C. S. Shin and M. W. Lin, An Optical Fiber-Based Curvature Sensor for Endodontic Files Inside a Tooth Root Canal, IEEE Sensors Journal, vol.10, issue.6, pp.1061-1065, 2010.
DOI : 10.1109/JSEN.2010.2040077

L. S. Marks, Marks' standard handbook for mechanical engineers, pp.20-25, 1996.

S. A. Thompson, An overview of nickel-titanium alloys used in dentistry, International Endodontic Journal, vol.11, issue.4, pp.297-310, 2000.
DOI : 10.1046/j.1365-2591.1998.00152.x

M. G. Bahia and R. C. Martins, Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments, International Endodontic Journal, vol.5, issue.8, pp.795-801, 2005.
DOI : 10.1016/S1079-2104(02)91706-3

W. J. Buehler and F. E. Wang, A summary of recent research on the nitinol alloys and their potential application in ocean engineering, Ocean Engineering, vol.1, issue.1, pp.105-120, 1967.
DOI : 10.1016/0029-8018(68)90019-X

H. Funakubo, Shape Memory Alloys, 1987.

K. Otsuka and K. Shimizu, Memory effect and thermoelastic martensite transformation in Cu???Al???Ni alloy, Scripta Metallurgica, vol.4, issue.6, p.469, 1970.
DOI : 10.1016/0036-9748(70)90087-6

B. Sattapan, G. J. Nervo, J. E. Palamara, and H. H. Messer, Defects in Rotary Nickel-Titanium Files After Clinical Use, Journal of Endodontics, vol.26, issue.3, pp.161-165, 2000.
DOI : 10.1097/00004770-200003000-00008

G. S. Cheung, B. Peng, Z. Bian, Y. Shen, and B. W. , Defects in ProTaper S1 instruments after clinical use: fractographic examination, International Endodontic Journal, vol.23, issue.11, pp.802-809, 2005.
DOI : 10.1046/j.1365-2591.2002.00528.x

A. P. Spanaki-voreadi, N. P. Kerezoudis, and S. Zinelis, Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis, International Endodontic Journal, vol.23, issue.3, pp.171-178, 2006.
DOI : 10.1097/00004770-200206000-00014

S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, Fatigue life of Ti???50 at.% Ni and Ti???40Ni???10Cu (at.%) shape memory alloy wires, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275658, 1999.
DOI : 10.1016/S0921-5093(99)00344-5

T. Tobushi, S. Hachisuka, P. H. Yamada, and . Lin, Rotating-bending fatigue of a TiNi shape-memory alloy wire, Mechanics of Materials, vol.26, issue.1, pp.35-42, 1999.
DOI : 10.1016/S0167-6636(97)00019-7

H. Tobushi, T. Nakahara, Y. Shimeno, and T. Hachisuka, Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, Journal of Engineering Materials and Technology, vol.122, issue.2
DOI : 10.1115/1.482785

T. Sawaguchi, G. Kaustrater, A. Yawny, M. Wagner, and G. Eggeler, Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue, Metallurgical and Materials Transactions A, vol.32, issue.328, pp.2847-2860, 2003.
DOI : 10.1007/s11661-003-0186-x

G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A, vol.378, issue.1-2, pp.37824-37857, 2004.
DOI : 10.1016/j.msea.2003.10.327

E. Hornbogen, Some effects of martensitic transformation on fatigue resistance, Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, vol.32, issue.8-9, pp.785-790, 2002.
DOI : 10.1016/S0921-5093(99)00294-4

M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, and G. Eggeler, Structural fatigue of pseudoelastic NiTi shape memory wires, Materials Science and Engineering: A, vol.378, issue.1-2, pp.105-109, 2004.
DOI : 10.1016/j.msea.2003.11.058

E. Hornbogen, Review Thermo-mechanical fatigue of shape memory alloys, Journal of Materials Science, vol.39, issue.2, pp.385-399, 2004.
DOI : 10.1023/B:JMSC.0000011492.88523.d3

R. Matsui, H. Tobushi, Y. Furuichi, and H. Horikawa, Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, Journal of Engineering Materials and Technology, vol.126, issue.4, pp.384-391, 2004.
DOI : 10.1115/1.1789952

M. Mitesh and . Patel, Characterizing Fatigue Response of Nickel-Titanium Alloysby Rotary Beam Testing, Journal of ASTM International, vol.4, issue.6, pp.1-11, 2007.

N. H. Luebke, W. A. Brantley, Z. I. Sabri, F. L. Luebke, and L. L. Lausten, Physical dimensions, torsional performance, bending properties, and metallurgical characteristics of rotary endodontic instruments, Journal of Endodontics, vol.21, issue.5, pp.259-63, 1995.
DOI : 10.1016/S0099-2399(06)80993-3

J. Pruett, D. Climent, and D. Cames, Cyclic fatigue testing of nickel-titanium endodontic instruments, Journal of Endodontics, vol.23, issue.2, pp.77-85, 1997.
DOI : 10.1016/S0099-2399(97)80250-6

S. B. Mize, Effect of sterilization on cyclic fatigue of rotary nickel-titanium endodontic instruments, Journal of Endodontics, vol.24, issue.12, pp.843-847, 1998.
DOI : 10.1016/S0099-2399(98)80015-0

G. M. Yared, F. E. Boudagher, and P. Machtou, Cyclic fatigue of Profile rotary instruments after simulated clinical use, International Endodontic Journal, vol.28, issue.9, pp.115-124, 1999.
DOI : 10.1046/j.1365-2591.1999.00201.x

Y. Haikel, R. Serfaty, and G. Batemann, Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments, Journal of Endodontics, vol.25, issue.6, pp.434-474, 1999.
DOI : 10.1016/S0099-2399(99)80274-X

G. M. Yared, F. E. Boudagher, and P. Machtou, Cyclic fatigue of Profile rotary instruments after clinical use, IntEndod J, vol.33, pp.204-207, 2000.

D. B. Dietz, P. M. Difiore, J. K. Bahcall, and E. P. Lautenschlager, Effect of Rotational Speed on the Breakage of Nickel-Titanium Rotary Files, Journal of Endodontics, vol.26, issue.2, pp.68-71, 2000.
DOI : 10.1097/00004770-200002000-00002

G. Gambarini, Cyclic fatigue of ProFile rotary instruments after prolonged clinical use, International Endodontic Journal, vol.28, issue.5, pp.386-389, 2001.
DOI : 10.1046/j.1365-2591.1999.00201.x

U. M. Li, B. S. Lee, C. T. Shih, W. H. Lan, and C. P. Lin, Cyclic Fatigue of Endodontic Nickel Titanium Rotary Instruments: Static and Dynamic Tests, Journal of Endodontics, vol.28, issue.6, pp.448-451, 2002.
DOI : 10.1097/00004770-200206000-00007

C. J. Ullmann and O. A. Peters, Effect of Cyclic Fatigue on Static Fracture Loads in ProTaper Nickel-Titanium Rotary Instruments, Journal of Endodontics, vol.31, issue.3, pp.183-186, 2005.
DOI : 10.1097/01.don.0000137641.87125.8f

N. M. Grande, G. Plotino, R. Pecci, R. Bedini, V. A. Malagnino et al., Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel?titanium rotary systems, International Endodontic Journal, vol.29, issue.10, pp.755-63, 2006.
DOI : 10.1046/j.1365-2591.1999.00296.x

G. Plotino, N. M. Grande, E. Sorci, V. A. Malagnino, and F. Somma, A comparison of cyclic fatigue between used and new Mtwo Ni???Ti rotary instruments, International Endodontic Journal, vol.28, issue.21, pp.716-739, 2006.
DOI : 10.1046/j.1365-2591.1999.00296.x

A. C. Viana, B. M. Gonzalez, V. T. Buono, and M. G. Bahia, Influence of sterilization on mechanical properties and fatigue resistance of nickel???titanium rotary endodontic instruments, International Endodontic Journal, vol.33, issue.9, pp.709-715, 2006.
DOI : 10.1046/j.1365-2591.1999.00201.x

G. Plotino, N. M. Grande, E. Sorci, V. A. Malagnino, and F. Somma, Influence of a brushing working motion on the fatigue life of NiTi rotary instruments, International Endodontic Journal, vol.28, issue.1, pp.45-51, 2007.
DOI : 10.1046/j.1365-2591.2003.00646.x

K. N. Melton and . Mercier, Fatigue of NiTithermoelasticmartensites, ActaMetall, vol.27, pp.137-144, 1979.

S. Miyazaki, M. Suizu, K. Otsuka, and T. Takashima, Effect of Various Factors onFatigue Crack Propagation Rate in Ti--Ni Alloys, Proceedings of the MRSInternational Meeting on Advanced Materials Vol 9 Shape Memory Materials, pp.263-268, 1989.

S. W. Schneider, A comparison of canal preparations in straight and curved root canals, Oral Surgery, Oral Medicine, Oral Pathology, vol.32, issue.2, pp.271-276, 1971.
DOI : 10.1016/0030-4220(71)90230-1

J. M. Young, K. J. Van, and . Vliet, Predicting in vivo failure of pseudoelasticNiTi devices under low cycle, high amplitude fatigue, Journal of Biomedical Materials Research Part B: Applied Biomaterials, pp.72-89, 2005.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser, Optics Letters, vol.27, issue.15, pp.1348-1350, 2002.
DOI : 10.1364/OL.27.001348

URL : https://hal.archives-ouvertes.fr/hal-01321637

S. Engelhardt, Y. L. Hu, N. Seiler, D. Riester, W. Meyer et al., 3D-Microfabrication of Polymer-Protein Hybrid Structures with a Q-Switched Microlaser, Journal of Laser Micro/Nanoengineering, vol.6, issue.1, pp.54-58, 2011.
DOI : 10.2961/jlmn.2011.01.0012

E. Kapyla, S. Turunen, J. Pelto, J. Viitanen, and M. Kellomaki, Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymerceramic hybrid material, J. Micromech. Microeng, vol.21, issue.6, p.10, 2011.

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications, Polymers for Advanced Technologies, vol.84, issue.2, pp.72-82, 2006.
DOI : 10.1002/pat.664

S. R. Marder, J. L. Bredas, and J. W. Perry, Materials for Multiphoton 3D Microfabrication, MRS Bulletin, vol.77, issue.07, pp.561-565, 2007.
DOI : 10.1126/science.2321027

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix, Applied Physics Letters, vol.83, issue.7, pp.1426-1428, 2003.
DOI : 10.1063/1.1601302

K. Mukai, T. Yoshimura, S. Kitayama, and S. Maruo, Electroless and Electrolytic Plating of Photopolymerized Resin for Use in the Micro-Molding of Three-Dimensional Nickel Structures, Journal of Photopolymer Science and Technology, vol.20, issue.2, pp.285-290, 2007.
DOI : 10.2494/photopolymer.20.285

K. Mukai, T. Yoshimura, and S. Maruo, Micromolding of Three-Dimensional Metal Structures by Electroless Plating of Photopolymerized Resin, Japanese Journal of Applied Physics, vol.46, issue.4B, pp.2761-2763, 2007.
DOI : 10.1143/JJAP.46.2761

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials, Journal of Tissue Engineering and Regenerative Medicine, vol.383, issue.6, pp.443-449, 2007.
DOI : 10.1002/term.57

J. Fischer, G. Von-freymann, and M. Wegener, The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography, Advanced Materials, vol.12, issue.32, pp.3578-3582, 2010.
DOI : 10.1002/adma.201000892

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin et al., Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization, Optics Express, vol.19, issue.23, pp.22786-22796, 2011.
DOI : 10.1364/OE.19.022786

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications, Polymers for Advanced Technologies, vol.84, issue.2, pp.72-82, 2006.
DOI : 10.1002/pat.664

K. S. Lee, R. H. Kim, and P. Prabhakaran, TWO-PHOTON STEREOLITHOGRAPHY, Journal of Nonlinear Optical Physics & Materials, vol.16, issue.01, pp.59-73, 2007.
DOI : 10.1142/S021886350700355X

S. Erskine, S. Thayumanavan, S. R. Barlow, J. W. Marder, and . Perry, Optimizing twophoton initiators and exposure conditions for three-dimensional lithographic microfabrication, Journal of Photopolymer Science and Technology, vol.14, pp.657-668, 2001.

H. B. Sun, T. Tanaka, and S. Kawata, Three-dimensional focal spots related to twophoton excitation, ApplPhysLett, vol.80, issue.20, pp.3673-3675, 2002.
DOI : 10.1063/1.1478128

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8, Applied Physics Letters, vol.89, issue.2, 2006.
DOI : 10.1063/1.2221499

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen et al., Temperature effects on pinpoint photopolymerization and polymerized micronanostructures, Applied Physics Letters, vol.92, issue.4, p.41902, 2008.
DOI : 10.1063/1.2834365

N. Uppal and P. S. Shiakolas, Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.7, issue.4
DOI : 10.1117/1.3033203

N. Uppal, A mathematical model development and sensitivity analysis of two photon polymerization for 3D micro/nano fabrication, Doctoral Dissertation, 2008.

N. Uppal and P. S. Shiakolas, Process Sensitivity Analysis and Resolution Prediction for the Two Photon Polymerization of Micro/Nano Structures, Journal of Manufacturing Science and Engineering, vol.131, issue.5, p.51018, 2009.
DOI : 10.1115/1.4000097

S. Maruo and S. Kawata, Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication, Journal of Microelectromechanical Systems, vol.7, issue.4, pp.411-415, 1998.
DOI : 10.1109/84.735349

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz et al., Femtosecond laser-induced two-photon polymerization of inorganic???organic hybrid materials for applications in photonics, Optics Letters, vol.28, issue.5, pp.301-303, 2003.
DOI : 10.1364/OL.28.000301

R. J. Devoe, H. Kalweit, C. A. Leatherdale, and T. R. Williams, Voxels shapes in twophoton microfabrication, Proceedings of SPIE, vol.4797, 2003.

R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. D. Xia et al., Micro lens fabrication by means of femtosecond two photon photopolymerization, Optics Express, vol.14, issue.2, pp.810-816, 2006.
DOI : 10.1364/OPEX.14.000810

C. L. Lin, Y. H. Lee, C. T. Lin, Y. J. Liu, J. L. Hwang et al., Multiplying optical tweezers force using a micro-lever, Optics Express, vol.19, issue.21, pp.20604-20609, 2011.
DOI : 10.1364/OE.19.020604

URL : https://hal.archives-ouvertes.fr/hal-00645239

P. L. Baldeck, C. L. Lin, Y. S. Lin, C. T. Lin, T. T. Chung et al., Optically driven Archimedes micro-screws for micropump applications: multiple blade design, Optical Trapping and Optical Micromanipulation VIII, pp.809713-809714, 2011.
DOI : 10.1117/12.893679

C. L. Lin, G. Bitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, Optically driven Archimedes micro-screws for micropump application, Optics Express, vol.19, issue.9, pp.8267-8276, 2011.
DOI : 10.1364/OE.19.008267.m002

URL : https://hal.archives-ouvertes.fr/hal-00983025

C. Heller, M. Schwentenwein, F. Varga, R. Liska, and J. Stampfl, Biocompatible and biodegradable photopolymers for microstereolithography, Proceedings of LAMP, 2009.

V. Baltriukiene, R. Bukelskiene, M. Gadonas, and . Malinauskas, Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering, Journal of Biomedical Optics, vol.178, pp.81405-81406, 2012.

M. L. Roessle and A. Fatemi, Strain-controlled fatigue properties of steels and some simple approximations, International Journal of Fatigue, vol.22, issue.6, pp.495-511, 2000.
DOI : 10.1016/S0142-1123(00)00026-8

R. Kashyap, Fiber Bragg Grating, 1998.

C. L. Lin, Opto-Mechanical Applications of Microstructured Materials, 2004.

A. Bertholds and R. Dandliker, Determination of the individual strain-optic coefficients in single-mode optical fibres, Journal of Lightwave Technology, vol.6, issue.1, pp.17-20, 1988.
DOI : 10.1109/50.3956

P. C. Hill and B. J. Eggleton, Strain gradient chirp of fibre Bragg gratings, Electronics Letters, vol.30, issue.14, pp.1172-1174, 1994.
DOI : 10.1049/el:19940772

Y. H. Hsueh, Automatic micro manufacturing system for two ?photon polymerization, 2013.

C. T. Lin, Simulation and Improvements of Two-Photon Polymerization Fabricating Process, 2012.

R. Paschotta, Encyclopedia of laser physics and technology

M. Abramowitz and M. W. Davidson, Numerical aperture and resolution, 1998.

C. M. Chang, Evaluation of Fatigue and Cutting Properties of Endodontic Rotary Instrument, 2008.

S. K. Sadrnezhaad and S. H. Mirabolghasemi, Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy, Materials & Design, vol.28, issue.6, pp.1945-1948, 2007.
DOI : 10.1016/j.matdes.2006.04.026

C. T. Lin, Root canal cleanliness after preparation with different tapers of Ni-Ti rotary instrument, 2004.

E. Shafer, Comparison of cutting efficiency and instrumentation of curved canals with nickel-titanium and stainless-steel instruments, Journal of Endodontics, vol.25, issue.6, pp.427-430, 1999.
DOI : 10.1016/S0099-2399(99)80272-6

W. S. Chang, Plasma Immersion Ion Implantation of Nitrogen on Nickel-Titanium Endodontic Instruments, 2007.

B. B. Tung, Effect of ElectropolishingProFile Nickel-Titanium Rotary Instruments on Cyclic Fatigue Resistance, Torsional Resistance and Cutting Efficiency, Journal of Endodontics, vol.34, pp.190-193, 2008.

E. Shafer, Effect of Physical Vapor Deposition on Cutting Efficiency of Nickel-Titanium Files, Journal of Endodontics, vol.28, issue.12, pp.800-802, 2002.
DOI : 10.1097/00004770-200212000-00002

J. C. Lin, Study of Cutting Efficiency of Ni-Ti Endodontic Rotary Instrument, 2009.

N. Zhao, H. Man, Z. Cui, and X. Yang, Structure and wear properties of laser gas nitrided NiTi surface, Surface and Coatings Technology, vol.200, issue.16-17, pp.4879-4884, 2006.
DOI : 10.1016/j.surfcoat.2005.04.043

G. R. Zadno, T. W. Duerig, K. N. Melton, D. Stoeckel, and C. M. Wayman, Engineering Aspects of Shape Memory Alloys, pp.414-419, 1990.

M. Todaka and . Umemoto, Martensitic Transformation in Nanostructured TiNi Shape Memory Alloy Formed Via Severe Plastic Deformation, Material Science and Engineering, pp.643-648, 2006.

A. Wick, O. Vohringer, and A. R. Pelton, The Bending Behavior of NiTi, Colloque C8 (ICOMAT-95), pp.789-794, 1995.
DOI : 10.1051/jp4/199558789

X. Huang and Y. Liu, Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy, Scripta Materialia, vol.45, issue.2, pp.153-160, 2001.
DOI : 10.1016/S1359-6462(01)01005-3

S. Zhirafar, A. Rezaeian, and M. Pugh, Effect of cryogenic treatment on the mechanical properties of 4340 steel, Journal of Materials Processing Technology, vol.186, issue.1-3, p.298, 2007.
DOI : 10.1016/j.jmatprotec.2006.12.046

G. Yared, Canal preparation using only one Ni-Ti rotary instrument: preliminary observations, International Endodontic Journal, vol.18, issue.4, pp.339-344, 2008.
DOI : 10.1016/S0099-2399(88)80137-7

G. De-deus, E. J. Moreira, H. P. Lopes, and C. N. Elias, Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement, International Endodontic Journal, vol.28, issue.12, pp.1063-1068, 2010.
DOI : 10.1111/j.1365-2591.2010.01756.x

Y. H. Huang, Reciprocating movement on the fatigue life of endodontic rotary instrument, 2011.

C. S. Shin and B. L. Chen, A comparison of interrogation schemes for impact event monitoring using fiber Bragg gratings, Second International Conference on Smart Materials and Nanotechnology in Engineering, pp.749314-739316, 2009.
DOI : 10.1117/12.840382

N. Mandelker, G. Gheorghiu, H. Sheinkopf, I. Cohen, and O. Levy, Assessment of fatigue striation counting accuracy using high resolution scanning electron microscope, Engineering Failure Analysis, pp.20-27, 2008.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau et al., Efficient initiators for two-photon induced polymerization in the visible range, Chemical Physics Letters, vol.362, issue.3-4
DOI : 10.1016/S0009-2614(02)01073-4

URL : https://hal.archives-ouvertes.fr/hal-01321623

C. L. Tseng, Design and Fabrication of Micro Devices by Two-Photon Polymerization, 2011.

C. P. Hung, Quality Improvement for Micro Products Fabricated by Two-Photon Polymerization Technology, 2012.

S. E. Huang, Effect of Heat treatment on the Fatigue Life of Endodontic Rotary Instrument, 2010.

C. S. Shin and C. C. Chiang, Fatigue damage monitoring in polymeric composites using multiple fiber bragg gratings, International Journal of Fatigue, vol.28, issue.10, pp.1315-1321, 2006.
DOI : 10.1016/j.ijfatigue.2006.02.032

C. S. Shin, C. Y. Liu, and S. C. Hsu, <i>In Situ</i> Fatigue Crack Initiation Monitoring in NiTi Rotary Endodontic Instruments, Advanced Materials Research, vol.647, pp.3-8, 2013.
DOI : 10.4028/www.scientific.net/AMR.647.3

C. Y. Liu and C. S. Shin, Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments, Third International Conference on Smart Materials and Nanotechnology in Engineering
DOI : 10.1117/12.923219

P. Baldeck, P. Prabakharan, C. Y. Liu, M. Bouriau, L. Gedy et al., Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers, Optical Processes in Organic Materials and Nanostructures II
DOI : 10.1117/12.2030152

C. S. Shin, C. Y. Liu, and C. P. Lin, Frequency and temperature effects on fatigue of endodontic instruments, Proc. DESTech, 2013. (EI)

C. Y. Liu, C. S. Shin, and C. P. Lin, Monitoring system for warning fatigue crack in NiTi rotary instruments in clinical therapy, J Formosa Medical Association

C. Y. Liu, C. S. Shin, and C. P. Lin, The quantitative analysis of mechanical properties in NiTi rotary endodontic instruments, PLOS One

C. Y. Liu and P. Baldeck, Two-photon-polymerization in mm-size structure byamplified Nd:YAG microchip laser, Optical Express