriksson et al. 

2007) reported that the mechanical properties of NFC films were reduced when immersed in 

water but much of the structure was retained. The nanofibers in the film were not re-

dispersible in water which is due to the strong interaction between adjacent nanofibers after 

drying, most likely dominated by hydrogen bonding. Despite random in-plane NFC 

orientation, NFC films have interesting mechanical properties. As discussed by Berglund 

(Berglund 2006), Young’s modulus may approach 20 GPa and strength can reach 240 MPa. 

However, most literature indicates lower modulus and strength values. Zimmerman et al. 

(Zimmermann et al. 2005; Zimmermann et al. 2004) reported that the tensile strength of pure 

NFC films almost reached the strength of clear wood (80–100 MPa) while a modulus of 

elasticity was found to be 6 GPa. Leitner et al. (Leitner et al. 2007) obtained values of 104 

MPa and 9.4 GPa for tensile strength and modulus of elasticity respectively with cellulose 
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nanofibril sheets prepared from sugar beet pulp chips via solvent casting. Bruce et al. (Bruce 

et al. 2005) reported same values for modulus of elasticity and tensile strength (7 GPa and 

100 MPa respectively) for cellulose sheets made from high pressure homogenized. More 

recently, Henriksson et al., in 2008, explored the structure–mechanical property relationships 

for pure NFC films prepared from nanofibrils of different cellulose molar mass. The porosity 

of the films was modified by introducing solvents other than water. The typical lateral 

dimensions of nanofibers were found to be 10–40 nm, suggesting that they consist of 

cellulose microfibril aggregates rather than smaller individual microfibrils. Despite a relatively 

high porosity (up to 28%) for the water-based NFC films, the Young’s modulus (13.2 GPa) 

and tensile strength (214 MPa) were remarkably high. These values decreased significantly 

with increasing porosity. Assuming that NFC film is a random network of ideal straight and 

infinite fibers, Syverud and Stenius (Syverud and Stenius 2009) suggested that the maximum 

theoretical E-modulus might be one-third that of the individual fibers (i.e., 27 GPa). In reality, 

however, since NFC networks deviate from the ideal, significantly lower values are reported. 

If we compare with other materials (polymer, metals), such intrinsic properties are very high 

and should clearly induce mechanical reinforcement in composites. That is why it is one of 

the applications studied in this project. 

 

3.2.2 Barrier properties 

Generally speaking, it is difficult for diffusing molecules to penetrate the crystalline parts of 

cellulose fibrils (Syverud and Stenius 2009). Due to relatively high crystallinity (Aulin et al. 

2009; Lu et al. 2008b), in combination with the ability of the nanofibers to form a dense nano-

network held together by strong inter-fibrillar bonds, recently, it has been hypothesized that 

NFC might act as a barrier material (Syverud and Stenius 2009). Although the number of 

reported oxygen permeability values is limited, reports attribute high oxygen barrier 

properties to NFC films. They reported an oxygen transmission value of 17.75 ± 0.75 ml.m-

2.day-1
 for 21µm thick NFC films measured at 23°C and 0% Relative Humidity. Fukuzumi et 

al. 2008 reported more than a 700- fold decrease in oxygen permeability of polylactide (PLA) 

film when an NFC-TEMPO layer was added to the PLA surface. Similar results onto PET has 

been published much recently by checking pH influence.  

It is hypothesized that NFC, being highly hydrophilic, tends to absorb a significant amount 

of moisture. Water absorption and swelling of NFC is a complex phenomenon, which is 

thought to be influenced both by the molecular structure of cellulose and the mesostructure 

of the films (Aulin et al. 2009). To the authors’ knowledge only one study has been published 

so far presenting water uptake of neat NFC films. Belbekhouche et al. (Belbekhouche et al. 

2011) compared the barrier NCC films with those of NFC films. Surprisingly, NCC films 

absorbed as much water as NFC films. In addition, the diffusion coefficient of NCC films was 
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higher than that of NFC films. Because of their more organized and highly crystalline 

structure, at first glance, NCC films would seem to provide more of a barrier to water. Other 

parameters such as entanglement and nanoporosity, can be considered as key parameters 

for barrier application. Some authors have reported significant porosity in NFC films 

(Henriksson et al. 2008; Svagan et al. 2007), which seems to be in contradiction with high 

oxygen barrier properties. Others authors (Aulin et al. 2012),  announce very dense films 

which are “almost” not porous anymore. A possible explanation could be that NFC films 

contain closed pores in the core of the cross section and it might be inferred that good 

oxygen barrier properties occur as a result of close nanofiber ordering and packing as well as 

the effect of cellulose crystallinity. In her review, Lavoine et al. (2012) gave an exhaustive list 

of different sources applied and results obtained. 



C
ha

pt
er

 1
: L

ite
ra

tu
re

 r
ev

ie
w

 

79
 

K
ar

im
 M

is
so

um
 -

 2
01

2 
   

   
   

  

T
ab

le
 I

-1
1 

: 
T

ab
le

 c
o

m
p

ar
is

o
n

 o
f 

b
ar

ri
er

 p
ro

p
er

ti
es

 d
ep

en
d

in
g

 o
n

 t
h

e 
N

F
C

 t
yp

e 
an

d
 t

h
e 

p
ro

ce
ss

 a
p

p
lie

d
 (

fi
lm

s,
 p

ap
er

 c
o

at
ed

, 
n

an
o

co
m

p
o

si
te

s)
 

(L
av

o
in

e 
et

 a
l. 

20
12

) 



Chapter 1: Literature review 

80 
Karim Missoum - 2012            

3.2.3 Applications in composites 

NFCs have already been added to several matrices and some book chapters or reviews 

have recently summarized properties and applications of such nanocomposite (Dufresne 

2008; Eichhorn et al. 2010; Siqueira et al. 2010c; Siró and Plackett 2010). Since the last 3-4 

years, some authors have clearly proved the strong impact of surface grafting of NFC when 

adding them to non-polar matrix. For example, Siqueira et al. proved that grafting fatty chains 

at the surface of NFC is the only way to produced PCL-based nanocomposites (Siqueira et 

al. 2011a). Other strategy of grafting has already been proposed (detailed later) and 

chemical modification is now considered as a key factor in this bionanocomposite 

application. However first nanocomposites were focusing on the use of water-soluble matrix 

or latex.  

The NFC addition can improve the mechanical properties such as Young’s modulus, yield 

strength but usually decrease the elongation. For example, the Young’s modulus increase 

from 0.5MPa to 122MPa when 15% of NFC is added to Natural Rubber (Bendahou et al. 

2010) whereas the elongation at break pass from 575 to 3.95 %. More data are available in a 

recent review (Siqueira et al. 2010c). Therefore, the reinforcement of transparent plastics by 

nano-sized fibers is considered to be promising. Indeed, very recently researchers have 

demonstrated experimentally the advantage of nanoscale reinforcements using 

nanofibrillated cellulose in combination with PVOH matrix with conservation of transparency 

(Srithep et al. 2012) and increasing the mechanical properties. They have notably highlighted 

that small quantities of nanofibers (between 2.5 and 10 %wt.) were able to reinforce the 

matrix, reduce the melting temperature of 5°C while maintaining light transmittance.  

More recently, several researches have been focused on approaches following mono-

material-based, so-called “all-polymer composites” or “self-reinforced polymer composites”. 

All-polypropylene (all-PP) or self-reinforced polypropylene (SR-PP) composites have been 

proposed to replace traditional glass fibers reinforced plastics. Following the success of 

these all-PP composites, all-cellulose composites have been introduced. These kind of 

bionanocomposites turns out to be very promising, so it has been decided to focus our work 

on this new materials using NFC and cellulose derivatives.  

Cellulose is neither soluble nor thermoplastic so , in the case of all-cellulose application, 

cellulose derivatives could be a smart alternative as some of them are soluble and others 

thermoplastics. Moreover the compatibility with cellulose should be improved. In Table I-12 

some examples are given in which ethers and esters celluloses derivatives are used as 

matrices reinforced with NCC or NFC.  

These studies will be more detailed in Chapter 3. 
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Table I-12 : Ethers and esters of cellulose derivatives used as matrices in composites  

Matrix Raw Materials Method Fillers 
added (wt.) References 

Hydroxypropyl 
cellulose 
(HPC) 

 

NFC – (Refined, bleached 
beech pulp (RBP)  

Mechanical disintegration 
+ 

Carboxymethylation) 

Solvent casting 0, 5, 10, 20 
% 

(Eyholzer et al. 
2011) 

NFC Tempo – (Beech 
wood pulp + Wheat straw 

pulp - Microfludizer 
Solvent Casting 0, 5, 10, 20 

% 
(Zimmermann 

et al. 2010) 

NFC 
Never-dried kraft pulp 

TEMPO + high intensity 
ultrasonic processor 

Solvent casting 
+ 

Sonication time: 
1, 5, 10, 15, 20min 

5 % (Johnson et al. 
2009) 

Hydroxyethyl 
cellulose 
(HEC) 

NFC – (Softwood sulfite 
pulp fibers 

Enzymatic pretreatment + 
microfluidizer) 

Solvent casting 
0 , 12, 38, 

56, 68, 
100% 

(Sehaqui et al. 
2011) 

Cellulose 
Acetate 
Butyrate 
(CAB) 

Cellulose Nanocrystals 
from bacterial cellulose 
Sulfuric acid hydrolysis 

Native and silylated CNC 

Solvent casting 0, 2.5, 5, 
7.5, 10% 

(Grunert and 
Winter 2002) 

Cellulose Nanocrystals 
from MCC Hydrochloric 

acid hydrolysis 

Solvent Casting 
and solvent 

exchange (water to 
acetone) 

0, 5, 10% (Etang Ayuk et 
al. 2009) 

Cellulose Nanocrystals 
from MCC, 

Sulfuric acid hydrolysis 
Solvent Casting 0, 5% (Petersson et 

al. 2009) 

Cellulose Nanocrystals  
from MCC 

Solvent Casting 
Sol-gel process 3,6, 9, 12% (Siqueira et al. 

2011b) 

Cellulose 
Acetate (CA) 

Nanofibrillated Cellulose 
(NFC) 

Kraft pulp (Pine, Spruce) 
Homogenizing process 
Neat and APS surface 

treatment 

Solvent Casting 2.5, 5, 10% (Lu and Drzal 
2010) 

 

3.2.4 Applications as fillers in paper 

NFC can also be used in paper industry either in bulk or in surface coatings. In our study, 

we will focus on the first strategy (see chapter 3). More details on NFC coated paper are 

available elsewhere (Lavoine et al. 2012). The beneficial effect of fibers refining on the 

physical properties of papers is well known to all papermakers. So, it appears normal that 

microfibrillated cellulose or nanofibrillated cellulose could improve similarly paper physical 
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properties. As an example, Da Silva Perez et al., (Da Silva Perez et al. 2010) studied the 

influence of raw materials, pre-treatments and fibrillation conditions of nanofibrillated 

cellulose on their reinforcement capabilities for paper applications. Their work clearly 

demonstrated that the smaller and more homogeneous the NFC are, the higher the 

reinforcement effects are. Moreover, they showed that an addition of 1, 5 and 20%wt of NFC 

to a refined hardwoods and softwoods pulps could increase the tensile and tear indexes of 5 

to 90% and 10% to 95% respectively. Only few information were given about the NFC 

retention. Figure I-32 represents typical curves obtained when reinforcing paper with NFC in 

term of tensile strength or Young modulus. 

 
Figure I-32 : Typical curve representing tensing strength or Young Modulus of hand-sheet 

reinforced with NFC 

Eriksen and Syverud (Eriksen and Syverud 2008) proved that addition of NFC increase 

the tensile index and air resistance and reduced the light scattering coefficient, opacity and 

brightness of the sheets.  

More recently, Mörseburg and Chinga-Carrasco (Mörseburg and Chinga-Carrasco 2009) 

studied the potential benefits of clay and nanofibrillated cellulose in layered TMP-Based 

sheets. The purpose of their work was to reduce the negative effects caused by inorganic 

fillers on the structural properties of paper, using nanofibrillated cellulose as organic filler 

reinforcements. Different series of layered multi-component sheets were formed on a 

dynamic sheet former (DSF) with a targeted basic weight of 56g/m². A combination of 

retention agent and fixation agent was added in order to avoid excessive losses of fines and 

fillers upon sheet drainage. On the one hand it was demonstrated that NFC improve the 

strength properties whatever the NFC loading. On the other hand it was proven that the best 

way to get both better optical and mechanical properties was obtained when placing the 

inorganic fillers in surface layers and the NFC rather in the center of the sheet.   
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So, NFC can enhance strength properties of paper, but improving strength usually means 

increased bonding which is strongly connected to dimensional instability of paper.  In their 

research, Manninen et al., (Manninen et al. 2011) decided to evaluate this dimensional 

stability of wood-free paper containing different grades of NFC. Sheets were prepared with 

NFC produced with a Masuko Supermasscolloider MKZA 10-15J. The authors presented 

retention values for NFC around 20 to 40% depending on the number of passes through the 

Masuko and around 90 to 100% for the mixture NFC/Starch. Indeed, a cationic starch has 

been added and it improved substantially the retention. In term of mechanical properties, 

drying shrinkage of freely dried samples increased considerably as the amount of additive 

was raised. When compared to the sheets containing no additives, the shrinkage was 2 

times higher with 10% NFC. By the same way, hygroexpansion values of freely dried sheets 

rose as soon as the amount of additive increased. The cationic starch addition lowered the 

hygroexpansion values, the sheet containing 10% NFC with additional starch had almost the 

same hygroexpansion value as the sheet containing 5% NFC alone. 

 However, nowadays, more and more researchers are focusing on physical adsorption or 

chemical modifications of native NFC before addition in/on paper. The idea is to carry out 

surface modifications of NFC in order to bring both better properties and also new features to 

papers. For example, Ahola et al., (Ahola et al. 2008) worked on NFC and poly(amideamine) 

epichlorohydrin (PAE). Cellulose nanofibrils were used together with a cationic 

polyelectrolyte PAE, to enhance the wet and the dry strength of paper. Two different 

strategies were used to study the influence of NFC/PAE on paper properties. In the case of 

bi-layer strategy, PAE was first added as a 1% solution to the pulp slurry and the NFC were 

then added as a 0.014-0.14% aqueous solution. In the case of PAE-nanofibril-aggregates 

(nano-aggregates), PAE and nanofibrils were first mixed together, stirred for 5 min and then 

added to the pulp slurry. In the case of bi-layer system, both the wet and dry tensile strength 

increase significantly as the added amount of the nanofibrils increases. They proved that 

compared to the reference, where only 5 mg/g PAE and no nanofibrils are added, the wet 

strength increased more than three times when nanofibrils were used. The dry tensile 

strength increased 2.5 times compared to the reference. When the substances are absorbed 

as aggregates the wet and dry tensile indices are not increased as much as in the bi-layered 

system. The authors explained the unexpected results to the presence of large aggregate 

flocs into the paper during sheet formation. The conclusions of their work were that on the 

one hand, the amount of PAE needed to achieve a certain wet strength could be 

substantially decreased in papermaking by using NFC; on the other hand NFC achieved also 

high dry strength values and therefore could replace some dry strength additives that are 

commonly used in the paper industry. Other researchers tried to graft or modify NFC for 

adding new properties like antimicrobial, hydrophobic or responsive surface. Another 
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property added by NFC is the decrease of air permeability as firstly shown by Syverud and 

Stenius. (Syverud and Stenius 2009). The chemical modification could also help to control 

this nanoporosity.  

Moreover, if we consider using NFC as (or in) coating colour on paper sheet the very high 

quantity of water in NFC dispersion (usually 93-98%) will be considered as a strong 

drawback regarding drying energy required. For all these reasons, chemical grafting of NFC 

is also expected in this paper field.  

 

3.3 NFC surface modifications strategies 

Due to the hydrophilic nature of cellulose, NFC cannot be uniformly dispersed in most 

non-polar polymer media and its suspension is a gel-like structure at very low concentration 

and the NFC forms films or aggregates once dried. Consequently, NFC modification is of 

interest in order to limit this phenomenum and open-up new applications. Compatibility with a 

wider variety of matrices used in coating colors or in extrusion can be attempted. NFC 

surface modification can also help to introduce new functionalities and to produce “active” 

NFC. In spite of the many methods already proposed for cellulose surface modification 

including a very recent review about functionalization of Cellulose Nanocrystals (Lin et al. 

2012), reports on surface modification of nanocellulosic fibers are very limited in number.  

The surface of cellulose nanoparticles can be modified and tuned either (i) by physical 

interactions or adsorption of molecules or macromolecules onto their surface or (ii) by using 

a chemical approach to achieve covalent bonds between cellulosic substrates and the 

grafting agent. Each strategy is detailed but as, a starting point, Figure I-33 gives an 

exhaustive overview of all reagents used for physical adsorption, as well as molecules or 

polymers grafted at the surface of NFC to our knowledge. 
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Because of their nanoscale dimensions, nanofibrillated cellulose display a high surface 

area generally of the order of 50–70m2/g which greatly increase the quantity of surface 

hydroxyl groups available for surface modification and change the classic conditions of 

grafting. Moreover, the surface chemistry of NFC is primarily governed by its production 

procedure. Indeed, hydroxylated surfaces similar to native cellulose are classically obtained 

but as reported before, several strategies have been proposed to decrease the energy 

consumption for fibrillation. For example, TEMPO oxidation of cellulose introduces carboxylic 

acid groups at the surface of fibrillated cellulose. Carboxymethylation has also been used as 

pretreatment prior to mechanical defibrillation (Wagberg et al. 2008) and consequently also 

to modify the surface chemistry of the ensuing carboxymethylated NFC. Therefore, it is 

crucial to be precise about any NFC pretreatment when discussing NFC surface modification 

strategy. For example, the two latter NFCs are well adapted to the physical adsorption 

strategy first detailed below. 

3.3.1 Surface adsorption on NFC 

The surface of cellulose nanoparticles can be tuned by using surfactants or polyelectrolyte 

adsorption. Surfactants are usually amphiphilic organic compounds, i.e., compounds 

containing both hydrophobic groups (so-called tails) and hydrophilic groups (so-called 

heads). Cellulose films prepared from carboxymethylated NFC were modified by coating with 

various amounts of a fluorosurfactant, such as perfluorooctadecanoic acid (C17F35COOH) 

(Aulin et al. 2008). The authors demonstrated a strong decrease of dispersive surface energy 

after adsorption in comparison to carboxymethylated NFC, from 54.5 mN/m to 12 mN/m 

respectively. 

The anionic surface of TEMPO-NFC can be easily modified with a cationic surfactant. As 

an example N-hexadecyl trimethylammonium bromide (also called cetyltrimethylammonium 

bromide CTAB) dissolved in water was deposited on the surface of NFC films (Syverud et al. 

2011; Xhanari et al. 2011). The adsorbed layer of CTAB was found to increase the 

hydrophobicity of the film without affecting its mechanical properties significantly. CTAB, as 

well as didodecyl- (DDDAB) and dihexadecyl ammonium bromide (DHDAB) were used to 

control the water repellency of cellulose nanofibrils (Xhanari et al., 2011). In this study, the 

surfactant was directly added to NFC in an aqueous suspension. Contact angle values were 

determined to be higher for TEMPO-NFC film dipped in CTAB solution in comparison to neat 

TEMPO-NFC film (60° and 42° respectively). The treated material was not fully hydrophobic 

but it was rendered more water repellent (lower adhesion with water). FE-SEM 

characterization was done on a covered filter paper with the mixture NFC-Tempo + CTAB 

(Figure I-34). 
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Figure I-34 : FE-SEM picture of (a) T 00—fresh filter paper and (b) T 21—film with 0.27 mmol/g 

CTAB adsorbed on TEMPO 2 (adapted from Xhanari et al. 2011) 

Another way to modify surface properties of NFC is to use a polyelectrolyte solution. One 

of the most relevant scientific papers was published by Wägberg (Wägberg et al. 2008). 

Indeed, they performed polyelectrolyte multilayer (PEM) using three different polyelectrolytes 

(Poly-DADMAC, PEI and PAH solutions). NFC used was obtained by carboxymethylation of 

the pulp and then homogenized. After titration the NFCs displayed a total charge of 515 

µeq/g and assuming that all charges are located at the surface of the NFC, the equivalent 

quantity for adsorption of polyelectrolytes was then added. The combination of PEI and NFC 

in deionized water results in the formation of regular layers of NFC and PEI with layer 

thicknesses of 20 and 3 nm, respectively, after deposition of about 10 layers. By changing 

the salt concentration during adsorption of PDADMAC and PAH, it was possible to control 

the thickness of the PEM. The PEMs had different colors depending on the thickness of the 

multilayers and simple estimations of the thickness of the PEM from the colors, assuming 

dense cellulose layers, showed surprisingly good agreement with data from ellipsometry 

measurements. This indicates that the PEMs are basically compact films of cellulose with 

some cationic polyelectrolyte mixed/intercalated between the fibrils. 

Very recently Martins et al. (Martins et al. 2012) proposed an innovative technique in order 

to produced nanopaper with antimicrobial activity using polyelectrolytes as binder between 

NFC and silver nanoparticles. This paper reports a Layer-by-Layer (L-b-L) assembly onto 

NFC with cationic polyelectrolytes (i.e., PDDA, PHA and PEI) and anionic polyelectrolyte 

(i.e., PSS). The adsorption of a first layer of cationic polyelectrolyte was performed on NFC, 

followed by a second layer deposited using PSS as anionic polyelectrolyte and finally 

recovered with a last layer of the same cationic polyelectrolyte. Then the Ag colloidal 

suspension was mixed with this modified NFC. This approach was successfully employed to 

impart antibacterial properties to NFC. The antibacterial activity was observed for NFC/Ag 
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materials against different bacteria. The activity can be adjusted by varying the amount and 

characteristics of NFC/Ag used as nanofiller in the papers. 

In conclusion, physical adsorption can be easily performed on charged NFCs to obtain 

more hydrophobic behavior. However, this procedure can induce some migrations 

phenomena of physically adsorbed moieties. That is why processes aimed at modifying 

NFCs chemically were developed. 

 
Depending on the pretreatment applied for the production of NFC (carboxymethylation or 

TEMPO oxidation of pulp) it is necessary to well characterize charge surfaces when 

adsorption procedure is considered. In this report a cationic nanoemulsion will be applied on 

neat NFC (without chemical pretreatments) and on TEMPO oxidized NFC. This procedure 

and results will be detailed in next chapter. 

3.3.2 Molecule chemical grafting 

The hydrophobization of the cellulose surface has usually been achieved through the well-

known cellulose esterification process, which basically uses carboxylic acid, acid anhydrides 

or acyl chlorides as reacting agents. Esterification is a reaction that introduces an ester 

functional group (O−C=O) onto the surface of cellulose by condensation of the previous 

reagents with a cellulosic alcohol group. Acetylation is the reaction that introduces an acetyl 

functional group CH3-C(=O)- onto the surface of cellulose. This basic reaction is also 

involved in the preparation of cellulose ester derivatives, such as the well-known cellulose 

acetate. The main target of this strategy is to keep the nanofibrillar structure so as to graft 

only the NFC surface.  

In our case, the target is to keep the nanofibrillar structure so to graft NFC surface only.  

A non-swelling media is classically used in this heterogeneous reaction mechanism in 

order to maintain the structure and properties. In this case, as the reaction only occurs on the 

cellulose chains located on the surface of the nanoparticles, the limitation on the extent of 

acetylation lies in the susceptibility and accessibility of the surface, which can produce 

several grades of modified materials with different degrees of substitution for example. In the 

research from Kim et al. (Kim et al. 2002). Bacterial cellulose (BC) was partially acetylated to 

modify its physical properties while preserving the microfibrillar morphology using anhydrous 

acetic acid and toluene as solvent reaction media (which are apolar, limiting the swelling of 

BC). In this case, the degree of acetyl substitution had a strong influence on material 

properties like stiffness and deformability of the acetylated BC. Mechanical properties of BC 

can be tuned depending on the degree of substitution. Thermal degradation resistance or 

optical properties have also been reported by Ifuku et al. 2007; Nogi et al. 2006. Under an 

oxidative atmosphere, the acetylated BC retains transparency properties after three hours at 
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200 °C in comparison to untreated BC films which lost their transparency after one hour at 

200 °C. In addition to the acetylation methods, another process using a gas-phase method 

by evaporation of a large excess of palmitoyl chloride was investigated recently (Berlioz et al. 

2009). The method was developed for freeze-dried bacterial cellulose microfibrils dried by 

the critical point method. We have to bear in mind that this procedure to dry NFC induces 

some irreversible aggregates. The accessibility of hydroxyl groups at the surface can be 

reduced. The experimental conditions (160 °C for 4 h, 170 °C for 4/6/13 h, 180 °C for 4 h and 

190 °C for 2 h), nature and conditioning of cellulose were found to be important factors 

controlling the extent of esterification and morphology of the grafted nanoparticles. In 

addition, it was observed that the esterification proceeded from the surface of the cellulosic 

substrate to the crystalline core. This feature was confirmed by SEM analyses, which show 

clearly an increase in the diameter of the microfibrils and penetration depth of the chemical 

modification. Based on the same idea, Rodionova et al. (Rodionova et al. 2010) used a gas-

phase esterification on NFC films with trifluoroacetic acid anhydride (TFAA) and acetic acid 

(AcOH) with several ratios (1:2 and 2:1) at 22 °C and 40 °C for 30 min or 40 min. Main 

results show an increase in the contact angle value (41.2° for unmodified film and 71.2° for 

esterified films). This gas phase esterification seems to be an effective technique for surface 

modification of NFC films or NFC aggregates. However, not all OH groups are available in 

this case and consequently, only a slight influence is observed.  

Only few studies, dealing with the esterification of the NFCs surface can be found in the 

literature. Tingaut et al. (Tingaut et al. 2010) used a heterogeneous catalytic method thanks 

to a solvent exchange of a NFC suspension from water to DMF. The final product displayed 

several grades of acetyl content from 1.5% to 17% of acetylated groups. Such grafted NFCs 

are then used in nanocomposite applications and enhance interface adhesion with matrix like 

poly(lactic acid) through a solvent casting approach in chloroform. The authors showed that 

NFC with increasing percentage of acetylation (%Ac) provided more translucent 

nanocomposites with reduced hygroscopicity and improved thermal stability in comparison to 

unmodified NFC (Figure I-35). All these properties could be fine-tuned through an accurate 

control of %Ac. 

 



Chapter 1: Literature review 

90 
Karim Missoum - 2012            

 
Figure I-35 : Photograph of a neat PLA film (A) and nanocomposite PLA films reinforced with 

10 wt % acetylated MFC with %Ac of 0 (B), 3.5 (C) 8.5 (D), and 17% (E) (adapted from Tingaut et 
al. 2010) 

A second study concerned acetylation onto bleached cellulosic fibers (Jonoobi et al. 2010) 

before mechanical disintegration. This facilitated the production of NFCs with high DS (1.07) 

and contact angle value (114°). It means that the fibers and thus the nanofibers are strongly 

modified and not only at the surface due to the decrease of the crystallinity index of the 

nanofibers from 81.2 to 74%. Rodionova et al. (Rodionova et al. 2011) used acetylation to 

increase the barrier property of NFC films with a contact angle value around 82° obtained for 

a DS of 0.7 for 1h of reaction. The main results of these acetylated NFC films showed no 

significant changes to the mechanical properties but the oxygen transmission rate was 

comparable to those of common packaging materials.  

In our study we have developed a novel method for the chemical surface esterification of 

NFC in order to impart hydrophobic properties by using solvent exchange, ionic liquid and 

anhydrides. More details will be given in the Chapter 3. 

A novel method for chemical surface esterification of NFC in order to impart hydrophobic 

properties by using solvent exchange in ionic liquids was recently developed by Missoum et 

al., in 2012 (Missoum et al. 2012) using anhydrides. Results obtained proved that the 

chemical surface modification occurred only at the surface of the NFC. This characterization 

was possible thanks to the use of a powerful technique SIMS (Secondary Ion Mass 

Spectrometry). 

Similarly to acetyl chloride, chlorosilane has been used for NFC modification. Silylation 

consists of the introduction of substituted silyl groups R3Si onto the surface of cellulose 

nanoparticles.  
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Goussé et al. 2004, utilized isopropyl dimethylchlorosilane in toluene (after solvent 

exchange steps) for surface silylation of cellulose nanofibrils. These authors claimed that 

nanofibrils retained their morphology under mild silylation conditions and could be dispersed 

in a non-flocculating manner into organic solvents. Andresen et al. (Andresen et al. 2000) 

hydrophobized NFC via partial surface silylation using the same silylation agent and reported 

that when silylation conditions were too harsh, partial solubilization of NFC and loss of 

nanostructure could occur. Films prepared from modified cellulose by solution casting 

showed a very high water contact angle (117–146°). It is probable that in addition to the 

decreased surface energy, the higher surface roughness (as a result of less hydrogen 

bonding) could contribute to increased hydrophobicity. It was also reported that such 

hydrophobized NFCs could be used for the stabilization of water-in-oil type emulsions 

(Andresen and Stenius 2007). More recently, Johansson et al. (Johansson et al. 2011) 

demonstrated the influence of solvent exchange on NFC sylilation. DMA and toluene were 

used as solvent for the chemical surface modification. It seems that cellulose surface 

adaptation can be carried out depending on the solvent used in order to minimize its free 

surface energy. The free, accessible hydroxyl groups generate the high surface free energy 

of the cellulose surface. This very recent paper launched a discussion about OH accessibility 

at the surface of the NFC depending on the solvent process (Figure I-36). 

 

 
  



Chapter 1: Literature review 

92 
Karim Missoum - 2012            

 
Figure I-36 : AFM and XPS data for Neat NFC and silylated NFC in DMA and toluene. Principle 

of the “surface adaptation” (adapted from Johansson et al. 2011) 

To avoid HCl or carboxylic acid by-products obtained during these esterifications and 

sylilations, some carbanilations were also recently proposed. Cellulose nanofibrils extracted 

from sisal fibers were chemically modified with n-octadecyl isocyanate (C18H37NCO)  

(Siqueira et al. 2010b). The surface chemical modification was carried out in toluene using 

for the first time an in-situ solvent exchange procedure to avoid NFC aggregation observed 

previously. Never-dried NFC was grafted after solvent exchange to acetone and then to dry 

toluene. 

Based on the same procedure, one part of our study checked the influence of different 

grafting agent quantities i on surface organization of grafted moieties and properties of the 

ensued modified NFC. 

Recent strategies in aqueous media have been developed for cellulose grafting but again 

very few deal with NFC grafting. We can however note the use of silane and click chemistry 

techniques. For example, hydrophobization of NFC was also obtained by grafting 3-

aminopropyltriethoxysilane (APS) and 3-glycidoxypropyltrimethoxysilane (GPS) (Lu et al. 

2008a). NFC and coupling agents were mixed in acetone, and the mixture was filtered and 
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dried. After treatment, better and stronger adhesion between NFC and the epoxy polymer 

used as the matrix was observed, which resulted in better mechanical properties of the 

composite materials. Click chemistry is tailored to generate substances by joining small units 

together under mild conditions. One of the most popular reactions within the click chemistry 

concept is the azide alkyne Huisgen cyclo-addition using a copper catalyst at room 

temperature. First, reactive azide groups were introduced onto the surface of NFC by the 

etherification of 1-azido-2,3-poxypropane in alkaline water/isopropanol-mixture at ambient 

temperature (Pahimanolis et al. 2011). Then the azide groups were reacted with propargyl 

amine utilizing copper catalyzed azide-alkyne cycloaddition (CuAAC), leading to a pH-

responsive 1,2,3-triazole-4-methanamine decorated NFC. Very recently, based on the same 

technique, Filpponen et al. (Filpponen et al. 2012) developed a generic and versatile method 

based on click chemistry for grafting all cellulosic substrates. They demonstrated that 

cellulose can be modified by exploiting the natural tendency of CMC to physically adsorb 

onto cellulose in aqueous medium, even after azide or alkyne functionalization of CMC. This 

property combined with a subsequent click chemistry reaction enabled modification of the 

cellulosic surfaces. Several cellulosic substrates (amorphous and nanofibrillar cellulose films, 

filter paper) as well as versatile modifications (protein, fluorescent labeling, and PEG 

grafting) were performed. This method has a potential to set an altogether alternative trend 

for heterogeneous modification of cellulose. The last strategy used is polymer grafting onto 

NFC. 

3.3.3 Polymer grafting 

Surface chemical modification of cellulose nanoparticles can be achieved by covalently 

attaching small molecules, as well as polymers. The general objective of this chemical 

modification is to increase the apolar character of the nanoparticle and have a better 

compatibility with hydrophobic polymer matrices. Two main approaches can be used to graft 

polymers onto surfaces, i.e., “grafting onto” or “grafting from”. The first method was 

extensively used for the fibers or the NCC particles and not for the NFC. The “grafting onto” 

approach consists of: (i) mixing the cellulosic nanoparticles with an existing polymer and a 

coupling agent to attach the polymer to the nanoparticle surface; or (ii) activating the 

cellulose substrates (or the polymer) and grafting one (or the other) onto the other one. In 

this approach, one cannot expect high grafting densities because of steric hindrance induced 

by polymeric chains. Moreover, the viscosity of the reaction medium is usually high because 

of the presence of macromolecular chains. However, its main advantage is that the 

properties of the resulting material are perfectly controlled since the molecular weight of the 

attached polymer can be characterized before grafting. 
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The second strategy, i.e., “grafting from” approach, consists of mixing the cellulosic 

nanoparticles or the activated cellulosic nanoparticles with a monomer and an initiator agent 

to induce polymerization of the monomer from the nanoparticle surface. Because of the lower 

viscosity of the medium and the limitation of steric hindrance, this strategy has proven to be a 

very effective way to create high grafting densities on the surface. However, it is difficult to 

control and determine precisely the molecular weight of the grafted polymer, which is usually 

limited to a low degree of polymerization. The quantity of homopolymer (non-grafted) is also 

not so easy to determine. Several studies reported the preparation of PCL-grafted cellulose 

nanoparticles using the “grafting from” strategy. PCL is traditionally prepared by the 

Sn(Oct)2-catalyzed ring-opening polymerization (ROP) of cyclic -caprolactone monomer. 

This approach was used to prepare PCL-grafted ramie (Lin et al. 2009) and native linter 

(Habibi et al. 2008) cellulose nanocrystals. A similar approach was used to graft PCL on the 

surface of NFC as represented in Figure I-37. 

 

 

Figure I-37 : Principle to obtained Bio-nanocomposite of PCL reinforced with NFC (Adapted 

from Lönnberg et al. 2011) 

Freeze-dried NFC was mixed with -CL monomer and a grafting reaction was conducted 

with a catalytic amount of Sn(Oct)2 at 95 °C for 18–20 h (Lönnberg et al. 2011). By changing 

the amount of added free initiator to monomer, the amount of PCL on the NFC surface was 

altered to optimize the graft length. Different theoretical lengths of the PCL chains, i.e., DP 

300, 600 and 1200, were investigated. The experimental molecular weights of free PCL 

formed during the grafting reaction were estimated from NMR and size exclusion 

chromatography (SEC). As expected, the obtained values were significantly lower than the 

theoretical ones since the theoretical molecular weight was calculated from the ratio of added 

monomer to free initiator, whereas the experimental value depends on the added monomer 

to free initiator, as well as the number of initiating groups on the NFC surface. TGA was used 



Chapter 1: Literature review 

95 
Karim Missoum - 2012            

to estimate the composition of PCL-grafted NFC. PCL contents of 16%, 19% and 21% were 

reported depending on the amount of free initiator in the system. Crystallization of grafted 

PCL was observed, but because of the lower mobility of these chains compared to free PCL, 

a lower melting point and degree of crystallinity, as well as a longer crystallization time were 

reported. 

Another possibility of “grafting from” is to use classical radical polymerization thanks to a 

redox initiated free radical system such as Cerium Ammonium Nitrate (CAN). The cerium (IV) 

ion is a powerful oxidant agent for an alcohol containing 1,2-glycol groups. The mechanism 

of ceric ion reaction involves the formation of a chelate complex that decomposes to 

generate free radicals on the cellulose backbone. Epoxy functionality was introduced onto 

the surface of NFC by oxidation followed by radical polymerization by Cerium (IV) of glycidyl 

methacrylate (GMA) (Stenstad et al. 2008). Significant degradation of the cellulose chains 

occurred because of the formation of radicals in the reaction involving ammonium cerium 

nitrate. However, it was shown that the treatment resulted in only a slight reduction in the 

molecular weight of cellulose. In the same study, Stenstad et al. (Stenstad et al. 2008) 

demonstrated that the coupling of NFC with maleic anhydride introduced vinyl groups that 

could be used as a starting point for grafting reactions for monomers that are insoluble in 

water, as an alternative to the cerium-induced grafting method. NFC was also grafted in 

aqueous solution using a redox-initiated free radical polymerization with two acrylates and 

three methacrylates (Littunen et al. 2011). Cerium ammonium nitrate was also used as 

initiator. The graft copolymerization was dominant over homopolymerization for all 

monomers. The highest graft yield was obtained with butyl acrylate (BuA) and glycidyl 

methacrylate (GMA) with 80 wt%. According to AFM imaging, the nanofibrillar structure of the 

cellulose was preserved during synthesis, which means that the polymeric modification 

occurred without significant nanofibril aggregation. Another drawback of this grafting strategy 

is the high amount of homopolymer formed and the difficulty to distinguish it from the grafted 

polymer. 

 For this reason, we did not focus on this strategy during our study.  

Table I-13 gathers the chemical surface modification onto NFC. All of them are very 

recent and half of them have been published during our project. Among the research 

published before our project start, we can have some doubt about quality of NFC used. 

Indeed, NFC production has clearly evolved during the last 3 years. 

 

All physical and chemical strategies used to impart grafting onto Nanofibrillated Cellulose 

(NFC)
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Regardless all the grafting strategies mentioned before, the characterization of the ensued 

materials is a key step in the comprehension of their properties. The use of nanoscale 

materials requires a precise and complete characterization. Therefore, techniques are 

becoming more varied and push-ups to achieve required standards in the reliability of results 

obtained. This is especially true and important in the present report due to the method 

adopted for the modification of NFC based on a surface grafting of this nanobiomaterials. 

 
Regarding all strategies, few of them can be considered as green method. In this project 

we have focused our work on the development of new methods for chemical modification of 

NFC. According to the SUNPAP project, the reaction has to be the most greener as possible 

limiting the use of organic solvents.  

 

4. Conclusion 

 

Cellulose is one of the most fascinating natural polymers. It is also renewable materials 

largely produced by photosynthesis. It can be considered at different level with its multi-level 

organization and hierarchical structure. One of its promising derivatives is for sure the 

NanoFibrillated Cellulose. As described in this first chapter, they can be used in several 

applications (like papers or nanocomposites) with substantially enhanced properties. 

Nevertheless some drawbacks limit their uses as aggregation, low concentration suspension 

and compatibility with hydrophobic polymeric matrices for instance.  

One solution to overcome these problems is the chemical modification of NFC. 

Furthermore, such an operation could be the occasion to provide new functionalities to these 

NFC. The surface modification of NFC is very innovative with less than 30 papers in the 

world and even less than 10 papers when our project has started. Up to date mainly solvent 

based or toxic system have been studied, which limits the extension of these finding to 

industrial up-scaling. This is the main reason why some European project like our SUNPAP 

project has been launched. In our study, the idea was to use green approach to develop and 

impart new properties and functionalities for these NFCs.  

As described in this chapter, the chemical grafting of cellulose is well-known and some 

researchers have already looked for greener solutions. All of them cannot be necessary 

applied to NFC, like microwaves for instance. In this context, we have decided to propose 2 

main original strategies of chemical grafting: (i) use of ionic liquids (which are described as 

green solvents) and (ii) use of water-based system (confidential). The understanding of 
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chemical grafting and organization of grafted moieties at NFC surface were also of interest. 

These 3 aspects will be detailed in chapter 2. 

The chapter 3 will be then dedicated to the use of these grafted NFC within 3 different 

fields of applications. Indeed after the grafting of NFC some of them were applied to impart 

(i) antimicrobial & biodegradability properties, (ii) new functionalities to papers and (iii) 

reinforcement of composites.   
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Résumé Français – French Abstract 

 

Figure 1-1 : Représentation schématique de l’organisation du projet de thèse  

Comme nous venons de le voir dans le Chapitre 1, les nanofibrilles de cellulose peuvent 

être produites selon différentes méthodes, prétraitement et sources. Une différence majeure 

réside entre les NFC obtenues par le biais d’un prétraitement enzymatique ou d’un 

prétraitement chimique TEMPO par exemple. Leur morphologie et propriétés sont 

compléments différentes. Il est important de noter qu’une fois produites, les suspensions de 

NFC dans l’eau peuvent atteindre une concentration comprise entre 2 et 5% massique. Afin 

d’augmenter le taux de matière sèche de ces suspensions de NFC (ce qui serait très utile 

pour certains procédés), la modification chimique de surface peut être envisagée comme 

solution. 

Dans ce Chapitre 2, nous avons voulu tout d’abord maîtriser le greffage de ces  

nanofibrilles de cellulose en contrôlant les effets de quantités de réactifs et en maîtrisant 

l’organisation et la caractérisation des greffons à leur surface. Ensuite nous avons souhaité 

proposé de nouvelles stratégies complétements innovantes en s’appuyant sur des solvants 

dits « verts » (les liquides ioniques) ou en proposant de greffer ces NFC en milieux aqueux.  

Dans la première partie de ce chapitre (Papier 1 - Publié dans Cellulose - 2012), un 

greffage de surface des NFC a été réalisé dans différentes conditions (variation du ratio 

molaire entre agent de greffage et groupement hydroxyle). Le protocole ainsi établi a été 

adapté d’après une méthode développée au sein du laboratoire et utilisée sur les 

nanocristaux de cellulose et les nanofibrilles de cellulose mais avec une seule quantité de 

greffons. L’organisation de surface de chaînes grasses obtenues par carbanilation des NFC 
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a ainsi pu être étudiée en détail et il a été démontrée que cette organisation influence 

complétement les propriétés finales des NFC. 

Ces travaux montrent que les NFC peuvent être efficacement modifiées par l’emploi d’un 

isocyanate à chaine longue (i.e. 18 Carbones) quel que soit la quantité de greffons. La 

densité de greffage augmente avec l'augmentation du rapport molaire entre l'agent de 

greffage et le nombre de groupements hydroxyle présent à la surface de la cellulose. Grâce 

aux analyses XPS combinées aux analyses élémentaires des échantillons greffées, un degré 

de substitution interne a pu être établi pour la première fois (DSI). Il permet de quantifier les 

molécules greffées à la surface NFC vis-à-vis de celle qui aurait pu réagir dans la masse du 

matériau. L’organisation de surface de ces greffons a pu ensuite être évaluée en fonction du 

rapport molaire. De manière générale, les chaines aliphatiques, pour un nombre de carbone 

supérieur à 6-7, ont tendance à former des domaines cristallins de type cristaux liquides 

résultant de l'interaction latérale des chaînes aliphatiques entre elles. De ce fait, en fonction 

du ratio molaire utilisé lors de la réaction, des différences organisationnelles ont pu être 

observées grâce aux mesures XRD. La caractérisation des propriétés physico-chimiques ont 

démontré la présence d’un minimum à 10eq molaire due à cette organisation de surface 

particulière.  

Toutefois, l’inconvénient majeur de ce procédé réside dans l’utilisation de solvant assez 

toxique (ex : toluène) mais qui est nécessaire pour éviter les phénomènes de gonflement de 

la cellulose. Afin de pallier à ce problème, de nouveaux solvants verts, répondant aux 

mêmes critères que le toluène, ont pu être développés : les Liquides Ioniques (IL). En effet, 

de par leur structure menant à une pression de vapeur saturante immesurable, ces solvants 

n’émettent aucuns composés organiques volatiles. La deuxième partie de ce chapitre 

(Papier 2 - Publié dans Soft Matter – 2012) démontrent l’intérêt des ILs comme nouveaux 

solvants pouvant modifiées la cellulose.  

Cette étude a clairement montré que les liquides ioniques pouvaient donner lieu à un 

greffage efficace des NFC avec différents greffons (anhydrides) sans modifier leurs 

propriétés morphologiques. De plus, il a été prouvé qu’après réaction, le liquide ionique 

(onéreux) est recyclable et donc réutilisable pour d’autres cycles de modifications. En outre, 

une technique puissante d’analyse de surface (ToF-SIMS) a été utilisée pour la première fois 

sur des NFC pour caractériser un greffage de surface. Ces analyses confirment le greffage 

de surface des NFC et démontrent l’utilité de cette technique innovante.  

Il s'agit de la première étude utilisant un liquide ionique comme solvant de réaction 

permettant une modification de surface de la cellulose en phase hétérogène. Ces résultats 

prometteurs pourraient donc aider à la modification chimique de plus grand volume de NFC 

avec des propriétés hydrophobes. Ces dernières ont pu être utilisées pour diverses 
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applications dans le chapitre 3 suivant (composites ou matériaux antimicrobien). Par ailleurs, 

nécessitant un échange de solvants, ce greffage pourraient être d’autant plus perfectionné 

avec l’utilisation de NFC re-dispersable comme étudié et breveté en perspectives de ces 

travaux (Chapitre 4). 

Malgré ces résultats prometteurs, le solvant le plus simple a manipulé (et qui évite ces 

échanges de solvants) reste l’eau, c’est pourquoi notre dernière stratégie s’est focalisée sur 

un traitement en milieu aqueux.  

Dans la description de l’état de l’art, il a été présenté et discuté de deux types de NFC : 

une première catégorie obtenue par un prétraitement enzymatique des fibres de cellulose 

suivi d’un traitement mécanique et une deuxième catégorie obtenue par un traitement 

chimique par oxydation TEMPO.  

Nous avons donc pu développer dans une troisième partie (Papier 3 - Soumis à 

confidentialité – Dépôt d’un brevet) un dernier procédé de greffage.  

Cette étude a montré que l'utilisation de l’eau comme milieu réactionnel pouvait donner 

lieu à un greffage des substrats nanocellulosiques sans en affecter leurs propriétés 

morphologiques.  

Ce chapitre 2 propose donc une  avancée dans la modification chimique de surface des 

nanofibrilles de cellulose avec des résultats prometteurs pour différentes stratégies. Il permet 

aussi une meilleure compréhension et caractérisation des phénomènes de greffage à cette 

échelle. Dans une partie ultérieure (Chapitre 3), nous étudierons et proposerons des 

applications basées sur ces matériaux modifiés. 
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English Abstract – Résumé Anglais 

As discussed in Chapter 1, the cellulose nanofibrils can be produced by different methods, 

sources and pretreatment. It is important to note that once produced, NFC suspensions in 

water can reach a concentration of between 2 and 5 %wt. To increase the solid content of 

the suspensions NFC (which would be very useful for some processes), chemical 

modification of surface can be considered as a solution. 

In this Chapter 2, we first tried to control the grafting of cellulose nanofibrils playing with 

quantities of reactants and also tried to monitor the organization of the grafts at the surface. 

Then we wished proposed innovative strategies for chemical grafting: either based on 

"green" solvents (ionic liquids) or on grafting NFC in aqueous media. 

In the first part of this chapter (Paper 1 - Published in Cellulose - 2012), a surface grafting 

of NFC was performed under different conditions (variation of the molar ratio of grafting 

agent comparing to hydroxyl groups). The procedure established was adapted from a 

method developed in our laboratory and using on cellulose nanocrystals and cellulose 

nanofibrils only one amount of reagents. The organization of fatty chain at the surface 

obtained by carbanilation of NFC has been studied in detail and it has been demonstrated 

that the organization influences strongly the final properties of NFC. Surprisingly, properties 

did not increase regularly but a minimum is assessed at 10eq. It is linked to the surface 

organization proposed and best results were obtained either with 1eq or with 30 eq of 

reagents. 

The major drawback of this method (like most of published one) is linked to the use of 

toxic solvent like toluene which is necessary to avoid the swelling of cellulose. To overcome 

this problem, new green solvents, with the same criteria than toluene, have been chosen: a 

type of Ionic Liquids (ILs). Indeed, by their structure leading to an immeasurable vapor 

pressure, these solvents emit no volatile organic compounds. The second part of this chapter 

(Paper 2 - published in Soft Matter - 2012) demonstrates the possibility of using ILs as new 

solvents for cellulose heterogeneous modification. This study clearly showed that ionic 

liquids could lead to an effective grafting of NFC (performed with several anhydrides) without 

changing their morphological properties. In addition, it was shown that after reaction, the 

ionic liquid (expensive) is recyclable and hence reusable for other cycles of reaction. In 

addition, a powerful technique for surface analysis (ToF-SIMS) was used for the first time on 
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NFC to characterize the surface grafting. These analyzes confirm the grafting surface of NFC 

and prove the principle of this innovative technology. 

This is the first study using ionic liquid as a reaction solvent to a surface modification of 

the cellulose in the heterogeneous phase. These promising results may therefore help in the 

chemical modification of larger amount of NFC displaying hydrophobic properties. These 

have been used for various applications in the following Chapter 3 (like composites material 

or anti-microbial).  

Despite these promising results, the easiest workable solvent (which avoids the solvent 

exchanges) is water, which consists in our last strategy for chemical grafting of NFC in 

aqueous based medium. 

As proposed in the state of the art, it was presented and discussed two types of NFC: a 

first category obtained by enzymatic pretreatment of cellulose fibers, followed by mechanical 

treatment and a second category obtained by treatment chemical TEMPO oxidation. The 

major difference (chemically speaking) is the presence of carboxyl group higher after 

oxidation of cellulose fibers (second category).  

So we have developed in the third part (Paper 3 – Confidential – Patent in progress) 

based on water reaction media. 

This chapter 2 proposes step forward results in the chemical modification of the surface of 

cellulose nanofibrils. It tests as pioneer promising environmentally-friendly strategies and it 

allows a better understanding and characterization of grafting phenomena at this scale.  

In a later section (Chapter 3), we will investigate and propose some applications based on 

these modified NFC materials. 
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nanofibrillated cellulose and influence on 

final properties 
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Martin-d’Hères Cedex, France 

 

Abstract 

Chemical surface modification of nanofibrillated cellulose (NFC) was performed using a 

long aliphatic isocyanate chain. Different molar ratios of the coupling agents were tested, i.e., 

1, 10, 30 equivalents with respect to hydroxyl groups of the NFC surface. FE-SEM analyses 

revealed that there were no changes in their morphology thus keeping nanofibril-like 

structure with about 30 nm of diameter. All these samples were characterized by different 

techniques (e.g. FTIR) to check the efficiency of the grafting. Hydrophobic NFC were 

achieved whatever the grafting agent ratio. The Degree of Substitution (DS) was determined 

by Elemental Analyses and the Degree of Substitution of the Surface (DSS) was calculated 

thanks to X-ray Photoelectron Spectroscopy (XPS) data. Combining these two techniques, 

the Internal Degree of Substitution (DSI) was proposed for the first time. It indicates if the 

modification occurs also within NFC internal layers. Surface (contact angle), rheological 

(water suspension viscosity) and thermal properties (ThermoGravimetric Analysis) of grafted 

NFC do not follow the expected linear evolution of properties with the increase of molar ratio. 

X-Ray Diffraction analyses showed that the grafted aliphatic chains display crystalline waxy 

domains at some ratios. A model for aliphatic chain organization at the surface is proposed 

and clearly explained for the first time why a compromise in molar ratio is necessary to 

achieve best properties.  
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1.1 Introduction 

The last decade has been focused on obtaining efficient material from cellulose with a 

very strong interest on nano-scaled cellulose-based elements. There are two main families of 

nano-cellulose: the cellulose nano-crystals (or whiskers) obtained by acid hydrolysis of a 

cellulose-rich substrate and the cellulose nanofibrils (or NFC) obtained by different 

combinations of enzymatic, chemical and/or mechanical treatments of these starting raw 

materials. Very recent reviews give detailed information for each material (Habibi et al. 2010; 

Siró and Plackett 2010) and emphasize the out-standing impact on the mechanical 

properties of the ensued bionanocomposites. (Berglund and Peijs 2010; Eichhorn et al. 2010; 

Liu et al. 2011; Siqueira et al. 2010a). In the present work, experiments are focused on NFC. 

These cellulose microfibrils (MFC, NFC) were first obtained by Herrick et al. (Herrick et al. 

1983) and Turbak et al. (Turbak et al. 1983) in 1983 by a mechanical disintegration of wood 

pulp. Such a mechanical treatment yields the production of gelly-like aqueous suspension of 

nanofibrils at very low concentration. The diameter of nanofibrils obtained with these 

processes is in the range of 10 to 50 nm, whereas the typical length is several micrometers 

(Chinga-Carrasco and Syverud 2010; Walther et al. 2011). Different pretreatment such as 

enzymatic (Pääkkö et al. 2007; Siqueira et al. 2010c; Syverud et al. 2011) or TEMPO 

mediated process (Saito and Isogai 2004; Saito et al. 2007, Isogai et al. 2011), have 

nowadays been developed to obtain more homogeneous suspension and limit energy 

consumption. 

All cellulose nanofibrils (NFC) tend to form an aqueous gel at very low concentration (2% 

wt.) due to their important specific surface area and high number of hydrogen bonds arising 

from hydroxyl groups present at their surface. This feature handicaps their use in several 

applications, such as coated products (low solid content and high viscosity) or composites. In 

fact, it is impossible to use them at dry state without strong tendency to form aggregates or 

even film-like material. In order to overcome these drawbacks, different solutions are studied, 

but the most common one is the surface chemical modification, aiming at transforming 

hydroxyl groups into other functions thus limiting (or even totally avoiding) the hydrogen 

bonds establishment. 

Over the last decade, many processes of cellulose fibers surface modification have been 

investigated (Gandini and Belgacem 2011). Some of the reported approaches involved the 

grafting of polymers onto the surface of the fibers either by “grafting from” (like Ring Opening 

Polymerization - ROP (Lonnberg et al. 2006; Roy et al. 2005) and Atom Transfer Radical 

Polymerization – ATRP (Carlmark and Malmstrom 2003; Coskun and Temüz 2005)) or by 

“grafting onto” (following the procedure with bifunctionnal molecule bridge (Gaiolas et al. 
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2009; Krouit et al. 2008; Ly et al. 2010; Paquet et al. 2010)). The other strategy consists in 

grafting small molecules at the surface of fibers using acid chloride, anhydrides, silanes or 

isocyanates. Nevertheless, even if most of these strategies have already been tested onto 

cellulose nanocrystals as recently reviewed (Lin et al. 2012), only few works have been 

reported on the grafting of nanofibrillated cellulose. We can quote NFC modifications by 

trimethylsilylation (Lu et al. 2008), ring opening polymerization of poly(-caprolactone) 

(Lonnberg et al. 2011), cerium induced grafting (Stenstad et al. 2008), surface acetylation 

(Jonoobi et al. 2010; Tingaut et al. 2010), carboxymethylation (Eyholzer et al. 2010) or 

carbanilation (Siqueira et al. 2010b; Siqueira et al. 2009). 

To the best of our knowledge, none of these papers studied the superficial and the 

internal degrees of substitution and they did not show the influence of molar ratio on the 

organization of the grafted agent at NFC surface. Indeed the target of our work is to 

determine and understand the effect of the molar ratio on the final properties of grafted 

moieties on NFC. Only Berlioz et al. (Berlioz et al. 2009) dealt with similar surface vs. internal 

organization but this work is different in terms of grafting conditions (gas esterification), 

characterization techniques (bulk analyses : XRD and CP-MAS NMR) and the investigated 

raw materials (nanocrystals and bacterial cellulose aggregated by freeze-drying). Moreover, 

in our study, using XPS and FE-SEM gives rise to a “real” surface scrutiny (XPS) with high 

resolution (FE-SEM). NFC final properties like thermal properties (TGA) or surface and 

rheological properties (contact angle and rheology) have also been studied, in this work. So, 

in comparison to the previous study in our group (Siqueira et al. 2010b), in which only one 

ratio have been tested, different stoichiometric ratios ([coupling agent]/[superficial OH 

functions]) have been investigated in the present work and the influence of degree of surface 

substitution has been discussed in detail in order to explain final properties of resulting 

grafted NFC. A special focus on aliphatic chain organization at the surface is proposed 

thanks to deeper X-Ray diffraction analyses. 
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1.2 Experimental 

1.2.1 Materials 

Native eucalyptus fibers used in this work were obtained from FIBRIA (Sao Paolo, Brazil). 

The coupling agent (n-octadecyl isocyanate), as well as the solvents (ethanol, acetone, 

toluene and dichloromethane) and the catalyst (IUPAC name: dibutyl(dodecanoyloxy)stannyl 

dodecanoate, common name: dibutyltin dilaurate), were purchased from Aldrich Co 

(FRANCE). All chemicals were reagent grade and used as received without further 

purification. Deionized water was used in all experiments. 

1.2.2 Preparation of nanofibrillated cellulose (NFC) 

Nanofibrillated cellulose suspension was produced from eucalyptus sulphite wood pulp 

after enzymatic pre-treatment (Endoglucanase Novozym® 476 supplied by Novozymes, 

Denmark, 0.1M, 2h, 50°C). Endoglucanase was chosen regarding their ability to cut 

macromolecular cellulose chains at their extremity and not in the middle of the chain. A 

suspension of bleached eucalyptus fibers (2.0% w/v) was disintegrated using a microfluidizer 

apparatus, Model M-110 EH-30. The slurry was injected through the Z-shape chamber of the 

apparatus under a high pressure. The Interaction Chamber (IXC) hosted cells of different 

sizes (400, 200 and 100μm). The fibers suspension was passed 3, 4 and 5 times in the 

Chamber fibrillation containing the three mentioned above different cells, respectively. Solid 

content of the treated suspensions was around 2% (w/w).  

1.2.3 Chemical surface modification of NFC 

Carbanilation reactions were performed following the reaction conditions developed by 

Siqueira et al. (Siqueira et al. 2010b). The temperature was changed in our case. The 

aqueous suspension (150g of suspension at 2%wt. which correspond to 3g of dried NFC), 

was first solvent exchanged from water to acetone by several successive centrifugations and 

re-dispersion operations. Centrifugation operations were conducted at 10,000rpm for 10min 

and re-dispersion steps, performed with high shear rate (Ultra-Turrax GT18) at 9,500-

13,500rpm for 15s. Exchange solvent was performed in 4 successive steps. 

The resulting acetone-based suspension was added in a three-necked round-bottomed 

flask of 250mL, equipped with a reflux condenser. The system was kept under dynamic flow 

of N2 during the whole reaction time. The reaction mixture was heated to 65°C, in order to 

remove acetone. At the same time, 186mL of toluene is added dropwise to perform the in 

situ solvent exchange by removing slowly acetone and introducing toluene. At the end of 

toluene addition, 1mL of n-butyltindilaurate, as a catalyst (1mL) was added to the reaction 

medium. The temperature of the reaction mixture was then increased to 105°C and thermo-



Chapter 2 : Chemical Surface Modification of NFC 

138 
Karim Missoum - 2012            

stated using a contact thermometer. The temperature of system was kept at 105°C, for 2 

hours after the isocyanate addition.. 

The quantity of octadecyl isocyanate has been calculated as equivalents with respect to 

the fraction of hydroxyl groups available at the surface of cellulosic nanofibers. For this study, 

it has been considered that only 4% of hydroxyl groups were available at the surface due to 

some calculations established by Siqueira et al. (Siqueira et al. 2010b) with similar 

dimensions of NFC. Such assumptions have been proposed to determine the surface 

hydroxyl group content because modeling of flexible heterogeneous nanofibrils is still under 

investigation. Some recent work, (Majoinen et al. 2011), have proposed an estimation of the 

amount of hydroxyl group present at the surface on cellulose nanocrystals which are more 

homogeneous and calibrated system.  

After cooling at room temperature, the toluene suspension of modified NFC was then 

filtered and washed with dichloromethane (3 x 100mL) and with ethanol (3 x 100mL) under 

vacuum, in order to remove the formed by-products during the reaction (amines / urethanes), 

the unreacted physically adsorbed molecules and the excess of isocyanate (when needed).  

Moreover, a soxhlet extraction was performed for 24h using a mixture ethanol / 

dichloromethane with a ratio 1/1 (v/v) to complete the purification of modified NFC. Each 

reaction with different molar ratio has been triplicated. 

1.2.4 Native and modified NFC Characterization 

 
Scanning Electron Microscopy (FE-SEM) 

A scanning electron microscope equipped with a field emission gun (FE-SEM), model 

Zeiss Ultra column 55 Gemini, was used to observe NFC. The accelerating voltage (EHT) 

was 3kV for a working distance of 6.4mm. A droplet of diluted suspension was then 

deposited onto a substrate covered with carbon tape. After drying, samples were coated with 

a 2nm layer of Au/Pd (Gold/Palladium) to ensure their conductivity. Sample preparations 

were at least duplicated and a minimum of 10 images by samples were observed with digital 

image analysis (Image J) for calculating dimensions. FE-SEM images selected in figures are 

representative to the sample. 

X-Ray Diffraction (XRD) 

The (wide angle) X-Ray Diffraction analysis was performed on powder obtained with air-

dried neat NFC suspensions kept at ambient temperature (23°C) and relative humidity 

(28.8%). The grafted samples are obtained by casting and the ensuing films flakes were 

milled to produce powder. The samples were placed in a 2.5mm deep cell and 

measurements were performed with a PANanalytical, X'Pert PRO MPD diffractometer 

equipped with an X’celerator detector. The operating conditions of the refractometer were: 
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Copper Kα radiation (1.5418Å), 2θ (Bragg angle) between 5 and 60°, step size 0.067°, 

counting time 90s. The degree of crystallinity was evaluated using the Buschle-Diller and 

Zeronian Equation (Buschle-Diller and Zeronian 1992) : 

2

11
I

I
I c 

   Eq. 1 

Where: I1 is the intensity at the minimum (2θ = 18°) and I2 is the intensity associated with the 

crystalline region of cellulose (2θ = 22.5°). All measurements were made at least in 

duplicates and averaged. 

Infrared spectroscopy (FTIR-ATR) 

Infrared spectra were recorded, on film for unmodified NFC and powder form for modified 

NFC, using a Mattson 5000 spectrometer. The sample under investigation was deposited 

and pressed against the ZnSe crystal of an attenuated total reflectance (ATR) 

spectrophotometer. The torque applied was kept constant to ensure a same pressure on 

each sample. All spectra were recorded between 4000 and 700cm-1, with a resolution of 4cm-

1 and 16 scans. For each sample, a minimum of 2 spectra were obtained on different area of 

the film or the powder.. 

Elemental analysis (E.A) 

Elemental analysis was carried out by the “Service Central d’Analyse (Vernaison, France)” 

of the “Centre National de la Recherche Scientifique” (CNRS). Carbon, Hydrogen, Nitrogen 

and Oxygen contents were measured for unmodified NFC and modified NFC. The data 

collected has allowed determining the degree of substitution (DS) which is the number of 

grafted hydroxyl groups per anhydroglucose unit according to the following equation:  

19.228%51.295

14.162%07.72





C

C
DS  Eq. 2

 

Where: C is the relative carbon content in the sample and 72.07, 162.14, 295.51 and 228.19 

correspond to the carbon mass of anhydroglucose unit, mass of anhydroglucose unit, mass 

of n-octadecyl isocyanate and carbon mass of n-octadecyl isocyanate respectively. The 

analyses were performed twice and average was used. 

 

 

X-ray Photoelectron Spectroscopy (XPS) 
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X-ray photoelectron spectroscopy (XPS) experiments were carried out using an XR3E2 

apparatus (Vacuum Generators, UK) equipped with monochromated Mg K X-ray source 

(1253.6eV) and operating at 15kV under a current of 20mA. Samples were placed in an ultra-

high-vacuum chamber (10-8 mbar) with electron collection by a hemispherical analyzer at a 

90° angle. Signal decomposition was determined using Spectrum NT, and the overall 

spectrum was shifted to ensure that the C-C/C-H contribution to the C1s signal occurred at 

285.0keV. Comparison of the elementary surface composition was performed using the 

following equation: 

)/()/(/ 1221 SSIICO 
  

Eq. 3 

Where: Ii is the intensity of signal i (carbon, oxygen, or nitrogen) and Si (SC = 0.00170,  

SO = 0.00477 and SN = 0.00299) denotes the atomic sensitivity factor whose values were 

calculated from: 




4

iii

i

T
S 

 
Eq. 4 

With: Ti, i and i being the transmission energy, the electron inelastic mean free path, and 

the photoionization cross section for the X-ray source, respectively. Ti depends on the atomic 

kinetic energy Ei
kin (eV) according to: 

7.0)(

1
kin

i

i
E

T 
 Eq. 5 

With: EC
kin = 966.6eV, EO

kin = 722.6eV, and EN
kin = 851.6eV. The Penn algorithm was used to 

calculate the electron inelastic mean free path  (C = 2.63nm, O = 2.11nm, and N = 

2.39nm) and the values were taken from Scofield (Scofield 1976) (σC = 1, σO = 2.85, and σN 

= 1.77). 

XPS was performed on the dried powder of modified eucalyptus nanofibers. The XPS 

analysis for unmodified NFC (reference sample) was performed on a dried film treated in the 

same condition, but in the absence of the grafting agent and submitted to the same 

extraction procedure. 

Contact angle measurement  

Contact angle measurements were carried out by depositing different water droplets at the 

surface of the studied substrates and recording the angles formed using an OCA dataphysics 

system equipped with a CCD camera. The contact angle and drop volume acquisition was 

realized during the first 60 seconds after deposition taking 4images/s. For unmodified NFC, 
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the measurement was performed on dried film and on pellets for modified NFC. All 

measurements were performed 7 times for each sample.  

Thermo Gravimetric Analyses measurements  

A Setaram 92-12 TGA was used. About 50 mg of the sample were placed in the sample 

pan and tested with a heating rate of 10 °C/min from ambient temperature to 700°C under 

nitrogen flow. Experiments were at least duplicated and averaged. 

Rheology measurements 

Rheological measurements of the neat and modified NFC suspension, re-dispersed in 

water using 3% of sodium dodecylsulfate (SDS), w/w with respect to the dried NFC, were 

carried out using a controlled stress rheometer (MCR 301, Anton Paar Physica, Austria), with 

a parallel plate fixture (diameter 25mm with gap of 1mm) at 25.0°C controlled via a Peltier 

system. A solvent trap was used to prevent solvent (water) evaporation. Flow curves were 

plotted from the corresponding transient tests (apparent viscosity,  (Pa.s), vs. time at 

constant shear rate,  (s-1) at different shear rates) in a wide range from 0.001 to 1s-1. Flow 

curves were made in duplicate at each tested storage time (600 s).  

••
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1.3 Results and Discussions 

1.3.1 Morphology and structure of neat NFC and grafted NFC 

As already mentioned, different pretreatments have been developed with enzymes 

(Pääkkö et al. 2007; Siqueira et al. 2010c; Syverud et al. 2011), or involving chemical 

reactions (Saito et al. 2007; Saito et al. 2006; Saito and Isogai 2004), in order to decrease 

the energy consumption of cellulose fiber disintegration process. This leads to the production 

of totally different kinds of NFC with different final properties, as described recently (Siqueira 

et al. 2010c). Therefore, it is very important to specify the NFC under the conditions used to 

isolate them, whenever one should deal with them. The results presented on this work have 

been obtained with an enzyme (cellulase) pretreated bleached eucalyptus fibers 

disintegrated in a microfludizer meaning that mainly OH groups are present at NFC surface. 

In fact, such treatment conditions do not induce any chemical change (such as oxidation) on 

the substrate surface. The XPS results detailed latter confirmed this assumption.   

The diameter of nanofibrillated cellulose was determined by digital image analysis 

(ImageJ) of FE-SEM pictures, as presented in the Figure 1-1. 

 

Figure 1-1 : FE-SEM pictures of (a) Neat NFC and modified NFC with the molar ratio (b) 1equiv, (c) 10 
equiv and (d) 30equiv 
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The average diameter of neat NFC was about 22 ± 5nm (a minimum of 50 measurements 

was performed). The micrograph shows that nanofibrils are strongly entangled. After grafting, 

FE-SEM micrographs of NFC show similar average diameter 30 ± 8nm, 34 ± 9nm and 32 ± 

7nm for the sample grafted with 1 molar equiv., 10equiv and 30equiv respectively. These 

figures have been confirmed by AFM as presented in Figure 1-2. Diameters gives 30nm, 

32nm, 35nm for the samples grafted with 1, 10 and 30 molar equivalent respectively. It is 

worth to note that no morphology modifications are observed after grafting.  

 

Figure 1-2 : AFM characterizations of grafted NFC with (a) 1equiv, (b) 10equiv and (c) 30equiv 

According to XRD analyses (presented latter) the crystallinity index is similar for each 

samples. These two features confirm the relevance of non-swelling solvent used in our 

procedure. Moreover the “peeling effect” reported by Berlioz et al. (Berlioz et al. 2009) and 

Cetin et al (Çetin et al. 2009) on cellulose nanocrystals, is negligible in the case of 

nanofibrillated cellulose grafted with fatty chains. It is due to the length of the material (higher 

DP) which still contains appreciable amounts of hemicellulose and amorphous cellulose 

contrary to cellulose nanocrystals. Moreover the reaction by-products formed in our case 

(octadecanamine or dioctadecylurea), are less aggressive than HCl present in Berlioz’s 

study, which prevents the NFC from this swelling and peeling effect. Only surface grafting 

could occur and the size of the fatty chain (2nm) on the surface could explain the slight 

diameter increases. Moreover, the increasing of the diameter could also be induced by the 

increase of the distance between two cellulosic chains at the first surface layers as 

represented in the Scheme 1-1. In the native material, there is a well superposed and 

organized cellulosic chain packing. After the grafting, lower quantity of hydrogen bonds and 

some steric repulsion may occur between two cellulosic chains at the first surface layers 

increasing slightly the diameter of the NFC. Moreover, we can notice in Figure 1-1 that the 

grafted samples seem to yield less entangled NFC than that of neat counterpart due to 

limitation of hydrogen interaction, proving by the way the NFC grafting with obtention of 
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hydrophobic NFC. This is also simply proved by checking the NFC water suspensions 

homogeneity or the NFC films after drying, as shown in Figure 1-3. 

 

 

Figure 1-3 : Pictures of films obtained after casting of suspensions of (a) Neat NFC, NFC grafted with (b) 
10equiv, (c) 30 equiv and (d) dispersion in water of NFC grafted with 10 equivalent 

 

1.3.2 Efficiency of NFC grafting 

FTIR spectroscopy was used to follow the efficiency of each grafting for the different 

reaction conditions. Figure 1-4 shows FTIR spectra obtained from: (a) neat NFC and NFC 

grafted using: (b) 1 molar equivalence; (c) 10 molar equivalences and (d) 30 molar 

equivalences of octadecyl isocyanate. Before the chemical treatment the cellulosic nano-

fibers display several bands characteristic to cellulose macromolecules at 3350cm-1 (O–H), 

1110cm-1 (C–O of secondary alcohol) (used for the normalization of all spectra) and 2868 

and 2970cm-1 (C–H from –CH2–). After reaction with the isocyanate, a characteristic band 

assigned to urethane bonding at 1735cm-1 has appeared. A substantial increase of the bands 

at 2868 and 2970cm-1 corresponding to asymmetric and symmetric –CH2 – stretches from 

fatty chain was also observed. The peak associated with the vibration of adsorbed water at 

1650 cm-1 strongly decreased after modification, probably because of the hydrophobic 

behavior of the modified material. 

 

Scheme 1-1 : Schematic 
representation of intramolecular 
interactions between two 
cellulosic chains comparing neat 
and grafted NFC  
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Figure 1-4 : Fourier Transform Infra-Red spectra of (a) neat NFC and grafted NDC with (b) 1equiv, (c) 

10equiv and (d) 30equiv 

Elemental Analyses (E.A) and X-ray Photoelectron Spectroscopy (XPS) were performed 

in order to quantify the grafting efficiency and to establish the degrees of substitution. Thus, 

E.A gives rise to the determination of the average degree of substitution (DS), whereas from 

XPS data the degree of substitution of the first nanometers layers (as shown in the Scheme 

1-2) can be deduced. This parameter is also called degree of substitution of the surface 

(DSS) by some authors (Andresen et al. 2006; Goussé et al. 2002). The DS corresponds to 

the number of grafted hydroxyl function per anhydroglucose unit within the bulk of material 

and the DSS is linked to the number of grafted hydroxyl function per anhydroglucose unit 

present at the first surface layer (measurements carried out on about 7 nanometers). This 

depth of penetration and reliability of XPS has been established for planar surfaces. Surfaces 

with different roughness and different angular orientations to the beam may lead to different 

penetration profiles and results. However authors consider these 7 nanometers for their 

calculations and used it only for comparative study. 

 
Scheme 1-2 : Schematic representation of cellulosic chain contained in one NFC with different 

parameters used for the calculation of the degree of substitution interne (DSI) 

Both theoretical and experimental data obtained from the elemental weight composition 

for neat and grafted NFC are reported in the Table 1-1.  

Theoretically, from anhydroglucose unit the weight ratio between oxygen and carbon 

atoms is 1.11, which corresponds to 49.4% and 44.4% for the elemental weight fraction of 
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oxygen and carbon, respectively. However, the experimental value of weight ratio (O/C) for 

neat NFC is 1.26 which gives 50.59 % of O and 40.38 % of C atoms. The difference could be 

explained by the presence of some O-rich impurities and by experimental errors (Labet et al. 

2007). The presence of hemicelluloses (generally slightly richer in O atoms) in NFC 

suspension can also explain this difference. 

Table 1-1 : Experimental and corrected elemental weight composition for neat and grafted NFC obtained 
by elemental analysis 

Samples Experimental values  
Normalized 

Values 

 %C %H %N %O  %C %O 

Neat NFC 40.38 6.19 <0.10 50.59  44.44 49.38 

NFC 1 equiv 44.64 6.85 0.57 46.20  49.46 45.09 

NFC 10 equiv 50.43 7.52 1.11 38.28  55.50 37.36 

NFC 30 equiv 54.16 8.47 1.77 33.65  59.61 32.85 

 

Surface layer composition of neat NFC and grafted samples at different molar ratio 1, 10 

and 30 equivalences have been compared by XPS. The use of XPS to ascertain the 

efficiency of grafting was practiced very extensively the last decade and showed to be a very 

powerful technique to detect various changes at the surface. The XPS wide spectra (not 

shown) of the four samples show that in all cases the main peaks are detected at 285 and 

532eV, corresponding to C and O atoms, respectively. These spectra show also the 

appearance of a new peak at 398eV, attributed to N atoms, whose concentration at the 

surface of grafted samples increases with increasing the stoichiometric ratio, as summarized 

in Table 1-2. 

Qualitatively, two striking differences after grafting are noteworthy. On one hand, the 

characteristic signal at 285eV of C1S increases with the grafting due to the evolution of the 

molar ratio with the presence of long aliphatic chain from the octadecyl carbamate. The ratio 

(O/C), reported in the Table 1-2, for all tested materials, decreased with the augmentation of 

the molar ratio. On the other hand, the signal of nitrogen appears at 405eV, which is also due 

to isocyanate moieties. Moreover based on these XPS results, an approximation of the 

grafted molecule density can be calculated (e.g. 0.4OH/nm² for 1equivalent). So the 

comparison to the OH density at the one surface layer (e.g. 0.2OH/nm² for 30nm of width for 

one NFC) clearly proves that the grafting occurs also at some internal macromolecules. 
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The first relevant works dealing with the use of X-ray Photoelectron spectroscopy to 

characterize cellulose substrates were reported by Gray’s group (Dorris and Gray 1978a; 

Dorris and Gray 1978b; Gray 1978; Katz and Gray 1980). The deconvolution of C1s peak 

was reported by Ahmed et al. (Ahmed et al. 1987) showing that three entities are associated 

with carbon signal and centered at 285.0, 286.7 and 288.3eV. These moieties were attributed 

to C1 (C-H), C2 (C-O) and C3 (O-C-O and/or C=O), respectively. In theory (Belgacem and 

Gandini 2009), pure cellulose exhibits two peaks in its deconvoluted C1s XPS spectra, namely 

(i) C-O at 286.7eV and associated to alcohols and ethers groups. This peak is noted as C2 

and corresponds to 5 carbon atoms, and (ii) O-C-O at 288.3eV attributed to acetal moieties. 

This signal is noted C3 and corresponds to one carbon atom. 

 

Table 1-2 : Mass concentration of each element for neat and grafted sample correlated to deconvolution 
C1S obtained by XPS 

Samples Experimental values  Decomposition of C1s 

 %C %H %N O/C  C1(%) C2(%) C3(%) C4(%) C1/C3 C4/C3 

Neat NFC 60.6 39.4 <0.1 0.65  15.1 67.8 16.8 0.4 0.90 0.02 

NFC 1 equiv 63.8 34.8 1.1 0.55  20.6 52.1 22.9 5.8 0.82 0.28 

NFC 10 equiv 67.9 29.9 1.8 0.44  35.8 43.0 15.1 6.1 2.4 0.40 

NFC 30 equiv 82.0 14.9 3.1 0.18  63.4 24.7 7.7 3.3 8.6 0.32 

 

In Figure 1-5, two additional peaks are observed for cellulose reference, namely: C1 and 

C4. As previously mentioned C1 signal corresponds to non-oxidized alkane-type carbon 

atoms associated with the presence of residual lignin, extractive substances and fatty acids. 

C4 peak was assigned to carboxylic functions originating from glucuronic acids borne by 

hemicelluloses (Johansson et al. 2004; Johansson et al. 2005) and present at the surface of 

lignocellulosic fibers and pulps destined to papermaking and used in our NFC production. In 

fact, such a raw material is generally known to contain up to 30% of this amorphous family. 

In these works, it was also established that the surface O/C ratio for pure cellulose 

(theoretical formula) is 0.83. For the majority of virgin cellulose (avicel, wood pulps, annual 

plants, etc.), this ratio is systematically lower, because of the presence C-rich molecular 

segments at the surface of the solids under study. Table 1-2 confirms this assumption, in fact 

neat NFC presents a lower ratio O/C in comparison to theoretical value, i.e., 0.65 and 0.83, 

respectively. This difference could be attributed to the surface pollution by hydrocarbons 

adsorbed at the surface of nanofibers. Recently, Johansson et al, (Johansson et al. 2011) 
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proved also a possible adaptation of the NFC surface depending on the solvent used. Indeed 

Johansson et al. proved that depending on the solvent used with NFC, XPS analysis give 

strong difference. In this publication, DMA and toluene based NFC suspensions were dried 

and then analyzed using XPS. NFC dried from DMA present higher O/C ratio than those 

dried from toluene. After deconvolution only C2 and C3 peaks appear for DMA dried NFC 

contrary to toluene dried NFC where C1 and C4 are also present. Thus, this could also 

explain the difference obtained in our case. 

 

Figure 1-5 : Decomposition of the C1s signal into its constituent contribution for neat and grafted NFC as 
mentioned in the figure 

A deconvolution of the signal C1S presented in Figure 1-5, is required to quantify the 

grafting and corroborate the occurrence of surface grafting. This deconvolution reveals four 

peaks, which are attributed to C1 (C-H), C2 (C-O), C3 (O-C-O and/or C=O) and C4 (O-C=O), 

with a binding energy of 285.0, 286.6, 287.8 and 289.2eV, respectively, as summarized in 

the Table 1-2. This table shows that the intensity of C1 (C-C/C-H) increases strongly, from 

around 15 to 65%, for the virgin and highly grafted NFCs, respectively. Each glucose moiety 

possess only one C3-carbon, the ratio C1/C3 reflects the number of aliphatic carbons per 

glucose unit. The C1/C3 ratio shifted from 0.9 for neat NFC to 0.82, 2.40 and 8.60 for the 

NFC grafted with 1, 10 and 30 molar equivalence, respectively. This is the consequence of 

the strong impact of the C18 aliphatic chain. It is worth to note that the C1/C3 ratio for the 

lowest NFC grafting conditions (with 1 equivalent molar ratio) does not fit the increasing 

trend, probably because of low amounts of the coupled molecules. Similar analysis can be 

applied to C4/C3 ((O=C=O)/(O-C-O)) ratio which is also increasing with increasing the 
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stoichiometric ratios between the grafting molecules and the concentration of NFC superficial 

OH. The absolute values of C4 signals (link to the carbamate functions) increased with 

increasing the [NCO]/[OH] ratios. These results clearly evidence the occurrence of covalent 

bonding between the coupling molecules and cellulose surface.  

Unfortunately, except technique like TOF-SIMS, it is quite difficult to know the composition 

of one surface layer. So XPS data could be used in order to determinate the DS of the 

surface (DSS) but taking into account the first surface layers. For the calculation of the DSS, 

several methods can be considered, but the most common is based on Goussé et al. work 

(Goussé et al. 2002), who defined the DSS (calculation done on the amount of nitrogen) as 

follow: 

   xMM
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
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Eq. 6 

where: MAGU is the molar weight of one anhydroglucose unit (162.14g.mol-1), MN the molar 

weight of one atom of nitrogen (14g.mol-1), Mgroup_grafted the molecular mass of the grafted 

moieties (295.51g.mol-1) and x the mass concentration of nitrogen. Table 1-3 reports the DS 

values calculated from elemental analyses and the DSS determined using XPS. Another DS, 

called Degree of Substitution of Internal NFC (DSI), can then be calculated based on the 

idea that XPS correspond to around 7nm of depth of analysis. Combining elemental analyses 

and XPS data, the DS and the DSS can be used for the determination of this Internal Degree 

of Substitution (DSI). As mentioned before, this value could be very interesting to determine 

in order to assess the depth at which the grafting reaction took place. To the best of our 

knowledge, the following parameter is proposed for the first time: 

AGUsurfAGUtot

AGUsurfAGUtot

NN

DSSNDSN
DSI




         Eq. 7 

where: NAGUtot is the total number of cellulose chains which contains the cross section of one 

nanofibril, NAGUsurf corresponds to the number of cellulose chains under scrutiny during the 

XPS measurements, as represented in the Scheme 1-2. The DS and the DSS are the degree 

of substitution calculated from elemental analysis and XPS measurements, respectively. 

NAGUtot number was calculated as follow:  

W

D
N AGUtot           Eq. 8 

where: D is the mean diameter of NFC and W the width of one anhydroglucose unit (Hon and 

Shiraishi 2001) (0.5889nm). NAGUsurf is determined from the ratio: 
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W
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        Eq. 9 

where: D.A is the XPS depth of analysis, 2 is used to take into account both edges of the 

nanofibers and W the width of one anhydroglucose unit. 

Comparing the DS, DSS and DSI values, it seems that the grafting occurred mainly at the 

surface of the NFC for [NCO] / [OH] molar ratios of 1 and 30 equivalent samples, as 

summarized in Table 1-3. It was expected that DS is lower than DSS for all samples. 

Table 1-3 : DS, DSS and DSI calculated from elemental analysis and XPS data 

Samples DS (E.A) DSS (XPS) DSI (XPS & E.A)  

NFC 1 equiv 0.10 0.14 0.07 

NFC 10 equiv 0.29 0.34 0.26 

NFC 30 equiv 0.47 0.97 0.08 

 

DS values are obtained from elemental analysis as previously discussed. It corresponds 

to a bulk analysis of all materials. DSS is obtained from XPS data and correspond to a 

surface characterization. Moreover, the condition for the grafting, as demonstrated before, 

was studied to be occurred only at the surface of NFCs. Also all grafts are located at the 

surface, which can explain the higher value of DSS in comparison to DS. Therefore, for the 

first molar ratio, since there is no excess of the grafting agent, the reaction is limited to the 

hydroxyl groups present at the surface of NFC substrate. Concerning the highest molar ratio 

(30 equivalent), the important amount of reagent introduced in the media may induce quick 

saturation of the hydroxyl groups present at the surface. The aliphatic chains grafted can 

also hinder the diffusion of other isocyanate moieties into the bulk of the materials, especially 

because the reaction is carried out in non-swelling conditions of solvent, pH and ionic force. 

That is why there is a higher DSS and a low DSI for this sample. However, the NFC sample, 

grafted using a molar ratio of 10, shows that deeper modification has occurred in the bulk of 

the nanofibrillated cellulose. This result is hard to rationalize but it does not constitute an 

experimental artifact. Indeed, this unexpected result was confirmed by repeating the 

experiment several times. An explanation is proposed in coming section. 

So the DSI value seems to be a good way to check if the grafting is strictly performed at 

the surface. In some cases, the internal substitution is too small to induce a significant size 

change of the NFCs as observed previously. Even if this internal substitution could be also 
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attributed to highly substituted hemicelluloses and amorphous region of cellulose, the DSI 

seems very helpful to understand surface vs. internal grafting.  

1.3.3 Organization of grafted aliphatic chain onto cellulose 

nanofibers and ensued properties of NFC 

The crystalline structure of grafted NFC and neat NFC has also been investigated by XRD 

as shown in Figure 1-6. The crystalline structure of the cellulose is characterized by two main 

values of 2 at 5.4Å (2 = 18.5°) for the amorphous part and by a signal at 4,0Å (2 = 22.5°) 

for the crystalline part. The degree of crystallinity is determined from equation 1, and values 

are 81.4, 77.7, 80.9 and 72.9 for respectively neat NFC, NFC grafted with 1, 10 and 30 

equivalent. The reference sample presents a slightly higher degree of crystallinity (81.4) than 

the grafted ones. In fact, chemical surface modification induces a diminution of the crystalline 

part in cellulose as recently studied by Cetin et al (Çetin et al. 2009) on cellulose whiskers. 

Theoretically speaking, the higher is the amounts of grafts the lower degree is the 

crystallinity. In our work, the degree of crystallinity was found to be 77.7, 80.9 and 72.9 for 

the grafted samples with molar ratios of 1, 10 and 30 equivalents, respectively. The dropping 

of crystallinity index for the higher grafted sample is explained by the grafting of some 

crystalline part, so the quality of the crystals is altered. 

 

Figure 1-6 : X-Ray Diffraction patterns of neat NFC and the grafted samples as indicated in the figure 

Moreover the XRD of the samples (Figure 1-6) display the presence of the peaks 

associated with the presence of cellulose but also a new narrow peak with rather weak 
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intensity at 12.12Å (2 = 7.3°). This signal is assigned to the crystalline organization of the 

C18 aliphatic chain and it is generally identified as a second reflection order (Lee et al. 

1997a). In fact, these phenomena were already observed and assigned to the local 

crystalline waxy domains organization of the aliphatic chain for a number of carbons higher 

than 7 (Huang et al. 2007; Menezes et al. 2009). This behavior is further confirmed by the 

presence of 2 other main peaks at 4.4Å (2 = 20.4°) and 3.9Å (2 = 23°) (Lee et al. 1997a), 

observed in Figure 1-6, for the NFCs with the highest grafting density (grafting with 30 

equivalent molar ratio). These two peaks cannot be observed in the two others curves 

because of the lower grafting surface density of the corresponding samples. Even if, the last 

two peaks overlapped with those corresponding to cellulose, their shapes (a shoulder and a 

very sharp peak) can nevertheless be clearly noticed.  

In order to confirm the proposed mechanism, an analysis at low angle was carried out. In 

fact, the first order reflection of the C18 aliphatic chain could be observed at 36.8Å (2 = 

2.4°) (Lee et al. 1997b) and can confirm local crystalline waxy domains structure at the 

surface of grafted cellulose nanofibrils. The results presented in the Figure 1-7 show a well-

defined peak at 36.8Å (2 = 2.4°).  

 
Figure 1-7 : X-Ray Diffraction patterns for NFC_30equiv at low angle (a), NFC_30equiv (b) and the 

substrate in platinum used for the analyses (c) 

 
The presence of this shoulder is not due to a measurement artifact, since a substrate of 

platinum was also characterized and presented. Therefore, the obtained results strongly 

suggest that the grafted aliphatic chain at the surface of the NFC tend to form local 

crystalline waxy-like domains and helps to propose a surface organization of grafting in 

Scheme 1-3. 

Indeed based on previous results (DSS and XRD) and NFC properties (described latter), 

the organization of the structure of the grafted layers could be represented as sketched in 

Scheme 1-3. This hypothesis allows explaining the crystallinity index evolution, the local 

crystalline domain structure and the different value of DSS. It is also a clear explanation for 
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the optimum of properties which will be presented in next chapter. Indeed some 

characterizations (e.g. contact angle and rheological measurement) were then performed in 

order to highlight this organization. 

 

Scheme 1-3 : Schematic representation of the grafted NFC for the different ratio used for the chemical 
reaction as mentioned in the scheme 

In addition, contact angle measurements were performed in order to point out the 

hydrophobic behavior of the grafted nanofibers comparing to neat NFC. The results are 

presented in the Figure 1-8. As expected the contact angle values of grafted NFC are higher 

than the neat NFC. Theoretically, the highest molar ratio corresponds to the highest contact 

angle value. However, the lowest contact angle value, around 80°, is observed for NFC 

grafted using 10 molar equivalences and the higher for NFC grafted in the condition 1 and 30 

molar equivalence, around 90° respectively (+/- 2°).  

 

Figure 1-8 : Contact angle vs. time performed with water for (x) Neat NFC, (◊) NFC 10equiv, (∆) NFC 1equiv 
and (□) NFC 30equiv 

Even after several measurements, the same behavior is always observed. This might be 

due to the organization of fatty chain at the surface as previously detailed with Scheme 1-3. 
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Indeed the high amount of fatty chain can be organized as crystalline phase due to important 

Van der Waals interactions. In our case, organization at the surface can also be assessed by 

keeping in mind that the degree of substitution of surface (DSS) is increasing. In this case, 

linear increase of contact angle should be observed but it is not the case. This confirms our 

assumption and can be explained by the higher quantity of accessible zones at 10 equiv 

comparing to 1 equiv or 30 equiv grafted NFC, as proposed in Scheme 1-3. 

Thermograms, obtained by TGA measurements and presented in Figure 1-9, show clearly 

similar impact of the grafting onto NFC surface. The grafted samples display an enhanced 

thermal resistance and so a lower sensitivity towards the degradation of the material in 

comparison to the neat NFC.  

 
Figure 1-9 : TGA thermograph for (x) Neat, (◊) NFC 10equiv, (∆) NFC 1equiv and (□) NFC 30equiv 

 
The Figure 1-10 summarizes the temperature to reach a certain relative weight loss 

determined by the derivative of thermographs presented before. For instance at 241°C, the 

neat NFC lost 20% of weight. The same value is reached for higher temperature for the 

grafted sample, i.e. 317, 286, 331°C for 1equiv, 10equiv and 30equiv respectively. In this 

case the resistance to temperature is clearly highlighted by the ability of the grafts to be 

organized at the surface to protect NFCs. The sample grafted using a 10 times molar ratio 

displayed a lower value than other grafted samples. This behavior can be corroborated to the 

proposed organization in Scheme 1-3. Also authors supposed that local crystalline waxy 

domains can melt in order to act as a protective shell. 
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Figure 1-10 : Derivatives of thermograms for neat and grafted with 1 equiv, 10 equiv and 30 equiv. Table 

representing the weight lost associated to each sample 

 
The performed rheological measurements point out the impact of grafting on viscosity 

properties of NFC suspensions. The water re-dispersed grafted samples (using as surfactant 

the sodium dodecyl sulfate, SDS) show a lower viscosity than neat NFC as shown in Figure 

1-11. Two main assumptions can be proposed. The viscosity can decrease because of an 

aggregation effect of NFC in suspension inducing a loss of the nanoscale dimension. It 

seems that this is not the case, as confirmed by FE-SEM characterization. The second 

explanation is the lower number of hydrogen bonds between NFC as a result of the grafts 

which impedes such interactions. Figure 1-11 reveals the diminution of the viscosity for 

grafted samples. Moreover, the sample grafted with 10equiv has once again a different 

behavior with a higher viscosity than other modified substrates. It can be attributed to the 

“accessible zone” (presented in Scheme 1-3) which is not modified and still able to form 

hydrogen bond interactions. 
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Figure 1-11 : Rheology measurement of neat NFC suspension and modified NFC after re-dispersion using 
SDS 

Thanks to all characterizations, the proposed surface organization appears to be the 

correct explanation. It proves that a compromise in molar ratio is then necessary to achieve 

the best properties. Either very low or high grafting should be targeted in such NFC chemical 

modification process. That is the first time such compromise is proposed and proved. 
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1.4 Conclusions 

This work shows that NFC substrate can be efficiently grafted by different molar ratio of 

fatty isocyanate and that the grafting density increases with increasing the molar ratio of the 

grafting agent. Moreover, thanks to XPS, an approach dealing with surface vs. bulk NFC 

chemical modification is proposed with definition of a new quantitative parameter (DSI). It 

helps discussing the grafted molecule organization at the NFC surface. Indeed, depending 

on the molar ratio, the grafted methylene groups tend to form local crystalline waxy-like 

domains resulting from lateral interaction between the aliphatic chains. Depending on the 

molar ratio, different surface organizations are assessed and proposed for the first time. 

Results of NFC physico-chemical properties confirmed the suggested organization. They 

proved that such surface organization monitor final NFC properties and that a compromise in 

molar ratio is then necessary to achieve the best properties. 
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Abstract 

The present study reports for the first time, the heterogeneous surface modification of 

nanofibrillated cellulose (NFC) in ionic liquid using different anhydride molecules. With 

ecofriendly perspectives in mind, the ionic liquid used was recycled by liquid–liquid 

extraction. The purity of the recycled IL was confirmed by FTIR measurements and NMR 

spectra of 1H, 13C, 31P and 19F. All the NFC samples were characterized by different 

techniques (e.g. FTIR, contact angle measurements) to check the efficiency of grafting and 

to compare the influence of the different anhydrides used. The surface chemical grafting 

obtained was effective. The Degree of Substitution (DS) was determined by elemental 

analysis and the Degree of Surface Substitution (DSS) was calculated from X-ray 

photoelectron spectroscopy data. ToF-SIMS was used to characterize the grafting at the 

extreme surface. 
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2.1 Introduction 

Cellulose is the most abundant bio-based polymer (Belgacem and Gandini 2008) 

available in large amounts anywhere on earth. Its abundance, biodegradability, recyclability 

and renewability make cellulose one of the best alternative raw materials to oil-based 

sources. The last decade has been focused on obtaining efficient material from cellulose 

fibers with an exponential interest on nano-scaled cellulose-based elements. Several types 

of nanocellulose can be found in the literature: the cellulose nanocrystals (or whiskers) 

obtained by acid hydrolysis of cellulose and cellulose microfibrils or nanofibrils (NFC) 

obtained by mechanical treatments usually combined with enzymatic and/or chemical pre-

treatment of cellulosic materials. Very recent reviews give detailed information for each 

material (Eichhorn et al. 2010; Habibi et al. 2010; Siró and Plackett 2010) and their 

application in bionanocomposite (Siqueira et al. 2010a) or as film or coating (Lavoine et al. 

2011). The present study focuses on cellulose microfibrils (MFC, NFC) firstly obtained by 

Herrick et al. (Herrick et al. 1983) and Tubark et al. (Turbak et al. 1983) in 1983 using 

mechanical disintegration of wood pulp. The diameter of nanofibrils is in the range of 10 to 50 

nm  (Walther et al. 2011), whereas the typical length is several micrometers (Chinga-

Carrasco and Syverud 2010). Different pre-treatments such as enzymatic (Pääkkö et al. 

2007; Siqueira et al. 2010c; Siqueira et al. 2010d; Syverud et al. 2011) or TEMPO mediated 

process (Saito et al. 2007; Saito et al. 2006; Saito and Isogai 2004; Isogai et al. 2011), have 

nowadays been developed to obtain more homogeneous suspensions and to limit energy 

consumption. The obtained NFCs show improved properties (e.g. mechanical, barrier) and 

allow efficient bionanomaterials to be made. 

Unfortunately, NFCs tend to form an aqueous gel at very low concentration (2% wt) due to 

their important specific surface area and consequently the high number of hydrogen bonds 

arising from surface hydroxyl groups. This feature is the main drawback of their use in 

several applications, such as coating formulations (low solid content and high viscosity). The 

aggregation or the film-forming capacity of NFCs in their dried form is another inconvenience, 

mainly for composite applications. To overcome these handicaps, different solutions are 

studied but the most developed is the surface chemical modification, transforming hydroxyl 

groups into other functions thus limiting (or even totally avoiding) the formation of hydrogen 

bonds. 

Over the last two decades, many processes of cellulose fibers surface modification have 

been investigated, as recently reviewed by one of us (Belgacem and Gandini 2009; 

Belgacem and Gandini 2008; Gandini and Belgacem 2011). Nevertheless, only a few and 
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very recent works have been reported on the grafting of nanocellulose nanoparticles 

(whiskers or nanofibrillated cellulose). 

Different techniques can be noticed for such NFC modifications as trimethylsilylation(Lu et 

al. 2008), ring opening polymerization of poly(-caprolactone) (Krouit et al. 2008), cerium 

induced grafting (Stenstad et al. 2008), surface acetylation(Jonoobi et al. 2010; Radionova et 

al. 2010; Tingaut et al. 2010), carboxymethylation (Eyholzer et al. 2010) or carbanilation 

(Siqueira et al. 2010b; Siqueira et al. 2009). To perform these reactions, large quantities of 

organic solvents as liquid media for chemical reaction, for extraction or in formulation are 

overused. In most cases, these dispersing organic media are hazardous to health, flammable 

and volatile. To limit the use of such organic solvents, a novel type of “green” solvents has 

been studied during these past decades, i.e.: the Ionic Liquids (ILs) (Earle and Seddon 2000; 

Olivier 1999).  

Ionic liquids or “molten salts” are in general defined as liquid electrolytes composed 

entirely of ions. More recently(Baker et al. 2005; Hardacre 2007; Holbrey and Seddon 1999), 

the melting point criterion has been proposed to distinguish molten salts (“high melting point, 

high viscosity and corrosive medium”) and Ionic Liquids (“liquid below 100°C and low 

viscosity”). The most important features of ILs is their non-measurable vapor pressure. They 

are defined as “green” solvents mainly because of the absence of volatile organic 

compounds (VOC) emission. Also in term of inhalation and vapor of solvent, the risk is 

limited in comparison to other volatile organic solvent in spite of IL toxicity. Furthermore, ILs 

have other attractive properties, such as high chemical and thermal stability (Blake et al. 

2006; Chiappe and Pieraccini 2005; Zhang et al. 2006), nonflammability, as well as high ionic 

conductivity. They could be also easily recyclable and reused due to their low melting point 

(comprising -60°C to +60°C), just by decreasing the temperature or by distillation. There is a 

wide variety of ILs, each of them is composed of a cation (e.g. imidazolium or pyridinium 

salts) and an anion (e.g. chloride, tetrafluoroborate, hexafluorophosphate…). 

Ionics liquid are well known to unexpectedly solubilize different polymers (Erdmenger et 

al. 2010; Guerrero-Sanchez et al. 2011; Guerrero-Sanchez et al. 2008) and biopolymer. 

Moreover, chemistry and interactions between cellulose and ionic liquids have been 

investigated, mainly in the context of solubilization or homogeneous derivatization of 

cellulose (Biswas et al. 2006; Feng and Chen 2008; Swatloski et al. 2002). Indeed some 

ionic liquids are promising solvents for chemical reactions involving dissolved cellulose and 

different reactions have already been performed (Jain et al. 2005; Liebert and Heinze 2008) 

using acetyl chloride (Granström et al. 2008; Heinze et al. 2005), acetic anhydride(Abbott et 

al. 2005; Köhler et al. 2007; Vaher et al. 2002; Wu et al. 2004) and phenyl isocyanate 
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(Barthel and Heinze 2006; Schlufter et al. 2006). To limit this dissolution, a hydrophobic IL 

could be used and different parameters (i.e. viscosity, polarity, affinity with water and 

dissolution in water) must be considered (Freire et al. 2007; Rivera-Rubero and Baldelli 

2004; Shvedene et al. 2005; Wong et al. 2002).  

Several procedures have been developed to recycle ILs with an acceptable degree of 

purity. Liquid-liquid extraction or cooling precipitation has been used to remove impurities 

(Chapeaux et al. 2008; Dupont et al. 2002; Earle and Seddon 2000; Muthusamy and 

Gnanaprakasam 2005; Zhao et al. 2005). At the end of the reaction, modified materials could 

be easily removed by filtration and the formed impurities, by-products and unreacted 

reagents can be separated by liquid-liquid extraction or distillation. 

In the present study, [bmim][PF6] has been considered for the first time to perform the 

surface chemical modification of cellulose nanofibers. Indeed, the target of this paper is the 

esterification of NFC surface in heterogeneous conditions. Different anhydride molecules 

have been tested and their influence on the nanofiber morphology and the degree of 

substitution established. A special focus on recyclability / purification of the ionic liquid will 

also be proposed. To the best of our knowledge, there are no papers available in the 

literature dealing with the grafting of heterogeneous cellulose nanoparticles in ionic liquids. 

To ascertain the surface chemical grafting Time of Flight Secondary Ions Mass Spectroscopy 

(ToF-SIMS) was used. This technique was applied for the first time for the characterization of 

the chemical surface modification of nanofibrillated cellulose.  
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2.2 Experimental 

2.2.1 Materials 

The wood pulp delivered by Domsjö (Sweden) corresponds to a mix between Spruce and 

Pinus with a mass ratio of 70% and 30%, respectively. The reagents i.e., acetic, butyric, iso-

butyric and hexanoic anhydride, the ionic liquid [bmim][PF6] and the other compounds used 

here (i.e., ethanol, acetone, dichloromethane, sodium hydroxide, ethyl ether) were purchased 

from Sigma-Aldrich and co. (France). All chemicals were reagent grade and used as 

received without further purification. Deionized water was used in all the experiments. 

2.2.2 Nanofibrillated cellulose production (NFC) 

Nanofibrillated cellulose suspension was produced by the FCBA institute (Grenoble, 

France), from a pre-treated bleached Domsjö wood pulp using an endo-glucanase (cellulase) 

enzyme, during 2h at 50°C, A suspension of bleached Domsjö fibers (2.0% w/v) was pumped 

through a microfluidizer processor, Model M-110 EH-30. The slurry was pushed into 

Interaction Chamber (IXC) using cellules of different sizes (400, 200 and 100 μm), under a 

high pressure, thus producing the size reduction of the initial fibers. The fibers suspension 

was recirculated 3, 4 and 5 times through 400, 200 and 100µm cellules in the fibrillation 

chamber, respectively. The weight yield of this disintegration operation is higher than 95% 

and the solid content of the suspension is around 2% (w/w).  

The starting raw material is bisulfite pulps and its hemicelluloses content is very low (less 

than 3.5% w/w). We have, therefore, neglected them. Anyway, they have very similar 

structure (OH-rich macromolecules).  

2.2.3 Chemical surface modification of NFC in IL 

The aqueous suspension of NFC (~ 2%wt), was solvent exchanged from water to acetone 

by several successive centrifugations and re-dispersion operations. Centrifugation steps 

were conducted at 10,000rpm for 10min and re-dispersion steps performed with high shear 

rate tool (Ultra-Turrax GT18) used at 9,500-13,500rpm for 15s. Solvent exchange was 

performed in 4 successive steps. The water content, in the suspension, was determined and 

found to be less than 1%wt. The solvent exchange limits presence of water in NFC, as 

confirmed by FTIR (not shown). 

Then the suspension containing 3g (dry weight) of nanofibrillated cellulose dispersed in 

acetone was transferred into a three-necked round-bottomed flask of 250mL, equipped with 

a reflux condenser. The ionic liquid (120g of [bmim][PF6]) was added and the reaction 
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mixture was heated to 80°C, in order to remove acetone. This in-situ solvent exchange for 

NFC has already been proposed and commented in a previous paper (Siqueira et al. 2010b).  

All anhydride quantities have been calculated, with respect to the hydroxyl groups 

available at the surface of cellulosic nanofibers. For this study, it has been considered as 

rough estimation that only 4% of hydroxyl groups were available at the surface, as already 

established in a previous paper (Siqueira et al. 2010b). Thus, in this work 10 folds equivalent 

molar have been added. The temperature of system was kept for 2 hours at 100°C after 

anhydride addition. After cooling at room temperature, the suspension of modified NFC was 

then filtered and washed with dichloromethane (3 x 100mL) and with ethanol (3 x 100mL) 

using a vacuum flask to remove the released carboxylic acid elimination product, the ionic 

liquid and the excess of the used anhydride. A soxhlet extraction was performed for 24h 

using a mixture ethanol / dichloromethane with a ratio 1/1 (v/v) to achieve the purification at 

80°C. All extractants have been verified to be miscible and soluble in this mixture of organic 

solvents. 

2.2.4 Ionic Liquid recycling 

A liquid-liquid extraction was used for the recycling of the IL. Thus, two cycles of washing 

using approximately 250mL of 0.1M sodium hydroxide solution were performed to remove 

the formed by product and the unreacted reagents. This procedure was followed by a further 

purification step using two cycles of extraction with di-ethylether (150mL per cycle) and 

repeated twice, as presented in the Scheme 2-1. The ionic liquid being one phase by itself. 
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Scheme 2-1 : Procedure for grafting and recycling 

 
2.2.5 Characterizations tools 

Scanning Electron Microscopy (FE-SEM) 

A scanning electron microscope equipped with a field emission gun (FE-SEM), model 

Zeiss Ultra column 55 Gemini, was used to observe the NFC particles. The accelerating 

voltage (EHT) was 3 kV for a working distance of 6.4 mm. A droplet of diluted suspension, in 

acetone for modified samples and water for neat NFC, was deposited onto a substrate 

covered with carbon tape and coated with a 2 nm layer of Au/Pd (Gold/Palladium) to ensure 

the conductivity of all samples. 

X-Ray Diffraction (XRD) 

The (wide angle) X-Ray Diffraction analysis was performed on NFC films obtained after 

air-drying of neat NFC suspensions kept at ambient temperature (23°C) and relative humidity 

(28,8%). The grafted samples are obtained by casting and ground in powder form. The 

samples were placed in a 2,5mm deep cell and the measurements were performed with a 

PANanalytical, X'Pert PRO MPD diffractometer equipped with an X’celerator detector. The 

operating conditions for the refractometer were: Copper Kα radiation (1.5418 Å), 2θ (Bragg 
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angle) between 5 and 60°, step size 0,067° and counting time 90s. The degree of crystallinity 

was evaluated using the Buschle-Diller and Zeronian (Buschle-Diller and Zeronian 1992) 

Equation: 

2

11
I

I
I c 

  Eq. 1 

where I1 is the intensity at the minimum (2θ = 18°) and I2 is the intensity associated with the 

crystalline region of cellulose (2θ = 22.5°). All measurements were made at least in 

duplicates. 

Infrared spectroscopy (FTIR-ATR) 

Infrared spectra were recorded, on film for unmodified NFC and powder for modified NFC, 

using a Perkin-Elmer SP100 spectrometer. For each sample, the Diamond crystal of an 

attenuate total reflectance (ATR) apparatus was used. The torque applied was kept constant 

to ensure the same pressure on each sample. All spectra were recorded between 4000 and 

700 cm-1, with a resolution of 4cm-1 and using 8 scans. A minimum of 2 spectra were 

obtained on different area of the film or the powder for each sample. 

Contact angle measurement  

Contact angle measurements were carried out by depositing different water droplets at the 

surface of the studied substrates and recording the angles formed using an OCA dataphysics 

system equipped with a CCD camera. The contact angle and the drop volume acquisition 

were realized during the first 60 seconds after deposition taking 4images/s. For unmodified 

NFC, the measurement was performed on dried film and on pellets for modified NFC. All 

measurements were performed 7 times for each sample.  

Elemental analysis (E.A) 

Elemental analysis was carried out by the “Service Central d’Analyse (Vernaison, France)” 

of the “Centre National de la Recherche Scientifique (CNRS)”. Carbon, Hydrogen, Nitrogen 

and Oxygen contents were measured for unmodified NFC and modified NFC. The collected 

data has allowed the degree of substitution (DS) to be determined which is the number of 

grafted hydroxyl groups per anhydroglucose unit according to the following equation: 

tedCestergrafedestergraft

AGU

MCM

MCMc
DS





%

%6
     Eq. 2 
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where %C is the relative carbon content in the sample and Mc, MAGU, Mestergrafted and 

MCestergrafted correspond to the carbon molecular mass of anhydroglucose unit, the molecular 

mass of anhydroglucose unit, the mass of the grafted ester and the carbon mass of the 

grafted moieties respectively. The analyses were performed twice and the average was 

used. 

X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) experiments were carried out using a Kratos Axis 

Ultra DLD apparatus (Vacuum Generators, UK) equipped with an unmonochromated 

Aluminum K X-ray source (1486.6 eV) and operating at 15 kV under a current of 8 mA. 

Samples were placed in an ultra-high-vacuum chamber (10-8 mbar) with electron collection 

by a hemispherical analyzer at a 90° angle. Signal decomposition was determined using 

Vision 2.2.8 software, and the overall spectrum was shifted to ensure that the C-C/C-H 

contribution to the C 1s signal occurred at 284.6 eV. 

XPS was performed on the dried powder of modified NFC nanofibers. The XPS analysis 

for neat NFC was performed on a dried film treated in the same condition, extracted but 

ungrafted. For the calculation of the degree of substitution of the surface several methods 

can be considered. The most common is based on Andresen et al.  (Andresen et al. 2006) 

who defined the DSS (calculation done on carbon presence of C1 and C3 carbon intensity) 

as follow: 

McMC

MC
DSS

grafts

AGU





4%

4%
     Eq. 3 

Where: %C4 is the intensity of the signal attributed to O-C=O moieties, MAGU the molecular 

mass of an anhydroglucose unit (162.14g.mol-1), Mgrafts the molecular weight of the grafted 

moieties (42.038, 70.092 and 98.066g.mol-1 for acetate, butyrate and hexanoate functions) 

and Mc the molecular weight of one carbon atom.  

 

Nuclear Magnetic Resonance (NMR) 

NMR experiments were conducted at 25°C in DMSO-d6 99.8% (Aldrich) on a UNITY 

Varian spectrometer, equipped with a 5 mm id-pfg probe (indirect detection-pulse field 

gradient) operating at 399.959MHz, 376.308MHz and 161.889MHz for 1H, 19F and 31P 

respectively. For 13C spectra, a 10mm BB probe (broad band) operating at 100.580MHz was 

used. NMR spectra of pristine and recovered product are recorded with similar conditions. 
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The quantitative 1H-NMR spectra were performed at 25°C. The one-pulse sequence was 

used with a 30° pulse, a relaxation delay of 60s, a spectral width of 4500Hz and 16K data 

points for acquisition. Zero-filling was carried out without apodization. The positions of the 

peaks were referred to the residual solvent peak DMSO-d6 ( = 2.49ppm). Chemical shifts 

are given relative to tetramethylsilane. 
19F chemical shifts are given with respect to CFCl3 ( = 0ppm). 19F-NMR spectra were 

acquired using a 11300Hz spectral width, 64K data points, 2.8s acquisition time, 10s 

relaxation delay and 45° pulse. In this case, there was no proton decoupling. Zero-filling was 

carried out without apodization. 
31P chemical shifts are given with respect to H3PO4 ( = 0ppm). The spectra were 

acquired using 30000Hz spectral width, 64K data points, 1s acquisition time, 5 s relaxation 

delay and 30° pulse. There was no proton decoupling. Zero-filling was carried out without 

apodization. 
13C-NMR chemical shifts are given with respect to tetramethylsilane. The positions of the 

peaks were referenced using the residual solvent peak of DMSO-d6 ( = 39.50ppm). 

Quantitative spectra (proton broad band decoupling only during acquisition time) were 

obtained  with a 25000Hz spectral width, 32K data points, 0.64s acquisition time, 45s 

relaxation delay, and 30° pulse. Zero-filling and 4Hz line broadening are applied before FT 

(Fourier transform). 

Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS) 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) depth profiling was performed 

with a TOF SIMS V tool from ION-TOF GmbH with a bismuth liquid-metal ion source for 

analysis, incident at approximately 45° with respect to the sample. The surface spectra were 

acquired by analysis of both positive and negative secondary ions in separate acquisitions. 

For the analysis, a 25 keV Bi+ or Bi3
+ beam was used with a 500 μm × 500 μm raster in order 

to average over a large sample area. Vacuum in the analysis chamber was kept between 7 × 

10−8 Pa and 1 × 10−7 Pa, while profiling, in order to reduce the influence of residual gases 

(typically oxygen and hydrogen). 
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2.3 Results and discussions 

2.3.1 Morphological and structural properties 

The chemical surface modification of NFC has been achieved for the first time in ionic 

liquid (BmimPF6) with several anhydrides, as described in Scheme 2-1. As already 

mentioned (Siqueira et al. 2010d), it is very useful to specify the conditions used to isolate 

NFC. This study used NFC obtained with enzyme pretreated bleached wood fibers 

disintegrated in a microfludizer. Such treatment conditions do not induce any chemical 

change (such as oxidation) on the substrate surface and consequently, the groups present at 

NFC surface are mainly OH functions. The XPS results given afterwards confirmed this 

assumption.  

The diameter of nanofibrillated cellulose was determined by digital image analysis 

(ImageJ) of FE-SEM pictures, as presented in Figure 2-1.  

The average diameter of neat NFCs was about 20 ± 5nm (a minimum of 50 

measurements was performed). The micrograph shows that neat NFCs are strongly 

entangled. Whereas the network of grafted NFCs is more porous, showing already less 

hydrogen bond interactions between grafted NFC.  

The FE-SEM micrographs indicate that the morphology and the nanoscale of NFCs are 

conserved after grafting confirming the relevance of the ionic liquid selected as a non-

swelling solvent. FE-SEM micrographs show also a slight increase of the average diameter 

with as a function of the length of the aliphatic chain grafted: 36 ± 12nm, 40± 16nm, 55 ± 

18nm and 54 ± 15nm, for the sample grafted with acetic, butyric, iso-butyric and hexanoic 

anhydride respectively. However the standard deviation is quite high, which limits the 

interpretations, even if a certain trend could be noticed.  
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Figure 2-1 : FE-SEM pictures of neat and grafted NFC with AA (Acetic Anhydride), BA (Butyric Anhydride), 

i-BA (iso-Butyric anhydride) and HA (Hexanoic Anhydride) 

Moreover, regarding the XPS data (presenter later) neither Fluorine nor Phosphorus 

peaks were detected. It was, therefore, concluded that the increase of the diameter cannot 

be linked to a lack of purification. Moreover, the characterization by FE-SEM is performed on 

dried powder of modified NFC. Then, no swelling effect can be responsible of such an 

increase. The slight difference in the diameter might be due to the limitation of hydrogen 

bonds at the outer layer of NFC. With lower intermolecular hydrogen bonds, the distance 

between macromolecules can increase and explain the slight increase of diameter, as 

proposed in Scheme 2-2 (presented in section 2.3.3).  

The crystalline structure of grafted NFC and neat NFC has also been investigated by 

XRD, as shown in Figure 2-2. The crystallinity index is determined from equation 1 and 

reported in the Figure 2-2.  
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Figure 2-2 : X-Ray Diffraction spectra of neat and modified NFC and the calculated crystallinity index 

The reference sample presents a similar crystallinity (80.2%) to that of the grafted ones 

(82.6%, 80.8%, 80.9%, and 80.6% for acetic, butyric iso-butyric hexanoic moieties 

respectively). This confirms the non-swelling of NFC with the ionic liquid during the surface 

modification. Moreover, the “peeling effect” reported by Berlioz et al. (Berlioz et al. 2009) and 

Cetin et al. (Çetin et al. 2009) on cellulose nanocrystals acetylation, is negligible in the case 

of our nanofibrillated cellulose. This is most probably due to the length of the material (higher 

DP), which still contains appreciable amounts of hemicellulose and amorphous cellulose, 

when compared with the material studied by these authors, i.e., cellulose nanocrystals. 

2.3.2 Efficiency of process 

To ascertain the chemical grafting, several characterizations were performed. FTIR 

spectroscopy was one of them. Figure 2-3 shows FTIR spectra obtained from: (a) neat NFC 

and NFC grafted using (b) acetic anhydride, (c) butyric anhydride, (d) isobutyric anhydride 

and (e) hexanoic anhydride. Before the chemical treatment, NFC display several 

characteristic bands attributed to cellulose macromolecules like 3496cm-1 (O–H), 1110cm-1 

(C–O of secondary alcohol) (used for the normalization of all spectra) and 2868 and 2970cm-

1 (C–H from –CH2–).  
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Figure 2-3 : FTIR spectra for (a) Neat NFC, (b) NFC_AA, (c) NFC_BA, (d) NFC_i-BA and (e) NFC_HA 

After the esterification reaction, a characteristic peak assigned to ester bonds at 1750cm-1 

has clearly appeared. A slight increase of the bands at 2868 and 2970cm-1 corresponding to 

asymmetric and symmetric –CH2 – stretches from aliphatic chain was also observed. We can 

observe the characteristic peak of water in Neat NFC before solvent exchange. This peak 

associated with the vibration of adsorbed water at 1650cm-1 slightly decreased after 

modification, probably because of the hydrophobic behavior of the modified material. But it is 

well known that cellulosic substrates are hygroscopic and the low grafting density can explain 

the presence of the water peak on FTIR spectra. The intensity of this peak (1650 cm-1) is 

very low, whereas that of the signal at 3360 cm-1 is associated to OH function of cellulose. So 

FTIR measurements show some changes in the chemistry of grafted NFC after a Soxhlet 

extraction proving the cellulose modification.  

In addition, contact angle measurements were performed in order to point out the 

hydrophobic behavior of the grafted nanofibers comparing to neat NFC. The results are 

presented in the Figure 2-4. As expected the contact angle values of a drop of water 

deposited on the surface of the grafted NFC are higher than those found for the neat NFC. 

Theoretically, the higher is the number of carbons on the grafts, higher is the contact angle 

value is obtained, when a low number of –CH2 moieties is concerned. The obtained results 

are consistent with those expected. The neat NFC displayed a decrease of the contact angle 

value with the time and vanished at 20°. The values of the grafted samples are stable during 
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the acquisition and they are higher than those found for neat NFC surface, namely: 56°, 

98.6°, 99.5° and 104.8° for acetic, butyric, isobutyric and hexanoic anhydride respectively. 

This trend is easy to rationalize, since long chains increase the distance between water 

droplet and the un-grafted cellulose polar molecules. Moreover, the fact that the contact 

angle tends to a value of around 100° (high grafting density and long chain), seem to support 

such hypotheses. The reached contact angle is close to that of polyethylene surface. 

 
Figure 2-4 : Contact angle data for neat and modified materials 

The grafted materials become much more hydrophobic than the reference unmodified 

counterpart, indicating indirectly that the surface grafting has indeed occurred. Elemental 

Analyses (E.A) was performed in order to quantify the grafting efficiency and to establish the 

degree of substitution (DS). The DS corresponds to the number of grafted hydroxyl function 

per anhydroglucose unit. 

Theoretical, experimental data and DS values obtained from the elemental weight 

composition for neat and grafted NFC samples are reported in the Table 2-1. Theoretically, 

from anhydroglucose unit the weight ratio between oxygen and carbon atoms is 1.11, which 

corresponds to 49.4% and 44.4% for the elemental weight fraction of oxygen and carbon, 

respectively. However, the experimental value of weight ratio (O/C) for neat NFC is 1.26 

which gives 50.59 % of O and 40.38 % of C atoms. The difference could be explained by the 

presence of some O-rich impurities and by experimental errors (Labet et al. 2007). The 

presence of hemicelluloses (generally slightly richer in O atoms) in NFC suspension can also 

explain this difference. A correlation proposed by previous authors (Siqueira et al. 2010b) is 
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used to calculate DS as previously described in the Equation 2. The results obtained are very 

similar with a DS of 0.3 for acetic, butyric, hexanoic anhydrides.  

 

Table 2-1 : Calculation of the degree of substitution based on elemental analysis data 

Samples Experimental values  Corrected Values 

 %C %H %O  %C DS 

NFC acetic 

anhydride 
42.08 6.23 47.33 

 
45.36 0.3 

NFC butyric 

anhydride 
44.45 6.47 47.33 

 
47.68 0.3 

NFC (iso)-butyric 

anhydride 
43.02 6.22 49.31 

 
46.15 0.2 

NFC hexanoic 

anhydride 
45.59 6.69 46.04 

 
48.90 0.3 

 

The NFC modified with the iso-butyric anhydride present a slightly lower value (0.2) which 

could be explained by the conformation of the chemical structure of the moieties under 

question. In fact, only the iso-butyric graft is branched (umbrella-type) and could induce 

some steric hindrances.  

All these characterizations tend to confirm the surface grafting of the materials. However 

FTIR technique has a depth of analyses superior of 1µm, contact angle is an indirect 

measurements and the E.A is a bulk analysis. In order to directly check the surface grafting, 

X-ray Photoelectron Spectroscopy (XPS) and Time of Flight Secondary Ion Mass 

Spectroscopy (TOF-SIMS) analyses were performed. 

2.3.3 Direct measurements of surface grafting 

The use of X-ray Photoelectron spectroscopy (XPS) to ascertain the efficiency of cellulose 

surface grafting was practiced extensively the last decade, as reviewed by Belgacem’s 

groups (Belgacem and Gandini 2009; Belgacem and Gandini 2005; Gandini and Belgacem 

2011) and showed to be a very powerful technique to detect various changes at the surface. 

The first relevant works dealing with the use of XPS to characterize cellulose substrates 

were reported by Gray’s group (Dorris and Gray 1978a; Dorris and Gray 1978b; Gray 1978; 

Katz and Gray 1980). The deconvolution of C1s peak was reported by Ahmed et al.(Ahmed 

et al. 1987) showing that the different covalent bond can be associated with different carbon 

signal peaks.  



Chapter 2: Chemical Surface Modification of NFC 
 

179 
Karim Missoum - 2012            
 

These considerations were recently used for nanocellulose chemical grafting studied 

(Siqueira et al. 2010b). In theory, pure cellulose exhibits two peaks in its deconvoluted C1S 

XPS spectra, namely: 

(i) C-O at 286.7eV and associated to alcohols and ethers groups. This peak is noted as C2 

and corresponds to 5 carbon atoms (C1, C2, C3, C5, C6 in Scheme 2-2), and 

(ii) O-C-O at 288.3eV attributed to acetal moieties. This signal corresponds to one carbon 

atom (C4 in Scheme 2-2). 

 

Scheme 2-2 : Anhydroglucose unit and modeling for the increase of diameter after grafting 

Figure 2-5 and Figure 2-6 show, respectively, the XPS wide and the high resolution 

(deconvolution of C1S signal) spectra for NFC samples, before and after grafting. The wide 

spectra of the samples show that in all cases the main peaks are detected at 285 and 532eV, 

which correspond to C and O atoms, respectively. Moreover, the peak associated to O atoms 

is composed of 1 perfectly symmetrical peak. Therefore, it cannot be deconvoluted. It is due 

to an artifact during the treatments of data (in supporting information, an expansion of O 

atom signal for each sample is presented). No traces of ionic liquid are observed. 
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Figure 2-5 : X-ray photoelectron spectroscopy wide spectra of grafted for (a) NFC_AA, (b) NFC_BA, (c) 

NFC_i-BA and (d) NFC_HA 

 
In Figure 2-6, two unexpected additional peaks are observed for cellulose reference, 

namely: C1 and C4. As already reported in the literature, C1 signal (285.0eV) corresponds to 

non-oxidized alkane-type carbon atoms (-C-C- / -C-H-) associated with the presence of 

residual lignin, extractive substances and fatty acids, whereas C4 peak (289.2eV) was 

assigned to carboxylic functions (O-C=O) originating from glucuronic acids born by 

hemicelluloses.  
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Figure 2-6 : Decomposition of the C1s signal into its constituent contribution for grafted NFCs 

In these works, it was also established that the surface O/C ratio for pure cellulose 

(theoretical formula) is 0.83. For the majority of virgin cellulose (avicel, wood pulps, annual 

plants, etc.), this ratio is systematically lower, because of the presence C-rich molecular 

segments at the surface of the solids under study. Table 2-2 confirms this assumption, since 

a lower ratio O/C is found for neat NFC, i.e., 0.65. This difference could be attributed to the 

surface pollution by hydrocarbons adsorbed at the surface of nanofibers. Very recently, some 

authors assessed another explanation consisting of a sort of reorganization at the surface of 

NFC linked to the solvent interactions (Johannsson et al. 2011).  

The ratio (O/C), reported in the Table 2-2, for all tested materials, varied when samples 

are grafted in comparison to neat NFC. The deconvolution of the signal C1S presented in 
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Figure 2-6 reveals four peaks, which are attributed to C1 (C-C/C-H), C2 (C-O), C3 (O-C-O 

and/or C=O) and C4 (O-C=O), as already explain.  

 

Table 2-2 : Mass concentration of each element for neat and grafted samples correlated to deconvolution 
of C1s 

Samples 
Experimental 

values 
 

 
Deconvolution of C1s 

 %C %O O/C  C1(%) C2(%) C3(%) C4(%) C1/C3 C4/C3 DSS 

Neat NFC 60.6 39.4 0.65  15.1 67.8 16.8 0.4 0.90 0.02 / 

NFC AA 62.8 35.7 0.57  22.6 57.2 15.0 5.2 1.5 0.3 0.85 

NFC BA 62.1 35.8 0.58  26.0 54.5 13.6 5.8 1.9 0.4 1.12 

NFC i-BA 62.5 35.2 0.56  19.4 61.0 14.9 4.7 1.3 0.3 0.87 

NFC HA 61.2 37.0 0.60  22.4 59.1 14.1 4.4 1.6 0.3 0.91 

 

Table 2-2 shows that the intensity of C1 (C-C/C-H) increases, from around 15 to 22%, for 

the virgin and grafted NFCs, respectively. Each glucose moiety possess only one C3-carbon, 

the ratio C1/C3 reflects the number of aliphatic carbons per anhydroglucose unit. The C1/C3 

ratio shifted from 0.9 for neat NFC to 1.5, 1.9, 1.3 and 1.6 for the NFC grafted with acetic, 

butyric, iso-butyric and hexanoic anhydride, respectively. This proves the presence of grafted 

moieties at NFC surface. Similar analysis can be applied to C4/C3 ((O-C=O)/(O-C-O)) ratios 

to point out the presence of covalent bonding between NFC and anhydride. Indeed this ratio 

strongly increases between NFC (0.02) and grafted samples (ab. 0.35). This ratio (C4/C3) is 

practically stable with the increasing of the carbon number of aliphatic chain proving a slight 

influence of steric hindrance. Thanks to XPS data, the degree of substitution of the surface 

(DSS) can be deduced (Andresen et al. 2006)  based on the equation 3.  

The DSS is linked to the number of grafted hydroxyl function per anhydroglucose unit 

present at the extreme surface layer (measurements carried out on about 7 nanometers). 

The DSS value confirms previous assumption on steric hindrance even if butyric anhydride 

seems to be more reactive than the other coupling agents. This result could be associated to 

the lower steric hindrance and higher thermal activation and diffusion rate of this moiety. 

These results clearly evidence the occurrence of covalent bonding between the coupling 

molecules and nanofibrillated cellulose surface layer. The DSS is more or less close to 1 for 

each grafted samples. Thus, considering the following equation:  
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DSSsurfacetheatrouphydroxyDS  lg%    Eq. 4 

It can be established that there is approximately 20-30% of the hydroxyl groups at the 

surface. This is the first time that such assumption is based on experimental data and not on 

theoretic.  An innovative and powerful technique, ToF-SIMS (Belu et al. 2003) was performed 

for the first time to characterize the extreme surface of NFC. This method of characterization 

is very surface sensitive due to the shallow depth of penetration of the ion beams. The depth 

is limited to the first atomic layers (max. 10 Å). Using ToF-SIMS, the molecular fragments of 

the different grafts could be identified 

The ionization of the surface emits molecular fragments sorted according to their ratio 

(m/z). The source used for the fragmentation can generate positive or negative fragments. A 

lot of fragments can be emits. In this paper, only M+ and M- identified are the molecular 

peaks corresponding to the ionized grafted molecules (O-C-O-R+/-). In literature (Belu et al. 

2000; Mitchell et al. 2005), some specific fragments of cellulose have recently been 

identified. These fragments are present in the SIMS spectra and listed in Table 2-3.  

 

Table 2-3 : SIMS characteristics cellulose fragments for neat NFC and characteristics fragments 
corresponding to M+/M- for grafted samples 

Samples 
m/z(-) characteristic peak 
of cellulose

 

 
m/z(+) characteristic peak 
of cellulose

 

Neat NFC 

(Cellulose fragments) 

44.99 (C2H5O-) 

 

57.07 (C4H9+) 

59.02( C2H3O2-) 115.05 (C8H3O+) 

71.02 (C3H3O2-) 127.05 (C6H7O3+) 

87.01 (C3H3O3-) 135.07 (C6H15O3+) 

101.03 (C4H5O3-) 162.08 (C6H10O5+) 

113.03 (C5H5O3-) 325.01 (C12O10H21+) 

127.01 (C6H7O3-) 530.49 (C20H34O16+) 

162.07 (C6H10O5-)  

221.09 (C8H13O7-)  

Samples M- fragments mass value

 
 M+ fragments mass value

 

NFC AA 59.01 (C2H3O2-)   43.02 (C2H3O+) 

NFC BA / NFC i-BA 87.04 (C4H7O2-)  71.05 (C4H7O+) 

NFC HA 115.08 (C6H11O2-)  99.08 (C6H11O+) 
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At low m/z, for both positive and negative ion modes, the detected ions are very similar for 

all the samples. They are always cellulose characteristic peaks such as secondary ions 

detected at m/z(+)=57 (C4H9+), 115 (C8H3O+), 127 (C6H7O3+), 135 (C6H15O3+) and 162 

(C6H11O5+) as well as at m/z(-)=45 (C2H5O-), 59 (C2H3O2-), 71 (C3H3O2-), 87 (C3H3O3-

), 101 (C4H5O3-), 113 (C5H5O3-) and 162 (C6H1106-). The ionization of cellulose induces 

reorganization of the emitted fragment such as cyclization. That is the reasons why some 

peaks are not attributed due to the complexity of the cellulosic material.  

 
Figure 2-7 : SIMS spectra characteristic fragments corresponding to M- (left) and M+ (right) for grafted 

samples 
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The fragmentation is different depending on the anhydride used for the modification 

(Baiardo et al. 2002; Freire et al. 2006). The M+ and M- (defined before) was easily identified 

for all grafted samples as presented in the Figure 2-7. However additional fragments can be 

detected depending on grafted moiety, the ester bonds are more breakable than the others 

due to the depletion of electrons. Thus, M+ fragments, at m/z(+)=43 (C2H3O+), 71 

(C4H7O+) and 99 (C6H11O+) corresponding to acetic, butyric (or isobutyric) and hexanoic 

fragments are detected in the respective modified samples spectra (Figure 2-7). M- 

fragments at m/z(-)=59 (C2H3O2-), 87 (C4H7O2-) and 115 (C6H11O2-) corresponding to 

acetate, butyrate – isobutyrate and hexanoate moieties, are also mostly detected, except for 

the first one which doubles in intensity.  

Indeed the sample grafted with the acetic anhydride is the most difficult case to discuss. 

All signal corresponding to this samples coincide with the cellulose fragments or the other 

grafted materials. But in this case the characteristics peaks’ (M+ / M-) intensities of this 

sample are two times higher than other signals. These observations confirm the grafting of 

this sample. These results clearly show the occurrence of extreme surface grafting coupling 

molecules and nanofibrils cellulose. This is the first time that TOF-SIMS method is used for 

the characterization of NFC surface modification. 

2.3.4 Recyclability of IL 

The challenge of this new method for chemical surface modification consists of limiting the 

use of hazardous organic solvents. The reaction was performed in bmimPF6 as reaction 

media avoiding volatile organic compounds but also favoring solvent recycling. After the 

chemical reaction, the IL was recycled as shown in Scheme 2-1. Liquid extraction was 

carried out after each reaction and the purification was first followed by FTIR. Only the 

different purification steps of IL used for the chemical surface modification performed with 

acetic anhydride is presented in the Figure 2-8. 
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Figure 2-8 : IR spectra of the different steps used for purification of the IL after acetic anhydride reaction: 

(a) IL pure, (b) NaOH x1, (c) NaOH x2 and (d) ethylic ether 

 
After the two extractions with sodium hydroxide solution there is some residual acid 

generated during the reaction (COOH = 1700cm-1). After extraction with diethyl ether, no 

peakcorresponding to the vibration of acid groups are detected. Figure 2-9 represents the 

FTIR spectra of all purified IL used for each chemical modification. Thus, no residual acid 

groups are presents in the IL. The yield of recovery is 92% in comparison to the initial IL 

used for the reaction. 

 
Figure 2-9 : FTIR spectra for (a) IL pure and for IL recycled after (b) acetic, (c) butyric and (d) hexanoic 

anhydride grafting 

Quantitative 1H, 13C, 19F and 35P NMR analyses were performed to confirm more 

accurately the purity of the recycled IL. Figure 2-10 shows, that chemical shifts, integrals and 
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hyperfine structure between pure and recycled IL are recovered unchanged. From 1H and 
13C spectra, the cationic chemical structure could be deduced unmodified, while 19F and 31P 

spectra show the conservation of the PF6
- anionic nature with the characteristic doublet (1JFP 

= 711Hz) at -70.02 ppm and the heptuplet (1JFP = 711Hz) at -138.3 ppm for fluorine and 

phosphorus respectively. Moreover, some differences on peaks at 0.8, 1.3 and 1.8 ppm can 

be observed. This is only due to the scanning of the figure which decreases the resolution. 

However, in supporting information data, readers can find the expansion of this range of ppm 

from 0 to 2 ppm, which points out the exact correspondence between pure and recycle IL.  

 

Figure 2-10 : NMR spectra of pure and recycled IL for each nucleus (1H, 13C, 19F and 31P) 

The peak at 3.8 ppm is associated to the water absorbed by the DMSO-d6 which is 

extremely hygroscopic. The degree of purity can be assessed from 1H spectrum of recycled 

IL: sensitivity was increased till 13C satellites (0.5% intensity of the corresponding signal) and 

no impurities are observed on Figure 2-11.  
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Figure 2-11 : 1H NMR spectra of recycled and pure IL – full circles indicating the 13C satellites 

The initial structure is conserved and no changes are observed. Thanks to liquid 

extraction developed, the IL is completely recycled without any impurities or by-products 

formed during the reaction. Thus, in order to limit the uses of volatile solvents and decrease 

chemical reaction cost (by recycling), the ILs can be envisaged as media for this surface 

chemical grafting. However For the recycling process organic solvent (ethyl ether) have to be 

used to recycle this ionic liquid, which limits the “green” impact of the process. Other 

solutions like by-products evaporation or condensation have been tested but without 

appreciable success to reach pure IL. Work with reagent producing fewer by-products (e.g. 

isocyanates) could be another solution. 
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2.4 Conclusion 

This paper shows clearly that using a “green” solvant (Ionic Liquid) could give rize to an 

efficient grafting of nanoscaled cellulosic substrates without affecting their morphological 

properties. Moreover, it shows that, at the end of the reaction, the IL could be recovered and 

recycled pratically quantitatively. The use of several techniques to assess the quality of the 

recycled IL was performed and showed that the resulting recycled solvant is quite pure and 

ready to be used for a next cycle of chemical grafting. Moreover, chemical grafting were 

efficient and induced substantial changes in the surface properties of NFC. To the best of our 

knowledge, the ToF-SIMS was applied for the first time to demonstrates the occurrence of 

the grafting between cellulosic nanofibrils and various anhydrides. Thus, these analyses 

gave clear-cut evidences about the grafted molecules and confirmed the results deduced 

from other common techniques, such as FTIR, EA, or more specific one like XPS. This is the 

first study using Ionic Liquid for efficient heterogeneous grafting of NFC surface. These 

promising results could help the scaling-up chemical modification of NFC, creating different 

grade for NFC. 
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3. Water Based reaction CONFIDENTIAL – 

Patent in progress 

 

 

 

 

Due to start-up creation, we have chosen to keep confidential this part. A patent in still in 
progress and of course cannot be present in this manuscript.  

 

Suite à la création d’une start-up, la partie initialement traitée ici est soumis à confidentialité 
due au dépôt d’un brevet.  

 

Nous avons donc choisi de retirer cette partie du manuscrit. 
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Résumé Français – French Abstract 

 

Figure 1-1 : Représentation schématique de l’organisation de la partie 3 du projet de thèse  

Comme nous venons de le voir dans le Chapitre 2, les nanofibrilles de cellulose ont été 

modifiées selon 3 types de greffage, sans observer de différences importantes de 

morphologie et structure mais avec des propriétés de chimie de surface complètement 

différentes.  

 
Dans ce Chapitre 3, nous avons donc voulu utiliser et valoriser ces nouveaux types de 

NFC dans 3 champs d’applications distinctes : dans le domaine du papier, celui des 

composites et enfin celui des matériaux antimicrobiens.  

Dans la première partie de ce chapitre (Papier 4 - Accepté dans Industrial Crops and 

Products - 2013), les NFCs greffées via de l’AKD ont été introduites en masse dans du 

papier à différents ratio massique. L’objectif de cette étude est à la fois d’augmenter les 

propriétés mécaniques du matériau mais également de conférer au papier un caractère 

hydrophobe.  

L’un des points importants de cette étude réside dans la quantification de la rétention 

réelle des NFC (modifiées ou non) dans le matelas fibreux. Les caractérisations du complexe 
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« fibres de cellulose/NFC », ont montré l’intérêt d’utiliser des nanofibrilles de cellulose afin de 

renforcer les propriétés mécaniques du papier. De plus, les NFC  modifiées apportent, elles, 

clairement un plus avec le renfort mécanique mais aussi un comportement hydrophobe. 

Ainsi,  il a été prouvé pour la première fois que l’emploi de NFC modifiées chimiquement 

permet au matériau ainsi produit d’être plus résistant mécaniquement tout en ayant des 

propriétés hydrophobes requises dans certaines applications.  

 
Afin de développer des applications à hautes valeurs ajoutées, il a été décidé d’utiliser les 

nanofibrilles modifiées par la stratégie employant les liquides ioniques dans les composites.  

La deuxième partie de ce chapitre (Papier 5 - Soumis dans Composites Part A: Applied 

Science and Manufacturing – 2012) est donc dédiée à l’utilisation de nanofibrilles de 

cellulose modifiées dans une matrice de dérivé de cellulose pour créer un monomatériau 

cellulose en favorisant un continuum à l’interface renfort/matrice. 

Pour ce faire, 3 dérivés cellulosiques : CAB – CAP – CMCAB, ont été étudiées. L’idée 

première était d’utiliser les NFC modifiées disposant de greffons de faible longueur en 

carbone (C2, C4 et C6) pour maximiser la compatibilité entre la matrice et les éléments de 

renfort.  

En effet, un composite entièrement fait de matériaux issus de ressources renouvelables a 

été préparé. L’emploi de NFC dans des matrices de dérivés de cellulose a permis 

d’augmenter de manière significative les propriétés thermomécaniques des 

bionanocomposites. L’’ajout de 10% massique de NFC natives ou modifiées permet 

d’augmenter le plateau caoutchoutique de 10 à 30°C selon le type de matrices ou éléments 

de renforts utilisés. Il est important de noter que la dispersion des NFC modifiées conduits à 

un film beaucoup plus homogène que ceux obtenus avec des NFC vierges mais avec des 

renforts légèrement plus faibles. Ainsi on a pu montrer dans cette étude que plus le réseau 

est structuré par des liaisons hydrogènes, plus les propriétés thermomécaniques sont 

augmentées. 

Nous avons donc pu également étudier l’impact de ces NFC modifiées en tant qu’agent 

antibactérien et suivre dans un second temps la biodégradabilité de ces éléments (Papier 6 

Accepté dans Materials Science and Engineering C – 2013). 

Cette étude montre pour la première fois des résultats très intéressants et prometteurs qui 

pourrait être utilisés dans des applications à fortes valeurs ajoutées. En effet, il est démontré 

que les NFC modifiées peuvent être considérées, comme des agents antibactériens (ou au 

moins bactériostatique) tout en conservant leurs propriétés de biodégradabilité. 

Les traitements chimiques appliqués sur les NFC ont permis de développer une activité 

antibactérienne vis-à-vis de bactéries de type Gram+ ou Gram-. Cet effet peut varier en 



Chapter 3: End-Uses of modified NFC 
 

205 
Karim Missoum - 2012            
 

fonction du greffon. Qui plus est, une certaines synergie lorsque des nanoparticules de TiO2 

sont ajoutées, a été démontrée.  

La biodégradabilité des échantillons a ensuite été testée. Selon le type de greffage, on 

peut conserver ou contrôler la biodégradabilité du matériau final. Une telle étude ouvre un 

large spectre d’application et devrait être complétée par d’autres types de greffage et en 

étudier l’impact dans un matériau final.  

 
Ce chapitre 3 propose donc une avancée significative dans les applications de 

nanofibrilles de cellulose modifiées avec des résultats prometteurs fonction des différentes 

stratégies utilisées pour la modification chimique. Comme précédemment exposé, les 

nanofibrilles de cellulose constituent donc un matériau innovant avec une large palette 

d’application. Certains effets peuvent être ainsi contrôlés et on peut en adapter les propriétés 

finales une fois dans un matériau.   
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English Abstract – Résumé Anglais 

As we have seen in Chapter 2, the nanofibrillated cellulose were modified according to 

three types of grafting, without observing significant differences in morphology but with 

different surface chemistry properties. 

In this Chapter 3, we have tried to use these chemically modified NFC in three distinct 

fields of application. Indeed, we have applied these modified NFC in (i) the paper to see the 

influence on the final properties of the material but also in (ii) cellulosic composites or (iii) 

antimicrobial materials. 

In the first part of this chapter (Paper 4 - Accepted in Industrial Crops and Products - 

2013), NFCs grafted by an AKD emulsion introduced in the bulk of hand-sheet paper at 

different mass ratio and compared to those obtained with neat NFC. Indeed the context of 

this study is to increase the mechanical properties of the hand-sheet but also to give to the 

paper a hydrophobic behavior. 

One of the critical points of this study is the quantification of the actual retention of NFC 

(modified or not) in the fiber mat. The characterization of the complex "cellulose fiber / NFC" 

showed interest in using cellulose nanofibrils to enhance the properties of paper. In addition, 

modified NFC have clearly shown a hydrophobic behavior. Actually it has been proven for 

the first time that the use of modified NFC allows the material to be more resistant while 

having hydrophobic properties required in some applications. 

To develop applications with higher added value, it was decided to use the nanofibrils 

modified using ionic liquids in composites. The second part of this chapter (Paper 5 - 

Submitted in Composites Part A: Applied Science and Manufacturing - 2012) is dedicated to 

the use of modified cellulose nanofibrils in a matrix of cellulose derivative. 

Three cellulosic derivatives: CAB - CAP - CMCAB were studied. The first idea was to use 

NFC grafts modified with short length carbon (C2, C4 and C6) to maximize compatibility 

between matrix and reinforcing elements. 

Composite material made entirely from renewable resources was prepared. As expected; 

use of NFC in these matrices significantly increased the thermomechanical properties of 

bionanocomposite. Furthermore the addition of 10 %wt. native or modified NFC increases 

the rubbery plateau of 10 to 30 ° C depending on the type of matrix or reinforcing elements 

used. It is worth to note that better dispersion is achieved with modified NFC but slightly 

lower reinforcement is obtained. Thus it proves that the more the network is structured by 

hydrogen bond the more thermomechanical properties are increased. 



Chapter 3: End-Uses of modified NFC 
 

208 
Karim Missoum - 2012            
 

Then the impact of these modified NFC as an antibacterial agent has been assessed and 

followed in a second step by checking the biodegradability of these elements (Paper 6 - 

Accepted in Materials Science and Engineering C - 2013). 

This study shows for the first time very interesting and promising results that could be 

used in applications with high added value. In fact, most of modified NFC can be considered 

as antibacterial agents, while maintaining their biodegradability properties. Chemical 

treatments applied to the NFC helped developing antibacterial activity against bacteria Gram 

+ or Gram. A synergistic effect when TiO2 nanoparticles are added has been also evaluated. 

The biodegradability of the samples shows that we can conserve or control the 

biodegradability of the final material. This study opens up a wide spectrum of application and 

should be supplemented by other types of grafting and by studying its impact in the final 

material. 

This chapter proposes three advanced applications using modified cellulose nanofibrils 

with promising results. As previously stated, the cellulose nanofibrils are therefore an 

innovative material with a wide range of application. Some effects can be well controlled and 

you can adjust the final properties once in a material thanks to the chemical grafting. 
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1. Effect of chemically modified nanofibrillated 

cellulose addition on the properties of paper 

 

Karim Missoum, Naceur Belgacem, Florian Martoïa, Julien Bras 

Laboratory of Pulp and Paper Science (LGP2) – 461, rue de la papeterie, BP65, 38402 St-
Martin-d’Hères Cedex, France 

 

Abstract 

In the present work, nanofibrillated cellulose (NFC) has been chemically modified by 

nanoemulsion process. Surface chemical modification has been proved by FTIR. Modified 

NFCs have been added in wet-end paper process for the first time and ensued fibre-based 

materials properties have been measured. Mechanical reinforcement is observed whatever 

the NFC (treated or not). With 16 %wt. of modified NFC, Young’s Modulus and Breaking 

length increase of 72% and 51% respectively. Air permeability strongly decreases with 

modified NFC. The main advantage is the strong diminution of water absorption (divided by 

more than 6). The synergy of such properties is very difficult to achieve and this new strategy 

opens the field of several application like barrier material or filtration. 
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Nanofibrillated cellulose – chemical modification – fiber-based material – Mechanical 

properties- Air permeability - water absorption - paper 
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1.1 Introduction 

Nowadays there is a growing interest for developing bio-based and efficient materials. To 

achieve this strategy, last decade has seen the emergence of new bio-based nanoelements 

extracted from several polysaccharides (e.g. cellulose (Lin et al. 2012), starch (Le Corre et 

al. 2010), and chitin). Cellulose-based nanoparticles are far away the most developed and 

several kind of “nanocellulose” can be distinguished depending on the chemical or the 

mechanical pre-treatment subjected to starting cellulose fibers. Recent reviews (Eichhorn et 

al. 2010; Habibi et al. 2010; Isogai et al. 2011; Moon et al. 2011; Siró and Plackett 2010a) 

give a good overview on this family and its main properties. This study will focus on one type 

of nanocellulose: the nanofibrillated cellulose (NFC) obtained by enzymatic pre-treatment 

followed by high shear mechanical treatment. They consist of aggregates of cellulose 

microfibrils and their diameter is in the range of 20-50 nm with a length of several 

micrometers. Contrary to cellulose nanocrystals, NFC exhibit both amorphous and crystalline 

parts and present a web like structure. Their key properties are their high specific area, their 

ability to establish hydrogen bonding and their high aspect ratio, which leads to possible 

entanglement. These properties yield transparent nanoporous films once dried and gel-like 

suspension at low concentration in water. This bio-nanomaterial was first of all used 

essentially in nanocomposites for their reinforcement property (Siqueira et al. 2010b; 

Siqueira et al. 2008). Their nano-scale dimensions and their ability to form a strong 

entangled nanoporous network allow emerging new high-values applications like aerogels or 

barrier films as very recently detailed in a review (Lavoine et al. 2012). Moreover, last years, 

huge amounts of studies aiming optimizing their productions have achieved real 

breakthrough which makes their industrialization expected in the coming years.  

Innovative researches with these NFC concern their surface chemical grafting to provide 

them added-value properties. Only few papers dealt with this strategy and toxic solvent (or 

reagents) or solvent exchange processes are usually proposed (Lonnberg et al. 2011; 

Siqueira et al. 2010a; Stenstad et al. 2008). Only recently, new green approach has been 

proposed using: (i) click chemistry in water (Filpponen et al. 2012), (ii) ionic liquid (Missoum 

et al. 2012a), (iii) solvent-free process (Berlioz et al. 2009; Rodionova et al. 2010) or (iv) 

nanoemulsion concept (Missoum et al. 2012b). The application of such functionalized NFC is 

still under investigation in most of cases and to the best of our knowledge nobody used 

hydrophobically modified NFC to produce fiber based material like paper. 

Paper materials are highly present in our society for edition or packaging industry. This 

fibrous material is even one third of materials used for packaging. It is already biodegradable 

and bio-based. However main mechanical and barrier properties are usually obtained with 
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petroleum-based chemicals added to the bulk of paper web (called wet end chemistry), by 

impregnation or by coating. In this study, the modified NFC will be added to the bulk before 

forming the web-like structure. At this place, the product classically used is also quite 

expensive and several parameters like absorption, retention are of high importance.  

In 1983 Turbak et al. (Turbak et al. 1983) have discovered NFC and suggested their use 

in papers, and only about 25 years later such applications have appeared. Indeed the 

combination of NFC and papers is recent and only few scientific papers are nowadays 

published on this thematic in spite of several collaborative projects (e.g. SUNPAP in Europe, 

ArboraNano in Canada) and industrial projects. Mainly conference proceedings (Hamann 

2011; Luu et al. 2011) and patents (Heiskanen et al. 2012; Laine et al. 2012) are available. It 

seems admitted that NFC could strongly improve the mechanical properties of papers if 

added in bulk(Eriksen and Syverud 2008; Da Silva Perez et al. 2010). However such an 

improvement is quite similar to refining process used in paper industry(Hamann 2011). They 

could also clearly improve barrier properties if used in coatings (Aulin et al. 2012; Rodionova 

et al. 2012; Syverud and Stenius 2009).The first studies show the interest of this combination 

in applications such as food packaging or printing (Bilodeau 2012; Hult et al. 2010; Spence et 

al. 2010). Nevertheless most of the researches are dealing with use of NFC as coating 

materials and to our knowledge none of them used chemically modified NFC added in the 

paper bulk.  

The target of this study was, therefore, to assess the influence of the addition of 

chemically modified NFC into the fiber mat. The main idea was to provide new properties. 
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1.2 Experimental 

1.2.1 Materials 

The wood pulp was kindly delivered by Domsjö (Sweden) and corresponded to a mix 

between Spruce and Pinus (60% and 40%, respectively). This material is a dissolving pulp 

referred to sodium based sulfite mill extraction. 

Pure liquid AKD (without stabilizer) was kindly supplied by Hercules (Prequel 9000), as 

AKD micro-emulsion (Aquapel) which corresponded to a cationic starch-stabilized 

commercial emulsion. 

Chloroform and Tetradecyltrimethylammonium Bromide (TTAB) was purchased from 

Sigma Aldrich (France), as well as ethanol and acetone. All chemicals were of high purity 

and used as received without further purification. Deionised water was used in all 

experiments. 

1.2.2 Nanofibrillated Cellulose 

Nanofibrillated cellulose suspension was produced from Domsjö pulp. A suspension of 

bleached Domsjö fibers (2.0%wt.) was enzymatically pretreated with endoglucanase 

(Cellulase) during 1h at 50°C. Then, the slurry was fibrillated using a Masuko Grinder© 

(Japan). Size reduction of the fibers into nanofibrillated cellulose was obtained after 10 

passes between the rotating and the static stones at 1,500 rpm. Solid content of the NFC 

suspension was around 2.6% (w/w).  

1.2.3 Nano-emulsion preparation and adsorption onto NFC 

In a one hand, a cationic surfactant (TTAB) solution was prepared by dissolving 12.11g in 

1L of deionized water during 1hour. This quantity is ten folds the critical micellar 

concentration (CMC). In another hand, pure liquid AKD is diluted in chloroform (i.e. the “oil 

phase”) at a concentration of 550g.L-1. Then, 14.8g of the AKD/Chloroform solution was 

added to 50 g of the surfactant solution (TTAB + water). The mixture is then sonificated 

during 2 min at 20% of the maximum power of a Branson 450 Sonifier® apparatus (United 

States). The obtained emulsion is then placed in a pre-heated oil bath at 70°C, in order to 

remove chloroform during 20 min, thus yielding the nanoemulsion.  

Nanofibrillated cellulose suspension at a concentration of 2.6% (w/w) was mixed with the 

nanoemulsion during 30 minutes, in a pilot reactor of 15 L with controlled mechanical 

shearing of 500rpm. After the adsorption process, the final suspension is stored at 4°C 

before being used. Figure 1-1 summarizes the different steps described above. 
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Figure 1-1 : Preparation and adsorption step of nanoemulsion onto NFCs 

 
1.2.4 Preparation of papers reinforced with cellulosic nanofillers 

Sheets were filled with 5, 10, 20, 30, and 50% of untreated or AKD-modified NFCs. The 

suitable amount of NFC suspension at 2%wt. was added to the pulp slurry. The pulp 

suspension was obtained from non-refined Domsjö pulp kept overnight in water and re-

dispersed with a pulper at a concentration of 2g.L-1. The suspension (fiber + NFC) was then 

strongly stirred with a blender during 30s, in order to obtain a homogeneous suspension. 

Each sample was prepared by taking out 1L of the fibrous/NFC suspension. Then, hand-

sheets were performed through vacuum-filtrated system supplied by Rapid Köthen. After 

filtration, wet hand-sheet were first pressed in order to remove residual water and then 

carefully peeled off from the filtration grid and staked between two filter papers.  

Finally paper sheets were obtained after vacuum-assisted drying at 80°C for 10-15 

minutes. For papers treated with modified NFC an additional heating step was performed at 

120°C for two hours, in order to complete the esterification reaction between AKD and 

cellulose, using a contact drying (glazing apparatus). 

1.2.5 Characterizations of neat and modified NFC 

Scanning Electron Microscope equipped with a Field Emission Gun (SEM-FEG), model 

Zeiss Ultra column 55 Gemini, was used to observe untreated and modified NFCs. The 

accelerating voltage (EHT) was 3 kV for a working distance of 6.4 mm. The sample tested 

was coated with a 2 nm layer of Au/Pd (Gold/Palladium) to ensure the conductivity of all 

samples. 
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The (wide angle) X-Ray Diffraction analysis was performed on powder obtained with air-

dried neat NFC suspensions kept at ambient temperature (23°C) and relative humidity of 

28.8%. The grafted samples are obtained by film casting evaporation and reducing the 

reslting film in powder form. The samples were placed in a 2,5mm deep cell and the 

measurements were performed with a PANanalytical, X'Pert PRO MPD diffractometer 

equipped with an X’celerator detector. The operating conditions for the refractometer were: 

Copper Kα radiation (1.5418 Å), 2θ (Bragg angle) between 5 and 60°, step size 0,067°, 

counting time 90s. The degree of crystallinity was evaluated using the Buschle-Diller and 

Zeronian (Buschle-Diller and Zeronian 1992) expression (Equation 1):                           Eq. 1 

Where: I1 is the intensity at the minimum (2θ = 18°) and I2 is the intensity associated with the 

crystalline region of cellulose (2θ = 22.5°). All the measurements were carried out at least in 

duplicates. 

Infrared spectra were recorded on film for unmodified NFC or on powder form for modified 

NFC, using a Perkin-Elmer SP100 spectrometer. For each sample, the Diamond crystal of an 

attenuated total reflectance (ATR) apparatus was used. The torque applied was kept 

constant to ensure a same pressure on each sample. All spectra were recorded between 

4000 and 600 cm-1, with a resolution of 4 cm-1 and 8 scans. At least three different samples 

were tested and the most representative one were selected. 

Contact angle measurements were carried out by depositing water droplets at the surface 

of the studied substrates and recording the angles formed using an OCA dataphysics system 

equipped with a CCD camera. The contact angle and the drop volume acquisition were 

realized during the first 60 seconds after deposition taking 4images/s. For unmodified NFC, 

the measurement was performed on dried film whereas for modified NFC, pellets were 

prepared and used. All measurements were performed at least 5 times for each sample and 

averaged. 

1.2.6 Paper hand-sheet characterizations 

In order to get retention values of the added NFC, white water or back water (water hand-

sheet effluents) obtained during the vacuum filtration step of paper hand-sheets was 

collected and filtrated using a sieve with a mesh screen of 1µm in order to recover the non-

retained NFC during the formation of the sheets and quantify them. The remaining NFC was 

placed in an oven at 105°C for five hours before being weighted. The retention rate has been 

calculated as follows (Equation 2): 
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                                       Eq. 2 

Where: Ww is the mass weighted after filtration, Wo the mass of fibers that pass through the 

filter grid and Wa the theoretical mass of NFC added to the slurry.  

Tensile properties were measured using a vertical testing machine (Lorentzen & Weltre) 

following the International standard ISO 1924-2:2008. The values are an average of at least 

10 measurements performed on different paper sheets. 

Air permeability was measured with a “Mariotte system” using a permeation cell of 2 cm² 

at room temperature (25°C and 50% RH) following the International standard ISO 5636-

2:1984. The depression was imposed between 15 and 20 cm water column. Intrinsic 

permeability (K) was calculated following the Darcy’s law (Equation 3):                                       Eq. 3 

Where: Q is the volume flow rate (m3.s-1), K the intrinsic permeability (m²), A the area tested 

(m²), ΔP the depression imposed (Pa), e the thickness (m) and  the dynamic viscosity (kg.m-

1.s-1). 

Water absorption measurements, commonly named Cobb60 tests, were performed using a 

ring of 10 cm² and all samples were cut around the ring in order to avoid errors associated 

with the capillarity. 10 mL of deionized water was added into the ring for 60 seconds, 

following the International standard ISO 535. Then, “wet samples” were pressed once 

between two absorbent papers with a roll of 10 kg in order to remove residual water and 

weighted with a four digit balance. Following the same procedure, Cobb600 and Cobb1800 were 

performed on papers reinforced with neat and modified NFC after the contact with water for 

600s and 1800s, respectively.  

Cross-section and surface of hand-sheets were investigated using a FEI-Quanta 200 

Environmental Scanning Electron Microscope (ESEM). The accelerating voltage (EHT) was 

10kV for a working distance of 10 mm. The samples were coated with a layer of Au/Pd 

(Gold/Palladium) and an Everhart Thornley Detector (EDT) was used. 
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1.3 Results and discussions 

1.3.1 NFCs characterizations 

Neat NFC and modified NFC were first produced and then characterized thanks to the FE-

SEM technique, as shown in the Figure 1-2, both nanofibrillated cellulose display fibrillar 

structure with a diameter around 23nm ± 7nm and 31 ± 8 nm for neat and modified NFC 

respectively. The diameter of nanofibrillated cellulose was determined by digital image 

analysis (ImageJ) of FE-SEM pictures (a minimum of 50 measurements was performed). 

 
Figure 1-2 : FE-SEM pictures of (a) Neat NFC) and (b) modified NFC with nanoemulsion 

The micrograph shows that neat NFCs are strongly entangled and packed together 

whereas the network of modified NFCs seems to be more porous, showing that probably less 

hydrogen bond interactions between modified NFC. The FE-SEM micrographs indicate that 

the morphology and the nano-scale are conserved. 

The crystalline structure of neat and grafted NFCs has also been investigated by XRD 

(data not shown). The crystallinity indices of the reference sample (80.2%) and that of the 

grafted counterpart (78.3%) were found to be similar. This confirms that there is no alteration 

of crystalline part of NFC during the chemical modification even in these swelling conditions. 

Chemical grafting between NFC and nanofibrillated cellulose have been investigated by 

FTIR and Contact angle measurements. Figure 1-3 shows FTIR spectra of both samples (i.e. 

neat NFC and modified NFC) and displays some similar characteristic bands attributed to 

cellulose substrates. Thus, the bands around 3496cm-1 (O–H), 1110cm-1 (C–O of secondary 

alcohol) (used for the normalization of all spectra) and 2868 and 2970cm-1 (C–H from –CH2–) 

are detected and identified. 

After the esterification reaction, a characteristic peak assigned to ester bonds between 

1720–1750cm-1 has clearly appeared. Moreover, a strong increase of the bands at 2868 and 
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2970cm-1 corresponding to asymmetric and symmetric –CH2 – stretches from aliphatic chain 

of AKD is also observed. So, FTIR measurements show some changes in the chemistry of 

grafted NFC, thus proving that the cellulose surface has most probably been modified. 

 

Figure 1-3 : Fourier Transformed Infra-Red spectra for (a) neat NFC and (b) modified NFC 

In addition, contact angle measurements were performed in order to point out the 

hydrophobic behavior of the grafted nanofibers comparing to neat NFC (results not shown). 

As expected the contact angle values of a drop of water deposited on the surface of the 

grafted NFC are higher than those found for the neat NFC. The neat NFC displayed a 

decrease of the contact angle value with the time and vanished at 20°. The initial values are 

56° and 105.8° for neat and grafted NFC, respectively. The value of the grafted samples is 

stable during the acquisition and they are higher than those found for neat NFC surface, 

proving indirectly the chemical grafting. 

In conclusion, thanks to Infra-Red and contact angles measurements, the NFC seems to be 

grafted. The purpose of this paper is not focused on the chemical grafting, that is why no 

further characterization will be made. Thus, the major study concerns the effect of the 

modified NFC on the fiber based material properties.  

1.3.2 Retention characterization 

Sheets of paper were reinforced following two strategies as sketched in Figure 1-4 Sheets 

were filled with 5, 10, 20, 30 and 50% of neat and chemically modified NFC 
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Figure 1-4 : Strategies followed to obtain fibers based materials reinforced with (route 1) neat NFC and 
(route 2) modified NFC 

Retention values of added NFC were measured after filtration of “white water” obtained 

during the preparation of hand-sheets. In order to avoid the influence of fiber suspension on 

retention values, it has been chosen to work at a constant concentration of 2g/L of fibers and 

NFC. Results are presented in the Figure 1-5. 

 
Figure 1-5 : Retention value obtained for neat NFC (solid line) and modified NFC (dotted line) 
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Although NFC exhibits lower dimensions than those of the filtration wire mesh, a certain 

amount of them was retained in the bulk. The retention of NFC can be explained by several 

effects: (i) clogging caused by the fiber suspension, (ii) entanglement of NFC and (iii) 

interactions phenomena. As discussed previously, NFC display high hydroxyl content at their 

surface, so they can easily form hydrogen bonds with each other but also with fibers. 

Moreover cellulose nanofibrils present a high aspect ratio and a web-like structure, so they 

can also be easily entangled within the fibrous network. For both neat and modified NFC, the 

retention value decreases with the added amount of NFC. Beyond a given concentration, the 

fibrous network is already structured and closed, so it becomes difficult for nanofibrils to be 

adsorbed within the fiber network. Moreover, higher is the quantity of added NFC; bigger is 

the probability to pass through the filtration wire (Table 1-1). 

Table 1-1 : NFC retention value for all percentage of NFC theoretically added in pulp slurry 

NFC added 
(%) 

Mass of NFC 
in sheets (g) 

Retention 
for NFC (%) 

Retention for 
modified NFC (%) 

5 0.1 73 50 

10 0.2 71 47 

20 0.4 57 40 

30 0.6 46 36 

50 1 38 29 

 

It might be due to the lower quantity of fiber when increasing quantity of NFC as the total 

amount of NFC and Fiber is constant. This limits clogging and adsorption effect; but a 

difference between chemically grafted and neat NFC is noticed. Thus, all future graphs will 

be presented with the real amount of NFC retained in the hand-sheets. 

1.3.3 Structural characterization 

Figure 1-6 shows surface of (a) reference paper, (b) paper reinforced with 50% of Neat 

NFC and (c) paper reinforced with 50% of modified NFC. At this stage, the difference 

between treated and untreated paper is clearly observed. In fact, for the paper reinforced 

with 50% of NFC or with 50% of modified NFC, the fibers seem to be more packed together 

thanks to the nanofibrils acting as a binder in paper.  
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Figure 1-6 : SEM images of surface paper reinforced (a) without NFC (reference), (b) with NFC, (c) with 

modified NFC and cross section of (d) without NFC, (e) with NFC and (f) with modified NFC 

The porosity seems to be lower in the hand-sheet filled with both neat and modified NFC. 

However, NFCs seems to be not homogeneously deposited at the paper surface but rather 

within the material and some aggregates can also be observed. Moreover, cross sections of 

these samples were investigated and show that the fibrous network was clearly more closed 

and dense for paper reinforced with both NFCs in comparison to the reference paper. 

Therefore, papers filled with neat NFC are denser resulting from a better absorption of neat 

NFC onto fibers. Such density measurements were performed and confirmed this 

assumption as shown in Figure 1-7. 

 
Figure 1-7 : Relative density for neat NFC (solid line) and modified NFC (dotted line) 
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As presented in the Figure 1-7, sheets prepared with NFC are denser than those 

corresponding to modified NFC-filled papers. For the higher content of NFC, the density 

increases up to 20% and 15% for neat and modified NFC, respectively. This observation is 

comparable to a refining step in pulp and paper industry. Indeed higher refining gives higher 

densities. However it was proved in SUNPAP workshop that for such pulps (i.e. bleached 

softwood), the reinforcement effect at equivalent Schopper degree is much more efficient 

with NFC than refining process (Hamann 2011).  

1.3.4 Tensile and barrier properties of hand-sheets 

Figure 1-8 presents the mechanical properties of hand-sheets reinforced with both neat 

and modified NFC. The conclusions are the same whatever the investigated properties: the 

mechanical properties are better for papers reinforced with neat or grafted NFC. Indeed, with 

only 12 %wt. of NFC the Young’s modulus and the breaking length values have more than 

doubled. With modified NFC the improvement is more modest. With 16 %wt. of modified 

NFC, Young’s modulus and breaking length increase by 72 and 51%, respectively. Such 

results are in accordance with literature. (Eriksen and Syverud 2008) 

As shown before, the paper samples containing NFC (modified or not) have higher 

densities compared to reference material. This can explain, only partly, such an increase. 

Indeed, if these values are normalized with respect to the density (they are divided by density 

values), then the same tendencies are obtained as shown in Figure 1-8, which indicates that 

an additional reinforcement effect due to NFC contribution, even for modified NFC. 

The reinforcing effect provided by the addition of nanofibrillated cellulose does not involve 

a decrease of the elongation at break, as shown in the Figure 1-8. This, predicts, that, 

contrary to composites, the fiber based material is still flexible. Due to the addition of 

cellulosic nanofibers, interactions are stronger and the fibrous network keeps its elasticity. As 

said before, NFCs exhibit a high aspect ratio and a web like structure, providing a highly 

elastic behavior to papers. The slight evolution of elongation might be also due to the change 

of density.  

In conclusion, after the sizing the interaction between grafted NFC (hydrophobic) and the 

fiber networks (hydrophilic) are slightly lower but still enough to improve mechanical 

properties. 
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As recently described (Syverud and Stenius 2009), NFC is a good candidate to improve 

gas barrier properties of papers thanks to the formed nanoporous network. In this context, air 

permeability has been investigated and compared using neat and modified NFC.  

Air permeability of paper sheets was measured on both sides. Figure 1-9 shows the air 

permeability measurements as function of added amount of cellulosic nanofillers. In order to 

avoid errors related to the thickness and the basis weight of papers obtained, it has been 

decided to focus our study on the intrinsic permeability so called K, which depends only on 

the structural properties of materials. Indeed, K parameter depends on both the porosity and 

the specific surface area of fibrous network. Papers with high porosity are in general more 

permeable, on the contrary permeability decreases as the specific surface area increases. 

As expected, the air permeability of papers decreases with the addition of neat and modified 

NFC. It is worth to note that the density of paper sheets increases with the amount of 

nanofibrillated cellulose, which yields a more closed mat (as already presented in Figure 

1-7). Consequently, it is harder for the fluid to pass through the fibrous network. Moreover, 

due to their nano-scale dimension and their web-like structure, NFC increases significantly 

the internal specific surface area of materials decreasing by the same way the permeability. 

This is the reason why, there is no significant difference between papers willed with neat and 

treated NFC. 

 
Figure 1-9 : Intrinsic permeability for neat NFC (solid line) and modified NFC (dotted line) 

Moreover, the air permeability was significantly the same for both sides (not shown) 

reflecting a homogenized distribution of nanofibrillated cellulose within the paper hand-

sheets. 
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1.3.5 Sizing effect on water sorption 

As previously mentioned AKD is well known to impart hydrophobic properties of treated 

papers, the so called the sizing effect. The Cobb value is commonly proposed as a 

comparative study. Indeed classically untreated paper sheets of 80-120 g/m² display a 

Cobb60 around 100 g/m², meaning water absorption of paper is high and correspond to 

100g/m². Figure 1-10 shows Cobb values as a function of added amount of NFC. As 

expected no positive influence was observed for neat NFC. On the contrary, results obtained 

for papers reinforced with modified NFC are very interesting. Indeed, a strong decrease of 

Cobb values was observed with low contents of modified NFC. Cobb values of papers 

reinforced with 3.5%wt. modified NFC display a decrease of 81%. Indeed with a very low 

quantity of modified NFC introduced in paper sheets (theoretical value: 5% wt., which 

correspond to 0.4 %wt. of sheets), the Cobb value decreases from 97 to 15. This behavior 

was attributed to hydrophobic nature provided by AKD attached to NFC. 

 
Figure 1-10 : Cobb value obtained for neat NFC (solid line) and modified NFC (dotted line) 

In order to confirm this characteristic, Cobb600 and Cobb1800 were performed. As presented 

in the Table 1-2, even if the contact between water and the treated surface is longer, the 

treated paper, keep its hydrophobic character. 
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Table 1-2. Influence of water contact time on sheets reinforced with modified NFC during 60, 600 and 1800 
seconds 

Modified NFC 
added th. (%) 

Cobb60 

 (g/m²) 
Cobb600 
(g/m²) 

Cobb1800 
(g/m²) 

0 97 ± 13 97 97 

5 18 ± 2 23 ± 1 29 ± 1 

10 15 ± 2 18 ± 1 25 ± 2 

20 16 ± 1 18 ± 2 25 ± 1 

30 15 ± 1 19 ± 1 25 ± 1 

50 13 ± 1 20 ± 2 25 ± 2 

 

Moreover, contact angle measurements (data not shown) were performed with water to 

confirm this behavior. Indeed, because of the high water absorption of untreated NFC 

papers, no water contact angles could be measured. On the contrary, paper reinforced with 

modified NFC has water contact angle values of about 100° ± 3°.  

In conclusion, a strong effect can be observed when hand sheets were made with NFC 

previously treated with AKD nanoemulsion. A comparison with classical AKD emulsion 

treated paper is proposed in the following part of this study. 

To point out the benefit of NFC and nanoemulsions in comparison to classical emulsions 

of AKD, some tests were performed with Aquapel emulsion (5% wt.) which contains 30% of 

AKD. Table 1-3 shows clearly that the internal sizing of nanoemulsion treated NFC is as 

efficient as Aquapel emulsions (referred as AKD). However, as discussed before, hand-

sheets paper reinforced with both NFC (neat and modified) improve also strongly the 

mechanical and decrease drastically the air permeability even if the NFCs are modified. 
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Table 1-3. Sum-up of mechanical properties, air permeability and sizing effect of Reference paper, paper 
treated with AKD microemulsion, paper reinforced with 12%wt. of neat and modified NFC 

 
Reference Paper Treated Paper 

(AKD 
Neat NFC (30%) Modified NFC (30%) 

Mechanical Properties 

Density (kg.m-3) 455 ± 18 456 ± 7 511 ± 15 473 ± 9 

Young's 
Modulus (Gpa) 0.65 ± 0.03 0.78 ± 0.08 1.38 ± 0.24 0.98 ± 0.15 

Breaking 
Length (Km) 0.84 ± 0.18 0.90 ± 0.14 1.77 ± 0.28 1.29 ± 0.19 

Elongation at 
Break (%) 

1.17 ± 0.23 0.97 ± 0.23 2.06 ± 0.20 1.51 ± 0.17 

Air Permeability Measurements 

K (m²) 1.22E-07 ± 8.02E-08 1.16E-07 ± 1.35E-08 2.75E-08 ± 0.9E-08 2.35E-08 ± 0.8E-08 

Water Absorption 

Cobb60 (g.m-2) 96 ± 13 11 ± 1 97 ± 9 15 ± 1 

Cobb600 (g.m-2) / 15 ± 2 / 19 ± 1 

Cobb1800 (g.m-2) / 22 ± 2 / 25 ± 1 
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1.4 Conclusions 

The nanocelluloses can be used in several fields and some scientific papers have already 

reported the benefit of NFC in fiber based materials like paper sheets. But, to best of our 

knowledge, modified NFCs were never used in paper. In this study, treated NFC impart 2 

different properties i.e. mechanical and barrier reinforcements but also an internal sizing of 

paper. Cobb values for sized paper commonly reached in industry correspond to those 

obtain in this study. The air permeability is strongly decreased and mechanical properties 

strongly improved comparing to industrial material. The synergy of such properties is very 

difficult to achieve and this new strategy opens the field of several application like barrier 

material or filtration. 
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2. All-Cellulose bionanocomposites: cellulose 

derivatives reinforced with chemically 

modified nanofibrillated cellulose 

 

Karim Missoum, Naceur Belgacem, Florian Martoïa, Julien Bras 
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Martin-d’Hères Cedex, France 

 

Abstract 

Bionanocomposites based on different types of nanofibrillated cellulose (NFC) and 

cellulose ester derivatives were prepared using film casting methods. Chemical surface 

modification was performed on the surface of NFC reinforcing elements and five different 

matrices were tested. The idea was to create similar cellulose derivatives at the surface of 

NFC in order to have “continuous” interface. FE-SEM, water uptake and TGA were 

performed to understand bionanocomposite morphology and structure. Dynamic mechanical 

thermal analyses demonstrated that significant improvements in the thermomechanical 

properties of the bionanocomposites were achieved when neat NFCs were added. The 

addition of cellulosic nanofillers at 10%wt. increases considerably the length of the rubbery 

plateau, thus allowing the extension of the range of use of the ensuing materials. The 

chemical modification seems not improving more the reinforcement (compromise between 

compatibility and NFC network stiffness) but keeps the reinforcement and modifies the film 

structure.  

 
Keywords 

Nano-structures, Polymer-matrix composites, Thermomechanical properties, Surface 

treatments 

 

Inspired from: Karim Missoum, Naceur Belgacem, Florian Martoïa, Julien Bras – 

Composite Part A: Applied Science and Manufacturing (2012) – Submitted 



Chapter 3: End-Uses of modified NFC 
 

238 
Karim Missoum - 2012            
 

 

  



Chapter 3: End-Uses of modified NFC 
 

239 
Karim Missoum - 2012            
 

2.1 Introduction 

Cellulose is the most abundant renewable polymer with an annual worldwide production 

estimated to be between 1010 and 1011 tons each year. Cellulose fiber based composites are 

widely spread in our society and used in several industries like automotive, aero-space, 

packaging etc. Several reviews dealing with these applications, and describing the surface 

treatments of the reinforcing phase, as well as the properties of the obtained composites are 

available in the literature (Bledzki and Gassan 1999; Eichhorn et al. 2001; Belgacem and 

Gandini 2008). Such cellulosic composite fillers have several advantages (i.e renewable, 

biodegradable, cost effective, light and able to burn when incinerated) but some compatibility 

issues might occur with the classical non-polar polymer classically used. Since 30 years, 

there is meanwhile a growing interest in nano-scaled filler within composite industry. For 

these two reasons, cellulose-based nanoparticles have been more and more investigated for 

nanocomposite applications since mid of 90’s. Two kinds of cellulose nanoparticles can be 

obtained from cellulosic fibers depending on the applied treatment , as summarized in 

several reviews devoted to: (i) NanoCrystalline Cellulose (NCC)(Azizi Samir et al. 2005; 

Habibi et al. 2010; Lin et al. 2012) obtained by a strong acid hydrolysis of cellulose fibers and 

(ii) NanoFibrillated Cellulose (NFC)(Eichhorn et al. 2010; Siró and Plackett 2010a) produced 

applying mechanical treatment under a high pressure. This study will focus on the second 

type of nanocellulose: the NFCs. In comparison to NCC, which are rigid and displaying a rod-

like structure, NFCs can be described as a long and flexible cellulosic material, with a 

diameter ranging from 20 to 50 nm and a length of several micrometers. Due to their stiffness 

and their nano-scale size, they display high specific area which provides them strong 

reinforcement ability at low concentration within a matrix. This reinforcement is even 

enhanced with their ability to establish hydrogen bonds. In 1983, Turbak et al.(Turbak et al. 

1983) have discovered NFCs and only about 25 years later, they started to be exploited in 

such applications with exponential increase of scientific paper. Their uses as reinforcement 

in nanocomposite has been recently reviewed (Siqueira et al. 2010b) and some astonishing 

reinforcement’s effect has already been achieved. Due to the good stability of cellulose 

nanofibrillated cellulose in water, the mixing of hydrosoluble polymers (e.g. cellulose ethers) 

or latex emulsion (e.g. Natural Rubber) with NFC and subsequent film casting has been the 

preferred method to produce polymer-NFC nanocomposites(Johnson et al. 2009; Eyholzer et 

al. 2010; Zimmermann et al. 2010; Sehaqui et al. 2011; Bilbao-Sainz et al. 2011). The 

development of the processing technologies in which non-aqueous polymers are used as a 

matrix is one of the biggest challenges today and in the near future. In order to improve the 

dispersion of NFC in non-aqueous solvent and, which also help their good dispersion in 
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hydrophobic matrix, several strategies have been adopted, including the use of surfactants 

and chemical modifications of their surface hydroxyl groups(Siqueira et al. 2009; Rodionova 

et al. 2010; Siqueira et al. 2010a; Lonnberg et al. 2011; Filpponen et al. 2012; Missoum et al. 

2012a). Less than 50 papers all around the world dealt with the strategy concerning chemical 

surface modification of NFC and only few of them was applied in composite area.  

Nevertheless, first studies with PCL (Siqueira et al. 2011a) or PLA (Goffin et al. 2011) are 

promising for example.  

The innovative idea of this study is to carry on improving interface between NFC and the 

matrix by creating cellulose derivatives at the surface of NFC which will be exactly the same 

(or very similar) than the matrix. In this case, we should have a continuum interface between 

matrix and NFC and achieve a 100% cellulosic material which presents several advantages. 

Only one scientific paper from Siqueira et al. (Siqueira et al. 2011b) has dealt with this 

strategy but with cellulose nanocrystals which behave differently and can be subjected to the 

pealing effect. Lu et al. (Lu and Drzal 2010) reported the feasibility of nanocomposites using 

chemically modified NFC and Cellulose Acetate (CA) as a matrix. This study deals with 

comparing neat and silylated NFC in cellulose ester derivatives matrix. The authors 

concluded that both DMA and tensile tests showed the good reinforcing effect of NFC, 

especially with silanes treated NFC, which results in better dispersion with the polymer 

matrix. However in this case, the cellulose modification was quite different than the matrix.     

In the present study, several cellulose ester derivative matrices and neat/modified NFCs 

have been considered to perform bionanocomposites originating from cellulosic materials. 

The target of this study was to check the benefit of neat and chemically modified NFC in 

reinforcing several cellulose derivatives matrices. The main idea was to produce “all cellulose 

bionanocomposites” by casting. To the best of our knowledge, such study is conducted for 

the first time. 
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2.2 Experimental 

2.2.1 Materials 

The wood pulp was kindly delivered by Domsjö (Sweden) and corresponded to a mix 

between Spruce and Pine (60% and 40%, respectively). This material is a dissolving pulp 

referred to sodium based sulfite mill extraction and used for the production of NFC. 

Endoglucanase used for the cellulose fibers pretreatment was purchased from Novozyme 

(Denmark). 

For chemical modification of NFC, all the reagents and solvents (acetic, butyric, iso-

butyric, hexanoic anhydride, the ionic liquid [bmim][PF6], ethanol, acetone and 

dichloromethane) were purchased from Aldrich and co. (France) . They were high purity 

reagent grade and used as received without further purification. Deionized water was used in 

all experiments. 

Cellulose Acetate Butyrate (CAB), Cellulose Acetate Propionate (CAP) and 

Carboxymethyl Cellulose Acetate Butyrate (CMCAB) were provided by Eastman ® Chemical 

Company (USA), to whom we are indebted. 

Each cellulose ester matrices were analyzed by liquid 13C NMR. Sample tests were 

prepared by dissolving 100 mg of cellulose ester in 8 mL of DMSO-d6. The solution was then 

stirred for at least two hours to ensure complete dissolution of macromolecular chains. 

Quantitative Carbon 13C NMR was carried out with a probe 10mmBB for 12 hours. 

Quantitative Carbon 13CNMR analyses were conducted in the Institute of Nanoscience and 

Cryogenics (INAC) to the Atomic Energy Center (CEA) in Grenoble. Spectra were recorded 

at 50°C, on a UNITY400 (Varian) spectrometer. Experiments were performed with a 10 mm 

BB (Broad Band) probe. The data were acquired and processed with VNMR version 6.1b 

VARIAN software on SUN station with Solaris OS system. The position of the peaks are 

given relative to TMS (tetramethylsilane į = 0 ppm), and are referenced with the residual 

solvent signal, DMSO-d6 (įDMSO= 39, 5 ppm).Quantitative 13C spectra were obtained at 

100,580 MHz with usual one pulse sequence with broadband proton decoupling only during 

the acquisition time to avoid nOe (nuclear Overhauser effect), with 25 kHz spectral width, 

0.48 s acquisition time, 11 s relaxation delay, 45° pulse.64 K zero-filling, 4 Hz line 

broadening was applied before Fourier Transform.24 hours of acquisition are required to 

obtain a usable 13C spectrum. The degree of substitution was obtained by integrating peaks. 

Integration values were then normalized to the value given by the peak of the carbon C1 of 

the cellulose at 101.76 ppm. 
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2.2.2 Neat and modified NFC preparation and characterization 

Nanofibrillated cellulose suspension was produced from Domsjö pulp. A suspension of 

bleached Domsjö fibers (2.0%wt.) was enzymatically pretreated with endoglucanase 

(Cellulase) during 1h at 50°C. Then, the resulting slurry was fibrillated using a Masuko 

Grinder© (Japan). Size reduction of the fibers into nanofibrillated cellulose was obtained after 

10 passes between the rotating and the static stones at 1,500 rpm. Solid content of the NFC 

suspensions was around 2.6% (w/w).  

Four grades of modified NFC were obtained using acetic, butyric, iso-butyric and hexanoic 

anhydride within ionic liquid solvents. The method used for the surface modification of NFC 

in ionic liquid was presented and detailed in a previous paper (Missoum et al. 2012a).  

FE-SEM, model Zeiss Ultra column 55 gemini, was used for the characterization and the 

determination of NFC’s diameter. The accelerating voltage (EHT) was 3 kV for a working 

distance of 6.4 mm. One drop of dilute suspension of modified NFC was deposited on a 

substrate covered with carbon tape. After drying of samples, they were coated with a 2 nm 

layer of Au/Pd (Gold/Palladium) to ensure the conductivity of all samples. 

Contact angle measurements were carried out with water droplets deposited at the 

surface of the studied substrates and recording the formed angles, using an OCA 

dataphysics system equipped with a CCD camera. Acquisitions were realized during the first 

60 seconds after deposition, taking 50 pictures/s. For both modified and unmodified NFC, the 

measurement was performed on pellets and dried films respectively. All the measurements 

were performed 7 times for each sample and averaged. 

2.2.3 Bionanocomposite films preparation  

A cellulose acetate solution (≈10%wt.) was prepared by dissolving 1g of the polymer matrix 

in 10g of acetone. The solution was stirred for two hours to ensure the complete dissolution 

of the polymer. Then, a suspension of neat and modified NFC was prepared at about 5%wt 

by dispersing the different type of NFC in acetone after a solvent exchange procedure, i.e. 

several steps of centrifugation at 10000 rpm and re-dispersion in acetone using Ultra-Turrax 

T25 device. NFC suspensions in acetone were mixed during two hours with the appropriate 

amounts of cellulose acetate solution to reach a content of 2.5, 10, 23%wt. with respect to 

nanofiber loadings. The previous mixture was then casted into Teflon molds and covered 

with a perforated box, in order to control the acetone evaporation rate, thus obtaining planar 

films without the presence of any cult. Casted films were then dried under vacuum at room 

temperature for at least 1 hour, in order to remove the remaining acetone. 
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2.2.4 Characterizations of bionanocomposites 

Dynamic Scattering Calorimetry (DSC) experiments were carried out with a DSC Q100 

differential calorimeter (TA Instruments) fitted with a manual liquid nitrogen cooling system. 

The samples were placed in hermetically closed DSC capsules. The heating and cooling 

rates were 10 °C min-1 and under N2 atmosphere. Sample weights were between 5 mg and 

15 mg. All samples were analyzed at least three times and averaged. All measurements 

were reproducible and present a standard deviation of 1-2°C. 

Dynamical mechanical analysis (DMA) of the nanocomposite films was performed using 

RSA3 (TA Instruments) equipment working in tensile mode. Data acquisition was carried out 

with the software TA Orchestrator 7.0. The measurements were carried out at a constant 

frequency of 1 Hz, strain amplitude of 0.05% and in the temperature range of 35°C to 340°C. 

The used gauge length was 10 mm, whereas the sample width and thickness varied from 5 

to 6 mm and 0.08 to 0.3 mm, respectively. The reported results are an average based on at 

least three samples. 

Water Uptake measurements were performed on films. The specimens used were thin 

rectangular strips with dimensions of 20mm x 8mm x 0.15mm. The films were therefore 

supposed to be thin enough for the molecular diffusion to be considered mono-dimensional. 

Samples were first dried overnight at 105°C. After weighting, they were immersed in 

deionized water. 

They were then withdrawn periodically, and weighted using a four-digit balance. The water 

content or water uptake of the samples was calculated as follows: 

Water Uptake (%) = (Mt-Mo)*100/Mo    Eq. 1 

Where: Mt and Mo are the weights at time t and before immersion in water. Mo corresponds 

therefore to the weight of dry solid, determined after drying overnight at 105°C. The mean 

moisture uptake of each sample was calculated at various conditioning times (t) with at least 

duplicates.  

Cross-section and surface of bionanocomposites were investigated using a scanning 

electron microscope equipped with a field emission gun (FE-SEM), model Zeiss Ultra column 

55 Gemini. The accelerating voltage (EHT) was 5 kV for a working distance of 10 mm. 

Pieces of films were scratched onto a substrate covered with carbon tape and then coated 

with a 2 nm layer of Au/Pd (Gold/Palladium) to ensure the conductivity of all samples. 
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Thermogravimetric analysis (TGA) was performed using a TGA 2980 (TA instruments) 

from 30 to 600°C at a heating rate of 10°C/min under a flow of nitrogen of about 20mL/min. 

Approximately 15 to 20 mg of sample was used. The reported results are an average of two 

samples. 
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2.3 Results and discussions 

2.3.1 NFCs characterizations 

Neat and modified NFCs (i.e. NFC_AA, NFC_BA and NFC_HA corresponding to acetic-, 

butyric- and hexanoic anhydride-modified NFCs, respectively) were first produced and then 

characterized thanks to the FE-SEM technique. Their diameter dimensions were very similar 

with 36 ± 12 nm, 40 ± 16 nm, 55 ± 18 nm and 54 ± 15 nm respectively for NFC, NFC_AA, 

NFC_BA, NFC_HA. 

We have already shown in the previous study (Missoum et al. 2012a) that, thanks to this 

ionic liquid strategy, NFC are chemically grafted only at the surface, achieving several 

characterization methods (i.e. Infra-Red, contact angle, Elemental analysis, XPS, SIMS…). 

In fact, it was clearly proved thanks to XPS and ToF-SIMS analyses that the grafting is 

occurred mainly at the surface, which displayed hydrophobic properties in comparison to 

those associated to neat NFC. Contact angle measurements were performed in order to 

point out the hydrophobic behavior of the grafted nanofibers (after Soxhlet washing), as 

presented in Table 2-1.  

Table 2-1 : Contact angle value obtained of a water droplet for Neat NFC and modified NFC 

 
Contact angle 

values 

Neat NFC 20° 

NFC_AA 56° +/- 1 

NFC_BA 98.6° +/- 1 

NFC_HA 104.8° +/- 0.7 

 

As expected the contact angle values of a drop of water deposited on the surface of the 

grafted NFC are higher than those found for the neat NFC.  

The neat NFC displayed a decrease of the contact angle value with the time and vanished 

at 20°. The values of the grafted samples are stable during the acquisition and they are 

higher than those found for neat NFC surface with an increase link to the aliphatic chain of 

the grafted moiety, namely: 56°, 98.6°, 99.5° and 104.8° for acetic, butyric, isobutyric and 

hexanoic anhydrides treated NFC, respectively. A clear difference should be observed at the 

interface with the matrix depending on the chemical grafting. 
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2.3.2 Influence of cellulosic matrices  

Before any composites forming, the degree of substitution of the commercial matrices was 

determined by 13C NMR. Values obtained are presented in Table 2-2 for the three matrices 

after treatment of 13C NMR spectra. 

Table 2-2 : Degree of substitution of matrices obtained from 13C NMR quantification. 

Sample Name CarboxyMethyl Acetyl Butyryl Propionyl 

CAB --- 1.02 1.67 --- 

CAP --- 0.1 --- 2.60 

CMCAB 0.41 0.09 1.88 --- 

 

CAB and CAP matrices displayed a DS value close to 2.7. For CAB matrix, half of 

modified hydroxyl groups are acetyl groups and other –OH groups were substituted in butyryl 

groups. Concerning CAP matrix, the major part of the modified hydroxyl group are propionyl 

groups (around 95%). In comparison, the CMCAB matrix displayed carboxymethyl, acetyl 

and butyryl functions. The last cited groups are the most present is this matrix. This 

characterization gives some worth information for the next part of the paper such as 

compatibility and interaction between neat and modified NFC and matrices. 

Then, all bionanocomposites films were produced using a casting/evaporation technique, 

as presented in Figure 2-1. Three matrices, cellulose acetate butyrate (CAB), cellulose 

acetate propionate (CAP) and carboxymethyl cellulose acetate butyrate (CMCAB) were 

initially chosen in order to study the influence of the polymer matrix on the properties of 

nanocomposites and interfaces.  

 
Figure 2-1 : Steps involved in preparation of bionanocomposites 

In this first section, the influence of the matrix and notably the compatibility between 

matrices and the reinforcing elements was checked. For this purpose, neat and modified 
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NFCs were added to several polymeric matrices and the modified NFC was restricted to 

NFC_AA, with two loading levels: 2.5 and 10%wt. 

Figure 2-2 presents a visual inspection of the obtained bionanocomposite reinforced with 

neat and NFC_AA. It shows, clearly, that films reinforced with grafted cellulose nanofibrils 

exhibit a better homogeneity and dispersion of the nanoelements within the matrices, to 

compare with films reinforced with neat NFC. 

 
Figure 2-2 : Pictures of films obtained from CAB, CAP and CMCAB reinforced with 10%wt. of neat and 

modified NFC_AA 

Indeed, it has been proven after dissolution and filtration steps (using a sieve with a mesh 

of 1µm which ensure the retaining of NFC) that the whitish area observed in the center of 

films reinforced with neat NFC corresponds to a migration of cellulosic nanofillers (dotted 

circle with higher NFC concentration). Such a migration is probably due to a poor 

compatibility between the hydrophobic matrix and hydrophilic fillers. Despite a good 

dispersion of both modified and unmodified cellulosic nanoparticles, CMCAB-based 

nanocomposite films presented a wrinkled structure. In addition, a visual inspection showed 

that except for CMCAB-based nanocomposites, the transparence of the films decreased as 

the amount of filler added increased. Thermal properties investigation by DSC 

measurements (Dynamic Scattering Calorimetry) was firstly conducted (not shown) in order 
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to identify the melting temperature of each bionanocomposite. These values are summarized 

in the Table 2-3. 

Table 2-3 : Thermal characteristics obtained for matrices reinforced with 2.5 or 10%wt. of neat or modified 
NFC 

Filler content  
(wt/wt) 

Melting temperature (°C) 

CAB CAP CMCAB 

0% 166 194 155 

2.5% 
neat NFC 

168 198 156 

10% 168 197 164 

2.5% modified 
NFC_AA 

168 197 156 

10% 168 190 163 

 

The addition of NFC in the polymer matrix reduces the mobility of macromolecular chains 

thus increasing the melting temperature. Regarding CAB and CAP, no differences are 

observed whatever the NFC content meaning NFC network is assessed as soon as 2% of 

NFC is added. On the contrary, melting point clearly increased when quantity of NFC (or 

NFC_AA) increased with CMCAB. This might be due to a better compatibility with CMCAB 

(more hydrophilic) allowing polymeric chains flowing at low concentration (i.e. 2%). Higher 

concentration clearly limits polymer chains flowing by the network of NFC which increased 

the melting point of the composites. 

Similar behavior is observed whatever neat and grafted NFC is concerned, which proves 

absence of aggregates or defects, except for CAP composites. Indeed CAP-based 

nanocomposite filled with 10% NFC_AA showed a lower melting temperature compared to 

that of the neat matrix. This observation results from the poor compatibility between fillers 

and matrix, which might create defects. 

Thanks to DMA technique, thermomechanical properties of bionanocomposites were 

studied. Figure 2-3 shows the evolution of the normalized storage modulus as a function of 

the temperature for the three bionanocomposite films. The normalization was performed with 

the storage modulus value at 40°C. 



Chapter 3: End-Uses of modified NFC 
 

249 
Karim Missoum - 2012            
 

 
Figure 2-3 : Evolution of the normalized storage modulus, as a function of temperature for CAB, CAP and 
CMCAB bionanocomposites filled with 2.5% NFC_AA, 2.5 % neat NFC, 10% NFC_AA and 10% neat NFC 

The conclusions are similar for all bionanocomposites. Firstly, no significant changes were 

observed for nanomaterials reinforced with 2.5%wt even with modified NFCs. Indeed, at low 

filler content, NFCs can form a rigid percolated network within the matrix but not enough to 

influence thermomechanical behavior of composites. However, for all bionanocomposites 

reinforced with 10%wt. of neat and modified NFC, a significant improvement of 

thermomechanical properties was observed. Neat NFC seems to improve thermomechanical 

properties more than modified NFC. This observation can be probably due to the specific 
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aggregation and migration of neat NFC in the center of the film discussed before. 

Consequently, the local concentration of NFC in the choose area is higher than the 

theoretical value. Another reason can be the fact that, even if the compatibility is better with 

modified NFC, the network of modified NFC is less stiff than the one of neat NFC due to the 

lower quantity of hydrogen bonds between grafted NFC.  

Furthermore, the addition of cellulosic nanofillers at 10%wt. increases considerably the 

length of the rubbery plateau, thus allowing the extension of the range of use of the ensuing 

materials. Siqueira et al. (Siqueira et al. 2011b) who worked on CAB based-nanocomposite 

materials reinforced with NanoCrystalline Cellulose, have also observed an improvement of 

the storage modulus with increasing Nanocellulose content (NCC in this case). Similar study 

reported by Ayuk et al.,(Etang Ayuk et al. 2009) found that CAB-based nanocomposites 

reinforced with 5%wt. and 10%wt. NCC showed higher storage modulus compared with CAB 

(i.e., the matrix alone). However, up to our knowledge, the only one study dealing with CAB-

NFC nanocomposite did not see such improvement. Indeed Lu et al.,(Lu and Drzal 2010)  

who worked on cellulose acetate based-nanocomposite reinforced with 5wt% unmodified and 

APS treated NFC did not find any improvement in the thermo-mechanical properties at high 

temperature for both kinds of NFC. This might be due to the lower quality of NFC they used, 

the type of chemical grafting (not adapted) or the matrix selected. 

Concerning the other cellulose derivatives (i.e. CAP and CMCAB), reinforcement was less 

effective. This seems to be mainly due to the much lower quantity of acetyl group (see Table 

2-2) displaying a “continuous” interface with NFC_AA. Indeed, no beneficial effect was 

observed for CAP-based bionanocomposites reinforced with 10%wt. of NFC_AA. On the 

contrary, a loss of the storage modulus was noticed at a temperature of about 152°C, 

probably resulting from: (i) the poor compatibility between the matrix and reinforcements 

and/or (ii) a bad dispersion of NFC within the matrix. CMCAB-based nanocomposites films 

showed enhanced thermomechanical behavior when filled with both neat and modified NFC. 

However, the loss of the storage modulus was more pronounced than that of CAB--based 

bionanocomposites with an extended range of use (prolonged rubbery plateau) of only 14°C.  

In conclusion CAB matrix seems to be the best compromise to extend the rubbery plateau 

of the polymer without a too high decrease of its storage modulus. 

In a first conclusion, CAB appears as the most promising matrix for such 

bionanocomposite applications. For this reason, structural investigation of CAB based 

bionanocomposites obtained by casting was conducted thanks to FE-SEM analysis. 
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Micrographs of surface and cross-section of the nanocomposite are presented in Figure 2-4 

and Figure 2-5, respectively.  

 
Figure 2-4 : FE-SEM pictures of bionanocomposites at low magnification (a) CAB, (b) CAB filled with 
23%wt. of neat NFC, (c) CAB filled with 23% of NFC_AA, whereas pictures (d), (e), and (f) are taken at 

higher magnification 

Cross-section micrographs (Figure 2-5) revealed a good dispersion of both neat and 

modified NFC in the polymer matrix. However it is difficult to determine whether there is a 

significant improvement of the dispersion when modified NFCs are used. At a large scale, all 

composites seem relatively homogeneous but for higher magnifications, significant 

differences appear (Figure 2-4). Indeed, composite reinforced with NFC_AA exhibit a high 

porosity at their surface compared to neat matrix. In order to confirm such an argument, 

water uptake tests were performed on the composites reinforced with neat and modified 

cellulose nanofibrils.  

 



Chapter 3: End-Uses of modified NFC 
 

252 
Karim Missoum - 2012            
 

 
Figure 2-5 : FE-SEM cross section pictures of bionanocomposites at low magnification (a) CAB, (b) CAB 
filled with 23%wt. of neat NFC, (c) CAB filled with 23% of NFC_AA, whereas pictures (d), (e), and (f) are 

taken at higher magnification 

The data shown in Figure 2-6 confirm the difference in porosity without any doubt. Indeed, 

the difference of water absorption can be attributed to the difference of porosity. In 

conclusion, a strong improvement was observed when using both unmodified and modified 

NFC, with a higher value for modified NFC. With unmodified NFC, it sounds normal as they 

are hydrophilic and at high percentage some NFC might be at the surface and then available 

for water absorption. Regarding modified NFC, this can be explained differently by the 

presence of COO- group at the surface of modified NFC which will have closer interaction 

with the solvent used for casting (i.e. the acetone) and then limit its evaporation.  

 
Figure 2-6 : Water Uptake of bionanocomposites reinforced with modified (NFC_AA) and neat NFC 
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In spite of this porosity, no clear difference  in dispersion are visible and we should keep in 

mind that with the addition of 10%wt. of NFC_AA, it is possible to obtain a well dispersed film 

having an increased range of use by up to 30°C. For this reason, the next part of this study 

will focus on CAB as a matrix and will test different type of grafting with an increase of 

hydrophobic behavior.  

2.3.3 Influence of chemical grafting length 

Thus, the influence of the length of the grafted aliphatic chain (i.e. NFC_AA, NFC_BA and 

NFC_HA) as well as the use of several nanofiber loadings (i.e. 10%wt. and 23%wt.) on the 

resulting nanocomposites has been investigated.  

First of all, in this section, the influence of grafting on the thermal degradation of CAB 

nanocomposites has been studied. Only one kind of bionanocomposites is discussed in 

details, but the conclusion concerning the rest of the samples (data not shown) will be drawn. 

As presented in the Figure 2-7, CAB-based nanocomposite films reinforced with 10% of both 

neat and modified NFC (NFC_HA) show an initial weight loss (2-3%wt.) at about 60-100°C, 

which results from the loss of moisture upon heating. 

 
Figure 2-7 : Thermogravimetric analyses curves and their derivatives of CAB and its bionanocomposites 

filled with 10% of neat NFC and NFC_HA 

CAB matrix is thermally stable and exhibits a major degradation peak at 370°C. The 

decomposition of cellulose is basically a result of inter- or intra-molecular dehydration 

reaction. Thus cellulose acetates derivatives have a better thermal stability due to the small 

number of remaining free hydroxyl groups left after chemical modification. Indeed, carbon 

NMR (see Table 2-2) analysis performed on CAB revealed that the degree of substitution for 
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hydroxyl groups was found to be about 2.7, whereas elemental analysis (EA) carried out on 

modified NFC indicated a degree of substitution of 0.3. In conclusion, the addition of NFC 

(modified or not) in the polymer matrix does not affect the thermal stability of the polymer in 

spite of this difference of chemistry. Similar results were found by Lu et al.,(Lu and Drzal 

2010) for CA-based nanocomposite reinforced with unmodified and APS treated NFC. These 

results are promising for the rest of the study, because the good thermal stability presented 

by the matrix is not negatively affected by the addition of thermally less stable cellulosic 

nanofibers. Indeed, bionanocomposites start to degrade at a temperature of about 315-

320°C depending on the filler loadings, whereas for neat matrix the degradation starts to 

occur at a temperature of 330-335°C. 

Consequently, thermomechanical properties of CAB--based bionanocomposites can be 

assessed and are presented in Figure 2-8. All obtained data are normalized with the storage 

modulus obtained at 40°C. 

 
Figure 2-8 : Evolution of the normalized storage modulus as a function of temperature for CAB-based 

bionanocomposites films reinforced with NFC_AA, NFC_AB and NFC_HA, respectively 

This figure shows very promising results. In fact, compared to the neat matrix, the storage 

modulus of CAB--based bionanocomposites remains relatively high for temperatures higher 

than the flow temperature of CAB at about 170°C. Indeed, higher is the amount of added 

cellulosic nanofillers, softer is the loss of the storage modulus at 170°C. Thus, the storage 

modulus at 180°C of reinforced bionanocomposites is divided by 100 (compared to storage 

modulus at 40°C) for nanocomposites loaded with 10%wt. of NFC and only by 10 when 

23%wt. of NFC is added. The storage modulus of neat matrix cannot even be measured at 

180°C, proving clearly the positive impact. Indeed, CAB alone cannot be used beyond 170°C 
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whereas CAB-based bionanocomposites are still usable up to 250-280°C. Such a significant 

improvement has never been mentioned in the literature regarding CAB-based 

bionanocomposites reinforced with cellulosic nanofiller (neither NFC nor NCC). However, it is 

difficult to conclude on the influence of grafting moieties type on the thermomechanical 

properties of the obtained nanomaterials. It seems that higher is the length of the aliphatic 

chain lower is the reinforcing effect. That is why Figure 2-9 shows the comparison of the 

evolution of storage modulus, as a function of temperature for CAB-based 

bionanocomposites reinforced with two kinds of modified fillers neat NFC and NFC_HA for 

both loading levels. 

 
Figure 2-9 : Evolution of the normalized storage modulus as a function of temperature for CAB-based 

nanocomposites films reinforced with neat NFC or NFC_HA at 10% and 23%wt 

As shown in Figure 2-9, films reinforced with neat NFC exhibit better thermomechanical 

properties than nanomaterials reinforced with modified counterpart. Indeed, 

thermomechanical strength of nanocomposite is given by the (i) dispersion ability and (ii) the 

compatibility with the matrix but also by (iii) the ability of nanofillers to form within the material 

a rigid percolated network. Within this compromise, the chemical modification of 

nanofibrillated cellulose should improve dispersion and compatibility but also limits strongly 

hydrogen bond interactions, thus weakening the nanofibrous network. The contact angle 

measurement (Table 2-1) clearly shows the difference between NFC_HA and NFC_AA, and 

obviously neat NFC. If we evaporate the suspension of grafted NFC alone, a clear film is 

obtained with neat NFC, a non-homogeneous network (but a network) film can be formed 

with suspension of NFC_AA, but for other grafting, a powder is obtained indicating that the 
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chemical treatment induced weaker interactions between the nanofibers (hydrogen bonds 

breakage). Neat NFC, instead, can form a rigid network within the matrix, thus forming the 

backbone of the material. Obviously, better is the network structure, higher are the 

thermomechanical properties, as reported by Lu et al. (Lu and Drzal 2010) who explained the 

same feature by the capacity of NFC to form a strong network thanks to hydrogen 

interactions. To conclude on the effect of the grafting, it could be said that the improvement 

in thermomechanical properties is not only governed by any improvement in the wettability 

between fillers and matrix but rather influences by the ability for fillers to form a structured 

network giving the required stiffness to the material under investigation. 
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2.4 Conclusions 

Composites entirely made from renewable, bio-based sources were successfully prepared 

using NFC, as the reinforcing phase and cellulose ester as matrices. As expected the use of 

cellulose nanofibrils as filler reinforcements in cellulose acetate matrices improves 

significantly the thermomechanical properties of bionanocomposites obtained by a 

casting/evaporation technique. Indeed, the addition of 10%wt. of neat or modified NFC 

extended the length of the rubbery plateau by 10 to 30°C, depending on both the used filler 

and the matrix. The most interesting reinforcement was observed using CAB as matrix. 

Films filled with grafted cellulose nanofibrils exhibited better homogeneity than those 

reinforced with neat NFC. Indeed, an aggregation phenomenon of neat NFC was observed 

within bionanocomposite films reinforced with 10%wt. of neat NFC. 

Furthermore, it is difficult to conclude on the influence of grafting on the reinforcing 

properties of cellulosic nanofillers. It seems that higher is the length of the aliphatic chain, 

lower is the reinforcing effect. The dispersion is certainly improved in the case of grafted 

cellulose nanofibrils due to their hydrophobic nature, but the most important thing considering 

the thermomechanical properties is the ability of NFC to build a rigid network within the 

matrix. Generally speaking, the more the network is structured, the more the 

thermomechanical properties are improved. 
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Abstract 

Nanofibrillated cellulose (NFC) and their derivatives were prepared using three chemical 

surface modifications strategies. All grafting were characterized by FTIR and contact angle 

measurements in order to evaluate the efficiency of grafting. Antibacterial activities of neat 

and grafted samples were investigated against two kinds of bacteria (i.e. Gram + 

(Staphylococcus aureus) and Gram - (Klebsiella pneumoniae)). All the grafted samples 

displayed promising results with at least bacteriostatic effect or bactericidal properties. They 

also strongly enhanced the photo-catalytic antimicrobial effect of TiO2. This study proves that 

it is better to use grafted NFC either alone or for functionalization with TiO2 if anti-bacterial 

properties are desired. The cellulose backbone is known to be easily biodegradable in 

different biodegradation conditions and environments. The chemical surface modifications 

applied on NFC in the present work did not negatively influence this valuable property of 

cellulose but help for monitoring this property, which could be very useful for paper, 

packaging and composites. 
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3.1 Introduction 

Due to the renewable nature, abundance, biocompatibility, biodegradability and high 

specific strength of cellulose fibers, a growing interest has been devoted to the ensued 

NanoFibrillated Cellulose (NFC). NFCs were produced and isolated first in 1983 by Tubark et 

al. (Turbak et al. 1983) using high pressure homogenizer process. Presently, nanofibrillated 

cellulose can be obtained, from cellulose fibers by different mechanical and/or chemical 

pretreatment methods (Henriksson et al. 2007; Isogai et al. 2011; Pääkkö et al. 2007; Siró 

and Plackett 2010b), in the form of long flexible filament in aqueous suspensions displaying a 

range in diameter of 5 to 50 nm diameter and several micrometers in length. Their specific 

surface areas combined with remarkable strength and flexibility make them a good candidate 

in different applications. Very recent reviews are available in the literature dealing with their 

properties and their potential applications in composite, paper and packaging for example 

(Eichhorn et al. 2010; Isogai et al. 2011; Klemm et al. 2009; Lavoine et al. 2012; Moon et al. 

2011). 

However, these advantages turn to constitute their drawbacks. The high viscosity at very 

low concentration (i.e. 2-5%wt.) and their ability to form films or aggregates once dried limit 

their use in some applications. Chemical surface modification (Filpponen et al. 2012; 

Missoum et al. 2012a; Pahimanolis et al. 2011; Rodionova et al. 2011; Syverud et al. 2011) 

on hydroxyl groups of NFC has been developed last decade by scientists to overcome these 

limitations. However such treatments can be costly and only added value applications should 

be envisaged with such materials. Therefore, it could be interesting to add new functions like 

antimicrobial as already performed on chitosan substrates (Belalia et al. 2008; Bordenave et 

al. 2010). 

NFC has been explored for numerous innovative applications, including composites, 

emulsions and also viscosity modifier. However, NFC based materials for antimicrobial 

activity has not yet been fully explored. Only very few scientific papers (only 5 papers up to 

our knowledge) exists (Andresen et al. 2007; Díez et al. 2011; Martins et al. 2012; Sadocco 

et al. 2012; Syverud et al. 2011) and usually in this scientific papers, silver nanoparticles 

have been tested after adsorption onto NFC (contrary to our chemical grafting strategy). 

However, the release of inorganic nanoparticles might be an issue when health and safety is 

concerned and the future availability of these non-renewable materials might be an issue for 

the development of this solution. In addition a growing interest in antimicrobial development 

brought by metal oxide nanoparticles like MgO, ZnO or TiO2 particles has been recently 

published (Huang et al. 2005; Jones et al. 2008; Marciano et al. 2009). In this case, the 

development of bacterial resistance is less favored because these nanomaterials attack a 
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broad range of bacteria. Among them, TiO2 nanoparticles have attracted particular interest 

and were successfully applied with cellulosic fibers (Daoud et al. 2005; Vasilev et al. 2009; 

Visai et al. 2011). The first results about NFC-TiO2 have been presented this year (Sadocco 

et al. 2012). Based on photo-catalytic activation, TiO2 nanoparticles have lethal effects on the 

cells; they can damage DNA, cell membranes, cell proteins and may lead to cell death.  

In spite of these studies, almost nobody (to our knowledge) tested the chemically modified 

NFC in this context. Indeed, even if some surfactant adsorption has already been tested for 

anti-microbial properties (Syverud et al. 2011), only one paper (Andresen et al. 2007) deals 

with chemical grafting of quaternary ammonium molecule via silane reaction. 

No other grafted chemical functions have been tested whereas are well-known to have 

bactericidal (like carbamates, for instance) (Ray et al. 2005). That is why this study deals 

with the effect of different chemical modification of NFC on the anti-bacterial properties with a 

view to using these “active” particles directly at the surface or into the materials bulk for 

paper, packaging or composites applications. In such a case NFC should be active but also 

should keep (or help to control) their biodegradable character.  

Indeed, cellulose is a well-known biodegradable polymer, in fact pure cellulose is usually 

recommended as the positive reference in the biodegradation tests (Frisoni et al. 2001). 

However, in some applications like external application (e.g. Mulch), a lower kinetic of 

biodegradability is expected. Moreover, it has been recently shown that addition of nano-

cellulose in composite can increase their degradation kinetics (Hassan et al. 2012). It is not 

always the expectation in nano-composite. So this information is a key property for 

monitoring material end-of-life. To the best of our knowledge, biodegradability of modified 

NFC was never reported in literature.  

The research described in this study involved neat and grafted NFC (by carbanilation and 

esterification) in order to check their anti-bacterial and biodegradation properties. The 

antibacterial activity has been evaluated against Gram positive (Staphylococcus aureus) and 

Gram negative (Klebsiella pneumoniae) bacteria and the mechanism of antibacterial action 

has been discussed. Moreover, neat and grafted NFCs were functionalized or not with TiO2 

nanoparticles to enhance their antibacterial properties and to check the influence of chemical 

grafting. To the best of our knowledge, this is the first time that a paper dealing with both 

bactericidal effect and biodegradation behavior of neat and chemically modified NFC is 

reported.  
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3.2 Experimental 

3.2.1 Materials 

The wood pulp was kindly delivered by Domsjö (Sweden) and corresponded to a mix 

between Spruce and Pine (60% and 40%, respectively). This material is a dissolving pulp 

referred to sodium based sulfite mill extraction and used for the production of NFC. A second 

wood pulp was used in this study for the chemical modification using Eucalyptus as raw 

material for the production of NFC. Endoglucanase used for the pretreatment of cellulosic 

fibers was purchased in Novozyme (Denmark). 

The coupling agent (n-octadecyl isocyanate - 98%) and the catalyst (dibutyltin dilaurate - 

96%), as well as the other reagents, acetic (99%), butyric (99%), iso-butyric (99%) and 

hexanoic anhydrides (99%), the ionic liquid [bmim][PF6] (98% HPLC grade), all the solvents 

used (i.e. ethanol-98%, acetone-98%, toluene-98% and dichloromethane-98%) and the 

surfactant TetradecylTrimethylAmmonium Bromide (TTAB), with a purity of 99%, were 

purchased from Sigma-Aldrich (FRANCE). AlkylKetene Dimer (AKD) was kindly supplied by 

Hercules©. It corresponds to a pure liquid AKD without stabilizer (Prequel 9000).  Distilled 

water was used for all experiments. 

Titanium dioxide nanoparticles were supplied by Colorobbia (Italy) and dispersions were 

synthesized via hydrolysis and condensation of alkoxide-based precursors in water. 

All microbial strains used were provided by DSMZ, Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and Cell 

Cultures). Staphylococcus aureus ATCC 6538 (DSM 799) and Klebsiella pneumoniae ATCC 

4352 (DSM 789) were maintained frozen (-80 °C) and transferred monthly on PCA (Plate 

Count Agar) made of 5 g/L tryptone; 2.5 g/L yeast extract; 1 g/L glucose and 9 g/L 

neutralized bacteriological agar. 

3.2.2 Neat and modified NFC preparation 

Nanofibrillated cellulose suspension was produced from wood pulp depending on the 

chemical grafting strategy. Eucalyptus was used for carbanilated NFC and Domsjö pulp for 

all the other treatments and neat NFC. Authors asses the hypothesis that pulp source has no 

influence for this study. A suspension of bleached cellulose fibers (2.0%wt.) was 

enzymatically pretreated with endoglucanase (Cellulase) during 1h at 50°C to facilitate the 

size reduction of the fibers. Then, the slurry was fibrillated using a Masuko Grinder© (Japan). 

Size reduction of the fibers into nanofibrillated cellulose was obtained after 10 passes 
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between the rotating and the static stones at 1,500 rpm. Solid content of the NFC suspension 

was around 2.6% (w/w). 

Six grades of modified NFC (3g of each) were produced following previously described 

procedures. The first grade (NFC_C18NCO) is obtained by carbanilation of NFC in toluene 

(Missoum et al. 2012c). The three next samples obtained with acetic, butyric, hexanoic 

anhydrides, i.e. NFC_AA, NFC_BA, NFC_HA, respectively, were produced following a 

procedure in ionic liquid detailed very recently (Missoum et al. 2012a). The last surface 

chemical modification of NFC was performed using a nanoemulsion of Alkyl Ketone Dimer 

(NFC_AKD) (Missoum et al. 2012b).  

The adsorption of titanium dioxide was performed with the 30 ml NFC (600mg dry NFC) + 

“x” ml TiO2 to obtain different NFC:TiO2 ratios. After mixing, centrifugation steps (3 times, 15 

min at 10.000 rpm) with water were done to eliminate excess TiO2 not “adsorbed” to NFC.  

Final residue was suspended in about 6-7 ml of water giving suspensions at 5-7% dry 

weight. The reference sample with NFC followed similar treatment: 30 ml NFC (600mg dry 

NFC) + centrifugation (3 times, 15 min at 10.000 rpm) with water. A control test was 

performed to evaluate the amount of TiO2 retained by NFC: in fact some control preparations 

were obtained by filtration procedures. Instead of centrifugation, the NFC/TiO2 suspension 

was filtered on glass fiber filters, to eliminate excess TiO2 not attached to NFC (10 ml 

suspension was washed with 30 ml of water). The final NFC/TiO2 nanocomposite was tested 

for antibacterial properties and similar activities were obtained in respect to the preparations 

obtained by centrifugation.  

3.2.3 NFC characterizations 

Microscopy characterization were carried out using a scanning electron microscope 

equipped with a field emission gun (FE-SEM), model Zeiss Ultra column 55 Gemini, was 

used to observe neat and modified NFC. The accelerating voltage (EHT) was 3kV for a 

working distance of 6.4 mm. The sample tested was deposited onto a substrate covered with 

carbon tape and then coated with a 2 nm layer of Au/Pd (Gold/Palladium) to ensure the 

conductivity of samples. The coating was obtained by sputtering Au/Pd atoms under a 

voltage of 6kV and 300µA during 20s. 

Infrared spectra were recorded on film for neat NFC and dried powder for modified NFC, 

using a Perkin-Elmer SP100 spectrometer. For each sample, the Diamond crystal of an 

attenuate total reflectance (ATR) apparatus was used. The torque applied was kept constant 

to ensure a same pressure on each sample. Triplicates were performed for each samples 
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and best representative spectrum were kept for consideration. All spectra were recorded 

between 4000 and 600 cm-1, with a resolution of 4 cm-1 and 8 scans. 

Contact angle measurements were carried out by depositing different water droplets at the 

surface of the studied substrates and by recording the formed angles using an OCA 

dataphysics system equipped with a CCD camera. The contact angle and the drop volume 

(5µl) acquisition were realized during the first after deposition seconds until equilibrium has 

been achieved and taking 4images/s. For unmodified NFC and modified NFC, the 

measurement was performed on dried films. All measurements were performed at least 5 

times for each sample and averaged. 

3.2.4 Assessment of antibacterial activity of neat and modified 

NFC 

The microorganisms, i.e. S.aureus, K. pneumoniae were tested on neat and grafted NFC. 

4mg dry (weights of NFC (from a suspension at 2.6%wt.) were tested for each sample. The 

samples, dispersed in acetone after chemical grafting procedure (see previous paper), were 

washed by centrifugation at 15000 rpm, 18°C, for 20 minutes. The supernatant was 

eliminated and the samples were washed 4 times with 20 mL of water at 15000 rpm, 18°C for 

20 minutes. 

In the presence of light, the inoculated samples by S.aureus and K.pneumoniae were pre-

exposed to standard solar lamp (8000 Lux) for 4h at room temperature this exposure is 

necessary for the activation of photo-catalytic behavior of TiO2 nanoparticles, the samples 

were then incubated in the dark for 20h at 37°C. At the end of the incubation period the 

bacteria were extracted from the samples under investigation by using a neutralizing 

solution. The number of living cells (CFU = colony forming units) in the extracted suspension 

was evaluated by count plate agar method. Specifically the following testing conditions were 

adopted for testing microorganisms: Gram positive bacteria: S.aureus ATCC 6538 and Gram 

negative: K. pneumoniae ATCC 4352. 100 µL of a solution of 12.5% diluted NB in 

physiological saline with an initial number of bacteria of about 1x106 CFU/ml was used as 

inoculum. 

At the end of antibacterial tests the surviving bacteria were extracted by using 50 ml of 

neutralizing solution: Azolectin 3 g/L, Polysorbate 80 30 g/L, sodium thiosulphate 5 g/L, L-

Hystidine 1 g/L, KH2PO4 0.68 g/L, (pH a 7.2 ± 0.2). The nanocellulose was washed by 

neutralising solution and filtered. The absence of retention of bacteria on NFC was checked 
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with the reference samples at contact time zero. The number of extracted bacteria 

corresponded to what inoculated. 

The samples were subjected to sterilization using an autoclave. The antibacterial activity 

of the sample, as bacteria log reduction, was calculated as follows: 

                                                            

 

Where: CFU T24 is the colony forming number corresponding to the bacteria living cells at 

time 24 h. The tested concentration of bacteria is related to what applied in standard 

methods for finished products. They are quite common for textiles as well as plastics test 

methods. 

3.2.5 Biodegradability of Neat and grafted NFC 

The test was conducted according to the standard method ISO 14852:1999. The complete 

transformation (mineralization) of the organic carbon contained in the sample to CO2 and 

water by the action of the microorganisms was measured. The ultimate biodegradation test 

was conducted by dispersing the sample in an aqueous medium. 

The used reactors are 5L glass vessels corresponding to 2 blank sample-free reactors, 2 

reactors with neat NFC as reference, 2 reactors for each grafted sample and 1 reactor with 

sodium benzoate as biodegradable positive reference. The aqueous media used is 

composed of 3L of saline/buffer solution as described in the standard method. 

The inoculum for each reactor was 30mL water extract obtained by soil and mature 

compost. Samples tested were film for neat NFC and dried powder for modified NFC. About 

200 mg of each sample for each reactor (corresponding to around 100 mg of organic carbon 

content) were introduced in each reactor, equipped with inlet and outlet tubes for the aeration 

with compressed humidified air. The CO2 was previously removed from the inlet air by 

adsorption on soda lime. The test was conducted at 25 ± 2°C. 

The CO2 produced from each reactor was adsorbed in barium hydroxide solution 

Ba(OH)2, which reacts with CO2 and therefore, barium carbonate is precipitated. The amount 

of CO2 evolved is determined by titration of the remaining Ba(OH)2 with hydrochloric acid 

(HCl). 

The percentage of biodegradation was expressed as % of CO2 production with respect to 

the theoretical CO2 content of the sample (%Theor.CO2). 

The tests were conducted in duplicate and then averaged.  
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3.3 Results and discussions 

3.3.1 NFCs characterizations 

 

Neat and modified NFCs (i.e. NFC_C18NCO, NFC_AA, NFC_BA, NFC_HA and 

NFC_AKD) were first characterized with the FE-SEM technique, as presented in Figure 3-1.  

 
Figure 3-1 : FE-SEM pictures of (a) neat NFC and modified NFC with (b) octadecyl isocyanate, (c) acetic 

anhydride, (d) butyric anhydride, (e) hexanoic anhydride and (f) alkyl ketone dimer nanoemulsion 
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The diameter of the nanofibrillated cellulose was determined by digital image analysis 

(ImageJ) of FE-SEM pictures. The average diameter of neat NFC was about 22 ± 5nm (a 

minimum of 50 measurements was performed with at least 3 independent images). The 

micrograph (Figure 3-1/a) shows that nanofibrils are strongly entangled. After grafting, FE-

SEM micrographs of NFC show similar average diameter 34 ± 9nm, 36 ± 12nm, 40± 16nm, 

54 ± 15nm and 31 ± 8 nm for NFC_C18NCO, NFC_AA, NFC_BA, NFC_HA and NFC_AKD 

respectively. In all case the fibrillar structure is conserved and a slight increase in diameter is 

observed. It is worth to note that no morphology modifications are observed after grafting but 

NFC seems to be less entangled, most probably because of lower hydrogen bonds between 

NFC elements even if SEM sample preparation can also influence this entanglement. 

FTIR spectroscopy was used to control the grafting for the different reaction conditions. 

Figure 3-2 shows FTIR spectra of the samples after extensive washing. Before treatment, the 

cellulosic nano-fibers display several bands characteristic to cellulose macromolecules at 

3350cm-1 (OH), 1110cm-1 (C-O) (used for the normalization of all spectra) and 2868 and 

2970cm-1 (CHx)..  

 
Figure 3-2 : Fourier Transformation Infra-Red spectra obtained for (a) neat NFC and modified NFC with (b) 

octadecyl isocyanate, (c) acetic anhydride, (d) butyric anhydride, (e) hexanoic anhydride and (f) alkyl 
ketone dimer nanoemulsion 
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After carbanilation or esterification reactions, a characteristic peak assigned to carbamate 

and ester bonds at 1735cm-1 and 1750cm-1 respectively (Fig.2b-2f), has clearly appeared. An 

increase of the bands at 2868 and 2970cm-1 corresponding to asymmetric and symmetric –

CH2 – stretches from aliphatic chain was also observed. These observations allow saying 

that NFCs are chemically modified because all of NFC grafted have been extensively 

washed by Soxhlet extraction before any use and analysis. Moreover chemical grafting 

characterization are deeply precise with performing analytic tool (e.g. XPS, TOF-SIMS) in our 

previous work (Missoum et al. 2012a), in which clear covalent grafting have been assessed 

with a degree of substitution between 0.1 and 0.3. 

Contact angle measurements were also performed in order to point out the hydrophobic 

behavior of the grafted nanofibers comparing to neat counterpart. The results are presented 

in the Table 3-1. As expected the contact angle values of a drop of water deposited on the 

surface of the grafted NFC are higher than those found for the neat NFC. 

Table 3-1 : Contact angle value obtained with water for Neat NFC and modified NFC 

Samples Contact angle 
values 

Neat NFC 20° 

NFC_C18NCO 79.5° +/- 1° 

NFC_AA 56° +/- 1° 

NFC_BA 98.6° +/- 1° 

NFC_HA 104.8° +/- 0.7° 

NFC_AKD 120° +/- 2° 

 

The neat NFC displayed a decrease of the contact angle value with the time and vanished 

at 20°. The values of the grafted samples are stable during the acquisition and they are 

higher than those found for neat NFC surface, namely: 80°, 56°, 99°, 105° and 120° for 

octadecyl isocyanate acetic, butyric, hexanoic anhydride and AKD grafting, respectively. 

Water contact angle also confirms, although indirectly, the surface modification. 

3.3.2 Antibacterial activity of grafted NFC 

The antibacterial activity of modified suspensions was tested towards gram positive 

(S.aureus) and gram negative (K. Pneumoniae) bacteria. All the tests were performed in the 

presence of nutrients (12.5 % diluted nutrient broth) in the buffer testing media (bacteria 

growing conditions). In these conditions, the antimicrobial activity can be evaluated either as 



Chapter 3: End-Uses of modified NFC 
 

276 
Karim Missoum - 2012            
 

(i) bactericidal effect: reduction (killing) of the number of bacteria initially inoculated (at least 

1 log reduction with respect to the inoculated bacteria, CFU at time 0), or as (ii) bacteriostatic 

effect: inhibition of bacteria growth, at least 1 log reduction respect to growth in the control 

sample at time 24h.  

Antibacterial tests carried out on modified NFC revealed distinct behavior depending on 

the applied grafting. 

First, Gram positive bacteria were tested, as shown in Figure 3-3, from which it can be 

seen that neat NFC causes a slight growth regarding S.aureus comparing to the control 

samples represented by the line at 5.5. On the contrary, NFC_C18NCO sample causes a 

weak reduction on bacterial growth. Their possible mode of action involves bacterial protein 

denaturation, damage of lipid complexes in cell membranes or dehydration of bacterial cells. 

Carbamate functions have already been studied for their antimicrobial properties and can 

display an effective antimicrobial activity. Concerning grafted NFC with anhydrides (see 

Figure 3-3), no inhibition is assessed with NFC_AA and NFC_BA comparing to neat NFC.  

 
Figure 3-3 : Antimicrobial activity against S.aureus bacteria for neat NFC, NFC_C18NCO, NFC_AA, 

NFC_BA and NFC_HA samples 

On the contrary, NFC_HA shows a total antibacterial effect toward S.aureus. The length of 

the chemically grafted molecules plays an important role. Even if it is shorter than the 

NFC_C18NCO, the density of hexyl chains in NFC_HA is higher, as reported in our previous 
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papers and confirmed by the contact angle data. It is known that fatty chains can destroy the 

cell wall of bacteria, which can explain this difference.  

Finally the last sample tested was NFC_AKD. Only the antibacterial activity regarding 

S.aureus was performed. NFC_AKD test, represented in Figure 3-3, shows a high 

antibacterial activity reaching practically a total bactericidal effect. This might be due to the 

very long fatty chains at the surface, the slight presence of residual solvent but also to the 

presence of the surfactant used for this chemical grafting. Indeed release of surfactant can 

have anti-bacterial effect as previously showed with NFC treated.  

As a conclusion, chemical grafting of NFC (comparing to neat NFC) can strongly improve 

anti-bacterial effect of NFC onto Gram positive bacteria if fatty chains are grafted. 

The same protocol was applied on negative Gram bacteria i.e. K. pneumoniae. As 

presented in Figure 3-4, neat NFC causes a slight growth regarding K. pneumoniae while 

NFC_C18NCO sample causes a weak reduction of bacterial growth for the same reasons 

involved regarding Gram+ bacteria (i.e. carbamate actions). Concerning the NFCs grafted 

with anhydride, NFC_AA sample shows a slight inhibition of bacterial growth in respect with 

neat NFC and no inhibition is assessed with butyric anhydride. Moreover, NFC_HA shows 

again the highest antibacterial effect toward K. pneumoniae in comparison to neat NFC. In 

this case, the log CFU decrease is less important proving that gram negative are less 

sensitive to fatty chain. 

 

Figure 3-4 : Antimicrobial activity against K. Pneumoniae bacteria for neat NFC, NFC_C18NCO, NFC_AA, 
NFC_BA and NFC_HA samples 
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Nevertheless, these first results are very promising and, even if other chemical grafting 

strategies should be tested, they confirm the possibility to provide anti-microbial effect to 

NFC by chemical grafting without any quaternary ammonium as previously tested (Andresen 

et al. 2007).  

As mentioned before metallic nanoparticles like silver or TiO2 usually are known to display 

effective antimicrobial properties. That is why; both chemical grafting and titanium dioxide 

nanoparticles adsorption on NFC were produced in this study in order to check if any 

synergistic action for bactericidal effect can be observed.  

3.3.3 Antibacterial activity of grafted NFC functionalized with TiO2 

Neat and TiO2 nanoparticles-functionalized NFCs have been used for comparative 

purposes. Indeed, the latter substrate displayed significant antibacterial effect as very 

recently reported by Martins et al. (Martins et al. 2012) in 2012 and confirmed again in Figure 

3-5. TiO2 particles are well known to generate free radical on the oxygen atom after a photo-

catalytic activation, as discussed previously. The mechanism of antibacterial action of TiO2 

suggests that free radical of nanoparticles can interact electrostatically with anionic/cationic 

groups (depending on Gram+ or Gram-) at the bacterial cell walls causing an increase of 

membrane permeability and subsequent leakage of cellular proteins which ultimately leads to 

cell death. Also, photo-catalytic production of reactive oxygen species can damage DNA, cell 

membranes, cell proteins and may lead to cell death (Visai et al. 2011). However, one 

drawback is then the sensibility of cellulosic materials towards TiO2 activation. One solution 

could be the protection of cellulose thanks to the chemical grafting as already shown with 

cellulose fibers. 

NFC grafted with n-octadecyl isocyanate and then functionalized with TiO2 nanoparticles, 

was then compared to neat NFC / TiO2 as presented in the Figure 3-5. 

The antibacterial effect is enhanced when TiO2 particles are added to chemically modified 

NFC. Similar results are obtained with other chemical grafting. Regarding NFC_AA/TiO2, 

NFC_BA/TiO2 and NFC_HA/TiO2 samples, they show higher antibacterial effect with respect 

to NFC_AA alone and NFC_BA which had almost no effect (as detailed in the previous 

section). Moreover, they achieved better results than neat NFC with TiO2 particles. Contrary 

to what is expected, NFC_HA/TiO2 is less effective than NFC_HA sample but display a 

significant bactericidal effect. 
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Figure 3-5 : Antimicrobial activity against S.aureus bacteria for neat NFC, NFC_C18NCO, NFC_AA, 

NFC_BA and NFC_HA samples functionalized with TiO2 nanoparticles 

 

So the grafting of NFC enhanced the actions of TiO2. This might be due to a synergistic 

effect or to a higher content of TiO2 when NFCs are grafted. 

In the case of the Gram- K. pneumoniae no significant differences are seen between 

native NFC/TiO2 and NFC-grafted/TiO2 samples, as summarized in Figure 3-6. Only 

NFC_BA/TiO2 sample shows a higher antibacterial activity in comparison to the neat 

NFC/TiO2 substrate. Unfortunately, the error scale bar is so high to come to an accurate 

conclusion. K.pneumonia bacteria seem to be less sensitive than S.aureus counterpart.   
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Figure 3-6 : Antimicrobial activity against K. Pneumoniae bacteria for neat NFC, NFC_C18NCO, NFC_AA, 

NFC_BA and NFC_HA samples functionalized with TiO2 nanoparticles 

These results show that NFC treated with different grafts display at least a similar or a 

much better bactericidal effect than neat starting material. The chemical grafting reinforces 

microorganism killing effect of TiO2 comparing to neat NFC. It could, therefore, be considered 

as a promising solution for achieving functional materials. 

Modified NFC can display antimicrobial activity but cellulose material is also well-known to 

be biodegradable. The second part of this study is then dedicated to this behavior in order to 

check if the mechanism of biodegradability is altered by chemical grafting.   

3.3.4 Biodegradability effect  

As presented in the experimental section, the biodegradability was tested in aqueous 

environment. Neat as well as functionalized NFCs were tested. Mechanism of degradation of 

cellulose involves enzymes and specific activation keys. When the surface of cellulose is 

modified, the enzymes involved in the biodegradation need to adapt its key to be efficient. As 

shown in Figure 3-7, NFC_C18NCO showed a slower biodegradation trend in comparison to 

neat NFC during the first 20 days. This behavior could surely be attributed to its hydrophobic 

properties limiting the accessibility at the beginning. Anyway the 90% biodegradation limit is 

reached within 45 days of test and even higher percentage of biodegradability is achieved at 

the end of the measurements. It is also well known that when carbamate functions are 
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involved, the biodegradability is enhanced and effective due to CO2 release during 

carbamate functions hydrolysis (Cárdenas et al. 2002; Chapalamadugu and Chaudhry 1992; 

Chaudhry and Wheeler 2011).  

 
Figure 3-7 : Biodegradability curves for (a) neat NFC and NFC grafted using (b) NFC_C18NCO, (c) NFC_AA, 

(d) NFC_BA, (e) NFC_HA and (f) NFC_AKD 

For samples grafted with different anhydride moieties, the higher aliphatic chain is, the 

lower the biodegradability is. NFC_AA is biodegradable with a kinetic similar to neat NFC, 

whereas biodegradation kinetic of NFC_BA is lower than that of neat NFC. NFC_HA 

elements are not biodegradable. In fact, acetate molecules are needed for the development 

of enzymes/bacteria cellular material (DNA, membrane protein…). This phenomenon can 

explain the higher biodegradation rate obtained for NFC_AA. In the case of NFC_BA, the 

biodegradation rate is slow, and not enough to reach 90% in the limit period of contact test. It 

is clearly showed that kinetics are limited on this sample but not inexistent and may require 

longer contact time to reach 90% of biodegradation. Regarding NFC_HA, the sample is not 

biodegradable after the 65 days of tests. It can be linked to the higher hydrophobicity density 

(as described before). Enzymes had not found a good way during this contact time to adapt 

its degradation process in order to interact with grafted sample and degrade NFC.  

The biodegradability of NFC_AKD obtained by nanoemulsion approach was confirmed 

with similar trend as neat NFC (Figure 3-7). The 90% biodegradation limit was nearly 
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reached within 65 days, by extending the testing time we can forecast that it could have been 

reached easily. 

These results are very interesting because they proved that some samples like 

NFC_C18NCO can be very interesting for their anti-bacterial effect meanwhile keeping 

positive biodegradability. Moreover such results show also that, by adapting the chemical 

treatment, we can monitor biodegradability of NFC samples and controlling its 

biodegradability as such or in final materials like composite or coated paper. 

 

3.4 Conclusions 

In conclusions, this paper shows very promising results for using chemically grafted NFC 

within high value added applications. Indeed NFC is already very innovative bio-based 

material which can strongly enhance mechanical or barrier properties of paper and 

composite. But this study proves that modified NFC can also be provided by anti-bacterial 

properties by keeping their biodegradability. Three kinds of chemical surface treatment were 

tested. Most of them allow achieving better anti-bacterial activity regarding gram+ or gram– 

bacteria, with even a synergistic effect when adding TiO2 nanoparticles. Their 

biodegradability has been analyzed and is conserved, except for one which could be used as 

bio-based monitoring agent to control biodegradability of the final material. These first results 

are, therefore, very promising and should be completed by other chemical grafting and use of 

grafted NFC in final application. Nevertheless such study opens large spectra of research 

studies and applications within the field of functionalized NFC.   
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General Conclusion 

 

The main objective of this work was to develop novel wood derivatives based materials. 

Indeed, current environmental concerns and increasing bio-based materials demands forced 

the Europe to support during these 3 last years the SUNPAP project, dedicated to up-scaling 

of NanoFibrillated Cellulose.  

Concerning our contribution to this project, the main axe was to chemically modify 

nanofibrillated cellulose with new processes never used in literature and to check their 

possible use in some applications leading to added-value products. 

As described all along the manuscript, NFC displays a lot of advantages like web like 

nano-structure and high potential reinforcement. Unfortunately, NFC still has some 

drawbacks that surface chemical modification could overcome. This is in line with our 

manuscript organization following three main chapters with firstly the understanding of this 

raw material, following by innovative chemical grafting of these substrates to finish by 

development of new applications.  

 

Figure 1 : Schematic representation of our project and its implementation 
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As represented by our project structure, the present research work was conducted in a 

progressive and structured way which can be divided in 9 parts. Our aim was not only to fix 

our effort on new processes for chemical modification but also on more fundamental 

comprehension of surface organization. Furthermore as a perspective, we studied several 

applications but also a way to easily dried and re-dispersed the NFC which is considered 

currently as the major drawback of NFC if scaling-up is performed. 

 

Figure 2 : Organization of the different parts constituting the manuscript 

 This organization and this strategy have enabled us to contribute to the field of NFC and 

their chemical modification by delivering key results and analyses whatever applied or 

fundamental researches is concerned (see Figure 2).  

The first chapter, and more precisely the third part, was dedicated to a literature review of 

all chemical reaction performed on NFC. Listing the scientific papers before and after the 

start of the SUNPAP project proves the novelty of the topic with very small amount of 

strategies and exponential interest for such materials. Generally speaking, half of scientific 

papers available in literature have been published after the beginning of the SUNPAP 

project. This obviously proves the pioneer status of this study. 

A clear need of modified materials is expected to overcome drawbacks occurred in 

different application. This third part should be published latter in a special issue of Material 

Reviews Journal (revision in progress) for updating our scientific groups.  

Moreover, this first chapter was very useful for a better comprehension of chemistry of 

cellulosic particles; e.g. accessible hydroxyl group at the surface or the charges present at 

the surface. Moreover, when SUNPAP started, raw materials were not completely defined 

PATENT 
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and to enhance comprehension, we have studied rheology of several type of NFC 

suspension (not shown in this manuscript, conference TAPPI 2010). After the cellulose 

chemistry investigation, it was important to well understand what was feasible with NFC and 

not regarding chemical reactions depending on the type of NFC used (i.e. NFC enzymatically 

pretreated or TEMPO pretreatment). Clear charge determination was also proposed during 

the ACS CELL division 2012 (not shown in this manuscript).  

 

The second chapter proposed three main ways to modify the surface chemistry of the 

NFC. The first one was to performed carbanilation on NFC based on a process developed in 

our lab with different amount of reagent comparing to hydroxyl groups available at the 

surface and their consequence on final properties. Surprisingly it proves the existence of an 

optimum link to the surface re-organization. Different chain length could be tested to confirm 

such organizations.  

The second purpose was to use a non-volatile and easily recyclable solvent for the 

chemical reaction of NFC by using Ionic Liquid (IL) systems, which was never used for 

heterogeneous grafting. Promising results were achieved with anhydrides. Only surface 

grafting occurs as proved by innovative tool (TOF-SIMS) and hydrophobic NFC was 

produced. Such green process should be scaled up after investment for solvent (IL) 

purchasing. The process to have NFC suspension in IL should be also improved. One idea 

could be to use dried re-dispersible NFC as proposed as perspective in our patent and 

appendix 1. 

 The third part was dedicated to a development of a Water Based process for surface 

modification of NFC. Not all results are presented in this manuscript. 

Never in literature such experiments were performed on NFC in order impart hydrophobic 

properties. At least 2 other strategies gave a new way to scientists for chemical surface 

modification of NFC.  

The last step of our project consists in applying these modified NFCs in different 

application fields. Indeed, paper application using NFC modified with AKD was investigated 

in order to impart both hydrophobic properties bring by the AKD and in the same time 

improvement of mechanical properties of paper sheet provide by the addition of NFC. These 

objectives were successfully reached and for low content of modified NFC, we can produce 

hydrophobic paper sheets displaying a higher mechanical resistance and air barrier than 

paper sheets without NFC. This could be very useful for packaging applications for example. 

The second field investigated was the use of NFC modified in ionic liquid systems within 

several bio-based matrices. In fact, three main matrices were tested. All of them were 
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cellulose derivatives (similar to grafted moieties at surface of NFC) and the objective was to 

have a better compatibilization between fillers (NFC or modified NFC) and the matrices. 

Results are promising: after the addition of NFC with only 10%wt. the thermomechanical 

properties are strongly improved. However chemical grafting only slightly improve properties 

(more homogeneous films) and several perspectives can be proposed to show their positive 

impact: gas barrier analyses, influence of post-thermoforming, extrusion process 

nanocomposite, and high quantity NFC nanocomposite.  

The third application was dedicated to high value added application with characterization 

of active functionalities. Indeed, in this last part, the antimicrobial properties were checked for 

several grafted NFC (our 3 strategies). Some of chemical grafting had at least bacteriostatic 

or even bactericidal effect. This is very promising for packaging or medical paper 

applications. However this is the first time that such properties are reached with modified 

NFC. More fundamental studies and questions have to be targeted to understand the action 

of grafting on bacteria growth. What is very interesting is that similar strategies will be 

investigated during the next three years in new Marie-Curie project NewGenPack within our 

research team. Moreover biodegradability properties were also checked. The results are also 

very promising and in conclusion, we can monitor the biodegradability of NFC depending on 

the chemical grafting which can be very useful for some applications. 

 
 Regarding SUNPAP project, which would like a process able to be scaled-up, isocyanate 

chemical grafting was not adapted for a scale-up process due to the large amount of toxic 

solvent. Ionic liquid procedure was very promising but it needs a first high investment (not 

possible within this project). The difficulty to have NFC in IL suspension was also another 

reason why this strategy was not selected for production on a larger scale. Regarding NFC 

modified by AKD, it was possible to up-scale. So a proof of concept has been targeted and 

experimental devices have been designed during the second part of our study. Two trials 

with a 15L reactor batch were performed with enzymatically treated NFC. The ensued 

material, were not chemically grafted by thermal activation in order to be distributed to other 

partners of the project and be “activated” within their process.  
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Figure 3 : Proof of concept for scaling-up of nanoemulsion based process 

 

Several applications were tested with this material like use in foam coating at VTT 

(Finland), in packaging curtain coating at CTP (France), health and safety measurement at 

BIOSS (Finland), etc... Unfortunately some misunderstandings or other priority within trials 

limited understandable results. Only anti-microbial and biodegradability were promising. 

Moreover last results (detailed in our scientific) paper proved the interest of tempo-oxidized 

NFC. Unfortunately, not enough raw materials of tempo NFC were delivered, but for sure, it 

should be a clear perspective for this up-scaling strategy.  

Furthermore, our experimental device has been used by other partners (University of 

Aveiro, Portugal) and as a conclusion; it allows us proving the feasibility of Nano-emulsion 

strategy up-scaling.   

 

To summarize the contribution of this work to the field of NFC, it can be said that: t has 

brought: 

(i)               Important progresses and comprehension in chemistry of NFC by 

developing two new process for surface chemical modification  
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(ii) Promising solutions to impart hydrophobic properties and new 

functionalities in papermaking industry and composite applications 

 

Numerous meetings and collaborations which have nourished our work were not reported 

here, for example writing of deliverable and milestones for SUNPAP project. Moreover, we 

participated to ACS meeting (Spring 2012) which was very useful to have a large view of the 

potential of NFC. Thanks to all meetings and people working on this field, NFCs seem to be 

very promising raw materials to produce high added-value products.  

SUNPAP project and also our work was the first European project only dedicated on NFC 

production and modification.  

As already explained, several perspectives can be listed and we have decided to propose 

you the most promising in Appendix 1. Indeed, a method was developed to dry and re-

disperse NFC, which was impossible at the beginning of the project. This method was 

patented in June 2012 “Procédé de fabrication d'une poudre de cellulose fibrillée adaptée à 

être dispersée en milieu aqueux, Patent Number : FR12/55997” and can be very interesting 

for producers of NFC in order remove all water present in NFC suspension and have a huge 

gain in transport of this material. It can be also very useful for chemical grafting, avoid 

solvent exchanges procedures.  

So, even if still lots of ideas are bumping as soon as new results are achieved, our study 

should help our scientific community with several published paper and congresses about 

innovative results and analyses.  

We hope the present manuscript will contribute to (i) scientists which work on chemistry of 

these nanofillers and applications and (ii) attract more people coming from industry to be 

wowed by this material as we can be.  
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1. Water Re-dispersible Dried Nanofibrillated 

Cellulose 

Karim Missoum, Julien Bras, Naceur Belgacem 

Laboratory of Pulp and Paper Science (LGP2) – 461, rue de la papeterie, BP65, 38402 St-
Martin-d’Hères Cedex, France 

 

Abstract 

With ecofriendly perspectives in mind, the present study reports for the first time a method 

to obtain water re-dispersible dried NFC using freeze-drying. No chemical surface 

modification was required to get this kind of products. Salt addition (NaCl) strategy has been 

selected to block and then to regenerate hydrogen bonds during the drying and the re-

dispersion steps, respectively. Several samples were produced at different pH (i.e. 4, 6, 8 

and 10). All the re-dispersed NFC were characterized by different techniques (e.g. FE-SEM, 

XRD, EPMA-EDX) to check the effect of salt on NFC aggregation. The interactions between 

NFC and sodium chloride at different pH conditions have been discussed and the rheology of 

the re-dispersed NFC suspension has been performed. All the results prove a perfect water 

re-dispersion at pH 8 and exactly similar suspension is obtained after water dispersion of 

dried NFC following our procedure. These results are very promising for increasing 

application of NFC. 
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1.1 Introduction 

Cellulosic material has been studied and applied for a while thanks to its abundant 

production by photosynthesis and its particular properties. Since the last decade 

nanocelluloses know a great interest, as witnesses the appearance of more or less one 

scientific paper every day. Two kinds of nanocelluloses are usually available. The first one is 

obtained from a hydrolysis of cellulose fibers to collect NanoCrystalline Cellulose (NCC or 

whiskers) (Habibi et al. 2010; Klemm et al. 2011; Siqueira et al. 2009), whereas the second 

is produced after a mechanical disintegration of cellulosic fiber pulp through a high-pressure 

homogenizer (Siqueira et al. 2009; Klemm et al. 2011; Pääkkö et al. 2007) and called micro 

or NanoFibrillated Cellulose(NFC). This study deals with the second type (NFC), whose 

preparation was firstly achieved in 1983 by Tubark et al. (Turbak et al. 1983) and Herrick et 

al. (Herrick et al. 1983). Since that time, nanofibrillated cellulose was widely investigated and 

used in several applications with very outstanding and promising impact as explained by 

recent reviews or books (Belgacem and Gandini 2009; Mohanty et al. 2000; Siró and 

Plackett 2010). Several pre-treatment on cellulose fibers can be also applied before 

mechanical shearing such as enzymatic (Pääkkö et al. 2007; Siró and Plackett 2010; 

Siqueira et al. 2010c) or chemical pretreatment (Isogai et al. 2011; Saito et al. 2007). This 

creates new families but also reduces the energy consumption and facilitates the preparation 

of NFC announced as industrially available in 2012. 

 

However, the hydrophilic nature of cellulosic limits their applications such as coated 

products (Lavoine et al. 2011) or within composites (Siró and Plackett 2010; Hubbe et al. 

2008; Siqueira et al. 2010d; Siqueira et al. 2010b; Kaith and Kaur 2011; Eichhorn et al. 2010) 

due to two main drawbacks: (i) they generally are high viscous aqueous suspension at low 

solid content and (ii) they undergo irreversible aggregation once dried (films or powder). This 

is mainly due to the capacity of NFC to form hydrogen bonds between these high specific 

area nanofibers. Moreover, hornification phenomenon during drying, reported by several 

authors (Hult et al. 2001; Iwamoto et al. 2008; Young 1994), reveals the formation of 

additional hydrogen bonds between amorphous parts of the cellulosic nanofibers, thus 

contributing to the aggregates irreversible formation. In addition, more stable hydrogen 

bonds are formed during drying and cannot be “broken” after re-wetting. In order to 

overcome this  drawback, different solutions were studied, but the most developed one is the 

surface chemical modification (Gandini and Belgacem 2011; Krouit et al. 2008; Lonnberg et 

al. 2011; Pahimanolis et al. 2011), which aims at transforming hydroxyl groups borne by 

cellulose macromolecules at the surface of NFCs into other functions thus limiting (or even 
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totally avoiding) the hydrogen bonds establishment thanks to esterification (Missoum et al. 

2012a; Stenstad et al. 2008), carbanilation (Siqueira et al. 2010a) etc... Nevertheless, such 

solutions are difficult to up-scale and costly affects the ensuing NFC. However, the fact that it 

is not possible to use them at dry state without tendency to form irreversible aggregates or 

even film-like material strongly limits their transport and their applications. 

 

To the best of our knowledge only very few studies proposed a solution of getting dry non 

aggregated NFC. Eyholzer et al. (Eyholzer et al. 2010) have reported, for the first time in 

2010, the preparation of NFC powder by carboxymethylation of the initial substrate. 

Unfortunately, this strategy corresponds to a chemical treatment of NFC. At the end of 2011, 

a spray drying strategy has been proposed for the drying of nanocellulose (Gardner et al. 

2011; Peng et al. 2012). A powder can be obtained using this strategy but the authors have 

not discussed clearly about the possibility to re-disperse the NFC powder in water and the 

preparation of aggregates-free NFC suspensions.  

 

Similar problems have been encountered when working with cellulose nanocrystals and 

solved thanks to an invention developed and patented very recently by FP innovation (Beck 

et al. 2009). Thus, dried NCC re-dispersable powder is now available within CelluForce 

JointVenture. However, the charge density and its chemical nature are totally different 

between NCC (i.e high amount of SO3
-) and NFC (low amount of -COO-). This feature is due 

to the differences in the isolation process. In fact, NCC arises from sulfuric acid hydrolysis 

which induces the grafting of sulfate groups of the surface, whereas NFC are mechanically 

isolated and their charge originates from carboxylic groups of initial raw material (borne by 

hemicelluloses) or formed by TEMPO pretreatment. Moreover, NFC entanglement (much 

higher aspect ratio than NCC) completely changes the process of drying and re-dispersing. 

That is why the present work proposed a novel method to dry NFC by keeping them easily 

water re-dispersible using a mechanical dispersion. Thus, for the first time, dried NFC 

particles are obtained without any chemical surface modification or adsorption, but only by 

adding a hydrogen bond blocker in the suspension before drying. Morphological, structural 

and rheological characterizations were performed before and after drying and re-dispersion. 

Influence of pH was also investigated. 
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1.2 Experimental 

1.2.1 Materials 

Sodium chloride (NaCl) salt, hydrochloric acid (HCl) and sodium hydroxide (NaOH) 

normadose were supplied from Aldrich (France). Dialysis membranes (Spectra/Por3 3,500 

Daltons) were purchased from SpectumLabs (USA). Deionized water was used in all 

experiments. Bleached wood pulp was kindly supplied by Domsjö (Finland). 

1.2.2  NFC production 

Nanofibrillated cellulose suspension was produced from Domsjö pulp. A suspension of 

bleached Domsjö fibers (2.0%wt.) was enzymatically pretreated with endoglucanase 

(Cellulase) during 1h at 50°C. Then, the slurry was fibrillated using a Masuko Grinder© 

(Japan). Size reduction of the fibers into nanofibrillated cellulose was obtained after 10 

passes between the rotating and the static stones at 1,500 rpm. Solid content of the NFC 

suspension is around 2.6% (w/w), which gives systems with optimal viscosity level.  

1.2.3 Scanning Electron Microscopy (FE-SEM) 

A scanning electron microscope equipped with a field emission gun (FE-SEM), model 

Zeiss Ultra column 55 gemini, was used to observe NFC. The accelerating voltage (EHT) 

was 3 kV for a working distance of 6.4 mm. A droplet of diluted suspension was then 

deposited onto a substrate covered with carbon tape and coated with a 2 nm layer of Au/Pd 

(Gold/Paladium) to ensure the conductivity of all samples. 

 

1.2.4 Electron Probe MicroAnalysis (EPMA) 

In order to characterize the NFC and the salt added in the aqueous suspension, 

microscopy analyses were performed using a SEM coupled with an EDX (Energy Dispersive 

X-Ray) detector, in order to track NaCl distribution on the sample surface. To perform 

analyses, a voltage of 15 kV combined with a low vacuum (5.6x10-4 Torr) were applied. One 

scan is performed during 0.971s during 60s. One drop of each suspension was deposited on 

a carbon tape substrate. 

1.2.5 X-Ray Diffraction (XRD) 

The (wide-angle) X-Ray Diffraction analysis was performed on freeze-dried NFC powder 

containing or not NaCl. The samples were placed in a 2.5mm deep cell and measurements 

were performed with a PANanalytical, X'Pert PRO MPD diffractometer equipped with an 

X’celerator detector. The operating conditions for the refractometer were: Copper Kα 
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radiation (1.5418 Å), 2θ (Bragg angle) between 5 and 60°, step size 0.067°, counting time 

90s. The degree of crystallinity was evaluated using the Buschle-Diller and Zeronian 

Equation (Equation 1) (Buschle-Diller and Zeronian 1992) :  

2

11
I

I
I c 

 Eq. 1 

Where: I1 is the intensity at the minimum (2θ = 18°) and I2 the intensity associated with the 

crystalline region of cellulose (2θ = 22.5°). All measurements were made at least in 

duplicates. 

1.2.6 Rheology measurements 

Rheological measurements of aqueous NFC suspensions were carried out using a 

controlled stress rheometer (MCR 301, Anton Paar Physica, Austria) calibrated and 

certificated, with a parallel plate fixture (diameter 25mm with gap of 1mm) at 20.0°C, 

controlled by a Peltier system. A glass solvent trap was used to prevent water evaporation. 

Flow curves were plotted from the corresponding transient tests (apparent viscosity, (Pa.s), 

vs. time at constant shear rates,  (s-1)), in a wide range of shear rates, i.e. from 0.001 to 10 

s-1. Flow curves were carried out in duplicate, for each tested storage time. 

1.2.7 Water content measurements 

The water content was determined after a drying in an oven at 100°C during 4h to ensure 

the total evaporation of water present in the samples. The weight was left to reach constant 

value for each water content determination. Each measurement was replicated three times 

and gave for each sample a solid content of 98%. 

1.2.8 Preparation of dried NFC powder and redispersion 

The NFC suspension at 2% is diluted by adding 100mL of distilled water, before 

acidification of the medium (by adding HCl solution at 0.1M), in order to decrease the pH to 

2.8. This operation allows getting the H-NFC form and starting with the same pH for all 

suspensions. Then, sodium hydroxide solution is added to reach a pH value of 4, 6, 8 and 

10. The quantity of the added NaOH is very low, which avoid impacting the ionic force of the 

system. All suspensions were freeze-dried in the same conditions, i.e. 2 days at -81°C under 

a pressure of 0.18mbar, with a freeze-drying apparatus. Each powder got after freeze-drying 

was re-dispersed in distilled water to reach a concentration of 1%wt. using Ultra-Turrax T25 

device. The mechanical shearing is applied during 30 seconds. 
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1.3 Results and Discussions 

 
The main target of this study is to obtain water re-dispersible NFC after a drying, in order 

overcome the drawbacks limiting the use of NFC in several fields of applications and 

facilitate their transport. For achieving such a target, the selected chemical should avoid (or 

at least limit) hydrogen bonds but also be easily dissociated from NFC after re-dispersion for 

retrieving their hydrogen bond linked to their properties. 

1.3.1 Dried NFC powder 

It is well known that NFC have some charges at their surface (Wågberg et al. 2008; 

Wågberg et al. 1988; Wågberg et al. 1987) due to the carboxylic groups present in 

hemicelluloses macromolecules (Iwamoto et al. 2008). These groups (-COOH) positively 

influence inter-NFC hydrogen bonding. Masking such moieties could limit the aggregation of 

the NFC. COOH groups (pK around 8.5) display labile hydrogen. Thus, adjusting the pH 

value of the aqueous suspensions would yield to the carboxylate form. The quantity of the 

added NaOH is very low, which avoid impacting the ionic force of the system. The ensuing 

negatively charged particles will repulse each other, thus producing improved dispersed 

NFC-. Adding monovalent cation (X+) and drying the resulting suspension will produce X+--

NFC form, which should limit the formation of hydrogen bonds during the drying process and 

make easy the re-dispersion of the dried NFC.  

Sodium chloride was used to obtain Na+ as counter-ion due to the easy dissociation of this 

salt in water whatever the pH. Different samples were also prepared and characterized, as 

illustrated by Figure 1-1. Actually, three different parts of each suspension were isolated. The 

first one is freeze-dried suspensions without NaCl, corresponding to reference system at 

different pH and identified as NFC 1. The second part (NFC2) is separated at different pH 

with an ionic strength of 10mM controlled by the addition of NaCl salt into the slurry. The third 

part (NFC 3) corresponds to NFC 2, which was submitted to dialysis during 24h using a 

membrane to remove the salt present in the suspension. The three samples were then 

characterized. 
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Figure 1-1 : Process for drying NFC using freeze-drying device 

Pictures of the different suspensions and powder obtained are summarized in Figure 1-2, 

which represents the treated and untreated NFC (at different pH) after re-dispersion in water. 

These photos exhibit clearly the effect of salt (added before drying) on the stability of the final 

aqueous suspension. After 30 seconds, the suspension obtained from the NFC1 is unstable, 

i.e. a sedimentation effect is observed, whereas the NFC2 is still well dispersed and stable 

after 3 months. 

 

 
Figure 1-2 : Pictures of the different samples obtained for each sample 

The dimensions of different NFC (dried and re-dispersed) have been analyzed by electron 

microscopy. The investigation of the reference sample (NFC 1) (i.e. same treatment as the 

other samples but without NaCl salt addition) is presented in Figure 1-3. At low magnification, 
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it shows the presence of aggregates whatever the pH value. This is due to formation of 

hydrogen bond at different pH and non-uniform re-dispersion by mechanical treatment. 

  

 
Figure 1-3 : FE-SEM pictures for samples of dried NFC 1 at (a) pH 4, (b) pH 6, (c) pH 8 and (d) pH 10 

Regarding NFC2, FE-SEM characterizations, presented in Figure 1-4, show a more 

homogeneous macro-structure (at 200µm scale), in comparison to the previous samples 

(NFC1). Deeper analyses at nano-scale point out clearly the presence of salt but also the 

conservation of the nanometric dimension of NFC with a diameter around 23 +/- 8nm, 

independently from the pH value. This value is completely similar to that observed for neat 

NFC (not shown) of 22 +/- 6nm, which suggests that no aggregation has occurred and 

proves the positive effect of NaCl addition in the suspensions acting as hydrogen binding 

blockers. However, salt is still present even if, qualitatively, it seems that NaCl crystals are 

less present for the sample with a pH of 8 (see white dots all around the dried drops in Figure 

3).  
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Figure 1-4 : FE-SEM pictures at macro-scale (left) and nano-scale (right) for samples of NFC 2 
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Figure 5 shows micrograph obtained, by FE-SEM analyses, after dialysis (NFC 3). The 

nano-scale is well conserved with an average diameter around 21 +/- 9nm. Moreover, after 

24h of dialysis, no residual NaCl salt is observed by EPMA-EDX. 

 

 
Figure 1-5 : FE-SEM pictures characterizing samples from sample NFC3 after dialysis 

Concerning structural properties, Figure 1-6 summarizes the different patterns obtained 

thanks to X-Ray Diffraction measurements of NFC2. It confirms that all samples have similar 

properties in terms of crystallinity index whatever the pH and the drying process. Indeed the 

crystallinity index of cellulose is not affected by the presence of NaCl in the media. Thus, Ic 

was found to be 75% for the reference (NFC1) and 74% for NFC2 with salt. For the other 

samples, values of 74.7%, 74.3%, 74.0% and 73.0% were measured for samples from NFC2 

with pH equal 4, 6, 8 and 10, respectively, which proves that pH does not influence NFC 

structure. The presence of NaCl salt in the suspension was detected through the 

characteristic peaks at 2 = 26.9°, 36.1°, 45.2° and 55.7° corresponding to (111), (200), 

(220) and (222) Miller indices respectively. 
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Figure 1-6 : X-Ray diffraction patterns and for samples obtained from sample NFC2 for (a) pH 4, (b) pH 6, 
(c) pH 8 and (d) pH 10 

In conclusion, the crystalline structure was not altered and the quality of crystals presents 

in NFC is roughly the same. Thanks to FE-SEM characterization, the nano-scale size is 

conserved for all the freeze-dried in the presence of NaCl samples, re-dispersed and 

dialyzed. Deeper investigations for the mechanism of interaction between the salt and NFC 

were performed using an EDX system. 

 

1.3.2 Semi-quantitative characterization by EPMA-EDX 

As already mentioned, cellulose nanofibrils display some charges at their surface due to 

the presence of residual hemicellulose attached to the cellulose macromolecules. These 

hemicelluloses are mainly glucomanane type for softwood. Based on the pKa data of 

carboxylic groups, the carboxylate form can be obtained from a pH higher than 5. The totality 

of carboxylate groups is obtained for a pH value around 7-8. For instance, the 

carboxymethylcellulose can precipitate in neutral conditions and be well dispersed in basic 

aqueous media. In the present work, EPMA-EDX studies of the samples can be a good way 

for a qualitative determination of an optimal pH value. Indeed theoretically, the maximum 

complexation between carboxylate groups and Na+ ions reached for a certain pH will also be 

the best solution for blocking this kind of hydrogen bonds. The EPMA-EDX device can follow 

the proportion of an atom with an atomic number strictly superior to 11 in their non-ionized 

state. The relative quantity of carbon is more or less the same in all NFC samples whereas 

the relative quantity of non-ionized sodium would be different for different pH conditions due 
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to the complexation effect. Thus, an “index of non-complexation” between carboxylate 

groups and Na+ ions can be determined using the ratio INa/IC for each pH values and with the 

assumption that similar ratio of NaCl/NFC has been used during mixing. When the value is 

high, there are more Na atoms detected, indicating that there is a higher amount of free Na+ 

cations. The Table 1-1 and Figure 1-7 summarize all data obtained for NFC2and NFC3 

(dialyzed materials) samples. 

 

Table 1-1 : Intensity value of detected atom using EPMA – EDX. Determination of complexation index 

Samples I carbon I sodium I chlore INa / IC ICl / IC 

N
F

C
 2

 
N

o
n

 -
 d

ia
ly

ze
d

 pH 4 1346 116 170 0.086 0.126 

pH 6 1402 70 106 0.050 0.076 

pH 8 1494 26 27 0.018 0.018 

pH 10 1454 192 279 0.132 0.192 
 

N
F

C
 3

 
D

ia
ly

ze
d

 

pH 4 1300 31 43 0.024 0.033 

pH 6 1387 24 34 0.017 0.025 

pH 8 1386 22 33 0.016 0.024 

pH 10 1414 42 77 0.030 0.054 

 

Figure 1-7 presents the non-complexation index (Inc) of the investigated samples and 

shows that the Na-NFC form seems to have the lowest value (considered as optimal in our 

case), for a pH around 8. First, at pH 4, no carboxylate groups are available and therefore no 

complexation can take place. It characterizes NaCl added in the solution, which have not 

been exchanged as counter-ion. At pH 6, few carboxylate groups are available, thus inducing 

some complexation events, which explain the diminution of the index under scrutiny. 
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Figure 1-7 : EPMA-EDX analysis obtained for NFC2 at (a) pH4, (b) pH6, (c) pH8 and (d) pH10 (top) followed 

by the index of complexation curves function of the pH obtained from ratio Na/C for samples of NFC 2 
(plain line) and NFC 3 (plotted line) 

The optimal pH value for complexation is obtained at pH 8, as expected from the pKa 

values of these groups. Thus, at this pH range, most of carboxylate groups are available and 

consequently the maximum of complexation can be reached. Indeed, the “index of non-

complexation” at this pH is close to zero. At pH 10, the index value increases. All chloride 

ions from NaCl are associated with sodium ions (Na+) coming from the excess of sodium 

hydroxide (NaOH) solution added to regenerate NaCl salt. In conclusion, minima obtained in 

the Inc curves and the optimal complexation is determined for a pH around 8, which 

correspond to the highest amounts of carboxylate functions screened by the Na+ ions.  
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Moreover, ion-dipole interactions play an important role in such phenomena, as in the 

case of salts dissolution in polar solvents (e.g. NaCl in water). In these cases, the free 

energy required to disrupt the strong attraction between solute particles is supplied mainly by 

the charge-dipole interaction between the solute particles and the solvent molecules. It is 

well-known that cellulose display a permanent dipole induced by the hydroxyl groups, which 

could be comparable to water interactions. The number of hydrogen bonds, which are 

formed during drying of cellulose particles, can be strongly reduced thanks to ion-dipole 

interactions when NaCl is added, as shown in Figure 8. Indeed, in water, the dissociation 

phenomena can give Na+ and Cl- ions. Na+ can easily interact with the 2- of Oxygen atom 

present in cellulose (cf. Figure 1-8), whereas Cl- enters in interactions with + of Hydrogen 

atoms directly linked to the previous Oxygen atom. Consequently, the hydrogen bond 

formation in cellulose are blocked (screening effect) when it is dried. These ion-dipole 

interactions cannot be broken after freeze-drying of our substrates. However, these kinds of 

interactions are not strong enough to impede the re-dispersion of the NFCs. In fact, the 

formed charge-dipoles at dry state can be easily removed when polar solvents (water, for 

instance) is added again. 

  

 

Figure 1-8 : Ion-dipole interactions between nanofibrillated cellulose and NaCl salt at acting as “hydrogen 
bond blocker” 
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In comparison to the patent on dried NanoCrystalline Cellulose, developed by FP 

Innovation (Beck et al. 2009), only the re-dispersion in different aqueous solvent was 

performed to check the best condition to re-disperse the NCC. A very recent scientific 

publication paper (Beck et al. 2012) gives much more details on the process in order to dry 

and re-disperse NCC without agglomeration. As said before, NCCs are rigid particles in 

comparison to NFCs that are more flexible, longer material and display entanglement ability. 

That is why mechanical shearing step for re-dispersion of NFC is necessary as the 

sonication step to obtain individual colloidal suspension of NCC. Moreover, in the case of 

NCC, a large amount of sulfate group (SO3
-) is present at their surface and constitutes the 

main reason for salt adsorption. Indeed the re-dispersion is effective whatever the pH due to 

the low pKa value of HSO3/SO3
- couple. After the screening by the salt on the anion form of 

NCC, it is impossible to form hydrogen bonds, during drying step, which are responsible of 

aggregation. In our case, there are two main phenomena, the content of carboxylic group 

present on NFC and the ion-dipole interactions between hydroxyl groups of cellulose and the 

salt as described before. In conclusion, mechanism involved to avoid aggregation is 

completely different regarding NCC and NFC. Our study is still very innovative and promising 

as proved by our patent application (Missoum et al. 2012b). Indeed this study emphasizes 

the increase of ion-dipole interactions linked to the high specific area of NFC. 

In the previous scientific publications about dried NFC, characterizations of physical 

properties were not performed after NFC re-dispersion to be sure that treatment does not 

altered them. In our study, rheological behavior was checked to ensure the good re-

dispersion of NFC and the impact on viscosity before and after removing salt from the re-

dispersed suspension in comparison to a reference. 

 

1.3.3 Rheology measurements 

As explained, the idea is to limit hydrogen bond during drying but also “regenerate” these 

OH bond once NFC have been re-dispersed to achieve similar properties between never 

dried NFC and dried NFC. Rheology could help to check this point. Indeed neat NFC 

suspension has high viscosity at very low concentration. Theoretically, the higher is the 

viscosity the more cohesive is the gel. In such a case, the hydrogen bond concentration is 

also higher. Moreover, rheology measurements can be also helpful to check the aggregation 

effect. The higher is the aggregation, the stronger are the hydrogen interactions, and 

consequently the lower is the suspension viscosity. As presented in Figure 1-9, all the 

investigated suspensions present the same rheo-thinning behavior. For samples of the NFC1 

(without salt), the viscosity is different and it is function of the pH and shear rate values. This 
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observation can be correlated to the amount of the aggregates formed during the drying of 

NFCs, as shown in Figure 2. However, all the samples from NFCs 2 – 3 (b/c graphs) behave 

similarly whatever the pH value.  

 

 
Figure 1-9 : Rheology curves – viscosity function of shear rate for sample of (a) NFC1, (b) NFC2 and (c) 

NFC3 

Figure 1-10 shows clearly the effect of NaCl addition on the rheological properties during 

the freeze-drying process. For pH 4, the viscosity decreases in the order of NFC3, NFC2, 

and NFC1, respectively. The salt addition induces a rheo-thinning behavior for the studied 

suspensions, which allows obtaining a more fluidic system. The strong diminution in viscosity 

concerning the sample from NFC1 is due to the agglomeration and aggregation effect of the 

NFC. At pH 6 and 8, the NFC2 and 3 suspensions are similar. In this case, the consumption 

of the salt, revealed by EPMA-EDX characterizations, indicates that there is low or even no 

impact of the NaCl on the rheological properties. However, for the un-treated NFC at pH 8 a 

strong diminution (two orders) is observed due to the aggregation phenomenon of 

nanofibrillated cellulose. Regarding the pH 10 we suppose that there is a swelling of the 

nanofibers in these conditions, which yields the same response whatever the shear rate.  
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Figure 1-10 : Rheology curves – viscosity function of shear rate comparing the three samples NFC1-2-3 at 

each pH (a) pH 4, (b) pH 6, (c) pH 8 and (d) pH 10 

In conclusion, the addition of NaCl crystals decreases the suspension viscosity, thus 

influencing positively the rheological properties. In one hand, crystals can decrease the 

viscosity at low pH (4 to 6) without affecting the structure of NFC during the process of 

drying, which was proved by rheological measurements on the dialyzed NFC after drying and 

re-dispersion steps. In other hand, NaCl crystals in good conditions of pH are very useful for 

the stabilization and the screening of carboxylate groups to avoid the aggregation effect.  

The present study is the only one in literature dealing with a drying method of NFC in 

which no aggregation is observed and where such physical properties were checked after 

the re-dispersion like viscosity of the suspension. 
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1.4 Conclusion 

 
Basing on charges present on NFC and dipole interactions between hydroxyl groups, the 

addition of a monovalent crystal NaCl was effective for the drying of nanocellulosic fibers 

thanks to the screening of these charges close to a pH value of 8 and the interactions 

developed between hydroxyl groups and NaCl molecules. The salt used in this paper act as 

a hydrogen bond blocker which limits aggregation effect observed usually for NFC once 

dried. To the best of our knowledge, this is the first time that nanofibrillated cellulose was 

completely dried and easily re-dispersed without any chemical reaction and by conserving 

their properties in suspension.  
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De nos jours, des interrogations se font de plus en plus ressentir face à la diminution des 

matières fossiles et non renouvelable. Les besoins en ces matières ne font qu’augmenter 

depuis ces 10 dernières années avec l’émergence de pays maintenant industrialisés tel que 

la Chine ou le Brésil. Ainsi, on peut constater un intérêt croissant des politiciens, industriels 

et consommateurs vis-à-vis des matériaux biosourcés afin de pallier à ce manque futur.  

Par exemple, les matériaux plastiques d’emballage sont majoritairement des produits 

issus de ressources pétrolière et donc non-renouvelables. Ainsi différents projets ont pu être 

financés par l’Europe afin de développer des produits innovant biosourcés (i.e. 

FlexpackRenew, SustainPack etc…).  

 

Le projet SUNPAP est l’un des premiers qui a pu se focaliser sur les nanofibrilles de 

cellulose. L’émergence de cette nouvelle matière ces dernières années en fait un matériau 

très intéressante mais encore peu exploités dans l’industrie. Ainsi très peu d’applications ont 

pu être développés et mise en pratique au-delà d’une échelle laboratoire. Ceci est 

principalement due au fait qu’une production massive ne peut être actuelle proposée. 

Ainsi, le projet SUNPAP s’intéresse à l’emploi de ces nanofibrilles de cellulose dans 

diverses applications. Par exemple le développement de papiers spéciaux utilisant des NFC 

et apportant une seconde fonctionnalité (papier antibactérien par fonctionnalisation des 

NFC). L’étude s’est donc plus focalisée sur la production de produits à forte valeurs ajoutées.  

 

La production de nanofibrilles est maintenant bien connue et a été pour la première fois 

développée en 1973. Cependant, ce n’est que 20 ans plus tard que les applications de cette 

matière ont pu être prises en considération. Partant d’une suspension fibreuse de cellulose, 

cette dernière subie un traitement mécanique impliquant des forces de cisaillement 

considérable. La fibre est donc « pelée » en surface afin de séparer les fibres en nanofibrilles 

de cellulose en constituant unitaire plus fin appelé nanofibrilles de cellulose.  

De nombreux procédés et techniques ont pu être développés afin de faciliter la production 

de NFC et limiter le cout de production. Ainsi le procédé étant très énergivore, on retrouve 

essentiellement 2 types de prétraitements sur la fibre de cellulose (i) enzymatique permettant 

une fibrillation plus aisée lors du traitement mécanique et (ii) oxydation TEMPO qui lui vient 

oxyder la fibre et la fragiliser fortement. 

 

Les NFC présentent de nombreux avantages mais également des inconvénients. En effet, 

une fois produites, la surface spécifique de ce matériau est considérablement accrue ayant 
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pour conséquence de développer de nombreuses interactions hydrogènes. Ainsi un gel est 

obtenu et le taux de matière sèche classiquement atteint est compris entre 2 et 5% en poids.  

Afin d’augmenter le taux de matière sèche de la suspension plusieurs méthodes peuvent 

être envisagées. Celles retenues dans le cadre du projet SUNPAP est la modification 

chimique de surface. En effet, il est important de ne pas modifier le cœur des nanofibrilles 

afin de conserver la morphologie fibrillaire. Dans cette optique plusieurs stratégies ont pu 

être étudiées dans la littérature. La Figure ci-dessous résume les trois voies de modification 

chimique de surface applicables et appliquées aux NFC.  

Comme on peut le voir très peu de stratégies utilisent un greffage dans des conditions 

vertes facilitant une production à grosse échelle. Dans un but de développement plus 

« durable », le DoW (Description of Work) du projet SUNPAP, préconise l’emploi de solvants 

non toxique. Dans le cadre de cette thèse de nouvelles possibilités de greffage ont pu être 

considérées et plusieurs applications ont pu être étudiées. La Figure 2 reprend ainsi la 

stratégie adoptée tout au long de ces trois ans de thèse.  

 

 

 

Le Chapitre 1 qui introduit plus en détails notre thématique et fait l’état de l’art des 

nanofibrilles de cellulose et des modifications chimique de surface réalisées, permet de 
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mieux identifier les différents verrous scientifiques auquel nous pourrions être confrontés lors 

du développement des stratégies de modifications ciblées.  

Le Chapitre 2 a pour but de présenter de nouvelles stratégies de modifications dont la 

première partie était de se familiariser avec le greffage des NFC en se basant sur un 

procédé de modification maitrisé au sein du laboratoire (Article 1). Les deux autres parties se 

focalisent quant à elles à la réalisation d’un greffage dit « vert » afin de répondre aux 

attentes du projet et étant innovant. De ce fait, les liquides ioniques définis comme solvant 

vert et recyclable ont pu être étudiés (Article 2) ainsi qu’un greffage à base d’eau 

(Confidentiel).  

Le Chapitre 3 évalue la possibilité d’utiliser ces NFC vierges ou modifiées dans différentes 

applications. Ainsi on peut retrouver des applications papetières (Article 4), composites 

(Article 5) ou antimicrobiennes (Article 6).  

Une dernière partie placée en Annexe constitue des points de développements et 

d’applications qui pourraient avoir un impact non négligeable mais sortant du cadre de la 

modification chimique. En effet, l’annexe 1 est dédié à un procédé de séchage de ces 

nanofibrilles permettant leur re-dispersion après séchage qui a pu être breveté.  

 

Chaque chapitre est constitué de 3 articles qui se rapportent à la fois à un coté appliqué 

mais aussi plus fondamental. La Figue ci-dessous positionne les différentes parties selon 

ces deux axes.  

 

 

Plus en détails, le Chapitre 1 m’a permis de me familiariser avec les nanocelluloses qui 

m’étaient encore inconnu (NCC vs. NFC – Comment les produire – Caractéristiques 

CONFIDENTIEL 
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principales de chacun des matériaux etc…). Une fois les bases définies, nous avons pu nous 

intéresser plus en profondeur aux nanofibrilles de cellulose qui constituent la matière 

première de cette étude et plus précisément les différents moyens utilisés dans la littérature 

afin de pouvoir modifier physiquement ou chimiquement leurs surfaces sans pour autant 

altérer leur morphologie fibrillaire. 

 

Trois voies de modifications était disponibles pour modifier les NFC pour nous focaliser 

sur l’un d’entre eux : le greffage de molécule. En effet, la mise en œuvre de ce type de 

modification chimique semble être la moins complexe pour une éventuelle modification 

chimique à plus grande échelle.  

 

Les nanofibrilles de cellulose peuvent être produites selon différentes méthodes, 

prétraitement et sources. Une différence majeure réside entre les NFC obtenues par le biais 

d’un prétraitement enzymatique ou d’un prétraitement chimique TEMPO par exemple. Leur 

morphologie et propriétés sont compléments différentes. Il est important de noter qu’une fois 

produites, les suspensions de NFC dans l’eau peuvent atteindre une concentration comprise 

entre 2 et 5% massique. Afin d’augmenter le taux de matière sèche de ces suspensions de 

NFC (ce qui serait très utile pour certains procédés), la modification chimique de surface 

peut être envisagée comme solution. 

Dans ce Chapitre 2, nous avons voulu tout d’abord maîtriser le greffage de ces  

nanofibrilles de cellulose en contrôlant les effets de quantités de réactifs et en maîtrisant 

l’organisation et la caractérisation des greffons à leur surface. Ensuite nous avons souhaité 

proposé de nouvelles stratégies complétements innovantes en s’appuyant sur des solvants 

dits « verts » (les liquides ioniques) ou en proposant de greffer ces NFC en milieux aqueux. 
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Dans la première partie de ce chapitre (Papier 1 - Publié dans Cellulose - 2012), un 

greffage de surface des NFC a été réalisé dans différentes conditions (variation du ratio 

molaire entre agent de greffage et groupement hydroxyle). Le protocole ainsi établi a été 

adapté d’après une méthode développée au sein du laboratoire et utilisée sur les 

nanocristaux de cellulose et les nanofibrilles de cellulose mais avec une seule quantité de 

greffons. L’organisation de surface de chaînes grasses obtenues par carbanilation des NFC 

a ainsi pu être étudiée en détail et il a été démontrée que cette organisation influence 

complétement les propriétés finales des NFC. 

 

Ces travaux montrent que les NFC peuvent être efficacement modifiées par l’emploi d’un 

isocyanate à chaine longue (i.e. 18 Carbones) quel que soit la quantité de greffons. La 

densité de greffage augmente avec l'augmentation du rapport molaire entre l'agent de 

greffage et le nombre de groupements hydroxyle présent à la surface de la cellulose. Grâce 

aux analyses XPS combinées aux analyses élémentaires des échantillons greffées, un degré 

de substitution interne a pu être établi pour la première fois (DSI). Il permet de quantifier les 

molécules greffées à la surface NFC vis-à-vis de celle qui aurait pu réagir dans la masse du 

matériau. L’organisation de surface de ces greffons a pu ensuite être évaluée en fonction du 

rapport molaire. De manière générale, les chaines aliphatiques, pour un nombre de carbone 

supérieur à 6-7, ont tendance à former des domaines cristallins de type cristaux liquides 

résultant de l'interaction latérale des chaînes aliphatiques entre elles. De ce fait, en fonction 

du ratio molaire utilisé lors de la réaction, des différences organisationnelles ont pu être 
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observées grâce aux mesures XRD. La caractérisation des propriétés physico-chimiques ont 

démontré la présence d’un minimum à 10eq molaire due à cette organisation de surface 

particulière.  

 

Toutefois, l’inconvénient majeur de ce procédé réside dans l’utilisation de solvant assez 

toxique (ex : toluène) mais qui est nécessaire pour éviter les phénomènes de gonflement de 

la cellulose. Afin de pallier à ce problème, de nouveaux solvants verts, répondant aux 

mêmes critères que le toluène, ont pu être développés : les Liquides Ioniques (IL). En effet, 

de par leur structure menant à une pression de vapeur saturante immesurable, ces solvants 

n’émettent aucuns composés organiques volatiles. La deuxième partie de ce chapitre 

(Papier 2 - Publié dans Soft Matter – 2012) démontrent l’intérêt des ILs comme nouveaux 

solvants pouvant modifiées la cellulose.  



Résumé 
 

335 
Karim Missoum - 2012            
 

 

Cette étude a clairement montré que les liquides ioniques pouvaient donner lieu à un 

greffage efficace des NFC avec différents greffons (anhydrides) sans modifier leurs 

propriétés morphologiques. De plus, il a été prouvé qu’après réaction, le liquide ionique 

(onéreux) est recyclable et donc réutilisable pour d’autres cycles de modifications. En outre, 

une technique puissante d’analyse de surface (ToF-SIMS) a été utilisée pour la première fois 

sur des NFC pour caractériser un greffage de surface. Ces analyses confirment le greffage 

de surface des NFC et démontrent l’utilité de cette technique innovante.  

Il s'agit de la première étude utilisant un liquide ionique comme solvant de réaction 

permettant une modification de surface de la cellulose en phase hétérogène. Ces résultats 

prometteurs pourraient donc aider à la modification chimique de plus grand volume de NFC 

avec des propriétés hydrophobes. Ces dernières ont pu être utilisées pour diverses 

applications dans le chapitre 3 suivant (composites ou matériaux antimicrobiens). Par 

ailleurs, nécessitant un échange de solvants, ce greffage pourraient être d’autant plus 
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perfectionné avec l’utilisation de NFC re-dispersable comme étudié et breveté en 

perspectives de ces travaux (Chapitre 4). 

Malgré ces résultats prometteurs, le solvant le plus simple a manipulé (et qui évite ces 

échanges de solvants) reste l’eau, c’est pourquoi notre dernière stratégie s’est focalisée sur 

un traitement en milieu aqueux (Confidentiel).  

Une fois modifiées chimiquement, nous nous sommes intéressés à l’applicabilité de ces 

nanofibrilles de celluloses dans divers secteurs.  

 

Comme nous venons de le voir dans le Chapitre 2, les nanofibrilles de cellulose ont été 

modifiées selon 3 types de greffage, sans observer de différences importantes de 

morphologie et structure mais avec des propriétés de chimie de surface complètement 

différentes.  

 
Dans ce Chapitre 3, nous avons donc voulu utiliser et valoriser ces nouveaux types de 

NFC dans 3 champs d’applications distinctes : dans le domaine du papier, celui des 

composites et enfin celui des matériaux antimicrobiens.  

Dans la première partie de ce chapitre (Papier 4 - Soumis dans Material Chemistry and 

Physics - 2012), les NFCs greffées ont été introduites en masse dans du papier à différents 

ratio massique. L’objectif de cette étude est à la fois d’augmenter les propriétés mécaniques 

du matériau mais également de conférer au papier un caractère hydrophobe. 
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L’un des points importants de cette étude réside dans la quantification de la rétention 

réelle des NFC (modifiées ou non) dans le matelas fibreux. Les caractérisations du complexe 

« fibres de cellulose/NFC », ont montré l’intérêt d’utiliser des nanofibrilles de cellulose afin de 

renforcer les propriétés mécaniques du papier. De plus, les NFC  modifiées apportent, elles, 

clairement un plus avec le renfort mécanique mais aussi un comportement hydrophobe.  

 
Afin de développer des applications à hautes valeurs ajoutées, il a été décidé d’utiliser les 

nanofibrilles modifiées par la stratégie employant les liquides ioniques dans les composites.  

La deuxième partie de ce chapitre (Papier 5 - Soumis dans Composites Part A: Applied 

Science and Manufacturing – 2012) est donc dédiée à l’utilisation de nanofibrilles de 

cellulose modifiées dans une matrice de dérivé de cellulose pour créer un monomatériau 

cellulose en favorisant un continuum à l’interface renfort/matrice. 

Pour ce faire, 3 dérivés cellulosiques : CAB – CAP – CMCAB, ont été étudiées. L’idée 

première était d’utiliser les NFC modifiées disposant de greffons de faible longueur en 

carbone (C2, C4 et C6) pour maximiser la compatibilité entre la matrice et les éléments de 

renfort.  
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En effet, un composite entièrement fait de matériaux issus de ressources renouvelables a 

été préparé. L’emploi de NFC dans des matrices de dérivés de cellulose a permis 

d’augmenter de manière significative les propriétés thermomécaniques des 

bionanocomposites. L’’ajout de 10% massique de NFC natives ou modifiées permet 

d’augmenter le plateau caoutchoutique de 10 à 30°C selon le type de matrices ou éléments 

de renforts utilisés. Il est important de noter que la dispersion des NFC modifiées conduits à 

un film beaucoup plus homogène que ceux obtenus avec des NFC vierges mais avec des 

renforts légèrement plus faibles. Ainsi on a pu montrer dans cette étude que plus le réseau 

est structuré par des liaisons hydrogènes, plus les propriétés thermomécaniques sont 

augmentées. 

Nous avons donc pu également étudier l’impact de ces NFC modifiées en tant qu’agent 

antibactérien et suivre dans un second temps la biodégradabilité de ces éléments (Papier 6) 

Cette étude montre pour la première fois des résultats très intéressants et prometteurs qui 

pourrait être utilisés dans des applications à fortes valeurs ajoutées. En effet, il est démontré 
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que les NFC modifiées peuvent être considérées, comme des agents antibactériens (ou au 

moins bactériostatique) tout en conservant leurs propriétés de biodégradabilité. 

Les traitements chimiques appliqués sur les NFC ont permis de développer une activité 

antibactérienne vis-à-vis de bactéries de type Gram+ ou Gram-. Cet effet peut varier en 

fonction du greffon. Qui plus est, une certaines synergie lorsque des nanoparticules de TiO2 

sont ajoutées, a été démontrée.  

 

La biodégradabilité des échantillons a ensuite été testée. Selon le type de greffage, on 

peut conserver ou contrôler la biodégradabilité du matériau final. Une telle étude ouvre un 

large spectre d’application et devrait être complétée par d’autres types de greffage et en 

étudier l’impact dans un matériau final.  

Ce chapitre 3 propose donc une avancée significative dans les applications de nanofibrilles 

de cellulose modifiées avec des résultats prometteurs fonction des différentes stratégies 

utilisées pour la modification chimique. Comme précédemment exposé, les nanofibrilles de 

cellulose constituent donc un matériau innovant avec une large palette d’application. 

Certains effets peuvent être ainsi contrôlés et on peut en adapter les propriétés finales une 

fois dans un matériau. 

En Conclusion les nanofibrilles de cellulose sont un matériau facilement exploitable dans 

l’industrie, soit dans sa forme vierge soit modifiés chimiquement afin d’adapter ses 

propriétés. Les NFC s’intégreront donc aisément dans les process industriels existant.  



 

 

 

Les nanocelluloses connaissent un fort développement depuis ces dernières décennies et 
font l’objet de nombreuses études menées par les industriels et/ou consortiums 
académiques.  Cette étude s’insère dans le cadre d’un projet européen (SUNPAP) visant à 
l’industrialisation des nanofibrilles de cellulose (NFC).  La présente thèse fait l’état de 
nouveaux procédés de modification chimique de surface des NFC dans une optique de 
chimie verte. Plusieurs stratégies ont été développées telle que l’emploi de liquides ioniques 
comme solvant de réaction (décrit comme solvants verts) ou l’utilisation d’une nanoemulsion 
en phase aqueuse permettant le greffage de surface des NFC. Dans le but d’étudier l’impact 
de ces modifications chimiques, les substrats ainsi traités ont été par la suite utilisés dans 
diverses applications. Ainsi, des bionanocomposites ont pu être produits, l’impact sur 
l’introduction de NFC (modifiées ou non) dans du papier a également été étudié. Une étude 
sur les propriétés antibactériennes et la biodégradabilité des NFC modifiées est également 
proposée. Une caractérisation approfondie des NFC vierges et modifiées a été réalisée. Des 
techniques puissantes et innovantes ont été utilisées pour caractériser ces substrats tels que 
l’XPS (X-ray Photoelectron Spectroscopy) ou encore la SIMS (Secondary Ion Mass 
Spectrometry). Toutes ces modifications, applications et caractérisations proposées 
constituent une avancée et des perspectives prometteuses dans le monde des 
nanocelluloses.   

 

 

Nanocelluloses know a strong interest since last decades and they are the subject of many 
studies led by industrials and / or academic consortia. This study is a part of a European 
project (SUNPAP) for the industrialization of nanofibrillated cellulose (NFC). This thesis is the 
state of new methods for the chemical surface modification of NFC with a view of green 
chemistry. Several strategies have been developed such as the use of ionic liquids as 
reaction solvent (described as green solvents) or the use of an aqueous medium in order to 
graft the surface of NFCs. Thus, the treated substrates were then used in various 
applications. Also, bionanocomposites were produced, the impact of the introduction of NFC 
(modified or not) in paper sheets has also been studied. A study on the antibacterial 
properties and biodegradability of modified NFC is also proposed. Several characterizations 
of neat and modified NFC were performed. Powerful and innovative techniques have been 
used to characterize these substrates such as XPS (X-ray Photoelectron Spectroscopy) or 
SIMS (Secondary Ion Mass Spectrometry). All these chemical modifications, applications 
and characterizations are offered promising prospects in the world of nanocelluloses. 
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