
HAL Id: tel-01069864
https://theses.hal.science/tel-01069864

Submitted on 30 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Implementation of Lattice-Based
Cryptography
Tancrède Lepoint

To cite this version:
Tancrède Lepoint. Design and Implementation of Lattice-Based Cryptography. Cryptography and
Security [cs.CR]. Ecole Normale Supérieure de Paris - ENS Paris, 2014. English. �NNT : �. �tel-
01069864�

https://theses.hal.science/tel-01069864
https://hal.archives-ouvertes.fr

PhD-FSTC-2014-15 Numéro d’enregistrement STEP : 79787
The Faculty of Sciences, Technology École Normale Supérieure
and Communication École Doctorale 386 – Sciences

mathématiques de Paris Centre
UMR 8548 Laboratoire d’informatique
de l’École Normale Supérieure – LIENS

DISSERTATION

Defense held on 30/06/2014 in Paris, France

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

AND

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE

EN INFORMATIQUE

by

Tancrède LEPOINT
Born on 23 October 1988 in Seclin (France)

DESIGN AND IMPLEMENTATION OF LATTICE-BASED
CRYPTOGRAPHY

Dissertation defense committee
Dr Jean-Sébastien Coron, dissertation supervisor
Assistant Professor, Université du Luxembourg

Dr David Naccache
Professor, Université Paris II, Panthéon-Assas, École Normale Supérieure

Dr David Pointcheval, dissertation supervisor
CNRS, École Normale Supérieure

Dr Peter Y. D. Ryan, Chairman
Professor, Université du Luxembourg

Dr Damien Stehlé, reviewer
Professor, École Normale Supérieure de Lyon

Dr Vinod Vaikuntanathan, reviewer
Assistant Professor, Massachusetts Institute of Technology

Remerciements

Mes premiers remerciements vont à mes directeurs de thèse Jean-Sébastien Coron et David
Pointcheval. Merci à Jean-Sébastien dont les compétences larges et avisées en cryptologie, la rigueur
scientifique et les idées clairvoyantes m’ont beaucoup appris et permis d’appréhender la vastité
de la cryptographie. Son encadrement de qualité et son enthousiasme ont incontestablement eu
un impact positif sur ma recherche. Je suis également très reconnaissant à David pour m’avoir
bienveillamment accueilli dans l’équipe de cryptologie de l’École Normale Supérieure, et pour toutes
nos discussions intéressantes autour d’un tableau blanc ou de fraises au chocolat qui ont façonné
mes visions de la cryptographie et de la recherche académique.

J’exprime maintenant ma plus grande gratitude envers Pascal Paillier, qui m’a donné l’opportu-
nité d’effectuer ma thèse en milieu industriel dans les meilleures conditions possibles, a partagé
avec moi son expertise pointue dans tous les domaines de la cryptologie et m’a soutenu dans toutes
sortes de projets, qu’ils soient professionnels ou personnels. Son optimisme est une motivation
constante à donner le meilleur de soi-même, ainsi qu’un plaisir à vivre.

I am endlessly grateful to Damien Stehlé and Vinod Vaikuntanathan who produced thoughtful
and insightful reviews of my dissertation in spite of their busy schedule. I strongly admire their
research work, and I feel extremely fortunate they accepted to read, comment and endorse my
thesis. I would also like to say thank you to Peter Y. D. Ryan who kindly agreed to be in my
committee, and to be the chairman. Merci également à David Naccache, qui a accepté de faire
partie de mon jury de thèse, et qui n’hésite pas à partager avec passion ses idées, ses découvertes et
ses anecdotes de vie.

Je tiens aussi à remercier également tous ceux qui m’ont fait des remarques constructives sur
les versions préliminaires de chapitres de ce manuscrit : Damien, Pascal, David, Jean-Sébastien,
Édouard et Thomas. Je remercie également tous mes co-auteurs : Jean-Sébastien, Mehdi, Marc,
Matthieu, Pascal, Aaram, Alain, Bart, Cécile, Jinsu, Jung Hee, Léo, Michael, Moon Sung, Peter,
Vadim et Yoni; ces nombreuses collaborations ont été riches d’enseignements et ont contribué à
façonner ma manière d’écrire et de penser la recherche.

J’ai été particulièrement privilégié de faire ma thèse au sein de CryptoExperts (merci beaucoup
Marc de m’avoir recommandé !), qui non seulement offre un environnement de travail idéal en
présence de personnes dont les compétences et la gentillesse continuent de me frapper chaque jour
davantage, mais aussi une très grande liberté qui m’a permis de découvrir le monde à maintes
reprises. Merci donc à Antoine, Cécile, Louis, Matthieu F., Matthieu R., Pascal et Thomas pour
ces trois années vraiment excellentes, et merci de m’offrir une place parmi vous pour la suite.

Je remercie également toute l’équipe de l’ENS pour l’ambiance toujours agréable au labo, la
disponibilité des permanents, l’enthousiasme des stagiaires, l’aide entre doctorants, le melting pot
de cultures et de nationalités. Tout cela amène des discussions passionnantes sur de nombreux
sujets, que ce soit à propos de cryptographie, de recherche, de culture, et même de potins. Merci
aux présents (Adrian, Alain, Angelo, Antonia, Céline, Damien, David N., David P., Duong, Fabrice,
Florian, Geoffroy, Hoeteck, Houda, Itai, Mario, Michel, Olivier, Pierrick, Rafael, Sonia, Sylvain,
Thomas et Vadim), aux temporairement absents (Jacques, Phong) et à ceux qui sont partis et que
j’ai connus (Aurore, Dario, Elizabeth, Jérémy, Léo, Mario, Miriam, Nuttapong, Olivier, Patrick,
Pierre-Alain, Sorina et Yuanmi).

iii

Remerciements

Between my second and third year, I was really lucky to have the opportunity to carry out an
internship at Microsoft Research in Redmond, with Kristin and Michael as mentors. Working there
was a really fulfilling experience. Not only I learned a lot about cryptography, but I also got to
discover the work in a big research company and the life in the U.S. for three months. I would like
to thank the members of the Cryptography group (Craig, Joppe, Josh, Kristin, Melissa, Michael
and Seny), and my fellow interns (Adriana, Alyson, Andrea, Joop, Kim and Sarah) for the really
good time I had. Thanks also to Ben and Shane to whom I wish a successful life, professionally
and personally.

Je suis très reconnaissant aussi à toutes ces rencontres professionnelles de ces dernières années
qui rendent la communauté cryptographique attachante. Je pense notamment au soutien initial
précieux de Grégory, Marc et Pascal, à la complicité avec Emmanuela, aux partages de nourriture
(littéralement et intellectuellement) avec Hoeteck, à Sonia que je recroise au fil des études – avec
plaisir – un peu de façon inopinée, à l’équipe des bristoliens (Emmanuela, Enrique, Jake, Joop,
Gareth, Marcel, Peter, Valentina) que je retrouve un peu partout dans le monde, aux discussions
en tête à tête avec des chercheurs réputés, venus d’ailleurs, qui trouvent néanmoins le temps de
faire connaissance (Benoît, Chris, Damien, Dan, Douglas, Daniele, Henri, Jung Hee, Kenny, Nigel,
Shai, Tanja, Thomas, Vinod, Xavier) et à mes collègues qui deviennent des amis précieux.

Je tiens aussi à remercier Adeline, Hugo, Julien, Peter et Xavier, thésards de 2011 comme moi,
avec qui j’ai pu partager et comparer mon expérience de thèse (ses hauts et ses bas), et qui ont été
un soutien sans doute plus important que ce qu’ils imaginent.

Merci aussi à tous ceux qui viennent et font partie de ma vie en dehors de mes études : mes
parents qui m’ont toujours soutenu, mes frères et sœurs (César, Mathilde, Jeanne, Lucas, Solal
et Raphaëlle) qui rendent la famille si bruyante mais précieuse, Jickye, Thomas, Bow Tie Mike,
Anne-Sophie, Tom, Amandine et Hugo, Jill-Jênn, Shane, et enfin Laure, Clément et David qui ont
une place toute particulière.

En dernier lieu, je remercie de tout mon cœur Édouard qui me rend profondément heureux à
partager ma vie depuis plus de cinq ans.

iv

Contents

Contents v

1 (French) Présentation des résultats et perspectives futures 1
1.1 Contributions à la cryptographie basée sur les réseaux [DDLL13a] 2
1.2 Contributions au chiffrement complètement homomorphe 4

1.2.1 Chiffrement par lots complètement homomorphe sur les entiers [CCK+13] . 4
1.2.2 Minimisation du nombre de bootstrappings dans un circuit homomorphe [LP13] 5
1.2.3 Chiffrement complètement homomorphe sur les entiers à module invariant [CLT14a] 5
1.2.4 Conclusion et perspectives . 6

1.3 Contributions aux applications multilinéaires cryptographiques [CLT13b] 6
1.4 Autres travaux . 8

1.4.1 Comparaison de chiffrements complètement homomorphes basés sur les ré-
seaux [LN14a] . 8

1.4.2 Cryptographie en boite blanche [LRM+13, DLPR13a] 8
1.5 Liste de publications . 9

2 Introduction 11
2.1 Introduction to Cryptology . 11
2.2 Modern Cryptography . 12
2.3 Lattice-Based Cryptography . 15
2.4 List of Publications . 16

3 Preliminaries 21
3.1 Notation . 21
3.2 Reminders on Lattices . 22

3.2.1 Lattices . 22
3.2.2 Average-Case Problems and Algorithmic Problems on Lattices 24

3.3 Useful Lemmas . 26
3.3.1 Leftover Hash Lemma . 26
3.3.2 Rejection Sampling . 27

I Design and Implementation of a Lattice-Based Signature Scheme 29

4 Efficient Discrete Gaussian Sampling over the Integers 31
4.1 Introduction . 31
4.2 Discrete Gaussian Sampling: Prior Art . 33
4.3 Efficient Sampling from Bernoulli Distributions . 34
4.4 Reduce the Rejection Rate with a Binary Discrete Gaussian Distribution 36
4.5 Conclusion . 39

5 Design of BLISS, an Efficient Lattice-Based Signature Scheme 41
5.1 Introduction . 41

v

Contents

5.2 Preliminaries . 44
5.3 BLISS: A Lattice Signature Scheme using Bimodal Gaussians 45

5.3.1 New Signature and Verification Algorithms 45
5.3.2 Rejection Sampling: Correctness and Efficiency 47
5.3.3 Security Proof . 48

5.4 Conclusion . 51

6 Implementation of BLISS 53
6.1 Introduction . 53
6.2 NTRU-Based Key Generation . 54

6.2.1 NTRU Lattices . 54
6.2.2 Key-Generation . 55
6.2.3 A Tighter Bound on ‖Sc‖ . 55
6.2.4 Final KeyGen Algorithm . 57

6.3 Implementation Details . 57
6.3.1 Multiplication of two polynomials . 58
6.3.2 Multiplication of S by a sparse vector c . 58
6.3.3 Hashing to Bnκ . 58
6.3.4 Gaussian Sampling . 59
6.3.5 Rejection Sampling according to 1/ exp and 1/ cosh 60
6.3.6 Signature Compression . 60
6.3.7 Final Sign and Verify Algorithms . 63

6.4 Security Analysis . 63
6.4.1 Brute-force and Meet-in-the-Middle Key Recovery Attack 65
6.4.2 Hardness of the underlying SIS problem . 65
6.4.3 Primal Lattice Reduction Key Recovery . 66
6.4.4 Dual Lattice Reduction Key Recovery . 66
6.4.5 Hybrid MiM-Lattice Key Recovery . 68

6.5 Parameters and Benchmarks . 69
6.5.1 Parameters Sets . 69
6.5.2 Timings . 69

6.6 Conclusion . 71

II Helping Fully Homomorphic Encryption Become Practical 73

7 Batch Fully Homomorphic Encryption over the Integers 75
7.1 Introduction . 75

7.1.1 Background on Fully-Homomorphic Encryption 75
7.1.2 The Somewhat Homomorphic DGHV Scheme 78
7.1.3 Our Contributions and Techniques . 79

7.2 The Approximate-GCD Problems . 80
7.2.1 Error-Free Variants of the Computational Approximate-GCD problem 81
7.2.2 Equivalence between the (Error-Free) Decisional and Computational Appro-

ximate-GCD . 82
7.2.3 An AGCD Distribution with Several Primes 83
7.2.4 Attacks and Parameters Derivation . 84
7.2.5 Estimating the Running Time of LLL . 92

7.3 Batching the DGHV Scheme . 93
7.3.1 One-Slot DGHV Scheme . 93
7.3.2 Multi-Slot DGHV Scheme . 96
7.3.3 Asymptotic Parameters . 98
7.3.4 Advantages of the Multi-Slot Variant . 99

7.4 Making the Scheme Fully Homomorphic . 99
7.4.1 The Squashed Scheme . 99
7.4.2 Bootstrapping . 100

vi

Contents

7.4.3 Complete Set of Operations for Plaintext Vectors 101
7.5 Complete Description of the Batch DGHV Scheme with Compressed Public Keys . . 101

7.5.1 Description . 101
7.5.2 Semantic Security . 103

7.6 Implementation and Benchmarks . 104
7.6.1 Practical Parameters . 104
7.6.2 Implementation in C++ and Benchmarking 105

7.7 Conclusion . 105

8 Scale-Invariant Fully Homomorphic Encryption over the Integers 107
8.1 Introduction . 107
8.2 Scale-Invariant One-Slot DGHV Scheme . 109

8.2.1 Ciphertexts and Homomorphic Operations 109
8.2.2 Conversion from Type-II Ciphertext to Type-I Ciphertext 109
8.2.3 Proof of Lemma 8.2 . 111
8.2.4 Description of the Public-Key Leveled Homomorphic Scheme 111
8.2.5 Constraints on the Parameters . 112
8.2.6 Semantic Security . 112

8.3 Scale-Invariant Multi-Slot DGHV Scheme . 113
8.3.1 Description of the Public-Key Batch Leveled Fully Homomorphic Scheme . 114
8.3.2 Semantic Security . 115

8.4 Practical Implementation . 116
8.4.1 Optimization of Scalar Product . 116
8.4.2 Concrete Parameters and Benchmarking . 117

8.5 Conclusion . 117

9 Minimal Number of Bootstrappings in Homomorphic Circuits 119
9.1 Introduction . 119
9.2 Homomorphic Schemes with 2 Noise Levels . 121

9.2.1 Stating the Problem . 121
9.2.2 A Heuristic Solver . 122

9.3 Extension to FHE Schemes with Many Noise Levels 123
9.3.1 Extension to One-Modulus FHE Schemes 123
9.3.2 Extension to FHE Schemes using Modulus Switching 125

9.4 Practical Experiments . 125
9.4.1 MPC/FHE Benchmark Circuits . 126
9.4.2 The AES S-boxes of Boyar, Matthews and Peralta 126

9.5 Conclusion . 126

10 Implementations of Homomorphic AES Evaluations 129
10.1 Introduction . 129
10.2 The AES Block Cipher . 130
10.3 Two Implementations of the Homomorphic AES . 131

10.3.1 State-Wise Bitslicing . 131
10.3.2 Byte-Wise Bitslicing . 133

10.4 Implementation Results . 135
10.4.1 Some Thoughts about Homomorphic Evaluations 135

10.5 Conclusion . 135

III Design and Implementation of Multilinear Maps over the Integers 139

11 Multilinear Maps over the Integers 141
11.1 Introduction . 141
11.2 Framework for Approximate Multilinear Maps . 143

11.2.1 Cryptographic Multilinear Maps . 143
11.2.2 Graded Encoding System . 144

vii

Contents

11.2.3 Multilinear Maps Procedures . 144
11.2.4 Hardness Assumption . 145

11.3 Our new Encoding Scheme . 146
11.3.1 Setting the Parameters . 150
11.3.2 Security of our Construction . 151
11.3.3 Comparison with GGH Multilinear Maps . 151

11.4 Another Leftover Hash Lemma over Lattices . 152
11.4.1 Leftover Hash Lemma over Lattices . 152
11.4.2 Re-Randomization of Encodings: Proof of Lemma 11.7 154

11.5 Attacks against our Multilinear Maps Scheme . 155
11.5.1 Lattice Attack on the Encodings . 155
11.5.2 GCD Attack on the Zero-testing Parameter 155
11.5.3 Hidden Subset Sum Attack on Zero Testing 155
11.5.4 Attacks on the Inverse Zero Testing Matrix 156
11.5.5 A Note on GGH’s Zeroizing Attack . 156

11.6 Conclusion . 157
11.A Uniform Sampling of a Parallelepiped . 157
11.B Generation of the Matrix H . 157

12 Implementation of a N > 3-partite Diffie-Hellman Key Exchange 159
12.1 Introduction . 159
12.2 Diffie-Hellman One-Round Key Exchange . 160

12.2.1 Tripartite Diffie-Hellman Key Exchange . 160
12.2.2 N -partite Diffie-Hellman Key Exchange . 160

12.3 N -partite Diffie-Hellman Key Exchange Using Approximate Multilinear-Maps 161
12.4 Optimizations and Implementation . 162

12.4.1 Non-uniform Sampling . 162
12.4.2 Quadratic Re-randomization . 162
12.4.3 Zero-Testing Element . 163

12.5 Practical Results . 163
12.6 Conclusion . 164
12.A Quadratic Sampling for Level-Zero Encodings . 164
12.B Optimization on the Zero-Testing Elements . 166

12.B.1 Zero-Testing Element . 167
12.B.2 Extension to t 6 n elements . 168
12.B.3 Two-element vector . 168

IV Conclusions, Thoughts and Other Works 171

13 Conclusion and Thoughts 173

A Other Works on White-Box Cryptography 179

List of Figures 181

List of Tables 182

List of Algorithms 183

Bibliography 185

viii

Chapitre 1

Présentation des résultats
et perspectives futures

Comme illustré par les travaux présentés dans ce manuscrit, l’objectif principal de notre recherche
consiste à réduire l’écart entre la théorie et la pratique de la cryptographie à clé publique récente.
En particulier, toutes nos nouvelles conceptions de schémas sont accompagnées d’implémentations
destinées à valider les-dits résultats théoriques et permettent ainsi de donner un ordre de grandeur
de leur potentiel en pratique. Notre thèse est divisée en trois parties, chacune se concentrant sur
une primitive cryptographique différente.

Dans la première partie, nous décrivons un nouveau schéma de signature numérique dont la
sécurité est basée sur des problèmes relatifs aux réseaux. La cryptographie à base de réseaux est
réputée être « asymptotiquement efficace » mais toutes ses instanciations (prouvées sures1) utilisaient
jusqu’alors des paramètres trop grands pour envisager leur utilisation pratique (en particulier sur
petite architecture). Notre contribution principale consiste alors à décrire une nouvelle signature
numérique compacte (avec des signatures de l’ordre de 5000 bits), performante, sure et adaptée aux
environnements contraints. Les améliorations théoriques ont été combinées avec des optimisations
pratiques et ont permis d’obtenir une signature numérique basée sur les réseaux aussi efficace (voire
plus efficace) que celles reposant sur RSA ou sur les courbes elliptiques.

Dans la seconde partie, nous nous efforçons de rendre le chiffrement complètement homomorphe
(parfois considéré comme le Saint Graal de la cryptographie [Mic10]) plus efficace. Ce dernier
permet d’effectuer (de façon publique) des calculs arbitraires sur des messages chiffrés. Les pre-
mières instanciations de cette surprenante primitive ne peuvent être considérées comme pratiques,
chaque multiplication de deux bits chiffrés nécessitant d’être suivie par une procédure de plu-
sieurs dizaines de minutes [GH11b, CNT12]. Notre contribution principale consiste à améliorer les
schémas complètement homomorphes sur les entiers [vDGHV10, CMNT11, CNT12] afin d’évaluer
de façon homomorphe un circuit non trivial (nous avons choisi l’AES, comme Gentry, Halevi et
Smart [GHS12c]). Une telle évaluation de l’AES avec nos schémas nécessite 102 heures mais permet
de traiter 1875 blocs de 128 bits en parallèle, ce qui donne un temps relatif (par bloc) de 3 minutes,
comparable au temps relatif de 5 minutes obtenu dans [GHS12c] en utilisant un schéma basé sur
les réseaux [BGV12].

Dans la troisième partie, nous construisons des applications multilinéaires cryptographiques.
Cette primitive, généralisant les « couplages » (applications bilinéaires), admet une première cons-
truction basée sur les réseaux depuis fin 2012 [GGH13a] et a de nombreuses conséquences inattendues
et à fort potentiel (comme l’existence d’obfuscation indistinguable ou de chiffrement fonctionnel
pour tous les circuits [GGH+13b]). Présentée sans preuve de sécurité (ce qui est insolite dans
la cryptographie à clé publique moderne), ses paramètres ont été choisis pour résister à toutes
les attaques connues. Dans cette partie, nous proposons une nouvelle construction, similaire en
essence mais différente en pratique, qui permet de donner une primitive alternative dont la sécurité
(également heuristique) diffère. En particulier, notre primitive semble invulnérable à l’attaque par

1Dans ce chapitre, nous avons adopté les rectifications orthographiques du français de 1990 qui simplifient et
suppriment certaines incohérences du français, entre autres en supprimant des accents circonflexes et traits d’union.

1

1. (French) Présentation des résultats et perspectives futures

« zeroizing » [GGH13a] qui rend facile les analogues du problème décisionnel linéaire (DLIN) ou
du problème d’appartenance à un sous-groupe dans la construction de Garg, Gentry et Halevi.
Ainsi certaines applications nécessitant que ces problèmes soient difficiles, comme le chiffrement
fonctionnel prouvé sûr contre les attaquants adaptatifs, les preuves de connaissance non interactives
à divulgation nulle de connaissance ou les échanges de clés avec authentification par mot de
passe robustes contre la corruption des serveurs [BP13], nécessitent d’utiliser notre construction.
Finalement, nous décrivons la première implémentation « preuve de concept » d’une telle primitive
(la construction initiale n’étant que théorique) et montrons qu’un échange de clé entre 7 participants
nécessite moins d’une quarantaine de secondes sur un processeur classique actuel en utilisant nos
applications multilinéaires cryptographiques.

1.1 Contributions à la cryptographie basée sur les réseaux [DDLL13a]

Bien qu’utilisés traditionnellement en cryptanalyse [LLL82, SE94] depuis 1982, ce n’est qu’une
quinzaine d’années plus tard que les réseaux ont fait l’objet d’une découverte en tant qu’outil de
conception de schémas cryptographiques (Ajtai-Dwork [Ajt96], GGH [GGH97], NTRU [HPS98]).
Tout en ouvrant la voie à de nouvelles primitives à clé publique, la cryptographie à base de réseaux
s’illustre par certaines qualités très attrayantes, comme une sécurité basée sur des problèmes dans
le pire cas (beaucoup étudiés dans d’autres domaines) et une simplicité d’implémentation grâce aux
opérations élémentaires simples sous-jacentes (multiplication de vecteurs et matrices à coefficients
entiers).

Malheureusement, cette simplicité apparente s’aheurte à la compacité souhaitée en pratique.
En particulier, si les complexités asymptotiques des schémas basés sur les réseaux peuvent être
quasi-optimales, les paramètres permettant d’atteindre des niveaux cibles de sécurité classiques
(disons de 80 à 256 bits) produisent des clés, chiffrés et signatures de grande taille. De plus les
schémas admettant des preuves de sécurité utilisent le plus souvent des Gaussiennes discrètes, dont
l’échantillonnage reste délicat en pratique [DN12a].

Notre principale contribution en cryptographie à base de réseaux est la conception d’une
signature numérique ayant des performances logicielles meilleures que celles construites à partir
de la cryptographie « classique » comme RSA et ECDSA, tout en conservant des tailles de clés
et signatures comparables aux signatures basées sur RSA, et pouvant être implémentée sur des
environnements contraints (par exemple sur carte à puce).

Notre signature numérique s’inscrit dans la lignée de travaux de Lyubashevsky [Lyu08, Lyu09,
Lyu12] et est basée sur le paradigme de Fiat-Shamir, dans lequel un système d’authentification en
trois passes (un engagement, un défi et une réponse) est transformé en une signature en liant le
message et l’engagement par un oracle aléatoire (qui retourne alors le défi). Dans les constructions à
base de théorie des nombres (voir par exemple [Sch89] ou [BP02]) l’engagement porte sur une valeur
aléatoire y qui sera utilisée lors du calcul de la réponse z = y + ı(s) pour cacher toute information
provenant du secret s lors de l’ajout d’une fonction ı(s) d’icelui. En cryptographie à base de réseaux
cependant, les problèmes sous-jacents utilisent des valeurs « petites » ou bornées. Lyubashevsky
utilise alors une méthode de rejet [vN51] qui permet d’échantillonner selon une distribution de
probabilité f étant donnée une source qui échantillonne selon une distribution g, en rejetant un
échantillon x avec une probabilité f(x)/(M · g(x)) où M est un réel tel que

M · g(x) > f(x), pour tout x. (1.1)

Ainsi si g est la distribution de probabilité donnée par g(x) = Pr[x = y+ ı(s)] (où y et s sont choisis
aléatoirement et indépendamment selon leurs distributions respectives), il suffit de choisir une
fonction f indépendante de s et d’utiliser la méthode précédente. On obtient alors que la probabilité
de ne pas rejeter la valeur est 1/M et que les valeurs de sortie sont distribuées selon f (et ne
dépendent donc pas de s). Dans le dernier schéma de signature de Lyubashevsky, la fonction f est
une Gaussienne discrète (donc bornée avec probabilité écrasante) et la fonction g une Gaussienne
discrète centrée en une valeur ı(s) = s · c. Comme on peut le constater sur la Figure 1.1a, le réel
M doit être choisi suffisamment grand pour que la condition de l’équation (1.1) soit vérifiée pour
tout x excepté pour un nombre négligeable d’entre eux. En particulier la queue de la Gaussienne

2

1.1. Contributions à la cryptographie basée sur les réseaux [DDLL13a]

Span{s · c}
(s · c)⊥

s · c

(a) Dans le schéma original [Lyu12]

Span{s · c}
(s · c)⊥

−s · c

s · c

(b) Dans notre schéma

Figure 1.1 – Modification du rejet grâce à une distribution Gaussienne bimodale.

« rouge » (i.e. de f) sur la projection selon l’axe s · c doit être sous la queue de la Gaussienne
« bleue » (i.e. de g). Comme une valeur est acceptée avec probabilité 1/M , on souhaite choisir M le
plus petit possible. Dans notre schéma de signature, nous modifions la fonction g en une Gaussienne
bimodale centrée en les valeurs s · c et −s · c. Cette nouvelle fonction g est plus proche de la fonction
de sortie f , et permet ainsi de sélectionner un M plus petit comme on peut le constater sur la
Figure 1.1b. Ensuite nous optimisons notre schéma de signature en nous basant sur des réseaux
de type NTRU [HPS98, HHGP+03], en utilisant des algorithmes de compression et des astuces
algorithmiques pour éviter des calculs nécessitant une grande précision. Nous obtenons finalement
des signatures de 5000 bits, pour 128 bits de sécurité heuristique, conduisant à des implémentations
logicielles particulièrement efficaces. Notre schéma de signature a aussi été conçu de manière à
pouvoir être implémenté efficacement dans des environnements contraints, notamment en concevant
une série d’algorithmes simples permettant d’échantillonner selon une Gaussienne discrète sur les
entiers en utilisant un nombre logarithmique d’éléments pré-calculés.

Donnons maintenant quelques perspectives sur la cryptographie à base de réseaux. Cette dernière
a connu un réel engouement suite aux travaux de Regev [Reg09] qui a introduit le problème LWE,
« Learning with Errors », qui se réduit aux pires instances de problèmes algorithmiques sur les réseaux.
LWE est très versatile : sa simplicité et sa structure mathématique forte permettent de le décliner
de manière originale pour donner lieu à des schémas innovants comme le chiffrement complètement
homomorphe [Gen09, BGV12]. Il est courant de dire que toutes les primitives cryptographiques
peuvent être instanciées avec des réseaux. Malheureusement, cette versatilité semble être compensée
par le caractère peu pratique des schémas obtenus. De plus, cette cryptographie repose sur des
« bruits » : il est alors nécessaire de connaitre le protocole utilisé afin de choisir des paramètres en
assurant la justesse et la sécurité. Par exemple, Ducas souligne dans sa thèse de doctorat [Duc13]
qu’instancier un schéma de chiffrement basé sur l’identité hiérarchique à base de réseaux nécessite
de prendre en compte le nombre de niveaux hiérarchiques, contrairement à son analogue basé sur
les couplages. Le fait que l’on ne puisse pas utiliser un schéma comme une « boite noire » est aussi
illustré par notre signature numérique. C’est en plongeant dans les détails du schéma qu’on a pu
proposer des améliorations spécifiques qui ont permis de sélectionner des paramètres et de concevoir
une alternative prometteuse aux signatures numériques basées sur la cryptographie classique.

La cryptographie à base de réseaux nécessite de manipuler de nombreux paramètres intimement
liés et dont toute modification, même infime, est susceptible d’affecter de manière significative la
difficulté des meilleures attaques. Assurer une efficacité optimale tout en maintenant un niveau
de sécurité donné semble donc être un problème d’optimisation délicat. Nous pensons qu’une
automatisation de la sélection des paramètres serait non seulement utile, mais pourrait se révéler
fondamentale dans l’éventualité d’une adoption plus large de cette cryptographie. Par ailleurs, la
praticité de notre schéma de signature (ou d’autres récents schémas du domaine) n’est atteinte
que grâce à l’utilisation de réseaux idéaux (i.e. provenant d’idéaux d’anneaux). Or les problèmes
algorithmiques sur ces réseaux structurés n’ont pas été autant étudiés que sur leurs homologues
aléatoires ; et s’il n’existe pas de méthode connue pour exploiter cette structure sous-jacente, il

3

1. (French) Présentation des résultats et perspectives futures

n’est pas inenvisageable que cet état de fait change dans le futur [Ber]. Davantage de cryptanalyse
apparait donc nécessaire pour donner confiance en la sécurité de ces schémas. Nous pensons que le
déséquilibre actuel existant entre la cryptographie et la cryptanalyse sur les réseaux, la première
étant d’avantage représentée dans les travaux récents, peut être dû au manque de paramètres
concrets (c’est-à-dire non asymptotiques) proposés. Nous espérons que les instanciations de notre
schéma de signature, ciblant des niveaux de sécurité de 128, 160 et 192 bits, provoqueront un regain
d’intérêt de la communauté envers la cryptanalyse de cette cryptographie.

La cryptographie à base de réseaux est certainement un champ de recherche dont la versatilité ne
cesse d’étonner [GGH+13b], et auquel les premières implémentations très efficaces [GLP12, PG12,
PG13, PG14, OPG14] promettent un avenir radieux.

1.2 Contributions au chiffrement complètement homomorphe

La seconde partie de cette thèse est consacrée à la présentation de contributions portant sur le
chiffrement complètement homomorphe. Nous avons principalement travaillé à rendre cette primitive,
parfois considérée comme le Saint Graal de la cryptographie [Mic10], plus efficace et utilisable en
pratique pour certaines applications.

Ce chiffrement a été prouvé possible en 2009 par Craig Gentry [Gen09] après être resté pendant
trois décennies un problème ouvert [RAD78]. Ce chiffrement permet de manipuler à souhait et
publiquement des données chiffrées (donc sans connaitre les données en clair). Cela permet par
exemple de sous-traiter des calculs au Nuage2, i.e. à des serveurs distants, sans qu’il n’acquière
d’information sur les données traitées, qui restent ainsi confidentielles. En particulier il devient
possible de réaliser des fonctionnalités complexes, comme faire des recherches croisées entre les
données (chiffrées) et une base de donnée publique (e.g. une requête d’un moteur de recherche) tout
en ne connaissant rien des données elles-mêmes. La conception et l’implémentation de schémas de
chiffrement complètement homomorphe (FHE) est un domaine en pleine effervescence.

Parmi les schémas de FHE proposés, nous nous focaliserons sur le schéma DGHV de van Dijk,
Gentry, Halevi et Vaikuntanathan [vDGHV10], dont la sécurité repose sur le problème du diviseur
commun approché [HG01].

1.2.1 Chiffrement par lots complètement homomorphe sur les entiers [CCK+13]
Nos contributions à ce champ de recherche consistent en une amélioration importante du schéma
de van Dijk et al., déjà revisité par Coron, Mandal, Naccache et Tibouchi [CMNT11, CNT12],
en permettant à chaque chiffré de contenir plusieurs bits de données, i.e. de le transformer en
un chiffrement par lots et d’effectuer des opérations en parallèle sur ces bits (sur le principe
du SIMD). Une telle fonctionnalité avait été décrite pour des schémas de FHE basés sur LWE
dans [BGV12, BGH13] mais reposait sur la forte structure mathématique contenue dans les réseaux
idéaux. Pour cela, nous avons introduit une variante décisionnelle du problème du diviseur commun
approché dans laquelle il s’agit de distinguer si un élément est uniformément distribué modulo
N = p · q (où p et q sont secrets et n’ont pas de petits facteurs, et N est le module public), ou
s’il est de la forme3 CRTp,q(r, q′), où q′ est uniforme modulo q et r est « petit ». Cette variante
est prouvée équivalente à la variante calculatoire (dans laquelle il s’agit de retrouver p depuis des
échantillons de la forme CRTp,q(r, q′)) dans [CLT14a].

Nous avons conçu un schéma FHE dans lequel un vecteur de bits m = (m1, . . . ,mn) est chiffré
en

c = CRTp1,...,pn,q(2r1 +m1, . . . , 2rn +mn, q
′) ,

où les ri sont « petits » et q′ est uniforme modulo q, le module public étant N = p1 × · · · × pn × q.
Armés du problème décisionnel précédent, nous pouvons montrer que cette variante avec plusieurs
nombres pi reste sémantiquement sure, et nous décrivons comment permuter de manière publique
les éléments du vecteur m lors de la procédure de rafraichissement du chiffré. Cette modification
nous a permis d’évaluer de façon homomorphe un circuit non trivial (AES) et de traiter plusieurs

2Le « cloud » en anglais.
3Pour des entiers a, b, p et q, on définit u = CRTp,q(a, b) comme le plus petit entier positif tel que u ≡ a mod p

et u ≡ b mod q.

4

1.2. Contributions au chiffrement complètement homomorphe

blocs de données en parallèle. Ainsi, pour 72 bits de sécurité, une évaluation complète du circuit
sur 528 blocs de 128 bits prend 113 heures, ce qui donne un temps relatif de moins de 13 minutes
de calcul par bloc de donnée.

1.2.2 Minimisation du nombre de bootstrappings dans un circuit
homomorphe [LP13]

Malheureusement, les bruits ri dans le schéma précédent voient leur taille augmenter exponen-
tiellement avec la profondeur multiplicative du circuit. Ainsi, il est nécessaire d’appliquer très
régulièrement une procédure publique de rafraichissement sur le chiffré, appelée bootstrapping, très
couteuse. Que ce soit pour un bit de donnée dans [CNT12] ou n bits de données dans le schéma
sus-mentionné, cette procédure prend plusieurs minutes sur des processeurs actuels (à comparer aux
millisecondes que prennent les autres opérations). Il convient donc de minimiser le nombre de ces
procédures tout en assurant l’intégrité des données au fur et à mesure de l’évaluation homomorphe.
Faces à ce problème et soumis à la contrainte précédente, nous avons proposé un modèle théorique
du comportement du bruit dans les schémas homomorphes, ainsi qu’une méthode heuristique qui
permet de déterminer pour chaque circuit les moments adéquats pour appliquer la procédure de
rafraichissement. Notre méthode consiste à construire une formule booléenne pour chaque circuit,
et à chercher une implication logique de taille minimale. En général ce problème est prouvé être
NP-complet [GHM05] ; nous proposons ainsi une méthode de résolution heuristique qui nous permet
d’obtenir des résultats nouveaux, notamment un gain de performance de 88% pour l’évaluation
homomorphe de l’AES décrite dans [CCK+13].

1.2.3 Chiffrement complètement homomorphe sur les entiers à module
invariant [CLT14a]

Une seconde approche pour pallier l’augmentation exponentielle de la taille du bruit dans [CCK+13]
consiste à modifier notre schéma pour le rendre à niveaux, c’est-à-dire tel que l’augmentation
précédente n’est plus que linéaire en la profondeur multiplicative du circuit. En premier lieu conçue
pour les schémas FHE basés sur LWE [BV11b, BGV12], la technique de commutation de modules
a été adaptée à DGHV par Coron, Naccache et Tibouchi dans [CNT12] et repose sur un nouveau
problème décisionnel. Elle consiste à convertir un chiffré modulo N en un chiffré modulo un N ′
plus petit, le bruit étant réduit automatiquement d’un facteur N/N ′. Un choix judicieux de chaine
de modules permet alors d’obtenir un schéma à niveaux. Cependant pour un circuit ayant une
profondeur multiplicative de L, cette technique nécessite de travailler avec une clé publique environ
L fois plus importante que dans le schéma classique. Ceci explique pourquoi Gentry, Halevi et
Smart ont dû utiliser un serveur avec 256 Go de mémoire vive pour leur évaluation homomorphe de
l’AES dans [GHS12c].

À Crypto 2012, Brakerski a introduit une nouvelle technique permettant d’obtenir un schéma à
niveaux pour les schémas FHE basés sur LWE [Bra12]. Similaire à la commutation de modules,
excepté que le même module est utilisé tout au long de l’évaluation homomorphe, elle permet
d’obtenir un schéma FHE à niveaux dit à module invariant. Elle est basée sur des chiffrés c (où s est
la clé secrète) tels que 〈c, s〉 = bN/2c·m+e mod N avec e « petit », au lieu de 〈c, s〉 = m+2e mod N
dans le schéma initial de Regev [Reg09] ; autrement dit le message est déplacé du bit de poids
faible au bit de poids fort modulo N .

Nous avons adapté cette technique à la version améliorée de DGHV de [CNT12] et à DGHV par
lots introduit dans [CCK+13]. Un vecteur de bits m = (m1, . . . ,mn) (n > 1) est chiffré en

c = CRTp2
1,...,p

2
n,q

(r1 + bp1/2c ·m1, . . . , rn + bpn/2c ·mn, q
′) ,

où les ri sont « petits » et q′ est uniforme modulo q, le module public étant N = p2
1 × · · · × p2

n × q.
Ainsi, le bit de message mi a été déplacé du bit de poids faible au bit de poids fort de c mod pi.
Pour rendre ce schéma homomorphe, nous avons changé les pi en p2

i , et avons proposé une méthode
publique de conversion qui permet, après une multiplication modulo N , de transformer l’entier
obtenu en un chiffré valide (cf. Figure 1.2). Nous obtenons alors un schéma FHE à niveaux, dont la
sécurité repose toujours sur le problème du diviseur commun approché.

5

1. (French) Présentation des résultats et perspectives futures

(γ − 2η) bits 2η bits

m1r∗
1

r1q1

ρ bitsρ∗ bits

(γ − 2η) bits 2η bits

m2r∗
2

r2q2

ρ bitsρ∗ bits×

B
it
s
d
e
p
o
id
s
fo
rt

(2γ − 2η) bits 2η bits

m r′q′

(ρ + ρ∗ + η) bits

B
its

d
e
p
o
id
s
fa
ib
le

Conversion
(γ − 2η) bits 2η bits

mr∗ rq

ρ∗ bits (ρ + ρ∗) bits

Figure 1.2 – Technique du module invariant pour le schéma DGHV.

Forts de cette nouvelle technique, nous avons à nouveau évalué l’AES de façon homomorphe.
Pour 80 bits de sécurité, une évaluation complète du circuit sur 1875 blocs de 128 bits nécessite 102
heures, ce qui donne un temps relatif de 3 minutes de calcul par bloc de données (comparables aux
5 minutes par bloc de [GHS12c]).

1.2.4 Conclusion et perspectives

L’état de l’art en cryptographie homomorphe a significativement changé ces cinq dernières années.
En 2009, nous disposions d’un schéma uniquement théorique, dont la sécurité reposait sur des
hypothèses fortes ; sa première instanciation décrite en 2011 avait malheureusement une efficacité
peu satisfaisante [GH11b]. En 2014, nous disposons de plusieurs grandes familles de FHE (au moins
4), basées sur des problèmes plus classiques et dont la plupart possèdent des implémentations
prometteuses. En particulier, des évaluations homomorphes de différents circuits (AES, Simon,
Prince) s’exécutent en quelques minutes sur des ordinateurs actuels. Bien que ces performances ne
soient pas encore très satisfaisantes [Ber], les évaluations de circuits ayant une faible profondeur
multiplicative deviennent très efficaces [NLV11, BLLN13, LN14a]. Il devient donc possible de réaliser
des calculs et tests statistiques ou des algorithmes d’apprentissage automatique simples [GLN12]
en ne manipulant que des données chiffrées. En particulier, les premiers prototypes utilisant du
chiffrement homomorphe devraient voir le jour très prochainement pour des applications sur des
données médicales, biométriques ou de géolocalisation.4 Nous prévoyons dans la suite de notre
recherche d’investiguer ce qu’il est possible de réaliser grâce aux schémas de chiffrement homomorphe
existants, de trouver des applications qui n’exploiteraient pas leurs faiblesses mais leurs forces, ou à
l’inverse de concevoir de nouvelles applications pratiques qui sont adaptées aux contraintes actuelles
des schémas FHE. Comme pour la cryptographie à base de réseaux, il semble qu’une automatisation
de la sélection des paramètres, ou de la construction de circuits (comme nous l’avons commencé
dans [LP13]), va devenir nécessaire pour obtenir des primitives efficaces et sures.

1.3 Contributions aux applications multilinéaires cryptographiques [CLT13b]

Les applications multilinéaires cryptographiques, généralisant les applications bilinéaires [Jou00,
SOK00, BF01], ont été considérées dès 2003 par Boneh et Silverberg [BS03] et sont présupposées avoir
d’importantes conséquences en cryptographie. Encore aujourd’hui, construire une telle généralisation
reste un problème ouvert. En 2013 cependant, Garg, Gentry et Halevi ont proposé une approximation
d’applications multilinéaires (appelée système d’encodages gradués) qui certes diffère de la primitive
proposée par Boneh et Silverberg mais permet toujours, par exemple, de faire un échange de clé non
interactif entre N utilisateurs pour tout N (similairement, l’introduction des couplages permettait
alors de faire une telle mise en accord de clés entre N = 3 utilisateurs [Jou00]). À contre-courant
par rapport à la cryptographie à clé publique moderne, cette nouvelle primitive n’admet qu’une
sécurité heuristique (non prouvée). Uniquement théorique, elle se base sur des idées empruntées

4Ceci est d’autant plus probable que le dernier appel à projet (orienté vers les industries) de la commission
européenne [H20], baptisé Horizon 2020, mentionne explicitement le chiffrement homomorphe comme un élément clé
de sécurité à mettre en œuvre d’ici quelques années.

6

1.3. Contributions aux applications multilinéaires cryptographiques [CLT13b]

aux schémas de chiffrement homomorphes sur les réseaux (notamment [Gen09, LTV12]) et son
implémentation parait difficile5.

Notre principale contribution dans ce domaine est la conception d’un second schéma qui
approxime les applications multilinéaires selon le même modèle que [GGH13a], mais pouvant être
vu comme émanant des schémas homomorphes DGHV sur lesquels nous avons travaillé tout au long
de notre thèse. Comme pour nos autres résultats, nous décrivons également une implémentation
« preuve de concept » qui permet de réaliser une mise en accord de clé non interactive entre 7
participants en moins de 40 secondes, avec des paramètres publics de 2.6 Go.

Les encodages dans nos applications multilinéaires sont associés à un niveau, niveau qui
n’augmente pas lorsqu’on ajoute les deux encodages (ce qui ajoute les valeurs encodées de façon
homomorphe), mais qui augmente en la somme des niveaux des encodages sources lors d’une
multiplication (qui multiplie les valeurs encodées de façon homomorphe). En particulier, un vecteur
m = (m1, . . . ,mn) ∈ Zg1 × · · · × Zgn est encodé au niveau i en

c = CRTp1,...,pn(g1 · r1 +m1, . . . , gn · rn +mn)/zi mod N ,

où les ri sont « petits », z est un masque multiplicatif secret et le module public est N = p1×· · ·×pn.
L’évaluation de l’application multilinéaire consiste à effectuer des additions et multiplications
jusqu’au niveau maximal κ (selon le protocole sous-jacent), et ensuite d’extraire d’un encodage
au niveau κ (qui contient du bruit) une valeur indépendante du-dit bruit. Ceci est rendu possible
en ajoutant dans les paramètres publics une clé de déchiffrement partielle pzt telle que les bits de
poids fort de ω = c · pzt mod N ne dépendent que de

n∑
i=1

(
hi ·mi · g−1

i mod p1
)
·
∏
j 6=i

pj ,

où les hi sont des valeurs secrètes de pzt. En particulier, deux encodages du même vecteur vont
être tels que les bits de poids fort des ω correspondants sont les mêmes.

Suite à une analyse de sécurité et des optimisations heuristiques, nous avons instancié notre
schéma pour réaliser un échange de clé non interactif entre 7 participants, et ainsi prouvé qu’un tel
échange (le premier de son genre) pouvait se réaliser en moins de 40 secondes sur un ordinateur
usuel.

Suite à la découverte majeure des applications multilinéaires approximatives, une multitude
d’applications basées sur celles-ci ont vu le jour. Particulièrement, Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13b] ont décrit une nouvelle primitive, objet de mythe en cryptographie :
l’obfuscation indistinguable. Schématiquement, cette obfuscation notée iO permet, depuis deux
circuits C0 et C1 ayant la même fonctionnalité et une taille similaire, de produire un nouveau
circuit iO(Cb) d’un des deux circuits sans que l’on puisse déterminer lequel, i.e. sans que l’on puisse
déterminer b. Elle a été qualifiée de « la meilleure obfuscation [cryptographique] possible » [GR07]
puisqu’elle cache autant d’information sur le circuit initial que possible. Assez étonnement, elle nous
apparait très semblable à la notion de cryptographie en boite blanche sur laquelle nous avons aussi
travaillé pendant notre thèse (cf. Section 1.4.2), et nous souhaiterions étudier les relations entre ces
deux notions dans le futur. Cette nouvelle primitive a elle aussi eu des conséquences significatives en
cryptographie théorique. En pratique cependant, elle reste plutôt inefficace : dans [Cor13], Coron
a estimé qu’obfusquer l’AES avec notre implémentation « preuve de concept » – qui est la seule
disponible à ce jour – prendrait 2 · 1062 années ! Le problème ouvert fondamental est ainsi de
construire des applications multilinéaires qui peuvent gérer un très grand nombre de niveaux. Leur
similitude en essence avec le chiffrement homomorphe laisse espérer que toute avancée dans un des
domaines aura des retombées immédiates dans le second. En nous basant sur les avancées obtenues
sur les schémas FHE, nous prédisons que dans les 5 années à venir, des applications multilinéaires
de 20 à 30 niveaux seront possibles en quelques millisecondes (i.e. trois ordres de magnitude plus
rapide que l’implémentation actuelle), et encourageons ainsi la communauté cryptographique à
rechercher des applications utilisant un nombre « petit » de niveaux (à l’inverse de l’obfuscation
qui en nécessite des millions).

5En instanciant naïvement les paramètres asymptotiques suggérés, nous obtenons que les paramètres publics
doivent faire de l’ordre de 3400 To pour un échange de clé non interactif entre 7 utilisateurs.

7

1. (French) Présentation des résultats et perspectives futures

1.4 Autres travaux

Nous avons par ailleurs mené quelques travaux qui ne sont pas détaillés dans cette thèse ; soit
parce qu’ils ont été finalisés concurremment [LN14a] ou qu’ils ne relèvent pas de l’un des trois axes
sus-cités [LRM+13, DLPR13a].

1.4.1 Comparaison de chiffrements complètement homomorphes basés sur les
réseaux [LN14a]

Le chiffrement homomorphe est considéré comme un des éléments les plus prometteurs pour assurer la
sécurité du Nuage, tout en permettant à ce dernier de proposer une expérience riche aux utilisateurs.
Malheureusement, tous les schémas existants entrainent une expansion de chiffré (i.e. la taille du
chiffré par rapport à la taille du message initial) tellement importante qu’elle rend inenvisageable
l’envoi des données chiffrées avec un schéma homomorphe. Pour pallier cela, des solutions hybrides
ont été proposées dans lesquelles les données sont transmises chiffrées sans expansion de chiffré
(e.g. avec un schéma de chiffrement par blocs) puis déchiffrées de façon homomorphe avant d’être
manipulées. Réaliser de telles évaluations homomorphes est un sujet d’actualité auquel nous avons
participé en évaluant AES dans [CCK+13, CLT14a].

Notre contribution dans cet article est plurale. Tout d’abord, nous proposons d’évaluer Si-
mon [BSS+13] plutôt que l’AES, c’est-à-dire un schéma de chiffrement par blocs léger6 conçu pour
être efficace sur architecture matérielle. En effet, du fait des contraintes actuelles des schémas
de FHE, cette approche est susceptible d’avoir un fort impact sur l’efficacité des évaluations.
Il s’avèrera plus tard que considérer Prince [BCG+12] pourrait être un choix encore plus judi-
cieux [DSES14]. D’autre part, nous comparons deux schémas FHE à base de réseaux et à module
invariant [FV12, BLLN13], en théorie et en pratique, afin d’en évaluer les forces et faiblesses
respectives. Nos choix de paramètres reposent sur une amélioration de l’approche de van de Pol et
Smart [vdPS13] et de la version complète de l’article de BKZ-2.0 [CN13].

Il apparait que les deux schémas considérés sont non seulement plus efficaces que les schémas
DGHV sur lesquels nous avons travaillé pendant notre thèse, mais offrent de très belles performances
sur des circuits de faible profondeur.

1.4.2 Cryptographie en boite blanche [LRM+13, DLPR13a]
Le modèle d’attaque en boite blanche a été introduite en 2002 par Chow, Eisen, Johnson and
van Oorschot [CEJvO02b, CEJvO02a] comme le pire modèle d’attaque possible. En effet, celui-
ci considère un attaquant qui a une connaissance totale de l’implémentation de l’algorithme et
contrôle à souhait l’environnement d’exécution (plus représentatif des menaces réelles actuelles).
L’idée de la cryptographie en boite blanche est de proposer des implémentations de schémas
telles que la clé reste totalement secrète sous le modèle d’attaque sus-cité. Les travaux de Chow
et al. ont provoqué une vague de d’implémentations candidates pour le DES [CEJvO02b, LN05,
WP05] et l’AES [CEJvO02a, BCD06, XL09, Kar10]. Malheureusement, celles-ci ont toutes été
suivies d’attaques très efficaces [JBF02, BGEC04, GMQ07, WMGP07, MGH08, MWP10, MRP12,
LRM+13].

En particulier, dans [LRM+13], nous décrivons une attaque en 222 contre la dernière implémen-
tation en boite blanche de l’AES supposée sure [Kar10]. Plus qu’une simple cryptanalyse, nous
mettons en évidence que l’approche heuristique consistant à transformer des schémas de chiffrement
en réseaux de tables de correspondance admet des faiblesses inhérentes. Il est possible que cette
succession de candidats heuristiques et d’attaques dévastatrices puisse venir d’un manque de clarté
sur ce qui est réellement attendu par la cryptographie en boite blanche. Poussés par cette question,
nous traduisons dans [DLPR13a] les intuitions folkloriques égrainées dans différents articles en
proposant des notions de sécurité concrètes qu’un compilateur en boite blanche peut atteindre.
Nous présentons aussi des constructions qui atteignent certaines de ces notions en s’inspirant de
primitives à clé publique. Nos résultats ouvrent ainsi de nouvelles perspectives sur la conception de
programmes résistants aux attaques en boite blanche.

6En anglais, on qualifie ces schémas de « lightweight ».

8

1.5. Liste de publications

1.5 Liste de publications

Sont listées ci-dessous, par ordre chronologique croissant, toutes nos publications dans des confé-
rences ou groupes de travaux internationaux. Lorsque les versions complètes et/ou les implémen-
tations « preuves de concept » sont disponibles en ligne, nous donnons également les références
correspondantes.

[JL11] Traitor Tracing Schemes for Protected Software Implementations.
M. Joye, T. Lepoint. (ACM-DRM 2011)

[JL12] Partial Key Exposure on RSA with Private Exponents Larger than N .
M. Joye, T. Lepoint. (ISPEC 2012)

[LP13] On the Minimal Number of Bootstrappings in Homomorphic Circuits.
T. Lepoint, P. Paillier. (WAHC 2013)

[CCK+13] Batch Fully Homomorphic Encryption over the Integers.
J.H. Cheon, J.-S. Coron, J. Kim, M.S. Lee, T. Lepoint, M. Tibouchi, A. Yun.

(EUROCRYPT 2013)
La version complète de l’article est disponible en ligne [CLT13a].

[LRM+13] Two Attacks on a White-Box AES Implementation.
T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, B. Preneel. (SAC 2013)
La version complète de l’article est disponible en ligne [LR13].

[DLPR13b] White-Box Security Notions for Symmetric Encryption Schemes.
C. Delerablée, T. Lepoint, P. Paillier, M. Rivain. (SAC 2013)
La version complète de l’article est disponible en ligne [DLPR13a].

[DDLL13a] Lattice Signatures and Bimodal Gaussians.
L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky. (CRYPTO 2013)
La version complète de l’article est disponible en ligne [DDLL13b].
Implémentation « preuve de concept » par L. Ducas et T. Lepoint [DL13].

[CLT13b] Practical Multilinear Maps over the Integers.
J.-S. Coron, T. Lepoint, M. Tibouchi. (CRYPTO 2013)
La version complète de l’article est disponible en ligne [CLT13c].
Implémentation « preuve de concept » par T. Lepoint [Lep13].

[CLT14a] Scale-Invariant Fully Homomorphic Encryption over the Integers.
J.-S. Coron, T. Lepoint, M. Tibouchi. (PKC 2014)
La version complète de l’article est disponible en ligne [CLT14b].

[LN14a] A Comparison of the Homomorphic Encryption Schemes FV and YASHE.
T. Lepoint, M. Naehrig. (AFRICACRYPT 2014)
La version complète de l’article est disponible en ligne [LN14b].
Implémentation « preuve de concept » par T. Lepoint [Lep14].

9

Chapter 2

Introduction

2.1 Introduction to Cryptology

The Oxford Dictionary of English proposes a simple, yet incomplete, definition of cryptology as
“the study of codes, or the art of writing and solving them”. The roots of this definition are to be
found in History: the invention of cryptology comes from the problem of secret communications of
diplomatic and military information. The basic idea is to apply a “complicated” transformation
to the information to be protected. On one side of cryptology, users utilize secret codes, while
on the other side, adversaries attempt to break through the secrecy of the messages to recover
the hidden information. One of the oldest and simplest cryptologic technique, Caesar’s Cipher,
consists in replacing each letter of your message by the letter three positions down the alphabet
(looping back at the end). In the ninth century, the Arab mathematician Al-Kindi showed that
such a substitution cipher, that is the technique where each letter is replaced with another letter
consistently, is vulnerable to a frequency analysis technique. By comparing the frequency of the
letters in the language (e.g. in English, the letter e occurs 13 percent of the time and a letter
probably begins with “Dear Sir:” [DH76]) with the frequencies of the characters appearing in the
ciphered message, one can easily recover the hidden message.

Until the XIXth century, the study of secret codes lacked a precise and consistent theory,
and designing or breaking such codes was considered as an art [Bab64, Chapter XVIII]. The
construction of “good codes” or deciphering relied on time, patience, ingenuity, inventiveness and
novelty. With the introduction of mathematical formalism, the study of secret codes became a
science – cryptology. This science contains two aspects: cryptography that aims at designing new
methods to ensure the secrecy of communications, and cryptanalysis that aims at discovering flaws
in these methods. And even though it was usual to keep these methods secret to make cryptanalysis
more complicated, such a secrecy “by obscurity” is recognized to be delusive. In 1883, Auguste
Kerckhoffs states the principle that a cryptographic system should use a public algorithm, that itself
uses a small secret information (that can be transmitted easily): the key [Ker83]. As a consequence
the cryptographic systems can now be scrutinized by the public, and a system that survives years
of serious cryptanalytic attention ends up being more trusted than a secret system that no analyst
has reviewed.1

In this age of digital information and telecommunications, cryptography is now far from being
restricted to the military and diplomatic fields. It has become a cornerstone in our daily life.
Cryptography is present in our cellphones, our banking cards, our biometric passports, our Internet
browsers, and many (often unsuspected) other products, which all require to guarantee security
properties on their communications and on their data. Moreover, beyond the confidentiality of the

1Note that the importance of public scrutiny remains an essential component of today’s cryptography. This is
illustrated for example by the process of standardization, in which a group of recognized researchers consensually
selects a set of algorithms that meet some desired requirements. This standardization process includes a competition,
in which cryptographic systems are not only proposed but scrutinized for years, in order to gain trust in the finally
selected systems. Recent cryptographic competitions include the five-year SHA-3 competition [NIS12] (2007-2012)
aiming at developing a new cryptographic hash algorithm, called SHA-3, for standardization. On March 15th 2014,
all the submissions of authenticated ciphers to the CAESAR competition [CAE16] were made public for public
scrutiny. This evaluation phase will help the committee to choose finalist systems by the end of 2016.

11

2. Introduction

secret information, one should also ensure that these contacts are secure against eavesdropping or
injection of illegitimate messages. Thus, the scope of cryptography now includes among other things
data integrity (i.e. the fact that the data has not been modified) and data authenticity (i.e. the
fact that the sender is legitimate). Therefore, the cryptographer aims at designing systems that
ensure these security properties, while the cryptanalyst looks at possible flaws that would reveal
that these properties are actually not verified.

2.2 Modern Cryptography

In their groundbreaking paper New directions in Cryptography [DH76] published in 1976, Whitfield
Diffie and Martin E. Hellman introduced the concept of public-key cryptography and bridged
cryptography to complexity theory.

Until then, all the cryptographic systems were relying on a common secret shared between the
sender and the receiver, i.e. were using a symmetric secret key (symmetric because it was the same
for both parties). A typical example of a symmetric encryption scheme is a block cipher. Such
a cryptosystem is a pair of families {Ek}k∈K and {Dk}k∈K of algorithms representing invertible
transformations over blocks of fixed length (e.g. 128 bits), inverse of each other, indexed by a
symmetric key k ∈ K. When the sender – conventionally named Alice –, who is sharing a common
secret key k with the receiver – Bob –, wants to confidentially send a message m to Bob, she
can send the ciphertext c = Ek(m) from which Bob can recover m by decrypting c: m = Dk(c).
Block ciphers remain fundamental and very useful ingredients of today’s cryptography; they are
extensively used in nearly all systems using cryptography.2

Key Exchange. All symmetric key cryptography (also called secret key cryptography) assumes that
the two parties exchanging secret messages share a common secret key. Unfortunately, the secure
distribution of such a key is a major issue. In [DH76], Diffie and Hellman described a very simple
approach to eliminate the need for a secure key distribution channel. (Indeed, sending the key
in advance over a secure channel is unrealistic for today’s applications.) This key exchange is an
efficient solution to the problem of creating a common secret between two participants (that can
subsequently be used to encrypt all the communications thanks to a symmetric cipher). Moreover,
it is one-round, i.e. each participant is allowed to talk once and broadcast some data to the other
participant.

The parameters (on which Alice and Bob have obviously to agree) consist of a cyclic group
G (denoted additively) of prime order p, generated by g ∈ G. Alice (resp. Bob) generates a key
pair (skA, pkA) = (x, x · g) (resp. (skB , pkB) = (y, y · g)) where x, y ∈ Zp are random and makes the
public key pkA (resp. pkB) openly available. When Alice and Bob want to share a secret, they both
can compute a shared secret key (xy) · g = y · (x · g) = x · (y · g) with their own secret key skA (or
skB) and the other’s public key pkB (or pkA). The main idea behind the security of the protocol is
that an adversary – called Eve – spying on the insecure channel is able to break the protocol if she
can compute (xy) · g from x · g and y · g. This problem is called the Computational Diffie-Hellman
problem (CDH).3 The most efficient attack known against this problem consists in recovering x
from x · g (or y from y · g), which is exactly the discrete logarithm problem (DL). Now, the best
known algorithm to compute the discrete logarithm in the cyclic group G = (Z∗p,×) (considered
in [DH76]) is sub-exponential; these results give confidence on the security of the protocol.4

This key exchange was extended to three participants by Joux [Jou00] in 2000, using the
discrete logarithm problem on elliptic curves and bilinear maps (i.e. bilinear and non-degenerate
applications e : G×G→ GT , where G and GT are cyclic groups of prime order p). A theoretical
generalization [BS03], assuming the existence of cryptographic multilinear maps, easily extends the

2A typical block cipher is the Advanced Encryption Scheme (AES) [FIP01], that we will briefly recall in
Chapter 10.

3The decisional variant of this problem, called the Decisional Diffie-Hellman problem (DDH), is such that one
has to distinguish the distributions (a · g, b · g, (ab) · g) and (a · g, b · g, c · g) for random a, b, c ∈ Zp where g generates
a cyclic group G of prime order p.

4Even though the initial group proposed by Diffie-Hellman is G = (Z∗p,×), note that the discrete logarithm
problem is meaningful in an arbitrary cyclic group. However, the resulting problem is not necessarily hard, e.g. the
DL problem in G = (Zp,+) is straightforward.

12

2.2. Modern Cryptography

result to N participants. In 2013, Garg, Gentry and Halevi described a candidate approximate
multilinear maps scheme [GGH13a] that differs from the generalization of [BS03], but still allows
to perform a one-round N -partite Diffie-Hellman key exchange. In this thesis, we design a similar
approximate multilinear maps scheme in Part III, and describe a N -partite Diffie-Hellman key
exchange in Chapter 12.5 Of course, without using multilinear maps, there exist key exchange
protocols with several rounds that establish a common secret between N > 2 users.

Public Key Cryptography. As illustrated by the protocol of above, the paradigm in public key
cryptography is that the sender and the receiver do not have to share a common secret. Instead,
they both have a secret key and a public key – that is therefore not secret. Public key cryptography
is also known as asymmetric cryptography; the term “asymmetric” stems from the use of different
keys to perform the cryptographic functions instead of the same key as in the conventional secret
key cryptography.

For example, assume Alice wants to send a (confidential) message to Bob. She can use his public
key pk – e.g. available from a public repository, or previously sent in the clear by Bob – and apply
an encryption algorithm with this public key to obtain a ciphertext c = Encrypt(pk,m). Note that
the whole point is that pk does not allow to recover m from c. This requires the knowledge of
the secret key sk that Bob kept secret; he is therefore the only one able to decrypt c to recover
m = Decrypt(sk, c). The first realization of a public key encryption scheme [RSA78] is due to Rivest,
Shamir and Adleman in 1978, and is called nowadays “textbook RSA”.

In this scheme, the key generation samples two (large) primes p and q, and defines the public
modulus N = pq. Next a public exponent e ∈ Z, coprime with φ(N) = (p− 1)(q − 1), is selected
(often not randomly). Since e is invertible modulo φ(N), there exists an integer d ∈ Zφ(N) such
that e · d ≡ 1 (mod φ(n)). The public key pk is the pair (N, e) and the secret key sk is the integer
d. To encrypt a message m ∈ Z∗N , one computes c = me mod N . To decrypt a ciphertext c ∈ Z∗N ,
one computes m = cd mod N . (The latter operations are indeed inverse of each other by Euler’s
theorem.) The key idea behind the hardness to recover sk from pk is that, computing d from (N, e)
is essentially equivalent to factorizing N . Indeed, from p and q, we can compute φ(N) and therefore
the inverse of e modulo φ(N). Reciprocally, from d and e, one can recover a multiple of φ(N), and
then φ(N) using Miller’s algorithm [RSA78]. Finally, from p+ q = N − φ(N) + 1 and pq = N , one
can recover p and q easily. Now, we do not know how to factorize a product N of two large primes
efficiently; the most efficient known algorithm, the General Number Field Sieve (GNFS) [LJMP90],
is sub-exponential in the size of N . (Factorization is still nowadays one of the most important
supposedly hard problems of cryptography.) Another attack against the protocol is to recover m
from c without using sk (i.e. to compute directly e-th roots modulo N). This problem, called the
RSA problem, is a priori easier than to factor N (otherwise one could recover d and thus m), but as
for today it remains an open problem to use the fact that one could know how to compute e-th
roots modulo N to factorize N . Once again, this supposed hardness gives confidence on the security
of the protocol.

Diffie and Hellman also observed that public key cryptography allows to digitally produce
signatures tied to a message m (therefore allowing to check its integrity).6 Alice owns a secret
signing key sk and a public verification key pk. The signing key is used to construct a signature
σ = Sign(sk,m) of a message m. This signature is publicly verifiable using the public key pk:
Verify(pk, σ,m) = true if and only if σ was obtained as previously. As previously, the knowledge of
pk does not allow to recover sk, nor to issue valid signatures for a message m.

Unfortunately public key cryptography is, in practice, noticeably less efficient than symmetric
cryptography. To combine the advantages of both cryptographies, we use a conjunction of thereof.
This is what we call a hybrid cryptosystem. Such a cryptosystem combines the convenience of a
public key cryptosystem with the efficiency of a symmetric key cryptosystem. In particular, we use

5The first benchmark of our alternative construction shows that it is possible to realize a 7-partite key exchange
in a matter of seconds.

6Signatures allow to ensure the integrity and the authenticity of a message by everyone because it only relies
on the knowledge of the public verification key. Achieving such a feature is not possible using only symmetric
cryptography. In secret key cryptography, two participants sharing a secret key k can mutually ensure the authenticity
and integrity of their messages using a cryptographic primitive called message authentication code, or MAC. However,
they cannot convince a third party which does not possess the key k.

13

2. Introduction

a public key cryptosystem to encrypt a symmetric key, that will be subsequently used to encrypt
the data. Therefore, one only has to use public key cryptography to send a small amount of data
(roughly the symmetric key) while the data can be decrypted efficiently using e.g. a block cipher.
Classical examples of hybrid cryptosystems include the OpenPGP file format and PKCS #7 file format,
both used by many different systems.7

In this thesis, we will design an efficient “lattice-based” (cf. Section 2.3) signature scheme in
Part I and a public key encryption scheme (with additional features) in Part II.

Heuristic but Proven Security. A public key encryption scheme is a one-way function. Indeed, the
function which, to a message m, associates the ciphertext c = Encrypt(pk,m) has to be efficiently
computable (i.e. in polynomial time) for the cryptosystem to be of any use. Also, it has to be hard
to invert: it must be difficult to publicly recover m from c. Now, the existence of one-way functions
implies P 6= NP, which is probably the most famous open problem in theoretical computer science.
Therefore, all of public key cryptography is heuristic; generally we assume that some problems are
difficult (i.e. impossible to solve in polynomial time) even though we do not know how to prove it.
In cryptography, integer factorization and the discrete logarithm problem, previously mentioned as
arguments for the security of RSA and the Diffie-Hellman key exchange, are supposed to be hard
problems. Various other problems are considered (such as knapsack problems, decoding problems
for linear codes or resolution of large polynomial systems), but are often not used in practice. A
very fruitful family of problems that allowed to construct numerous cryptographic primitives in the
last years is based on lattices. One of the main purposes of this thesis is to study lattice-based
cryptography, i.e. cryptography based on lattices.

A legitimate question one could ask is: When can we say that a cryptographic primitive is
secure (even though its security may only be heuristic)? For example, “textbook RSA” cannot be
considered as secure. Indeed, one can recover any message smaller than N1/e by extracting e-th
roots over the integers, or can decide whether two ciphertexts correspond to the same plaintext.
In order to give confidence in public key cryptography, cryptographer introduced new security
notions. To prove the security of a cryptosystem, cryptographers consider attack scenarios in which
an adversary is given a black-box access to the cryptographic system, namely to the inputs and
outputs of its underlying algorithms. Security notions are built on the standard paradigm that the
algorithms are known and that computing platforms can be trusted to effectively protect the secrecy
of the private key.8 Once the security notions were clearly defined, it has been possible to create
public key schemes with proofs that they achieved the latter notions, under the hypothesis that
some problem is difficult. In such a proof, the capabilities of the attacker are defined by an attack
model and the aim of the proof is to show that an attacker attacking efficiently (i.e. in polynomial
time) the security notion can be used in order to solve efficiently the underlying (supposedly hard)
problem. Now, if the problem is assumed to be hard, it gives confidence that no such efficient
adversary can exist.

Security proofs are certainly among the most remarkable achievements of modern cryptography.
They provide a strong form of evidence that an application does reach the required security strength
(80 bits, 128 bits, 256 bits, etc.). Now widely adopted by certification bodies and standardization
organizations, security proofs may also serve just as an eye-opener for security architects. In this
thesis, we provide security proofs for the schemes in Parts I and II, while the security of the scheme
described in Part III will be mainly heuristic.

7Jumping ahead, note that white-box cryptography (see Section 2.4) would also be a promising solution that
combines the advantages of public key cryptography (more precisely, that it does not require a shared secret)
and secret key cryptography (more precisely, its speed). Indeed, assume that Bob can create a white-box AES
implementation [Ek] with an embedded key k. By definition, [Ek] does not allow to recover any information on
k beyond what a black box access would reveal. Therefore we automatically transformed a secret key encryption
scheme (AES with secret key k) into a public key encryption scheme where pk = [Ek] and sk = k, except that the
decryption operation – performed by Bob – only uses the decryption algorithm of AES with the secret key k, and is
thus much more efficient than “classical” public key decryption.

8However attacks on implementations of cryptographic primitives have become a major threat due to side-
channel information leakage such as execution time, power consumption or electromagnetic emanations (see e.g. the
surveys [Joy09, Roh09]). More generally, the increasing penetration of cryptographic applications onto untrusted
platform (the end points being possibly controlled by a malicious party) makes the black-box model too restrictive
to guaranty the security of programs implementing cryptographic primitives.

14

2.3. Lattice-Based Cryptography

All the works presented in this manuscript fall in the scope of public key cryptography. We will
use some secret key primitives such as SHA-2 [FIP12] in Chapter 6 and AES [FIP01] in Chapter 10.

2.3 Lattice-Based Cryptography

Asymmetric cryptography usually relies on simple algebraic structures. Groups for which the RSA
problem or the discrete logarithm problem are hard suffice to construct the main cryptographic
primitives such as asymmetric encryption or signatures. However, richer algebraic structures
gradually allowed to design new primitives and protocols. For example during the last decade,
bilinear maps (pairings) [Jou00, SOK00, BF01] on adequate groups made possible to construct
public key identity-based encryption (e.g. [BF01]), and simpler and more efficient advanced protocols
such as e-voting and e-cash.

An Euclidean lattice is a regular arrangement of points in an Euclidean space. Recently in
cryptology, lattices have known a renewal of interest. They were implicitly used in cryptography in
knapsack-based cryptosystems [Odl90] and in cryptanalysis [NS01].9 Lattices were (re)discovered
as a source of computational hardness for the design of secure cryptographic functions following the
seminal works of Ajtai [Ajt96] and Regev [Reg09]. Rapidly expanding, lattice-based cryptography is
now considered as the most promising alternative to traditional cryptography [LLS14]. In particular,
lattice-based cryptography has been recognized for its many very attractive selling arguments.
Not only it unlocked abundant new cryptographic primitives (including powerful tools like fully
homomorphic encryption), but it also has strong provable security guarantees, apparent resistance
to quantum attacks and high asymptotic efficiency.

Security Arguments. In 1996, the seminal work of Ajtai [Ajt96] proposed an average-case problem,
now called the Short Integer Solution problem (SIS), and showed that solving (average) instances of
this problem is as hard as solving worst-case problems defined over lattices. Another breakthrough
result is the introduction of the Learning with Errors problem (LWE) by Regev in 2005 [Reg09],
whose average-case instances are (quantumly) as hard as worst-case instances of lattice problems
(see also [BLP+13] for a partial dequantomization of this reduction). We defer to Section 3.2.2 for
some details on these problems. Therefore, lattice-based cryptographic systems admit, most of the
time, security proofs under some specific worst-case problems, as opposed to the (average-case)
security proofs for specific input distributions present in “classical” asymmetric cryptography.

Another selling argument in favor of lattice-based cryptography is that it is currently not
known how to exploit quantum computing to solve standard lattice problems significantly more
efficiently than with classical computers. This contrasts with classical hardness problems considered
in “classical” asymmetric cryptography, such as integer factorization or the discrete logarithm
problem, that can all be solved in polynomial-time using a quantum computer [Sho97].

Functionality Arguments. Lattice-based cryptographic primitives rely on simple and flexible op-
erations. Lattices can be tweaked in an original manner to produce groundbreaking schemes
such as fully homomorphic encryption (FHE) [Gen09], cryptographic multilinear maps [GGH13a],
attribute-based encryption for all circuits [GVW13] or indistinguishability obfuscation [GGH+13b]
(among others). In this age of cloud computing, new cryptographic functionalities are now desired;
in particular, computations on encrypted data, confidentiality, integrity and verifiability of client
data against an untrusted cloud provider, proof of data possession, and access control. Lattice-based
cryptography seems the only current cryptographic mean to bring the malleability required by the
new usages, while still providing strong security arguments (see previous paragraph).

A fundamental paradigm shift in asymmetric cryptography is that of functional encryption,
which enables fine-grained control of access to encrypted data. In particular, such a scheme allows
to decide of a decrypting policy not for a unique user but for a set of users: more precisely the owner
of a “master” secret key can release restricted secret keys that reveal a specific function of encrypted
data [AGVW13]. Functional encryption for all circuits was shown to be theoretically possible
in the groundbreaking work of Garg, Grentry, Haveli, Raykova, Sahai and Waters [GGH+13b].

9Euclidean lattices also have many applications in computer science and mathematics, including the solution of
integer programming problems, sphere packings, Diophantine approximations, and many more.

15

2. Introduction

Such an encryption scheme therefore allows to set up access policies on data in the cloud with a
cryptographic security [LLS14].

Fully homomorphic encryption (FHE), the Holy Grail of cryptography [Mic10] [sic] – as its
existence was subject to debates for three decades, enables one to process any function on encrypted
data. Thereby it allows to distribute cryptographic tasks to untrusted distributed computing
resources (such as a cloud infrastructure). In particular, a remote system can provide complex
functionalities, like a database system capable of indexing and searching our data, while knowing
nothing about the data itself. The first FHE scheme was described by Gentry in 2009 [Gen09], and
design and applications of FHE has become a major research subject these past five years.

It is worth noting that all the abovementioned cryptographic primitives can be viewed as
instantiations of lattice-based cryptography and are not achievable by more usual means.

Efficiency Arguments. Last but not least, lattice-based cryptography enjoys very low asymptotic
complexity, as opposed to classical cryptography. Indeed, encryption schemes relying on integer
factorization or the discrete logarithm problem are inherently slow [Ste11]. In particular, operations
typically cost O(n2+ε) using fast integer multiplication where n is the bit-size of the key pair, and
the best known attacks are sub-exponential (typically 2Õ(n1/3) bit operations10) with respect to
the key length. For a security parameter λ = n1/3, this means that encryption and decryption
usually cost Ω(λ6). On the other hand, lattice-based cryptography enjoys quasi-linear encryption
and decryption cost Õ(λ) when using ideal lattices, and can be proved as hard to break as solving
a computational problem which is believed to require 2Ω(λ) time.

Some Critics on the Selling Arguments. Although lattice-based cryptography is asymptotically
efficient, its practical instantiations are not always competitive with “classical” asymmetric cryptog-
raphy instantiations. Even nowadays, the most efficient lattice-based encryption scheme remains
NTRUEncrypt [HPS98] (with impressive encryption and decryption performances) whose security
relies on heuristic arguments. Theoretically secure lattice-based cryptography has been steadily
developed these past years. Yet, at the beginning of this thesis, provably secure lattice-based
schemes were rarely implemented, if at all. Moreover, the final key sizes were at least one order
of magnitude larger than for “classical” cryptography. Nowadays, to obtain efficient lattice-based
cryptosystems with relatively small key sizes, we work over ideal lattices (instead of random lattices)
whose hardness is unfortunately slightly less understood. The selected parameters are based on
(extensive) cryptanalysis of existing algorithms, and do not verify the requirements for the worst-case
to average-case reductions (which was a strong selling argument of lattice-based cryptography).
Finally, theoretically secure lattice-based cryptography uses discrete Gaussian sampling, which in
general requires to work with floating point numbers [DN12a].

Throughout the thesis we focused on improving the efficiency of lattice-based cryptography
and other asymmetric cryptosystems considered impractical. In particular, in Chapter 4 we made
possible to sample according to a discrete Gaussian over the integers on constrained devices, in
Chapters 5 and 6, we designed and implemented an efficient lattice-based signature scheme with
small key and signature sizes (as in “classical” cryptography). In Part II we improved the efficiency
of FHE schemes of several orders of magnitude and in Part III we described the first implementation
of cryptographic multilinear maps, and obtained arguably practical results.

2.4 List of Publications

In this section, we provide an exhaustive list of publications (with their full versions) and imple-
mentations to this date, cosigned by ourselves.

Internship Articles. Before this thesis, two publications [JL11, JL12] were produced during an
internship at Technicolor, under the guidance of Marc Joye. We provide their abstracts for com-

10The notation Õ(·) hides poly-logarithmic factors, i.e. f(n) = Õ(g(n)) = O(g(n) logc(n)) for some fixed constant
c.

16

2.4. List of Publications

pleteness, but will not discuss them further in this manuscript.

[JL11] Traitor Tracing Schemes for Protected Software Implementations.
M. Joye, T. Lepoint. (ACM-DRM 2011)
This paper considers the problem of converting an encryption scheme into a scheme in which
there is one encryption process but several decryption processes. Each decryption process is
made available as a protected software implementation (decoder). So, when some digital content
is encrypted, a legitimate user can recover the content in clear using its own private software
implementation. Moreover, it is possible to trace a decoder in a black-box fashion in case it is
suspected to be an illegal copy. Our conversions assume software tamper-resistance.

[JL12] Partial Key Exposure on RSA with Private Exponents Larger than N .
M. Joye, T. Lepoint. (ISPEC 2012)
In 1998, Boneh, Durfee and Frankel described several attacks against RSA enabling an attacker
given a fraction of the bits of the private exponent d to recover all of d. These attacks were later
improved and extended in various ways. They however always consider that the private exponent
d is smaller than the RSA modulus N . When it comes to implementation, d can be enlarged to
a value larger than N so as to improve the performance (by lowering its Hamming weight) or
to increase the security (by preventing certain side-channel attacks). This paper studies this
extended setting and quantifies the number of bits of d required to mount practical partial key
exposure attacks. Both the cases of known most significant bits (MSBs) and least significant bits
(LSBs) are analyzed. Our results are based on Coppersmith’s heuristic methods and validated by
practical experiments run through the SAGE computer-algebra system.

Lattice-Based Cryptography. In collaboration with colleagues from École Normale Supérieure,
we designed and implemented the most efficient – up to this date – lattice-based signature scheme.
This scheme improves over all the others lattice-based signature schemes and is faster than OpenSSL
implementations of RSA and ECDSA. It therefore appears as a promising post-quantum signature
scheme.

An article was published at CRYPTO 2013 [CG13a], and the associated proof-of-concept imple-
mentation is openly available. Full details are provided in Part I of this manuscript.

[DDLL13a] Lattice Signatures and Bimodal Gaussians.
L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky. (CRYPTO 2013)
Full version available at [DDLL13b].

[DL13] A Proof-of-concept Implementation of BLISS.
L. Ducas, T. Lepoint.

Fully Homomorphic Encryption. In collaboration with Pascal Paillier (from CryptoExperts), Jean-
Sébastien Coron (from University of Luxembourg), Mehdi Tibouchi (from NTT Secure Platform
Laboratories) and Michael Naehrig (from Microsoft Research), we improved upon and implemented
three fully homomorphic encryption schemes. In particular, homomorphic evaluations of block
ciphers were successfully performed, and are either competitive with existing results (with different
schemes) or even faster (when changing the underlying block cipher).

An article cosigned with Pascal Paillier was published at the first Workshop on Applied
Homomorphic Cryptography [ABS13], a new workshop that aims to bring together researchers,
practitioners and industry to present, discuss and share the latest progress in encrypted computing.
Full details on this work are available in Chapter 9 of this manuscript.

Two articles cosigned with Jean-Sébastien Coron and Mehdi Tibouchi were published (the
first article was merged with an independent work of J.H. Cheon, J. Kim, M.S. Lee, and A. Yun)
respectively at EUROCRYPT 2013 [JN13] and PKC 2014 [Kra14]. Full details on these works are
available in Part II of this manuscript.

17

2. Introduction

An article cosigned with Michael Naehrig was published at AFRICACRYPT 2014 [PV14],
and its proof-of-concept implementation is openly available. This article is not detailed in this
manuscript, we therefore provide its abstract for completeness.

[LP13] On the Minimal Number of Bootstrappings in Homomorphic Circuits.
T. Lepoint, P. Paillier. (WAHC 2013)

[CCK+13] Batch Fully Homomorphic Encryption over the Integers.
J.H. Cheon, J.-S. Coron, J. Kim, M.S. Lee, T. Lepoint, M. Tibouchi, A. Yun.

(EUROCRYPT 2013)
Full version avalable at [CLT13a].

[CLT14a] Scale-Invariant Fully Homomorphic Encryption over the Integers.
J.-S. Coron, T. Lepoint, M. Tibouchi. (PKC 2014)
Full version avalable at [CLT14b].

[LN14a] A Comparison of the Homomorphic Encryption Schemes FV and YASHE.
T. Lepoint, M. Naehrig. (AFRICACRYPT 2014)
Full version available at [LN14b].
We conduct a theoretical and practical comparison of two Ring-LWE-based, scale-invariant,
leveled homomorphic encryption schemes – Fan and Vercauteren’s adaptation of BGV and the
YASHE scheme proposed by Bos, Lauter, Loftus and Naehrig. In particular, we explain how
to choose parameters to ensure correctness and security against lattice attacks. Our parameter
selection improves the approach of van de Pol and Smart to choose parameters for schemes
based on the Ring-LWE problem by using the BKZ-2.0 simulation algorithm.
We implemented both encryption schemes in C++, using the arithmetic library FLINT, and
compared them in practice to assess their respective strengths and weaknesses. In particular, we
performed a homomorphic evaluation of the lightweight block cipher SIMON. Combining block
ciphers with homomorphic encryption allows to solve the gargantuan ciphertext expansion in
cloud applications.

[Lep14] A proof-of-concept implementation of the homomorphic evaluation of SIMON
using FV and YASHE leveled homomorphic cryptosystems.
T. Lepoint.

Multilinear Maps. In collaboration with Jean-Sébastien Coron (from University of Luxembourg)
and Mehdi Tibouchi (from NTT Secure Platform Laboratories), we designed the second multilinear
maps scheme candidate based on the breakthrough result of Garg, Gentry and Halevi [GGH13a].
We also provide the first implementation of such a scheme, which appears to be arguably practical,
as a 7-partite (resp. 26-partite) one-round key exchange protocol runs in a matter of seconds (resp.
minutes).

An article was published at CRYPTO 2013 [CG13a], and the associated proof-of-concept imple-
mentation is openly available. Full details are provided in Part III of this manuscript.

[CLT13b] Practical Multilinear Maps over the Integers.
J.-S. Coron, T. Lepoint, M. Tibouchi. (CRYPTO 2013)
Full version available at [CLT13c].

[Lep13] An Implementation of Multilinear Maps over the Integers.
T. Lepoint.

White-Box Cryptography. In collaboration with Cécile Delerablée, Pascal Paillier and Matthieu
Rivain (from CryptoExperts), we worked on white-box cryptography. In particular, with Matthieu
Rivain we designed a very efficient attack (of complexity 222) against the last supposedly secure
white-box AES implementation. A second work translated the folklore intuitions behind white-box
cryptography (used to design all the broken white-box candidates) into concrete security notions.

18

2.4. List of Publications

Overall, our results shed more light on the different aspects of white-box security and provide
concrete constructions that achieve them in a provable fashion.

Two articles were published at SAC 2013 [LLL13] (the first article was merged with an inde-
pendent work of Y. De Mulder, P. Roelse and B. Preneel). These articles are briefly discussed
in Appendix A, including some comments on the relation between white-box cryptography and
indistinguishability obfuscation [GGH+13b].

[LRM+13] Two Attacks on a White-Box AES Implementation.
T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, B. Preneel. (SAC 2013)
Full version available at [LR13].

[DLPR13b] White-Box Security Notions for Symmetric Encryption Schemes.
C. Delerablée, T. Lepoint, P. Paillier, M. Rivain. (SAC 2013)
Full version available at [DLPR13a].

19

Chapter 3

Preliminaries

In this chapter we recall some preliminary notions we are going to use throughout the entire thesis.
We first start by giving some guideline for the notation used in the manuscript. Next we briefly
introduce some background about lattices. Finally, we recall two lemmas that will be – repeatedly –
used in the different parts of the thesis: the Leftover Hash Lemma and the Rejection Sampling
Lemma.

3.1 Notation

Throughout the manuscript, we tried to make our notation uniform. We denote the set of real
numbers by R, the set of integers by Z and the set of non-negative integers by N. We denote by Zn
the ring Z/nZ of integers modulo an integer n; when n is prime, we denote by Fn = Zn the field
with n elements. For coprime integers pi’s and integers ai’s, we denote by CRTp1,...,p`(a1, . . . , a`)
the unique integer u smaller than

∏`
i=1 pi such that u mod pi = ai for all 1 6 i 6 `.

We denote by a← S the action of picking a independently and uniformly at random from some
set S, and by a ← R(· · ·) the action of running algorithm R on some inputs and naming a the
value returned by R. If a set S is finite, we denote by U(S) the uniform distribution on S. Also
the probability that an event X occurs is denoted by Pr[X].

We use the standard Landau notation o(·), O(·), Ω(·). We also use the notation Õ(·) for hiding
poly-logarithmic factors, i.e. f(n) = Õ(g(n)) = O(g(n) logc(n)) for some fixed constant c. We let
poly(n) denote an unspecified function f(n) = O(nc) for some constant c. A negligible function,
denoted generically by negl(n), is a function f that decreases faster than n−c for any constant c > 0.
We say that a function is overwhelming if it is 1− negl(n).

Vectors and Matrices. We denote vectors (resp. matrices) by bold lower (resp. upper) case roman
letters, such as x (resp. A). The ith coefficient of x will be denoted xi and the (i, j)-th coefficient
of A will be denoted aij . By convention, vectors are assumed to be in column form and for a
vector x (resp. a matrix A), we denote xt (resp. At) the transpose of x (resp. of A). When a
square matrix A is invertible, we denote by A−1 its inverse. Particular values we will use are
0 = (0, . . . , 0)t, 1 = (1, . . . , 1)t and I the identity matrix

I =


1 0 · · · 0

0 1
... 0
0 · · · 0 1

 .

We denote GLn(R) (resp. GLn(Z)) the set of invertible matrices over R (resp. over Z). Note that
if U ∈ GLn(Z), we have det(U) = ±1.

21

3. Preliminaries

If two vectors x,y have matching dimensions, we denote their inner product by 〈x,y〉 =
∑
i xiyi.

For a vector x ∈ Rn and p ∈ [1,+∞), we define the `p norm as

‖x‖p =
(n∑
i=1
|xi|p

)1/p
,

and for p = ∞, we define the `∞ norm ‖x‖∞ = maxni=1|xi|. When p is not specified, ‖x‖ is
assumed to represent the `2 norm of x (i.e. its Euclidean norm). The operator norm `p of a matrix
A ∈ Rn×m, for p ∈ [1,+∞], is defined by ‖A‖p = supx6=0 ‖Ax‖p/‖x‖p.

Random Experiments. A random experiment is an interactive protocol played by a group of proba-
bilistic algorithms interacting together. Random experiments are also referred to as (probabilistic)
games and are expressed as just a list of actions involving the players. We denote by

Pr [action1 then action2 then . . . then actionn : event]

the probability that event occurs after executing action1, . . . , actionn in sequential order, the proba-
bility being taken over the probability spaces of all the random variables involved in these actions.
One often refers to those as the random coins of the game (action1, . . . , actionn).

Concrete Reductions. An algorithm R is said to (τA, εA, τR, εR)-reduce a problem P1 to a problem
P2, which we then denote by P1 ⇐R P2, if R solves P1 with probability at least εR using an
algorithm A solving P2 with probability εA as an oracle, and in time at most τR. By time at most τR,
we mean that R runs in at most τR elementary time units, oracle calls to A counting for exactly τA
time units. R is then called a reduction from P1 to P2, or more precisely a (τA, εA, τR, εR)-reduction.

In the asymptotic setting, one says that a reduction R is polynomial when τR/εR is polynomial
in some complexity parameter if τA/εA was polynomial in the first place. When there exists R
such that P1 ⇐R P2 and R is polynomial, we may simply write P1 ⇐ P2.

3.2 Reminders on Lattices

In this section, we briefly recall some necessary mathematical background on lattices.

3.2.1 Lattices
A lattice L is a discrete additive subgroup of Rn. Equivalently, a lattice can be defined as the set of
all linear integer combinations of linearly independent vectors b1, . . . ,bd ∈ Rn, and we write

L = b1Z⊕ · · · ⊕ bdZ =
{ d∑
i=1

xibi : x = (x1, . . . , xd)t ∈ Zd
}
.

For the sake of simplicity, we restrict ourselves to full rank lattices, i.e. lattices such that d = n.
We say that the set {bi}ni=1 forms a basis of the lattice that its elements span; and we define the
basis matrix B as the matrix whose columns are the bi’s. For n > 2, a lattice has infinitely many
bases, of the same cardinality n. The determinant (or volume) of a lattice is defined as

det(L) =
(

det(BBt)
)1/2 = |det(B)| ,

where B is any basis of L. This quantity is well-defined since it is independent of the choice of the
basis: if B′ is another basis of L, then there exists a unimodular matrix U ∈ GLn(Z) such that
B′ = B ·U. Figure 3.1 gives a two-dimensional lattice with two different bases. Throughout the
thesis, we will indifferently refer to a lattice, to one of its bases or to one of its basis matrices as
the lattice itself.

Any lattice L has several popular lattice invariants, i.e. intrinsic values independent of the
particular representation of L. This includes, among others, the determinant of the lattice and the
successive minima of the lattice defined by λi(L) = min(r : dim Span(L ∩ Bn(0, r)) > i) for i 6 n,
where Bn(0, r) refers to the n-dimensional closed ball of center 0 and radius r. The minimum of L
is λ1(L), that is the (Euclidean) norm of a shortest non-zero vector of L.

22

3.2. Reminders on Lattices

Figure 3.1 – A two dimensional lattice along with two of its bases, and its volume.

Lattice Reduction. Among all the bases of a lattice L, some are ‘better’ than others. The goal
of lattice basis reduction is to find another basis of the same lattice with guaranteed norm and
orthogonality properties. Any basis B = (b1| . . . |bn) can be uniquely written as B = B∗ ·R where
B∗ is an orthogonal matrix and R is upper triangular with diagonal coefficients equal to 1. We
call B∗ = (b∗1| · · · |b∗n) the Gram-Schmidt orthogonalization of B. Note that the Gram-Schmidt
orthogonalization provides useful information on the lattice invariants of a lattice L. In particular,
if B is a basis matrix of L, we have

det(L) =
n∏
i=1
‖b∗i ‖ and min

j>i
‖b∗j‖ 6 λi(L) 6 max

j6i
‖b∗j‖, for all i 6 n .

Following the approach popularized by Gama and Nguyen [GN08], we say that a specific basis
B has root Hermite factor δ if its element of smallest norm b1 (i.e. we assume that basis vectors
are ordered by their norm) satisfies

‖b1‖ = δn · |det(B)|1/n .

A classical lattice basis reduction algorithm is LLL (due to Lenstra, Lenstra and Lovász [LLL82]).
The LLL algorithm runs in polynomial time and provides bases of quite decent quality. For many
cryptanalytic applications, Schnorr and Euchner’s blockwise algorithm BKZ [SE94] is the most
practical algorithm for lattice basis reduction in high dimensions. It provides bases of higher quality
but its running time increases significantly with the blocksize. Now if A denotes a lattice basis
reduction algorithm, applying it to B yields a reduced basis B′ ← A(B). Thus we can define δA(B)
as the value such that

‖b′1‖ = δnA(B) · |det(B′)|1/n = δnA(B) · |det(B)|1/n .

It is conjectured [GN08, CN11] that the value δA(B) depends mostly on the lattice basis reduction
algorithm, and not on the input basis B (unless it has a special structure, unusually short vectors
or cannot be considered random). Thus, in this thesis, we refer to this value as δA. For example for
LLL and BKZ-20 (i.e. BKZ with a blocksize β = 20), in the literature one can find the well-known
values δLLL ≈ 1.021 and δBKZ-20 ≈ 1.013.

Schnorr and Euchner’s blockwise algorithm BKZ [SE94] takes as input parameter the blocksize
β, which impacts both the running time and the quality of the resulting basis. In [GN08], it is
mentioned that BKZ-β for β > 30 for non trivial dimensions does not terminate in reasonable
time. In 2011, Chen and Nguyen described an implementation of BKZ called BKZ-2.0 [CN11] (see

23

3. Preliminaries

also the full version of the paper in [CN13]). This implementation incorporates some of the latest
improvements of lattice basis reduction: preprocessing of local bases (Kannan [Kan83]), shorter
enumeration radius, early abort (Hanrot, Pujot and Stehlé [HPS11]), extreme pruning (Gama,
Nguyen and Regev [GNR10]). In particular implementing these techniques allows to consider
blocksizes β > 50. We refer the interested reader to [CN11, CN13] for additional information.

The algorithm BKZ-2.0N,β is parametrized by two parameters: the maximal number of rounds
N and the blocksize β, and takes as input an LLL-reduced m-dimensional basis. The rough idea is
that in each round, it iterates over an index i 6 m− β, considers the β-dimensional lattice spanned
by the current basis vectors bi, . . . ,bi+β−1 and projects it onto the orthogonal complement of the
first i− 1 basis vectors b1, . . . ,bi−1. It then performs an enumeration using extreme pruning on
this projected lattice to find the shortest vector, and this vector is inserted into the main lattice
basis at the ith position. Note that BKZ-2.0N,β can be aborted before reaching the Nth round if
the basis has not been modified in the current round, i.e. a fix point has been attained.

Building upon the analysis of [HPS11], Chen and Nguyen provided an efficient simulation
algorithm to model the behavior of BKZ-2.0 in high dimensions with large blocksizes > 50.1 The
simulation algorithm takes as input the Gram-Schmidt norms of an LLL-reduced basis, a blocksize
β ∈ {50, . . . ,m} and a number N of rounds, and outputs a prediction for the Gram-Schmidt norms
after N rounds of BKZ-β reduction. A Python implementation of this simulation algorithm has
been made available by the authors in [CN13].

3.2.2 Average-Case Problems and Algorithmic Problems on Lattices
Almost all modern lattice-based cryptography is founded on two average-case computational
problems: the Short Integer Solution (SIS), and the Learning With Errors (LWE). A strong
argument in favor of lattice-based cryptography is that these average-case problems are connected
to worst-case lattice algorithmic problems extensively studied in the literature.

Algorithmic Problems on Lattices. The most studied algorithmic problems on lattices are computa-
tional problems related to the abovementioned lattice invariants. We briefly mention some of these
problems below (for integer lattices); but precise descriptions of these problems are not the purpose
of this thesis.

SVPγ . The Shortest Vector Problem with approximation factor γ is as follows: Given a n-
dimensional lattice L and one of its bases (b1, . . . ,bn), find a vector c ∈ L such that 0 <
‖c‖ 6 γ · λ1(L).

GapSVPγ . The Gap Shortest Vector Problem with approximation factor γ is as follows: Given
a n-dimensional lattice L, one of its bases (b1, . . . ,bn) and a number d, decide if λ1(L) 6 d or
λ1(L) > γ · d.

SIVPγ . The Shortest Independent Vectors Problem with approximation factor γ is as follows:
Given a n-dimensional lattice L and one of its bases (b1, . . . ,bn), find n linearly independent
vectors ci ∈ L for i 6 n such that maxi ‖ci‖ 6 γ · λn(L).

CVPγ . The Closest Vector Problem with approximation factor γ is as follows: Given a n-dimensio-
nal lattice L, one of its bases (b1, . . . ,bn) and a target vector t ∈ Rn, find a vector c ∈ L such
that 0 < ‖c− t‖ 6 γ · dist(t, L) = γ · infe∈L ‖e− t‖.

BDDγ . The Bounded Distance Decoding Problem with approximation factor γ is as follows: Given
a n-dimensional lattice L, one of its bases (b1, . . . ,bn) and a target vector t ∈ Rn such that
dist(t, L) 6 γ−1 · λ1(L), find a vector c ∈ L such that ‖c− t‖ = dist(t, L).

It is worth noting that it is not currently known how to significantly2 exploit quantum computing
to solve these problems more efficiently than with classical algorithms. This is why lattice-based

1This simulation algorithm is an ideal simulation procedure [CN13]. In particular, it assumes that the probability
of success of extreme pruning is p ≈ 1 and it does not model the behavior for blocksizes β < 50 correctly.

2Using Grover’s quantum search algorithm [Gro96] might end up reducing the constants in the exponent, but
the overall complexity remains essentially the same [Lud03, LMP13].

24

3.2. Reminders on Lattices

cryptography, which eventually relies on these problems, is said to withstand quantum attacks – it
is one of the favorite candidates for post-quantum cryptography. However, nothing excludes that
(to-be-discovered) quantum algorithms could dramatically change this situation.

From the definitions of the problems, it is clear that their complexity increases as the dimension
n increases, and decreases as the approximation factor γ increases. Let us recall some computational
results mentioned in the survey [Reg10b] – we refer the interested reader to this survey for all
interesting references. By the LLL algorithm (and subsequent improvements), we are able to
efficiently (i.e. in polynomial time) approximate lattice problems to within exponential factors,
namely γ(n) = 2n log logn/ logn. On the other hand, we know that there exists c > 0 for which
approximating lattice problem to within γ(n) = nc/ log logn is hard3, unless some unlikely events
occur (such as NP 6⊂ RSUBEXP [Reg10b]). Between these two extreme approximation factors, there
is a wide range of complexity possibilities. In particular, constructions in lattice-based cryptography
rely on the hardness of these algorithmic algorithms for an approximation factor γ(n) = poly(n).
The best known algorithms in this latter case all have exponential complexity bounds and are
believed to be at least exponential-time in the worst case.

In general, cryptography is based on average case problems, and lattice-based cryptography
does not escape this paradigm. Let us present the SIS and LWE problems below.

SIS. The SIS problem was introduced in the seminal work of Ajtai [Ajt96] showing connections
between worst-case lattice problems and the average-case SIS problem. Let n and q = poly(n)
be integers, and let β > 0. The SISq,n,m,β problem consists in, given a uniformly random matrix
A ∈ Zn×mq for some m = poly(n), finding a non-zero integer vector z such that Az = 0 mod q and
‖z‖ 6 β. By the pigeonhole principle, if β >

√
mqn/m then the SIS instances are guaranteed to

have a solution. Using Gaussian techniques, Micciancio and Regev [MR07] improved Ajtai’s result
to show that, for a large enough q as a function of n and β, the SISq,n,m,β problem is as hard (on
the average) as the Õ(

√
nβ)-SIVP problem for all lattices of dimension n.

In 2006, a ring variant of SIS was introduced independently by Peikert and Rosen [PR06]
and Lyubashevsky and Micciancio [LM06]. If we restrict to the rings R = Z[x]/(xn + 1) for n a
power of 2, and q = poly(n) is an integer, the (search) RSISq,n,m,β problem is: Given a1, . . . ,am ←
Zq[x]/(xn + 1), find random z1, . . . , zm ∈ Z[x]/(xn + 1) such that

∑m
i=1 ai · zi = 0 mod q and

0 < ‖Z‖ 6 β where Z = (z1, . . . , zm)t.
In [LM06] it was shown that if R = Z[x]/(xn + 1), where n is a power of 2, then the RSISq,n,m,β

problem is as hard as the Õ(
√
nβ)-SVP problem in all lattices that are ideals in R.

LWE. The LWE problem was introduced in the seminal work of Regev [Reg09]. For the same
parameters n and q, and α ∈ (0, 1), the search LWEq,n,m,α problem is: Given a “noisy” random
linear system A ∈ Zn×mq , b = At · s + e where A is uniformly random and the entries of e are
independent and identically distributed according to a centered discrete Gaussian distribution over
the integers4 of standard deviation α · q, to recover the secret vector s ∈ Znq .

The following theorem subsumes the latest security reductions [Reg09, BLP+13]:

Theorem 3.1 (As stated in [LLS14]). Let m, q(n) > 2 and α(n) ∈ (0, 1) be such that α · q > 2
√
n.

If q = poly(n) is prime, there exists a quantum polynomial reduction from SIVPγ in dimension n
to LWEq,n,m,α with γ = Õ(n/α). For any q, there exists a classical polynomial time reduction from
GapSVPγ in dimension Θ(

√
n) to LWEq,n,m,α with γ = Õ(n2/α).

In 2010, a ring variant of LWE was introduced by Lyubashevsky, Peikert and Regev [LPR13a].
The most general definition requires some algebraic tools that are beyond the scope of this thesis. If
we restrict to the rings R = Z[x]/(xn+1) for n a power of 2, q = poly(n) is an integer and α ∈ (0, 1),
the (search) RLWEq,n,m,α problem is: Given m = poly(n) samples of the form (a,a · s + e) where

3Note that known results differ on the problem and the underlying norm. For example, SVP is NP-hard to
approximate in the `∞ norm to within nc/ log logn for a c > 0, while this holds for CVP in the `p norm for all
1 6 p 6∞.

4We will define more precisely the discrete Gaussian distribution in Chapter 4. Here we consider the probability
distribution exp(−|z|2/(2σ2)) for z ∈ Z, where σ is the standard deviation.

25

3. Preliminaries

a ← Zq[x]/(xn + 1) and the coefficients of e ∈ Zq[x]/(xn + 1) are independent and identically
distributed according to a centered discrete Gaussian distribution over the integers of standard
deviation α · q, recover the secret polynomial s ∈ Zq[x]/(xn + 1).

Throughout the thesis, we will not use LWE – this explains its brief presentation. However,
it is worth noting that its versatility makes this problem a cornerstone of efficient and powerful
primitives such as Fully Homomorphic Encryption [BGV12], Attribute-Based Encryption for
all circuits [GVW13], and numerous others applications. In Part I of this thesis, we will slightly
generalize the SIS problem to construct our efficient lattice-based signature scheme. For details on SIS
and LWE, we refer the readers to [MR09, Reg10a, LS12, LPR13a, BLP+13, LPR13b, MP13, LLS14]
among other works.

3.3 Useful Lemmas

In this section, we recall the Leftover Hash Lemma (and provide some corollaries) and the Rejection
Sampling method, both being extensively used throughout the whole thesis.

3.3.1 Leftover Hash Lemma

In this section, we recall the classical Leftover Hash Lemma [HILL99] and give two easy corollaries
at the heart of all our constructions.

First, we say that a distribution D is ε-uniform if its statistical distance from the uniform
distribution is at most ε, where the statistical distance ∆(D1, D2) between two distributions D1,
D2 over a finite domain X is given by ∆(D1, D2) = 1

2
∑
x∈X |D1(x)−D2(x)|.

Let X and Y be finite sets. A family H of hash functions from X to Y is said to be pairwise-
independent if for all distinct x, x′ ∈ X, Prh←H[h(x) = h(x′)] = 1/|Y |.

Lemma 3.2 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise hash functions from
X to Y . Suppose that h← H and x← X are chosen uniformly and independently. Then, (h, h(x))
is 1/2

√
|Y |/|X|-uniform over H× Y .

One can then deduce the following corollary for random subset sums over a finite abelian group.

Corollary 3.3. Let m > 2. Let G be a finite abelian group. Set x1, . . . , xm ← G uniformly
and independently, set s1, . . . , sm ← {0, 1}, and set y =

∑m
i=1 sixi ∈ G. Then (x1, . . . , xm, y) is

1/2
√
|G|/2m-uniform over Gm+1.

Proof. We consider the following hash function family H from {0, 1}m to G. Each member
h ∈ H is parameterized by the elements (x1, . . . , xm) ∈ Gm. Given s ∈ {0, 1}m, we define
h(s) =

∑m
i=1 si · xi ∈ G. The hash function family is clearly pairwise independent. Therefore by

Lemma 3.2, (h, h(s)) is 1/2
√
|G|/2m-uniform over Gm+1.

Similarly, one can also deduce the following corollary for finite linear combinations modulo a
prime q > 2α, where the si are α-bit integers instead of bits:

Corollary 3.4. Let m > 2. Set x1, . . . , xm ← Zq uniformly and independently, set s1, . . . , sm ←
(−2α, 2α), and set y =

∑m
i=1 si · xi mod q. Then (x1, . . . , xm, y) is 1/2

√
q/2(α+1)·m-uniform over

Zm+1
q .

Proof. Let us consider the hash function family H from (−2α, 2α)m to Zq. Each member h ∈ H
is parameterized by the element (x1, . . . , xm) ∈ Zmq . Given s ∈ (−2α, 2α)m, we define h(s) =∑m
i=1 si · xi ∈ Zq. The hash function family is clearly pairwise independent since q is prime.

Therefore by Lemma 3.2, (h, h(s)) is 1/2
√
q/2(α+1)·m-uniform over Zm+1

q .

26

3.3. Useful Lemmas

f
M · g

Rejection area

x1

y1

x2

y2

x

y

(a) (xi, yi) is sampled uniformly in the area under
M · g, and accepted when yi 6 f(xi)

f
M · g

(b) M can be reduced when g is better adapted
to f

Figure 3.2 – Rejection sampling from the distribution of g to get the distribution of f

3.3.2 Rejection Sampling
In this section, we give an overview of the rejection sampling technique (that will be at the heart of
all the chapters of Part I).

Rejection sampling is a well-known method introduced by von Neumann [vN51] to sample
from an arbitrary target probability distribution f , given a source bound to a different probability
distribution g. Conceptually, the method works as follows. A sample x is drawn from g and is
accepted with probability f(x)/(M · g(x)), where M is some positive real. If it is not accepted,
then the process is restarted. It is not hard to prove that if f(x) 6 M · g(x) for all x, then the
rejection sampling procedure produces exactly the distribution of f . Furthermore, because the
expected number of times the procedure will need to be restarted is M , it is crucial to keep M as
small as possible, possibly by tailoring the function g so that it resembles the target function f as
much as possible. In particular, since rejection sampling can be interpreted as sampling a random
point (xi, yi) in the area under the distribution M · g (see Figure 3.2) and accepting if and only if
yi 6 f(xi), reducing the area between the two curves will reduce M .

Lemma 3.5 (Rejection Sampling). Let V be an arbitrary set, and h : V → R and f : Zm → R be
probability distributions. If gv : Zm → R is a family of probability distributions indexed by v ∈ V
with the property that there exists a M ∈ R such that

∀v ∈ V,∀z ∈ Zm,M · gv(z) > f(z) ,

then, the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output (z, v) with probability f(z)/
(
M · gv(z)

)
.

2. v ← h, z ← f , output (z, v) with probability 1/M .

27

Part One

Design and Implementation of a
Lattice-Based Signature Scheme

Overview

Lattice-based cryptography is arguably the most promising replacement for standard cryptography,
in the event quantum computers become a threat. Its sound hardness results and the versatility of
its average-case problems (e.g. SIS and LWE) make it an active research area [MR09]. Researchers
are rapidly discovering new lattice-based primitives, such as fully-homomorphic encryption [Gen09],
multi-linear maps [GGH13a], attribute-based encryption [GVW13], and indistinguishability ob-
fuscation [GGH+13b] that had no previous constructions based on classical number-theoretic
techniques.

It is often said that lattice-based cryptosystems are efficient and easy to implement, as basic
operations are only matrix-vector multiplications modulo an integer q. Lattice-based public-key
cryptographic primitives such as encryption schemes [HPS98, LPR13a, PG13] and digital signatures
[Lyu12, GLP12, GOPS13, BB13] already have somewhat practical lattice-based instantiations.
However, the reality of their implementation is slightly more intricate than this simplified point
of view. While lattice-based cryptography is asymptotically efficient (notably when using ideal
lattices), in practice only a few implementation results for lattice-based primitives are described,
and the resulting key/ciphertext/signature sizes and performances are often rather unsatisfactory.

This part of the thesis presents contributions to two areas of lattice-based cryptography. First, in
Chapter 4 we propose an efficient discrete Gaussian sampling algorithm over the integers, building
block of numerous lattice-based cryptosystems, that is compatible with constrained devices. Second,
we improve over today’s supposedly most efficient lattice-based signature schemes and propose
concrete instantiations. The resulting proof-of-concept implementation illustrates the practicality
of lattice-based cryptography and compares very favorably to the classical algorithms RSA and
ECDSA. Chapters 5 and 6 are devoted to our works on this topic, some of which yielded interesting
follow-up works [PG14, OPG14].

29

Chapter 4

Efficient Discrete Gaussian Sampling over
the Integers

4.1 Introduction

This chapter introduces an efficient algorithm to sample according to a discrete Gaussian distribution
over the integers, with small storage footprint and no transcendental function evaluation. All
the operations of our algorithm are very simple and require only small integer arithmetic. As a
consequence, we show that discrete Gaussian sampling over the integers, a fundamental building
block of lattice-based cryptography, is appropriate for use in constrained devices.

This chapter was part of the article Lattice Signature and Bimodal Gaussian [DDLL13a], cosigned
with L. Ducas, A. Durmus and V. Lyubashevsky and published at Crypto 2013 [CG13a]. The full
version of the article is available at [DDLL13b].

Background. To prevent the leakage of the signer’s secret key in the early attempts of lattice-based
signature schemes [GGH97, HHGP+03], Gentry, Peikert and Vaikuntanathan proposed in 2008 to
use discrete Gaussian sampling [GPV08]. Indeed, sampling solutions in [GGH97] according to a
discrete Gaussian distribution leaks no information about the geometry of the lattice.

Let L ⊂ Rn be a full-rank lattice. The discrete Gaussian distribution DL,c,σ of support L,
center c ∈ Rn and standard deviation σ is defined by:

∀x ∈ L,DL,c,σ(x) = ρc,σ(x)∑
y∈L ρc,σ(y) ,

where ρc,σ(x) = exp(−‖x− c‖2/(2σ2)).1 The subscripts L and c will be omitted when L = Zn and
c = 0 respectively. Three discrete Gaussian distributions over a 2-dimensional lattice L, with the
same center c but three different standard deviations σ, are presented in Figure 4.1. In [GPV08],
Gentry et al. showed that Klein’s algorithm [Kle00] can be used to sample points according to a
distribution statistically close to the desired discrete Gaussian distribution over any lattice L.2

After its introduction, Gaussian sampling became a fundamental building block in provable
lattice-based cryptography. Alternative algorithms with smaller time complexity were proposed
by Peikert and Micciancio [Pei10, MP12]. These general samplers over lattice were subsequently
analyzed and improved by Ducas and Nguyen [DN12a] using floating point arithmetic and laziness
techniques. They showed that “lazy techniques” can limit the need for high precision; one can
use floating-point numbers at double precision (53 bits) most of the time, native on high-end
architectures but still costly on embedded devices. The resulting algorithms run in quasi-quadratic
time Õ(n2) in the size of the input basis n. Following our work, Ducas described in his Ph.D. thesis,

1Some authors write a probability proportional to exp(−π‖x− c‖2/s2) where s =
√

2πσ.
2Note that producing an exact discrete Gaussian distribution is possible by autorizing the compuration time to

be arbitrarily large [BLP+13, Section 5]. Here we focus in sampling from distributions that are close to discrete
Gaussian distributions (using truncation); the required precision being driven by the security proof. In all this
chapter, we focus in sampling from a distribution statistically close to the desired distribution (governed by our
signature scheme in Chapter 6), i.e. that the statistical difference between the distributions is negligible.

31

4. Efficient Discrete Gaussian Sampling over the Integers

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · ·

· · · · · · · · · · ·
·
·
· · · · ·

· · · · · · · · · · ·
·
·
· · · · ·

· · · · · · · · · · ·
·
·
· · · · ·

· · · · · · · · · · ·
·
·
· · · · ·

· · · · · · · · · · ·
·
·
· · · · ·

· · · · · · · · · · · ·
· · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

(a) σ = 1.3

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · ·
· · · · · · ·

· · · · · · ·
·
· ·

·
·
· · · · · ·

· · · · · ·
·
·
· ·

·

·
·
· · · · ·

· · · · · ·
·

·
· ·

·

·

·
· · · · ·

· · · · · ·
·

·

· ·

·

·

·
· · · · ·

· · · · · ·
·

·
· ·

·

·

·
· · · · ·

· · · · · ·
·
·
· ·

·

·
·
· · · · ·

· · · · · · ·
·
· ·

·
·
· · · · · ·

· · · · · · · · · · ·
· · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

(b) σ = 0.9

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · ·
· ·

·
· · · · · · ·

· · · · · · ·

·

· ·

·

· · · · · · ·

· · · · · · ·

·

·
·

·

·
· · · · · ·

· · · · · ·
·

·

·
·

·

·
· · · · · ·

· · · · · · ·

·

·
·

·

·
· · · · · ·

· · · · · · ·

·

· ·

·

· · · · · · ·

· · · · · · · ·
· ·

·
· · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

(c) σ = 0.5

Figure 4.1 – Three discrete Gaussian distributions with support a 2-dimensional lattice and with the
same center but different standard deviations σ. Note that the z-axis represents the probabilities of
the elements to be outputted.

as on-going work, a variant of Klein’s algorithm running in quasi-quadratic time without using
floating point arithmetic nor high precision computations [Duc13].

One-Dimensional Gaussian Sampling. A fundamental building block of all these latter algorithms
is the centered (in 0) one-dimensional discrete Gaussian sampling over the integers (i.e. L = Z).
This simple distribution is also the only used Gaussian distribution in Lyubashevsky’s signature
scheme [Lyu12] and in numerous fully homomorphic encryption schemes [BV11a, BV11b, Bra12,
FV12, BLLN13]. Note that sampling according to a discrete Gaussian distribution of standard
deviation σ over L = Zn for n > 1 can be reduced to sampling n integers from the discrete Gaussian
distribution of standard deviation σ over Z [DG14, Lemma 2].

Constrained Devices. In order to be widely deployed, standard cryptographic primitives such
as signature schemes and encryption schemes have to be implemented on constrained devices
(e.g. smart-cards). Constrained devices have a limited memory storage and are not adapted to
high-precision computations nor floating-point arithmetic.

With the noticeable exception of NTRU [HPS98, HHGP+03], lattice-based cryptosystems
operating at a standard security level have remained out of reach of constrained devices by several
orders of magnitude. Indeed, most of lattice-based cryptosystems admit large public keys (vector or
matrices of several hundreds of elements) or large signatures. This already cripples any hope for
being implemented on small architectures. Moreover, to be provably secure, these cryptosystems
use discrete Gaussian sampling. In 2012, Dwarakanath and Galbraith made an extensive survey on
discrete Gaussian sampling over Z with particular focus on constrained devices [DG14]. This paper
concluded that none of the existing methods are particularly suited for these environments. Indeed,
they require either a large memory storage or high-precision floating-point arithmetic, if not both.

A first step towards a practical lattice-based signature scheme was achieved by [GLP12] with
an implementation on a low-cost FPGA, by avoiding Gaussian distributions, at the cost of some
compactness and security compared to [Lyu12].

Our Contribution. In this chapter we focus on how to efficiently sample from a distribution
statistically close to a one-dimensional discrete Gaussian distribution over the integers, i.e. over
Z, adapted for constrained devices. Our new algorithm does not require large memory storage
nor high precision computation of transcendental functions. In particular, compared to known
algorithms, we achieve an exponential improvement in the size of precomputed tables.

32

4.2. Discrete Gaussian Sampling: Prior Art

Rejection area

U(−τσ, τσ)

−τσ τσ0

Figure 4.2 – Basic Rejection Sampling for Discrete Gaussian Distribution.

Outline. In Section 4.2, we review some known techniques to sample over Z. In Section 4.3 we
present an efficient method to sample according to a Bernoulli distribution with bias exp(−x/f)
for a fixed f ∈ R from a small table of precomputed values and without actually computing
transcendental function. In Section 4.4, we give a method to easily sample from an exponential
distribution that is close to a discrete Gaussian, called binary discrete Gaussian distribution, and
then use rejection sampling so that the output is statistically close to the desired Gaussian. Finally
we conclude in Section 4.5.

4.2 Discrete Gaussian Sampling: Prior Art

There are two generic methods to sample according to a discrete Gaussian distribution Dσ centered
in 0: rejection sampling and the inversion method [DG14].3 First, note that it is generally useful to
ignore large values which are unlikely to appear when drawing according to a Gaussian distribution.

Lemma 4.1 ([MR07]). For any dimension m, σ > 0 and τ > 1, ρσ(Zm \ τσ
√
mB) < 2C(τ)m ·

ρσ(Z)m, where C(τ) = τ exp
(1−τ2

2
)
< 1, and B is the centered `2 unit ball.

Therefore, to obtain a distribution 2−λ-close to a 1-dimensional Gaussian, one should choose
the tailcut parameter τ ≈

√
λ · 2 ln 2, the typical value being τ = 12 for λ = 100 (see [Lyu12,

Lemma 4.4]).

Gaussian Sampling from Rejection Sampling. This method was proposed in [GPV08] and uses basic
rejection sampling as follows: choose a uniform integer x ∈ S := {−τσ, . . . , τσ} and accept it with
probability proportional to exp(−x2/2σ2); restart otherwise. A graphical representation is given
in Figure 4.2. This algorithm requires about 2τ/

√
2π trials in average, and thus O(τ log2(σ)) bits

of entropy using laziness.4 The main drawback is the need to compute the exponential function
with very high-precision. Additionally, an average of 2τ/

√
2π ≈ 10 trials until acceptance is rather

expensive.

Gaussian Sampling from the Inversion Method. The inversion method, suggested in [Pei10], makes use
of a cumulative distribution table to sample more efficiently (with complexity O(log2 σ)) and is very
efficient when given enough memory. It uses the fact that, if U is a uniform random variable over [0, 1],
the random variable D−1

σ (U) has the desired distribution over Z. One tabulates the approximate
3One could also sample according to a continuous Gaussian distribution, round it and use rejection sampling to

obtain a discrete Gaussian distribution. However, sampling according to a continuous Gaussian distribution requires
high precision, not to mention computations of transcendental functions such as exp, log, cos or sin; we therefore do
not consider it in this thesis.

4Laziness is an algorithmic trick saving both computation and entropy consumption; for our purpose, it is used
in two cases of application. First, as in many compilers, when computing a ∧ b and a ∨ b, b is not always evaluated
depending on the value of a. The second concerns the comparisons of reals of the form r < c: the result might be
decided only knowing their first different bit; for a uniform r ∈ [0, 1), only 2 bits are needed on average. In practice
however, one may apply this technique word by word rather than bit by bit.

33

4. Efficient Discrete Gaussian Sampling over the Integers

cumulative distribution of the desired distribution, i.e. the probabilities pz = Pr[x 6 z : x← Dσ] for
z ∈ S, precomputed with λ bits of precision. At sampling time, one generates u ∈ [0, 1) uniformly at
random and perform a binary search through the table to locate some z ∈ S such that u ∈ [pz−1, pz)
and outputs z. This approach consumes O(log2(σ)) bits of entropy, which is optimal up to a
constant factor.5 In [DG14], Dwarakanath and Galbraith suggest to combine this method with the
Knuth-Yao algorithm (this approach was later implemented in [RVV13]). This leads to a significant
decrease of the table size by a factor slightly less than 2.
Remark 4.2. Sampling according to a continuous Gaussian distribution is widely used in traditional
applications in statistical computing (e.g. signal processing, finance, . . .) but cryptographic
applications require higher quality sampling (i.e. with a smaller statistical distance between the
desired distribution and the actual distribution sampled). Therefore, the discretization of continuous
Gaussian sampling techniques (using rounding) does not present any advantage compared to the
aforementioned techniques.

Limitations of the Known Algorithms. Unfortunately, neither of the two approaches is appropriate
for use in constrained devices [DG14]. Indeed, using rejection sampling requires floating-point
arithmetic while there is no floating-point hardware co-processor. Floating-point arithmetic is too
costly to allow an on-card discrete Gaussian sampling via rejection sampling.

As the inversion method is concerned, the size of the look-up table is crippling any hope to
fit on a constrained device. Indeed, let us consider the parameters of Chapter 6 for the signature
scheme BLISS. In particular, one wants to sample according to a discrete Gaussian distribution
with standard deviation σ > 107 for 128 bits of claimed security. Being conservative (i.e. taking
τ = 12 and σ = 107) and using the inversion method, one would need to store τ · σ · 128 > 20kB
of precomputed values. In other words, at least 4% of the whole smart-card capacity would be
used just to store values used during discrete Gaussian sampling (which is a building block of
cryptographic primitives).6 Storing 20kB of precomputed data might be potentially acceptable
for some devices and applications, but is completely impractical in most cases (memory is really
expensive on smart-cards). Note also that another drawback of the inversion method is the high
amount of memory access that slow down the implementation (see also Section 4.5).

In the rest of this chapter, we describe a discrete Gaussian sampler using exponentially less
memory and no floating-point arithmetic, therefore adapted to constrained environments.

4.3 Efficient Sampling from Bernoulli Distributions

We recall that a Bernoulli distribution Ba assigns 1 (True) with probability a ∈ [0, 1] and 0 (False)
with probability 1 − a. Overloading the notation for the sake of clarity, we will denote by Ba
both the distribution and a generic random variable that follows that distribution independently
of all others. In particular, we have for any a, b ∈ [0, 1] that ¬Ba = B1−a, Ba ∨ Bb = Ba+b−ab,
Ba ⊕ Bb = Ba+b−2ab and

Ba ∧ Bb = Bab . (4.1)

Before describing our technique to sample from a Bernoulli distribution with an exponential bias
computed on the fly, recall that sampling from a distribution statistically close (i.e. (2−λ)-close) to
a Bernoulli distribution Ba for a given bias a is easy: take an approximation of a up to λ correct
bits, then sample a uniform real r ∈ [0, 1) up to λ bits of precision and answer 1 if and only if r < a.
(As previously recalled, on average one only needs to compute 2 bits of r.)

Bernoulli Distribution with Exponential Bias. Our problem is as follows: For a fixed real f , a positive
integer x 6 2` given as input, sample a random boolean according to Bexp(−x/f). Combining
the simple homomorphic property of the exponential function with Equation (4.1), our approach,
implemented by Algorithm 4.1, requires only ` precomputed entries with λ bits of precision, and no
evaluation of transcendental functions.

5Indeed, the entropy of the discrete Gaussian distribution of standard deviation σ over Z is 1.4 + log2(σ)
bits [DG14].

6Some numbers to keep in mind for a (standard) smart-card are the following: a processor of 20Mhz with a 32
bit CPU, 20kB of RAM, 32kB of ROM (secure boot, . . .) and 500kB for all the program/data (flash).

34

4.3. Efficient Sampling from Bernoulli Distributions

Algorithm 4.1 Sampling Bexp(−x/f) for x ∈ [0, 2`) using precomputed values {ai =
exp(−2i/f)}i=0,...,`−1.

1: function BernoulliExpf (x =
∑`
i=0 xi2i ∈ [0, 2`))

2: for i = `− 1 downto 0 do
3: if xi then
4: Ai ← Bai
5: if ¬Ai then
6: return 0 . Laziness: output 0 when a sampled bit is equal to 0
7: end if
8: end if
9: end for
10: return 1 . Output 1 with probability exp(−x/f)
11: end function

Lemma 4.3. For any integer x ∈ [0, 2`), Algorithm 4.1 outputs a bit according to Bexp(−x/f).

Proof. Denoting the binary decomposition of x by x =
∑`−1
i=0 xi2i with xi ∈ {0, 1}, we have

Bexp(−x/f) = Bexp(−
∑

i
xi2i/f) = B∏

i
exp(−xi2i/f) =

∧
i s.t. xi=1

Bexp(−2i/f) .

Remark 4.4. Note that Algorithm 4.1 is defined so that the smallest probabilities are checked first,
so that the algorithm can terminate faster. Moreover this algorithm is very fast, and uses about `
bits of entropy on average for random x.

However this laziness technique (and the fact that we draw random bits only when xi = 1)
when using Algorithm 4.1 might leak information that could be exploited by an adversary. It might
therefore be preferable to modify Algorithm 4.1 to do a constant time sampling, at the cost of the
entropy consumption (see also Section 4.5).

Bernoulli Distribution with Inverse Hyperbolic Cosine Biases. During the implementation of our
signature scheme [DDLL13a] built upon the discrete Gaussian sampling technique described in this
chapter, one needs to reject with probability 1/ cosh(x/f) for a given f . As it would be a pity to
remove the high precision computations from discrete Gaussian sampling but keep it later in our
signing process, we developed a sampling algorithm for Bernoulli variables with inverse hyperbolic
cosine biases.

Our problem is as follows: For a fixed real f , a positive integer x 6 2` given as input, sample a
random Boolean according to B1/ cosh(x/f). Recall that

1
cosh(x/f) = 2

exp(|x|/f) + exp(−|x|/f) = exp(−|x|/f)
1/2 + 1/2 · exp(−2|x|/f) . (4.2)

To sample efficiently according to the Bernoulli distribution B1/ cosh(x/f), we reuse the previous
generator for Bexp(−|x|/f) with no explicit evaluation of exp or cosh. In order to deal with the
fraction in Equation (4.2), we introduce a new operation denoted � and computed according to
Algorithm 4.2.

Lemma 4.5 (Correctness and Efficiency of Algorithm 4.2). For any a, b ∈ (0, 1] we have, Ba�Bb =
Ba/(1−(1−a)b) and Algorithm 4.2 terminates after an average of 1/(1− (1− a)b) trials.

Proof. At each trial, the probability of restarting is (1− a)b. Now, the probability that it outputs 1
is easily computed as the sum over each trial:

Pr[Ba � Bb = 1] = a

∞∑
k=0

(1− a)kbk = a

1− (1− a)b .

35

4. Efficient Discrete Gaussian Sampling over the Integers

Algorithm 4.2 Sampling Ba � Bb.
1: function BernoulliSlash(a, b)
2: while True do
3: A← Ba
4: if A then
5: return 1 . output 1 when A = 1
6: end if
7: B ← Bb
8: if ¬B then
9: return 0 . output 0 when A = B = 0
10: end if
11: end while . restart otherwise
12: end function

Corollary 4.6. Let f ∈ R. For any x ∈ R, we have

B1/ cosh(x/f) = Bexp(−|x|/f) �
(
B1/2 ∨ Bexp(−|x|/f)

)
and Algorithm 4.2 requires less than 3 calls to Bexp(−|x|/f) on average.

Proof. Correctness is a direct application of the previous lemma. Set X = exp(−|x|/f). Algo-
rithm 4.2 for the computation of the Bernoulli variable BX �

(
B1/2 ∨ BX

)
can be seen as the

following Markov chain:

A B C

01

1−X
X

1/2

1/2
X

1−X1−X

Let M denote the restriction of the transition matrix to the states A,B and C (indexed in that
order), and let v = (1, 0, 0)t be the initial density vector. The density vector after k steps is Mk · v,
so the average number of steps through each state A,B and C is given by the vector

w = (wA, wB , wC)t =
∞∑
k=0

Mk · v = (I3 −M)−1 · v

where

M =

 0 1
2 X

1−X 0 0
0 1

2 0

 and (I3 −M)−1 · v = 1
1 +X2

 2
−2X + 2

1−X

 .

Since the calls to Bexp(−|x|/f) are performed during the states A and C, the average number of
calls to this Bernoulli sampling is C(X) := wA + wC = 3−X

1+X2 . Finally, we have C(X) 6 3 for all
X > 0.

4.4 Reduce the Rejection Rate with a Binary Discrete Gaussian Distribution

Based on Algorithm 4.1 to sample efficiently from Bexp(−x/f) for x > 0, it is now possible to obtain a
Gaussian distribution via generic rejection sampling algorithm as in [GPV08], trading high-precision
evaluation of transcendental functions against a table of log2(τ2σ2) precomputed values. Indeed,
the method is adapted as follows. First, one stores in a table the values exp(−2i/(2σ2)) with
λ bits of precision for i = 0, . . . , log2(τ2σ2). At sampling time, one chooses a uniform integer
x ∈ S := {−τσ, . . . , τσ} and uses Algorithm 4.1 to generate a boolean according to exp(−x2/(2σ2));
accept if the boolean is True and restart otherwise.

36

4.4. Reduce the Rejection Rate with a Binary Discrete Gaussian Distribution

U(−τσ, τσ)

−τσ τσ0

(a) from uniform distribution (repetition rate ≈ 10)

k ·Dσ2
+ U(0, k − 1)

k−k τστσ 0

(b) from our adapted distribution (repetition rate ≈ 1.47)

Figure 4.3 – Rejection Sampling.

Algorithm 4.3 Sampling D+
σ2
.

1: function GaussianBinaryPositive()
2: b← B1/2
3: if ¬b then
4: return 0 . return 0 with probability 1/2
5: end if
6: for i = 1 to ∞ do
7: b1, . . . , bk ← B1/2 for k = 2i− 1
8: if ∃j ∈ {1, . . . , k − 1} such that bj then
9: restart . restart if one of the k − 1 first bits is 1
10: end if
11: if ¬bk then
12: return i . output i if the last bit is 0
13: end if
14: end for
15: end function

However, the algorithm still requires (2τ/
√

2π) ≈ 10 trials on average to output an x statistically
close to the correct distribution. This is due to the significant distance between the uniform
distribution and the target distribution. To solve this issue we introduce a new sampling algorithm
with an average number of rejections smaller than 1.47. We achieve that result by sampling from a
specific distribution denoted Dk,σ2 , for which sampling is easy. The distribution Dk,σ2 is much closer
to the target distribution Dkσ2 than the uniform distribution (see Figure 4.3b versus Figure 4.3a),
leading to a huge acceleration of rejection sampling.

The Binary Discrete Gaussian Distribution. Let us introduce the binary discrete Gaussian distribution
Dσ2 , which is a discrete Gaussian with specific variance σ2 =

√
1/(2 ln 2) ≈ 0.849 and probability

density
ρσ2(x) = e−x

2/(2σ2
2) = 2−x

2
for x ∈ Z .

We will combine Dσ2 with the uniform distribution to produce the distribution Dk,σ2 (see Fig-
ure 4.3b). We will only focus on the positive half of Dσ2 denoted D+

σ2
= {x ← Dσ2 : x > 0}.

Algorithm 4.3 is designed to sample according to D+
σ2

very efficiently using only unbiased random
bits.

Lemma 4.7. Algorithm 4.3 outputs positive integers according to D+
σ2
. On average, the algorithm

terminates after 2/ρσ2(Z+) < 1.3 trials and consumes 2.6 bits of entropy.

Proof. The probability that the algorithm returns x ∈ Z+ is ρσ2(x)/ρσ2(Z+) where ρσ2(Z+) =∑∞
i=0 2−i2 ≈ 1.564. We now observe that the binary expansion of ρσ2({0, . . . , j}) =

∑j
i=0 2−i2 is of

37

4. Efficient Discrete Gaussian Sampling over the Integers

Algorithm 4.4 Sampling D+
kσ2

for k ∈ Z+.

1: function GaussianPositive(k)
2: x← GaussianBinaryPositive()
3: y ← {0, . . . , k − 1}
4: z = xk + y
5: b← BernoulliExp2(kσ2)2(−y(y + 2xk))
6: if ¬b then
7: restart . restart with probability exp(−y(y + 2xk)/2(kσ2)2)
8: end if
9: return z
10: end function

the form
ρσ2({0, . . . , j}) = 1 . 1 0 0 1 0 . . . 0︸ ︷︷ ︸

4

1 0 . . . 0︸ ︷︷ ︸
6

1 . . . 0 . . . 0︸ ︷︷ ︸
2(j−2)

1 0 . . . 0︸ ︷︷ ︸
2(j−1)

1 .

Thus, each trial of Algorithm 4.3 implicitly chooses a random real r ∈ [0, 2) that will be rejected
if r > ρσ2(Z+). It then computes the cumulative table (scaled by ρσ2(Z+)) on the fly and reject if
necessary. On average, the algorithm completes after 2/ρσ2(Z+) < 1.3 trials and consumes 2.6 bits
of entropy.

Building the Centered Discrete Gaussian Distribution. Based on our efficient sampling for the
distribution D+

σ2
, we can now easily build the positive discrete Gaussian distribution with standard

deviation σ = kσ2 for k ∈ Z+. We refer to our Algorithm 4.4 based on the property

D+
k,σ2

= k ·D+
σ2

+ U(0, k − 1),

and where we reject the result with probability exp(−y(y+ 2kx)/(2σ2)) where x and y respectively
follow the distributions D+

σ2
and U(0, k − 1), the uniform distribution over [0, k − 1] ∩ Z.

Theorem 4.8. For any non-negative integer input k, Algorithm 4.4 outputs positive integers accord-
ing to D+

σ for σ = kσ2. On average, it requires less than 1.47 trials. Consequently, Algorithm 4.5
outputs integers according to Dσ, and requires about 1 + 1

5σ trials.

Remark 4.9. Entropy consumption for each trial of Algorithm 4.4 is: 2.6 bits for x ← D+
σ2
,

log2 k bits for y ← U(0, k − 1), and ≈ 1 + log2 σ bits (measured in practice) for the rejection bit
b ← Bexp(−y(y+2kx)/(2σ2)). Since on average, Algorithm 4.4 restarts 1.47 times, we an average
entropy consumption of ≈ 7 + 3 log2 σ when using Algorithm 4.5.

Proof. Let us start with the fact that any output z is uniquely written as kx+y for y ∈ {0, . . . , k−1}.
The input (resp. desired output) distribution weight function g (resp. f) is

g(z) = g(kx+ y) = ρσ2(x)
kρσ2(Z+) and f(z) = f(kx+ y) = ρkσ2(kx+ y)

ρkσ2(Z+) .

Since we restrict the distribution to non-negative integers (x, y > 0), we have exp
(
− y(y+2kx)

2σ2

)
6 1.

Therefore, the probability to output some integer z = kx+ y is proportional to

ρσ2(x) exp
(
−y(y + 2kx)

2σ2

)
= exp

(
− x2

2σ2
2
− 2kxy + y2

2σ2

)
= exp

(
− (kx+ y)2

2σ2

)
= ρkσ2(z) .

The repetition rate M is upper-bounded by

M = max f
g
6
kρσ2(Z+)
ρkσ2(Z+) 6

kρσ2(Z+)
kσ2
√
π/2

6 1.47 ,

38

4.5. Conclusion

Algorithm 4.5 Sampling Dkσ2 for k ∈ Z+.
1: function Gaussian(k)
2: z ← GaussianPositive(k)
3: b← B1/2
4: if z = 0 and ¬b then
5: restart . restart with probability 1/2 if z = 0
6: end if
7: return (−1)b · z
8: end function

Table 4.1 – Comparison of Discrete Gaussian Sampling Algorithms over the Integers.

No FPA Precomputation Table Entropy
Storage Look-ups Consumption

Naive rejection × 0 0 2τ/
√

2π · log2(τσ)
[GPV08] (2τ/

√
2π)

Naive rejection with pre-
computed table

X λ · log2(τ2σ2) 2τ/
√

2π 2τ/
√

2π · log2(τσ)

Cumulative X λ · τσ log2(τσ) ≈ 2 + log2 σ
Distribution Table [Pei10] (cf. [DG14])
Our Method X λ · log2(2.4τσ2) 1.5 log2(σ) ≈ 7 + 3 log2 σ
(Algorithm 4.5) (cf. Remark 4.9)

where the second inequality follows from the sum-integral comparison (ρkσ2 is decreasing over
[0,∞))

ρkσ2(Z+) >
∫ ∞
x=0

ρkσ2(x)dx = kσ2
√
π/2 .

Finally, we apply Algorithm 4.5 to build the (full) discrete Gaussian distribution Dσ over Z.

Remark 4.10. Note that our discrete Gaussian sampling requires σ ∈ σ2Z+. However, in lattice-
based cryptography, security requirements provide a lower bound on σ: it suffices then to sample
according to a discrete Gaussian distribution of standard deviation dσ/σ2eσ2.

Remark 4.11. Note that Algorithm 4.5 to sample from Dσ can easily be adapted to sample from Dσ,c

for c ∈ Z, by simply adding c to the result. Sampling from Dσ,c for c ∈ R with less than 1.6 trials
on average is also possible at the cost of doubling the memory requirement [Duc13, Section 7.1.4].
The main idea is to sample from a wider distribution Dσ′ (σ′ = 5σ/4 in [Duc13]) and reject using
BernoulliExpf (x) as in Line 5 of Algorithm 4.4 for well chosen x, f .

4.5 Conclusion

In this chapter, we proposed very simple and natural algorithm to sample from a distribution
statistically close to a discrete Gaussian distribution over the integers when the standard deviation
is in

√
1/(2 log 2)Z+. Our algorithm requires exponentially less memory than the usual inversion

method (λ log2(2.4τσ2) bits versus λτσ bits) and consumes only 3 times more entropy (cf. Table 4.1).
For example, using the parameters of Chapter 6 for the signature scheme BLISS (i.e. σ = 107 for
λ = 128), our algorithm requires 293 Bytes of memory versus 20 kBytes for the inversion method;
such storage requirement is adapted to constrained devices.

A proof-of-concept implementation of our algorithms is available under the free software license
CeCILL7 at [DL13]. We also provided an implementation of the inversion method for the sake of
comparison.

7http://www.cecill.info/

39

http://www.cecill.info/

4. Efficient Discrete Gaussian Sampling over the Integers

Table 4.2 – Comparison of Discrete Gaussian Sampler Algorithms over the Integers (σ = 215 and
≈ 1640 Runs).

Algorithms Cycles Memory No FPA
Ziggurat (optimized for speed) 1,014,253 10240B ×
Ziggurat (average) 1,761,321 5120B ×
Ziggurat (optimized for size) 3,776,097 2560B ×
Knuth-Yao 1,233,918 19064B X
Bernoulli (our algorithm) 934,131 900B X

Practical Implementations of Discrete Gaussian Sampling Algorithms. Concurrently to our work, two
implementations of discrete Gaussian sampling have been proposed at SAC 2013 [RVV13, BCG+13].

The Knuth-Yao algorithm described in [DG14] was implemented in [RVV13] on FPGAs. This
algorithm constructs a binary tree of the probabilities px = ρσ(x)/ρσ(Z+) for x ∈ Z+. To sample
from an uniform distribution, one walks down the tree from the root using one uniform bit at each
step to decide which of the two children to move to. When one hits a leaf, one outputs the integer
label x for this leaf. Unfortunately the main drawback of this algorithm is the storage of the tree
and the high amount of memory access needed.

In [BCG+13], the authors adapted the continuous Ziggurat algorithm to sample from a discrete
Gaussian distribution and offer a flexible time-memory trade-off. The Ziggurat algorithm seems
quite similar (when depicted) to our algorithm. Precomputed rectangles are used to sample x.
One creates m rectangles with the left corners on the y-axis and the right corners on the graph of
the probability distribution function such that all rectangles have the same size. The entire area
under the graph is then covered by rectangles and a rectangle Ri can efficiently be stored by just
storing the coordinates (xi, yi) of the lower right corner. Then one performs the basic rejection
sampling step (using floating-point arithmetic) using this new distribution. The main drawback of
this method is therefore the requirement for either floating-point arithmetic (with few rectangles)
to optimize the memory, or large precomputed tables (with a lot of rectangles) to optimize the
speed, or a combination thereof.

In [OPG14], Oder, Pöppelmann and Güneysu investigated the latter potential approaches (our
algorithm [DDLL13a], the Ziggurat method [BCG+13] and the Knuth-Yao algorithm [RVV13]) to
sample from a discrete Gaussian distribution on an ARM Cortex-M4F micro-controller.8 They
conclude that our sampler is the best choice on this constrained device compared to the other
samplers, as illustrated by Table 4.2. This work also illustrates that on constrained devices, contrary
to our naive implementation [DL13], the Knuth-Yao algorithm with the larger table and (nearly)
optimal entropy consumption does not outperform our Gaussian sampling algorithm because of the
high amount of memory access.

Future Work and Perspectives. An important future work is to evaluate the resistance of discrete
Gaussian sampling algorithms against side-channel attacks. In particular, all previous algorithms
are not constant time and therefore might leak useful information for an adversary. Assessing
whether constant time sampling is necessary, or how to do it efficiently is therefore a promising
work. It also seems interesting to consider software-hardware co-design to implement lattice-based
schemes, where e.g. the hardware co-processor could be dedicated to perform discrete Gaussian
sampling. Indeed, when used as a building block of lattice-based signature schemes, discrete
Gaussian sampling takes more than 35% of the running-time [DDLL13a, BB13].

8Note that this device is more efficient and has more memory than a smart-card. It remains an open problem to
perform discrete Gaussian sampling over a smart-card or an RFID tag.

40

Chapter 5

Design of BLISS, an Efficient Lattice-Based
Signature Scheme

5.1 Introduction

This chapter proposes a construction of a lattice-based signature scheme that improves over today’s
most efficient lattice-based schemes. The heart of the improvement consists in a modification of
the rejection sampling algorithm of Lyubashevsky’s signature scheme [Lyu12] (and of several other
lattice primitives [Lyu09, Rüc10, DPSZ12]). Our new rejection sampling algorithm which samples
from a bimodal Gaussian distribution, combined with a modified scheme instantiation, ends up
reducing the standard deviation of the resulting signatures by a factor that is asymptotically square
root in the security parameter. Practical instantiations of our signature scheme for security levels
of 128, 160 and 192 bits are given in Chapter 6 and compare very favorably to existing schemes
such as RSA and ECDSA in terms of efficiency. In addition, our instantiation has shorter signature
and public key sizes than all previously proposed lattice-based signature schemes.

This chapter was part of the article Lattice Signature and Bimodal Gaussian [DDLL13a], cosigned
with L. Ducas, A. Durmus and V. Lyubashevsky and published at Crypto 2013 [CG13a]. The full
version of the article is available at [DDLL13b].

Background. Early lattice-based signature schemes proposals GGH and NTRUSign are directly
related to the difficulty to solve a certain lattice problem, but lack a security proof (cf. [GGH97,
HHGP+03]). It was known from the beginning that each signature was leaking information on the
signer’s secret key but no attack exploiting this leakage was known. Still, some heuristic counter-
measures were proposed to make this statistical leakage unusable [HHGP+03]. In 2006, Nguyen and
Regev [NR09] presented the first successful key-recovery experiments on GGH and the raw version
of NTRUSign (with as few as 400 signatures). The latter attack can be adapted [MPSW09, DN12b]
to break all the heuristic countermeasures designed to patch NTRUSign, and in particular, to the
standardized version of NTRUSign [IEE08].

Provably-secure lattice-based schemes are either based on the hash-and-sign paradigm [GPV08,
MP12] or on Fiat-Shamir paradigm [Lyu09, Lyu12] and rejection sampling (Lemma 3.5). Quite
surprisingly, the hash-and-sign schemes [MP12, BB13] seem significantly less efficient than the Fiat-
Shamir schemes [Lyu12, GLP12, GOPS13]. The most efficient instantiations have both signature
and key size of the order of 9kb [GLP12, GOPS13] for approximately 80 bits of security.1

At the heart of Lyubashevsky’s signature schemes [Lyu09, Lyu12] is rejection sampling. Its first
use in lattice-based constructions was presented in [Lyu08] to construct a three-round identification
scheme. A standard identification scheme is a three round sigma protocol that consists of commit,
challenge, and response stages. Unfortunately, lattice-based constructions of such an identification
scheme are more intricate than for number-theoretic schemes.

1In [GLP12], a 100-bit security level was claimed, but the cryptanalysis of Chapter 6, which combines lattice-
reduction attacks with combinatorial meet-in-the-middle techniques, estimates the actual security to be around 75-80
bits.

41

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

For example, let us describe Schnorr identification scheme [Sch89]. Let p be a large prime such
that the discrete logarithm problem in Zp is intractable and let q be a large prime divisor of p− 1.
Let s be uniformly generated in Zq and set sk = s. Let g be a generator of a subgroup of Zp or
order q, define S = gs and set pk = (q, g, S). In Schnorr identification scheme, a prover P wants to
prove to a verifier V the knowledge of the secret key sk = s corresponding to the public key pk
without revealing any information on s. The identification protocol is as follows.

Prover P Verifier V
y ← Zq
Y = gy

Y

c← Zq
c

z = y + cs mod q z If gz = Y Sc then output 1, else output 0.

The main idea in Schnorr scheme (and also GQ schemes [BP02]) is that the value y committed at
the first stage is randomly and uniformly selected to hide the secret key s in the third stage. Indeed,
since all operations are performed in Zp – a finite ring –, a uniformly random y completely hides s.
In lattice-based constructions however, security reductions require y to be chosen small. Therefore
adding a challenge-dependent function of s is susceptible to leak some useful information on s. Thus,
rejection sampling is performed so that s is not leaked when we add y to it (we describe this idea
in much greater detail below). Improvements in lattice-based identification schemes (and therefore
signature schemes via the Fiat-Shamir transformation) partly came via picking distributions that
were more amenable to rejection sampling (cf. Figure 3.2b).

Lattice-Based Signature Scheme from [Lyu12]. Let us describe how the simplest version based on
SIS of this scheme works. The secret key is an m×n matrix S with small coefficients, and the public
key consists of a random n ×m matrix A whose entries are uniform in Zq and T = AS mod q.
There is also a cryptographic hash function H, modeled as a random oracle, which outputs elements
in Zn with small norms. To sign a message digest µ, the signing algorithm first picks a vector y
according to the distribution Dm

σ , where Dm
σ is the discrete Gaussian distribution over Zm with

standard deviation σ (cf. Chapter 4). The signer then computes c = H(Ay mod q, µ) and produces
a potential signature (z, c) where z = Sc + y. Note that the distribution of z depends on the
distribution of Sc, and thus on the distribution of S – in fact, the distribution of z is exactly Dm

σ

shifted by the vector Sc.
To remove the dependence of the signature on S, rejection sampling is used. The target

distribution that we want for signatures is Dm
σ , whereas we obtain samples from the distribution

Dm
σ shifted by Sc (call this distribution Dm

Sc,σ). To use rejection sampling, we need to find a
positive real M such that for all (or all but a negligible fraction) x distributed according to Dm

σ we
have Dm

σ (x) 6M ·Dm
Sc,σ(x). A simple calculation (see [Lyu12, Lemma 4.5]) shows that

Dm
σ (x)/Dm

Sc,σ(x) = exp
(
−2〈x,Sc〉+ ‖Sc‖2

2σ2

)
. (5.1)

The value of 〈x,Sc〉 behaves in many ways as a one-dimensional discrete Gaussian, and it can
be thus shown that |〈x,Sc〉| < τσ‖Sc‖ with probability 1 − exp(−Ω(τ2)). Asymptotically, the
value of τ is proportional to the square root of the security parameter. Concretely, if we would
like to have, for example, 1− 2−100 certainty that |〈x,Sc〉| < τσ‖Sc‖, we would set τ = 12. Thus
with probability 1 − exp(−Ω(τ2)), we have exp

(
−2〈x,Sc〉+‖Sc‖2

2σ2

)
6 exp

(
2τσ‖Sc‖+‖Sc‖2

2σ2

)
. So if

σ = τ‖Sc‖, we will have Dm
σ (x)/Dm

Sc,σ(x) 6 exp
(
1 + 1

2τ2

)
. Therefore if we set M = exp

(
1 + 1

2τ2

)
,

rejection sampling outputs signatures that are distributed according to Dm
σ where σ = τ‖Sc‖ and

the expected number of repetitions is M ≈ exp(1).2 Upon receiving the signature (z, c) of µ, the
verifier checks that ‖z‖ is “small” (roughly σ

√
m) and also that c = H(Az−Tc mod q, µ). It is

easy to check that the outputs of the signing procedure satisfy the two requirements.

2More precisely σ = τ maxS,c ‖Sc‖, since Sc is not known in advance.

42

5.1. Introduction

Span{Sc}

(Sc)⊥

(a) In the original scheme of [Lyu12]

Span{Sc}

(Sc)⊥

(b) In our scheme

Figure 5.1 – Improvement of Rejection Sampling with Bimodal Gaussian Distributions. In blue
is the distribution of z, for fixed Sc and over the space of all y in Figure (a) and all (b,y) in
Figure (b), before the rejection step and its decomposition as a Cartesian product over Span{Sc}
and (Sc)⊥. In dashed red is the target distribution scaled by 1/M .

Our Results and Techniques. In this work, we show how to remove the factor τ (in fact even more)
from the required standard deviation. Above, we described how to perform rejection sampling
when we were sampling potential signatures as z = Sc + y. Consider now, an alternative procedure,
where we first uniformly sample a bit b ∈ {0, 1} and then choose the potential signature to be z =
y+(−1)bSc. In particular z is now sampled from the distribution 1

2D
m
Sc,σ+ 1

2D
m
−Sc,σ. Assuming our

target distribution is stillDm
σ , then we need to have, as above,Dm

σ (x)/
(1

2D
m
Sc,σ(x) + 1

2D
m
−Sc,σ(x)

)
6

M . By using Equation (5.1) and some algebraic manipulations (see Section 5.3.2), we obtain that

Dm
σ (x)/

(
1
2D

m
Sc,σ(x) + 1

2D
m
−Sc,σ(x)

)
= exp

(
‖Sc‖2

2σ2

)
/ cosh

(
〈x,Sc〉
σ2

)
6 exp

(
‖Sc‖2

2σ2

)
,

where the last inequality follows from the fact that cosh(y) > 1 for all y. Thus for rejection sampling
to work with M = exp(1), as in the previous example, we only require that σ = ‖Sc‖/

√
2 rather

than τ‖Sc‖.3
Our improvement is depicted in Figure 5.1, where Figure 5.1a shows the rejection sampling

as done in [Lyu12]. There, the distribution Dm
σ (the dashed red line) must be scaled down by a

somewhat large factor so that all but a negligible fraction of it fits under Dm
Sc,σ. In Figure 5.1b,

which represents our improved sampling algorithm, the distribution from which we are sampling is
bimodal having its two centers at Sc and −Sc. As can be seen from the figure, the distribution
Dm
σ fits much “better” (i.e. needs to be scaled by a much smaller factor) underneath the bimodal

distribution and therefore there is a much smaller rejection area between the two curves. As a
side note, whereas in Figure 5.1a, a negligible fraction of the scaled Dm

σ is still above Dm
Sc,σ, in

Figure 5.1b, all of the scaled Dm
σ is underneath the bimodal distribution 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ.

While the above sampling procedure potentially produces much shorter signatures since the
Gaussian “tail-cut” factor τ is never used, it does not give an improved signature scheme by
itself because the verification procedure is no longer guaranteed to work. The verification checks

3One could be tempted to choose a different target distribution, e.g. a discrete Gaussian distribution Dσ′ of
standard deviation σ′ 6= σ. In that case we need to choose M such that

Dmσ′ (x)/
(1

2
DmSc,σ(x) +

1
2
Dm−Sc,σ(x)

)
6

ρσ(Z)
ρσ′ (Z)

exp
(‖Sc‖2

2σ2 +
‖z‖2(σ′2 − σ2)

2(σσ′)2

)
6M ,

and since ρσ(Z)
ρσ′ (Z) ≈

σ
σ′ this yield a larger M either when ‖z‖2 < 2 loge(σ′/σ)(σσ′)2/(σ′2 − σ2) when σ′ > σ or when

‖z‖2 > 2 loge(σ/σ′)(σσ′)2/(σ2 − σ′2) when σ > σ′. It therefore seems that when the target is a discrete Gaussian
distribution, choosing σ = σ′ is optimal; however it might be that a differently shaped target distribution yields a
smaller rejection rate.

43

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

that c = H(Az − Tc mod q, µ) and so will verify correctly if and only if Ay = Az − Tc =
A((−1)bSc + y)−Tc = Ay + (−1)bTc−Tc, which will only happen if (−1)bTc = Tc mod q for
b ∈ {0, 1}. In other words, we will need Tc = −Tc mod q, which will never happen if q is prime
unless T = 0.4 Our solution, therefore, is to work modulo 2q and to set T = qI where I is the n×n
identity matrix. In this case Tc = −Tc mod 2q, and so the verification procedure will always work.

Changing the modulus from q to 2q and forcing the matrix T to always be qI creates several
potential problems. In particular, it is no longer clear how to perform key generation, and also the
outline for the security proof from [Lyu12] no longer holds. But we show that these problems can
be overcome. We will now sketch the key generation and the security proof based on the hardness of
the SIS problem in which one is given a uniformly random matrix B ∈ Zn×mq , and is asked to find
a short non-zero vector w such that Bw = 0 (mod q). To generate the public and secret keys, we
first pick a uniformly random matrix A′ ∈ Zn×(m−n)

q and a random (m−n)×n matrix S′ consisting
of short coefficients. We then compute A′′ = A′S′ mod q and output A = (2A′|qI− 2A′′) as the
public key. The secret key is S = (S′|I)t. Note that by construction we have AS = qI (mod 2q)
and S consists of small entries. The dimensions m and n are picked so that the distribution of
(A′|A′S′ mod q) can be shown to be uniformly random in Zn×mq by the Leftover Hash Lemma.

In the security proof, we are given a random matrix B = (A′|A′′) ∈ Zn×mq by the challenger
and use the adversary that forges a signature to find a short non-zero vector w such that Bw = 0
(mod q). We create the public key A = (2A′|qI− 2A′′) and give it to the adversary. Even though
we do not know a secret key S such that AS = qI (mod 2q), we can still create valid signatures for
any messages of the adversary’s choosing by picking the (z, c) according to the correct distributions
and then programming the random oracle as is done in [Lyu12]. When the adversary forges, we use
the forking lemma to create two equations Az = qc (mod 2q) and Az′ = qc′ (mod 2q). Combining
them together, we obtain A(z− z′) = q(c− c′) (mod 2q). Under some very simple requirements
for z, z′, c, and c′, the previous equation implies that A(z − z′) = 0 (mod q) and z 6= z′. This
then implies that 2B(z − z′) = 0 (mod q) and since 2 is invertible modulo q, we have found a
w = (z− z′) such that Bw = 0 (mod q).

The above scheme construction and proof work for SIS and equally well for Ring-SIS, when
instantiated with polynomials. As in [Lyu12], we can also construct much more efficient schemes
based on LWE and Ring-LWE by creating the matrix A′′ = A′S′ such that (A′|A′′) is not uniformly
random, but only computationally. For optimal efficiency, though, we can create the key in yet a
different manner related to the way NTRU keys are generated [HPS98, HHGP+03]. The formal
construction and the implementation are described in Chapter 6.

5.2 Preliminaries

Notation. For any integer q, we identify the ring Zq with the interval [−q/2, q/2) ∩ Z. We define
B = {0, 1} the set of binary integers and Bnw the set of binary vectors of length n and Hamming
weight w (i.e. vectors with exactly w out of n non-zero entries). Vectors, considered as column
vectors, will be written in bold lower case letters. Matrices will be written in bold upper case letters.
For a positive integer n, we write In to be the identity matrix of dimension n.

We recall that the `p-norm of a vector v is defined as ‖v‖p = (
∑
i|vi|p)1/p for p > 0, and its

`∞-norm as ‖v‖∞ = maxi|vi|. By default, we use ‖·‖ for the `2-norm.

Hardness Assumptions. All the constructions in this paper are based on the hardness of the
generalized SIS (Short Integer Solution) problem, for a ring R = Z or R = Z[x]/(f(x)) where f is a
monic polynomial, which we define below.

Definition 5.1 (R-SISKq,n,m,β problem). Let K be some distribution over Rn×mq , where Rq is the
quotient ring R/qR. Given a random A ∈ Rn×mq drawn according to the distribution K, find a
non-zero v ∈ Rmq such that Av = 0 and ‖v‖2 6 β.

4One may think that a possible solution could be to output the bit b as part of the signature, but this is not
secure. Depending on the sign of 〈z,Sc〉, one of the two values of b is more likely to be output than the other.
Therefore outputting the bit b leaks information about S.

44

5.3. BLISS: A Lattice Signature Scheme using Bimodal Gaussians

If we let R = Z (resp. R = Z[x]/(f(x))) and K be the uniform distribution, then the resulting
problem is the classical SIS (resp. Ring-SIS) problem – cf. Section 3.2.2.

General Forking Lemma. An important tool to prove the security of signature schemes in the
random oracle model is the forking lemma, first introduced by Pointcheval and Stern [PS96]. The
basic principle is to run an adversary A having non-negligible probability of forging a signature
with a random tape r and a specific (challengerially chosen) instance of the random oracle. If
successful the forgery corresponds to a specific hash query at index i. The forking lemma states
that with non-negligible probability, when we replay the adversary with the same random tape
r and answering the first i − 1 queries to the random oracle with the same values as before but
answering the subsequent queries with freshly chosen random values, the forger outputs a new
forgery that corresponds again to the i-th hash query. We state below the general formulation of
Bellare and Neven [BN06].

Lemma 5.2 (General Forking Lemma). Fix an integer t > 1 and a set B of size |B| > 2. Let A
be a probabilistic algorithm that on inputs (x, c1, . . . , ct; r) outputs a pair (i ∈ {0, . . . , t}, y) where
r is the random tape of A, IG be a probability distribution from which x is drawn and the ci’s are
uniformly drawn from B.

The forking algorithm FA associated to A is the randomized algorithm that takes as input x and
proceeds as follows:

1. Pick a random tape r for A

2. Pick c1, . . . , ct uniformly from B

3. Run A on input (x, c1, . . . , ct; r) to produce (i, y)

4. If i = 0, return (0, 0, 0)

5. Pick c′i, . . . , c′t uniformly from B

6. Run A on input (x, c1, . . . , ci−1, c
′
i, . . . , c

′
t; r) to produce (i′, y′)

7. If i = i′ and y 6= y′, return (1, y, y′), else return (0, 0, 0)

Let δ be the probability that A outputs a tuple with i > 1 and ε the probability that FA outputs a
triple starting with 1 given an input x randomly generated according to IG. Then

ε > δ ·
(δ
t
− 1
|B|

)
.

In our context of digital based signatures, think of x as a public key, c1, . . . , ct as responses to
queries to a random oracle or signing oracle, A as an adversary having a non-negligible probability
δ to forge a signature y.

5.3 BLISS: A Lattice Signature Scheme using Bimodal Gaussians

In this section, we present our new signature scheme along with the proof of correctness. The
security of the signature scheme is based on the hardness of the R-SISKq,n,m,β problem. A specific
implementation that uses numerous enhancements is presented in Chapter 6. For simplicity, we
present our algorithm for R = Z, but it works in exactly the same way for rings R = Z[x]/(xn + 1)
(used in Chapter 6).

5.3.1 New Signature and Verification Algorithms
Key pairs. The secret key is a (short) matrix S ∈ Zm×n2q and the public key is given by the matrix
A ∈ Zn×m2q such that AS = qIn (mod 2q). A crucial property, for our new rejection sampling
algorithm, satisfied by the key pair, is that AS = A(−S) = qIn (mod 2q). Obtaining such a key

45

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

Algorithm 5.1 Signature Algorithm.
1: function Sign(Message digest µ, public key A ∈ Zn×m2q , secret key S ∈ Zm×n2q , std. dev. σ ∈ R)
2: y← Dm

σ

3: c← H(Ay mod 2q, µ) . Compute the challenge
4: b← {0, 1}
5: z← y + (−1)bSc
6: b← B

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh
(
〈z,Sc〉
σ2

))
7: if b = 1 then . output with probability 1

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

)
8: return (z, c)
9: else
10: restart
11: end if
12: end function

pair is easy and can be done efficiently. Let us present a key-generation procedure which results in
a scheme whose security is based on the classic SISq,n,m,β problem.5

Define m′ = m−n. Choose a uniform matrix A′ ∈ Zn×m′q and a random small S′ ∈ Zm′×nq with
coefficients in (−2α, 2α). Define A′′ = A′S′ mod q. By Lemma 3.4, the statistical distance between
the distribution of A′′ and the uniform distribution over Zn×nq is at most n · 1/2

√
qn/2(α+1)·m′ .

Thus, for this statistical distance to be negligible in the security parameter λ, we need

m > n+ 2(λ− 1 + log2(n)) + n log2(q)
α+ 1 . (5.2)

Set the secret key as S =
(

S′
In

)
∈ Zm×n2q . It remains to set the public key as A = (2A′|qIn −

2A′′) ∈ Zn×m2q . Then one easily checks that AS = qIn. Also, we have that A mod q is uniform
modulo q. Note that this construction is easily adaptable to the ring settings.

Random Oracle Domain. We model the hash function H as a random oracle that has uniform
output in Bnκ, the set of binary vectors of length n and Hamming weight κ. An efficient construction
of such a random oracle can be found in Chapter 6.

The Signature Algorithm (Algorithm 5.1). The signer, who is given a message digest µ, first
samples a vector y from the m-dimensional discrete Gaussian distribution Dm

σ and then computes
c ← H(Ay mod 2q, µ). Then she samples a bit b in {0, 1} and computes the potential output
z← y+(−1)bSc. Note that z is distributed according to the bimodal discrete Gaussian distribution
1
2D

m
Sc,σ + 1

2D
m
−Sc,σ. At this point we perform rejection sampling and output the signature (z, c)

with probability

1
/(

M exp
(
−‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
,

where M is some fixed positive real that is set large enough to ensure that the preceding probability
is always at most 1. We explain how to set M in accordance with the standard deviation σ in the
next subsection. If the signing algorithm did not output the signature, then it is restarted and
repeated until something is outputted. The expected number of iterations of the signing algorithm
is M .

The Verification Algorithm (Algorithm 5.2). The verification algorithm will accept (z, c) as the
signature for µ if the following three conditions hold:

1. ‖z‖ 6 B2

5In Chapter 6, we present an “NTRU-like” variant of the key generation which yields a more efficient instantiation
of the signature scheme.

46

5.3. BLISS: A Lattice Signature Scheme using Bimodal Gaussians

Algorithm 5.2 Verification Algorithm.
1: function Verify(Message digest µ, public key A ∈ Zn2q, signature (z, c))
2: if ‖z‖ > B2 or ‖z‖∞ > q/4 then
3: return Reject
4: end if
5: if c = H(Az + qc mod 2q, µ) then
6: return Reject
7: else
8: return Accept
9: end if
10: end function

2. ‖z‖∞ < q/4

3. c = H(Az + qc mod 2q, µ)

The signer outputs signatures of the form (z, c) where z is distributed according to Dm
σ , thus

the acceptance bound B2 should be set a little bit higher than
√
mσ, which is the expected value

around which the output of Dm
σ is tightly concentrated; denoting B2 = η

√
mσ, one can set η so that

‖z‖ 6 B2 is verified with probability 1− 2−λ [Lyu12, Lemma 4.4] for the security parameter λ (in
practice, η ∈ [1.1, 1.4]). For technical reasons in the security proof, we also need that ‖z‖∞ < q/4,
but this condition is usually verified whenever the first one is and does not restrict the manner
in which we choose the parameters for the scheme. Condition 3 will also hold for valid signatures
because

Az + qc = A(y + (−1)bSc) + qc = Ay +
(
(−1)bAS

)
c + qc = Ay + (qIn)c + qc = Ay mod 2q .

5.3.2 Rejection Sampling: Correctness and Efficiency
We now explain how to pick the standard deviation σ and positive real M so that the signing
algorithm in the preceding section produces vectors z according to the distribution Dm

σ . Because
y is distributed according to Dm

σ , it is easy to see that in Step 5 of the signing algorithm, z is
distributed according to gSc = 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ for fixed Sc and over the space of all (b,y). Thus

for any z∗ ∈ Rm, we have

Pr[z = z∗] = 1
2D

m
Sc,σ(z∗) + 1

2D
m
−Sc,σ(z∗)

= 1
2ρσ(Zm) exp

(
−‖z

∗ − Sc‖2

2σ2

)
+ 1

2ρσ(Zm) exp
(
−‖z

∗ + Sc‖2

2σ2

)
= 1

2ρσ(Zm) exp
(
−‖z

∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)(
e−
〈z∗,Sc〉
σ2 + e

〈z∗,Sc〉
σ2

)
= 1
ρσ(Zm) exp

(
−‖z

∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

)
.

The desired output distribution is the centered discrete Gaussian distribution, whose probability
distribution is f(z∗) = ρσ(z∗)/ρσ(Zm). Thus, by Lemma 3.5, one should accept the sample z∗ with
probability:

pz∗ = f(z∗)
MgSc(z∗) = 1

/(
M exp

(
− ‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

))
,

where M is chosen large enough so that pz∗ 6 1. Note that cosh(x) > 1 for any x, so it suffices that

M = e
1

2α2 (5.3)

where α is such that σ > α ·maxS,c‖Sc‖.

47

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

Comparison with [Lyu12]. In the original scheme, denoting σ = α ·maxS,c‖Sc‖, the repetition rate
M was given by:

M = exp
(
12/α+ 1/(2α2)

)
,

and ‖Sc‖ was bounded by κ‖S‖. In practice, keeping the repetition rate at the same level
(i.e. between e2 ≈ 7.2 and e1/2 ≈ 1.6), our technique divides the parameter α (and thus σ) by a
factor 12 to 24, yielding a great impact on the parameters. Note that this improvement is not
constant with the security parameter. Indeed, if one wishes a statistical distance of 2−λ, the rejection
in [Lyu12] requires M = exp(τ/α+ 1/2α2) with τ = O(

√
λ), while there is no such dependence on

our scheme.

Bound on ‖Sc‖. Note that if we fix the repetition rate M , then the standard deviation of the
signature z, and therefore also its size, only depend on the maximum possible norm of the vector
Sc. For this reason, it is important to obtain a bound as tight as possible on this product.
Several upper bounds on ‖Sc‖ can be used such as ‖Sc‖ 6 ‖c‖1 · ‖S‖ = κ‖S‖ (as in [Lyu12]) or
‖Sc‖ 6 s1(S) · ‖c‖ = s1(S) ·

√
κ where s1(S) is the singular norm of S. In Chapter 6, we introduce

a new measure of S adapted to the form of c which helps us achieve a tighter bound than with
previous methods.

5.3.3 Security Proof

Any existential forger against our signature scheme can solve the SISKq,n,m,β problem for β = 2B2
where K is the distribution induced by the public-key generation algorithm.

Theorem 5.3. Suppose there is a polynomial-time algorithm F which makes at most s queries to
the signing oracle and h queries to the random oracle H, and succeeds in forging with non negligible
probability δ. Then there exists a polynomial-time algorithm which can solve the SISKq,n,m,β problem
for β = 2B2 with probability ≈ δ2

2(h+s) . Moreover the signing algorithm produces a signature with
probability ≈ 1/M and the verifying algorithm accepts a signature produced by an honest signer
with probability at least 1− 2m.

The proof of the theorem follows from standard arguments, and is simpler and tighter than
the proof of [Lyu12]. In a nutshell, the fact that the distribution of the signatures in the scheme
does not depend on the secret key means that the simulator can “sign” arbitrary messages without
having the secret key by programming the random oracle. Then when the adversary produces a
forgery, the simulator can extract a solution to the SIS problem. It is proved in a sequence of
two lemmas. In Lemma 5.4, we show that our signing algorithm (not restarted) can be replaced
with Hybrid2 (Algorithm 5.4), and the statistical distance between the two outputs will be at
most ε = s(s + h)2−n+1. Since Hybrid2 produces an output with probability exactly 1/M , the
signing algorithm (not restarted) produces an output with probability at least (1− ε)/M . Then
in Lemma 5.5 we show that if a forger can produce a forgery with probability δ when the signing
algorithm is replaced with Hybrid2 (restarted if it does not output anything), then we can use it
to recover a vector v 6= 0 such that ‖v‖ 6 β = 2B2 and Av = 0 mod q with probability at least
δ2/(2(s+ h)).

48

5.3. BLISS: A Lattice Signature Scheme using Bimodal Gaussians

Algorithm 5.3 Hybrid1

1: function Hybrid1(Message digest µ, public key A ∈ Zn×m2q , secret key S ∈ Zm×n2q , std. dev.
σ ∈ R)

2: y← Dm
σ

3: c← Bnκ
4: b← {0, 1}
5: z← y + (−1)bSc
6: b← B

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh
(
〈z,Sc〉
σ2

))
7: if b = 1 then . output with probability 1

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

)
8: program H(Az + qc, µ) = c
9: return (z, c)
10: end if
11: end function

Algorithm 5.4 Hybrid2

1: function Hybrid2(Message digest µ, public key A ∈ Zn×m2q , std. dev. σ ∈ R)
2: c← Bnκ
3: z← Dm

σ

4: b← B1/M
5: if b = 1 then . output with probability 1/M
6: program H(Az + qc, µ) = c
7: return (z, c)
8: end if
9: end function

Lemma 5.4. Let D be a distinguisher which can query the random oracle H and either the actual
signing algorithm (Algorithm 5.1) without the restarting step, or Hybrid2 (Algorithm 5.4). If she
makes h queries to H and s queries to the signing algorithm that she has access to, then for all but
a 1− e−Ω(n) fraction of all possible matrices A, her advantage in distinguishing the actual signing
algorithm (not restarted) from the one in Hybrid2 is at most s(s+ h)2−n+1.

Proof. First, we show that the distinguisher D has advantage at most s(s+h)2−n+1 in distinguishing
the real signature scheme (not restarted) from an output of Hybrid1 (Algorithm 5.3). The only
difference between these algorithms is that, in Hybrid1, the output of the random oracle is chosen
at random from Bnκ and then programmed as the answer to H(Az + qc, µ) = H(Ay, µ) without
checking whether the value of (Ay, µ) was already set. Now, each time Hybrid1 is called, the
probability of generating a y such that Ay is equal to one of the previous values that was queried
is at most 2−n+1. Indeed, let us note that at most s+ h values of (Ay, µ) will ever be set. With
probability at least 1− eΩ(n), the matrix A can be written in Hermite Normal Form as A = [Ā‖I].
Finally, for any t ∈ Zn2q, since σ > 3/

√
2π, we have

Pr[Ay = t; y← Dm
σ] = Pr[y1 = (t− Āy0); y = (y0,y1)← Dm

σ]
6 max

t′∈Zn2q
Pr[y1 = t′; y1 ← Dn

σ] 6 2−n .

Thus if Hybrid1 is accessed s times, and the probability of getting a collision each time is at most
(s+ h)2−n+1, the probability that a collision occurs after s queries is at most s(s+ h)2−n+1.

We next emphasize that the outputs of Hybrid1 and Hybrid2 exactly follows the same
distribution. This is a direct consequence of Lemma 3.5: Hybrid1 exactly plays the role of
algorithm A and Hybrid2 corresponds to F , where M = exp(1/(2α2)),

f(z) = exp
(
− ‖z‖2/(2σ2)

)
/ρσ(Z)

49

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

and
gc(z) = exp

(
− ‖z‖2/(2σ2)

)
exp

(
− ‖Sc‖2/(2σ2)

)
cosh

(
〈z,Sc〉/σ2)/ρσ(Z) .

By Lemma 3.5 the outputs of Hybrid1 and Hybrid2 follow the same distribution (since we have
M · gc > f for all v).

Lemma 5.5. Suppose there exists a polynomial-time algorithm F which makes at most s queries
to the signer in Hybrid2 (restarted if necessary), h queries to the random oracle H, and succeeds
in forging with probability δ. Then there exists an algorithm with the same time-complexity as F
which, for a given B← K, finds with probability at least ≈ δ2/(2(s+ h)) a non-zero v ∈ Zm such
that ‖v‖ 6 2B2 and Bv = 0.

Proof. Let B = (A′| − A′′) ← K be the matrix for the generalized SIS instance we want to
solve where A′ ∈ Zn×(m−n)

q and A′′ ∈ Zn×nq . We define the public key A ∈ Zn×mq such that
A = (2A′|qIn−2A′′); note that this modification is such that A mod q = 2B for our key generation
procedures. Therefore finding a vector v such that Av = 0 mod q yields Bv = 0 mod q because 2
is invertible modulo q.6 Denote by t = s+ h the bound on the number of times the random oracle
H is called or programmed during F ’s attack.

First, we pick random coins φ and ψ respectively for the forger and the signer. We also pick
the values that will correspond to the responses of the random oracle c1, . . . , ct ← Bnκ. We now
consider a subroutine A taking as input (A, φ, ψ, c1, . . . , ct).

The first step of the subroutine is to initialize F by giving it the public-key A and the random
coins φ. Then, it proceeds to run F . Whenever F wants some message signed, A runs the signing
algorithm of Hybrid2 using the signer random coins ψ to produce a signature. During signing or
when F will make queries to the random oracle, the random oracle H will have to be programmed,
and the response of H will be the first ci in the list (c1, . . . , ct) that has not been used yet. (Of
course, A keeps a table of all queries to H, so in case the same query is made twice, the previously
answered ci will be replied.) When F finishes running and outputs a forgery (with probability δ),
our subroutine A simply outputs F ’s output {(z, c), µ}.

Recall that the output of A verifies ‖z‖∞ < q/4 and ‖z‖ 6 B2 and c = H(Az + qc, µ). Note
that if the random oracle H was not queried or programmed on some input w = Az + qc, then F
has only a 1/|Bnκ| chance of producing a c such that c = H(w, µ). Thus with probability 1− 1/|Bnκ|,
c must be one of the ci’s, and so the probability that F succeeds in a forgery and that c = cj for
some j is δ − δ/|Bnκ|.

Type 1 Forgery. Suppose that cj was a response to a signing query made by F on (w′, µ′) =
(Az′ + qcj , µ′). Then we would have

H(Az + qcj , µ) = H(Az′ + qcj , µ′).

If µ 6= µ′ or Az + qcj 6= Az′ + qcj , it means that F found a pre-image of cj . Therefore with
overwhelming probability, we have µ = µ′ and Az + qcj = Az′ + qcj . This yields A(z − z′) =
0 mod 2q. We know that z 6= z′ (otherwise the signatures would be the same). Moreover, since
‖z‖∞, ‖z′‖∞ < q/4, we have z− z′ 6= 0 mod q. Finally, the condition on the `2-norm of z and z′
gives ‖z− z′‖ 6 2B2.

Type 2 Forgery. Assume now that cj was a response to a random oracle query made by F . In this
case we record this signature (z, cj) on the message µ, and we generate fresh random elements
c′j , . . . , c′t ← Bnκ. By the General Forking Lemma of Bellare and Neven [BN06] (Lemma 5.2), we
obtain that the probability that c′j 6= cj and the forger uses the random oracle response c′j (and
the query associated to it) in the forgery is at least(

δ − δ

|Bnκ|

)
·
(δ − δ/|Bnκ|

t
− 1
|Bnκ|

)
.

6For the “NTRU-like” key generation used to instantiate our scheme in Chapter 6, we get from the NTRU SIS
assumption a matrix B = (B1|−B2) = (a|−1) where a = (2g+1)/f and we define A = (2B1|q1−2B2) = (2a|q−2)
that is, a public key with the same distribution as in Chapter 6. Moreover we get A mod q = 2B = (2a| − 2).

50

5.4. Conclusion

Table 5.1 – Naive Signature Schemes Parameters. The parameters with parameters set III are based
on the hardness of the SISq,n,m,β problem and parameters set IV are based on the hardness of the
SISq,n,m,β search problem. The root Hermite factor for all the instantiations is δ = 1.007.

BLISS [Lyu12, Set-III] BLISS [Lyu12, Set-IV]
n 512 512
d 31 1
η 1.2 1.3
κ 17 14 17 14
q 232.5 233 215 218

M = exp(1/(2α2)) 2.72 7.4
m ≈ 64 + n · log q/ log(2d+ 1) – 3253 – –
m (Equation (5.2)) 3343 – – –
m = 2n – – 1024
σ 21540 300926 272 2688
β 221.5 225.4 214.5 217.8

approximate signature size ≈ m ·
log(12σ)

60000 73000 11953 15337

approximate sk size ≈ m · n · log(2d+ 1) 223.5 223.5 219.5 219.5

approximate pk size ≈ (n ·m+ n · n) · log q 226.5 226 224 224.5

Thus, with the above probability, F outputs a signature (z′, c′j) of the message µ and Az + qcj =
Az′ + qc′j. We finally obtain

A
(
z− z′

)
= q
(
cj − c′j

)
mod 2q .

Since cj − c′j 6= 0 mod 2, we have z − z′ 6= 0 mod 2q. Moreover, we have ‖z − z′‖∞ < q/2: this
implies that v = z− z′ 6= 0 mod q. Finally, we have

Av = 0 mod q and ‖v‖ 6 2B2 ,

that is v is a solution to a SISKq,n,m,β with β = 2B2.

5.4 Conclusion

In this chapter we proposed a modification of the rejection sampling algorithm used in Lyuba-
shevsky’s signature scheme of Eurocrypt 2012 [Lyu12]. By sampling from a bimodal Gaussian
distribution, we reduced the standard deviation of the resulting signatures by a factor that is
asymptotically square root in the security parameter, and obtained a scheme with a tighter security
proof.

For the sake of comparison, we provide in Table 5.1 parameters for our modified scheme BLISS,
using approximately the same parameters as in [Lyu12] for a target security level of 100 bits. In
particular, we kept the rejection rate M , the approximation factor η such that B2 = ησ

√
m, the

target root Hermite factor δ = 1.007 and the secret key distribution S ← {−d, . . . , d}m×n. We had
to modify the Hamming weight of the outputs of the random oracle from 14 to 17 (because [Lyu12]
works with ternary vectors) and we updated the values of σ and q thanks to our improved algorithm.
For m = 2n, the signature schemes are based on the low-density SISq,n,m,β problem.

As emphasized in Table 5.1, our new rejection sampling technique allowed to reduce the standard
deviation σ by one order of magnitude, and the signature size by roughly 20% compared to [Lyu12].
Although theoretically and practically meaningful, the resulting schemes are quite frustrating. First
and foremost, the resulting sizes are still too large to become competitive with RSA or ECDSA.
Even the ring-based variants of the schemes, dividing the key sizes by a factor n = 512, yield a
public key of 8kB compared to the 0.5kB of RSA and the 0.02kB of ECDSA. Even the signature is
still at least three times larger than RSA signatures (and more than 30 times larger than ECDSA
signatures) for a comparable security level. On the practical side, the signing algorithm restarts on
average 7.4 times for BLISS with the parameters set IV, which impacts the practical performances.

51

5. Design of BLISS, an Efficient Lattice-Based Signature Scheme

Additionally, the parameters are chosen according to a root Hermite factor δ = 1.007 for an
approximate security level of 100 bits [Lyu12], i.e. less than the 128 bits suggested to offer long-term
cryptographic protection [ECR12, NIS11].

Consequently, provably secure lattice-based cryptography still appears not to be competitive
enough for practical applications. In order to prove this assertion wrong, we instantiate an optimized
variant of BLISS in Chapter 6, with a key generation based on NTRU lattices [HPS98, HHGP+03],
efficient hashing and signature compression (similarly to [GLP12]). We provide an extensive
security analysis using the most up-to-date lattice reduction results [CN11] to propose parameters
for security levels of 128, 160 and 192 bits. We produce proof-of-concept implementations of the
resulting signature schemes that compete in terms of efficiency to RSA and ECDSA.

52

Chapter 6

Implementation of BLISS

6.1 Introduction

This chapter instantiates BLISS (Bimodal Lattice Signature Scheme), the lattice-based signature
scheme described in Chapter 5, to illustrate the practicality of lattice-based cryptography in terms
of efficiency and size compared to classical non-quantum primitives such as RSA or ECDSA. We
implement a family of digital signature schemes for security levels of 128, 160 and 192 bits on a 64-bit
architecture. Our proof-of-concept implementations compare very favorably to the openssl [YH13]
implementations of RSA and ECDSA1 signature schemes – in particular our signature scheme is one
order of magnitude faster than RSA to sign (and as fast as ECDSA), and one order of magnitude
faster than ECDSA to verify (and faster than RSA). In addition, our scheme has shorter signature
and public key sizes than all previously proposed lattice signature schemes.

This chapter was part of the article Lattice Signature and Bimodal Gaussian [DDLL13a], cosigned
with L. Ducas, A. Durmus and V. Lyubashevsky and published at Crypto 2013 [CG13a]. The full
version of the article is available at [DDLL13b]. The proof-of-concept implementations of BLISS
are available under license CeCILL at [DL13].

Background. Few concrete parameters have been suggested for lattice-based cryptosystems. With
the notable exception of NTRU [HPS98], public keys, ciphertexts or signatures are often very large
(several kilobytes/megabytes). Moreover, as already emphasized in Chapter 4, the cryptosystems
often require sampling from a discrete Gaussian distribution over a lattice. Therefore, it is still not
clear how efficient the schemes based on modern lattice assumptions will be in practice.

In Chapter 4, we proposed an efficient algorithm to sample according to a discrete Gaussian
distribution over the integers on constrained devices. In Chapter 5, we improved the signature
scheme of Lyubashevsky [Lyu12], believed to be the most efficient lattice-based signature scheme.
However as emphasized in Section 5.4, the latter works were not sufficient enough to provide viable
alternatives to RSA or ECDSA. A first step towards a practical (secure) lattice-based signature
was described by Güneysu, Lyubashevsky and Pöppelmann [GLP12], and further improved by
Güneysu, Oder, Pöppelmann and Schwabe [GOPS13]. Unfortunately, we show in this chapter that
the underlying scheme is not strongly unforgeable2 and offers rather 80 bits of security than 100
bits. Moreover, it relies on weaker security assumption than [Lyu12], and the signature has more
than 9000 bits.

Our Results and Techniques. In this chapter, we improve further the BLISS scheme described in
Chapter 5. Our improvements yield a very promising candidate for message authentication and
digital signatures, and prove that lattice-based cryptography is competitive enough for practical
applications. In particular, our proof-of-concept implementations compare very favorably to existing
schemes such as RSA and ECDSA in terms of efficiency, and our signature is only slightly more
than 5000-bit long. We make our implementations publicly available [DL13] under an open-source
license to spur the community help lattice-based cryptography become practical.

1ECDSA on a prime field Fp.
2Strong unforgeability ensures the adversary cannot even produce a new signature for a previously signed message.

53

6. Implementation of BLISS

More precisely, we create the public and secret keys in yet a different manner related to the
way NTRU keys are generated. The formal construction is described in Section 6.2, and we just
give the intuition here. We could create two small polynomials s1, s2 ∈ Z[x]/(xn + 1) and output
the public key as a = q−s2

s1
(mod 2q). Note that this implies that as1 + s2 = q (mod 2q), and so

we can think of the public key as A = (a, 1) and the secret key as S = (s1, s2)t. Assuming that
it is a hard problem to find small vectors w such that Aw = 0 (mod 2q), the signature scheme
instantiated in the above manner will be secure. To those readers familiar with the key generation
in the NTRU encryption scheme, the above key generation should look very familiar, except that
the modulus is 2q rather than q. Since we are not sure what happens when the modulus is 2q when
q is prime, we show in Section 6.2 how to instantiate our scheme so that it is based on NTRU over
modulus q prime. We then explain how for certain instantiations, this is as hard a problem as
Ring-SIS (using the results of Stehlé, Steinfeld [SS11b]) and how for more efficient instantiations,
it is a weaker assumption than the ones underlying the classic NTRU encryption scheme and the
recent construction of fully-homomorphic encryption [LTV12].

Previous cryptanalytic efforts against schemes based on SIS and LWE mostly involved computing
the Hermite factor of the underlying average-case instance, as in the work of Gama and Nguyen
[GN08], and making sure that its value is below the level required for the desired security guarantees.
In this chapter we undertake a more careful cryptanalysis by using the results on BKZ-2.0 of Chen
and Nguyen [CN11] in combination with other techniques – namely dual lattice reduction and the
combinatorial meet-in-the-middle attack of Howgrave-Graham [HG07]. This extensive cryptanalytic
survey allowed us to derive parameters for target security levels.

Finally, for optimal efficiency the security of our scheme relies on the hardness of a type of
NTRU problem that has recently (re-)appeared in the literature [LTV12] and which, we believe,
could play a major role in the future of lattice-based cryptography. The only cryptanalysis of which
we are aware of that studies NTRU lattices deals with instances where the modulus is very close in
size to the dimension of the lattice [GN08, HHGPW10]. It is thus unclear as to what roles each of
the variables plays when looked at independently. In our work, and also in the previously-mentioned
work of [LTV12], the modulus is required to be substantially larger than the dimension. As far
as we are aware, no previous cryptanalysis was done for these types of instances. In this chapter,
we describe results of experiments similar to [GN08], using BKZ-20 in the case of 2n-dimensional
NTRU lattices. It seems from our experiments that the ratio between the Gaussian heuristic and
the actual length of the vector dictates the hardness of finding short vectors in NTRU lattices.

6.2 NTRU-Based Key Generation

Throughout this chapter n is a power of two so that f(x) = xn+ 1 is a monic irreducible polynomial
(the cyclotomic polynomial of order 2n). Also q is a prime number such that q = 1 mod 2n. Finally,
we work over the rings Rq = Zq[x]/(xn + 1) and R2q = Z2q[x]/(xn + 1).

6.2.1 NTRU Lattices

In the NTRU cryptosystem over the ring Rq = Zq[x]/(xn+1) [HPS98], the key generation procedure
picks two short secret keys f ,g ∈ Rq (according to some distribution) with f invertible and computes
the public key as a = g/f .3 When the norm of f ,g is large enough, it can be shown that a is actually
uniformly random in Rq [SS11b], but even when the secret keys do not have enough entropy, their
quotient still appears to be pseudorandom, although no proof of this fact is known [LTV12]. In the
NTRU cryptosystem (or its more secure modification of [SS11b] which is based on the Ring-LWE
problem), one encrypts a message µ, represented as a polynomial in Rq with {0, 1} coefficients, by
picking two short vectors r, e ∈ Rq and outputting z = 2(ar + e) + µ. The security of the scheme
relies on the fact that the distribution of (a, z) is pseudo-random in R2

q .
One can define an NTRU version of the SIS problem that is at least as hard as breaking the

NTRU cryptosystem:

3In the original NTRU scheme, the ring was Zq [x]/(xn − 1), but lately researchers have also used Zq [x]/(xn + 1)
when n is a power of 2. Indeed, the latter choice seems at least as secure.

54

6.2. NTRU-Based Key Generation

Definition 6.1 (NTRU SIS). Set R = Z[x]/(xn + 1) and let K be the distribution that picks small
f ,g and outputs the public key A = (a, 1) ∈ R1×2

q for a = g/f . The NTRU SIS problem with
parameters (q, β) is the R-SISKq,1,2,β problem (as defined in Definition 5.1).

In particular, given an NTRU public key a, one has to find two polynomials v1,v2 ∈ Rq such
that ‖(v1,v2)t‖ 6 β and av1 + v2 = 0 in Rq. Note that (f ,−g)t is a solution to this problem,
but in fact, finding larger solutions can also be useful in breaking the NTRU cryptosystem. In
particular, note that for any solution (v1,v2)t, one can compute zv1 = 2(−rv2 + ev1) + µv1. If
β is sufficiently small with respect to ‖(r, e)t‖, then z · v1 mod 2 = µv1, and µ can be recovered.
Thus, for certain parameters, the NTRU SIS problem is at least as hard as breaking the NTRU
cryptosystem. As a side-note, we would like to point out that the NTRU encryption scheme remains
hard even after 16 years of cryptanalysis. The weakness in the NTRU signature scheme, which
uses the same key generation procedure, is due to the fact that signatures slowly leak the secret
key [NR09, MPSW09, DN12b]. This is provably (because information-theoretically) avoided in our
scheme.

In Section 6.4, we analyze the hardness of the NTRU SIS problem using combinations of lattice
[CN11] and hybrid attacks [HG07].

6.2.2 Key-Generation
Given densities δ1 and δ2, we generate random polynomials f and g with d1 = dδ1ne coefficients in
{±1}, d2 = dδ2ne coefficients in {±2} and all other coefficients set to 0 until f is invertible.4 The
secret key is given by S = (s1, s2)t = (f , 2g + 1)t.

The public key is then computed as follows: set aq = (2g+1)/f ∈ Rq (aq is defined as a quotient
modulo q). Next, define A = (2aq, q − 2) ∈ R1×2

2q . One easily verifies that:

AS = 2aq · f − 2(2g + 1) = 0 mod q
AS = q(2g + 1) = q · 1 = 1 mod 2 ,

that is AS = q mod 2q. Finally, (A,S) is a valid key pair for our scheme.
Denote by Kn,δ1,δ2 the distribution that picks small f and g as uniform polynomials with exactly

d1 entries in {±1} and d2 entries in {±2} and outputs the public key B = (a,−1) ∈ R1×2
q for

a = (2g + 1)/f .
The public key generated above A taken modulo q follows the distribution 2 · Kn,δ1,δ2 ; that is,

such key-pair generation algorithm gives a scheme based on R-SISKn,δ1,δ2
q,1,2,β by Theorem 5.3.

Working with A in Hermite Normal Form. To compress our signature in Section 6.3.6 we need to
have A in Hermite Normal Form (as in [GLP12]). Now, during the key-generation process, we
explicitly constructed A = (a1, q − 2) such that

a1 · s1 + (q − 2)s2 = q mod 2q .

Let us define ζ such that ζ · (q − 2) = 1 mod 2q. Next, instead of calling the random oracle during
the signing and verification processes on (Ay mod 2q, µ), we call it on

(
(ζA)y mod 2q, µ

)
, because

ζA = (ζa1, 1) is in Hermite Normal Form. We defer to Section 6.3.7 for the detailed algorithms of
our signature scheme. In the following we denote A = (ζ · a1, 1) the public key.

6.2.3 A Tighter Bound on ‖Sc‖
As mentioned in Chapter 5, the repetition rate during our signing process is given by

M = exp
(1

2α2

)
,

where α is such that σ > α · maxS,c ‖Sc‖. Therefore for a fixed repetition rate (i.e. a fixed α),
the standard deviation σ is linear in the maximum norm of ‖Sc‖. As a consequence, to reduce

4In order to get a better entropy/length ratio, we include a few entries in {±2} in the secret key, increasing
resistance against the Hybrid attack (see Section 6.4).

55

6. Implementation of BLISS

the signature size, we want a bound as tight as possible for ‖Sc‖. In [Lyu12], Lyubashevsky used
‖Sc‖ 6 ‖c‖1 · ‖S‖ = κ‖S‖. One could also use ‖Sc‖ 6 s1(S) · ‖c‖ = s1(S) ·

√
κ where s1(S) is the

singular norm of S.
In this section, we introduce a new measure of S, adapted to the form of c, which helps us

achieve a tighter bound than with previous methods. We believe that this norm and the technique
for bounding it could be of independent interest.

Definition 6.2. For any integer κ, we define Nκ : Rm×n → R as:

Nκ(X) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = Xt ·X ∈ Rn×n .

The following proposition states that
√
Nκ(S) is also an upper bound for ‖Sc‖.

Proposition 6.3. Let S ∈ Rm×n be a real matrix. For any c ∈ Bnκ, we have ‖Sc‖2 6 Nκ(S).

Proof. Set I = J = {i ∈ {1, . . . , n} : ci = 1}, which implies #I = #J = κ. Rewriting ‖S · c‖2 =
ct · St · S · c = ct ·T · c =

∑
i∈I
∑
j∈J Ti,j , we can conclude from the definition of Nκ.

In practice, we will use this upper bound in our implementation to bound ‖Sc‖ and derive the
parameters. Some secret keys S will be rejected according to the value of Nκ(S), which is easily
computable. In addition to the gain from the use of bimodal Gaussians, this new upper bound
lowers the standard deviation σ by a factor ≈

√
κ/2 compared to [Lyu12].

Computation of Nκ(S). Recall that

Nκ(S) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = St · S ∈ Rn×n .

In order to obtain Nκ(S), note that it is not required to compute the 2 ·
(
n
κ

)
sums in the definition.

Indeed, it suffices to compute T = St · S, then sort the columns of T, sum the κ larger values
in each line, sort the resulting vector and to sum its κ larger components. Notice moreover that
working in R2q = Z2q[x]/(xn + 1) implies that S is composed of rotations (possibly with opposed
coefficients) of si’s, and this (ideal) structure is thus also present in T. Thus it suffices to compute
the vector

t =
(
〈s1, s1〉+ 〈s2, s2〉, 〈s1, x · s1〉+ 〈s2, x · s2〉, . . . , 〈s1, x

n−1 · s1〉+ 〈s2, x
n−1 · s2〉

)
,

and derive T = (t, x · t, . . . , xn−1 · t)t.

Theoretical Bound. We provide below a (theoretical) asymptotic bound on Nκ(S) for completeness.
The following proposition easily generalizes to the form of our secret keys (see Corollary 6.6).

Proposition 6.4. For a fixed density δ ∈ (0, 1), and w = dδne, let s ∈ Z[x]/(xn + 1) be chosen
uniformly in Tnw, and S ∈ Zn×n denote its matrix representation. Then, for any ε > 0, we have:

Nκ(S) 6 wκ+ κ2O
(
w1/2+ε

)
except with negligible probability.

Proof. The first term wκ arises from the diagonal coefficients of T = St · S, equals to ‖s‖2 = w. It
remains to bound the non-diagonal terms of T. For i 6= j,

Yi,j =
∑

16k6n
εi,j,k · si+k · sj+k ,

where εi,j,k ∈ {±1} are some fixed coefficients, and the indices are taken modulo n. The key
argument is to split this sum into two parts, so that each part contains only independent terms.

56

6.3. Implementation Details

This is possible when i − j 6= 0 and n is a power of 2: one easily checks that there exists a set
K ⊂ Zn such that K + i and K + j form a partition of Zn. Thus, we rewrite

Yi,j = σi,j + σ̄i,j where σi,j =
∑
k∈K

εi,j,k · si+k · sj+k and σ̄i,j =
∑

k∈Zn\K

εi,j,k · si+k · sj+k .

Focusing on the sum σi,j (a similar argument holds for σ̄i,j), one can restrict the sum to its non-zero
terms and note that the remaining terms are uniformly random in {−1, 1} and independent from
each other. Finally σi,j is the sum of at most w uniform variables over {−1, 1} and therefore
σi,j 6 w1/2+ε except with negligible probability.5

Remark 6.5. For the sake of simplicity, we denote Nκ(v) = Nκ(V) where V ∈ Zn×n is the matrix
representation of v ∈ Z[x]/(xn + 1).

Corollary 6.6. Let f ,g ∈ Z[x]/(xn + 1) be chosen uniformly in Tnw, F,G ∈ Zn×n be their matrix
representations, and set St = (F|2G + In) ∈ Zn×2n. Then,

Nκ(S) 6 (5w + 1)κ+ κ2O
(
w1/2+ε

)
.

Proof. This follows easily from the fact that St · S = Ft · F + 4Gt ·G + G + Gt + In, yielding
Nκ(S) 6 Nκ(F) + 4Nκ(G) + 2κ2 + κ.

Rejection According to Nκ(S). In practice after generating S, we restart when Nκ(S) > C2 · 5 ·
(d1 + 4d2) · κ for a fixed constant C. This constant is chosen so that 25% of the keys are accepted,
decreasing the overall security by at most 2 bits.

6.2.4 Final KeyGen Algorithm

Algorithm 6.1 BLISS Key Generation.
1: function KeyGen(Parameters δ1, δ2, κ, q, n)
2: Choose f ,g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and d2 = dδ2ne

entries in {±2}
3: S = (s1, s2)t ← (f , 2g + 1)t ∈ R2×1

2q
4: if Nκ(S) > C2 · 5 · (d1 + 4d2) · κ then
5: restart . Restart if bound on ‖Sc‖ is too large
6: end if
7: aq = (2g + 1)/f mod q (restart if f is not invertible)
8: ζ = (q − 2)−1 mod 2q
9: return (A,S) where A = (ζ2aq, 1) mod 2q
10: end function

6.3 Implementation Details

In this section, we present optimizations and discuss implementation issues for each step of the
signing algorithm. To simplify the reader experience, let us recall the signing algorithm of BLISS
(Algorithm 5.1, page 46):

5By Hoeffding bound for example, or classical properties of random walks.

57

6. Implementation of BLISS

Algorithm 6.2 Signature Algorithm.
1: function Sign(Message digest µ, public key A = (a1,a2) ∈ Z1×2

2q , secret key S ∈ Z2×1
2q , std.

dev. σ ∈ R)
2: y = (y1,y2)t ← (Dn

σ)2

3: c← H(Ay mod 2q, µ) . Compute the challenge
4: b← {0, 1}
5: z← y + (−1)bSc
6: b← B

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh
(
〈z,Sc〉
σ2

))
7: if b = 1 then . output with probability 1

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

)
8: return (z, c)
9: else
10: restart
11: end if
12: end function

6.3.1 Multiplication of two polynomials
In Line 3 of Algorithm 6.2, the element Ay = a1 · y1 + a2 · y2 ∈ Z2q[x]/(xn + 1) is given as input
to the random oracle. Since a2 = 1 is a constant, a2 · y2 is straightforward to obtain. It remains to
(efficiently) compute the product of a1 by y1 over Z2q[x]/(xn + 1).

Because of the particular shape of a1 in the NTRU-like key generation, namely that a1 is lifted
from Zq[x]/(xn + 1) to Z2q[x]/(xn + 1) by multiplying its coefficients by 2 · ζ (i.e. a1 = 2 · ζ · a′1),
computing a1 · y1 over Z2q[x]/(xn + 1) can be done by computing the product a′1 · y1 over
Zq[x]/(xn + 1) and then multiplying the coefficients of the result by 2 · ζ. Now multiplying
two polynomials of Zq[x]/(xn + 1) for q prime is made efficient by choosing a modulus q such
that q = 1 mod 2n (then there exists a primitive 2n-th root ω of unity modulo q). Finally, the
multiplication can be done in complexity O(n logn) via a Number Theoretic Transform (i.e. Fast
Fourier Transform over a finite field). Details on these standard techniques can be found for
example in [Ber08, PG12]. Note that one does not need to work with vectors of size 2n as the
component-wise multiplication of the NTT representations of size n of a′1(ωx) and y1(ωx) gives
the NTT representation of [a′1 · y1](ωx) ∈ Zq[x]/(xn + 1).

6.3.2 Multiplication of S by a sparse vector c

In Line 5 of Algorithm 6.2, one should compute Sc. Let Si, i = 1, 2 denotes the n× n matrix over
Z2q whose columns vectors are the xj · si’s for j = 0, . . . n− 1 In particular we have that

si · c = Sic .

Now, since c is a sparse binary vector, one should not use the NTT to compute si · c for this
step (contrary to Section 6.3.1). Indeed, the absolute value of the coefficients of s1 and s2 is smaller
than 5, yielding ‖si · c‖∞ 6 5κ � 2q, i = 1, 2. Therefore, computing (s1 · c) and (s2 · c) can be
performed very efficiently by additions over Z (i.e. without reduction modulo 2q) of κ pre-stored
columns of Si (in general). Notice moreover that working over R2q = Z2q[x]/(xn + 1) allows to
reduce the memory storage overhead to zero: all the columns of Si are rotations (possibly with
opposite coefficients) of si.

6.3.3 Hashing to Bnκ
We discuss how to build a hash function outputting uniform vectors in Bnκ from a standard hash
function H (used in Line 3 of Algorithm 6.2). In [Lyu12], it was suggested to use a Hash function
with κ log2

(
n
κ

)
bits of output (recall that #Bnκ =

(
n
κ

)
, and thus #Tnκ = 2κ

(
n
κ

)
), and then apply a

one-to-one map to Tnκ. Such a mapping can be found in [FS96] but its complexity is quadratic in n;
this is quite inefficient especially for large parameters. To avoid this costly algorithm, the authors

58

6.3. Implementation Details

of [GLP12] used an efficient procedure injectively mapping 160-bit strings to T512
32 ; they increased

the value κ from 20 to 32 to gain efficiency, yielding a larger signature size.

Overview. We here give an alternative solution that is both efficient and optimal (i.e. κ is minimal
for a target entropy) to produce random elements in Bnκ. In a few words, our approach consists
in obtaining κ′ > κ values x1 . . . xκ′ in Zn, and setting the coordinates cxi of the challenge c to 1,
starting from i = 1, and until ‖c‖1 = κ. If some coordinate cxj is already set to 1 one just ignores
this xj . If we run out of values xj , we would restart the process using a different seed. In the
following we describe more precisely this algorithm and show it indeed produces a uniform random
function over Bnκ if H is indeed a uniform random function over Zkn.

Detailed Construction and Correctness. Let n be a power of 2 and H0 : {0, 1}∗ → Zκ′n with κ′ > κ
be a random function outputting κ′ log2 n bits (parsed as κ′ elements in Zn). We consider the set
S ⊂ Zκ′n of vectors that have at least κ different entries. The probability that a uniform element in
Zκ′n lies in S is:

A = 1− |Z
κ′

n \ S|
|Zκ′n |

.

When A is not negligible, one can efficiently build a random function H̃ : {0, 1}∗ → S as
H̃(x) = H(x|i), where i is the smallest index such that H(x|i) ∈ S. This is somehow a rejection
sampling technique applied to a random function. Finally, in average, one call of H̃ requires 1/A
calls to H.6

Lemma 6.7. With the notation above, |Zκ′n \ S| 6
(
n
κ−1
)
(κ− 1)κ′ .

Proof. Note that |Zκ′n \ S| is the set of vectors over Zn of length κ′ with at most κ − 1 distinct
coordinates. To obtain this set, one may first choose a subset K ⊂ Zn of size κ− 1 (

(
n
κ−1
)
choices),

and then chooses the κ′ coordinates in K ((κ− 1)κ′ choices). Note that vectors with strictly less
than κ− 1 coordinates have been counted several times. More formally:

Zκ
′

n \ S =
⋃

K⊂Zn
|K|<κ−1

Kκ′ =
⋃

K⊂Zn
|K|=κ−1

Kκ′ .

It remains to map the domain S to Bnκ. For x ∈ S, let I be the set of the κ first distinct
coordinates values of x, and set f(x) =

∑
i∈I ei ∈ Bnκ where e1, . . . , en are the canonical vectors

of Zn. Each image y ∈ Bnκ has the same amount of f -preimages in S, therefore Ĥ : {0, 1}∗ → Bnκ
defined as Ĥ(x) = f ◦ H̃(x) is also a random function.

6.3.4 Gaussian Sampling
In Line 2 of Algorithm 6.2, we want to produce y = (y1,y2)t where y1,y2 are polynomials over
Z2q[x]/(xn + 1) with coefficients distributed according to a centered discrete Gaussian distribution
of standard deviation σ. In Chapter 4, we provide a new technique to efficiently perform discrete
Gaussian sampling on constrained devices. However in an environment with enough memory, using
the cumulative distribution table algorithm (the inversion algorithm) is the easiest and fastest
solution (see Table 4.1). Namely, we tabulate the approximate cumulative distribution of the desired
distribution, i.e. the probabilities pz = Pr[x 6 z : x← Dσ] for z ∈ [−τσ, τσ], precomputed with λ′
bits of precision, where τ = 13.4.7 At sampling time, one generates y ∈ [0, 1) uniformly at random,
then performs a binary search through the table to locate some z ∈ Z such that y ∈ [pz−1, pz) and
outputs z. A gcc-profiling of our program [DL13] reveals that this step takes about 35% of the
entire running-time, including the entropy generation using sha-512.

6For our parameters, this gives 1/A 6 1.00001 using a 512-bit hash function for H (e.g. BLISS-IV: n = 512,
κ′ = 56, κ = 39).

7The number of precision bits λ′ has to be selected according to an upper bound on the number of signatures.
More precisely, if an attacker can obtain an arbitrary number N of signatures, we want the distribution of the tuple
of all these signatures to be statistically close to the good distribution. Since each signature contains 2n Gaussian
values, we have 2nN Gaussian values in total and this implies that we need to set λ′ > λ+ log2(2nN).

59

6. Implementation of BLISS

6.3.5 Rejection Sampling according to 1/ exp and 1/ cosh
In Lines 6-8 of Algorithm 5.1, one should reject with probability

1/(M exp(−x/f) cosh(x′/f)) .

To avoid floating-point computations of the transcendental functions exp and cosh, we use the
techniques described in Section 4.3 of Chapter 4 to do it efficiently with a very small memory
footprint. (Note that when working on a constrained device, the precomputed values can be the
same both for Gaussian sampling and this rejection sampling step.)

6.3.6 Signature Compression
Similarly to [GLP12], we would like to reduce our signature size by compressing it. Recall that a
signature is a pair (z, c) where z = (z1, z2)t follows the Gaussian distribution D2n

σ . In [GLP12], the
signature size is reduced by dropping almost all the information about z2 in the signature. Such a
strategy impacts security, as it reduces to an easier SIS problem (it may allow an attacker to forge
using longer vectors). Let us describe a similar feature for our signature scheme.

Dropping the low-order bits of z2. We denote by d the number of bits we would like to drop in
z2. For every integer x in the range [−q, q) and any positive integer d, x can be uniquely written

x = bxed · 2d + [x mod 2d] ,

where [x mod 2d] ∈ [−2d−1, 2d−1). Thus bxed can be viewed as the “high-order bits” of x and
[x mod 2d] as its “low-order bits”.

Recall that the random oracle H input is(⌊
Ay
⌉
d
, µ
)

=
(⌊
ζ · a1 · y1 + y2 mod 2q

⌉
d
, µ
)

=
(⌊
ζ · a1 · z1 + ζ · q · c + z2 mod 2q

⌉
d
, µ
)
. (6.1)

The idea of [GLP12], transposed to our settings, was to define a vector z̃2 with coefficients
in {0,±2d} and a limited number of coefficients z̃2[i] = z2[i] (coming from the need of reduction
modulo 2q after the addition with small but non negligible probability) such that⌊

Ay
⌉
d

=
⌊
ζ · a1 · z1 + ζ · q · c + z̃2 mod 2q

⌉
d
.

Unfortunately the workaround which consists in storing some coefficients uncompressed, i.e. of the
form z̃2[i] = z2[i], yields a signature scheme which is not strongly unforgeable. Indeed it is easy to
forge a signature by modifying the least-significant bit of one of the uncompressed values, and this
does not modify the high-order bits of the sum with very high probability.8

Let us describe how to solve this issue for our signature scheme. We want to replace z2 by a
small vector z†2 such that ⌊

Ay
⌉
d

=
⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

+ z†2 .

Unfortunately without additional modification, the security proof does not go through because of a
similar issue as in [GLP12], i.e. the coefficients z2[i] of z2 which, added to

(
ζ · (a1 ·z1)[i] + ζ · q ·c[i]

)
,

force us to reduce the result modulo 2q in Equation (6.1). Let us define p = b2q/2dc; we have
2q = p · 2d + ν with a small ν (typically ν = 1 in our parameters). Now we modify the random
oracle H input by (⌊

Ay
⌉
d

mod p, µ
)
,

and define
z†2 =

(⌊
Ay
⌉
d
−
⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

mod p
)
∈ [0, p)n .

8As a direct consequence, the scheme of [GLP12] is not strongly unforgeable.

60

6.3. Implementation Details

The coefficients of z†2 are small modulo p. We redefine the signature to be (z1, z†2, c) instead of
(z1, z2, c), and during the verification, we check that

H
(
z†2 +

⌊
ζ · a1 · z1 + ζ · q · c mod 2q

⌉
d

mod p, µ
)

= c ,

that ‖(z1, 2dz†2)t‖ 6 B2 and that ‖(z1, 2dz†2)t‖∞ 6 B∞.

Finally, we have the following theorem:

Theorem 6.8. Let us consider the signature scheme of Section 6.3.7. Assume that d > 3,
q ≡ 1 mod 2d−1, and 2B∞ + (2d + 1) < q/2. Suppose there is a polynomial-time algorithm F which
succeeds in forging with non negligible probability. Then there exists a polynomial-time algorithm
which can solve the R-SISKn,δ1,δ2

q,n,m,β problem for β = 2B2 + (2d + 1)
√
n.

Proof. The proof of this theorem follows the same blueprint than the proof of Theorem 5.3. Namely,
by a straightforward adaptation of Lemma 5.4, one can show that our signing algorithm can be
replaced by Hybrid 3 (Algorithm 6.3) restarted if necessary. Next, an adaptation of Lemma 5.5
states that if an algorithm can produce a forgery with non-negligible probability when the signing
algorithm is replaced by Hybrid 3 (restarted), then we can use it to recover a vector v 6= 0 mod q
such that ‖v‖ 6 β = 2B2 + (2d + 1)

√
n and Av = 0 mod q.

Algorithm 6.3 Hybrid3

1: function Hybrid3(Message digest µ, public key A ∈ R2
2q, std. dev. σ ∈ R)

2: c← Bnκ
3: z1, z2 ← Dnσ
4: b← B1/M
5: if b = 1 then . output with probability 1/M
6: program H(bζ · a1 · z1 + ζ · q · c + z2ed mod p, µ) = c
7: z†2 ← (bζ · a1 · z1 + ζ · q · c + z2ed − bζ · a1 · z1 + ζ · q · ced) mod p
8: return (z1, z†2, c)
9: end if
10: end function

In what follows, we focus on the modifications in the proof of Lemma 5.5 to deal with the
dropping bits, i.e. we assume that F succeeds in forging the signature by outputting (z1, z†2, c)
where c = cj ∈ {c1, . . . , ct} was obtained from either a previous signing query, or a previous random
oracle query.

We have the following preliminaries facts:

Lemma 6.9. Let q be an odd integer and define ζ ∈ [0, 2q − 1] such that ζ · (q − 2) = 1 mod 2q.
Then ζ = q−1

2 if (q − 1)/2 is odd or ζ = q−1
2 + q if (q − 1)/2 is even.

Proof. We have that
q − 1

2 · (q − 2) = q · q − 1
2 − q + 1 = 1 mod q .

Therefore ζ = q−1
2 mod q and the lemma holds according to the parity of (q − 1)/2.

Lemma 6.10. Let d > 2, q be an integer such that q ≡ 1 mod 2d−1, and let p = b2q/2dc. Then
p · 2d = 2q − 2.

Assume the challenger has a signature (z′1, z′†2, c′j) such that

bζ · a1 · z1 + ζ · q · cjed + z†2 mod p = bζ · a1 · z′1 + ζ · q · c′jed + z′†2 mod p .

There exists k ∈ {0,±1}n such that the following equation holds over Z:

bζ · a1 · z1 + ζ · q · cjed − bζ · a1 · z′1 + ζ · q · c′jed + z†2 − z′†2 = kp .

61

6. Implementation of BLISS

Now we multiply the previous equation by 2d, and this yields modulo 2q:

ζ · a1 · z1 + ζ · q · cj − e− ζ · a1 · z′1 − ζ · q · c′j + e′ + 2d(z†2 − z′†2) = k · p2d mod 2q ,

where e = [ζ · a1 · z1 + ζ · q · cj mod 2q] mod 2d and e′ = [ζ · a1 · z′1 + ζ · q · c′j mod 2q] mod 2d.
This yields by Lemma 6.10:

(ζ · a1) · (z1 − z′1) + 2d(z†2 − z′†2) + ζ · q · (cj − c′j) + (e′ − e) + 2k = 0 mod 2q . (6.2)

Thus, if we define

v =
(
z1 − z′1, 2d(z†2 − z′†2) + (e′ − e) + 2k

)t ∈ (Z[x]/(xn + 1))2
,

we have that
(ζ · a1, 1) · v = 0 mod q ,

and thus multiplying by 2:
(a1, 2) · v = 0 mod q .

Now, we have that ‖v‖2 6 2B2 + (2d + 1) ·
√
n and ‖v‖∞ 6 2B∞ + (2d + 1) < q/2. Indeed

‖v‖2 6 ‖
(
z1 − z′1, 2d(z†2 − z′†2)

)t‖2 + ‖
(
0, (e′ − e + 2k)

)t‖2
6 2B2 + ‖

(
0, (e′ − e + 2k)

)t‖∞ · √n
6 2B2 + (‖

(
0, (e′ − e)

)t‖∞ + 2‖k‖∞) ·
√
n

6 2B2 + (2d − 1 + 2) ·
√
n

6 2B2 + (2d + 1) ·
√
n .

Similarly for the infinite norm, we get

‖v‖∞ 6 2B∞ + (2d + 1) < q/2 .

It remains to show that v 6= 0 mod q to conclude. By the condition ‖v‖∞ < q/2, it suffices to
show that v 6= 0 mod 2q.

Case #1. [z1 6= z′1 mod 2q]. Since

v =
(
z1 − z′1, 2d(z†2 − z′†2) + (e′ − e) + 2k

)t
,

we have v 6= 0 mod 2q. This case includes both type-1 and type-2 forgeries.

Case #2. [z1 = z′1 mod 2q and cj = c′j]. In that case, we have e = e′, and for the signatures to
be different we have z†2 6= z′†2. Therefore

v =
(
0, 2d(z†2 − z′†2) + 2k

)t
.

Now ‖2k‖∞ < 2d, then v 6= 0 mod 2q. This case is only possible for type-1 forgeries.

Case #3. [z1 = z′1 mod 2q, cj 6= c′j and z†2 = z′†2 mod 2q]. In that case, Equation (6.2) yields

e′ − e + 2k = ζ · q · (cj − c′j) mod 2q .

Now cj − c′j 6= 0 mod 2, therefore e′ − e + 2k 6= 0 mod 2q. Since

v =
(
0, (e′ − e) + 2k

)t
,

we have v 6= 0 mod 2q. This case is only possible for type-2 forgeries.

62

6.4. Security Analysis

Case #4. [z1 = z′1 mod 2q, cj 6= c′j and z†2 6= z′†2 mod 2q]. In that case

v =
(
0, 2d(z†2 − z′†2) + (e′ − e) + 2k

)t
.

Since cj 6= c′j , there exists i such that cj [i] 6= c′j [i]. Without loss of generality, we can assume that
c′j [i] = 1 and thus cj [i] = 0. Therefore,

e′[i] =
(
x+ ζ · q mod 2q

)
mod 2d ,

and
e[i] = x mod 2d ,

where x =
(
ζ ·(a1 ·z1)[i]

)
mod 2q. Now ζ ·q = q mod 2q because ζ = 1 mod 2 by Fact 6.9. Therefore

e′[i] =
(
x+ q mod 2q

)
mod 2d .

Now,
(
x+ q mod 2q

)
= x± q over Z. Therefore,(

e′[i]− e[i]
)

mod 2d =
(
(x± q)− x

)
mod 2d

is odd. This proves that v[i] is odd, and therefore that v 6= 0 mod 2q. This case is only possible for
type-2 forgeries.

Compressing Most Significant Bits of z1 and z†
2. The simplest representation of the entries of

z1 then requires dlog2(8σ)e 6 log2(16σ) bits. Yet, the entropy of these entries is actually smaller:

Lemma 6.11. Let X be distributed as Dσ, that is a centered discrete Gaussian variable. Then the
entropy of X is upper-bounded by:

H(X) 6 1
σ3 + log2(

√
2πeσ) ≈ log2(4.1σ) .

Now, Huffman coding provides (almost) optimal encoding for data when their distribution is
exactly known. More precisely:

Theorem 6.12 (Huffman Coding). For any random variable X over a finite support S, there exist
an injective prefix-free code C : S → {0, 1}∗ such that:

H(X) 6 E [|C(X)|] < H(X) + 1 .

To keep the compression efficient, we choose to only encode the highest bits of all entries; the
lower are almost uniform and therefore we do not lose anything by not compressing them. Moreover,
if by packing several independent variables X1, . . . , Xk, we can decrease the overhead to 1/k.

6.3.7 Final Sign and Verify Algorithms
In this section, we describe the final algorithms to instantiate BLISS with the parameters of
Section 6.5 (Algorithms 6.4 and 6.5). Note that to obtain the signature size indicated Table 6.6
(page 71), one need to use Huffman Coding to compress the highest bits of z1 and z†2. Let us define
p = b2q/2dc where d is the number of dropped bits.

6.4 Security Analysis

In this section, we describe how known attacks apply to our scheme. First, we describe in Section 6.4.1
combinatorial attacks on the secret key, namely brute-force and meet-in-middle attacks.

Then we consider lattice reduction attacks. Typical measurements of lattice problem hardness
(the so called Hermite factor, see [GN08, CN11]) are given in Table 6.5 (page 70), measuring how
hard it is to find vectors of a given norm in a random lattice. We first apply this measure to the
hardness of the underlying SIS problem, as if the lattice used was truly random (cf. Section 6.4.2).

63

6. Implementation of BLISS

Algorithm 6.4 BLISS Signature Algorithm.
1: function Sign(Message µ, public key A = (ζ · a1, 1) ∈ R1×2

2q , secret key S = (s1, s2)t ∈ R2×1
2q)

2: y1,y2 ← DZn,σ
3: u← ζ · a1 · y1 + y2 mod 2q
4: c← H(bued mod p, µ) . Compute the challenge
5: b← B1/2 . Choose a random bit
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: b← B

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh
(
〈z,Sc〉
σ2

))
9: if b = 1 then . output with probability 1

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

)
10: z†2 ← (bued − bu− z2ed) mod p
11: return (z1, z†2, c)
12: else
13: restart
14: end if
15: end function

Algorithm 6.5 BLISS Verification Algorithm.

1: function Verify(Message µ, public key A = (ζ · a1, 1) ∈ R1×2
2q , signature (z1, z†2, c))

2: if ‖(z1, 2d · z†2)t‖2 > B2 or ‖(z1, 2d · z†2)t‖∞ > B∞ then
3: return Reject
4: end if
5: if c = H

(⌊
ζ · a1 · z1 + ζ · q · c

⌉
d

+ z†2 mod p, µ) then
6: return Accept
7: else
8: return Reject
9: end if
10: end function

Yet, the lattice is not truly random, as by design it contains unusually short vectors. Therefore,
one may try to directly recover the secret by lattice reduction: find the secret key (f ,g)t as a
short vector in the primal lattice Λ = {(x,y)t ∈ R2 : aqx + y = 0 mod q}. Unfortunately, the
only study [GN08] of the behavior of lattice algorithms in the presence of unusually short vectors
only considers the unique-SVP problem, in which there is only one unusually short vector. In
the NTRU-like case, there is a basis of n of them. We provide new experiments showing that the
behavior is similar; it is dictated by the ratio between the actual shortest vector, its expected length
in a random lattice and the Hermite factor (cf. Section 6.4.3).

An alternative attack to recover unusually short vectors of a lattice is to use short (but quite
larger) dual lattice Λ× vectors to detect its presence, and then recover it [MR09, MM11] using
search-to-decision reduction; quantification of this attack is detailed in Section 6.4.4.

Finally, it is possible to combine lattice reduction and combinatorial techniques: Howgrave-
Graham designed in [HG07] an attack against NTRU keys combining a meet-in-the-middle strategy
with lattice reduction. This attack applies to our scheme, as detailed in Section 6.4.5, but also
on the previous related schemes [Lyu12, GLP12]. Note that there is no mention of this attack in
the security analysis of the latter schemes; therefore in order to compare, we also include security
measurements for those schemes.

We base our security projection on the BKZ-2.0 simulation methodology [CN11] that models
the behavior of BKZ including several enhancements [Kan83, GNR10, HPS11].

Note that we only sketch the attack principles; we refer the interested reader to the original
articles [HHGP+03, HG07, CN11, MR09, MM11] for more detail. We emphasize that the statistical
attacks [NR09, MPSW09, DN12b] provably (i.e. information-theoretically) do not apply here
because of rejection sampling: the output distribution of the signature scheme is independent of

64

6.4. Security Analysis

the secret key.

6.4.1 Brute-force and Meet-in-the-Middle Key Recovery Attack

The key-recovery problem is as follows: given a ∈ Zq[x]/(xn + 1), find small polynomials f ,g such
that a(2g + 1)− f = 0 (knowing that such a solution exists). Precisely, we know that both f and g
have respectively d1 = dnδ1e entries in {−1,+1} and d2 = dnδ2e entries in {−2,+2}.

Brute-force Key Recovery. The brute-force attack simply consists in picking a random vector g
according to the key-generation distribution, and checking whether f = a(2g + 1) is a polynomial
with coefficients in {−2,−1, 0, 1, 2}. To measure the complexity of this attack, one simply measures
the entropy of g: this entropy yields a lower bound on the time to exhaust all possible values. The
time complexity of this attack is therefore T = 2d1+d2

(
n
d1

)(
n−d1
d2

)
.

For more complex attacks, it may be simpler to model all the entries of the secret key as
independent random variables, each of them having entropy:

e = δ0 log2 δ0 + δ1 log2
δ1
2 + δ2 log2

δ2
2 .

In this model, the total entropy is n · e, which is at most logn greater than the true entropy.

Meet-in-the-Middle Attack. Odlyzko proposed a MiM attack of running time the square root of
the latter attack (but with additional memory consumption). It was designed against the NTRU
signature scheme, but also applies here. We refer to [HHGP+03] for details, and give only a short
explanation of a simplified version: exhaust g1 as the first half bits of g and store g1 in several
labeled boxes (of an hash table) according to the values of f1 = a(2g1 + 1). Then search for the
second half g2 of g by computing f2 = a(2g2) mod q: the labeling is designed so that to ensure a
collision whenever f1 + f2 has its coefficients in {−2,−1, 0, 1, 2}.

This attacks runs in time and memory about 2n·e/2, since the entropy of a half of the vector is
n · e/2.

6.4.2 Hardness of the underlying SIS problem

Attack Overview. In this section we measure the hardness of forging a signature according to our
security proof. We will consider the running time necessary for the BKZ algorithm to find a vector
of norm β = 2B2 + (2d + 1)

√
n in a random q-ary lattice according to the analysis of [CN11]. While

the lattice Λ is not perfectly random because of the presence of unusually short vectors, the next
section analyzes how hard it is to detect and find those unusually short vectors.

Remark 6.13. Note that we have β > q, yet the q-vectors give no proper solution to the SIS instance
since it is required that the short solution is non-null modulo q. This is one of the reasons our
scheme constraints the `2 and the `∞ norms of signature vectors; this ensures that the reduction
provides a vector v such that ‖v‖∞ < q/2, and thus is non-null modulo q. While we could have
chosen larger values for B∞ and still have a valid security reduction, choosing it as small as possible
for correctness can only make the scheme more secure.

Quantification. The hardness of this SIS problem is dictated by the ratio β/√q and the dimension
m, precisely it is necessary to run BKZ with a blocksize providing a Hermite factor δm < β/

√
q.

The relation between the block-size δ and the running time is interpolated from [CN11].

Margins. The cost given in the last line of Table 6.1 is expressed as the number of nodes to visit
in the enumeration tree of the enumeration subroutine of BKZ. Each visit requires about 100 CPU
cycles, and BKZ needs to perform at least 2n such enumerations, adding an additional 10 bits to
those numbers. Yet, those numbers do not directly give rise to an attack as they are derived from a
security reduction; actually forging seems to require finding vectors smaller by a factor 2.

65

6. Implementation of BLISS

Table 6.1 – Hardness of the underlying SIS instance.

Scheme SIS parameter β/√q Required Enumeration Cost log2 T
(as in Theorem6.8) Block Size

BLISS-0 63 = 1.0083m 125 53
BLISS-I 441 = 1.0060m 215 130
BLISS-II 409 = 1.0059m 220 136
BLISS-III 289 = 1.0055m 245 168
BLISS-IV 231 = 1.0053m 260 188

6.4.3 Primal Lattice Reduction Key Recovery

Attack Overview. The attack consists in applying lattice reduction to the primal lattice Λ hoping
that the short vector found will be the secret key. This problem can be seen as a ring variant of the
unique-SVP problem.

Cryptanalysis and Experiments on NTRU Lattices. The most complete study of the behavior of BKZ
in the presence of unusually short vector(s) is due to Gama and Nguyen [GN08] who thoroughly
analyzed the algorithm’s running time in the presence of one such vector. Their experiments show
that the hardness of finding this vector depends on the ratio λ2/λ1, that is, the gap between the
second-shortest and the shortest vectors in the m-dimensional lattice. In practice, for BKZ-20, the
shortest vector was found when λ2/λ1 > .48 · 1.01m.

We ran similar experiment of BKZ-20 in the case of 2n-dimensional NTRU lattices where
λ1 = . . . = λn. In NTRU lattices, the gap normally occurs between the n-th and the n + 1-th
successive minima, and one might think that the ratio between these two quantities would somehow
determine the hardness of the instance. Our experiments showed that this is not the case, and
the shortest vector was found when

√
qm/2πe

/
λ1 was greater than .40 · 1.012m (see Figure 6.1).

Despite the fact that there is no vector in the lattice having length
√
qm/2πe this is actually

consistent with the results of [GN08]! The reason is that
√
qm/2πe is the expected length of the

shortest vector according to the Gaussian heuristic,9 and we would also expect λ2 ≈
√
qm/2πe

in a random q-ary lattice analyzed in [GN08]. Thus one could say that the hardness of finding a
short vector in q-ary lattices depends not on the gap, but rather on the ratio between the Gaussian
heuristic and the actual length of the shortest vector.

Similar to the results in [GN08], when the ratio was smaller than .40 · 1.012m, the resulting
shortest vector had length about √q · 1.012m. In other words, BKZ-20 behaved as if the lattice
were truly random. Because of our experiments with BKZ-20, it seems reasonable to assume that
BKZ behaves analogously for larger block sizes. Thus we can measure its efficacy according to
the BKZ-2.0 methodology in [CN11]. We would like to stress that we have no explanation for the
reason why the ratio between the Gaussian heuristic and the actual length of the vector seems to
dictate the hardness of finding short vectors in NTRU lattices. We are equally unsure whether this
phenomenon implies that these lattices are indeed as hard as the random lattices that have been
more exhaustively studied [GN08, CN11].

6.4.4 Dual Lattice Reduction Key Recovery

Attack Overview. The attack consists in using short dual lattice vectors as a distinguisher for
the existence of a very short vector s in a lattice [MR09]. Then, one may use the distinguisher
to completely recover this very short vector using the reduction of Micciancio and Mol [MM11],
inspired by the Goldreich-Levin Theorem [GL89].

9The Gaussian heuristic says that for certain types of random lattices L, we will have λ1(L) ≈ det(L)1/m ·
√

m
2πe

[GN08].

66

6.4. Security Analysis

(a) Shortest vector not found (b) Shortest vector found

Figure 6.1 – Results BKZ-20 for n ∈ [48, 150], q ∈ [6000, 25000] and binary search on the λ1-threshold.
On horizontal axis is the value of n+ random(0,5) and on vertical axis is

(1
.40
√

qm
2πe
/
λ1
)1/2n

Table 6.2 – Cost of finding the Ring-unique shortest vector via primal lattice reduction.

Scheme Ring-Unique-SVP Required Enumeration Cost log2 T

parameter
√

qm
2πe

/
λ1 Block Size

BLISS-0 14 = 1.0051m 270 200
BLISS-I 46 = 1.0037m >300 >240
BLISS-II 46 = 1.0037m >300 >240
BLISS-III 30 = 1.0033m >300 >240
BLISS-IV 25 = 1.0031m >300 >240

Table 6.3 – Cost of distinguish the existence of the shortest vector via primal lattice reduction.

Scheme Best Enum. Cost Hermite Dist. Adv. Total Cost
Block Size b log2 T Factor δ log2 ε log2(T/ε)

BLISS-0 110 45 1.0088m −5.5 56
BLISS-I 220 136 1.0059m −20 177
BLISS-II 220 136 1.0059m −20 177
BLISS-III 240 162 1.0056m −19 201
BLISS-IV 245 168 1.0056m −21 211

[Lyu12, Set-IV] 190 103 1.0067m −7 118
[GLP12, Set-I] 130 56 1.0081m −5 67

Quantification. For a q-ary lattice Λ of dimension m, using a vector v ∈ Λ× (where Λ× is the dual
lattice) and assuming its direction is random, one is able to distinguish the existence of an unusual
short vector s in the dual with probability ε = e−πτ

2 , where τ = ‖v‖ · ‖s‖/(q
√
m).

Next, using this distinguisher as an oracle, it is possible to recover one entry of the private key
except with small fixed probability, using 1/ε2 calls to that oracle. We then iterated over different
block-sizes (5 by 5) to minimize the total cost T/ε2, where T is the running time of the enumeration
subroutine of BKZ.
Remark 6.14. Rather than trying to find the proper secret key s = (f ,−2g + 1)t as a short
solution to (2aq, 2)s = 0 mod q, one would search directly s′ = (f ,g)t as a shorter solution to
(aq,−1)s′ = 1 mod q.

Margins. To stay on the safe side, we do not include the additional n2 factor to the running time
of this attack: indeed there are n coordinates to guess, and each BKZ reduction requires at least

67

6. Implementation of BLISS

i

logq‖b?i ‖
1

2nr n

(a) Before reduction

i

logq‖b?i ‖
1

R 2nr

logq γ

n

(b) After reduction

Figure 6.2 – Basis Profile during the Hybrid Attack.

n enumerations; one might then be tempted to claim an additional 20 bits of security. Yet it is
unclear whether one needs to run the full BKZ reduction to get new short vectors, neither if one
can reuse the same short dual vector to guess each coordinate. Even though we do not claim an
attack in time 267 on [GLP12], we believe that claiming more than 90 bits of security is a long
shot. The difference between our measurement and theirs might be explained by the fact that the
authors only considered the case where ε was close to 1.

6.4.5 Hybrid MiM-Lattice Key Recovery
Attack Overview. The attack from [HG07] uses lattice reduction as a preprocessing step, in order to
decrease the search space of combinatorial attacks. Precisely, one first chooses parameters r and R,
applies lattice reduction on the sub-lattice generated by the vectors of the sub-basis br, . . . ,bR−1
(see Figure 6.2), and runs the MiM attack only over the 2n−R last coordinates.

In order to perform the combinatorial attack, one needs to obtain a basis whose last orthogonal-
ized vector is large enough. Precisely, the basis needs to be good enough so that Babai’s algorithm
properly solves BDD on the error s′ = (s1, . . . , sR, 0, . . . , 0). A necessary condition is therefore:

〈s′,b?i 〉/‖b?i ‖2 6 1/2 , (6.3)

where the b∗1, . . . ,b∗R is the Gram-Schmidt orthogonalization of b1, . . . ,bR.

Quantification. Once again, we assume that the lattice reduction algorithm provides a basis of
random direction. Therefore, we model the quantity 〈s′,b?i 〉/‖b?i ‖2 as a Gaussian of standard
deviation ‖s′‖/(

√
R‖b?i ‖). Denoting γ = ‖b?R−1‖, one models by the GSA (geometric series

assumption) that ‖b?R−1−i‖ = γ × δ2i, where δ is the Hermite factor. To verify Equation (6.3) with
reasonable probability (say at least 0.01), it is required that γ > 2.5‖s′‖/

√
R.

We thus determine the security against this attack as follows: to claim λ bits of security, set R so
that it takes 2λ time and memory to exhaust the last 2n−R entries of the secret. Recall that e denotes
the entropy of a single entry, each step of the Meet in the Middle attack requires O(n2) operations,
and at least e ·R bits of storage, therefore we set R such that R · e = 2λ− log2(e ·R)− log2(n2).

Then we determine γ, and run BKZ-2.0 simulation according to [CN11], increasing block-size
until γ > 2.5‖s′‖/

√
R. Finally, deduce the cost of lattice reduction and verify it is greater than

2λ. Note that r is derived from the behavior of this simulation. Analysis results are described in
Table 6.4.

Margins. There is a small security margin coming from the fact that we set the parameters so that
the attack succeeds with probability 0.01, which would add about 7 bits of security, and again 10
extra bits because BKZ requires at least 2n enumeration. More importantly we considered that
the attacker has 2λ memory available; in practice it is unlikely that an attacker may have as much
memory available as the number of bit-operations.10

10 In 2007, there were no more than 271 bits of storage globally, while all general-purpose computers could
execute 287 operations in a year. Storage growth is 23% a year versus 58% for computing power (see http:

68

http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World

6.5. Parameters and Benchmarks

Table 6.4 – Hybrid MiM+Lattice Reduction Attack Parameters.

Scheme MiM Search Entropy per MiM Search Required BKZ Enum.
Cost log2M sk Entry Dimension R Block Size Cost

BLISS-0 60 2.11 46 165 84
BLISS-I 128 1.18 194 245 168
BLISS-II 128 1.18 194 245 168
BLISS-III 160 1.60 183 >300 >200
BLISS-III 192 1.77 201 >300 >200

[Lyu12, Set-IV] 100 1.58 110 220 150
[GLP12, Set-I] 80 1.58 85 140 60

6.5 Parameters and Benchmarks

In this section, we first propose parameters sets for the scheme BLISS described in this chapter.
Next, we compare the benchmarks of our proof-of-concept implementations with the openssl
running times of RSA and ECDSA.

6.5.1 Parameters Sets
In Table 6.5, we propose several sets of parameters to implement the scheme described in this
chapter. The signature schemes BLISS-I and BLISS-II are respectively optimized for speed and
compactness and offer 128 bits of security (i.e. long-term protection [NIS11, ECR12]). The signature
schemes BLISS-III and BLISS-IV offer respectively 160 and 192 bits of security. The two last lines
provide typical security measurement against direct lattice attack in terms of Hermite factor, but
slightly better attacks exist. Therefore, our security claims are derived from an extensive analysis
based on BKZ-2.0 simulation [CN11] in interaction with other techniques [MR09, MM11, HG07],
as detailed in Section 6.4.

One of the objectives of this work was to determine whether the scheme from [Lyu12] could
be improved so as it remains sufficiently secure for a dimension n = 256. Even though this seems
possible when only considering direct lattice attacks, it turns out to be slightly out of reach according
to the analysis of Section 6.4. Any additional trick might unlock an extremely efficient 80-bit secure
signature scheme; it seems to us a challenging but worthwhile goal. We do however propose a toy
variant BLISS-0 in this dimension for which we expect up to 60 bits of security. Yet, we believe it
would require a significant effort to break this toy variant; we leave it as a challenge to motivate
further advance in lattice cryptanalysis. Note that choosing a non power-of-two dimension n would
have been possible but yields several unwelcome consequences: on efficiency first as NTT becomes
at least twice slower and the geometry is worse (our constant C grows), but also on simplicity as
one will no longer work as on the simple quotient by xn + 1. However, it is possible to get about
100 bits of security in dimension n = 379 for signatures of size 4kb. In comparison [Lyu12, Set-IV]
and [GLP12, Set-I] have respective signature sizes of 15kb and 9.5kb, for a claimed security of 100
bits.11

6.5.2 Timings
In Table 6.6, we provide running times of our proof-of-concept implementation [DL13] of our
signature scheme with the parameters provided above, on a desktop computer. We also provide
running times for the openssl implementations of RSA and ECDSA.12 Note that, despite the lack
of optimization on our proof-of-concept implementation, we derived interesting timings. First, our
verification time is nearly the same for each of our variants, and is much faster than the RSA and
the (even worse) ECDSA verifications by a factor 10 to 30. Secondly, excluding RSA which is really

//news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World). There are about 2160 atoms
on earth.

11Our analysis in Section 6.4 shows that the security of [GLP12, Set-I] may actually be a little lower than claimed.
12ECDSA on a prime field Fp: ecdsap160, ecdsap256 and ecdsap384 in openssl.

69

http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World
http://news.usc.edu/#!/article/29360/How-Much-Information-Is-There-in-the-World

6. Implementation of BLISS

Table
6.5

–
Param

eter
proposals.

N
am

e
ofthe

schem
e

B
L
ISS-0

B
L
ISS-I

B
L
ISS-II

B
L
ISS-III

B
L
ISS-IV

Security
Toy

(6
60

bits)
128

bits
128

bits
160

bits
192

bits
O
ptim

ized
for

Fun
Speed

Size
Security

Security
n

256
512

512
512

512
M
odulus

q
7681

12289
12289

12289
12289

Secret
key

densities
δ1 ,

δ2
.55

,.15
.3

,0
.3

,0
.42

,.03
.45,.06

G
aussian

standard
deviation

σ
100

215
107

250
271

α
.5

1
.5

.7
.55

κ
12

23
23

30
39

Secret
key

N
κ -T

hreshold
C

1.5
1.62

1.62
1.75

1.88
D
ropped

bits
d
in

z
2

5
10

10
9

8
Verification

thresholds
B

2 ,B
∞

2492,530
12872,2100

11074,1563
10206,1760

9901,1613
R
epetition

rate
7.4

1.6
7.4

2.8
5.2

Entropy
ofchallenge

c
∈
B
nκ

66
bits

132
bits

132
bits

161
bits

195
bits

Signature
size

3.3kb
5.6kb

5kb
6kb

6.5kb
Secret

key
size

1.5kb
2kb

2kb
3kb

3kb
Public

key
size

3.3kb
7kb

7kb
7kb

7kb
SIS

param
eter

β
/ √

q
63=

1
.0083

m
441=

1
.0060

m
409=

1
.0059

m
289=

1
.0055

m
231=

1
.0053

m

(as
in

T
heorem

6.8)
R
ing-U

nique-SV
P

14=
1
.0051

m
46=

1
.0037

m
46=

1
.0037

m
30=

1
.0033

m
25=

1
.0031

m

param
eter √

q
m

2
π
e /

λ
1

70

6.6. Conclusion

Table 6.6 – Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM) with
openssl 1.0.1c.

Security Signature Sign Sign/s Verify Verify/s
size (ms) (ms)

BLISS-0 6 60 bits 3.3 kb 0.241 4k 0.017 59k
BLISS-I 128 bits 5.6 kb 0.124 8k 0.030 33k
BLISS-II 128 bits 5 kb 0.480 2k 0.030 33k
BLISS-III 160 bits 6 kb 0.203 5k 0.031 32k
BLISS-IV 192 bits 7 kb 0.375 2.5k 0.032 31k
RSA 1024 72-80 bits 1 kb 0.167 6k 0.004 91k
RSA 2048 103-112 bits 2 kb 1.180 0.8k 0.038 27k
RSA 4096 > 128 bits 4 kb 8.660 0.1k 0.138 7.5k
ECDSA 160 80 bits 0.32 kb 0.058 17k 0.205 5k
ECDSA 256 128 bits 0.5 kb 0.106 9.5k 0.384 2.5k
ECDSA 384 192 bits 0.75 kb 0.195 5k 0.853 1k

slow, the signature algorithm of BLISS-I is as fast as ECDSA-256 (with the same claimed security).
We refer to [NIS11, ECR12] to get the equivalence between the key length of RSA and ECDSA
and the expected security in bits.

Besides, we expect our scheme to be much more suitable to embedded devices than both RSA
and ECDSA, mainly because our operation are done with a very small modulus (less than 16 bits).
By design, the binary representation of q is 11 0000 0000 0001, that is q has a very small Hamming
weight; this structure might yield interesting hardware optimizations. The main issue for such
architectures is the generation of discrete Gaussian, addressed in Chapter 4.

6.6 Conclusion

Our contributions in this chapter are five-fold and improve over the lattice-based signature scheme
BLISS described in Chapter 5:

1. we propose a new key generation algorithm based on NTRU lattices;

2. we describe several optimizations and implementations tricks (multiplications, efficient hashing,
rejection probability computations);

3. we propose a new method to compress the signature;

4. we perform an extensive security analysis to derive concrete parameters;

5. finally, we implement on a 64-bit architecture, and benchmark 5 versions of BLISS (BLISS-0 to
BLISS-IV) with different security levels and signature sizes; the proof-of-concept implementations
are openly available at [DL13].

As a side result, we show that lattice-based cryptography can be made as efficient (or even more)
than classically used algorithms such as RSA or ECDSA, can be adapted to constrained devices
and can have reasonable key/signature sizes.

Consequently to our work, implementations of lattice-based signatures schemes began to be
described. At SAC 2013, Bansarkhani and Buchmann [BB13] implemented a hash-and-sign signature
but their practical results are nowhere near comparable to our parameter sizes and timings. Oder,
Pöppelmann and Güneysu [OPG14] implemented our signature scheme on a 32-bit ARM Cortex-
M4F RISC and concluded that (1) it is possible to implement a post-quantum, lattice-based
signature scheme on a Cortex-M4F microcontroller; (2) our discrete Gaussian sampling algorithm
is currently the most efficient (see Chapter 4); and (3) one can obtain an implementation faster
than the reference implementations of RSA and ECC for a comparable security level (128 bits).

Also, 15 years after the design of the lattice-based encryption scheme NTRUEncrypt [HPS98],
an open-source implementation of the scheme has been made available by the authors at [WEJ13].

71

6. Implementation of BLISS

The goal of making available this reference code is to enable “more widespread adoption of this
superior cryptographic technology”.

Lattice-based signatures are still being investigated (e.g. [HPS+13, LLLS13, BG14, LLNW14]),
and we believe significant improvements could be obtained in the following couple of years.

Note however that the general dearth of lattice cryptanalysis papers stands in contrast to the
vast number of articles proposing theoretical lattice-based constructions. Our belief is that this
lack of cryptanalytic effort is in part due to the fact that most of the papers with scheme proposals
give no concrete targets to attack. One of the proposed instantiations in the present work is a
“toy example” (optimized for “fun”) that we estimate to have approximately 60 bits of security.
Thus if it turns out that NTRU lattices are weaker than believed, it is wholly possible that this
example could be broken on a personal computer, and we think this would be of great interest to
the practical community. In addition, it could be argued that we do not yet know enough about
lattice reduction to be able to propose such “fine-grained” security estimates like 160-bit or 192-bit.
One of our hope is that providing practical parameters will spur on the cryptanalysis of our scheme
(and therefore of lattice-based cryptography), which is much needed.

Finally, as already suggested in Chapter 4 about Gaussian sampling, a fundamental open
problem is to evaluate the resistance of implementations of lattice-based cryptography against
side-channel attacks, and designing adapted countermeasures. Also it might be worth investigating
software-hardware co-design for lattice-based cryptography, to further enhance its performance and
make its deployment possible as soon as some new standards will have emerged.

72

Part Two

Helping Fully Homomorphic Encryption
Become Practical

Overview

In this age of social networks and sharing, it is challenging to provide users both privacy (via
encryption) and usability. We believe that encryption should be nearly transparent to the user
in order to be widely adopted, as illustrated by the poor adoption of PGP [WT99, BHL13].1
Note that PGP provides cryptographic privacy and authentication for data communication. In a
cloud setting however, a user might want to ensure the privacy of her own data while using the
usability benefits from the cloud. In such a context, PGP would only allow to store and retrieve
encrypted data. The notion of privacy homomorphism was introduced in 1978 by Rivest, Adleman
and Dertouzos [RAD78] to go beyond the storage and retrieval of encrypted data by permitting
encrypted data to be operated on for interesting operations, in a public fashion – i.e. without
decrypting the ciphertexts. A typical example is that of a user sending its own encrypted content
to the cloud for treatment. Note that the encryption program can be included by design in the
program, without relying on whether or not other users use this mechanism.

Fully homomorphic encryption (FHE) allows a worker to perform implicit additions and
multiplications on plaintext values while exclusively manipulating encrypted data. In other words,
it is an encryption scheme that allows, from ciphertexts E(a) and E(b) encrypting bits a, b, to
obtain encryptions of ¬a, a ∧ b and a ∨ b without using the secret key. Clearly, this allows to
publicly evaluate any Boolean circuit given encryptions of the input bits. The first construction of
a fully homomorphic scheme (based on ideal lattices) was described by Gentry in [Gen09], and his
breakthrough idea was to homomorphically evaluate the decryption circuit of a scheme that allowed
only shallow circuits to be evaluated to “refresh” ciphertexts. By repeatedly refreshing ciphertexts,
the number of homomorphic operations becomes unlimited, resulting in a fully homomorphic
encryption scheme.

Unfortunately the huge gain of functionalities came to the cost of practicality – the first referenced
implementation encrypting bits was proposed by Gentry and Halevi in [GH11b], uses a public key of
2.25 GB and after each multiplication of two encrypted bits, a refresh procedure taking 31 minutes, on
a 64-bit Intel Xeon E5450 processor running at 3GHz, was required. This active research area yielded
new schemes [vDGHV10, BV11a, BGV12, LTV12, GSW13] based on different assumptions, many
improvements [SV10, OYKU10, SS10, GH11b, SV11, LMSV11, CMNT11, BV11b, GH11a, SS11a,
GHS12a, CNT12, GHS12b, Bra12, FV12, BGH13, GHPS13, CCK+13, ASP13, BV14, BLLN13,
CLT14a, LN14a] and implementation results [GH11b, CMNT11, NLV11, PBS11a, CNT12, GHS12c,
FSF+13, MHM+13, BLLN13, CLT14a, LN14a]. Note however that, comparatively, very few
implementations of homomorphic schemes are publicly available [PBS11b, CT12, HS13, Lep14].

This part of the thesis presents several contributions towards the practicality of fully homomor-
phic encryption schemes [CCK+13, LP13, CLT14b].

1For PGP to be of any use, both end-users need to have a working PGP program. Even though developers
proposed and are still proposing graphical user interfaces to PGP, adopting it remains out of reach of most users.
And unfortunately, the current poor adoption of this encryption program does not encourage anybody to use it.

73

Helping Fully Homomorphic Encryption Become Practical

First, we propose two extensions of the fully homomorphic encryption scheme over the integers
of van Dijk et al. (DGHV) [vDGHV10]. In Chapter 7, we describe a batch variant of the DGHV
scheme, i.e. a variant of DGHV that supports encrypting and homomorphically processing a vector
of plaintext bits as a single ciphertext instead of a single bit. In Chapter 8, we describe a leveled
variant of the DGHV scheme with the scale-invariant property [Bra12]. The resulting scheme
has a single secret modulus whose size is linear in the multiplicative depth of the circuit to be
homomorphically evaluated, instead of exponential. In a nutshell, these improvements transformed
the initial impractical DGHV scheme into a serious candidate for an efficient fully homomorphic
encryption primitive.

Next, we tackle the bottleneck in FHE performances, namely the bootstrapping procedure,
by proposing a method to compute the exact minimal number of bootstrappings required to
homomorphically evaluate any circuit. We successfully applied our method to a range of real-world
circuits that perform various operations over plaintext bits. Practical results show that some of
these circuits benefit from significant improvements over the naive evaluation method where all
multiplication outputs are bootstrapped.

Finally, we illustrate the practicality of our new schemes with proof-of-concept implementations
in C++, and by homomorphically evaluating the AES block cipher [FIP01]. We obtain timings
comparable to the timings presented by Gentry, Halevi and Smart at Crypto 2012 for their
implementation of a Ring-LWE based fully homomorphic encryption scheme [GHS12c].

74

Chapter 7

Batch Fully Homomorphic Encryption over
the Integers

7.1 Introduction

In this chapter, we first recall and discuss attacks against the Approximate-GCD problem, and
introduce variants thereof. These variants allow us to revisit the fully homomorphic encryption
scheme over the integers of van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) [vDGHV10],
and to extend it to batch fully homomorphic encryption, i.e. to a scheme that supports encrypting
and homomorphically processing a vector of plaintext elements as a single ciphertext. Our variant
is semantically secure under the decisional Error-Free Approximate-GCD problem, which we
prove to be equivalent to the computational Error-Free Approximate-GCD problem considered
in [vDGHV10]. We also show how to perform arbitrary permutations on the underlying plaintext
vector given the ciphertext and the public key. Finally, we explain how to derive concrete parameters
and benchmark our scheme on a desktop computer.

Part of this chapter consists of the article Batch Fully Homomorphic Encryption over the Integers
[CCK+13], cosigned with J.H. Cheon, J.-S. Coron, J. Kim, M.S. Lee, T. Lepoint, M. Tibouchi
and A. Yun, and published at Eurocrypt 2013 [JN13]. This latter article is a merged version of
a work [CLT13a] cosigned with J.-S. Coron and M. Tibouchi, and the work [KLYC13] of J. Kim,
M.S. Lee, A. Yun and J.H. Cheon. Section 7.2.2 of this chapter is part of the article Scale-Invariant
Fully Homomorphic Encryption over the Integers [CLT14a], cosigned with J.-S. Coron and M. Tibouchi,
and published at PKC 2014 [Kra14]. Finally, part of Section 7.2 was done while the author was
an intern in the Cryptography Research group at Microsoft Research in Redmond, under the
supervision of Kristin Lauter and Michael Naehrig.

7.1.1 Background on Fully-Homomorphic Encryption
Homomorphic encryption is a special kind of encryption that allows to operate publicly on ciphertexts
without knowing the decryption key. For example, an additively homomorphic encryption scheme
allows to combine a ciphertext c of m and a ciphertext c′ of m′ to obtain a ciphertext of m+m′.
This homomorphic feature enables one to design rich and complex protocols with surprising
and exciting applications. An oversimplified example consists in using the additive property
of an additively homomorphic encryption scheme to instantiate an encrypted electronic voting
scheme. The problem of designing a fully homomorphic encryption scheme, that is a scheme that
allows evaluation of arbitrarily complex programs on encrypted data, was suggested by Rivest,
Adleman and Dertouzos [RAD78] back in 1978. Partial progress has been achieved during thirty
years [GM82, Pai99, BGN05, IP07], but fully homomorphic encryption remained a “never-to-
be-found Holy Grail of cryptography” [Mic10] [sic] until the breakthrough result of Gentry in
2009 [Gen09].

Gentry proposes the first construction of a fully homomorphic scheme (based on ideal lattices),
and proceeds as follows. First, one constructs a somewhat homomorphic encryption scheme, that is
an encryption scheme that only supports a limited number of homomorphic operations (especially of
multiplications). A ciphertext contains some noise that becomes larger with successive homomorphic

75

7. Batch Fully Homomorphic Encryption over the Integers

operations, and only ciphertexts whose noise size remains below a certain threshold can be decrypted
correctly. The second step is to squash the decryption procedure associated with an arbitrary
ciphertext so that it can be expressed as a low degree polynomial in the secret key bits. Then,
Gentry’s key idea, called bootstrapping, consists in homomorphically evaluating this decryption
polynomial on encryptions of the secret key bits, resulting in a different ciphertext associated with
the same plaintext, but with possibly reduced noise.1 This refreshed ciphertext can then be used
in subsequent homomorphic operations; by repeating this operation, the number of homomorphic
operations becomes unlimited, resulting in a fully homomorphic encryption scheme.

Unfortunately, even though the somewhat homomorphic encryption scheme was quite practical
for shallow circuits [SV10], the full scheme practicality remained an important open problem.
In 2011, an implementation of the full Gentry’s scheme was proposed by Gentry and Halevi
in [GH11b] with a public key of 2.3 GB and a ciphertext refresh procedure of 30 minutes. Therefore,
to homomorphically evaluate an AND gate in a given circuit, one has to spend 30 minutes to
refresh the ciphertext in order to continue the computation... The implementation is nonetheless
based on many interesting algorithmic optimizations, including some borrowed from Smart and
Vercauteren [SV10] and from Stehlé and Steinfield [SS10]. Some improvements to Gentry’s key-
generation procedure are discussed in [OYKU10, SS11a].

Gentry’s breakthrough made possible to design fully homomorphic encryption (FHE) schemes
based on different hardness assumptions.

Among them, the possibly conceptually simplest FHE scheme was proposed by van Dijk,
Gentry, Halevi and Vaikuntanathan [vDGHV10]. Starting from an arguably “simplest” somewhat
homomorphic encryption scheme, they use Gentry’s blueprint to produce a fully homomorphic
encryption scheme. The resulting scheme demonstrates that FHE can be achieved only by elementary
means, and does not require the complexity of ideal lattices. The scheme is proved to be secure
under the Approximate-GCD problem, that is the problem of computing a greatest common divisor
from approximations of multiples of this integer. Unfortunately, to resist known attacks against the
Approximate-GCD problem, the parameters constraints yield a public key size of O(λ10) where
λ is the security parameter, which is too large for any practical system. Once again the primary
open problem was to improve the efficiency of this conceptually simple scheme while preserving the
hardness of the Approximate-GCD problem. A first step towards the practicality of this scheme
was described by Coron, Mandal, Naccache and Tibouchi in [CMNT11]. The authors reduce the
public key size to O(λ7) by storing only a subset of it and generating it on the fly by computing the
elements multiplicatively, at the cost of working with an exact multiple of the secret key (already
suggested in [vDGHV10]); that is in the error-free setting. Next the authors describe the first
implementation of the resulting scheme, incorporating among others some of the optimizations
of [SV10, SS10], and obtained similar performances as the Gentry-Halevi implementation, with a
public key of 800MB and a refresh procedure of 14 minutes. Another step towards a practical scheme
was achieved by Coron, Naccache and Tibouchi in [CNT12] thanks to a compression technique that
reduces the public key size by several orders of magnitude. They then describe an implementation
of this new variant, still in the error-free setting, with performances similar to [CMNT11] but a
10.3MB public key. A public implementation in SAGE [S+14] is available at [CT12].

Armed of these two schemes and confident on the fact that FHE is achievable by simple
means (thanks to [vDGHV10]), a third very interesting scheme was proposed by Brakerski and
Vaikuntanathan in [BV11a]. Contrary to [Gen09, vDGHV10], this scheme deviates from the
squashing paradigm and is based solely2 on the (standard) learning with errors (LWE) assumption
– and therefore on the (well-known, although still not well-understood) worst-case hardness of
“short vector problems” on arbitrary lattices (see Section 3.2). This FHE scheme has known

1Indeed, a natural idea is that to “refresh” a ciphertext whose noise is almost too big to obtain a new ciphertext
with a shorter noise, it suffices to decrypt it and re-encrypt it. And that is the idea behind bootstrapping: we do
allow decryption, but homomorphically!

2Additionally to the performance bottleneck of Gentry’s scheme and the scheme of [vDGHV10], the latter schemes
have to rely on a relatively strong computational assumption. Namely, the main caveat of these schemes is that the
squashing step forced the authors to rely on the hardness of the (average-case) sparse subset-sum problem. Brakerski
and Vaikuntanathan get rid of the squashing step by a dimension-modulus reduction technique.

76

7.1. Introduction

numerous modifications and improvements, notably a variant over ring [BV11b], exponential
improvements in the noise growth [BGV12], NTRU-based schemes [LTV12, BLLN13], scale-invariant
schemes [Bra12, FV12]. A well known implementation of [BGV12] is described in [GHS12c] (and
openly available at [HS13]), in which a full-fledge AES circuit is homomorphically evaluated in
several dozens of hours.

At Crypto 2013, Gentry, Sahai and Waters [GSW13] describe a “conceptually simpler [and]
asymptotically faster” FHE scheme based on LWE, that does not use the “relinearization” that is
at the heart of previously mentioned LWE-base FHE schemes. Indeed, this “relinearization” step
did not appear to be very natural, is expensive and slightly intricate. In [GSW13], a conceptually
simpler scheme with a “natural” multiplication procedure (over matrices) is proposed. Unfortunately,
and as rightly explained by the authors in their introduction, the performance of the scheme is
worse than the best-known LWE-based schemes. The scheme is sold as an asymptotically efficient
scheme that presents new techniques. Interestingly enough, this scheme has led the first FHE
scheme as secure as public-key encryption schemes by Brakerski and Vaikuntanathan [BV14], that
is a scheme whose hardness matches the best known hardness for “regular” lattice-based public-key
encryption scheme (instead of the quasipolynomial approximation achieved in the other LWE
proposals). Exciting results are starting to be built on these schemes [ASP14], and improving its
efficiency could unlock a very promising FHE scheme.

Finally, note that a number of implementation benchmarks have been reported in the litera-
ture [GH11b, CMNT11, NLV11, PBS11a, CNT12, GHS12c, FSF+13, MHM+13, BLLN13]. Unfor-
tunately, making implementations available is not standard behavior in the cryptographic community.
Therefore, even though fully homomorphic encryption becomes more and more efficient, very few
implementations of homomorphic schemes are publicly available [PBS11b, CT12, HS13, Lep14].

In the rest of this introduction, we would like to emphasize two topics about homomorphic
encryption that will be basic notions on which our results will develop in this part.

Batching. In a series of works [SV10, SV11], Smart and Vercauteren observed that using the Chinese
Remainder Theorem in number fields allows to encrypt a vector of “plaintext slots” (instead of a
single element), and that a single homomorphic operation implicitly performs the componentwise
operation over the plaintext vector. They used this observation for batch (or SIMD [HP07])
homomorphic operations. In other words, a function f can be homomorphically evaluated ` times
in parallel on ` different inputs with approximately the same cost than a single evaluation of f on a
single input. This technique was adapted to the LWE-based schemes in [GHS12b, BGH13].

Batching in homomorphic cryptography is really useful when the same operation has to be
applied on each slot. But it could also be used as a way to reduce the overhead complexity
of homomorphic computation in general, i.e. the ratio of encrypted computation complexity to
unencrypted computation complexity. To reduce this overhead, one needs a method of moving data
between slots in each SIMD word, as in normal program execution of SIMD instructions (e.g. the
SSE instructions on x86) [GHS12b].

Modulus-Switching and Scale-Invariance. The modulus-switching technique has been introduced
by [BGV12] (as a refinement of [BV11a, BV11b]). Using this technique, the noise ceiling increases
only linearly with the multiplicative depth, instead of increasing exponentially. They introduce the
notion of leveled FHE scheme as a scheme whose parameters depend (polynomially) on the depth
of the circuits that the scheme is capable of evaluating. The essence of the modulus-switching
technique is that a ciphertext c mod q can be publicly transformed into a valid ciphertext c mod p
while preserving correctness, by a simple scaling by (p/q) and appropriate rounding. This technique
was successfully adapted on the scheme over the integers [vDGHV10] by Coron, Naccache and
Tibouchi in [CNT12]. This technique introduces a ladder of L moduli to evaluate a circuit of
multiplicative depth L, which impacts the size of the public key (e.g. [GHS12c] need to run on a
server with 256GB of memory).

In [Bra12], Brakerski introduces a new technique called scale-invariance that allows to use the
same modulus throughout the evaluation process, reducing the size of the public key; the resulting

77

7. Batch Fully Homomorphic Encryption over the Integers

scheme is still a leveled FHE scheme, that is the noise growth is still linear in the depth of the
circuit evaluated. This technique was adapted to the RLWE-based scheme [BV11b] by Fan and
Vercauteren in [FV12], and to the NTRU-based scheme [LTV12] by Bos, Lauter, Loftus and Naehrig
in [BLLN13].

In this part, we focus on the fully homomorphic encryption scheme over the integers DGHV
(van Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10]). Namely, we will improve further upon
this scheme by simplifying it and building a variant that encrypts bit-vectors instead of single bits
(Chapters 7 and 8), i.e. we batch the DGHV scheme. In Chapter 8, we show how to adapt the
scale-invariance technique to the DGHV scheme, thus yielding an efficient leveled FHE scheme over
the integers. Our variants are shown to be secure under the same Approximate-GCD problem
initially considered while providing performance enhancements that will eventually allow us to
homomorphically evaluate a full-fledged AES circuit (Chapter 10).

We recall the initial DGHV scheme in Section 7.1.2, and explain our contributions and techniques
to batch the DGHV scheme in Section 7.1.3.

Notation. Throughout the chapter, λ denotes the security parameter and [·]q denotes the reduction
modulo q into the interval (−q/2, q/2] of an integer.

7.1.2 The Somewhat Homomorphic DGHV Scheme
A conceptually simple FHE scheme (DGHV) was proposed in [vDGHV10], and was subsequently
improved by Coron and others [CMNT11, CNT12]. In this section, we briefly recall the somewhat
homomorphic encryption scheme described in [vDGHV10] (which encrypts bits); we refer to
Section 7.3.1 for details on security and parameter constraints, and to Section 7.4 for transforming
it into a fully homomorphic encryption scheme (that can therefore homomorphically evaluate any –
polynomially bounded – boolean circuit).

For a specific η-bit odd integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) = {q · p+ r : q ← [0, 2γ/p), r ← (−2ρ, 2ρ)} .

DGHV.Keygen(1λ). Generate an η-bit random prime integer p. For 0 6 i 6 τ , sample xi ← Dγ,ρ(p).
Relabel the xi’s so that x0 is the largest. Restart unless x0 is odd and [x0]p is even. Let
pk = (x0, x1, . . . xτ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r
in (−2ρ′ , 2ρ′), and output the ciphertext:

c =
[
m+ 2 · r + 2 ·

∑
i∈S

xi

]
x0

. (7.1)

DGHV.Eval(pk, C, c1, . . . , ct). Given the boolean circuit C with t input bits and t ciphertexts ci,
apply the addition and multiplication gates of C to the ciphertexts, performing all the additions
and multiplications over the integers, and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c mod p]2.

As shown in [vDGHV10] the scheme is somewhat homomorphic, i.e. a limited number of
homomorphic operations can be performed on ciphertexts. More precisely given two ciphertexts
c = q · p+ 2r+m and c′ = q′ · p+ 2r′+m′ where r and r′ are ρ′-bit integers, the ciphertext c+ c′ is
an encryption of m+m′ mod 2 under a (ρ′ + 1)-bit noise and the ciphertext c · c′ is an encryption
of m ·m′ with noise bit-length ' 2ρ′. Since the ciphertext noise must remain smaller than p to
maintain correctness, the scheme roughly allows η/ρ′ successive multiplications on ciphertexts.

The scheme is semantically secure under the computational Approximate-GCD assumption (cf.
Section 7.2).

78

7.1. Introduction

Remark 7.1. Note that during encryption, a noise (2 · r) of (ρ′ + 1) bits is added to the ciphertext.
This additional term is not a correctness requirement but a security requirement. Indeed, it is used
in [vDGHV10] to statistically drown the contributions of the noises ri from the xi of the subset sum
in a fresh ciphertext; for the proof one would like to apply the Leftover Hash Lemma over these
latter noises, but they sum over Z and not modulo an integer as in Section 3.3.1. Unfortunately,
if the ri are ρ-bit integers, this means that ρ′ ≈ ρ + λ ≈ 2λ, which significantly increases the
somewhat homomorphic encryption scheme’s parameters.

In Section 7.3.1, we describe a variant of this scheme without this additional noise (and therefore
with smaller parameters) secure under a decisional variant of the Approximate-GCD assumption.
This decisional assumption (with noise ρ) is proved to be equivalent to the computational assumption
(with noise ρ′ ≈ ρ+ λ), when an exact multiple of p is available, in Section 7.2.2.

7.1.3 Our Contributions and Techniques
Our main goal is to extend the DGHV scheme of above to support the same batching capability [SV10,
SV11] as in LWE-based schemes [GHS12b, BGH13], in order to obtain a FHE scheme with similar
features but based on different techniques and assumptions.

In the original DGHV scheme, a ciphertext of a bit message m ∈ {0, 1} has the form

c = q · p+ 2r +m

where p is the secret key, q is a large random integer, and r is a small random integer (noise). To
encrypt multiple bits mi into a single ciphertext c, we use the Chinese Remainder Theorem with
respect to a tuple of ` coprime integers p1, . . . , p`, of product π. The batch ciphertext has the form

c = q · π + CRTp1,...,p`(2r1 +m1, . . . , 2r` +m`),

and correctly decrypts to the bit vector (mi)i, given by mi = [c mod pi]2 for all 1 6 i 6 `. Modulo
each of the pi’s the ciphertext c behaves as in the original DGHV scheme. Accordingly, the addition
or multiplication of two ciphertexts yields a new ciphertext that decrypts to the componentwise
sum or product modulo 2 of the original plaintexts.

The main challenge, however, is to prove the semantic security of the resulting scheme. In the
original DGHV scheme, public-key encryption is performed by masking the message m with a
random subset sum of the public key elements xj = qj · p+ rj as

c =
[
m+ 2 · r + 2

τ∑
j=1

bj · xj
]
x0

. (7.2)

The semantic security is proved in [vDGHV10] by applying the Leftover Hash Lemma (cf. Sec-
tion 3.3.1) on the subset sum, and using the random 2 ·r in (7.2) to further randomize the ciphertext
modulo p (see also Remark 7.1).

Extending DGHV public-key encryption to the batch setting may at first seem straightforward:
one can use a similar random subset sum technique in the batch variant by generating public key
elements xj with a small residue modulo each of the pi’s instead of only modulo p. However, for the
proof of semantic security to go through, the ciphertext c should then be independently randomized
modulo each of the pi’s, which is not easy to achieve without knowing the pi’s. Indeed, if we only
use a single additive term 2r as in Equation (7.2), then the same random term 2 · r = 2 · r mod pi
is added modulo each of the pi, which breaks the security proof.

Our main contribution in this chapter is to provide a provably semantically secure generalization
of DGHV to the batch setting, i.e. over multiple plaintext slots. For this purpose, we introduce
a decisional variant of the Approximate-GCD problem that we prove to be equivalent to the
computation Approximate-GCD problem, when an exact multiple x0 of p is available, in Section 7.2.2.
Under this assumption the integers xj in the subset-sum from Equation (7.2) are assumed to be
indistinguishable from random modulo x0; semantic security is then proved by applying the Leftover
Hash Lemma modulo x0. As a consequence, the additional random 2 · r in Equation (7.2) becomes

79

7. Batch Fully Homomorphic Encryption over the Integers

unnecessary. Extending DGHV public-key encryption to the batch setting is then straightforward;
namely one can use the same random subset sum technique with public key elements xj having a
small residue modulo each of the pi’s instead of only modulo p. We show that our multi-slot DGHV
scheme can encrypt ` = Õ(λ2) bits in a single ciphertext; therefore the ciphertext expansion ratio
becomes Õ(λ3) instead of Õ(λ5) in the original scheme.

In addition to componentwise addition and multiplication, we also show how to perform any
permutation on plaintext bits publicly. As opposed to [BGV12, GHS12b], we cannot use an
underlying algebraic structure to perform rotations over plaintext bits (clearly, the automorphisms
of Z do not provide any useful action on ciphertexts). Instead we show how to perform arbitrary
permutations on the plaintext vector during the ciphertext refresh operation at no additional cost
(but with a slight increase of the public key size). Our Recrypt operation is done in parallel over
the ` slots, with the same complexity as a single Recrypt operation in the original scheme.

Finally, we describe an implementation of our multi-slot DGHV scheme, with concrete parameters.
While our batch variant of DGHV does not provide additional features nor significantly improved
efficiency over the RLWE-based scheme of [GHS12b], we believe it is interesting to obtain FHE
schemes with similar properties but based on different techniques and assumptions.

Outline of the Chapter. In Section 7.2, we recall the computational Approximate-GCD problem,
and its error-free variant. We also introduce a new decisional error-free variant, that we prove to be
equivalent to the computational error-free variant. Finally we review the existing attacks against
the Approximate-GCD problems and explain how to derive parameters for a target level of security.

Next in Section 7.3, we simplify the initial somewhat-homomorphic (one-slot) DGHV scheme
and extend it to a multi-slot DGHV scheme. The semantic security of the latter schemes is proven
under the decisional Error-Free Approximate-GCD assumption.

In Section 7.4, we explain how to make the schemes of Section 7.3 fully homomorphic using
Gentry’s blueprint: first squash the decryption circuit and then apply the bootstrapping technique,
i.e. homomorphically evaluate the circuit. A complete description of our schemes with a compressed
public key is then provided in Section 7.5.

Finally, in Section 7.6 we provide implementation benchmarks and we conclude in Section 7.7.

7.2 The Approximate-GCD Problems

The approximate greatest common divisor (Approximate-GCD) problem was introduced in 2001 by
Howgrave-Graham [HG01]. Roughly speaking, the problem is to compute the greatest common
divisor (GCD) of two numbers x and y, given only approximations x̂ and ŷ thereof. In [vDGHV10],
a generalized variant of the problem, given many approximations instead of 2, is introduced
and becomes the hardness assumption of the conceptually simple SWHE scheme described in
Section 7.1.2.

The Approximate-GCD problem and some variants have been used in follow-up works by Coron
and others [vDGHV10, CMNT11, CNT12, CCK+13, CLT14a]. In this section, we homogenize
these definitions and variants; in particular we focus on the Error-Free Approximate-GCD problem
that is the building block of the most efficient integer-based FHE schemes.

The Approximate-GCD problem (AGCD) is parametrized by integers γ, η, ρ ∈ N.3

Definition 7.2. Let γ, η, ρ ∈ N. The AGCD distribution Dρ(p, q0) for a given η-bit integer p and a
uniformly chosen q0 ∈ [0, 2γ/p) is the set of integers xi = qi · p+ ri where qi ∈ [0, q0) and ri ∈ [0, 2ρ)
are sampled uniformly (note that when 2ρ < p, we have xi < q0 · p).

3In the initial versions of the Approximate-GCD problem [HG01, vDGHV10], the qi’s were uniformly sampled
from [0, 2γ/p) instead of [0, q0) in the recent key generation algorithms [CMNT11, CCK+13] (see also Section 7.1.2).
Now the security proofs of the semantic security of the FHE schemes use [vDGHV10, Lemma 4.4] which assumes
that the qi’s are uniformly distributed modulo q0 (this is not the case when they are sampled from the former
distribution) and the error-free variant that we present below often makes the latter choice of interval. Therefore
we focus on this latter interval in our homogenized definitions. Note also that we only consider integers r ∈ [0, 2ρ)
instead of (−2ρ, 2ρ) in [vDGHV10, CMNT11, CNT12, CN12, CCK+13]. One can always go from one distribution
to another by an appropriate centering.

80

7.2. The Approximate-GCD Problems

The computational-AGCD problem is: For a η-bit integer p and a uniformly chosen q0 ∈ [0, 2γ/p),
given polynomially many samples from Dρ(p, q0), to compute p.

To assess the hardness of this problem, Howgrave-Graham considers two kinds of attacks: a
continued fraction approach and a lattice-based approach [HG01]. The latter attack consists in
finding small roots of a multivariate polynomial, based on the works on Coppersmith, Boneh,
Durfee and Howgrave-Graham [Cop97, BDHG99], and is later generalized by Cohn and Heninger
in [CH12]. Both these attacks are adapted to the variant with many approximations in [vDGHV10].
They also describe a brute-force attack on the noise, and two other lattice-based attacks to derive
parameters; later extended in [CMNT11, CNT12, CN12]. We will discuss these attacks in the
Error-Free settings in Section 7.2.4.
Remark 7.3. In [CMNT11, CNT12, CCK+13], for simplicity of presentation, p is assumed to be
prime. Note that the security proofs hold without this condition.

7.2.1 Error-Free Variants of the Computational Approximate-GCD problem
A variant of the Approximate-GCD problem consists in working with one exact multiple of p
(without noise); more precisely, it assumes that the number x0 = q0 ·p is also known to the adversary.
Even though this variant seemed clearly easier than the classical Approximate-GCD problem, this
was only demonstrated in 2012 by Chen and Nguyen [CN12], but the complexity of the algorithm
remains exponential in the noise size ρ. It is worth noting however that there is obviously a trivial
quantum attack against this variant (namely, to factorize x0).

Revealing an exact multiple of p has important implications for the FHE schemes. However,
with the notable exception of [CMNT11], no condition on q0 was explicitly specified in the problem
definition in [vDGHV10, CNT12] (even though it was correctly specified during the key generation).
Now, assume a factor f > 1 of x0 can be efficiently recovered; defining x′0 = x0/f , it holds that all
the samples xi can be reduced mod x′0 < x0 and this leads to a smaller Approximate-GCD instance.
Therefore one should make sure that it is hard to recover any factor f > 1 of x0. Efficient known
methods to factor x0 are the General Number Field Sieve (GNFS) [LJMP90] and the Elliptic Curve
Method (ECM) [Len87].

GNFS: The complexity of this method depends on the size γ of the element x0 being factorized.
We use the last complexity estimate provided in [ECR12] for an RSA modulus, i.e. we assume
that factoring a γ-bit integer takes at least 2λGNFS elementary operations where:

λGNFS =
(64

9

)1/3
(γ ln 2)1/3(ln(γ ln 2)

)2/3 − 14 .

ECM: This method has complexity sub-exponential in the size of the smallest factor. Assume that
x0 is 2ν-rough.4 We use the estimates of [CGPV10] (based on the survey [ZD06]), i.e. we assume
that factoring a 2ν-rough integer with ECM requires at least 2λECM elementary operations, where:

λECM = 1
ln 2 · (2ν ln(ν ln 2))1/2 + 5 .

We provide some lower bounds on γ and ν for usual security levels λ = 80, 100 and 128 in
Table 7.1; note that for the FHE parameters in this chapter, the parameters will be selected so that
factoring x0 is intractable.

Now we generalize the definitions of the Error-Free Approximate-GCD problem mentioned
in [vDGHV10, CMNT11, CNT12, CN12, CCK+13] and parametrize it by integers γ, η, ν, ρ ∈ N.

Definition 7.4. Let γ, η, ν, ρ ∈ N. The computational Error-Free-AGCD (EF-AGCD) problem is:
For a 2ν-rough η-bit integer p and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/p), given x0 = q0 · p and
polynomially many samples fromDρ(p, q0), to compute p. The decisional Error-Free-AGCD problem
is: For a 2ν-rough η-bit integer p and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/p), given x0 = q0 · p
and polynomially many samples from Zx0 to distinguish whether the samples are distributed
uniformly or whether they are distributed according to the AGCD distribution Dρ(p, q0).

4An integer is said to be a-rough when it does not contain prime factors smaller than a.

81

7. Batch Fully Homomorphic Encryption over the Integers

Table 7.1 – Some lower bounds on γ and ν for usual security levels λ.

Security level λ 80 100 128
Lower bound on γ 2911 4615 7851
Lower bound on ν 261 388 603

Algorithm 7.1 Learn-LSB.
1: function Learn-LSB(z = qp+ r ∈ [0, 2γ) with |r| 6 2ρ, x0 = q0 · p)
2: Generate x1, . . . , xτ ← Dρ(p, q0)
3: for j = 1 to poly(λ/ε) do
4: Choose randomly and uniformly a noise rj ← [0, 2ρ′), a bit δ ← {0, 1} and a random

subset Sj ⊂ {1, . . . , τ}
5: Set yj = z + δ + 2rj + 2

∑
i∈Sj xi mod x0

6: Call A to get a prediction of (r mod 2)⊕ δ: aj ← A(yj)
7: Set bj ← aj ⊕ parity(z)⊕ δ
8: end for
9: return the majority vote among the bj ’s . Predictor for r mod 2
10: end function

7.2.2 Equivalence between the (Error-Free) Decisional and Computational
Approximate-GCD

In this section, we show the equivalence between the (error-free) decisional and computational
Approximate-GCD problems (cf. Definition 7.4). As a consequence, it follows directly that the
additional noise in the fully homomorphic encryption schemes over the integers of Section 7.1.2 can
be removed, simplifying the scheme and the security proof given in [vDGHV10] – cf. Section 7.3.1.

Theorem 7.5. Let γ, η, ν, ρ ∈ N. The computational Error-Free-AGCD of parameters (γ, η, ν, ρ)
is computationally equivalent to the decisional Error-Free-AGCD of parameters (γ, η, ν, ρ+ 2λ).

For the proof of the Theorem, we will use the following decisional problem:

Definition 7.6. Let γ, η, ν, ρ ∈ N. The Error-Free LSB AGCD problem is: For a 2ν-rough η-bit
integer p and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/p), given x0 = q0 · p and polynomially
many samples from Dρ(p, q0), determine b ∈ {0, 1} from z = q · p + 2r + b · c where q ← [0, q0),
r ← Z ∩ [0, 2ρ−1) and c← {0, 1}.

Proof. One can show that the computational EF-AGCD and the Error-Free LSB AGCD problems
are computationally equivalent. Indeed, we can construct a high-accuracy LSB predictor subroutine
(cf. Algorithm 7.1) using an adversary A having a non-negligible advantage ε against the (γ, η, ν, ρ′)-
Error-Free LSB AGCD problem (with ρ′ > ρ+ 2λ),5 and by using it in Step 2 of the security proof
of [vDGHV10], we automatically get the equivalence.

Let us show that the decisional EF-AGCD and Error-Free LSB AGCD problems are computa-
tionally equivalent (one of the reductions is trivial). We consider the sequence of distributions for
ρ 6 i 6 η + λ:

D′ρ(p, q0, i) =
{
q · p+ 2λ+η−i · r mod (q0p) : q ← [0, q0), r ← Z ∩ [0, 2i)

}
.

Note that in the distribution D′ρ(p, q0, i) above the size of the random r is i-bit instead of
ρ-bit. For i = ρ, the distribution of y is the same as the distribution Dρ(p, q0), up to a factor
2λ+η−ρ modulo x0. One can show that for i = η+λ, the distribution D′ρ(p, q0, i) is 2−λ-statistically
close to uniform modulo x0. Therefore by a standard hybrid argument, if a distinguisher solves
the decisional EF-AGCD problem with some non-negligible advantage, then he must be able to
distinguish between two successive distributions D′ρ(p, q0, i) and D′ρ(p, q0, i+ 1) for some i.

5The additional noise is used to drown the noise due to the public key elements and z.

82

7.2. The Approximate-GCD Problems

Let us consider the challenge from the Error-Free LSB AGCD problem:

z = q · p+ 2r + b · c

where r ← Z ∩ [0, 2ρ−1) and c← {0, 1}. We let:

y = 2λ+η−i−1 · (2ρ · u+ z) mod x0

where u← Z ∩ [0, 2i+1−ρ). This gives:

y = q′ · p+ 2λ+η−i−1 · (2ρ · u+ 2r + b · c) mod x0

= q′ · p+ 2λ+η−i−1 · (2r′ + b · c)

for some q′ ∈ Z uniformly distributed in [0, q0) (with overwhelming probability and because q is
uniformly distributed in [0, q0)), where r′ ← Z ∩ [0, 2i).

If b = 0 then we get y = q′ · p+ 2λ+η−i · r′ which corresponds to the distribution D′ρ(p, q0, i).
If b = 1 then we get y = q′ · p+ 2λ+η−i−1 · r′′ where r′′ ← Z ∩ [0, 2i+1), which corresponds to the
distribution D′ρ(p, q0, i+ 1). Therefore we can use the previous distinguisher to solve the Error-Free
LSB AGCD problem.

7.2.3 An AGCD Distribution with Several Primes
Let us extend the definition of the AGCD distribution for several primes. This will be useful to
build a semantically secure multi-slot DGHV scheme in Section 7.3.2.

Definition 7.7. Let γ, η, ν, ρ ∈ N and ` ∈ Z, ` > 1. The `-AGCD distribution D
(`)
ρ (p1, . . . , p`, q0),

for given coprime 2ν-rough η-bit integers p1, . . . , p` and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/π)
coprime with π, where π = p1 × · · · × p`, is the set of integers

xi = CRTq0,p1,...,p`(qi, ri1, . . . , ri`)

where qi ∈ [0, q0) and rij ∈ [0, 2ρ) are sampled uniformly. The computational-AGCD problem is:
For a 2ν-rough η-bit integer p and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/p), given polynomially
many samples from D

(`)
ρ (p, q0), to compute p.

We have the following lemma:

Lemma 7.8. The 1-AGCD distribution D(1)
ρ (p1, q0) is statistically indistinguishable from the AGCD

distribution Dρ(p1, q0).

Proof. Let us consider an AGCD sample x = q ·p1 + r ← Dρ(p1, q0), where q is uniformly generated
in [0, q0) and r is uniformly generated in [0, 2ρ).

With overwhelming probability we have that p1 and q0 are coprime (since ν > λ, cf. Table 7.1).
Therefore, we can write

x = CRTq0,p1(x mod q0, x mod p1) = CRTq0,p1(q′, r) ,

for an integer q′. Since q is uniform modulo q0, we have that q′ = (q · p1 + r) mod q0 is uniformly
distributed in [0, q0) with overwhelming probability, which concludes the proof.

Next, let us define a new decisional problem:

Definition 7.9. Let γ, η, ν, ρ ∈ N. The decisional `-Error-Free-AGCD problem is: For ` coprime
2ν-rough η-bit integers p1, . . . , p` and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/π) coprime with π,
where π = p1 × · · · × p`, given x0 = q0 · π and polynomially many samples from Zx0 to distinguish
whether the samples are distributed uniformly or whether they are distributed according to the
`-AGCD distribution D(`)

ρ (p1, . . . , p`, q0).

We have the following immediate lemma:

83

7. Batch Fully Homomorphic Encryption over the Integers

Lemma 7.10. Let γ, η, ν, ρ ∈ N. The decisional 1-EF-AGCD is hard under the decisional EF-
AGCD assumption.

Proof. The 1-EF-AGCD problem is the problem to distinguish the uniform distribution modulo
x0 = q0 · p1 from D

(1)
ρ (p1, q0). Now, by Lemma 7.8, D(1)

ρ (p1, q0) is indistinguishable from Dρ(p1, q0),
and under the EF-AGCD assumption, it is intractable to distinguish between the distribution
Dρ(p1, q0) and the uniform distribution modulo x0; the result follows.

Finally, we have an interesting reduction:

Lemma 7.11. Let γ, η, ν, ρ ∈ N. The decisional `-EF-AGCD with parameters (γ, η, ν, ρ) is hard
under the decisional 1-EF-AGCD assumption with parameters (γ − (`− 1)η, η, ν, ρ).

Combining Lemmas 7.10 and 7.11, we have the immediate corollary:

Corollary 7.12. Let γ, η, ν, ρ ∈ N. The decisional `-EF-AGCD with parameters (γ, η, ν, ρ) is hard
under the decisional EF-AGCD assumption with parameters (γ − (`− 1)η, η, ν, ρ).

Proof of Lemma 7.11. Assume we have an adversary A having non-negligible advantage ε against
the `-EF-AGCD problem. We show that we can construct a polynomial-time algorithm having
advantage ε/` against the 1-EF-AGCD problem.
B has access to x0 = q0 · p1 and samples {yi} of Zx0 either uniformly distributed in Zx0 , either

from D
(1)
ρ (p1, q0) and has to guess which is the case.

First she selects i0 ∈ {1, . . . , `}, the position of the unknown prime p1. First, B picks ` − 1
coprime 2ν-rough integers p2, . . . , p`. With overwhelming probability (because ν > λ) p2, . . . , p`
are coprime with p1 and q0. Next she defines x′0 = x0 × p2 × · · · × p`, and send it to A.

When A asks a sample, B gets a sample yi and computes

xi = CRTx0,p((1−i0) mod `)+1,...,p`,p2,...,p((`−i0) mod `)+1(y, r′i1, . . . , r′i(i0−1), ri(i0+1), . . . , ri`)

where ri(i0+1), . . . , ri` ∈ [0, 2ρ) and r′ik ∈ [0, pk) for k = 1, . . . , i0 − 1 are sampled uniformly, and
transmits it to A.

For all j = 0, . . . , `, define Dj the set of integers

CRTq0,p((1−i0) mod `)+1,...,p`,p1,...,p((`−i0) mod `)+1(qi, r′i1, . . . , r′ij , ri(j+1), . . . , ri`)

where qi ∈ [0, q0), ri(j+1), . . . , ri` ∈ [0, 2ρ) and r′ik ∈ [0, pk) for k = 1, . . . , j are sampled uniformly.
In particular, we have

D0 = D(`)
ρ (p((1−i0) mod `)+1, . . . , p`, p1, . . . , p((`−i0) mod `)+1, q0)

and D` is the uniform distribution over [0, x0). By a standard hybrid argument, we know that A
has at least advantage ε/` to distinguish between Dj−1 and Dj for a j ∈ {1, . . . , `}. Therefore with
probability 1/`, we have i0 = j. In that case, B sends to A samples from Di0−1 when the yi’s were
sampled from D

(1)
ρ (p1, q0), and from Di0 when the yi’s were uniformly distributed in [0, x0).6

Finally, B can use the answer of A to the `-EF-AGCD problem to solve the 1-EF-AGCD problem
with advantage ε/`.

7.2.4 Attacks and Parameters Derivation
In this section, we briefly review the attacks of [HG01, vDGHV10, CMNT11, CNT12, CN12, CH12]
on the EF-AGCD problem, and use them to derive parameters for λ bits of security. Assume that
we have a (γ, η, ν, ρ)-EF-AGCD instance, with x0 = q0 · p and polynomially many xi = qi · p+ ri,
and that we want to recover p.

6This is due to the associativity of the CRT; namely that, using simplified notation, CRT(a, b, c) =
CRT(CRT(a, b), c) = CRT(a,CRT(b, c)).

84

7.2. The Approximate-GCD Problems

Removing the Noise. A first idea is to try to remove the noise from, say, the sample x1. Note
that, since q0 is 2ν-rough and q1 is uniformly distributed in [0, q0), we have that gcd(q0, q1) = 1
with overwhelming probability (because ν > λ), i.e. gcd(x0, x1 − r1) = p with overwhelming
probability. A simple technique is therefore to try to guess r1 and verify the guess with a GCD
computation [vDGHV10]. Specifically, for r̂1 ∈ [0, 2ρ), set x̂1 = x1 − r̂1 and p̂ = gcd(x0, x̂1); if p̂
has η bits output p̂ as a possible solution. Obviously, p will be found by this technique in less than
2ρ tries, and for the parameter choices where ρ is much smaller than η, the solution is likely to be
unique. Finally the complexity of this attack is O(2ρ).

In [CN12], Chen and Nguyen presented a new algorithm to solve EF-AGCD of complexity
O(2ρ/2), that is exponentially faster. The key idea is to realize that

p = gcd
(
x0,

2ρ−1∏
r̂1=0

(x1 − r̂1) mod x0

)
. (7.3)

Indeed,
2ρ−1∏
r̂1=0

(x1 − r̂1) mod x0 = [(q1 ·Q) · p] mod (q0 · p)

with Q =
∏
r̂1 6=r1

(x1 − r̂1), and since q1 is uniformly distributed modulo q0, q1 · Q is uniformly
distributed modulo q0 and Equation (7.3) is verified with overwhelming probability. Applied naively,
this technique still yields an attack of complexity O(2ρ).7 However Equation (7.3) can be exploited
in a much more powerful way. Define the polynomial fj(x) of degree j, with coefficients modulo x0:

fj(x) =
j−1∏
i=0

(x1 − (x+ i)) (mod x0) ,

and set ρ′ = bρ/2c and ε = (ρ mod 2) = ρ− 2ρ′. It follows that

p = gcd
(
x0,

2ρ
′+ε−1∏
k̂=0

f2ρ′
(
k · 2ρ

′)
mod x0

)
. (7.4)

To compute Equation (7.4), one is reduced to perform one GCD, (2ρ′+ε−1) modular multiplications,
and a multi-evaluation of a polynomial f2ρ′ at 2ρ′+ε points. Now computing the polynomial f2ρ′

itself costs Õ(2ρ′) modular multiplications, using a tree structure to multiply polynomials of the
same degree (see [CN12, Alg. 2]), and the multi-evaluation of f2ρ′ costs Õ(2ρ′) modular operations
using Fast Fourier techniques (the key idea being that f2ρ′ (α) = f2ρ′ (x) mod (x− α), and this can
be done efficiently using a tree structure; see [CN12, Alg. 3]). Using the underlying structure in the
factors of f2ρ′ (x), a logarithmic speedup can be obtained [CN12, Sec. 2.3] and the time complexity
of the whole attack is O(2ρ′) modular multiplications, and requires O(2ρ′) memory.8

Deriving Parameters. This attack gives a condition on ρ and γ to fix parameters. Since a modular
multiplication with a γ-bit modulus has complexity O(γ log2 γ), to ensure λ bits of security, we
have the following condition:

C · 2ρ
′
· (γ log2 γ) > 2λ ,

for a constant C, that is
ρ > 2(λ− log2 γ − log2 log2 γ − log2 C) .

Let us estimate the constant C such that the attack requires C · 2ρ/2 · γ log2 γ cycles with
unbounded memory.9 We can estimate a lower bound on C from the running times of the attacks

7But with a smaller constant term as it performs 2ρ modular multiplications and one GCD-computation instead
of 2ρ GCD-computations [CMNT11].

8A time-memory trade-off can be used (see [CN12, Sec. 3.1]) and yields an attack using Õ(2ρ/d) modular
operations and Õ(d) memory for d 6 2ρ/2.

9We use the security level definition given in [CMNT11], that states that a scheme has λ bits of security if the
best attack against it takes at least 2λ cycles.

85

7. Batch Fully Homomorphic Encryption over the Integers

on the Toy parameters (cf. [CN12]), and get that

C >
(2.27 · 109) · 99

(217/28) · (1.6 · 105) · log2(1.6 · 105) ≈ 158 .

Thus, to obtain λ = 72 bits of security with γ ≈ 225, it suffices to take ρ > 70 and this is coherent
with the parameters of [CMNT11, CNT12, CCK+13, CLT13b].
Remark 7.13. Note that the previous condition is somewhat tight (namely the constants in the O
have not been ignored, but an unbounded memory is assumed to be available to the adversary). To
be more conservative, one could for example select arbitrarily C = 1 (or any other value smaller
than 158), which increases the values of ρ by about 14 bits. To be less conservative, one could
select parameters taking into account the time-memory trade-off described in [CN12, Sec. 3.1].

We provide a small SAGE [S+14] function to estimate the cost of this attack on Figure 7.1.

def cost_CN12_attack(sec_parameter,gamma,C=158):
return RR(2*(sec_parameter-log(gamma, base=2)-log(log(gamma, base=2),
base=2)-log(C, base=2)))

Figure 7.1 – SAGE function to estimate the cost of Chen and Nguyen’s attack.

Continued Fractions. Using the continued fractions of a real number x, one can derive a sequence
of pairs of integers (si, ti) such that |x− si/ti| < 1/t2i ; we say that si/ti is a convergent of x. Now
if x = xi/xj ≈ qi/qj for some i, j, then qi/qj seems a good approximation of x, and one might hope
it is a convergent, and therefore to recover it using continued fractions. This would immediately
yields p = bxi/qie.

Let i 6= j be integers. Denote x = xi/xj and d = gcd(qi, qj). There exists coprime integers q′i, q′j
such that qi = dq′i and qj = dq′j , and we have∣∣∣∣x− qi

qj

∣∣∣∣ =
∣∣∣∣∣xixj − q′i

q′j

∣∣∣∣∣ =
∣∣∣∣∣ q′jri − q′irjq′j(q′jdp+ rj)

∣∣∣∣∣ =
∣∣∣∣∣q′jri − q′irjdp+ rj/q′j

∣∣∣∣∣ · 1
q′j

2 . (7.5)

Applying the previous argument, we will recover dp (instead of p) from the knowledge of q′i or q′j
(if they are large enough). Let us denote δ = dlog2 de; with overwhelming probability, we have
δ 6 λ, and therefore using ECM, one will easily recover p from dp. Indeed, the probability that two
random integers have GCD equals to i is i−2/ζ(2) (where ζ is the Riemann zeta function) [CS87],
therefore

Pr[gcd(qi, qj) > 2λ] = 1−
2λ∑
i=1

i−2

ζ(2) .

Now
2λ∑
i=1

i−2 =
∞∑
i=1

i−2 −
∞∑

i=2λ+1

i−2 6 ζ(2)−
∫ ∞

2λ+1
i−2di = ζ(2)− 1

2λ + 1 .

Thus Pr[gcd(qi, qj) > 2λ] is negligible in the security parameter λ.
Finally, in order to avoid that one might recover q′i/q′j from the continued fraction of x, it

suffices that ∣∣∣∣∣q′jri − q′irjdp+ rj/q′j

∣∣∣∣∣� 1 .

Now with overwhelming probability q0 > 2γ−η−λ, and thus qi, qj > 2γ−η−2λ, and thus the numerator
will be larger than 2γ−η−3λ. Since the denominator is at most equal to 2λ+η+1, as long as 2η+5λ < γ,
with overwhelming probability the adversary will not recover an useful approximation of x from its
continued fraction approximations and the attack does not apply. Below, we will obtain much more
efficient attacks by working in higher dimensional lattices.
Remark 7.14. Note that having an exact multiple of p, namely x0 = q0 · p, corresponds to the case
where i = 0 (and ri = 0); in particular it does not improve the previous attack.

86

7.2. The Approximate-GCD Problems

Lattice Attacks. Three main attacks were proposed to attack the Approximate-GCD problem: a
generalization of the continued fraction approach with Coppersmith’s techniques [Cop97] by Cohn
and Heninger [CH12], a simultaneous Diophantine equation approach [vDGHV10] and a orthogonal
lattice attack [vDGHV10, CMNT11].

Coppersmith’s Attack. In [HG01], Howgrave-Graham proposed to use lattices to solve the EF-
AGCD problem with two elements. His approach was generalized in 2012 by Cohn and Heninger
for the general version of the EF-AGCD problem [CH12]. In a nutshell, the EF-AGCD problem is
closely related to the problem of finding small roots of multivariate polynomials using powerful
lattice-based techniques due to Coppersmith [Cop97]. For all i = 1, . . . ,m, denote xi = qi · p+ ri.
The approach consists in constructing multivariate polynomials y1, . . . , ym ∈ Z[t1, . . . , tm] having
r = (r1, . . . , rm)t as root, i.e. such that

yi(r1, . . . , rm) = 0 , (7.6)
and to solve the system of equations to recover the ri’s. We will not be able to construct directly a
yi such that Equation (7.6) holds over Z, but we can obtain such an equality modulo a power of p.
Then using lattice reduction, one might obtain a polynomial y with small coefficients, and since the
ri’s are small hope that Equation (7.6) holds over Z.

Let denote k (to be chosen later) and construct vectors y’s such that y(r1, . . . , rm) = 0 mod pk
and such that |y(r1, . . . , rm)| < 2(η−1)·k, so that y(r1, . . . , rm) = 0 over Z using the fact that
p > 2η−1. The approach of [HG01, CH12] is to construct such small y’s as integer combinations of
the shift polynomials

(x1 − t1)i1 · · · (xm − tm)imx`0 ,
for i1 + · · ·+ im + ` > k, i.e. a short vector of the integer lattice generated by the coefficient vectors
of these polynomials. Note that denoting such a polynomial

y(t1, . . . , tm) =
∑

j1,...,jm

aj1,...,jmt
j1
1 · · · tjmm ,

we have that
|y(r1, . . . , rm)| 6

∑
j1,...,jm

|aj1,...,jm |2ρ(j1+···+jm) = ‖a‖1 , (7.7)

where a has entries aj1,...,jm2ρ(j1+...+jm). Thus every vector a such that ‖a‖1 < 2(η−1)·k gives a
polynomial relation between the ri’s over Z. Therefore we incorporate the bounds on the ri’s into
the lattice to find a y small enough: we use the lattice L generated by the coefficient vectors of the
polynomials

(2ρ · x1 − t1)i1 · · · (2ρ · xm − tm)imx`0 ,
with i1 + · · ·+ im 6 T and ` = max(k − i1 − · · · − im, 0), where T, k are parameters to be chosen
later. The dimension of the lattice L is equal to the number of monomials of degree at most T in
m unknowns, i.e.

dim(L) =
(
T +m

m

)
.

Moreover, using a monomial ordering so that the basis of the matrix is upper triangular, we have
det(L) = (2ρ)sρxsx0

0 ,

where sρ is the sum of the exponents of all unknowns in all occurring polynomials and sx0 is the
sum of exponents of x0 in all occurring polynomials. The number of polynomials of degree d in m
unknowns is

(
d+m−1
m−1

)
, thus

sρ =
T∑
d=0

d ·
(
d+m− 1
m− 1

)
=
∑

d
(d+m− 1)!
d!(m− 1)! =

∑ (d− 1 +m)!m
(d− 1)!m!

= m

T−1∑
d=0

(
d+m

m

)
= m

T+m−1∑
d=m

(
d

m

)
= m ·

(
T +m

m+ 1

)
= m · (T +m)!

(m+ 1)!(T − 1)!

= mT

m+ 1

(
T +m

m

)
,

87

7. Batch Fully Homomorphic Encryption over the Integers

and

sx0 =
k∑
d=0

(k − d) ·
(
d+m− 1
m− 1

)
k

(
k +m

m

)
− mk

m+ 1

(
k +m

m

)
= km+ k −mk

m+ 1

(
k +m

m

)
= k

m+ 1

(
k +m

m

)
.

Therefore, for the attack to be successful, we need to have

det(L)1/(T+m
m) 6 2k·(η−1) ,

therefore that
k

m+ 1 ·
(
k +m

m

)
· log2(x0) 6 k · (η − 1) ·

(
T +m

m

)
,

and then that (
T +m

m

)
>
γ − λ
η − 1 ,

because log2(x0) > γ − λ with overwhelming probability and
(
k+m
m

)
> k(m+ 1) when m > 2.

Now, a classical lattice ‘rule of thumb’ conjecture states that there exists an absolute constant
c > 1 such that for any K, any M and any sufficiently regular M -dimensional lattice, one cannot
find a cM/K approximation of the shortest vector in time smaller than 2K . Therefore to recover a
2η−1 approximation of the short vector of L (which is not even sufficient for the attack to succeed)
with

(
T+m
m

)
> γ−λ

η−1 the time required is then at least 2(γ−λ)/(η−1)2·log2 c, which yields the asymptotic
(conservative) following condition to resist the attack:

γ = η2 · Ω(λ) .

Simultaneous Diophantine Equations. This attack is introduced in [vDGHV10], and is based on the
fact that the rationals yi = xi/x0 are an instance of the simultaneous Diophantine approximation.
Indeed, we have that xi

x0
= qi+si

q0
with |si| =

∣∣ ri
p

∣∣ 6 2ρ−(η−1) (because p > 2η−1). We want to find a
vector v = (q, v1, . . . , vm)t such that(

q
x1

x0
− v1, . . . , q

xn
x0
− vn

)t
,

has a minimal norm. This is achieved by the vector v0 = (q0, q1, . . . , qm)t, which would allow to
recover p = x0/q0.

Therefore we can try to use Lagarias’ algorithm [Lag82] to find an approximation of q0 using
lattice reduction algorithms. Let us consider the matrix

Bt =


2ρ x1 x2 · · · xt
−x0

−x0
. . .

−x0

 .

Our target solution corresponds to a vector of norm smaller than
√
m+ 1 · 2γ+ρ−η+1, specifically

vt = vt0 ·Bt =
(
q0 · 2ρ, q0x1 − x0q1, · · · , q0xm − x0qm

)
,

where |q0xi − qix0| = |q0ri| 6 2γ−(η−1)+ρ for all i, and |q0 · 2ρ| 6 2γ−(η−1)+ρ. However this vector
v is not necessarily the shortest non-zero vector in the lattice, and thus might not be recovered by
lattice reduction. Indeed, by Minkowski’s bound we expect the shortest vector to be of size at most√
m+ 1 · det(Bt)1/(m+1) <

√
m+ 1 · 2(ρ+γ·m)/(m+1).

Let us give an upper bound on the values m for which this vector is shorter than ‖v‖. With
overwhelming probability, we have q0 > 2γ−η−λ, and therefore ‖v‖ >

√
m+ 1 · 2γ−η−λ. Assume

88

7.2. The Approximate-GCD Problems

that m is such that
√
m+ 1 · 2γ−η−λ >

√
m+ 1 · 2(ρ+γ·m)/(m+1); in particular v is not the shortest

non-zero vector in the lattice. We get that

γ − η − λ > ρ+m · γ
m+ 1 ,

then that
(m+ 1)γ − (m+ 1)(η + λ) > ρ+m · γ ,

and thus
γ − ρ > (m+ 1) · (η + λ) ,

i.e. m+ 1 < (γ − ρ)/(η + λ). Heuristically, B will tend to have exponentially (in m) many vectors
which obscure our target solution.

In order to v to be possibly the shortest vector of the lattice, we now assume that m+ 1 > γ′/η′

where γ′ = γ − ρ and η′ = η + λ. Now when m is large, lattice reduction will not recover the short
vector v but only an approximation. By the classical lattice ‘rule of thumb’ conjecture cited below,
there exists an absolute constant c > 1 such that for any k, any m and any sufficiently regular
m-dimensional lattice, one cannot find a cm/k approximation of the shortest vector in time smaller
than 2k. Therefore to recover a 2η′ approximation of the short vector of L (which is not even
sufficient to recover q0) with m+ 1 > γ′/η′ the time required is then at least 2γ′/η′2·log2 c, which
yields the asymptotic (conservative) following condition to resist the attack:

γ = η2 · Ω(λ) .

Orthogonal Lattice Attacks. A promising lattice-based attack against the EF-AGCD problem was
proposed in [vDGHV10] (and more precisely assessed in [CMNT11] to derive parameters) and is
based on Nguyen and Stern’s orthogonal lattice [NS01]. Let us consider m integers x1, . . . , xm.
Consider a vector u orthogonal to x = (x1, . . . , xm)t modulo x0, that is such that

m∑
i=1

ui · xi = 0 mod x0 .

This gives
m∑
i=1

ui · ri = 0 mod p ,

and when the ui’s are small enough, namely such that ‖u‖∞ 6 2η−1−ρ−log2 m, since the ri’s are
smaller than 2ρ, the latter equality will hold over Z. By recovering many such small vectors u
orthogonal to r = (r1, . . . , rm)t over Z, one can recover r easily. Therefore, we will consider this
attack to be successful once one such small vector u orthogonal to r in Z has been recovered.

Let L ⊂ Zm be the lattice of row vectors orthogonal to x modulo x0. Clearly, L contains x0Zm
so it is of full rank m. Moreover, we have

det(L) = [Zm : L] = x0/ gcd(x0, x1, . . . , xm) = x0 .

The key idea of the attack is to find a short enough vector u in the lattice. From Minkowski’s bound,
one might expect there exists a non-zero lattice vector of norm

√
m·det(L)1/m (up to a multiplicative

factor). Thus to recover u, this gives the approximate condition
√
m · 2γ/m 6 2η−1−ρ−log2 m that

can be loosened into 2γ/m < 2η, and this yields m > γ/η. As in the previous attack, since m is
large, lattice reduction will only recover an approximation of the shortest vector. To recover a 2η
approximation of the short vector of L (which is not even sufficient to recover u) with m > γ/η the
time required is then at least 2γ/η2·log2 c, which yields (again) the asymptotic following condition to
resist the attack:

γ = η2 · Ω(λ) .

89

7. Batch Fully Homomorphic Encryption over the Integers

Deriving Parameters. For a fixed η, we can use as in [CMNT11] the orthogonal lattice attack to
derive a value for γ. To derive concrete parameters, one can set γ such that the LLL [LLL82] and
BKZ-20 [CN11] lattice reduction algorithms10 running time is greater than 2λ. Since it is often
mentioned in the literature that LLL seems to run much faster in practice than the worst-case
theoretical bounds, an estimation of LLL running time was provided to derive the parameters.

This running time estimation was done by running experiments on the following matrix B,
which verifies B · x = 0 mod x0 (i.e. B is constituted of row vectors orthogonal to x modulo x0):

B =


1 −x1

xm
mod x0

1 −x2
xm

mod x0
.

1 −xm−1
xm

mod x0
x0

 .

With the lattice reduction algorithm A ∈ {LLL,BKZ-20}, one gets a vector u of norm ‖u‖ =
δmA ·x

1/m
0 . Now with overwhelming probability x0 > 2γ−λ, thus ‖u‖ > 2(γ−λ)/m+m·log2 δA . To ensure

that this attack does not succeed when using the reduction algorithm A, it suffices to ensure that
η < (γ−λ)/m+m·log2 δA, which yields ‖u‖ > 2η. Consider the equation η = (γ−λ)/m+m·log2 δA,
or equivalently

m2 · log2 δA − η ·m+ (γ − λ) = 0 . (7.8)

Its discriminant is ∆ = η2 − 4 log2 δA(γ − λ). Therefore given η, one could fix γ such that ∆ < 0.
In particular this gives the condition

γ > λ+ η2/(4 log2 δA) . (7.9)

When γ verifies this equation, the attack of this section is thwarted. Remains the question of
obtaining the minimal δA achievable for a given security parameter with the known algorithms A –
and we have that δLLL ≈ 1.021 and δBKZ-20 ≈ 1.013 [NS06, CMNT11].11

However, this latter inequality yields larger values for γ, and one could wish to work with a
smaller value for γ (for efficiency reasons). In [CMNT11], the authors allow ∆ to be positive under
the condition that for the values m such that η > (γ − λ)/m+m · log2 δA, the expected running
cost of LLL and BKZ-20 is at least 2λ cycles. Since LLL and BKZ running times increase with the
dimension, one should work with the smallest dimension possible for which ∆ > 0, i.e.

mmin(γ) = η2 −
√

∆
2 log2 δA

= η −
√
η2 − 4 log2 δA(γ − λ)

2 log2 δA
. (7.10)

In [CMNT11], the running times of LLL and BKZ-20 (expressed in number of clock cycles) are
extrapolated by

TLLL(m, γ) = 0.06 ·m4 · γ and TBKZ-20(m, γ) = 0.36 ·m4.2 · γ ,
10Bigger block sizes for BKZ were not considered in [CMNT11], following the observation of [GN08] that block

sizes greater than 25 yield a running time exponential in the lattice dimension.
11While this thesis was being written, a manuscript [DT14] was posted on the Cryptology ePrint Archive

that claimed to propose an attack against the Approximate-GCD problem running in polynomial-time as long as
ρ < η/2 (which would annihilate any hope for selecting parameters for fully homomorphic encryption). We received
immediately questions about this result by several researchers in the community. In the conclusion of the manuscript,
the authors emphasized that it remained “an open problem to theoretically prove that indeed [the] algorithm works”,
and only ran experiments with very small parameters which were solvable by any lattice-based attack previously
described. This attack was not considered as an immediate threat by the community, as it was not clear why the
attack would work and it did not seem to break the FHE schemes over the integers – see for example a blog post of
Martin Albrecht [Alb14].

Several weeks later, on February 24th 2014, the manuscript [DT14] was quietly revised and a more precise analysis
concludes that the attack is thwarted when γ > λ + η2/(4 log2 δA), where A is the underlying lattice reduction
algorithm, i.e. exactly the same condition as obtained by the orthogonal lattice attack in Equation (7.9). Therefore,
our parameter selection does not have to be modified because of this result; and this attack does not seem to give
any additional advantage compared to the orthogonal lattice attack.

90

7.2. The Approximate-GCD Problems

where γ = log2(x0). In [NS06], Nguyen and Stehlé also discussed the running time of LLL using
fplll [CPS13], but obtained different results than in [CMNT11]. In Section 7.2.5, we provide
some additional insight on this running time and explain why [CMNT11] can be considered as
‘asymptotically conservative’.

Finally, it suffices to select γ such that

TLLL(mmin(γ), γ), TBKZ-20(mmin(γ), γ) > 2λ .

A function in SAGE [S+14] to derive secure parameters under this attack is given on Figure 7.2.

def T_LLL(m,gamma):
return RR(log(0.06*m^4*gamma,base=2))

def T_BKZ20(m,gamma):
return RR(log(0.36*m^4.2*gamma,base=2))

def m_min(sec_parameter, eta, gamma, hermite_factor):
result = (eta - sqrt(eta*eta-4*log(hermite_factor,base=2)*
(gamma-sec_parameter)))/2/log(hermite_factor, base=2)
if result.is_real() and result>0:

return ceil(result)
else:

return 2^sec_parameter

def gamma_from_orthogonal_attack(sec_parameter,eta,conservative=False):
gamma = ceil(sec_parameter+eta*eta/4/log(1.012, base=2))
if conservative == False:

while gamma>1.:
gamma /= 1.1
m1 = m_min(sec_parameter,eta,gamma,1.021) # LLL
m2 = m_min(sec_parameter,eta,gamma,1.013) # BKZ-20
if min(T_LLL(m1,gamma),T_BKZ20(m2,gamma))<sec_parameter:

gamma *= 1.1
break

return gamma

Figure 7.2 – SAGE function to select γ so that running the orthogonal lattice attack takes at least
2λ cycles.

Revisiting the Parameters with BKZ-2.0. At Asiacrypt 2011, Chen and Nguyen proposed a modi-
fication of BKZ using recent progress on lattice reduction [Kan83, GNR10, HPS11], called BKZ-
2.0 [CN11] (see also the full version of the paper in [CN13]). In particular these improvements
allow to consider blocksizes β > 50.

It follows that the previous parameter derivation might yield parameters less secure than
expected because parameters were chosen to ensure resistance to LLL and BKZ-20 lattice reduction
algorithms only. However, it is important to note that BKZ-2.0 assumes that the input of BKZ-2.0
is already a LLL-reduced basis. Therefore, we can combine the previous approach and take into
account the LLL running-time inherent in BKZ-2.0. Several works analyze the behavior of the
Hermite factor during BKZ-2.0 (e.g. [CN11, vdPS13, LN14a]), but it is commonly believed that a
Hermite factor 1.005 ensures long-term security (i.e. more than 128 bits of security [NIS11, ECR12]).
Therefore, one can take δA = 1.005 in Equation (7.10), and estimate the parameters so that
TLLL(mmin(γ), γ) > 2λ using the extrapolation of LLL running times.

A function in SAGE [S+14] to derive secure parameters under this attack is given on Figure 7.3.
Last but not least, note that the parameters proposed in [CMNT11, CNT12] need to be slightly

- but not noticeably - increased to take into account BKZ-2.0. This can be explained by the fact
that running LLL in dimensions so that BKZ-2.0 might be successful, to pre-process the input basis
(and during BKZ-2.0 execution), takes nearly as many cycles as a direct attack using LLL.

91

7. Batch Fully Homomorphic Encryption over the Integers

def gamma_from_orthogonal_attack_2(sec_parameter,eta,hermite_factor=1.005,
conservative=False):

gamma = ceil(sec_parameter+eta*eta/4/log(hermite_factor, base=2))
if conservative == False:

while gamma>1.:
gamma /= 1.1
m = m_min(sec_parameter,eta,gamma,hermite_factor)
if T_LLL(m,gamma) < sec_parameter:

gamma *= 1.1
break

return gamma

Figure 7.3 – SAGE function to select γ so that running the orthogonal lattice attack (even with
BKZ-2.0) takes at least 2λ cycles.

7.2.5 Estimating the Running Time of LLL
In order to derive concrete parameters that resist to the orthogonal lattice attack, [CMNT11]
estimated the running time of LLL (and BKZ-20) when applied on the m-dimensional matrix

B =


1 −x1

xm
mod x0

1 −x2
xm

mod x0
.

1 −xm−1
xm

mod x0
x0

 ,

where x0 and the xi’s are samples from the Error-Free Approximate-GCD problem. In particular,
they extrapolated the running time of LLL (expressed in number of clock cycles) by

TLLL(m, γ) = 0.06 ·m4 · γ ,

where γ = log2(x0). However this claimed running time is not coherent with previous experiments
on the practical running time of LLL [NS06, CN12] which, at a given dimension, should be quadratic
in the entries dimension, i.e. in γ.

We ran experiments using fplll-4.0.4 [CPS13] (similarly as [NS06]) on matrices B in di-
mensions 50, 70 and 90 for different values of γ. The LLL implementation of fplll relies on
floating-point computations [NS05, NS06] which is the fastest variant of LLL implemented. We
observed that the extrapolated running time of [CMNT11] is practically conservative (cf. Figure 7.4)
and asymptotically very conservative. Using a subset of our experiments, the least square method
gives the following running time

Tnew(m, γ) = 0.00127 ·m3.18 · γ1.83 .

In the worst case, the LLL algorithm of [NS05, NS06] has complexity O(m5γ2). Now for our lattice
basis12, the number of rounds is m times smaller than in the worst case, and since the binary sizes
are decreasing quickly, we obtain an heuristic complexity of O(m3γ2) [NS06]. This is coherent with
our estimated running time Tnew and the O(m3.16γ1.68) of [CN12].

Limitations of the Extrapolation. Extrapolating LLL running times from experiments on small
matrices (dimensions 6 100) and relatively small γ (compared to the expected values of γ for fully
homomorphic encryption) might be problematic.

12Note that our matrix B is really similar to a matrix sampled from the Goldstein Mayer distribution [GM03].
We ran experiments showing that the hidden structure in the Approximate-GCD samples does not seem to modify
the running-time compared to a matrix with a random x0 of γ bits, and x1, . . . , xm random modulo x0. Now, a
remark in [Ste10] claims that a lattice reduction algorithm ran on a matrix with the latter distribution seems to
have the same running-time than ran on a matrix sampled from the Goldstein Mayer distribution.

92

7.3. Batching the DGHV Scheme

0 1 2 3 4 5
·105

0

5

10

15

20

25

γ

LL
L
ru
nn

in
g-
tim

e·
2−

40
dimension 50
dimension 70
dimension 90
T (50, γ)
T (70, γ)
T (90, γ)
Tnew(50, γ)
Tnew(70, γ)
Tnew(90, γ)

Figure 7.4 – LLL running time in clock cycles using fplll-4.0.4

On the bright side, all the experiments mentioned above were realized with double precision
(which is extremely fast). In higher dimensions, current implementations of LLL works either
with doubles with additional exponents or arbitrary precision floating point numbers which affect
noticeably the performances of LLL; see [Ste10] for additional information on implementing LLL.

Now, even though the practical experiments described above would suggest consequent improve-
ments in the parameter selection for the Approximate-GCD problem (by replacing TLLL by Tnew),
and therefore yield more efficient FHE schemes, some limitations arise from this approach. Indeed,
all the current implementations of LLL and BKZ (including fplll-4.0.4 [CPS13]) do not include
the latest improvements in lattice reduction algorithms [NSV11, CN11]. In a way, it might be
dangerous to base the choice of the parameters on a polynomial-time problem (LLL running time),
as illustrated by possible algorithmic improvements [Ste10, NSV11], and by the fact that optimized
implementations might yield a non-negligible gain in the running time.13

7.3 Batching the DGHV Scheme

In this section, we revisit the DGHV scheme of [vDGHV10] described in Section 7.1.2 in the
error-free setting (which simplifies the scheme and the noise growth) and with a semantic security
based on the decisional Approximate-GCD assumption introduced in Section 7.2. Then we extend
this one-slot scheme into a multi-slot variant, whose security still relies on the same decisional
assumption according to Section 7.2.3. Finally, we briefly discuss the advantages of the multi-slot
variant compared to the one-slot scheme in Section 7.3.4.

7.3.1 One-Slot DGHV Scheme

In this section, we revisit and simplify the DGHV scheme, recalled in Section 7.1.2, using an
exact multiple x0 of the secret p and using the equivalence between the decisional EF-AGCD and
computational EF-AGCD problems described in Section 7.2.2.

Assume the message space to be Zg, where g is an α-bit integer. Note that this scheme can
be made fully homomorphic only when g = 2, following the approaches described in [vDGHV10,
CMNT11] and Section 7.4. We present below a somewhat homomorphic encryption scheme, i.e. a
scheme that handles a limited number of homomorphic operations, where the plaintexts are added
or multiplied modulo g.

13Novocin, Stehlé and Villard [NSV11] describe a variant of LLL with quasi-linear time complexity in γ. No
implementation of this new variant of LLL is publicly available currently; when it will be the case, it might be
needed - but not certain as [CMNT11] extrapolation of LLL running-time is already linear in γ - to revisit the DGHV
parameters.

93

7. Batch Fully Homomorphic Encryption over the Integers

DGHV.Keygen(1λ, g): Generate a 2ν-rough η-bit integer p and randomly generate a 2ν-rough integer
q0 ∈ [0, 2γ/p). Denote x0 = p · q0. Next sample τ integers {xi}i=1,...,τ from the AGCD distribution
Dρ(p, q0).
Let sk = p and pk = {x0, x1, . . . , xτ}.

DGHV.Encrypt(pk,m ∈ Zg): Generate a random β-bit integer vector b = (b1, . . . , bτ)t and output

c =
(
m+ g ·

τ∑
i=1

bi · xi
)

mod x0 .

DGHV.Add(pk, c1, c2): Output c← (c1 + c2) mod x0.

DGHV.Mult(pk, c1, c2): Output c← (c1 · c2) mod x0.

DGHV.Decrypt(sk, c): Output m← (c mod p) mod g.

For a large enough η, this scheme is somewhat homomorphic, i.e. a limited number of homo-
morphic operations can be performed on ciphertexts. More precisely, define noisep(c) = |c mod p|
for any integer c. Given two ciphertexts c1 and c2 of m1 ∈ Zg and m2 ∈ Zg where noisep(c1)
is a ρ1-bit integer and noisep(c2) a ρ2-bit integer, the ciphertext (c1 + c2 mod x0) is an encryp-
tion of (m1 + m2 mod g) with noise bit-length smaller than max(ρ1, ρ2) + 1, and the ciphertext
(c1 · c2 mod x0) is an encryption of (m1 ·m2 mod g) with noise bit-length smaller than ρ1 + ρ2 + α.

In particular, for a freshly generated ciphertext c, we have log2 noise(c) < β + α + ρ+ log2 τ ,
and since the ciphertext noise must remain smaller than p to maintain correctness, the scheme
roughly allows η/(β + α+ ρ+ log2 τ) sequential multiplications on ciphertexts.

Correctness. Let us prove the correctness of the scheme. We recall the definition from [Gen09,
vDGHV10, CMNT11]. Consider a homomorphic public-key encryption scheme E with an additional
algorithm Eval taking as input the public key pk, a mod-g arithmetic circuit C with t inputs and t
ciphertexts ci, and outputting another ciphertext c.

Definition 7.15 (Correct Homomorphic Decryption). The scheme E = (Keygen, Encrypt, Decrypt,
Eval) is correct for a given t-input circuit C if, for any key-pair (sk, pk) output by Keygen(λ), any t
plaintext bits m1, . . . ,mt, and any ciphertexts c = (c1, . . . , ct)t with ci ← Encrypt(pk,mi), it holds
that Decrypt(sk,Eval(pk, C, c)) = C(m1, . . . ,mt).

As in [Gen09, vDGHV10, CMNT11], we define a permitted circuit as one where for any i > 1
and any set of integers inputs less that τ i · gi · 2i·(ρ+β) in absolute value, the generalized circuit’s
output has absolute value at most 2i(η−3−n) with n = dlog2(λ + 1)e; we let CDGHV be the set of
permitted circuits for the DGHV scheme described above. We have

Lemma 7.16. The scheme from above is correct for CDGHV.

Proof. The proof is essentially similar to the proof in [CMNT11, Appendix B] – we detail it for
completeness. Given a ciphertext c outputted by DGHV.Encrypt(pk,m), there exists an integer
vector b = (bi)16i6τ ∈ {0, 1}τ such that

c = m+ g ·
τ∑
i=1

bi · xi mod x0

This gives
noise(c) = |c mod p| 6 g · τ · 2ρ+β .

Let C ∈ CDGHV be a permitted circuit with t inputs and let C† be the corresponding circuit
operating over the integers rather than modulo g. Let ci ← DGHV.Encrypt(pk,mi). Define
c = C†(c1, . . . , ct). We have

c mod p = C†(c1, . . . , ct) mod p = C†(c1 mod p, . . . , ct mod p) mod p .

94

7.3. Batching the DGHV Scheme

From the definition of permitted circuits, we obtain

|C†(c1 mod p, . . . , ct mod p)| 6 2η−4 6 p/8 .

Therefore C†(c1 mod p, . . . , ct mod p) mod p = C†(c1 mod p, . . . , ct mod p) and then

c mod p = C†(c1 mod p, . . . , ct mod p) .

Finally,

(c mod p) mod g = C†(c1 mod p, . . . , ct mod p) mod g
= C†

(
(c1 mod p) mod g, . . . , (ct mod p) mod g

)
= C(m1, . . . ,mt) .

Semantic Security. Let us prove that this scheme is semantically secure under the assumption
that the decisional EF-AGCD problem is hard. More precisely we have the following theorem:

Theorem 7.17. The above one-slot DGHV scheme is semantically secure under the (γ, η, ν, ρ)
decisional Error-Free Approximate-GCD assumption, assuming that β · τ > γ + 2λ.

To prove the theorem, we use a preliminary lemma from [KLYC13] stating that the distribution
of the public-key elements is indistinguishable from random elements in [0, x0) if the decisional
EF-AGCD problem is hard.

Lemma 7.18. For the parameters (γ, η, ν, ρ), let pk = {xi}τi=0 and sk = p be chosen as in the
Keygen procedure. Define pk′ = {x0, x

′
1, . . . , x

′
τ} for x′i uniformly generated in [0, x0). Then pk and

pk′ are indistinguishable under the decisional EF-AGCD assumption.

Proof. Assume that there exists a polynomial-time distinguisher B distinguishing pk from pk′ with
advantage ε. Using B we can construct a polynomial-time distinguisher A solving the decisional
EF-AGCD problem with advantage ε/τ . For r = 0, . . . , τ , define

pk(r) = {x0, x
(r)
1 , . . . , x(r)

r , x
(r)
r+1, . . . , x

(r)
τ } ,

where x(r)
1 , . . . , x

(r)
r ← [0, x0) and x(r)

r+1, . . . , x
(r)
τ ← Dρ(p, q0). Thus B has advantage ε to distinguish

pk(0) = pk from pk(τ) = pk′. By a standard hybrid argument, there exists a r so that B distinguish
pk(r) and pk(r+1) with advantage ε/τ ; therefore letting x(r)

r = c where c is the decisional EF-AGCD
challenge, B allows us to solve the decisional EF-AGCD problem with advantage ε/τ .

Proof of Theorem 7.17. Under the attack scenario the attacker first receives the public key, then
transmits two messages m0,m1 ∈ Zg, and receives an encryption of mb. The attacker outputs a
guess b′ and succeeds if b′ = b. We use a sequence of games and denote by Si the event that the
attacker succeeds in Gamei.
Game0: This is the attack scenario. We simulate the challenger by running Keygen to obtain pk
and sk.
Game1: We replace the xi’s in the public key by elements uniformly drawn in [0, x0). By
Lemma 7.18, we have

|Pr[S1]− Pr[S0]| 6 τ · εdecisional EF-AGCD .

Game2: Since x0 is 2ν-rough and ν > λ, we get the result of the Corollary 3.4 of the Leftover Hash
Lemma (cf. Section 3.3.1) is valid for q = x0, for an overwhelming proportion of the xi’s. Therefore,
this yields

∑τ
i=1 bi · xi mod x0 is ε-statistically indistinguishable from uniform modulo x0, with

ε = 2(γ−β·τ)/2. This advantage is negligible since β · τ > γ + 2λ. Therefore we can replace the
challenge ciphertext by a uniform integer modulo x0; this no longer gives any information on mb

and therefore Pr[S2] = 1/2. Moreover we have |Pr[S2]−Pr[S1]| 6 ε, which concludes the proof.

95

7. Batch Fully Homomorphic Encryption over the Integers

Remark 7.19. In the initial works on the DGHV scheme [vDGHV10, CMNT11, CNT12], the security
of DGHV was based on the computational EF-AGCD problem. This requires an additional term
g · r′ during encryption where log2(r′) > ρ+ β + log2 τ + λ to drown the noise in the ciphertext
(because we cannot apply the Leftover Hash Lemma anymore). This yields a noticeable loss in
performance and noticeable growth in ciphertext size, while no attack is known to be applicable to
the decisional-EF-AGCD and not to the computational-EF-AGCD – cf. Section 7.2.

7.3.2 Multi-Slot DGHV Scheme
In this section, we describe a multi-slot variant of DGHV. The key idea is to use the Chinese
Remainder Theorem to encrypt elements of M = Zg1 × · · · × Zg` where the gi’s are integers
(such that for all i, gi < 2α), into a single ciphertext. The plaintext space M is a Z-module;
denote e1, . . . , e` its canonical basis, i.e. the basis such that ei[j] = 1 when i = j and 0 otherwise.
Thanks to the structure of the ciphertexts, homomorphic additions and multiplications will be
applied in parallel and componentwise over each coordinate while performing integer additions and
multiplications.

Key Idea. To encrypt a vector m = (m1, . . . ,m`)t ∈ M into a single ciphertext c, we use the
Chinese Remainder Theorem with respect to a tuple of n+ 1 pairwise coprime integers q0, p1, . . . , p`.
Define x0 = q0 ·

∏`
i=1 pi. The ciphertext has the form

c = CRTq0,p1,...,p`(q, g1 · r1 +m1, . . . , g` · r` +m`) , (7.11)
where q is randomly chosen modulo q0. It correctly decrypts to m by computing mi = (c mod
pi) mod gi for all 1 6 i 6 `. Note that we can write c = qi · pi + gi · ri +mi; thus modulo pi, the
ciphertext c behaves as in the one-slot variant. Therefore, the addition (resp. multiplication) of
two ciphertexts yields a new ciphertext that decrypts, on slot i, to the componentwise sum (resp.
product) modulo gi of the original plaintexts.

Multi-Slot Scheme. Let us present the public key multi-slot DGHV scheme (BDGHV):

BDGHV.Keygen(1λ, g1, . . . , g`): Generate ` 2ν-rough η-bit integer pi’s and randomly generate a
2ν-rough integer q0 ∈ [0, 2γ/π) where π =

∏
i pi. Denote x0 = π · q0.

Next for 1 6 i 6 τ , define xi the encryption of 0 = (0, . . . , 0)t ∈M following Equation (7.11) with
a uniform q modulo q0, and uniform ri’s over [0, 2ρ).
Then for 1 6 i 6 `, define x′i the encryption of ei ∈M following Equation (7.11) with a uniform q
modulo q0, and uniform ri’s over [0, 2ρ).
Let sk = {p1, . . . , p`} and pk = {x0, x1, . . . , xτ , x

′
1, . . . , x

′
`}.

BDGHV.Encrypt(pk,m ∈M): Generate a random β-bit integer vector b = (b1, . . . , bτ)t and output

c =
(∑̀
i=1

mi · x′i +
τ∑
i=1

bi · xi
)

mod x0 .

BDGHV.Add(pk, c1, c2): Output c← (c1 + c2) mod x0.

BDGHV.Mult(pk, c1, c2): Output c← (c1 · c2) mod x0.

BDGHV.Decrypt(sk, c): Output m = (m1, . . . ,m`)t where mi ← (c mod pi) mod gi for all i.

As previously this scheme is somewhat homomorphic: if dlog2 max(gi)e = α, the scheme roughly
allows η/(β + α+ ρ+ log2 τ + 1) successive multiplications on ciphertexts.
Remark 7.20. The main noticeable difference with the one-slot variant is the public key elements x′i’s
which are designed so that the mi’s are disposed at the right place in the ciphertext. However, this
can be seen as a natural extension of the one-slot variant: we could have published an encryption x′
of the value 1 and encrypt by computing c← (m · x′ + g ·

∑
i bi · xi) mod x0. Now x′ = 1 yields the

same result and reduces the public-key size and the noise in the fresh ciphertexts; this is therefore
the wisest choice to make.

96

7.3. Batching the DGHV Scheme

Correctness. We adapt to the batch settings the definition of correctness from [Gen09, vDGHV10]
(see also Definition 7.15). We consider an homomorphic public-key encryption scheme E with
plaintext spaceM, an additional algorithm Eval taking as input the public key pk, an arithmetic
circuit C over the integers with t inputs and t ciphertexts ci, and outputting another ciphertext c.

Definition 7.21 (Correct batch homomorphic decryption). The scheme E = (Keygen, Encrypt,
Decrypt, Eval) of plaintext space M = Zg1 × · · · × Zg` is correct for a given t-input circuit C if,
for any key-pair (sk, pk) output by Keygen(λ), any t plaintext `-bit vectors m1, . . . ,mt, and any
ciphertexts C = (c1, . . . , ct)t with ci ← Encrypt(pk,mi), it holds that

Decrypt(sk,Eval(pk, C,C)) =
(
C1(m1[1], . . . ,mt[1]), . . . , C`(m1[`], . . . ,mt[`])

)
,

where Ci is the circuit C with circuit operations modulo gi rather than over the integers.

As in [Gen09, vDGHV10], we define a permitted circuit as one where for any i > 1 and any set
of integers inputs less that τ i2i(α+ρ+β+1) in absolute value, the generalized circuit’s output has
absolute value at most 2i(η−3−n) with n = dlog2(λ + 1)e; we let CBDGHV be the set of permitted
circuits.

We have the following result:

Lemma 7.22. The BDGHV encryption scheme is correct for CBDGHV.

Proof. Given a ciphertext c outputted by BDGHV.Encrypt(pk,m), there exist an integer vectors
b = (bi)16i6τ ∈ [0, 2β)τ such that

c =
∑̀
i=1

mi · x′i +
τ∑
i=1

bi · xi mod x0 .

For each j = 1, . . . , `, this gives

|c mod pj | 6 ` · 2ρ+α + τ · 2α+ρ+β 6 τ · 2α+ρ+β+1. (7.12)

Let C be a permitted circuit with t inputs. Let ci ← BDGHV.Encrypt(pk,mi). We have, for each
j = 1, . . . , `,

c mod pj = C(c1, . . . , ct) mod pj = C(c1 mod pj , . . . , ct mod pj) mod pj . (7.13)

From (7.12) and the definition of permitted circuits, we obtain

|C(c1 mod pj , . . . , ct mod pj)| 6 2η−4 6 pj/8 .

Therefore, from (7.13), we get that c mod pj = C(c1 mod pj , . . . , ct mod pj), and eventually

[c mod pj]gj =
[
C([c1 mod pj]gj , . . . , [ct mod pj]gj)

]
gj

= Cj(m1[j], . . . ,mt[j]) ,

which concludes the proof.

Semantic Security. Let us prove our multi-slot DGHV scheme is semantically secure under the same
assumption as the one-slot scheme, i.e. the decisional Error-Free Approximate-GCD assumption
from Definition 7.4.

Theorem 7.23. The above multi-slot DGHV scheme is semantically secure under the (γ − (` −
1)η, η, ν, ρ) decisional Error-Free Approximate-GCD assumption, assuming that β · τ > γ + 2λ.

As for the one-slot semantic security proof, we use a preliminary lemma from [KLYC13] stating
that the distribution of the public-key elements is indistinguishable from random elements in [0, x0)
if the decisional `-EF-AGCD problem is hard.

97

7. Batch Fully Homomorphic Encryption over the Integers

Lemma 7.24. For the parameters (γ, η, ν, ρ) and `, let pk = {x0, x
′
1, . . . , x

′
`, x1, . . . , xτ} and sk =

{p1, . . . , p`} be chosen as in the BDGHV.Keygen procedure. Define pk′ = {x0, x
′
1, . . . , x

′
`, x
′′
1 , . . . , x

′′
τ}

for x′i uniformly generated in [0, x0). Then pk and pk′ are indistinguishable under the decisional
`-EF-AGCD assumption.

Proof. The proof is identical to the proof of Lemma 7.18: by a standard hybrid argument, we
can show that any polynomial-time distinguisher, having advantage ε, can be turned into a
polynomial-time distinguisher solving the decisional `-EF-AGCD problem with advantage ε/τ .

Proof of Theorem 7.23. Using the same proof than for the one-slot variant, i.e. of Theorem 7.17,
we can show that the multi-slot DGHV scheme is secure under the (γ, η, ν, ρ) decisional `-Error-Free
Approximate-GCD assumption. Now, by Corollary 7.12, this latter problem is reducible to the
(γ − (` − 1)η, η, ν, ρ) decisional Error-Free Approximate-GCD assumption, which concludes the
proof.

Remark 7.25. In the full version of the article [CLT13a] cosigned with J.-S. Coron and M. Tibouchi,
the security of the BDGHV scheme was based on the computational EF-AGCD problem. In
particular, we described a method to independently randomize a ciphertext c modulo each of the
pi’s, without knowing the pi’s. The encryption procedure of the resulting scheme makes use of
another subset sum of public key elements which, taken modulo each of the pi’s, generate a lattice
with special properties.

This method later became the key idea behind our multilinear maps candidate over the
integers [CLT13b] (also cosigned with J.-S. Coron and M. Tibouchi); more precisely, we introduce
a Leftover-Hash Lemma over lattices (cf. Section 11.4).

7.3.3 Asymptotic Parameters

In order to select parameters for a target level of security λ, the constraints given in Table 7.2 must
be verified.

Table 7.2 – Asymptotic Constraints on DGHV and BDGHV Parameters.

Scheme DGHV BDGHV Reason
ρ > 2λ to avoid brute force attack on the

noise [CN12]
η > ρ+ α+ β + log2(τ) ρ+ α+ β + log2(τ) + 1 for correct decryption
η = ρ · Ω(λ log2 λ) for homomorphically evaluating the

“squashed decryption” circuit (cf.
[vDGHV10, CMNT11] and Sec-
tion 7.4)

γ > η2 · Ω(λ) in order to thwart lattice-based at-
tacks [vDGHV10, CMNT11]

β · τ > γ + 2λ in order to apply the Leftover Hash
Lemma

To satisfy the constraints of Table 7.2, one can take

ρ = 2λ, η = Õ(λ2), γ = Õ(λ5), β = Õ(λ2), τ = Õ(λ3)

as in [CNT12], and ` = Õ(λ2). The main difference between the BDGHV scheme and the DGHV
scheme is that, in the former, the ciphertext expansion ratio becomes γ/` = Õ(λ3) instead of
γ = Õ(λ5). However, the public key size using the compressed public key technique from [CNT12]
(cf Section 7.5) becomes Õ(λ7) instead of Õ(λ5). We refer to Section 7.6 for concrete parameters
and timings.

98

7.4. Making the Scheme Fully Homomorphic

7.3.4 Advantages of the Multi-Slot Variant
The multi-slot variant is not a mere useless generalization of the one-slot variant; in particular, a
certain number of problems arising in the one-slot variant can be solved by this multi-slot variant.
Indeed, let us denote α = log2 g. To multiply m ciphertexts in the first variant, one has to select η
such that

η > m · (α+ ρ)

In particular, if one wants to work with integers of 64 bits and to perform 10 multiplications modulo
g = 264, η has to verify η > 640+800 ≈ 1500 for 80 bits of security, and this will yield γ ≈ 10000000.
Now if one wants to multiply 10 64-bit numbers over Z, one must select g = 2640 and η ≈ 7500,
which is quite impractical.

Now, for the multi-slot variants, one can select log2 gi = α with coprime gi’s and the message
space will be isomorphic to Z/gZ where g =

∏
gi is at least a ` · (α− 1) bit numbers. In particular,

allowing a 10% increase in the ciphertext size, i.e. γ = 11000000, one can still set α = 64 and
η = 1500 (so that one can do 10 multiplications), but ` = 666, and one can homomorphically
multiply integers over Z as long as the result is smaller than 252614. This extreme example shows
that a useful trade-off could yield very interesting results as far as homomorphic operations over
integers are considered.

In other words, the multi-slot variant exploits the fact that the size of the ciphertext γ is
substantially larger than the size of the secret key η to consider several slots at a small additional
cost. As a consequence, it yields a huge parallelization capability, or increases exponentially the
size of the plaintext space.

7.4 Making the Scheme Fully Homomorphic

In this section, we follow Gentry’s blueprint [Gen09] to transform a somewhat homomorphic
encryption scheme into a fully homomorphic encryption scheme. This was described for the one-slot
DGHV scheme over the integers in [vDGHV10, CMNT11], therefore we describe it for the batch
DGHV scheme, i.e. the multi-slot DGHV scheme described in Section 7.3.2.

Throughout the whole section, we assume that gi = 2 for all i, i.e. M = Z`2 is the set of
`-bit vectors. Indeed, that is the only setting for which we know how to transform the somewhat
homomorphic encryption scheme of Section 7.3 into a fully homomorphic encryption scheme.

7.4.1 The Squashed Scheme
In order to follow Gentry’s blueprint and make our somewhat homomorphic scheme amenable to
bootstrapping, we first need to squash the decryption circuit, i.e. change the decryption procedure
so as to express it as a low degree polynomial in the bits of the secret key.

We use the same technique as in the original DGHV scheme [vDGHV10], but generalize it to the
batch setting. Three more parameters are added: κ = γ + 2 + dlog2(θ + 1)e, θ = λ and Θ = Õ(λ3).
These parameters are selected as in [CMNT11] to ensure that solving the sparse subset sum is
intractable.

We add to the public key a set y = {y1, . . . , yΘ} of rational numbers in [0, 2) with κ bits of
precision after the binary point, such that for all 1 6 j 6 ` there exists a sparse subset Sj ⊂ [1,Θ]
of size θ with

∑
i∈Sj yi ' 1/pj mod 2. The secret-key is replaced by the indicator vector of the

subsets Sj . Formally the scheme is modified as follows:

BDGHV.Keygen(1λ). Generate sk∗ = (p1, . . . , p`) and pk∗ as in Section 7.3.2. Set xpj ← b2κ/pje
for j = 1, . . . , `. Choose at random Θ-bit vectors sj = (sj,1, . . . , sj,Θ)t, each of Hamming weight θ,
for 1 6 j 6 `. Choose at random Θ integers ui ∈ [0, 2κ+1) for 1 6 i 6 Θ, fulfilling the condition
that xpj =

∑Θ
i=1 sj,i · ui mod 2κ+1 for all j. Set yi = ui/2κ and y = (y1, . . . , yΘ)t. Hence, each yi

is a positive number smaller than two, with κ bits of precision after the binary point, and verifies

1
pj

=
Θ∑
i=1

sj,i · yi + εj mod 2 (7.14)

99

7. Batch Fully Homomorphic Encryption over the Integers

for some |εj | < 2−κ.
Output the secret key sk = (s1, . . . , s`) and public key pk = (pk∗, y1, . . . , yΘ).

BDGHV.Expand(pk, c). The ciphertext expansion procedure takes as input a ciphertext c and
computes an expanded ciphertext: for every 1 6 i 6 Θ, compute zi given by zi = bc · yie mod 2
with n = dlog2(θ + 1)e bits of precision after the binary point. Define the vector z = (zi)i=1,...,Θ
and output the expanded ciphertext (c, z).

BDGHV.Decrypt(sk, c, z). Output m = (m1, . . . ,m`) with

mj ←

[⌊ Θ∑
i=1

sj,i · zi

⌉]
2

⊕ (c mod 2). (7.15)

This completes the description of the scheme. We use n = dlog2(θ + 1)e as in [CMNT11].
The definition of a permitted circuit does not seem to give an easy criterion to determine

whether a given computation is permitted. As in [CMNT11, vDGHV10], we provide a sufficient
condition for a multivariate polynomial f for a circuit C to be permitted. If f is of degree d and
the sum of the absolute values of its coefficients if ‖f‖1, then C ∈ CBDGHV provided that:

d 6
η − 3− n− log2 ‖f‖1
β + ρ+ α+ 1 + log2 τ

.

Following [vDGHV10], we refer to such polynomials f as permitted polynomials, and denote the set
of these polynomials by PBDGHV.

The proof of the following Lemma is the same as in [CMNT11, Appendix E].

Lemma 7.26. The BDGHV encryption scheme is correct for the set C(PE) of circuits that compute
permitted polynomials.

Remark 7.27. To reduce the size of the public key we can generate all the yi’s pseudo-randomly as
in [CMNT11], except ` of them in order to satisfy Equation (7.14) for all 1 6 j 6 `.

7.4.2 Bootstrapping
As in [vDGHV10], we get that the BDGHV scheme is bootstrappable. Moreover, the Recrypt
procedures works naturally in parallel over the plaintext bits.

In the original DGHV scheme [vDGHV10, CMNT11], the decryption equation was:

m←

[⌊ Θ∑
i=1

si · zi

⌉]
2

⊕ (c mod 2) (7.16)

and could be homomorphically evaluated by providing an encryption σi of every secret-key bit
si; one would obtain a new ciphertext which would encrypt the same plaintext bit m but with a
possibly reduced noise.

Similarly, the decryption Equation (7.15) for the batch scheme can be evaluated homomorphically
by providing for all 1 6 i 6 Θ an encryption σi of the ` secret-key bits sj,i, with:

σi = BDGHV.Encrypt(s1,i, . . . , s`,i).

This gives a new ciphertext that encrypts the same `-bit plaintext vector, but with a (possibly)
reduced noise. In other words, instead of having an homomorphic evaluation of a single Equa-
tion (7.16), we have that the ` equations in (7.15) are homomorphically evaluated in parallel, one
in each of the ` plaintext slots of the ciphertext. Therefore the Recrypt operation is done in parallel
over the ` slots, with the same complexity as a single Recrypt operation in the original scheme.

From Gentry’s theorem, we obtain a homomorphic encryption scheme for circuits of any depth.
The proof of the following theorem is identical to the proof of Theorem 5.1 in [CMNT11].

Theorem 7.28. Let DBDGHV be the set of augmented (squashed) decryption circuits for the BDGHV
scheme. Then DBDGHV ⊂ C(PBDGHV).

100

7.5. Complete Description of the Batch DGHV Scheme with Compressed Public Keys

7.4.3 Complete Set of Operations for Plaintext Vectors
From what precedes, we can implement homomorphic SIMD-type operations on our packed
ciphertexts, where the Add and Mult operations are applied to ` different input bits at once.
However, a desired feature when dealing with packed ciphertexts is the ability to move values
between plaintext slots with a public Permute operation. As opposed to [GHS12b] we cannot rely
on an underlying algebraic structure. Instead we show how to perform such Permute at ciphertext
refresh time. This feature is therefore supported at no extra cost assuming a ciphertext refresh
operation has to be carried out anyway (i.e. after each Mult gate). Note that a similar technique
was described independently in [BGH13] for the RLWE-based fully homomorphic schemes [BV11a,
BV11b, GHS12b].

For any permutation ζ over {1, . . . , `}, we want to homomorphically evaluate the function

`-Permute (ζ, (u1, . . . , u`)) =
(
uζ(1), . . . , uζ(`)

)
.

Let ζ be a permutation to be applied homomorphically on the plaintext bits. During the Keygen
operation, one can define for each i ∈ [1,Θ]

σζi = BDGHV.Encrypt(sζ(1),i, . . . , sζ(`),i).

Now, performing the ciphertext refresh operation (“recryption”) with the σζi ’s instead of the σi’s
gives a ciphertext of the plaintext vector (mζ(1), . . . ,mζ(`)) which is exactly the desired result.
Therefore any permutation ζ can be implemented by putting the corresponding σζi ’s in the public
key.

To be able to perform arbitrary permutations on the plaintext vector, one can augment the
public key by a minimal set of permutations ζ’s that generates the whole permutation group S`,
such as the transposition (1, 2) and the cycle (1, 2, . . . , `). In that case the impact on the public key
is small (as only 2 ·Θ · γ bits are added), but the performance overhead is significant, since as many
as O(`) ciphertext refresh operations may be needed to carry out a desired permutation.

A more practical solution is to use a Beneš network [Ben64] of permutations as in [GHS12b].
In that case it suffices to add 2 log2(`) permuting elements to the public key to enable circular
rotations by ±2i bit position. Then any permutation can be obtained in (2 log(`)−1) steps. At each
step, at most two rotations and two Select operations are performed, where the Select operation
on c1 and c2 constructs a ciphertext where each of the ` plaintext slot is chosen either from c1
or c2; such Select operation is easily obtained with two Mult (and two recryptions) and one Add,
see [GHS12b]. This approach has a limited impact on the public key (2 log2(`) ·Θ · γ more bits),
and any permutation can then be performed with at most 6 · (2 log2 `− 1) recryptions.

In practice, however, the circuit to be homomorphically evaluated is likely to be known in
advance, so it is possible to put a set of distinguished permutations in the public key that provides
an optimal time-memory trade-off. For example, in Chapter 10, we describe two variants of
homomorphic evaluations of the full AES circuit that require respectively only four permutations
and no permutation at all.

7.5 Complete Description of the Batch DGHV Scheme with Compressed
Public Keys

In this section, we provide a complete description of our multi-slot FHE scheme with the ciphertext
compression technique of [CNT12]. Note that, as in [CNT12], the ciphertext compression technique
is applied to both the public key elements xi’s and x′i’s of the somewhat homomorphic scheme, and
to the encryptions σi’s of the secret key bits. The ciphertext compression technique enables to
compress a ciphertext from γ = Õ(λ5) bits down to ` · η + λ = ` · Õ(λ2) bits.

7.5.1 Description
BDGHV.Keygen(1λ). Generate ` 2ν-rough η-bit integer pi’s and randomly generate a 2ν-rough
integer q0 ∈ [0, 2γ/π) where π =

∏
i pi. Denote x0 = π · q0.

101

7. Batch Fully Homomorphic Encryption over the Integers

Initialize a pseudo-random generator f1 with a random seed se1. Use f1(se1) to generate a set of
integers χi ∈ [0, x0) for i ∈ [1, τ] and χ′i ∈ [0, x0) for i ∈ [1, `] for i ∈ [0, `− 1].
Define γ-bit integers as follows:

1. the integers xi’s (1 6 i 6 τ) such that xi = χi −∆i with

∆i = [χi]π + ξi · π − CRTp1,...,p`(ri,1, . . . , ri,`)

where ri,j ← Z ∩ [0, 2ρ) and ξi ← Z ∩ [0, 2λ+`·η/π);
2. the integers x′i’s (1 6 i 6 `) such that x′i = χ′i −∆′i with

∆′i = [χ′i]π + ξ′i · π − CRTp1,...,p`(2r′i,1 + δi,1, . . . , 2r′i,` + δi,`)

where r′i,j ← Z ∩ [0, 2ρ) and ξ′i ← Z ∩ [0, 2λ+`·η/π).

Additionally, generate at random Θ-bit vectors sj = (sj,1, . . . , sj,Θ)t for 1 6 j 6 `, each split in θ
boxes of size B = Θ/θ each, with exactly one non-zero bit in each box, and such that sj,j = 1 for
each j = 1, . . . , `. Initialize a pseudo-random generator f2 with a random seed se2, and use f2(se2)
to generate integers ui ∈ [0, 2κ+1) for i ∈ Z ∩ [1,Θ]. Then set u1, . . . , u` such that

xpj =
Θ∑
i=1

sj,i · ui mod 2κ+1,

where xpj = b2κ/pje for each j = 1, . . . , `.
Initialize a pseudo-random generator f3 with a random seed se3. Use f3(se3) to generate a set of
integers χσi ∈ [0, x0) for i ∈ [1,Θ].
For i ∈ [1,Θ], define the γ-bit integers σi = χσi −∆σ

i with

∆σ
i = [χσi]π + ξσi · π − CRTp1,...,p`(2r′′i,1 + s1,i, . . . , 2r′′i,` + s`,i),

where r′′i,j ← Z ∩ [0, 2ρ) and ξσi ← Z ∩ [0, 2λ+`·η/π).
Output the secret key sk = (s0, . . . , s`) and the public key

pk =
〈
x0, se1, (∆i)16i6τ , (∆

′
i)16i6` , se2, u1, . . . , u`, se3, (∆σ

i)16i6Θ

〉
.

BDGHV.Encrypt(pk,m ∈ {0, 1}`). Use f1(se1) to recover the integers χi’s and χ′i’s. Let xi = χi−∆i

for 1 6 i 6 τ and x′i = χ′i −∆′i for 1 6 i 6 `. Choose a random integer vector b = (bi)16i6τ ∈
[0, 2β)τ and output the ciphertext:

c =
[∑̀
i=0

mi · x′i + 2 ·
τ∑
i=1

bi · xi

]
x0

.

BDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

BDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.

BDGHV.Expand(pk, c). The ciphertext expand procedure takes a ciphertext c and compute the
associated expanded ciphertext. To do so, use f2(s2) to recover u`+1, . . . , uΘ, then let yi = ui/2κ
and compute zi given by

zi = bc · yie mod 2
with n bits of precision after the binary point. Define the vector z = (zi)i=1,...,Θ and output the
expanded ciphertext (c, z).

102

7.5. Complete Description of the Batch DGHV Scheme with Compressed Public Keys

BDGHV.Decrypt(sk, c, z). Output m = (m1, . . . ,m`)t with

mj ←

[⌊ Θ∑
i=1

sj,i · zi

⌉]
2

⊕ (c mod 2).

BDGHV.Recrypt(pk, c, z). Apply the decryption circuit to the expanded ciphertext z, and the
encrypted secret key bits σi. Output the result as a refreshed ciphertext cnew.

This concludes the complete description of our fully homomorphic encryption scheme with batch
feature. Let us recall the parameters mentioned in Section 7.3.3:

ρ = Õ(λ), η = Õ(λ2), γ = Õ(λ5), α = Õ(λ2), τ = Õ(λ3),

and
Θ = Õ(λ3), θ = λ, ` = Õ(λ2).

For each individual xi, x′i and σi the size of the correction is (` · η + λ). The squashing procedure
adds incompressible additional terms u1, . . . , u` of size γ = Õ(λ5). In total we get a public key size
of:

(τ + `+ Θ) · (` · η + λ) + ` · γ .

Using τ ' Θ� ` and Θ · η ' γ, this gives a public key size:

2Θ · ` · η + ` · γ ≈ 3` · γ = Õ(λ7).

Remark 7.29. Note that, to add the possibility of perform additional permutations on the underlying
plaintext, the size of the public key grows by a factor of Θ · (` · η + λ) ≈ ` · γ for each additional
permutation ζ added to the secret key. Therefore, when the σζi ’s for the cycle ζ = (1, 2, . . . , `) is
added, the public key size becomes 4` · γ, and any set of operation is possible, from a ciphertext,
on the underlying plaintext. In the homomorphic AES byte-wise bitslicing implementation of
Chapter 10, the public key is roughly of size 7` · γ.

7.5.2 Semantic Security
Let us prove the semantic security of our batch DGHV scheme with compressed public key. Note
that the random oracle model is only necessary when using compressed public keys as in [CNT12];
the semantic security of our batch FHE scheme from Section 7.3 does not require random oracles.

Theorem 7.30. The previous encryption scheme is semantically secure under the decisional
EF-AGCD assumption, in the random oracle model.

sketch. The proof is almost the same as in Section 7.3.2.
More precisely, we follow the same strategy of [CNT12]: given a random oracle H : {0, 1}∗ →

Z ∩ [0, x0), we assume the pseudo-random number generation of the χi’s and χ′i’s is defined as
χi = H(se‖i) and χ′i = H(se‖i+ τ), and we show that the integers xi’s and x′i’s generated during
the BDGHV.Keygen have a distribution statistically close to their distribution in the BDGHV.Keygen
of Section 7.3.2.

We can add a game Game−1 to the security proof, in which we generate a random seed se and
programs the random oracle in the following way for all 1 6 i < τ + `:

H(se‖i) =
{
xi + ∆i if 1 6 i 6 τ
x′i−τ + ∆′i−τ if τ + 1 6 i 6 τ + `

where ∆i,∆′i−τ ← Z ∩ [0, 2λ+η). For other inputs, the oracle H is simulated in the usual way,
i.e. by generating a random input in [0, x0) for every fresh input. Finally, we output a public key
pk =

〈
x0, se1, (∆i)16i6τ , (∆′i)06i6`

〉
.

103

7. Batch Fully Homomorphic Encryption over the Integers

The following Lemma shows that the distribution of the public key is statistically close to that
in Game0. This is Lemma 1 of [CNT12], where p is replaced by π and η by ` · η, and where r is
draw from (−π/2, π/2); since the size of r did not imply anything on the statistical distance in the
proof, it is not necessary to give the proof here.

Lemma 7.31. The following two distributions have statistical distance O(2−λ):

D =
{

(χ, δ, x); χ← Z ∩ [0, 2γ), δ = [χ]π + ξ · π − r, x = χ− δ,
ξ ← Z ∩ [0, 2λ+`·η/π), r ← Z ∩ (−π/2, π/2)

}
and

D′ =
{

(χ, δ, x); x = q · p+ r, δ ← Z ∩ [0, 2λ+`·η), χ = x+ δ,

q ← Z ∩ [0, 2γ/π), r ← Z ∩ (−π/2, π/2)
}
.

The rest of the proof follows directly.

7.6 Implementation and Benchmarks

In this section, we explain how to select concrete parameters to instantiate the complete FHE
scheme described in Section 7.5, and provide some benchmarks of our C++ implementation on a
midrange computer.

7.6.1 Practical Parameters
We use the SAGE [S+14] functions provided on Figures 7.1 (page 86), 7.2 (page 91) and 7.3 (page 92)
to derive parameters for our FHE scheme that ensures λ bits of security.

First, we generate (ρ, η, γ) so that Chen and Nguyen’s attack [CN12] and the orthogonal lattice
attack takes at least 2λ cycles. We provide on Figure 7.5 some SAGE function to achieve this. The
idea is to start with an upper bound on ρ and to decrease it bit by bit until Chen and Nguyen’s
attack takes less than 2λ cycles. As in [CMNT11, CNT12], we take n = 4 and θ = 15 for all security
levels. Therefore the degree of the decryption polynomial is θ = 15 and we select η = (2θ + 8)ρ to
allow some margin.

theta=15
def generate_rho_gamma_2(sec_parameter,C=158,hermite_factor=1.005,
conservative=False):

rho = 2*sec_parameter

while True:
rho = rho-1
eta = (2*theta+8)*rho
gamma = gamma_from_orthogonal_attack_2(sec_parameter,eta,
hermite_factor,conservative)

if cost_CN12_attack(rho,gamma)<sec_parameter:
rho = rho+1
eta = (2*theta+8)*rho
gamma = gamma_from_orthogonal_attack_2(sec_parameter,eta,
hermite_factor,conservative)
return rho,eta,gamma

Figure 7.5 – SAGE function to generate ρ, η and γ for λ bits of security.

Next, we select Θ = mmin – defined in Equation (7.10) – as in [CMNT11, Section 6.3]. We
select β as the largest value possible (so that correctness is ensured) and this gives the smallest
value possible for τ from the condition β · τ > γ + 2λ. Then we set the maximum value of ` as Θ/θ
(because for the bootstrapping to work, we want to have at most one non-zero value per window

104

7.7. Conclusion

in the secret key; to maximize `, we increase Θ slightly to have Θ mod θ = 0), and we increase γ
according to Corollary 7.12. The resulting SAGE function is given on Figure 7.6.

def parameters_2(sec_parameter,C=158,hermite_factor=1.005,conservative=False):

rho,eta,gamma=generate_rho_gamma_2(sec_parameter,C,hermite_factor,
conservative)

Theta = m_min(sec_parameter, eta, gamma, hermite_factor)
Theta = (Theta//theta+1)*theta if Theta%theta != 0 else Theta
beta=eta-2*rho
tau=ceil((gamma+2*sec_parameter)/beta)
ell=Theta//theta # maximum value for ell
gamma=gamma+(ell-1)*eta # we increase the value of gamma for batching

print "lambda=",sec_parameter,"rho=",rho,"eta=",eta,"gamma=",gamma
print "Theta=",Theta,"ell=",ell,"beta=",beta,"tau=",tau

R2=RealField(12)
pksize = (tau+ell+Theta)*(ell*eta+sec_parameter)+ell*gamma
print "pksize=",R2(pksize/8/1024./1024.),"MB"

Figure 7.6 – SAGE function to generate BDGHV parameters for λ bits of security.

Finally, we provide in Table 7.3 concrete parameters for our multi-slot DGHV scheme.

Table 7.3 – Concrete Parameters for BDGHV.

Instance λ ` ρ η γ × 10−6 τ Θ β pk size
Toy 42 11 27 1026 0.170 165 165 972 0.684 MB
Small 52 39 42 1596 0.973 604 585 1512 13.6 MB
Medium 62 149 57 2166 5.11 2337 2235 2052 272 MB
Large 72 544 72 2736 23.3 8420 8160 2592 4550 MB

7.6.2 Implementation in C++ and Benchmarking
We implemented the scheme described in Section 7.5 in C++, using the GMP library. We obtain
essentially the same running times as in [CNT12]. The main difference is that the Recrypt operation
is now performed in parallel over ` = 544 bits (for the “Large” setting) instead of a single bit. We
provide our benchmarks in Table 7.4.

Table 7.4 – Benchmarking for our Batch DGHV with a compressed public key on a desktop computer
(Intel Core i7 at 3.4Ghz, 32GB RAM).

Instance λ Keygen Encrypt Decrypt Mult Expand Recrypt
Toy 42 0.05s 0.01s 0s 0.002s 0.005s 0.10s
Small 52 1.86s 0.20s 0.02s 0.016s 0.10s 0.89s
Medium 62 85s 4.67s 0.54s 0.16s 1.91s 13.26s
Large 72 3670s 63s 11s 0.68s 32.6s 189s

7.7 Conclusion

In this chapter, we first recalled the computational Approximate-GCD problem introduced by
Howgrave-Graham [HG01], building block of the FHE scheme over the integers proposed by van Dijk,

105

7. Batch Fully Homomorphic Encryption over the Integers

Gentry, Halevi and Vaikuntanathan at Eurocrypt 2010 [vDGHV10], later improved by Coron and
others [CMNT11, CNT12]. Then we focused on the error-free settings (when an exact multiple of
the secret is known) and introduced a new decisional variant of the Approximate-GCD problem, that
we proved to be equivalent to the computational Approximate-GCD problem. Then, we reviewed
known attacks on the Approximate-GCD problem and provided some SAGE [S+14] algorithms to
select parameters ensuring λ bits of security against these attacks.

Thanks to the decisional variant of the Approximate-GCD, we simplified the original FHE
scheme over the integers [vDGHV10], and described a more general variant in which the plaintext
space is Zg. This one-slot DGHV scheme is proved to be secure against the decisional Error-Free
Approximate-GCD problem.

Next, we added to this scheme a batching capability, i.e. we proposed a multi-slot DGHV
scheme, whose security relies on the same hardness problem as for the one-slot DGHV scheme. We
also showed how to perform arbitrary permutations on the underlying plaintext vector given the
ciphertext and the public key, and we recall how to make these schemes fully homomorphic by
squashing the decryption circuit and homomorphically evaluating it. Additionally, when considered
as a somewhat homomorphic encryption scheme without bootstrapping, we have that our plaintext
space is M = Zg1 × · · · × Zg` and is therefore adapted, by the Chinese Remainder Theorem,
to perform homomorphic computations over the integers (i.e. the plaintexts are integers to be
homomorphically multiplied or added over Z, as long as the result is smaller than g1 × · · · × gn).
This feature is not known to be possible for other FHE constructions.

For the sake of completeness, we provided the complete description of the resulting multi-slot
DGHV scheme with the public key compression technique introduced in [CNT12] and proved that
this scheme remains secure in the random oracle model.

Finally, we implemented the multi-slot DGHV scheme in C++ using the big integer library
GMP, and obtained running times similar to the one-slot variant [CNT12] but where bit-vectors
are encrypted instead of single bits. This implementation will be later used in Chapter 7 to
homomorphically evaluate the AES circuit.

The Recrypt operation appears to be the (performance) bottleneck in homomorphic evaluations.
To deal with this issue, we will focus on two orthogonal approaches in the next chapters. In
Chapter 8, we study how to exponentially reduce the noise growth in the multiplicative depth of
the circuit. And in Chapter 9, we study how to compute the minimal number of Recrypt required
to evaluate any given circuit.

106

Chapter 8

Scale-Invariant Fully Homomorphic
Encryption over the Integers

8.1 Introduction

At Crypto 2012, Brakerski constructed a scale-invariant fully homomorphic encryption scheme
based on the LWE problem, in which the same modulus is used throughout the evaluation process,
instead of a ladder of moduli when doing “modulus switching”. In this chapter, we describe
variants of the DGHV schemes of Section 7.3 with the same scale-invariant property. The resulting
schemes have a single secret modulus whose size is linear in the multiplicative depth of the circuit
to be homomorphically evaluated, instead of exponential in Chapter 7; we therefore construct
a leveled fully homomorphic encryption scheme. This scheme can be transformed into a pure
fully homomorphic encryption scheme using bootstrapping, and its security is still based on the
Approximate-GCD problem.

This chapter is essentially constituted of the article Scale-Invariant Fully Homomorphic Encryption
over the Integers [CLT14a], cosigned with J.-S. Coron and M. Tibouchi, and published at PKC
2014 [Kra14]. The full version of the article is available at [CLT14b].

Modulus Switching and Scale Invariance. In order to avoid bootstrapping, a new noise man-
agement technique, called modulus switching, was introduced by Brakerski, Gentry and Vaikun-
tanathan [BGV12]. The authors obtained a somewhat homomorphic FHE scheme in which the
noise grows linearly with the multiplicative depth instead of exponentially as the initial somewhat
homomorphic encryption schemes (as in Chapter 7). Therefore any circuit with polynomial depth
can be evaluated. The technique consists in scaling down the noise by converting a ciphertext
modulo q into a ciphertext modulo a smaller q′; the noise being reduced by roughly a factor q/q′.
By carefully calibrating the ladder of moduli, the noise growth can then be made linear with
the number of homomorphic multiplications. Unfortunately, because of the dimension reduction
technique, for a circuit with L layers of multiplication, the technique requires to store the equivalent
of L public-keys, yielding a huge storage requirement (cf. especially [GHS12c]).1 The technique was
also adapted to the DGHV fully homomorphic encryption scheme over the integers of [vDGHV10]
(i.e. the one-slot DGHV scheme in Chapter 7) in [CNT12].

At Crypto 2012, Brakerski introduced a new tensor product technique for LWE-based leveled
FHE [Bra12] so that the same modulus is used throughout the evaluation process instead of a layer
of moduli; the noise growth is still linear in the number of homomorphic multiplications. This was
achieved by considering ciphertexts such that 〈c, s〉 = bq/2c ·m+ e mod q (as in Regev’s encryption
scheme [Reg09]), instead of 〈c, s〉 = m+ 2e mod q.

Our Contributions. In this chapter, we describe a variant of the DGHV schemes over the integers
proposed in Chapter 7 with the same scale-invariant property as in [Bra12]; i.e. our schemes do not

1Note that under an additional circular security assumption (that is informally the assumption that the scheme
remains secure even when the adversary is given encryptions of the individual bits of the private key), the secret
keys may all be the same, and therefore one can obtain a public key of size independent of L [BGV12, Section 5.5].

107

8. Scale-Invariant Fully Homomorphic Encryption over the Integers

(γ − 2η) bits 2η bits

m1r∗
1

r1q1

ρ bitsρ∗ bits

(γ − 2η) bits 2η bits

m2r∗
2

r2q2

ρ bitsρ∗ bits×

MSB

(2γ − 2η) bits 2η bits

m r′q′

(ρ + ρ∗ + η) bits

LSB

Convert
(γ − 2η) bits 2η bits

mr∗ rq

ρ∗ bits (ρ + ρ∗) bits

Figure 8.1 – Conversion of a ciphertext after a homomorphic multiplication.

use modulus switching and the noise grows linearly with the multiplicative depth of the circuit.
We obtain DGHV variants with a single secret modulus p whose size is linear in the multiplicative
depth (instead of exponential). Our technique is as follows.

In the original DGHV scheme, a ciphertext c of the bit message m ∈ {0, 1} has the form

c = m+ 2r + q · p ,

where p is the secret key, q is a large random integer, and r is a small random integer (noise). The
bit message is recovered by computing m = (c mod p) mod 2. Adding and multiplying ciphertexts
over Z respectively adds and multiplies the plaintexts modulo 2 while keeping them hidden.
Unfortunately, the noise grows exponentially with the number of homomorphic multiplications: if
two ciphertexts c1, c2 have ρ-bit noise, the noise of c3 = c1 · c2 has ≈ 2ρ bits. Therefore to evaluate
a circuit with L sequential layers of multiplications without bootstrapping, the bit-size η of the
modulus p must satisfy η > 2Lρ.

In our new scheme, similar to [Bra12], instead of encrypting the bit m ∈ {0, 1} in the LSB
of [c mod p], we encrypt it in the MSB of [c mod p]; additionally we work modulo p2 instead of
modulo p.2 More precisely, the message m is now encrypted as

c = r + (m+ 2r∗) · p− 1
2 + q · p2 , (8.1)

where the ciphertext now contains two noises r and r∗. We decrypt c by computing m = (2c mod
p) mod 2. Clearly adding two ciphertexts over Z still adds the underlying bit messages m modulo
2. However, multiplication of two ciphertexts moves the bit message m from the MSB of [c mod p]
to the MSB of [c mod p2]. Namely, a ciphertext c obtained as the multiplication of ciphertexts c1
and c2 for the respective bit messages m1 and m2 will have the form

c = 2 · c1 · c2 = r + (m1 ·m2) · p
2 − 1

2 + q · p2 , (8.2)

where r > p but still r � p2. We then describe a procedure Convert that allows to publicly convert
the result of a multiplication (i.e. a ciphertext as in Equation (8.2)) into a ciphertext reusable in
subsequent homomorphic operations (i.e. a ciphertext as in Equation (8.1)), either keeping the
same secret p (which requires, as usual, a circular security assumption – cf. Section 7.4.2) or using
a different fresh p at each level (which requires a larger secret key [CNT12]). The bit length of the
noise in the new ciphertext grows only by a constant additive factor with respect to the noise in c1
and c2 (see Figure 8.1 for an illustration). Therefore, our scheme is a variant of the DGHV scheme
that is a leveled fully homomorphic encryption scheme. It can be turned into a pure FHE scheme
using bootstrapping (cf. [vDGHV10, CMNT11, CNT12] and Section 7.4). We also show that our
scheme is semantically secure, under the Approximate-GCD assumption.

We also adapt our scale-invariant technique to the batch setting, i.e. we describe how to adapt
our technique to the multi-slot DGHV scheme of Section 7.3.2.

2Notice that we cannot work with c = (p− 1)/2 ·m+ r + q · p directly.

108

8.2. Scale-Invariant One-Slot DGHV Scheme

Remark 8.1. Note that in this chapter, we work with an error-free element, i.e. an exact multiple
of p2. In the article [CLT14a, CLT14b] corresponding to this chapter, we describe the schemes
without this error-free element, as in [vDGHV10], but provide only security proofs in the error-free
case.

8.2 Scale-Invariant One-Slot DGHV Scheme

In this section we describe our variant of the DGHV scheme of Section 7.3.1 with the scale-invariant
property. We first explain the two main ideas of our scheme, namely (1) moving the plaintext bit
from the LSB to the MSB of [c mod p] and working modulo p2, and (2) converting the result of a
ciphertext multiplication back to a ciphertext usable in subsequent homomorphic operations. We
then provide the full description of our scheme.

Throughout the section, denote by x0 = q0 · p2 the public modulus.

8.2.1 Ciphertexts and Homomorphic Operations
As explained in the introduction, instead of encrypting the plaintext m ∈ {0, 1} in the LSB of
[c mod p], m is now encrypted in the MSB of [c mod p] as

c = r + (m+ 2r∗) · p− 1
2 + q · p2 , (8.1)

where the ciphertext has now two noises r and r∗ of respective bit-length ρ and ρ∗. We call such
ciphertext a Type-I ciphertext and we say that c has noise length (ρ, ρ∗). To decrypt c, one computes
(2c mod p) mod 2 = m.

Homomorphic additions are performed as additions modulo x0: namely given two Type-I
ciphertexts c1 and c2 of noise (ρ, ρ∗):

c1 = r1 + (m1 + 2r∗1) · (p− 1)/2 + q1 · p2

c2 = r2 + (m2 + 2r∗2) · (p− 1)/2 + q2 · p2

we get
c1 + c2 mod x0 = r3 + (m1 +m2 + 2r∗3) · p− 1

2 + q3 · p2 ,

for some integers r3, r
∗
3 and q3, with log2 |r3| 6 ρ+ 1 and log2 |r∗3 | 6 ρ∗ + 1.

Next, to homomorphically multiply the ciphertexts c1 and c2, one computes c3 = 2·c1 ·c2 mod x0.
This gives

c3 = 2 · c1 · c2 mod x0 = 2r1r2 +
(
r1(m2 + 2r∗2) + r2(m1 + 2r∗1)

)
· (p− 1) +

(m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2 + q′3 · p2

= r′3 + (m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2 + q′3 · p2

for some integers q′3 and r′3, with log2 |r′3| 6 η + ρ + ρ∗ + 3, where η is the bit-size of p. We use
η � ρ, ρ∗. Then, there exist integers r3 and q3 such that

c3 = r3 +m3 ·
p2 − 1

2 + q3 · p2 , (8.2)

where m3 = m1 · m2. We call an integer c verifying Equation (8.2) a Type-II ciphertext. The
bit-length of noise r3 satisfies log2 |r3| 6 η + ρ+ ρ∗ + 4, assuming ρ∗ < ρ. We refer to Figure 8.1
for a graphical representation of the homomorphic multiplication.

8.2.2 Conversion from Type-II Ciphertext to Type-I Ciphertext
We show that we can efficiently convert a Type-II ciphertext back to a Type-I ciphertext, using
only the public-key. Our procedure Convert uses essentially the same technique as the modulus

109

8. Scale-Invariant Fully Homomorphic Encryption over the Integers

switching technique for DGHV in [CNT12]. Namely modulus switching in [CNT12] enables to
convert a classical DGHV ciphertext modulo a prime p into a new ciphertext modulo a prime p′,
with noise scaled by a factor p′/p. Similarly, our Convert procedure converts a Type-II ciphertext
modulo p2 back to a ciphertext where the noise is modulo p (therefore the noise is scaled by a
factor p/p2 = 1/p), but still somehow encrypted modulo p2.

More precisely, we start from a Type-II ciphertext:

c = r + p2 − 1
2 ·m+ q · p2 (8.3)

where |r| 6 2ρ′ . Let κ be such that |c| < 2κ. Let z be a vector of Θ rational numbers in [0, 2η) with
κ bits of precision after the binary point, and let s be a vector of Θ bits such that

2η
p2 = 〈s, z〉+ ε mod 2η , (8.4)

where |ε| 6 2−κ. Here Θ is a parameter to be chosen later for security. We use the same BitDecomp
and PowersofTwo procedures as in [BGV12].

• BitDecompη(v): For v ∈ Zn, let vi ∈ {0, 1}n be such that v mod 2η =
∑η−1
i=0 vi · 2i. Output the

vector
(v0, . . . ,vη−1)t ∈ {0, 1}n·η .

• PowersofTwoη(w): For w ∈ Zn, output the vector

(w, 2 ·w, . . . , 2η−1 ·w)t ∈ Zn·η .

Given the vector s from (8.4), we let s′ = PowersofTwoη(s), and let

σ = q · p2 + r +
⌊
s′ · p

2η+1

⌉
(8.5)

be an “encryption” of the vector s′, where q← (Z ∩ [0, 2γ/p2))η·Θ and r← (Z ∩ (−2ρ, 2ρ))η·Θ. We
can now define the Convert algorithm:

Convert(z, σ, c). Compute c = (bc · zie mod 2η)16i6Θ and its decomposition c′ = BitDecompη(c).
Then output

c′ ← 2〈σ, c′〉 .

The following Lemma shows that our procedure Convert enables one to transform a Type-II
ciphertext back to a Type-I ciphertext. We provide the proof in the next section.

Lemma 8.2. Let ρ′ be such that ρ′ > η + ρ+ log2(ηΘ). The procedure Convert above converts a
Type-II ciphertext with noise size ρ′ into a Type-I ciphertext with noise (ρ′ − η + 5, log2 Θ).

Assume that initially the two ciphertexts c1, c2 are Type-I ciphertexts with noise (ρ1, log2 Θ).
After computing c3 = 2 · c1 · c2 mod x0 which has noise size at most ρ′ = η + ρ1 + log2 Θ + 4
(see previous section) one can convert c3 back into a Type-I ciphertext with noise (ρ3, ρ

∗
3) with

ρ3 = ρ1 + log2 Θ + 9 and ρ∗3 = log2 Θ, if the condition of Lemma 8.2 is verified. Therefore the noise
length in bits has only grown by an additive factor log2 Θ + 9. Therefore the ciphertext noise grows
only linearly with the number of homomorphic multiplications.
Remark 8.3. To make public conversion of ciphertexts possible, one has to publish σ, which is an
“encryption” of the secret key dependent vector s′. As a result, one has to assume circular security
of the underlying encryption scheme, as usual in constructions of FHE – cf. also Section 7.4.2.

Alternatively, as in other modulus switching-based schemes, it is also possible to define σ as an
encryption of s′ under a fresh secret key p′, in which case Convert(z, σ, c) yields a Type-I ciphertext
under p′. Defining a different secret prime for each level of multiplication and publishing the
corresponding conversion vectors σ makes it possible to avoid circular security assumptions, but of
course it increases public key size, and it is also less convenient insofar as homomorphic operations
are only supported between ciphertexts at the same level.

110

8.2. Scale-Invariant One-Slot DGHV Scheme

8.2.3 Proof of Lemma 8.2
We start from a Type-II ciphertext as given by Equation (8.3) with |r| 6 2ρ′ . From

σ = p2 · q + r +
⌊
s′ · p

2η+1

⌉
we have:

c′ = 2〈σ, c′〉 = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ 2
〈⌊

s′ · p

2η+1

⌉
, c′
〉
. (8.6)

Since the components of c′ are bits, we have using 2bx/2e = x+ ν with |ν| 6 1:

2
〈⌊ p

2η+1 · s
′
⌉
, c′
〉

=
〈 p

2η · s
′, c′
〉

+ ν2 = p

2η · 〈s
′, c′〉+ ν2 , (8.7)

where |ν2| 6 Θ ·η. From the definition of BitDecomp and PowersofTwo, we have 〈s′, c′〉 = 〈s, c〉 mod
2η = 〈s, c〉+ q2 · 2η with q2 ∈ Z. Moreover

〈s, c〉 =
Θ∑
i=1

si bc · zie+ ∆ · 2η =
Θ∑
i=1

si · c · zi + δ1 + ∆ · 2η = c · 〈s, z〉+ δ1 + ∆ · 2η ,

for some ∆ ∈ Z and |δ1| 6 Θ/2. Using 〈s, z〉 = 2η/p2 − ε − µ · 2η for some µ ∈ Z, and c =
q · p2 +m · (p2 − 1)/2 + r, this gives

〈s, c〉 = c ·
(

2η
p2 − ε− µ · 2

η

)
+δ1 +∆2η = q ·2η+m ·2η−1−m · 2η

2p2 +r · 2
η

p2 −c ·ε+δ1 +(∆−c ·µ) ·2η .

Therefore we can write
〈s, c〉 = q1 · 2η +m · 2η−1 + r∗

for some r∗ ∈ Z, with |r∗| 6 2ρ′−η+3 (because Θ is small). We get from Equation (8.7):

2
〈⌊ p

2η+1 · s
′
⌉
, c′
〉

= p

2η · ((q1 + q2) · 2η +m · 2η−1 + r∗) + ν2 = q3 · p+m · p2 + p

2η · r
∗ + ν2 ,

with |q3| 6 Θ; namely the components of (p/2η+1) · s′ are smaller than p and c′ is a binary vector.
This gives

2
〈⌊ p

2η+1 · s
′
⌉
, c′
〉

= (2q3 +m) · p− 1
2 + r∗2 ,

with again |r∗2 | 6 2ρ′−η+4. Therefore we obtain from Equation (8.6):

c′ = 2p2 · 〈q, c′〉+ 2〈r, c′〉+ (2q3 +m) · p− 1
2 + r∗2

c′ = 2q′′ · p2 + (2q3 +m) · p− 1
2 + r′ .

where |r′| 6 |r∗2 | + ηΘ2ρ+1 6 2ρ′−η+4 + ηΘ2ρ+1, which proves the lemma (using the fact that
ρ′ > η + ρ+ log2(ηΘ)).

8.2.4 Description of the Public-Key Leveled Homomorphic Scheme
We are now ready to describe our scale-invariant version of the DGHV encryption scheme.

SIDGHV.Keygen(1λ). Generate a 2ν-rough η-bit integer p and randomly generate a 2ν-rough integer
q0 ∈ [0, 2γ/p2). Denote x0 = p2 · q0. Next sample τ integers {xi}i=1,...,τ from the AGCD
distribution Dρ(p2, q0).
Sample also an integer y from the shifted AGCD distribution Dρ(p2, q0) + p−1

2 .
Let z be a vector of Θ numbers with κ = γ bits of precision after the binary point, and let s be a
vector of Θ bits such that

2η
p2 = 〈s, z〉+ ε mod 2η ,

111

8. Scale-Invariant Fully Homomorphic Encryption over the Integers

with |ε| 6 2−κ. Now, define

σ = q · p2 + r +
⌊
PowersofTwoη(s) · p

2η+1

⌉
,

where the components of q (resp. r) are randomly chosen from [0, q0) ∩ Z (resp. [0, 2ρ) ∩ Z).
Let sk = p and pk = {x0, x1, . . . , xτ , y, σ, z}.

SIDGHV.Encrypt(pk,m ∈ {0, 1}). Generate a random β-bit integer vector b = (b1, . . . , bτ)t and
output

c←
(
m · y +

τ∑
i=1

bi · xi
)

mod x0 .

SIDGHV.Add(pk, c1, c2). Output c← (c1 + c2) mod x0.

SIDGHV.Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
mod x0 where c =

(
bc · zie mod

2η
)

16i6Θ.

SIDGHV.Mult(pk, c1, c2). Output c′ ← SIDGHVConvert(pk, 2 · c1 · c2 mod x0).

SIDGHV.Decrypt(sk, c). Output m←
(
(2c) mod p

)
mod 2.

Remark 8.4. This describes a leveled fully homomorphic encryption scheme, because the noise
growth is only linear in the number of levels. The scheme can be bootstrapped to obtain a (pure)
fully homomorphic encryption scheme.

8.2.5 Constraints on the Parameters
The parameters of the scheme must basically meet the same constraints as in Section 7.3.3, Table 7.2.
In particular, if λ is the security parameter:

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12, CNT12],

• η > β + ρ+ log2(τ + 1) + 1 +O(L log λ) where L is the multiplicative depth of the circuit to be
evaluated,

• γ = η2 · Ω(λ) in order to thwart lattice-based attacks,

• Θ2 = γ · Ω(λ) to avoid lattice attacks on the subset sum (see [CMNT11]),

• β · τ > γ + 2λ in order to apply the Leftover Hash Lemma in the security proof.

To satisfy the above constraints one can take ρ = 2λ, β = Õ(L + λ), η = Õ(L + λ), γ =
Õ(L2λ+ λ3), Θ = Õ(

√
λ · (L+ λ)) and τ = Õ(L2 + λ2).

8.2.6 Semantic Security
We show that the semantic security of our scheme can be based on the following variant of the
decisional Error-Free Approximate-GCD problem introduced in Definition 7.4.

Definition 8.5. Let γ, η, ν, ρ ∈ N.
The decisional squared Error-Free-AGCD with additional element problem is: For a 2ν-rough

η-bit integer p and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/p2), given x0 = q0 · p2, a sample y from
(p− 1)/2 +Dρ(p2, q0) and polynomially many samples {xi}i from Zx0 to distinguish whether the
samples {xi}i are distributed uniformly or whether they are distributed according to the AGCD
distribution Dρ(p2, q0).

112

8.3. Scale-Invariant Multi-Slot DGHV Scheme

Note that the decisional squared EF-AGCD problem reduces to the decision EF-AGCD problem.
Indeed, the input of the former problem with parameters (γ, η, ν, ρ), without the additional element
y, is an input of the latter problem with parameters (γ, 2η, ν, ρ).

The following theorem shows that our scheme is semantically secure under the decisional squared
Error-Free-AGCD with additional element assumption; below we only consider a subset of our
scheme without the procedure Convert, i.e. without the public parameters z and σ. To prove
the semantic security of the full scheme it suffices to include z and σ in the above decisional
assumption.3

Theorem 8.6. The above scale-invariant DGHV scheme without the parameters z, σ is semantically
secure under the (γ, η, ν, ρ)-decisional squared Error-Free-AGCD with additional element assumption.

The proof of this theorem is similar to the proof of semantic security, Theorem 7.17 in Chapter 7.
First, we have the following lemma (similarly to Lemma 7.18):

Lemma 8.7. For the parameters (γ, η, ν, ρ), let pk = (x0, {xi}i, y) and sk = p be chosen as in the
SIDGHV.Keygen procedure. Define pk′ = (x0, {x′i}i, y) for x′i uniformly generated in [0, x0). Then
pk and pk′ are indistinguishable under the decisional squared Error-Free-Approximate-GCD with
additional element assumption.

Then the proof of Theorem 8.6 is exactly the proof of Theorem 7.17, using Lemma 8.7 instead
of Lemma 7.18.
Remark 8.8. The equivalence between the error-free decisional Approximate-GCD and error-
free computational Approximate-GCD assumption, proved in Section 7.2.2, is straightforwardly
adaptable to a computational squared Error-Free-AGCD with additional element problem, which
aims at recovering p from the additional element y and samples from Dρ(p2, q0).
Remark 8.9. We could not show an equivalence between the decisional Error-Free Approximate-
GCD assumption (Definition 7.4), and the decisional squared Error-Free-Approximate-GCD with
additional element assumption. However, the knowledge of y does not seem to simplify the attacks
against the Approximate-GCD problem proposed in Section 7.2.4 and we are not aware of any
attack that would use such an additional element.

8.3 Scale-Invariant Multi-Slot DGHV Scheme

We now describe a generalization of the previous scheme to the batch setting, i.e. to the multi-slot
DGHV scheme presented in Section 7.3.2. The goal is to pack ` plaintext bits m1, . . . ,m` into
a single ciphertext. Homomorphic addition and multiplication will then apply in parallel and
component-wise on the mi’s.

Our batch generalization is similar to the one of Chapter 7. A ciphertext encrypting a vector
m = (m1, . . . ,m`)t has the form:

c = CRTq0,p2
1,...,p

2
`

(
q, . . . , ri + (2r∗i +mi) ·

pi − 1
2 , . . .

)
(8.8)

for a tuple of `+ 1 coprime integers q0, p1, . . . , p`. We call such ciphertext a batch Type-I ciphertext.
Modulo each of the pj ’s the ciphertext c behaves as in the SIDGHV scheme in Section 8.2. In the
following, denote x0 = q0 ·

∏
i p

2
i the public modulus. Accordingly, the addition of two ciphertexts

modulo x0 yields a new ciphertext that decrypts to the componentwise sum modulo 2 of the original
plaintexts.

3Usually in FHE we first show the semantic security of a restricted scheme, and then a ‘circular security’
assumption is used to get the semantic security of the entire FHE; that is we assume that the encryption scheme
remains secure even when the adversary is given encryptions of the individual bits of the private-key.

Here we first prove that the scheme is secure without the terms z and σ. If the scheme is ‘circular secure’ (secure
even with encryptions of the invariant switching, i.e. z and σ) then it remains semantically secure. This circular
security assumption can be avoided by using the classical modulus switching technique [CNT12] instead of our
scale-invariance technique.

113

8. Scale-Invariant Fully Homomorphic Encryption over the Integers

To homomorphically multiply two ciphertexts c1 and c2, one computes c3 = 2 · c1 · c2 mod x0.
As previously there exists small integers r3,j such that

c3 ≡ r3,j +mj ·
p2
j − 1

2 (mod pj) for j = 0, . . . , `− 1, (8.9)

where each mj is the product of the corresponding plain text components of c1 and c2. We call
c3 a batch Type-II ciphertext. Modulo each of the pj ’s, the ciphertext c3 behaves as a Type-II
ciphertext given by Equation (8.2); therefore the message bit mj is the MSB of [c mod p2

j] for all
j. As in Section 8.2, there exists an efficient conversion procedure Convert to convert any Type-II
ciphertext to a new Type-I ciphertext. As shown below the procedure Convert is actually the same
as in Section 8.2, with adapted public parameters.

Namely let z be a vector of Θ rational numbers in [0, 2η) with κ bits of precision after the binary
point (where |c| < 2κ), and let (sj) be a set of ` vectors of Θ bits such that, for all j = 1, . . . , `,

2η
p2
j

= 〈sj , z〉+ εj mod 2η

where |εj | 6 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Define σ = (σ1, . . . , σηΘ) so that, for all
1 6 i 6 ηΘ:

σi = CRTq0,p2
1,...,p

2
`

(
qi, r1,i +

⌊
s′1,i ·

p1

2η+1

⌉
, . . . , r`,i +

⌊
s′`,i ·

p`
2η+1

⌉)
is an encryption of (s′j,i)16j6`. For Convert we use the same algorithm as in Section 8.2:

Convert(z, σ, c). Compute c = (bc · zie mod 2η)16i6Θ and its decomposition c′ = BitDecompη(c).
Then output

c′ ← 2〈σ, c′〉 mod x0 .

The proof of the following lemma follows directly from the proof of Lemma 8.2 applied modulo
each of the pj ’s.

Lemma 8.10. The procedure Convert above converts a Type-II ciphertext with noise size ρ′ into a
Type-I ciphertext with noise (ρ′ − η + 5, log2 Θ), for ρ′ − η > ρ+ log2(ηΘ).

8.3.1 Description of the Public-Key Batch Leveled Fully Homomorphic Scheme
SIBDGHV.Keygen(1λ). Generate ` 2ν-rough η-bit integer pi’s and randomly generate a 2ν-rough
integer q0 ∈ [0, 2γ/π2) where π =

∏
i pi. Denote x0 = π2 · q0.

Next sample τ integers {xi}i=1,...,τ from the `-AGCD distribution D(`)
ρ (p2

1, . . . , p
2
` , q0).

Then for 1 6 i 6 `, sample y′i from the `-AGCD distribution D(`)
ρ (p2

1, . . . , p
2
` , q0) and define

yi = y′i + pi − 1
2 ·

∏̀
j=1
j 6=i

p2
j .

Let z be a vector of Θ numbers with κ = γ bits of precision after the binary point, and let (sj) be
a set of ` vectors of Θ bits such that, for all j = 1, . . . , `,

2η
p2
j

= 〈sj , z〉+ εj mod 2η

with |εj | 6 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Then, define σ = (σ1, . . . , σηΘ) so that, for
all 1 6 i 6 ηΘ:

σi = CRTq0,p2
1,...,p

2
`

(
qi, r1,i +

⌊
s′1,i ·

p1

2η+1

⌉
, . . . , r`,i +

⌊
s′`,i ·

p`
2η+1

⌉)
where qi (resp. rj,i) are randomly chosen from [0, q0) (resp. [0, 2ρ)).
The secret-key is sk = (p0, . . . , p`−1) and the public-key is pk = (x0, x1, . . . , xτ , y1, . . . , y`, σ, z).

114

8.3. Scale-Invariant Multi-Slot DGHV Scheme

SIBDGHV.Encrypt(pk,m ∈ {0, 1}`). Generate a random β-bit integer vector b = (b1, . . . , bτ)t and
output

c←
(∑̀
i=1

mi · yi +
τ∑
i=1

bi · xi
)

mod x0 .

SIBDGHV.Add(pk, c1, c2). Output c← (c1 + c2) mod x0.

SIBDGHV.Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
mod x0 where c =

(
bc · zie mod

2η
)

16i6Θ.

SIBDGHV.Mult(pk, c1, c2). Output c′ ← SIBDGHV.Convert(pk, 2 · c1 · c2 mod x0).

SIBDGHV.Decrypt(sk, c). Output mj ←
(
(2c) mod pj

)
mod 2 for j = 1, . . . , `

The constraints of our scale-invariant multi-slot scheme are the same as in Section 8.2.5.
Remark 8.11. Here again this describes a batch leveled fully homomorphic encryption scheme, but
can be turned into a (pure) batch fully homomorphic encryption scheme.

8.3.2 Semantic Security
Here again, we show that the semantic security of our scheme can be based on the following variant
of the decisional `-Error-Free Approximate-GCD problem introduced in Definition 7.9.

Definition 8.12. Let γ, η, ν, ρ ∈ N.
The decisional squared `-Error-Free-AGCD with additional elements problem is: For ` coprime

2ν-rough η-bit integers p1, . . . , p` and a uniformly chosen 2ν-rough q0 ∈ [0, 2γ/π2) coprime with
π, where π = p1 × · · · × p`, given x0 = q0 · π2, polynomially many samples {xi}i from Zx0 , and
elements {yi}`i=1, where yi is sampled from

pi − 1
2 ·

∏̀
j=1
j 6=i

p2
j +D(`)

ρ (p2
1, . . . , p

2
` , q0) ,

to distinguish whether the samples are distributed uniformly or whether they are distributed
according to the `-AGCD distribution D(`)

ρ (p2
1, . . . , p

2
` , q0).

Once again, this problem with parameters (γ, η, ν, ρ) reduces to the decisional `-EF-AGCD
problem with parameters (γ, 2η, ν, ρ).

As in Section 7.2.3, we have the following (straightforward) lemma:

Lemma 8.13. Let γ, η, ν, ρ ∈ N. The decisional squared 1-EF-AGCD with additional elements is
hard under the decisional squared EF-AGCD assumption with additional element.

We also have the following interesting reduction:

Lemma 8.14. Let γ, η, ν, ρ ∈ N. The decisional squared `-EF-AGCD with additional elements with
parameters (γ, η, ν, ρ) is hard under the decisional squared 1-EF-AGCD with additional element
with parameters (γ − (`− 1)η, η, ν, ρ) (and therefore by Lemma 8.13, under the decisional squared
EF-AGCD assumption with additional element with parameters (γ − (`− 1)η, η, ν, ρ)).

The proof of this Lemma is straightforwardly adaptable from the proof of Lemma 7.11 (the key
ingredients being the associativity of the CRT and a standard hybrid argument).

Finally, the following theorem shows that our scheme, without the public parameters z and σ,
is semantically secure under the decisional squared `-Error-Free-AGCD with additional elements
assumption

115

8. Scale-Invariant Fully Homomorphic Encryption over the Integers

Theorem 8.15. The above scale-invariant multi-slot DGHV scheme without the parameters z, σ
is semantically secure under the (γ, η, ν, ρ)-decisional squared Error-Free-AGCD with additional
element assumption.

Then the proof of Theorem 8.15 is exactly the proof of Theorem 7.23, using a straightforward
adaptation of Lemma 7.24 and Lemma 8.14 to conclude.

8.4 Practical Implementation

In this section, we provide concrete parameters and timings for the homomorphic evaluation of
AES of Chapter 10 with our scale-invariant multi-slot DGHV scheme. We use the following existing
optimizations:

1. Public-key compression: the technique in Section 7.5 (introduced in [CNT12]) enables to compress
the ciphertexts in the public-key from γ to roughly ` · η2 bits. We do not explicit the description
here but it is essentially similar to Section 7.5.

2. Ciphertext expansion [CNT12]: the technique consists in generating the zi’s with a special
structure instead of pseudo-random. Let δ be a parameter to be specified later. One generates a
random z with κ+ δ ·Θ · η bits of precision after the binary point, and one defines the zi’s for
`+ 1 6 i 6 Θ as

zi =
[
z · 2i·δ·η

]
2η ,

keeping only κ bits of precision after the binary point for each zi as previously. We fix z1, . . . , z`
so that the previous equalities hold. Then the ciphertext expansion can be computed as follows,
for all `+ 1 6 i 6 Θ:

ci = bc · zie mod 2η = bc · z · 2i·δ·ηe mod 2η .
Therefore computing all the zi’s (except the first `) is now essentially a single multiplication
c · z. A lattice attack against this optimization is described in [CNT12]; the authors show that
the attack is thwarted by selecting δ such that δ ·Θ · η > 3γ.

8.4.1 Optimization of Scalar Product
We describe an additional optimization for computing the scalar product c′ = 2〈σ, c′〉 computed
in Convert, similar to the ciphertext expand optimization above. The vectors σ and c′ have ηΘ
elements. We first divide the vectors σ and c′ into subvectors of Θ elements, and we compute
the scalar products of the subvectors separately. In the following for simplicity we keep the same
notations and now assume that σ and c′ have Θ elements each.

We generate the vector σ ∈ ZΘ such that:

σi =
⌊
σ · 2i·δ·η

⌉
+ vi

for small public corrections |vi| 6 2η·` for all 1 6 i 6 Θ, where the large public random σ has δηΘ
bits of precision after the binary point, and γ + δηΘ bits in total. Then

c′ = 2〈σ, c′〉 = 2
n∑
i=1

⌊
σ · 2i·δ·η

⌉
· c′i + 2〈v, c′〉 = 2

n∑
i=1

(
σ · 2iδη + ui

)
c′i + 2〈v, c′〉

= 2σ ·
(

n∑
i=1

c′i · 2iδη
)

+ 2〈v, c′〉+ u =
⌊

2σ ·
(

n∑
i=1

c′i · 2iδη
)⌉

+ 2〈v, c′〉+ u′ ,

where |ui| 6 1/2, |u| 6 Θ, and u′ ∈ Z is such that |u′| 6 Θ + 1. Then the scalar product becomes
essentially one multiplication and another scalar product but with much smaller entries vi’s instead
of σi’s.

Therefore with vectors σ and c′ with ηΘ elements each instead of Θ, the scalar product 2〈σ, c′〉
becomes essentially η multiplications and another scalar product but with much smaller entries vi’s
instead of σi’s. Note that the size of c′ is now γ+ Θδη bits instead of γ; therefore one must increase
κ by twice the same additive factor (to support multiplications of two such converted ciphertexts).

116

8.5. Conclusion

Finally we use the following straightforward optimization: instead of using BitDecomp and
PowersofTwo with bits, we use words of size ω bits instead. This decreases the size of the vector
σ by a factor ω, at the cost of increasing the resulting noise by roughly ω bits. In particular the
scalar product 2〈σ, c′〉 then requires essentially dη/ωe multiplications and another scalar product
but with smaller entries vi’s instead of σi’s. In our code we used ω = 64.

8.4.2 Concrete Parameters and Benchmarking
In Section 8.2.5, we provided strict theoretical upper bounds on the noise growth during homomorphic
operations to ensure correctness with overwhelming probability. In practice however, one expects a
smaller noise growth on average and one could choose smaller bounds ensuring correctness with
high probability only. This yields a huge gain in performance (allowing to reduce η, and thus γ)
while still ensuring correctness most of the time. Therefore, for optimal performances in practice,
one should select a parameter η as small as possible while still ensuring correctness with high
probability. A similar approach as in Section 7.6.1 was used to derive practical parameters for our
scale-invariant scheme (Table 8.1), parameters we will use for the homomorphic AES evaluation in
Chapter 10.

Table 8.1 – Concrete Parameters for SIBDGHV.

Instance λ ` ρ η γ × 10−6 τ,Θ pk size
Toy 42 9 42 971 0.27 135 3.2 MB
Small 52 35 52 976 1.1 525 45 MB
Medium 62 140 62 981 4.2 2100 704 MB
Large 72 569 72 986 15.8 8535 11 GB
Extra 80 1875 86 993 35.9 28125 100 GB

We implemented the scale-invariant multi-slot DGHV scheme with a compressed public key (as
in Section 7.5) in C++, using the GMP library. We provide benchmarks in Table 8.2.

Table 8.2 – Benchmarking for our Scale-Invariant Batch DGHV scheme with a compressed public
key on an Intel Xeon E5-2690 at 2.9 GHz.

Instance λ ` Keygen Encrypt Decrypt Mult Convert
Toy 42 9 0.5s 0.0s 0.0s 0.0s 0.1s
Small 52 35 11s 0.2s 0.0s 0.0s 0.3s
Medium 62 140 5min 3s 0.2s 0.0s 2.8s
Large 72 569 2h 50min 45s 3.3s 0.1s 33s
Extra 80 1875 213h 5min 24s 0.3s 277s

8.5 Conclusion

In this chapter, we proposed an adaptation of the scale-invariance technique introduced by Braker-
ski [Bra12] to the one-slot and multi-slot schemes over the integers introduced in Chapter 7. This
technique allows to work with the same modulus throughout the whole evaluation process instead
of considering a layer of moduli when using modulus switching (as described in [CNT12] for the
one-slot DGHV scheme); and the noise growth is linear in the multiplicative depth of the circuit
being evaluated.

We implemented our schemes in C++ using GMP, and described two aggressive optimizations
to make our implementation more efficient. As a result, we could select parameters claiming to
ensure 80 bits of security (contrary to Chapter 7). We selected parameters so as to evaluate the
60-level AES circuit in Chapter 10, and obtained timings for 80 bits of security comparable to the
72-bit secure parameters of Chapter 7 that could only evaluate circuits of depth 16 (the depth of
the squashed decryption circuit plus one). As a consequence, this new technique yields exciting
results that will be confirmed in Chapter 10.

117

Chapter 9

Minimal Number of Bootstrappings in
Homomorphic Circuits

9.1 Introduction

We propose a method to compute the exact minimal number of bootstrappings required to
homomorphically evaluate any circuit. Given a circuit (typically over F2 although our method
readily extends to circuits over any ring), the maximal noise level supported by the considered fully
homomorphic encryption (FHE) scheme and the desired noise level of circuit inputs and outputs,
our algorithms return a minimal subset of circuit variables such that bootstrapping these variables
is enough to perform an evaluation of the whole circuit. We introduce a specific algorithm for
2-level encryption (first generation of FHE schemes [Gen09, vDGHV10, CMNT11, BV11a, CNT12],
including the schemes of Chapter 7) and an extended algorithm for `max-level encryption with
arbitrary `max > 2 to cope with more recent FHE schemes (namely [BGV12, FV12, LTV12,
BLLN13], and the schemes of Chapter 8). We successfully applied our method to a range of
real-world circuits that perform various operations over plaintext bits. Practical results show that
some of these circuits benefit from significant improvements over the naive evaluation method where
all multiplication outputs are bootstrapped. In particular, we report that a circuit for the AES
S-box put forward by Boyar, Matthews and Peralta [BMP13] admits a solution in 17 bootstrappings
instead of 32. This will lead in Chapter 10 to a 88% faster homomorphic evaluation of AES using
the batch DGHV scheme introduced in Chapter 7.

This chapter consists of the article On the Minimal Number of Bootstrappings in Homomorphic
Circuits [LP13], cosigned with P. Paillier, and published at WAHC’13, the first Workshop on
Applied Homomorphic Cryptography (held in conjunction with the 17th International Conference
on Financial Cryptology and Data Security, FC 2013) [ABS13].

Noise Levels. In all known FHE schemes, a ciphertext ci contains a noise ri which grows along
with homomorphic multiplications and decryption is ensured as long as ri does not exceed a given
bound, i.e. ri < rmax. Without loss of generality, we can assume that the noise is lower-bounded
by the noise after a bootstrapping operation.1 We adopt a simplified approach by associating with
each ciphertext ci a discretized noise level `i = 1, 2, . . . , where 1 is the noise level of ciphertexts
resulting from a bootstrapping operation. Let c1 (resp. c2) be a ciphertext with noise level `1 (resp.
`2). Gentry-like FHE schemes [Gen09, vDGHV10, BV11a, CMNT11, CNT12, CCK+13] (and in
particular the scheme of Chapter 7) are such that c3 = c1 + c2 has noise level `3 = max(`2, `1) and
c3 = c1 × c2 has noise level `3 = `1 + `2, where + and × respectively denote homomorphic addition
and multiplication. Therefore in these schemes, the noise level grows exponentially with the number
of homomorphic multiplications: to evaluate a circuit with L sequential layers of multiplications, one
must impose the maximum noise level `max to be larger than 2L. This is practically unacceptable

1Note that in most FHE schemes, freshly generated ciphertexts have a smaller noise than the noise obtained
after a bootstrapping operation, allowing the circuit evaluator to save several bootstrappings at the beginning of the
circuit. However, it is possible that in real-world applications, data to be evaluated homomorphically will have been
pre-processed and will not contain the smallest possible noise anymore.

119

9. Minimal Number of Bootstrappings in Homomorphic Circuits

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(a) With no bootstrapping

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(b) Bootstrapping after each mul-
tiplication

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(c) Minimal solution

Figure 9.1 – Different bootstrapping solutions in a FHE scheme with `max = 2. Plain lines represent
homomorphic multiplications while dashed lines represent homomorphic additions. The red lines in
(a) reveal that the ciphertext noise will exceed the noise limit. Variables in a plain rectangle have
a “large” noise (`i = `max = 2) and the ones in a dashed blue rectangle are bootstrapped i.e. are
re-encrypted to convert a “large” noise (`i = 2) into a “small” noise (`i = 1).

even for small values of L and one must resort to bootstrapping periodically as the circuit is being
evaluated.

Note that our definition of noise levels neglects the logarithmic increase of the noise size after a
homomorphic addition. This approximation is often considered in the literature and remains valid
as long as the proportion of additions does not become overwhelming in the circuit. Clearly, our
simplified model would become invalid outside of this context.

FHE schemes using Modulus-Switching. In FHE schemes using the modulus switching technique
introduced in [BGV12], homomorphic addition still outputs ciphertexts of level `3 = max(`1, `2).
However, a homomorphic multiplication c3 = c1×c2 now results in a noise level `3 = max(`1, `2)+1.
Thus, to evaluate a circuit with L layers of multiplications, one only requires `max > L. However,
bootstrapping remains a cornerstone to achieve fully homomorphic encryption. When the depth of
the circuit is not known at key generation time, bootstrapping is still required to evaluate a large
circuit.

Minimizing bootstrappings. Overall, both one-modulus and scale-invariant FHE schemes must resort
to bootstrapping in homomorphic circuit evaluation, either periodically or once in a while. However,
the bootstrapping operation is reported as being the most drastic computational bottleneck in
all known FHE implementations [GH11b, CMNT11, PBS11a, CNT12, CCK+13]. Worse, most
of them merely perform a bootstrapping operation right after each multiplication, as suggested
in [Gen09, vDGHV10]. It is easily seen though, as shown by the toy example depicted on Fig. 9.1,
that this simple approach is often not optimal and that fewer bootstrappings may be sufficient to
evaluate the whole circuit if positioned more judiciously.

Note that, even though finding a minimal solution is trivial and easily done by hand in Fig. 9.1,
this optimization problem seems to become far more difficult with (even slightly) more complex
circuits. Automated tools are therefore necessary to identify (one of) the smallest possible set of
circuit variables whose bootstrapping will ensure a complete circuit evaluation in minimal time.

Our Contributions. We propose two efficient algorithms that automatically find an exact minimal
solution for any given circuit, i.e. output a minimal list of circuit variables to which bootstrapping
can be applied to evaluate the circuit. Section 9.2 introduces a first algorithm specific to the case of
FHE schemes with a maximum noise level set to `max = 2. In Section 9.3, we extend our algorithm
to support one-modulus FHE schemes handling up to `max > 3 noise levels. We show that the same
extended algorithm can also be used with leveled schemes via a problem reformulation. Finally,
Section 9.4 reports a number of experimental results on a range of real-world circuits, namely the

120

9.2. Homomorphic Schemes with 2 Noise Levels

benchmarking circuits for MPC and FHE proposed by Smart and Tillich [ST], as well as circuits
implementing the AES S-box suggested by Boyar and Peralta [BP12, BMP13].

9.2 Homomorphic Schemes with 2 Noise Levels

In this section, we consider a FHE scheme that can only handle two levels of randomness in
ciphertexts, i.e. level-1 ciphertexts can either be added (yielding a level-1 ciphertext) or multiplied
(yielding a level-2 ciphertext); however only addition can be performed on ciphertexts with levels
(1, 2), (2, 1) or (2, 2) since the result of a multiplication would not be decryptable. As a result, the
scheme can only handle a single multiplication after each bootstrapping operation. This framework
was heavily considered [Gen09, vDGHV10, CMNT11, PBS11a, BV11a, CNT12, CCK+13] and
some implementations are available [PBS11b, CT12].

9.2.1 Stating the Problem
Let C = C(n1, n2) be a Boolean circuit made of AND, XOR and NOT gates which takes as input n1
bits and outputs n2 bits. We denote by C† the same circuit as C where gates are replaced with
homomorphic additions and multiplications.2 Feeding C† with n1 encrypted bits (under the FHE
scheme), it will then output n2 encrypted bits corresponding to the outputs of C applied on the
same input bits in the clear. We denote by V = {vi : 1 6 i 6 n} the set of all single-assignment
variables (ciphertexts) used in C† where v1, . . . , vn1 are the input variables and vn−n2+1, . . . , vn
the output variables. Now we assign a noise level `i ∈ {1, 2, . . .} to each vi as follows: the noise
levels `1, `2, . . . , `n1 ∈ {1, 2} are already fixed by the input variables v1, . . . , vn1 . Using the two
rules `i3 = max(`i1 , `i2) when vi3 = vi1 + vi2 and `i3 = `i1 + `i2 when vi3 = vi1 × vi2 , we let noise
levels automatically propagate throughout the circuit down to some output levels `n−n2+1, . . . , `n.
Note that the noise levels of intermediate and output variables are left totally unbounded during
that initial propagation and may therefore exceed by far the maximum level `max = 2 supported by
the FHE scheme, meaning that the corresponding variables are in fact not decryptable. However,
bootstrapping some variable vi resets `i to 1 and it is easily seen that bootstrapping all variables
v1, . . . , vn makes them all decryptable again: we then say that C† is evaluable. What we are after
is a minimal subset I ⊆ {1, n} such that bootstrapping vi for all i ∈ I has the same effect.

A Boolean reformulation. To each vi ∈ V is assigned a Boolean value bi ∈ {True,False} that tells
whether vi is to be bootstrapped or not when evaluating C†. We also define a Boolean mapping
B(vi) such that

B(vi) = True if and only if `i = 1 .

We see that if vi3 = vi1 + vi2 then

B(vi3) = bi3 ∨
(
B(vi1) ∧ B(vi2)

)
. (9.1)

This is because `i3 = 1 only if `i1 = `i2 = 1 or, as an alternate case, `i3 equals 2 when vi3 is
computed but bootstrapping vi3 afterwards resets `i3 to 1. Moreover, if vi3 = vi1 × vi2 then

B(vi3) = bi3 . (9.2)

Indeed as the result of a multiplication vi3 has level `i3 = 2. The only way to get `i3 = 1 is therefore
to bootstrap vi3 after computing it. We also see that B(vi) is already determined for input variables
since for i = 1, . . . , n1,

B(vi) =
{

True if `i = 1,
bi if `i 6= 1. (9.3)

Overall, we see that the Boolean predicate B can also be propagated (as a multivariate Boolean
expression) across the circuit using the above rules (9.1)–(9.3). This operation can be done statically
given the description of the circuit and will result in a list of formal Boolean expressions for
B(v1), . . . ,B(vn) that only involve the ‘bootstrapping’ variables b1, . . . , bn.

2XOR and NOT gates correspond to homomorphic additions and AND gates to homomorphic multiplications.

121

9. Minimal Number of Bootstrappings in Homomorphic Circuits

We now capture the fact that C† is evaluatable or not as a Boolean predicate φ2
C. In order to

ascertain the correctness of all variables of C†, one must just ensure that all variables entering a
multiplication have noise level 1. Hence

φ2
C =

∧
vk=vi×vj∈C†

(
B(vi) ∧ B(vj)

)
. (9.4)

Obviously, φ2
C is a predicate involving b1, . . . , bn (or a subset thereof) and can be computed once

B has been propagated throughout the circuit. All in all, evaluating C† with a minimal number
of bootstrappings is reformulated as a Boolean satisfiability problem: φ2

C must be satisfied with a
minimal number of variables b1, . . . , bn set to True.

DNF and monotone predicates. We observe that the Boolean predicate φ2
C = φ2

C(b1, . . . , bn) is
monotone since no negated literal ¬bi appears in φ2

C. A monotone predicate is trivially satisfiable by
setting all its variables to True. What we want, however, is to satisfy φ2

C with as few bi’s set to True
as possible. An exact solution to our problem would be to represent φ2

C in Disjunctive Normal Form
(DNF), i.e. as an XOR of ANDs. Given a DNF representation of φ2

C, it is easy to identify an AND
involving a minimal number of variables, thus providing a minimal bootstrapping configuration for
C†. However, noting µ(φ2

C) ∈ [1, n] this minimal number, even just deciding whether µ(φ2
C) 6 t for

some t ∈ [1, n] is a priori intractable:

Theorem 9.1 ([GHM05], Th. 3.4). Let φ be an n-variate Boolean monotone predicate and t ∈ [1, n].
Let µ(φ) be the size of its smallest prime implicant. Deciding whether µ(φ) 6 t is NP-complete.

We therefore circumvent this obstacle by adopting a heuristic approach and further validate its
effectiveness experimentally as reported later in the chapter.

9.2.2 A Heuristic Solver

We observe that φ2
C is computed in Equation (9.4) as an accumulated conjunction: thus when

propagating B across C†, we systematically put each B(vi) in minimal Conjunctive Normal Form
(min-CNF), i.e. as an AND of XORs with as few terms as possible. Obviously B(vi) becomes
more complex (involves more bi’s) as the variable vi is taken deeper in the circuit. However,
the complexity increase remains incremental from B(vi1),B(vi2) to B(vi3) for vi3 = vi1 op vi2 and
computing the min-CNF of B(vi3) given the min-CNF of B(vi1),B(vi2) therefore requires a moderate
computational effort. φ2

C is then aggregated along the way as a min-CNF of other min-CNFs,
which is easy to program. Once we are done collecting parts and putting together the multivariate
predicate φ2

C, we apply heuristic transformations on its min-CNF until it becomes small enough to
allow a conversion to DNF using a standard algorithm. A minimal bootstrapping configuration is
then selected from one of the smallest conjunctive clauses in the resulting DNF.

We apply 3 independent transformations on the min-CNF of φ2
C:

1. Bootstrap required variables: if φ2
C = (· · ·) ∧ bi ∧ (· · ·) for some bi then set bi = True and

repeat the operation until no longer applicable;

2. Remove redundant variables: a variable bi is redundant w.r.t. a variable bj if every occurrence
of bi in a clause of φ2

C appears together with an occurrence of bj (but the converse might not be
true). In other words, any clause c containing bi is of the form c = (· · ·) ∨ bi ∨ (· · ·) ∨ bj ∨ (· · ·).
Setting bi = True would of course lead to c = True but this will only remove all such clauses
c from φ2

C, whereas setting bj = True instead might induce additional simplifications in other
clauses of φ2

C. Therefore, we set bi = False, propagate simplifications in the CNF of φ2
C, repeat

the operation until no longer applicable and restart with Step 1;

3. Maintain minimal CNF: Eliminate any clause that is tautologically implied by another clause
of φ2

C; repeat the operation until no longer applicable and restart with Step 1.

122

9.3. Extension to FHE Schemes with Many Noise Levels

In practice, these transformations are reasonably efficient and allow us to reduce the min-CNF of
φ2

C in such proportions that converting it to DNF afterwards is either immediate or unnecessary
(depending on the circuit C, φ2

C sometimes reduces to True by itself along the way, which terminates
our algorithm). Therefore, even though our method is unproven, we validated its practical
effectiveness. We refer to Sections 9.4 and 9.4.2 for experimental results.
Remark 9.2. Note that the transformations 2 and 3 are such that one will not exhaust all the
bootstrapping configurations that satisfy φ2

C. However the final configuration is guaranteed to be
minimal: since all minimal configurations are equivalent with respect to performance, all one cares
about is finding one such configuration.
Remark 9.3. Note that one might also want to ensure that some output variables vn−n2+j for
j ∈ J ⊆ [1, n2] have noise level 1 instead of 2. Now, resolving φ2

C and bootstrapping these output
variables might not yield a minimal solution. To address this case, we simply accumulate the
predicates B(vn−n2+j) for j ∈ J into φ2

C and apply the exact same strategy as above.

9.3 Extension to FHE Schemes with Many Noise Levels

Assume we are now given a FHE scheme that can handle `max > 2 levels of noise. Let c1, c2 and
c3 be ciphertexts with noise levels `1, `2 and `3 respectively. As discussed earlier, there exists
essentially two different formulas for `3 when c3 = c1 × c2:

• `3 = `1 + `2: this corresponds to the settings of one-modulus schemes [Gen09, vDGHV10,
CMNT11, BV11a, CNT12, CCK+13, FV12, BLLN13, CLT14a].3 In these schemes, the modulus
remains the same after a multiplication but the noise increase depends on the amount of initial
noises in the input ciphertexts. At most log2(`max) layers of homomorphic multiplications can
be evaluated before resorting to bootstrapping;

• `3 = max(`1, `2) + 1: this corresponds to the FHE schemes using modulus-switching found
in [BGV12, CNT12, LTV12]. The noise grows negligibly after a homomorphic multiplication,
but the modulus is modified after each multiplication (therefore the relative amount of noise
increases). This technique is known as modulus switching, wherein `max different moduli are
used to evaluate `max layers of homomorphic multiplications without bootstrapping. Moreover
two ciphertexts can only be added or multiplied when they have exactly the same noise level
so that their underlying rings become identical. In the following, we assume that the cost of
modulus switching for a variable vi, i.e. incrementing its noise level, is negligible compared to
the cost of a bootstrapping operation.

We generalize the method of Section 9.2 to FHE schemes with `max > 2 noise levels: Section 9.3.1
focuses on a extended algorithm that works with exponential schemes, and we show in Section 9.3.2
how to slightly modify C† in order to reuse the very same algorithm as a black-box to address linear
schemes.

We recall that our goal is to minimize the number of bootstrappings needed to homomorphically
evaluate the circuit C† on input (vi, `i)16i6n1 . As above, we associate to every circuit variable
vi ∈ V a Boolean variable bi ∈ {True,False} that tells whether vi is to be bootstrapped or not.
Again, we construct a Boolean predicate φ`max

C as a function of b1, . . . , bn, `1, . . . , `n1 that tells
whether C† is evaluatable. We then rely on our heuristic solver of Section 9.2 to issue a minimal set
I ⊆ [1, n] such that bi = True for all i ∈ I implies φ`max

C = True.

9.3.1 Extension to One-Modulus FHE Schemes
To any variable vi ∈ V, we now associate a vector B(vi) = (Bi,1, . . . ,Bi,`max−1)t with (`max − 1)
Boolean coefficients such that `i = j if and only if Bi,j is the first coefficient set to True as j ranges
from 1 to `max − 1, and `i = `max if none of the coefficients is True. We make use of the Boolean
vector B(vi) to encode the noise level `i of vi and propagate it throughout the circuit as we did

3Note that the noise increase is quite different between the Gentry-like schemes [Gen09, CMNT11, CNT12,
CCK+13] and the scale-invariant schemes [Bra12, FV12, BLLN13, CLT14a], but this does not affect our high-level
description.

123

9. Minimal Number of Bootstrappings in Homomorphic Circuits

with B(vi) in the binary case `max = 2. Let us describe in more detail how B(vi) evolves when
being propagated across the circuit:

• for 1 6 i 6 n1, i.e. for input variables, set

Bi,j = False for j 6= `i and Bi,`i = True if `i < `max .

• when vk = vi + vj , set

B(vk) =

 bk ∨
(
Bi,1 ∧ Bj,1

)(
Bi,1 ∧ Bj,2

)
∨
(
Bj,1 ∧ Bi,2

)
∨
(
Bi,2 ∧ Bj,2

)
...

 , (9.5)

Indeed, `k = 1 if and only if vk is bootstrapped or (`i, `j) = (1, 1), otherwise `k = 2 if
(`i, `j) ∈

{
(1, 2), (2, 1), (2, 2)

}
, etc. All vector coefficients Bk,3, . . . ,Bk,`max−1 are formed in the

same fashion.

• when vk = vi × vj , set

B(vk) =


bk

Bi,1 ∧ Bj,1(
Bi,1 ∧ Bj,2

)
∨
(
Bj,1 ∧ Bi,2

)
...

 . (9.6)

This multiplication expresses the fact that `k = `i + `j . Indeed, `k = 1 if and only if vk is
bootstrapped, `k = 2 if and only if `i = `j = 1, and so forth.

Remark 9.4. Before explaining how to construct the Boolean formula φ`max
C , let us give a couple

of remarks on our representation. First of all, this representation does not imply that
(
Bi,j =

True and Bi,m = False for m 6= j
)
⇐⇒ `i = j, but that(

Bi,j = True and Bi,m = False for 1 6 m < j
)
⇐⇒ `i = j .

This allows us to simplify the formulas for homomorphic addition and multiplication as we do
not need to check whether Bi,m = False for m > `i (see Bk,2 in Equation (9.5) and Bk,3 in
Equation (9.6)). Secondly, when all the elements of B(vi) are False, this means that vi is at the
maximum level of noise `i = `max. Therefore this representation nicely generalizes the one of
Section 9.2.

We now construct the Boolean formula φ`max
C which tells whether the circuit is evaluatable by

setting

φ`max
C =

∧
vi∈V

(`i 6 `max) =
∧

vk=vi×vj∈C†

(∨
16m6`max

Bk,m
)
.

Note that the clauses of φ`max
C encode the fact that to properly evaluate a homomorphic operation

vk = vi op vj , one must just have `k 6 `max. This is automatically guaranteed by induction for all
additions; expressed on all multiplications, this constraint precisely gives the above expression. As
before, we use minimal CNF representation to propagate B(vi) throughout the circuit and aggregate
all the clauses of φ`max

C on the way. This results in a min-CNF for φ`max
C to which we apply the same

3 simplifying transformations. We finally convert the resulting predicate to DNF (if necessary) to
identify a minimal configuration.

Remark 9.5. Note that one might want to ensure that (a subset of) the output variables have noise
levels bounded by some ` 6 `max. One then aggregates in φ`max

C the clauses
∨
i6` Bn−n2+j,i for

j ∈ [1, n2] before solving the system.

124

9.4. Practical Experiments

Table 9.1 – Minimal number of bootstrappings with level-1 inputs and outputs.

Circuit C† `max Number of hom. Exact minimal number
multiplications in C† of bootstappings

Adder 32 bits [ST] 2 127 127
Adder 32 bits [ST] 4 127 64
Comparator 32 bits [ST] 2 150 146
Comparator 32 bits [ST] 4 150 74
DES (expanded key) [ST] 2 18175 18041
DES (expanded key) [ST] 4 18175 8997
AES S-box [BP12] 2 32 19
AES S-box [BP12] 4 32 12
AES S-box [BMP13] 2 32 17
AES S-box [BMP13] 4 32 12

9.3.2 Extension to FHE Schemes using Modulus Switching

In this section, we explain how to deal with the case where `3 = max(`1, `2) + 1 when c3 = c1 × c2.
Instead of adapting the previous method, we apply it as a black box to a modified version of the
homomorphic circuit C†. The modified circuit will no longer be consistent with its specification
but can be treated by our algorithm regardless. The key idea is to see that one can simulate the
linear framework in the exponential framework by replacing every homomorphic multiplication
c3 = c1 × c2 with a subcircuit c3 = (c1 + c2)× c1,2 where c1,2 is a fixed ciphertext with noise level
`1,2 = 1. Indeed, we get

`3 = max(`1, `2) + `1,2 = max(`1, `2) + 1 ,

which is the wanted value in linear schemes. As mentioned, the correctness of the modified circuit
as a homomorphic version of C is destroyed, but our extended algorithm remains applicable to it
and will compute a minimal bootstrapping configuration in an oblivious fashion.

Note however that we need to slightly twitch the extended solver, otherwise solutions might
suggest to bootstrap the newly introduced variables vi,j . This would not make any sense as these
variables have no real existence and only serve as helper variables in our simulation. We can
easily circumvent this by not assigning a Boolean bi,j (or equivalently by forcing it to be False in
Bi,j) to the variables vi,j . This eliminates the undesired collateral effect of seeing these variables
being bootstrapped when solving φ`max

C . We then successfully compute a minimal bootstrapping
configuration from φ`max

C as previously described.

9.4 Practical Experiments

In this section, we discuss practical results obtained by applying our algorithms on several circuits
(see Table 9.1). We implemented our basic and extended solvers using Mathematica 9 running on a
2.6 GHz Intel Core i7 with 16 GB of RAM. Although we did not specifically measure execution
times, these range from a few seconds to a few hours depending on the circuit size and `max (timings
tend to grow exponentially with `max). We focused on the benchmarking circuits for MPC/FHE
proposed by Smart and Tillich [ST], and on circuits put forward by Boyar and Peralta for the
AES S-box [BP12, BMP13]. For each circuit, we computed the minimal number of bootstrappings
needed to evaluate homomorphically that circuit with an exponential FHE scheme supporting
`max = 2 or `max = 4 noise levels and with level-1 inputs and outputs, i.e.

`1 = · · · = `n1 = 1 and `n−n2+1 = · · · = `n = 1 .

Table 9.1 reports the results we obtained by applying our algorithms to the selected circuits.

125

9. Minimal Number of Bootstrappings in Homomorphic Circuits

9.4.1 MPC/FHE Benchmark Circuits
Our results show that circuits given as reference by [ST] tend to be disappointing when `max = 2
as we find that the minimal number of bootstrapping required to evaluate them is nearly equal to
the number of homomorphic multiplications, thus being very close to the (trivial) upper bound.
This can be explained by the fact that these circuits are automatically generated from hardware
components, and clearly not optimized: they were not constructed to be small in terms of gate count,
or have a significantly smaller depth, etc. Their linear parts were not optimized either [BMP13].
Also note that setting `max = 4 instead of 2 divides the number of required bootstrappings by a
factor nearly two.

9.4.2 The AES S-boxes of Boyar, Matthews and Peralta
To the best of our knowledge, the first ‘real-life’ circuit evaluated by a fully homomorphic encryption
scheme is a circuit for AES encryption proposed by Gentry, Halevi and Smart [GHS12c]. However
the authors are using modulus switching to get rid of the costly bootstrapping procedure by choosing
a FHE scheme with `max = 100 so that the entire circuit can be evaluated at once. The drawback
of this choice is that the public key becomes prohibitively large and required a server with 256GB of
RAM to run the implementation and issue performance benchmarks. The authors suggested that
bootstrapping might certainly be used as an optimization, i.e. as a way to balance the running
time and the memory requirements.

In Chapter 10, we want to homomorphically evaluate the same AES encryption procedure, with
the schemes introduces in Chapters 7 and 8. Since the former scheme is not a leveled homomorphic
encryption scheme, one cannot set the number of levels too high and needs to use the bootstrap
procedure repeatedly. Therefore, we will apply the technique describe in this chapter to minimize
the number of bootstrapping for the homomorphic AES evaluation.

The non-linear part of AES, computing the S-box, cannot be performed by table lookups in an
homomorphic implementation. We considered circuits for the AES S-box already optimized by Boyar,
Matthews and Peralta with respect to gate count or depth [BMP13, BP12]. Our practical results
are detailed on Table 9.1. Contrarily to the circuits of [ST], the latter circuits were optimized and
we found that their minimal number of bootstrappings is nearly half the number of homomorphic
multiplications when `max = 2. As a result, homomorphically evaluating an AES encryption with a
2-level FHE scheme can be boosted by a factor 1.88 by just choosing the circuit from [BMP13] and
use our 17-bootstrapping optimal configuration

{t21, t22, t23, t24, t26, t29, t33, t36, t40, s0, s1, s2, s3, s4, s5, s6, s7} ,

as described in Chapter 10.
However, when `max grows, the gain of minimal bootstrapping operations with respect to the

case `max = 2 is smaller than for the circuits of [ST] (and even lower bounded by 8) due to the
structure of these circuits.4 Since the output variables are required to have a minimal noise level,
the last reduction phase implies that the minimal solution consists in bootstrapping these output
variables.

9.5 Conclusion

We introduced a method that computes the exact minimal number of bootstrappings required to
homomorphically evaluate any circuit using any known FHE scheme. When `max = 2, the number
of homomorphic multiplications is a strict upper bound on the minimal number of bootstrappings
but significantly better figures can be found using our approach as exemplified by the circuit
from [BMP13]. We see, however, that most commonly used circuits are disappointingly unoptimized
with respect to their ‘bootstrapping complexity’. As an avenue for future research, we suggest
to explore algorithmic strategies to build bootstrapping-efficient circuits, i.e. to decrease their
bootstrapping complexity by a specific design effort. Finally, it would be interesting to refine

4Note that these circuits are composed of three phases: top linear transformations, shared non-linear component,
and bottom linear transformations.

126

9.5. Conclusion

our definition of noise levels to take into account the additional logarithmic effects induced by
homomorphic operations, especially in the case of scale-invariant FHE schemes.

127

Chapter 10

Implementations of Homomorphic AES
Evaluations

10.1 Introduction

This chapter investigates the concrete practicality of the schemes introduced in this part (Chapters 7
and 8) (and compares against existing results) by benchmarking the implementations against the
‘standard’ benchmark of implementing AES. We describe two homomorphic AES implementations,
inspired from bitslicing techniques [Bih97, KS09] and using batching. The batching allowed to
perform several independent AES decryption operations in parallel (or AES in counter mode).

This chapter consists of the implementations results described in the articles Batch Fully
Homomorphic Encryption over the Integers [CCK+13], cosigned with J.H. Cheon, J.-S. Coron, J. Kim,
M.S. Lee, T. Lepoint, M. Tibouchi and A. Yun, and published at Eurocrypt 2013 [JN13], and
Scale-Invariant Fully Homomorphic Encryption over the Integers [CLT14a], cosigned with J.-S. Coron
and M. Tibouchi, and published at PKC 2014 [Kra14]. The full versions of these papers are available
at [CLT13a, CLT14b].

Sending Data to the Cloud. In typical real-world scenarios for using FHE with cloud applications,
one or more clients communicate with a cloud service. They upload data encrypted with an FHE
scheme under the public key of a specific user. The cloud can process this data homomorphically
and return an encrypted result. Unfortunately, ciphertext expansion (i.e. the ciphertext size divided
by the plaintext size) of current FHE schemes is prohibitive (thousands to millions). For example
using techniques in [CNT12] (for 72 bits of claimed security), sending 4MB of data on which the
cloud is allowed to operate, would require to send more than 73TB of encrypted data over the
network. Batching several plaintexts into a single ciphertext [GHS12b, CCK+13, CLT14b] can
improve on the required bandwidth; using [CCK+13] (i.e. the multi-slot scheme of Chapter 7) for
example, the network communication would be lowered to around 280GB. However, this is still
completely impractical.

To solve this issue, it was proposed in [NLV11] to instead send the data encrypted with a block
cipher (in particular AES). The cloud service then encrypts the ciphertexts with the FHE scheme
and the user’s public key and homomorphically decrypts them before they are processed. Therefore,
network communication is lowered to the data size (which is optimal) plus a costly one-time setup
that consists of sending the FHE public key and an FHE encryption of the block cipher secret key
(cf. Figure 10.1).

This suggestion requires a homomorphic evaluation of the block cipher decryption, which was
successfully implemented for AES in [GHS12c] based on the BGV scheme [BGV12]. The resulting
homomorphic evaluation of AES took 65 hours (on a Intel Xeon CPU running at 2.0 GHz) and
processed 720 blocks in parallel (that is a relative time of 5 minutes per block). The AES circuit
was chosen as a standard circuit to evaluate because it is nontrivial (but still reasonably small)
and has an algebraic structure that works well with the plaintext space of certain homomorphic
encryption schemes [GHS12c].

129

10. Implementations of Homomorphic AES Evaluations

pkFHE,EncFHE(k)

{AESk(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

EncFHE AES−1

f

{EncFHE(mi)}i

Figure 10.1 – Optimized communication with the cloud for homomorphic cryptography using AES.

Our Contributions. In this chapter, we use our multi-slot DGHV scheme (Chapter 7) and our
scale-invariant multi-slot DGHV scheme (Chapter 8) to homomorphically evaluate the full AES
encryption circuit.

First we describe two variants of homomorphic AES implementation, which we call byte-wise
bitslicing and state-wise bitslicing. The first construction is similar to general-purpose bitslic-
ing [Bih97, KS09], and represents the AES state by 8 ciphertexts c0, . . . , c7, where the underlying
plaintexts m0, . . . ,m7 encrypts bits of the AES state: m0 being the LSBs and m7 the MSBs.
The second constructions completely splits the 128-bit AES state in 128 ciphertexts, where each
ciphertext contains 1 bit of the AES state.

Next, we evaluate these implementations with the schemes described in Chapters 7 and 8. It
appears that these schemes offer competitive performance for homomorphic cryptography: an
amortized cost of about 23 seconds (resp. 3 minutes) per AES block at the 72-bit (resp. 80-
bit) security level on a mid-range workstation. This is comparable to the timings presented by
Gentry et al. at Crypto 2012 for their implementation of an RLWE-based scheme [GHS12c].
Note that our implementation using the multi-slot DGHV scheme uses bootstrapping, whereas the
implementations of [GHS12c] and with our scale-invariant multi-slot DGHV scheme use leveled
homomorphic encryption without bootstrapping.

While our implementations do not provide additional features nor significantly improved efficiency
over the RLWE-based scheme of [GHS12c], we believe it is interesting to obtain FHE schemes with
similar properties but based on different techniques and assumptions.

10.2 The AES Block Cipher

In this section, we briefly recall the Advanced Encryption Standard (AES) block cipher [FIP01].
AES uses a substitution-permutation network over blocks of 128 bits and can have three key lengths
128, 192 and 256 bits.

The AES state is represented as a 4 × 4 array of bytes, considered as elements of GF(28) '
GF(2)[x]/(x8 +x4 +x3 +x+ 1) (filled column by column). Four operations are applied on the state:

AddRoundKey. This transformation perform a bitwise XOR between the state and a round key
derived from the key schedule. We defer to [FIP01] for details on the key schedule of AES as we
will not need it in this chapter.

SubBytes. This transformation is the only non-linear transformation of AES and substitutes each
byte b of the state by the value b 7→ Mb254 + c, where the power function is performed over

130

10.3. Two Implementations of the Homomorphic AES

GF(28),

M =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


and c = 0x63 . (10.1)

Note that the multiplication by M is viewed over GF(2)8 ' GF(28), where b is considered as its
bit-representation vector.

MixColumns. This transformation consists in multiplying each column of the AES state (thus a
vector of four bytes) by the matrix M′ over GF(28), where

M′ =


0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 .

ShiftRows. This transformation cyclically shifts the last three rows of the state respectively by 1, 2
and 3 positions.

AES encryption consists of the successive operations AddRoundKey, Nr − 1 rounds (SubBytes,
ShiftRows, MixColumns,AddRoundKey), SubBytes, ShiftRows and AddRoundKey, where Nr = 10
(resp. Nr = 12, resp. Nr = 14) for AES-128 (resp. AES-192, resp. AES-256).

10.3 Two Implementations of the Homomorphic AES

Throughout the rest of the chapter, we only consider AES-128 for the sake of simplicity; our methods
are easily adaptable to AES-192 and AES-256. In this section we describe two implementations
of homomorphic evaluation of an AES-128 circuit (HAES), using our multi-slot DGHV schemes of
Chapters 7 and 8, with ` plaintext bits embedded in each ciphertext (i.e. a message spaceM = Z`2).

10.3.1 State-Wise Bitslicing

Recall that an AES state is constituted of 16 bytes, i.e. 128 bits. Let us represent the state of our
HAES by 128 ciphertexts, where each ciphertext contains one bit of the AES state. We use the
batching capability, i.e. the additional slots, to perform ` AES-128 encryptions in parallel. We call
this representation state-wise bitslicing.

The state in our representation is composed of 128 ciphertexts c0, . . . , c127, where the underlying
plaintexts m0, . . . ,m127 are such that mi+j·8[k] is the i-th bit of the j-th element of the state of
the k-th AES.

AddRoundKey. From the 128-bit AES key, an expanded key is created with (10 + 1) rounds subkeys
(namely, one subkey at the beginning of the encryption, and one per round). Each round subkey
is XORed at one point with the AES state. Thus, each bit of the subkey is XORed with the
corresponding bit of the state.

The 128-bit AES subkeys are represented similarly to the HAES state, i.e. by 128 ciphertexts,
one for each bit of the key. If the AES executed in parallel are with the same key, the key bit is put
in each slot; otherwise the bit corresponding to the k-th AES is placed in the k-th slot.

Then the AddRoundKey stage simply consists of Add operations with the 128 ciphertexts of
the encrypted AES key(s), one per ciphertext in the state. Therefore, this stage costs 128 Add
operations.

131

10. Implementations of Homomorphic AES Evaluations

ShiftRows. The permutation of the ShiftRows stage is applied on the indices of the ciphertexts of
the HAES state. This stage is a relabeling of the indices of the ciphertexts of the HAES state, and
therefore does not cost any homomorphic operation.

MixColumns. The MixColumns operation over the whole state can be viewed as
s′0 s′4 s′8 s′12
s′1 s′5 s′9 s′13
s′2 s′6 s′10 s′14
s′3 s′7 s′11 s′15

 = 0x02×


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⊕ 0x03×


s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15
s0 s4 s8 s12



⊕


s2 s6 s10 s14
s3 s7 s11 s15
s0 s4 s8 s12
s1 s5 s9 s13

⊕

s3 s7 s11 s15
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14

 .

In our implementation, we first store three copies of the HAES state (i.e. 3× 128 ciphertexts)
and we relabel their indices according to the previous operation. Next, we need to multiply by 0x02
the current HAES state and by 0x03 the first copy.

Algorithm 10.1 Multiplication by 0x02 in GF(28).

1: function MultiplyBy2(b =
∑7
i=0 bix

i ∈ GF(2)[x])
2: b′0 ← b7
3: b′1 ← b0 ⊕ b7
4: b′2 ← b1
5: b′3 ← b2 ⊕ b7
6: b′4 ← b3 ⊕ b7
7: b′5 ← b4
8: b′6 ← b5
9: b′7 ← b6
10: return

∑7
i=0 b

′
ix
i . b · 0x02 over GF(2)[x]/(x8 + x4 + x3 + x+ 1)

11: end function

Algorithm 10.2 Multiplication by 0x03 in GF(28).

1: function MultiplyBy3(b =
∑7
i=0 bix

i ∈ GF(2)[x])
2: return MultiplyBy2(b) + b . b · 0x03 = b · 0x02 + b
3: end function

Multiplication of a byte b by 0x02 (resp. 0x03) over GF(28) is easy; see Algorithm 10.1 (resp.
Algorithm 10.2).

When applying these algorithms on each block of 8 ciphertexts of the HAES state

(c0+8·j , . . . , c7+8·j), j = 0, . . . , 16 ,

each byte of the AES state is homomorphically multiplied by 0x02 (or 0x03), and this operation is
performed in parallel on the ` AES states automatically. Therefore, [3 + (3 + 8)]× 16 = 224 Add
operations are performed during this step.

Finally, we need to add the four copies (possibly rotated or multiplied) of the state to get the
final HAES state, and this is performed in 3× 128 = 384 Add.

SubBytes. Recall that the SubBytes stage consists for each byte b in applying the transformation
b 7→Mb254 + c, where M, c are defined in Equation (10.1).

A possible way to implement this stage could be to use Rivain and Prouff’s method [RP10]
that computes b254 from b with 4 multiplications over GF(28) and several squarings. The squaring
of b =

∑7
i=0 bix

i ∈ GF(2)[x]/(x8 + x4 + x3 + x + 1) can be done only with XORs and therefore

132

10.3. Two Implementations of the Homomorphic AES

with homomorphic additions, and therefore does not cost anything. The multiplication over GF(28)
can be done by a Cauchy product and a reduction, and therefore an homomorphic multiplication
consumes one level of noise.

For BDGHV, the multi-slot DGHV scheme of Chapter 7, after each multiplication 128 recryptions
would be needed to recover a state with a “small” noise (i.e. small enough so that the 128
ciphertexts can be multiplied once without prior recryption). Therefore, computing b254 would
require 4 × 128 = 512 BDGHV.Recrypt operations, which is a lot. To minimize the number of
recryptions, we used the 115 gates circuit of Boyar, Matthew and Peralta [BMP13] to compute the
S-box as proposed in Chapter 9. When applying this circuit homomorphically on each block of 8
ciphertexts of the HAES state

(c0+8·j , . . . , c7+8·j), j = 0, . . . , 16 ,

it suffices to bootstrap 9 + 8 = 17 variables (i.e. apply 17 BDGHV.Recrypt) instead of 32 to recover
a HAES state with “small” noise. This yields a ≈ 88% faster computation of the AES S-box.
Therefore, this stage costs 512 BDGHV.Mult, 272 BDGHV.Recrypt and 1328 BDGHV.Add. Note
that under our representation the S-box circuit is evaluated in parallel over the k AES blocks.

For the sake of comparison, we used the same circuit for the scale-invariant DGHV scheme. This
circuit consumes 6 levels of noise and require 32 SIBDGHV.Convert operations on each block of 8
ciphertexts of the HAES state. Therefore, this stage costs 512 SIBDGHV.Mult, 512 SIBDGHV.Recrypt
and 1328 SIBDGHV.Add.

Final Cost. The AES encryption process consists of 11 AddRoundKey stages, 10 SubBytes, 9
MixColumns and 10 ShiftRows. Therefore, the final cost for BDGHV is 20160 BDGHV.Add, 2720
BDGHV.Recrypt and 5120 BDGHV.Mult, and the final cost for SIBDGHV is 20160 SIBDGHV.Add,
5120 SIBDGHV.Recrypt and 5120 SIBDGHV.Mult. However, a fine management of the noise allows
us to reduce the number of BDGHV.Recrypt to 2448 (namely, we do not need to bootstrap at all in
SubBytes during the first round).

10.3.2 Byte-Wise Bitslicing
In this section, we propose a new representation that will use permutations over plaintext slots.
We described how to permute plaintext slots for the BDGHV scheme, for free during the Recrypt
procedure, in Section 7.4.3. This is made possible by including in the public key specifically designed
encryptions of the permuted secret key bits.

As a consequence, we only consider the BDGHV scheme in this section.

Recall that the AES state is a matrix of 4× 4 bytes. It can be viewed as a 16-byte vector when
reading the bytes by column. We define a representation called byte-wise bitslicing in which the
HAES state will be composed of 8 ciphertexts, each ciphertext containing one and exactly one bit of
each byte of the AES state (this requires batching). This construction is similar to general-purpose
bitslicing [Bih97, KS09]. We also use the batching capability to perform `′ = b`/16c AES-128
encryptions in parallel.

The state in our representation is composed of 8 ciphertexts c0, . . . , c7, where the underlying
plaintexts m0, . . . ,m7 are such that mi[k · 16 + j] is the i-th bit of the j-th element of the state of
the k-th AES (see Figure 10.2). Thus m0 represents the LSBs of the bytes of the AES states for the
`′ AES plaintexts, and m7 the MSBs.

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

. . .

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

. . .

A
E
S

1

A
E
S

2

A
E
S

3

. . .

A
E
S

`
′

Row 0 Row 1 Row 2 Row 3 . . . Row 0 . . . Row 3

Column 0 . . . Column 3

Figure 10.2 – Bit ordering in mi in the byte-wise bitslicing representation.

133

10. Implementations of Homomorphic AES Evaluations

AddRoundKey. Here again we construct the round subkeys with the same structure as the HAES
state (i.e. 8 ciphertexts); note that we repeat each bit of the round subkey `′ times. Therefore,
the AddRoundKey stage only consists in adding the corresponding ciphertexts with BDGHV.Add as
the underlying operation is a XOR on the plaintext bits. This operation consists of 8 BDGHV.Add
operations.

MixColumns. As in the previous state-wise bitslicing representation, we define three copies of the
HAES state (i.e. 24 additional ciphertexts) and we rotate them according to the permutations ζ1, ζ2
or ζ3, with

ζi(I × `′ +K) = ζMCi(I)× `′ +K, 0 6 K 6 `′ − 1, 0 6 I 6 15 ,

the permutation ζMCi being defined as

ζMCi(I) = bI/4c · 4 + (I + i mod 4), 0 6 I 6 15 .

This costs 3× 8 = 24 BDGHV.Recrypt.
Next, we need to multiply by 0x02 the current HAES state and by 0x03 the first copy and this

is easy as previously thanks to Algorithms 10.1 and 10.2. When applying these algorithms on the
HAES state (c0, . . . , c7) instead of (b0, . . . , b7), the multiplication by 0x02 and 0x03 are performed
in parallel over all the bytes of an underlying AES state, and also on the `′ AES states. Therefore,
3 + (3 + 8) = 14 BDGHV.Add operations are performed during this step.

Finally, we need to add the four copies (possibly rotated or multiplied) of the state to get the
final HAES state, and this is performed in 3× 8 = 24 BDGHV.Add operations.

SubBytes. As for the state-wise bitslicing variant, we used the 115 gates circuit of Boyar, Matthews
and Peralta [BMP13] to compute the S-box with a small number of Recrypt. This stage costs 32
BDGHV.Mult, 17 BDGHV.Recrypt and 83 BDGHV.Add. Note that under our representation the
S-box circuit is evaluated in parallel over the 16 bytes of an AES state, and also on the `′ AES
blocks.

Note that our representation is very well adapted to this SubBytes stage. Indeed, since the same
operation needs to be performed on all the bytes of the AES state, for the `′ AES blocks performed
in parallel, manipulating the ciphertext c0 as if it was the LSB of a byte of an AES state, and c7 as
the MSB, evaluating the previous circuit allows to perform the SubBytes stage in parallel not only
over the 16 bytes of an AES state, but also on the `′ AES blocks!

ShiftRows. Contrary to the state-wise bitslicing representation, the ShiftRows stage is not only a
reordering of the indices of the ciphertext. On the contrary, it consists in performing the permutation
ζSR on the bytes of the AES state, where the Cauchy’s two-line notation of the permutation is

ζSR =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3

)
Since we “sliced” the bytes of the AES state in our representation, we will need to apply a

similar permutation on each ciphertext of the state. Since we are performing `′ AES blocks in
parallel, we need to consider the permutation ζ defined by

ζ(I × `′ +K) = ζSR(I)× `′ +K, 0 6 K 6 `′ − 1, 0 6 I 6 15 .

Next, we need to permute each of the ci’s of the HAES state by ζ to perform the ShiftRows stage.
As mentioned in Section 7.4.3, rotating the slots is “for free” when performed during a Recrypt.
Now, we perform a recryption on each element of the HAES state at the end of the SubBytes stage.
Thus, instead of using the regular σi’s as Section 7.4.2, we use the σζi ’s as in Section 7.4.3 and the
ShiftRows stage will be obtained at the end of the SubBytes stage at no additional cost.

Final Cost. The AES encryption process consists of 11 AddRoundKey stages, 10 SubBytes and
ShiftRows stages and 9 MixColumns stages. Therefore, the final cost is 1260 BDGHV.Add, 386
BDGHV.Recrypt and 320 BDGHV.Mult. As before, a fine management of the noise allows us to
reduce the number of BDGHV.Recrypt to 377.

134

10.4. Implementation Results

10.4 Implementation Results

We implemented proof-of-concept implementations of a homomorphic encryption of AES with
the test vector of [FIP01, Appendix B], using the C++ implementations of BDGHV and SIBDGHV
mentioned in Chapters 7 and 8. We provide our results in Tables 10.1.

In particular, we show that our most efficient homomorphic AES evaluation takes just over 4
days, but can process 1875 blocks in each evaluation, yielding an amortized rate of just over three
minutes per block. This is comparable to the five minutes per AES block of the homomorphic AES
evaluation using the BGV scheme [BGV12] in [GHS12c].

10.4.1 Some Thoughts about Homomorphic Evaluations
Latency versus Throughput. Let us define the two notions latency and throughput associated to a
homomorphic evaluation. We say that the latency of a homomorphic evaluation is the time required
to perform the entire homomorphic evaluation. Its throughput is the number of blocks processed
per unit of time.

The results presented in Table 10.1 illustrate the fact that a careful design of the algorithm to
be evaluated can decrease the latency. Namely, to have a latency as small as possible, the byte-wise
bitslicing representation is more adapted than the state-wise bitslicing representation (18 hours
versus more than 100 hours).

The state-wise bitslicing representation (and the representations in [GHS12c]) were chosen to
maximize the throughput, by allowing more blocks to be processed at once. Therefore, we can
claim a “small” relative time per AES block while the latency is several dozens of hours. However,
“real world” homomorphic evaluations (likely to be used in the cloud) should be implemented in a
transparent and user-friendly way. It is therefore questionable whether maximizing the throughput
by treating a lot of blocks in parallel is: (1) suitable for further processing of data, (2) worth the
impact on the latency. In particular, it might only be interesting when this processing is identical
over each block (which is likely not to be the case in real world scenarios). Overall, one should
rather select parameters to have the latency as small as possible. The throughput can be increased
by running the homomorphic evaluations in a cluster.

Cloud Computations. The purpose of the scenario in which the data is sent encrypted with a block
cipher to the cloud is that, once the data arrives in the cloud and has been homomorphically
decrypted, the cloud can perform more homomorphic operations on it. With a scheme that
implements bootstrapping, e.g. the BDGHV scheme of Chapter 7, there is no restriction to that. But
in practice, the homomorphic encryption schemes often are not implemented with bootstrapping. In
particular, we did not implement the bootstrapping in the SIBDGHV scheme, nor was it implemented
in [GHS12c]. For the AES evaluations the parameters of the leveled homomorphic scheme were
chosen so that it can homomorphically evaluate the AES decryption without bootstrapping, but
not much more. Taking into account a certain amount of computations after the homomorphic
decryption either requires larger parameters to ensure correctness, or the implementation of
bootstrapping. Following the former approach, it should be noted that parameter selection needs
to be done ensuring correctness for a circuit including the block cipher operation and the desired
application function. Overall, depending on the specific application, performance might become
worse than indicated in the current results.

10.5 Conclusion

In this chapter, we proposed two representations to perform a homomorphic AES evaluation. These
representations use several slots (i.e. the batching capability) to process several AES states in
parallel. Then we homomorphically evaluated AES with the multi-slot FHE schemes designed in
Chapters 7 and 8. Our proof-of-concept implementations in C++, using the big integer library GMP,
yield that AES can be evaluated completely in about 18 hours, or when processing several blocks
in parallel, in about 3 minutes per block on a mid-range computer. These results are of the same
order of efficiency than the homomorphic AES evaluation of Gentry, Halevi and Smart [GHS12c]
based on the BGV fully homomorphic encryption scheme [BGV12].

135

10. Implementations of Homomorphic AES Evaluations

Table
10.1

–
Benchm

arking
ofhom

om
orphic

AES
encryptions

using
BD

GH
V

and
SIBD

GH
V.

(a)
T
im

ings
for

byte-w
ise

representation
using

B
D

G
H

V
,on

a
desktop

com
puter

(IntelC
ore

i7
at

3.4G
hz,32G

B
R
A
M
).

Instance
λ

`
#

ofenc.
AddRoundK

ey
ShiftRows

M
ixColum

ns
T
otal

A
E
S

R
elative

in
parallel

and
SubBytes

(in
hours)

tim
e

T
oy

42
16

1
0
.006s

2.2s
3s

0
.013

48s
Sm

all
52

48
3

0.04s
21s

29s
0
.125

2m
in

30s
M
edium

62
144

9
0.3s

210s
290s

1
.25

8m
in

20s
L
arge

72
528

33
1.6s

2970s
4165s

18
.3

33m
in

(b)
T
im

ings
for

state-w
ise

representation
using

B
D

G
H

V
,on

a
desktop

com
puter

(IntelC
ore

i7
at

3.4G
hz,32G

B
R
A
M
).

Instance
λ

`
#

ofenc.
AddRoundK

ey
SubBytes

ShiftRows
M

ixColum
ns

T
otal

A
E
S

R
elative

in
parallel

(in
hours)

tim
e

T
oy

42
10

10
0
.06s

33s
0s

0.02s
0
.08

29s
Sm

all
52

37
37

0
.06s

309s
0s

0.09s
0
.74

1m
in

12s
M
edium

62
138

138
4.5s

3299s
0s

0.44s
7
.86

3m
in

25s
L
arge

72
531

531
27s

47656s
0.04s

2
.8s

113
12m

in
46s

(c)
T
im

ings
for

state-w
ise

representation
using

SIB
D

G
H

V
,on

an
IntelX

eon
E
5-2690

at
2.9

G
H
z.

Instance
λ

`
#

ofenc.
AddRoundK

ey
SubBytes

ShiftRows
M

ixColum
ns

T
otal

A
E
S

R
elative

in
parallel

(in
hours)

tim
e

T
oy

42
9

9
0.0s

1.5s
0.0s

0.0s
0.004

1.7s
Sm

all
52

35
35

0.1s
9.9s

0.0s
0.0s

0.027
2.9s

M
edium

62
140

140
0.3s

80.5s
0.0s

0.1s
0.22

5.8s
L
arge

72
569

569
2.1s

21m
in

0.0s
0.6s

3.58
23s

E
xtra

80
1875

1875
6.9s

10h
9m

in
0.1s

1.6s
102

195s

136

10.5. Conclusion

As a consequence, it appears that our scale-invariant multi-slot DGHV scheme offers a competitive
alternative to the lattice-based leveled homomorphic encryption schemes, while relying on a different
hardness assumption.

The AES circuit was chosen as a standard circuit to evaluate because it is nontrivial (but still
reasonably small) and has an algebraic structure that works well with the plaintext space of certain
homomorphic encryption schemes [GHS12c]. However, there might be other ciphers that are more
suitable for being evaluated under homomorphic encryption, and this remains a promising research
area.

For example, we propose with Michael Naehrig in [LN14a] to consider lightweight block ciphers
instead of AES. Indeed, these block ciphers were engineered to be extremely small, easy to
implement and efficient in hardware. Now due to the limitations of current homomorphic encryption
schemes, this hardware optimized structure yields likely candidates for homomorphic cryptography.
In [LN14a], we present an homomorphic evaluation of the block cipher Simon [BSS+13] unveiled in
June 2013 by the U.S. National Security Agency. Using the SIBDGHV scheme of Chapter 8, we
show that a full-fledged homomorphic Simon-32/64 evaluation (having 64 bits of security) can be
evaluated in about 10 minutes, for an amortized time of 3 seconds per block. Our main contributions
however are focusing on the lattice-based homomorphic encryptions schemes YASHE [BLLN13]
and FV [FV12], which finally appear to be more competitive than the integer-based schemes.
Independently, Doröz, Shahverdi, Eisenbarth and Sunar proposed in [DSES14] to homomorphically
evaluate the lightweight block cipher Prince [BCG+12], and obtained very promising performances;
in particular Prince is particularly adapted to FHE schemes. Designing a FHE-friendly block cipher
is a very mainstream research subject and could accelerate the use of FHE schemes in “real world”
applications.

137

Part Three

Design and Implementation of Multilinear
Maps over the Integers

Overview

In 2013, Joux, Boneh and Franklin received the prestigious Gödel Prize for establishing the field
of pairing-based cryptography in the early 2000’s [Jou00, SOK00, BF01]. They used bilinear
maps to provide compelling new and rich applications in cryptography for which no other efficient
implementation is known. The impact of their research is tremendous, and applications of bilinear
maps have become too numerous to name, but are often at the core of the latest advances in
cryptography. In particular, they are currently being investigated to bring secure authentication
and privacy to the end-users.

A couple of years after the introduction of pairing-based cryptography, Boneh and Silverberg
provided evidence that cryptographic multilinear maps (i.e. generalizations of bilinear maps)
were likely to have astounding applications in cryptography, even though constructing such a
cryptographic primitive remained a challenging open problem [BS03]. Several subsequent works
based on this virtual primitive gave birth to new applications [RS09, PTT10, Rot13], but in the
absence of concrete construction this research area was not tremendously active.

Everything changed in 2013 when Garg, Gentry and Halevi presented in a breakthrough result
a candidate multilinear maps scheme based on ideal lattices [GGH13a]. Even though their scheme
differs in a number of ways compared to the “ideal” virtual primitive introduced by Boneh and
Silverberg, they showed that their approximation is good enough for a number of applications. This
powerful new cryptographic tool has a tremendous impact in theoretical cryptography and opened
a floodgate of exciting developments in the last months.

Chiefly among them is a candidate construction for general purpose program obfuscation proposed
by Garg, Gentry, Halevi, Raykova, Sahai and Waters in 2013 [GGH+13b]. Namely, given any
two circuits of the same size that compute the same functionality, they proposed an obfuscation
construction such that no polynomial time adversary can distinguish between the obfuscation of
the first circuit with respect to the obfuscation of the second circuit. Goldwasser and Rothblum
gave a strong philosophical justification for indistinguishability obfuscation [GR07], called best
possible obfuscation, as such an obfuscator guarantees that its output hides as much as the input
circuit as possible. Once again, this breakthrough result brought many exciting new applications
and fascinating new foundational problems for the field to study. Similarly to fully homomorphic
encryption, the Holy Grail of cryptography [Mic10], to our surprise, indistinguishability obfuscation
appears to suffice to construct many other cryptographic applications and has an exciting impact
on the field. Among others, it allows to construct deniable encryption [SW13], round optimal
multiparty secure computation [GGHR14], multiparty key exchange, efficient traitor tracing,
broadcast encryption with optimal ciphertext size [BZ13], to remove the random oracle [HSW13b]
and many others things...

Numerous other applications of multilinear maps were (and still are) discovered, such as
identity-based key exchange, broadcast encryption system with optimal ciphertext size, policy-
based key distribution [BW13], removing random oracles [FHPS13, HSW13a], verifier-based pass-

139

Design and Implementation of Multilinear Maps over the Integers

word-authenticated key exchange [BP13], forward secure non-interactive key exchange [PS14],
attribute-based encryption for circuits [GGH+13c], and certainly many others...

In this part, we will describe an other construction of approximate multilinear maps, based
on the framework introduced in [GGH13a], based on different techniques and assumptions, that
is conceptually simpler. We sustain our new scheme with a thorough analysis of the attacks and
we describe the first implementation of approximate multilinear maps, thanks to a number of
heuristic modifications to our scheme. Moreover, some hardness assumptions easy for the GGH
scheme appear to hold for our scheme. Note that our scheme offers the same flexibility as the GGH
scheme, and in particular all the aforementioned applications of multilinear maps are directly – and
sometimes only – instantiable with our scheme.

140

Chapter 11

Multilinear Maps over the Integers

11.1 Introduction

Extending bilinear elliptic curve pairings to multilinear maps is a long-standing open problem. The
first plausible construction that approximates cryptographic multilinear maps has been described
by Garg, Gentry and Halevi at Eurocrypt 2013, based on ideal lattices.

In this chapter, we build upon their construction and describe an alternative construction of
(approximate) multilinear maps that works over the integers instead of ideal lattices, similar to
the DGHV fully homomorphic encryption scheme (cf. Part II). Our construction is not a mere
adaptation of Garg et al. scheme over the integers. In particular, we describe a different technique
for proving the full randomization of encodings: instead of Gaussian linear sums, we apply the
classical Leftover Hash Lemma over a quotient lattice. Moreover, in contrast with Garg et al.
scheme, multilinear analogues of useful, base group assumptions like DLIN appear to hold in our
setting. Looking ahead, in Chapter 12, we will describe the first implementation of multilinear
maps and show that our construction is arguably practical as we perform a 7-party (resp. 26-party)
Diffie-Hellman key exchange in about 40 seconds (resp. 5 minutes) per party.

This chapter includes most of the article Practical Multilinear Maps over the Integers [CLT13b],
cosigned with J.-S. Coron and M. Tibouchi, and published at Crypto 2013 [CG13a]. The full version
of the article is available at [CLT13c].

Background. In 2003, Boneh and Silverberg [BS03] studied a generalization of cryptographic
bilinear maps called cryptographic multilinear maps. However they were pessimistic about the
existence of such maps from the realm of algebraic geometry, and the construction of such a
primitive remains a challenging open problem. In 2013, Garg, Gentry and Halevi presented in a
breakthrough result a candidate construction for (approximate) multilinear maps, based on ideal
lattices. They introduced a new primitive called graded encoding systems (names after graded
algebra) that differs from “ideal” multilinear maps in the sense that each encoding has a level, and
multiplying two encodings adds their level. A κ-linear map now consists of multiplications, and an
additional parameter is provided and allows to test, only at a given level κ, whether an encoding
encodes 0 or not. This richer primitive (because leveled) has unfortunately the same drawbacks as
fully homomorphic encryption: the encodings contain noise that increases after each multiplication,
the size of the public parameters are polynomial in the maximum level1 and this first candidate is
incredibly unpractical.

Our Results and Techniques. Our main contribution is to describe a different and conceptually
simpler construction of approximate multilinear maps that works over the integers instead of ideal
lattices, similar to the DGHV fully homomorphic encryption scheme and its batch variant (cf.
Chapter 7).

Our construction offers the same flexibility as the original from [GGH13a]; in particular it can
be modified to support the analogue of asymmetric maps and composite-order maps. Moreover, it

1The dependence between the degree and the parameter-size prevents them (and will prevent us) from realizing
applications such as the ones envisioned by [PTT10] because they need “compact” maps.

141

11. Multilinear Maps over the Integers

does not seem vulnerable to the “zeroizing” attack that breaks base group hardness assumptions
like the analogues of DLIN and subgroup membership for the multilinear maps of [GGH13a]. Since
those assumptions are believed necessary to adapt constructions of primitives like adaptively secure
functional encryption, NIZK or verifier-based password-authenticated key exchange [BP13], our
construction seems even more promising for applications than [GGH13a].

As in [GGH13a], the security of our construction relies on new assumptions; it cannot be derived
from “classical” assumptions such as the Approximate-GCD assumption used in Chapter 7. We
describe various possible attacks against our scheme; this enables us to derive parameters for which
our scheme remains secure against these attacks.

Our new construction works as follows: one first generates n secret primes pi and publishes
x0 =

∏n
i=1 pi (where n is large enough to ensure correctness and security); one also generates n

primes gi, and a random secret integer z modulo x0. A level-k encoding of a vector m = (mi) ∈ Zn
is then an integer c such that for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (11.1)

for some small random integers ri; the integer c is therefore defined modulo x0 by CRT. It is clear
that such encodings can be both added and multiplied modulo x0, as long as the numerators remain
smaller than the pi’s. In particular the product of κ encodings cj at level 1 gives an encoding
at level κ where the corresponding vectors mj are multiplied componentwise. For such level-κ
encodings one defines a zero-testing parameter pzt with:

pzt =
n∑
i=1

hi ·
(
zκ · g−1

i mod pi
)
·
∏
i′ 6=i

pi′ mod x0

for some small integers hi. Given a level-κ encoding c as in Equation (11.1), one can compute
ω = pzt · c mod x0, which gives:

ω =
n∑
i=1

hi ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ 6=i

pi′ mod x0 .

Then if mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is small compared to
x0; this enables to test whether c is an encoding of 0 or not. Moreover for non-zero encodings
the leading bits of ω only depend on the mi’s and not on the noise ri; for level-κ encodings this
enables to extract a function of the mi’s only, which eventually defines as in [GGH13a] a degree-κ
(approximate) multilinear map.2

Our second contribution is to describe a different technique for proving the full randomization
of encodings. As in [GGH13a] the randomization of encodings is obtained by adding a random
subset-sum of encodings of 0 from the public parameters. However as in [GGH13a] the Leftover
Hash Lemma (LHL) cannot be directly applied since the encodings live in some infinite ring instead
of a finite group. The solution in [GGH13a] consists in using linear sums with Gaussian coefficients;
it is shown in [AGHS13] that the resulting sum has a Gaussian distribution (over some lattice). As
noted by the authors, this can be seen as a “Leftover Hash Lemma over lattices”. In this paper
we describe a different technique that does not use Gaussian coefficients; instead it consists in
working modulo some lattice L ⊂ Zn and applying the Leftover Hash Lemma over the quotient
Zn/L, which is still a finite group. This technique was already used in [CCK+13, CLT13a] to prove
the security of a batch extension of the DGHV scheme.3 We provide here a more formal description
of our “Leftover Hash Lemma over lattices”. Note that our technique can independently be applied
to the original encoding scheme from [GGH13a], while the Gaussian sum technique from [AGHS13]
is also applicable to ours.4

In Chapter 12, we will describe the first implementation of cryptographic multilinear maps,
provide concrete parameters and timings to do a N -partite Diffie-Hellman key exchange.

2Technically for pzt we use a vector of integers instead of a single integer (see Section 11.3).
3This technique was not introduced in Part II of this thesis. Instead, we chose to base our presentation on the

decisional Error-Free Approximate-GCD problem, first introduced in [KLYC13] and proven to be equivalent to the
computational Error-Free Approximate-GCD problem in [CLT14a].

4In a recent work [LSS14], Langlois, Stehlé and Steinfield improved upon the GGH scheme [GGH13a] and
proposed a third re-randomization technique.

142

11.2. Framework for Approximate Multilinear Maps

11.2 Framework for Approximate Multilinear Maps

In this section, we first recall the formal definition of κ-linear maps as introduced in [BS03], and
then describe the definition of graded encoding schemes of [GGH13a], that is the “approximate”
multilinear maps (yet richer) notion of Garg, Gentry and Halevi. One of the main differences of
this construction, compared to the generic multilinear maps from [BS03], is that encodings are
randomized and only from the final evaluation can be extracted a deterministic function of the
encoded values.

Finally, we recall the new hardness assumption introduced by [GGH13a]: the Graded Decisional
Diffie-Hellman (GDDH) problem. This problem is a natural variant of the corresponding Diffie-
Hellman problem from group-based cryptography.

11.2.1 Cryptographic Multilinear Maps
A cryptographic κ-linear map, as defined by Boneh and Silverberg in [BS03]5, is a map e from
G1×· · ·×Gκ → GT , where the Gi are cyclic (additively noted) groups of order p, such that: (1) for
all gi ∈ Gi with i 6 κ, for all j 6 κ, for all a ∈ Zp, we have e(g1, . . . , a ·gj , . . . , gκ) = a ·e(g1, . . . , gκ),
and (2) the map e is non degenerate, i.e. if the elements gi’s are generators of their respective
groups, then e(g1, . . . , gκ) generates the target group GT .

Similarly to bilinear maps, in order to have useful applications, one needs that no efficient
algorithm to compute discrete logarithms in any of the Gi’s exists, and one usually needs the
multilinear equivalent to the Decisional Diffie-Hellman problem to be hard.6

Definition 11.1 (Multilinear Decisional Diffie-Hellman). For a symmetric κ-linear maps scheme
(i.e. with G1 = · · · = Gκ) as described above, the Multilinear Decisional Diffie-Hellman problem is
the problem to distinguish between the distributions

(params, a0 · g, a1 · g, . . . , aκ · g,
(κ∏
i=0

ai

)
· e(g, . . . , g))

and
(params, a0 · g, a1 · g, . . . , aκ · g, a · e(g, . . . , g))

where params = (G, p, e, g) with G = (g), and a, a0, a1, . . . , aκ are uniformly random in Zp.

In other words, it should be hard from κ+ 1 encodings to distinguish between an encoding of
the product of the encoded values from a random encoding in GT .

The first candidate that approximates these multilinear maps scheme is due to Garg, Gentry
and Halevi [GGH13a]. There are essentially two main differences with what precedes:

1. In bilinear pairings (and more generally cryptographic multilinear maps) we have a map e : Gκ →
GT that is linear with respect to all its κ inputs:

e(a1 · g, . . . , aκ · g) =
(κ∏
i=1

ai

)
· e(g, . . . , g) . (11.2)

One can view a · g as an “encoding” of the integer a ∈ Zp over the group G of order p generated
by g. The main difference in our setting is that encodings are now randomized. This means that
an element a ∈ R (where R is a ring that plays the role of the exponent space Zp) has many
possible encodings; only the final multilinear map e(a1 · g, . . . , aκ · g) is a deterministic function
of the ai’s only, and not on the randomness used to encode ai into ai · g.

5Actually in [BS03], Boneh and Silverberg considered the symmetric case G1 = · · · = Gκ. The asymmetric case
with different Gi’s has later been considered, for example in [Rot13].

6Langlois, Stehlé and Steinfield [LSS14] used the search variant of the Graded Diffie-Hellman problem and the
random oracle model to prove the security of the N -party key agreement and the attribute-based encryption scheme.

143

11. Multilinear Maps over the Integers

2. The second main difference is that to every encoding is now associated a level. At level 0 we
have the “plaintext” ring elements a ∈ R, at level 1 we have the encoding a · g, and by combining
k such encodings ai · g at level 1 one obtains a level-k encoding where the underlying elements ai
are homomorphically multiplied in R. The difference with “classical” cryptographic multilinear
maps is that we can now multiply any (bounded) subset of encodings, instead of strictly κ at a
time as with Equation (11.2). For encodings at level κ we have a special zero-testing parameter
pzt that can extract a deterministic function of the underlying ring elements. This enables to
define a degree-κ multilinear map for encodings at level 1.

In the rest of this section, we recall the formal definition of graded encoding schemes, and the
approximate multilinear maps schemes of Garg, Gentry and Halevi [GGH13a]. For simplicity we
only consider the symmetric case throughout the thesis; we refer to [GGH13a] for a more general
framework that can handle the asymmetric case.

11.2.2 Graded Encoding System
Let us provide the formal definition of a κ-Graded Encoding System from [GGH13a].

Definition 11.2 (κ-Graded Encoding System [GGH13a]). A κ-Graded Encoding System for a
ring R is a system of sets S = {S(α)

v ∈ {0, 1}∗ : v ∈ N, α ∈ R}, with the following properties:

1. For every v ∈ N, the sets {S(α)
v : α ∈ R} are disjoint.

2. There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈ R, every v ∈ N,
and every u1 ∈ S(a1)

v and u2 ∈ S(a2)
v , it holds that u1 + u2 ∈ S(α1+α2)

v and u1 − u2 ∈ S(α1−α2)
v

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation × (on {0, 1}∗) such that for every α1, α2 ∈ R, every v1,
v2 with 0 6 v1 + v2 6 κ, and every u1 ∈ S(α1)

v1 and u2 ∈ S(α2)
v2 , it holds that u1 × u2 ∈ S(α1·α2)

v1+v2
where α1 · α2 is multiplication in R.

11.2.3 Multilinear Maps Procedures
In this section, we describe the procedures for manipulating encodings of the approximate multilinear
maps scheme proposed by Garg, Gentry and Halevi in [GGH13a].
Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the parameters λ and κ,
and outputs (params,pzt), where params is a description of a κ-Graded Encoding System as above,
and pzt is a zero-test parameter.
Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)

0 for a
nearly uniform element α ∈ R. Note that the encoding a does not need to be uniform in S(α)

0 .
Encoding. The (possibly randomized) enc(params, a) takes as input a level-zero encoding a ∈ S(α)

0
for some α ∈ R, and outputs the level-one encoding u ∈ S(α)

1 for the same α.
Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings relative to
the same level i. Specifically, given an encoding u ∈ S

(α)
v , it outputs another encoding u′ ∈

S
(α)
v . Moreover for any two u1, u2 ∈ S(α)

v , the output distributions of reRand(params, i, u1) and
reRand(params, i, u2) are nearly the same.
Addition and negation. Given params and two encodings relative to the same level, u1 ∈ S(α1)

i

and u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i and neg(params, u1) ∈ S(−α1)
i . Below we

write u1 + u2 and −u1 as a shorthand for applying these procedures.
Multiplication. For u1 ∈ S(α1)

i and u2 ∈ S(α2)
j , we have mul(params, u1, u2) = u1 × u2 ∈ S(α1·α2)

i+j .

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
κ and 0 otherwise.

Extraction. The procedure extracts a random function of ring elements from their level-κ encoding.
Namely ext(params,pzt, u) outputs s ∈ {0, 1}λ, such that:

144

11.2. Framework for Approximate Multilinear Maps

1. For any α ∈ R and u1, u2 ∈ S(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2).

2. The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S(α)
κ } is nearly uniform over {0, 1}λ.

This concludes the definition of the procedures. In [GGH13a] the authors consider a slightly
relaxed definition of isZero and ext, where isZero can still output 1 even for some non-zero encoding
u with negligible probability, and ext can extract different outputs when applied to encodings of
the same elements, also with negligible probability; see [GGH13a] for the corresponding definitions.

11.2.4 Hardness Assumption
Finally we recall the new hardness assumptions for multilinear maps introduced in [GGH13a].
The Graded Decisional Diffe-Hellman is an analogue of the Multilinear Decisional Diffie-Hellman
(Definition 11.1) for these approximate multilinear maps: given a set of κ+ 1 level-one encodings of
random elements, it should be unfeasible to distinguish a level-κ encoding of their product from
random.

Graded Decisional Diffie-Hellman (GDDH). Let GE be a graded encoding scheme consisting of
all the routines above. For an adversary A and parameters λ, κ we consider the following process:

1. (params,pzt)← InstGen(1λ, 1κ)

2. Choose aj ← samp(params) for all 1 6 j 6 κ+ 1

3. Set uj ← reRand(params, 1, enc(params, 1, aj)) for all 1 6 j 6 κ+ 1 // encodings at level 1

4. Choose b← samp(params) // encoding at level 0

5. Set ũ = reRand(params, κ, enc(params, κ,
∏κ+1
i=1 ai)) // encoding of the right product at level κ

6. Set û = reRand(params, κ, enc(params, κ, b)) // encoding of a random value at level κ

The GDDH distinguisher is given as input the κ+ 1 level-one encodings uj and either ũ (encoding
the right product) or û (encoding a random value), and must decide which is the case. The
GDDH assumption states that the advantage of any efficient adversary is negligible in the security
parameter.
Remark 11.3. For the GDDH problem to be hard, it must hold that, for random and uniformly
generated ai ∈ R,

∏κ+1
i=1 ai 6= 0 with overwhelming probability (otherwise one could distinguish by

the procedure isZero).

Zero-Test Security. Garg, Gentry and Helvi also introduced a security notation related to the
zero-testing parameter. This zero-test security notion states that either the isZero procedure outputs
1 with negligible probability when the encoding is not an encoding of 0 (statistical version), or that
it should be hard to find such an encoding (computational version).

Definition 11.4 (Zero-Test Security). Let GE be a graded encoding scheme consisting of all the
routines above. We say that GE enjoys statistical zero-test security if, for parameters λ, κ, we have

Pr[∃u /∈ S(0)
κ : isZero(params,pzt, u) = 1] 6 negl(λ) .

We say that GE enjoys computational zero-test security if, for parameters λ, κ and any adversary
A, we have

Pr
(params,pzt)←InstGen(1λ,1κ)

u←A(params,pzt)

[∃u /∈ S(0)
κ and isZero(params,pzt, u) = 1] 6 negl(λ) .

Looking (far) ahead we note that our heuristic optimization in Chapter 12 that consists
in reducing the number of elements in the zero-testing vector will yield a scheme that is not
computationally zero-test secure – and therefore neither statistically zero-test secure –, as an
adversary can use LLL to produce a level-κ encoding that will solve the security game.

145

11. Multilinear Maps over the Integers

11.3 Our new Encoding Scheme

System parameters. The main parameters are the security parameter λ and the required mul-
tilinearity level κ 6 poly(λ). Based on λ and κ, we choose the vector dimension n, the bit-size η
of the primes pi, the bit-size α of the primes gi, the maximum bit-size ρ of the randomness used
in encodings, and various other parameters that will be specified later; the constraints that these
parameters must satisfy are described in the next section.

In our scheme a level-k encoding of a vector m = (mi) ∈ Zn is an integer c such that for all
1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (11.3)

where the ri’s are ρ-bit random integers and the gi’s are α-bit primes (specific to the encoding c),
with the following secret parameters: the pi’s are η-bit prime integers and the denominator z is a
random (invertible) integer modulo x0 =

∏n
i=1 pi. The integer c is therefore defined by CRT modulo

x0, where x0 is made public. Since the pi’s must remain secret, the user cannot encode the vectors
m ∈ Zn by CRT directly from Equation (11.3); instead one includes in the public parameters a set
of ` level-0 encodings x′j of random vectors aj ∈ Zn, and the user can generate a random level-0
encoding by computing a random subset-sum of those x′j ’s.

Remark 11.5. From Equation (11.3) each integer mi is actually defined modulo gi. Therefore our
scheme encodes vectors m from the ring R = Zg1 × · · · × Zgn .

Instance generation. (params,pzt)← InstGen(1λ, 1κ). We generate n secret random η-bit primes
pi and publish x0 =

∏n
i=1 pi. We generate a random invertible integer z modulo x0. We generate n

random α-bit prime integers gi and a secret matrix A = (aij) ∈ Zn×`, where each component aij is
randomly generated in [0, gi)∩Z. We generate an integer y, three sets of integers {xj}τj=1, {x′j}`j=1
and {Πj}nj=1, a zero-testing vector pzt, and a seed s for a strong randomness extractor, as described
later. We publish the parameters params =

(
n, η, α, ρ, β, τ, `, y, {xj}τj=1, {x′j}`j=1, {Πj}nj=1, s

)
and

pzt.

Sampling level-zero encodings. c← samp(params). We publish as part as our instance generation
a set of ` integers x′j , where each x′j encodes at level-0 the column vector aj ∈ Zn of the secret
matrix A = (aij) ∈ Zn×`. More precisely, using the CRT modulo x0 we generate integers x′j such
that:

1 6 j 6 `, x′j ≡ r′ij · gi + aij (mod pi) (11.4)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.
Our randomized sampling algorithm samp(params) works as follows: we generate a random

binary vector b = (bj) ∈ {0, 1}` and output the level-0 encoding

c =
∑̀
j=1

bj · x′j mod x0 .

From Equation (11.4), this gives c ≡
(∑`

j=1 r
′
ijbj
)
· gi +

∑`
j=1 aijbj (mod pi); as required the

output c is a level-0 encoding:
c ≡ ri · gi +mi (mod pi) (11.5)

of some vector m = A · b ∈ Zn which is a random subset-sum of the column vectors aj . We note
that for such level-0 encodings we get |ri · gi +mi| 6 ` · 2ρ+α for all i.

The following Lemma states that, as required, the distribution of m can be made statistically
close to uniform over R = Zg1 × · · ·×Zgn ; the proof is based on applying the Leftover Hash Lemma
over the set R.

Lemma 11.6. Let c← samp(params) and write c ≡ ri·gi+mi (mod pi). Assume ` > n·α+2λ. The
distribution of (params,m) is statistically close to the distribution of (params,m′) where m′ ← R.

146

11.3. Our new Encoding Scheme

Proof. Write x′j ≡ r′ij · gi + aij (mod pi) for 1 6 j 6 ` and 1 6 i 6 n. Each component aij is
randomly generated in [0, gi) ∩ Z; therefore the column vectors aj of the matrix (aij) are randomly
and independently generated in R. By the corollary of the Leftover Hash Lemma for abelian groups
(Corollary 3.3), we have that (a1, . . . ,a`,m) with m = A · b is ε-uniform over R`+1, where

ε = 1
2

√
|R|
2` 6 2(α·n−`)/2 .

Therefore by taking ` > n · α + 2λ we obtain that the distribution of (params,m) is statistically
close to the distribution of (params,m′) for m′ ← R.

Encodings at higher levels. ck ← enc(params, k, c). To allow encoding at higher levels, we publish
as part of our instance-generation a level-one random encoding of 1, namely an integer y such that:

y ≡ ri · gi + 1
z

(mod pi)

for random integers ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed by CRT modulo x0.
Given a level-0 encoding c of m ∈ Zn as given by Equation (11.5), we can then compute a

level-1 encoding of the same m by computing c1 = c · y mod x0. Namely we obtain as required:

c1 ≡
r

(1)
i · gi +mi

z
(mod pi) (11.6)

for some integers r(1)
i , and we get |r(1)

i · gi +mi| 6 ` · 22(ρ+α) for all i. More generally to generate a
level-k encoding we compute ck = c0 · yk mod x0.

In multipartite Diffie-Hellman key-exchange every user keeps a private level-0 encoding c and
publishes a level-1 encoding of the same underlying (unknown) m; however one cannot publish
c1 = c · y mod x0 directly since the private level-0 encoding c could be recovered immediately from
c = c1/y mod x0. Instead the level-1 encoding c1 must first be re-randomized into a new level-1
encoding c′1 whose distribution does not depend on the original c as long as it encodes the same m.

Re-randomization. c′ ← reRand(params, k, c). To allow re-randomization of encodings at level
k = 1,7 we publish as part of our instance-generation a set of n integers Πj which are all level-1
random encodings of zero:

1 6 j 6 n, Πj ≡
$ij · gi
z

(mod pi) .

The matrix Π = ($ij) ∈ Zn×n is a diagonally dominant matrix generated as follows: the non-
diagonal entries are randomly and independently generated in (−2ρ, 2ρ) ∩ Z, while the diagonal
entries are randomly generated in (n2ρ, n2ρ + 2ρ) ∩ Z.8

We also publish as part of our instance-generation a set of τ integers xj , where each xj is a
level-1 random encoding of zero:

1 6 j 6 τ, xj ≡
rij · gi
z

(mod pi)

and where the column vectors of the matrix (rij) ∈ Zn×τ are randomly and independently generated
in the half-open parallelepiped spanned by the columns of the previous matrix Π; see Appendix 11.A
for a concrete algorithm.

Given as input a level-1 encoding c1 as given by Equation (11.6), we randomize c1 with a
random subset-sum of the xj ’s and a linear combination of the Πj ’s:

c′1 = c1 +
τ∑
j=1

bj · xj +
n∑
j=1

b′j ·Πj mod x0 (11.7)

7One can easily adapt this procedure to randomize at level k > 1 by publishing additional similarly-defined
integers.

8Note that we cannot take Π = (n2ρ)In because we publish encodings of the columns of Π and this would allow
to factorize: we need to have random noises modulo each of the pi’s.

147

11. Multilinear Maps over the Integers

where bj ← {0, 1}, and b′j ← [0, 2µ)∩Z. The following Lemma shows that as required the distribution
of c′1 is nearly independent of the input (as long as it encodes the same m). This follows essentially
from our “Leftover Hash Lemma over lattices”; see Section 3.3.1.

Lemma 11.7. Let c ← samp(params), c1 ← enc(params, 1, c), and c′1 ← reRand(params, 1, c1).
Write c′1 ≡ (ri · gi + mi)/z (mod pi) for all 1 6 i 6 n, and r = (r1, . . . , rn)t. Let τ > n · (ρ +
log2(2n)) + 2λ and µ > ρ+ α+ λ. The distribution of (params, r) is statistically close to that of
(params, r′), where r′ ∈ Zn is randomly generated in the half-open parallelepiped spanned by the
column vectors of 2µΠ.

Writing c′1 ≡ (r′i · gi + mi)/z (mod pi), and using |rij · gi| 6 2n2ρ+α for all i, j, we obtain
|r′i · gi +mi| 6 `22(ρ+α) + τ · 2n2ρ+α + n · 2n2µ+ρ+α. Using µ > ρ+ α+ λ this gives |r′i · gi +mi| 6
4n22µ+ρ+α.

Adding and Multiplying Encodings. It is clear that one can homomorphically add encodings.
Moreover the product of κ level-1 encodings ui can be interpreted as an encoding of the product.
Namely, given level-one encodings uj of vectors mj ∈ Zn for 1 6 j 6 κ, with uj ≡ (rij · gi +mij)/z
(mod pi), we simply let:

u =
κ∏
j=1

uj mod x0 .

This gives:

u ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

(κ∏
j=1

mij

)
mod gi

zκ
(mod pi)

for some ri ∈ Z. This is a level-κ encoding of the vector m obtained by componentwise product of
the vectors mj , as long as

∏κ
j=1(rij · gi +mij) < pi for all i. When computing the product of κ

level-1 encodings from reRand and one level-0 encoding from samp (as in multipartite Diffie-Hellman
key exchange, cf. Chapitre 12), we obtain from previous bounds |ri| 6 (4n22µ+ρ+α)κ · ` · 2ρ+1 for
all i.

Zero Testing. isZero(params,pzt, uκ) ?= 0/1. We can test equality between encodings by subtract-
ing them and testing for zero. To enable zero testing we randomly generate an integer matrix
H = (hij) ∈ Zn×n such that H is invertible in Z and both ‖Ht‖∞ 6 2β and ‖(H−1)t‖∞ 6 2β , for
some parameter β specified later; here ‖ · ‖∞ is the operator norm on n× n matrices with respect
to the `∞ norm on Rn. A technique for generating such H is discussed in Appendix 11.B. We then
publish as part of our instance generation the following zero-testing vector pzt ∈ Zn:

(pzt)j =
n∑
i=1

hij ·
(
zκ · g−1

i mod pi
)
·
∏
i′ 6=i

pi′ mod x0 . (11.8)

To determine whether a level-κ encoding c is an encoding of zero or not, we compute the vector
ω = c · pzt mod x0 and test whether ‖ω‖∞ is small:

isZero(params,pzt, c) =
{

1 if ‖c · pzt mod x0‖∞ < x0 · 2−ν
0 otherwise

for some parameter ν specified later.
Namely for a level-κ ciphertext c we have c ≡ (ri · gi + mi)/zκ (mod pi) for some ri ∈ Z;

therefore for all 1 6 i 6 n we can write:

c = qi · pi + (ri · gi +mi) ·
(
z−κ mod pi

)
(11.9)

for some qi ∈ Z. Therefore combining Equations (11.8) and (11.9), we get:

(ω)j = (c · pzt mod x0)j =
n∑
i=1

hij ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ 6=i

pi′ mod x0 . (11.10)

148

11.3. Our new Encoding Scheme

Therefore if mi = 0 for all 1 6 i 6 n, then ‖ω‖∞ = ‖c · pzt mod x0‖∞ is small compared to x0
when the ri’s are small enough, i.e. a limited number of additions/multiplications on encodings has
been performed. Conversely if mi 6= 0 for some i we show that ‖ω‖∞ must be large. More precisely
we have the following lemma.

Lemma 11.8. Let n, η, α and β be as in our parameter setting. Let ρf be such that ρf+λ+α+2β 6
η− 8, and let ν = η− β − ρf − λ− 3 > α+ β + 5. Let c be such that c ≡ (ri · gi +mi)/zκ (mod pi)
for all 1 6 i 6 n, where 0 6 mi < gi for all i. Let r = (ri)16i6n and assume that ‖r‖∞ < 2ρf . If
m = 0 then ‖ω‖∞ < x0 · 2−ν−λ−2. Conversely if m 6= 0 then ‖ω‖∞ > x0 · 2−ν+2.

Proof. We have assumed
ρf + λ+ α+ 2β 6 η − 8 ,

which gives:
ν = η − β − ρf − λ− 3 > α+ β + 5 . (11.11)

We consider the vector R = (Ri)16i6n where:

Ri = ((ri +mi · g−1
i) mod pi) · (x0/pi) . (11.12)

Equation (11.10) can then be written:

ω = Ht ·R mod x0 . (11.13)

If m = 0 then we have Ri = ri · x0/pi for all i, which gives using pi > 2η−1 for all i:

‖R‖∞ 6 ‖r‖∞ · max
16i6n

(x0/pi) 6 ‖r‖∞ · x0 · 2−η+1 .

Since by definition −p/2 < (z mod p) 6 p/2, we have |z mod p| 6 |z| for any z, p; therefore we
obtain from Equation (11.13) using ‖r‖∞ < 2ρf

‖ω‖∞ = ‖Ht ·R mod x0‖∞ 6 ‖Ht ·R‖∞ 6 ‖Ht‖∞ · ‖R‖∞ < x0 · 2β+ρf−η+1 = x0 · 2−ν−λ−2 .

Conversely assume that ‖ω‖∞ < x0 · 2−ν+2. From Equation (11.13) we have:

R ≡ (H−1)t · ω (mod x0) . (11.14)

From Equation (11.12) we have ‖R‖∞ < x0/2. Moreover from Equation (11.11) we have ν − β >
α+ 5, which gives

‖(H−1)t · ω‖∞ 6 ‖(H−1)t‖∞ · ‖ω‖∞ 6 x0 · 2β−ν+2 6 x0 · 2−α−3 < x0/2 . (11.15)

This shows that Equation (11.14) holds in Z and not only modulo x0; therefore we must have

‖R‖∞ 6 x0 · 2β−ν+2 .

Letting vi = (ri+mi ·g−1
i) mod pi for 1 6 i 6 n, this gives |vi| · (x0/pi) 6 x0 ·2β−ν+2, and therefore

|vi| 6 pi · 2β−ν+2 for all i. We have gi · (vi − ri) ≡ mi (mod pi); we show that the equality actually
holds over Z. Namely for all i we have |mi| < gi < pi/2 and with gi < 2α we get:

|gi · (vi − ri)| 6 gi · (|vi|+ |ri|) 6 pi · 2α+β−ν+2 + 2α+ρf 6 pi/8 + pi/8 < pi/2

which implies that the equality gi · (vi − ri) = mi holds over Z. Therefore mi ≡ 0 (mod gi) for all
i, which implies m = 0.

149

11. Multilinear Maps over the Integers

Extraction. sk ← ext(params,pzt, uκ). This part is essentially the same as in [GGH13a]. To
extract a random function of the vector m encoded in a level-κ encoding c, we multiply c by the
zero-testing parameter pzt modulo x0, collect the ν most significant bits of each of the n components
of the resulting vector, and apply a strong randomness extractor (using the seed s from params):

ext(params,pzt, c) = Extracts
(
msbsν(c · pzt mod x0)

)
where msbsν extracts the ν most significant bits of the result. Namely if two encodings c and c′
encode the same m ∈ Zn then from Lemma 11.8 we have ‖(c− c′) · pzt mod x0‖∞ < x0 · 2−ν−λ−2,
and therefore we expect that ω = c · pzt mod x0 and ω′ = c′ · pzt mod x0 agree on their ν most
significant bits, and therefore extract to the same value.9

Conversely if c and c′ encode different vectors then by Lemma 11.8 we must have ‖(c − c′) ·
pzt mod x0‖∞ > x0 · 2−ν+2, and therefore the ν most significant bits of the corresponding ω and
ω′ must be different. This implies that for random m ∈ R = Zg1 × · · · × Zgn the min-entropy of
msbsν(c · pzt mod x0) when c encodes m is at least log2 |R| > n(α − 1). Therefore we can use a
strong randomness extractor to extract a nearly uniform bit-string of length blog2 |R|c − λ.

This concludes the description of our multilinear encoding scheme. In Section 11.3.3 we provide
a comparison with the original scheme from [GGH13a].

11.3.1 Setting the Parameters
The constraints on our system are really similar to the constraints on the multi-slot DGHV scheme
described in Chapter 7. In particular, the system parameters must satisfy the following constraints:

• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ) to avoid brute force
attack on the noise, including the improved attack from [CN12] with complexity Õ(2ρ/2).

• The bit-size α of the primes gi must be large enough so that the order of the group R =
Zg1 × · · · × Zgn does not contain small prime factors; this is required for the GDDH problem to
be hard (cf. Remark 11.3). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on the encodings, namely
n = ω(η log λ); see Section 11.5.1.

• The number ` of level-0 encodings x′j for samp must satisfy ` > n · α+ 2λ in order to apply the
leftover hash lemma; see Lemma 11.6.

• The number τ of level-1 encodings xj must satisfy τ > n · (ρ+ log2(2n)) + 2λ in order to apply
our “leftover hash lemma over lattices”. For the same reason the bit-size µ of the linear sum
coefficients must satisfy µ > α+ ρ+ λ; see Lemma 11.7.

• The bitsize β of the matrix H entries must satisfy β = Ω(λ) in order to avoid the GCD attack
from Section 11.5.2. One can take β = λ.

• The bit-size η of the primes pi must satisfy η > ρf + α+ 2β + λ+ 8, where ρf is the maximum
bit size of the randoms ri a level-κ encoding (see Lemma 11.8). When computing the product of
κ level-1 encodings and an additional level-0 encoding (as in a multipartite Diffie-Hellman key
exchange with N = κ+ 1 users), one obtains ρf = κ · (µ+ ρ+ α+ 2 log2 n+ 2) + ρ+ log2 `+ 1
(see previous Section).

• The number ν of most significant bits to extract can then be set to ν = η − β − ρf − λ− 3 (see
Lemma 11.8).

9Two coefficients ω and ω′ from ω and ω′ could still be on the opposite sides of a boundary, with bω/2kc = v
and bω′/2kc = v + 1, so that ω and ω′ would extract to different MSBs v and v + 1. Heuristically this happens with
probability O(2−λ). The argument can be made rigorous by generating a public random integer W modulo x0 in the
parameters, and extracting the MSBs of ω +W mod x0 instead of ω mod x0 for all coefficients ω of the vector ω.

150

11.3. Our new Encoding Scheme

11.3.2 Security of our Construction
As in [GGH13a] the security of our construction relies on new assumptions that do not seem to be
reducible to more classical assumptions. Namely, as in [GGH13a] one can make the assumption
that solving the Graded Decisional Diffie-Hellman problem (GDDH) recalled in Section 11.2.4 is
hard in our scheme. This enables to prove the security of the one-round N -way Diffie-Hellman key
exchange protocol (cf. Chapter 12). Ideally one would like to reduce such assumption to a more
classical assumption, such as the Approximate-GCD assumption, but that does not seem feasible.
Therefore to gain more confidence in our scheme we describe various attacks in Section 11.5.

11.3.3 Comparison with GGH Multilinear Maps
In this section, we rewrite our scheme using exactly the same notations as in [GGH13a] whenever
possible, to better highlight the similarities.

The construction in [GGH13a] works in the polynomial ring R = Z[X]/(Xn + 1), where n is
large enough to ensure security. One generates a secret short ring element g ∈ R, generating a
principal ideal I = 〈g〉 ⊂ R. One also generates an integer parameter q and another random secret
z ∈ R/qR. One encodes elements of the quotient ring R/I, namely elements of the form e + I for
some e, as follows: a level-i encoding of the coset e + I is an element of the form uk = [c/zi]q,
where c ∈ e + I is short. Such encodings can be both added and multiplied, as long as the norm
of the numerators remain shorter than q; in particular the product of κ encodings at level 1 gives
an encoding at level κ. For such level-κ encodings one can then define a zero-testing parameter
pzt = [hzκ/g]q, for some small h ∈ R. Then given a level-κ encoding u = [c/zκ] one can compute
[pzt · u]q = [hc/g]q; when c is an encoding of zero we have c/g ∈ R, which implies that hc/g is
small in R, and therefore [hc/g]q is small; this provides a way to test whether a level-κ encoding c
is an encoding of 0.

In our construction one could write R = Zn, and define a secret short ring element g ∈ R,
generating a principal ideal I = 〈g〉 ⊂ R, which gives I = (giZ)16i6n. We also generate a ring
element p ∈ R and let the principal ideal J = 〈p〉 ⊂ R, which gives J = (piZ)16i6n. We let
q := x0 =

∏n
i=1 pi and for convenience we denote by [u]q the CRT isomorphism from R/J to Zq.

As in [GGH13a], in our scheme a level-i encoding of the coset eI = e + I is an element of the form
u = [c/zi]q where c ∈ eI is short. Such encodings can be both added and multiplied, by working
over the integers via the CRT isomorphism [·]q.

However, we cannot apply the zero-testing procedure from [GGH13a] in a straightforward way.
Namely one could define the zero-testing parameter pzt = [hzκ/g]q as in [GGH13a] where h ∈ Zn
is a relatively small ring element. As in [GGH13a] given a level-κ encoding u = [c/zκ]q one would
compute the element:

ω = pzt · u =
[

hzκ

g · c
zκ

]
q

=
[

hc
g

]
q

. (11.16)

As in [GGH13a] if u is an encoding of 0 then c is a multiple of g over Zn hence c/g ∈ Zn is short
and therefore the vector hc/g ∈ Zn is short. However this does not imply that the corresponding
integer ω obtained by CRT in Equation (11.16) is small, and we do not have a simple way of
identifying integers whose reductions modulo the unknown pi’s are small.

Instead, we can define a slightly different notation: we consider the following additive homomor-
phism R/J −→ Zq

u→ {u}q =
n∑
i=1

ui ·
∏
i′ 6=i

pi′ mod q

where as before q = x0 =
∏n
i=1 pi and we define the zero-testing parameter:

pzt := {hzκ/g}q

As in [GGH13a] given a level-κ encoding u = [c/zκ]q one can compute the element:

ω = pzt · u mod q =
{

hzκ

g

}
q

·
[c
zκ
]
q

=
{

hzκ

g · c
zκ

}
q

=
{

hc
g

}
q

151

11. Multilinear Maps over the Integers

As in [GGH13a] if u is an encoding of 0 then c is a multiple of g over Zn hence c/g ∈ Zn is short
and therefore the vector hc/g ∈ Zn is short; this time, this implies that ω = {hc/g}q is a short
integer.

11.4 Another Leftover Hash Lemma over Lattices

As mentioned in the introduction, to prove the full randomization of encodings (Lemma 11.7)
one cannot apply the classical Leftover Hash Lemma (cf. Section 3.3.1) because the noise in the
encodings lives in some infinite ring instead of a finite group. In [GGH13a] the issue was solved
by using linear sums with Gaussian coefficients. Namely the analysis in [AGHS13] shows that
the resulting sum has a Gaussian distribution (over some lattice). As noted by the authors this
technique can be seen as a “Leftover Hash Lemma over lattices”. Such a technique would be
applicable to our scheme as well.

In this section we describe an alternative technique (without Gaussian coefficients) that can also
be seen as a “Leftover Hash Lemma over lattices”. It consists in working modulo a lattice L ⊂ Zn
and applying the classical Leftover Hash Lemma over the finite group Zn/L. In this section, we
provide a more formal description; namely we clearly state our “Leftover Hash Lemma over lattices”
so that it can later be applied as a black-box (as the corresponding Theorem 3 in [AGHS13]).
Namely our quotient lattice technique can independently be applied to the original encoding scheme
from [GGH13a].

11.4.1 Leftover Hash Lemma over Lattices
Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . ,bn). Then every x ⊂ Zn can be uniquely
written as:

x = ξ1b1 + . . .+ ξnbn
for some real numbers ξi. Moreover, for every vector x ∈ Zn there is a unique a ∈ L such that:

y = x− a = ξ′1b1 + . . .+ ξ′nbn

where 0 6 ξ′i < 1; we write y = x mod B. Therefore each vector of Zn/L has a unique representative
in the half-open parallelepiped defined by the previous equation.

We denote by DB the distribution obtained by generating a random element in the quotient
Zn/L and taking its unique representative in the half-open parallelepiped generated by the basis
B. Given a basis B = (b1, . . . ,bn) and µ ∈ Z∗ we denote by µB the basis (µb1, . . . , µbn). For
simplicity of notation, if B is the matrix whose columns are the bi’s, we also denote DB the
distribution DB. We are now ready to state our “Leftover Hash Lemma over Lattices”.

Lemma 11.9. Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . ,bn). Let xi for 1 6 i 6 m be
generated independently according to the distribution DB. Set s1, . . . , sm ← {0, 1} and t1, . . . , tn ←
Z ∩ [0, 2µ). Let y =

∑m
i=1 sixi +

∑n
i=1 tibi and y′ ← D2µB. Then the distributions (x1, . . . ,xm,y)

and (x1, . . . ,xm,y′) are ε-statistically close, with ε = mn · 2−µ + 1/2
√
|detL|/2m.

Proof. We consider the intermediate variable:

y′′ =
(

m∑
i=1

sixi mod B
)

+
n∑
i=1

tibi . (11.17)

Firstly by applying the Leftover Hash Lemma over the finite abelian group G = Zn/L (cf. Corol-
lary 3.3), we obtain that the distributions (x1, . . . ,xm,

∑m
i=1 sixi mod B) and (x1, . . . ,xm,ψ) are

ε1-statistically close, where ψ ← DB and

ε1 = 1/2
√
|G|/2m = 1/2

√
|det(L)|/2m .

This implies that the distributions (x1, . . . ,xm,y′′) and (x1, . . . ,xm,y′) are also ε1-statistically
close.

152

11.4. Another Leftover Hash Lemma over Lattices

Secondly we write:
m∑
i=1

sixi mod B =
m∑
i=1

sixi −
n∑
j=1

χjbj (11.18)

where χj ∈ Z for all j. We also write xi =
∑
j ξijbj where by definition 0 6 ξij < 1 for all i, j.

This gives:

m∑
i=1

sixi mod B =
m∑
i=1

si

n∑
j=1

ξijbj −
n∑
j=1

χjbj =
n∑
j=1

(
m∑
i=1

siξij − χj

)
bj ,

which implies 0 6
∑m
i=1 siξij − χj < 1 for all j, and therefore 0 6 χj 6 m for all j. Combining

Equations (11.17) and (11.18) we have:

y′′ =
m∑
i=1

sixi +
n∑
i=1

(ti − χi)bi ,

where as shown above 0 6 χi 6 m for all i. This implies that the distributions (x1, . . . ,xm,y)
and (x1, . . . ,xm,y′′) are ε2-statistically close, with ε2 = mn2−µ. Therefore the distributions
(x1, . . . ,xm,y) and (x1, . . . ,xm,y′) are (ε1 + ε2)-statistically close, which proves the lemma.

We also show that the previous distribution D2µB is not significantly modified when a small
vector z ∈ Zn is added and the operator norm of the corresponding matrix B−1 is upper-bounded.

Lemma 11.10. Let L ⊂ Zn be a full-rank lattice of basis B = (b1, . . . ,bn), and let B ∈ Zn×n be
the matrix whose column vectors are the bi’s. For any z ∈ Zn, the distribution of z + D2µB is
ε-statistically close to that of D2µB, where ε = 2−µ · (‖z‖∞ · ‖B−1‖∞ + 1).

Proof. Let u← D2µB and u′′ ← z +D2µB. We can write:

u = v +
n∑
i=1

sibi

u′′ = z + v +
n∑
i=1

sibi

where v← DB and si ← [0, 2µ) ∩ Z. We consider the intermediate variable:

u′ = ((z + v) mod B) +
n∑
i=1

sibi .

The distribution of u and u′ are clearly the same. Let ψ = z + v. We have:

ψ mod B = ψ −B · bB−1 ·ψc = ψ −
n∑
i=1

tibi

where t = bB−1 ·ψc. This gives:

u′ = z + v +
n∑
i=1

(si − ti)bi .

We have t = bB−1 · z + B−1 · vc. Since v is in the half-open parallelepiped spanned by B we have
that the components of B−1 · v are in [0, 1), which gives:

‖t‖∞ 6 ‖B−1 · z‖∞ + 1 6 ‖B−1‖∞ · ‖z‖∞ + 1 .

Therefore the variables u′ and u′′ are ε-statistically close, with ε = 2−µ
(
‖B−1‖∞ · ‖z‖∞ + 1

)
. This

proves the Lemma.

153

11. Multilinear Maps over the Integers

11.4.2 Re-Randomization of Encodings: Proof of Lemma 11.7
We are now ready to apply our “Leftover Hash Lemma over lattices” to prove the full randomization
of encodings as stated in Lemma 11.7. Namely the re-randomization Equation (11.7) can be
rewritten in vector form as:

r′ = r + X · b + Π · b′

where b← {0, 1}τ and b′ ← ([0, 2µ) ∩ Z)n, and the columns of the matrix X ∈ Zn×τ are uniformly
and independently generated in the parallelepiped spanned by the columns of the matrix Π ∈ Zn×n.
To conclude, it therefore suffices to apply Lemma 11.9 and Lemma 11.10, using additionally an
upper bound on ‖Π−1‖∞. For this we use the fact that Π has been generated as a diagonally
dominant matrix.

Given a matrix B = (bij) ∈ Rn×n, we let Λi(B) =
∑
k 6=i |bik|. A matrix B = (bij) ∈ Rn×n is

said to be diagonally dominant if |bii| > Λi(B) for all i. We recall the following facts for diagonally
dominant matrices [Var75, Pri51].

Lemma 11.11. Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then the matrix B is
invertible and ‖B−1‖∞ 6 maxi=1,...,n (|bii| − Λi(B))−1 where ‖ · ‖∞ is the operator norm on n× n
matrices with respect to the `∞ norm on Rn.

Lemma 11.12. Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then
n∏
i=1

(|bii| − Λi(B)) 6 |det B| 6
n∏
i=1

(|bii|+ Λi(B)) .

Proof of Lemma 11.7. We write c1 ≡
(
r

(1)
i · gi + mi

)
/z mod pi for all 1 6 i 6 n and define

r(1) = (r(1)
i) ∈ Zn. We also write xj ≡ rij · gi/z (mod pi) and Πj ≡ $ij · gi/z (mod pi) and define

the matrix X = (rij) ∈ Zn×τ and Π = ($ij) ∈ Zn×n. From the re-randomization equation (11.7),
we can write:

r = r(1) + X · b + Π · b′ ,

where b← {0, 1}τ , and b′ ← ([0, 2µ) ∩ Z)n.
Since at instance generation the columns of X are generated uniformly and independently

in the parallelepiped spanned by the columns of Π, applying our “Leftover Hash Lemma over
lattices” (Lemma 11.9) we obtain that the distribution of (params, r) is ε1-close to the distribution
of (params, r(1) +D2µΠ), with

ε1 = τn2−µ + 1
2
√
|det Π|/2τ .

Since Π is a diagonally dominant matrix, we obtain from Lemma 11.12

|det Π| 6
n∏
i=1

(|$i,i|+ Λi(Π)) 6 (2n2ρ)n 6 2n(ρ+log2(2n)) ,

which gives ε1 6 nτ2−µ+2(n(ρ+log2(2n))−τ)/2. Therefore given the constraints τ > n ·(ρ+log2(2n))+
2λ and µ > ρ+ α+ λ we have that ε1 = negl(λ).

Now, using Lemma 11.10 we obtain that the distribution of (params, r) if (ε1 + ε2)-close to that
of (params, D2µΠ) for

ε2 = 2−µ
(
‖r(1)‖∞ · ‖Π−1‖∞ + 1

)
.

We consider the initial level-0 encoding c and write c ≡ r(c)
j · gj +mj mod pj and y ≡ r(y)

j · gj +
1 mod pj , and define

r(c) =
(
r

(c)
1 , . . . , r(c)

n

)t and r(y) =
(
r

(y)
1 , . . . , r(y)

n

)t
.

Since c1 = c · y mod x0, we have

‖r(1)‖∞ =
∥∥(r(c)

j + r
(c)
j r

(y)
j gj +mjr

(y)
j

)
j=1,...,n

∥∥
∞ 6 ‖r(c)‖∞ · ‖r(y)‖∞ · 2α+2 .

154

11.5. Attacks against our Multilinear Maps Scheme

Therefore ‖r(1)‖∞ 6 22ρ+log2(`)+α+2. Now, by Lemma 11.11, we have

‖Π−1‖∞ 6
1

mini=1,...,n(|$i,i| − Λi(Π)) 6
1

n2ρ − (n− 1)2ρ 6 2−ρ .

This gives ε2 6 2−µ + 2ρ+log2(`)+α+2−µ. With the constraint µ > ρ + α + λ, Lemma 11.7 is
proved.

11.5 Attacks against our Multilinear Maps Scheme

11.5.1 Lattice Attack on the Encodings
We first describe a lattice attack against level-k encodings for all k ∈ Z, k > 0. Consider an element
x0 =

∏n
i=1 pi and a set of τ integers xj ∈ Zx0 such that:

xj mod pi = rijgi/z
k mod pi ,

where rij ∈ (−2ρ, 2ρ) ∩ Z and z ∈ [0, x0). We want to estimate the complexity of the classical
orthogonal lattice attack for recovering (some of) the noise values rijgi.

This attack works by considering the integer vector formed by a subset of the xj ’s, say x =
(xj)16j6t for some n < t 6 τ , and relating the lattice of vectors orthogonal to x mod x0 to the
lattice of vectors orthogonal to each of the corresponding noise value vectors ri = (rijgi)16j6t.

This attack is similar to the orthogonal lattice attack described in Section 7.2.4. In particular,
let L ⊂ Zt be the orthogonal lattice to x modulo x0. A vector u ∈ L satisfies u · x ≡ 0 (mod x0),
so for each i ∈ {1, . . . , n}, reducing modulo pi gives:

u · ri ≡ 0 (mod pi).

In particular, if u is short enough to satisfy ‖u‖ · ‖ri‖ < pi, this implies u · ri = 0 in Z. Overall we
get a time complexity of 2Ω(γ/η2), similar as in Chapter 7.

11.5.2 GCD Attack on the Zero-testing Parameter
We consider the ratio modulo x0 of two coefficients from the zero-testing vector pzt, namely
u := (pzt)1/(pzt)2 mod x0. From Equation (11.8) we obtain for all 1 6 i 6 `:

u ≡ hi1/hi2 (mod pi)

We can therefore recover pi by computing gcd(hi2 · u− hi1, x0) for all possible hi1, hi2. Since the
hij ’s are upper bounded by 2β in absolute value, the attack has complexity O(22β). By using a
technique similar to [CN12], the attack complexity can be reduced to Õ(2β).

11.5.3 Hidden Subset Sum Attack on Zero Testing
One can consider an attack similar to Section 11.5.1 on the zero-testing parameters. The zero-testing
vector ω = c · pzt mod x0 corresponding to an encoding c of zero can be written as:

ω =
n∑
i=1

(
ri ·

∏
i′ 6=i

pi′
)
hi =

n∑
i=1

Rihi,

where the hi’s are the lines of the zero-testing matrix H. This gives an expression of ω as a linear
combination of the unknown vectors hi, so we can think of an approach similar to the hidden subset
sum attack of Nguyen and Stern [NS99] to recover the unknown hi’s or the Ri’s.

Such an approach, like the one from the previous section, would first involve computing the
lattice L ⊂ Zn of vectors u orthogonal to ω modulo x0, and hoping that the vectors in a reduced
basis of L are short enough that they must necessarily be orthogonal to each of the hi’s in Zn.

However, L is a lattice of rank n and volume x0 ≈ 2n·η, so we expect its shortest vectors to be of
length roughly 2η. The attack can then only work if such a short vector u is necessarily orthogonal

155

11. Multilinear Maps over the Integers

to each of the hi’s in Zn. Equivalently, this will happen if the vector v = (u · h1, . . . ,u · hn) ∈ Zn,
which we know is orthogonal to (R1, . . . , Rn) modulo x0, is significantly shorter than the shortest
vector in the lattice L′ of vectors orthogonal to (R1, . . . , Rn) modulo x0. But again L′ is of rank n
and determinant x0, so its shortest vectors is of length about 2η, and hence v will typically not be
shorter.

Therefore, the Nguyen-Stern hidden subset sum attack does not apply to our setting.

11.5.4 Attacks on the Inverse Zero Testing Matrix

A related observation is that if ω = c · pzt mod x0 denotes again the zero-testing vector corre-
sponding to an encoding c of zero, and T = (H−1)t is the inverse zero-testing matrix, then, by
Equation (11.10):

Tω = (R1, . . . , Rn) ∈ Zn,

where, as above, Ri = ri · (x0/pi). In particular, if the lines of T are written as ti, we get that for
each i ∈ {1, . . . , n}:

piti · ω ≡ 0 (mod x0).

Thus, since piti is relatively small, we might hope to recover it as a short vector in the lattice
of vectors orthogonal to ω modulo x0. However, as we have seen previously, we expect a reduced
basis of that lattice to have vectors of length roughly 2η, whereas piti is of length about 2η+β . By
the Gaussian heuristic, even when β = O(1), there are exponentially many linear combinations of
the reduced basis vectors under the target length, and hence we cannot hope to recover piti in that
fashion.

A more sophisticated attack based on the same observation uses the result of Hermann and
May [HM08] on solving linear equations modulo an unknown factor of a public modulus. In our
case, the components tij of ti form a small solution (smaller than 2β) of the linear equation:

n∑
j=1

ωj · tij ≡ 0 (mod x0/pi)

modulo the unknown factor x0/pi of x0. The technique of Hermann–May can thus recover ti
and factor x0 provided that β is small enough relative to x0. For sufficiently large n, by [HM08,
Theorem 4], this should be possible as long as β/η < 1. However, as noted by the authors, the
complexity of the attack is exponential in n (it involves reducing a lattice of dimension Ω(expn)),
and there does not seem to be a way to approximate the solution in polynomial time, so the attack
does not apply to our setting even though we do choose β < η.

11.5.5 A Note on GGH’s Zeroizing Attack

In [GGH13a] the authors describe a “zeroizing” attack against their scheme that consists in
multiplying a given level-i encoding c by a level-(κ− i) encoding of 0 to get a level-κ encoding of 0,
and then multiplying by the zero-testing parameter pzt; one obtains an encoding of a (deterministic)
multiple of the coset of c but in the plaintext space. This attack does not enable to solve the
GDDH problem because one does not get a small representative of that coset, but it enables to solve
some decisional problems involving low-level (below κ) encodings, such as the decisional subgroup
membership problem using composite-order maps, and the decisional linear problem.

Surprisingly this attack does not seem to apply against our scheme; namely we do not get a
similar encoding in the plaintext space from the zero-testing parameter. Therefore the subgroup
membership assumption and the decision linear assumption (DLIN) could still hold in our scheme.

Remark 11.13. Note that to instantiate their verifier-based password-authenticated key exchange
based on multilinear maps [BP13], Benhamouda and Pointcheval cannot use the multilinear maps
scheme [GGH13a] because of this attack. Our scheme is therefore currently the only scheme that
can underly these constructions.

156

11.6. Conclusion

11.6 Conclusion

In this chapter, we proposed a new approximate multilinear maps scheme based on Garg, Gentry
and Halevi’s framework [GGH13a], but relying on different techniques and assumptions. Our
hardness assumptions are new, as the ones in [GGH13a]; we sustain them by a careful study of
attacks applicable to our scheme, and we provide asymptotic parameters constraints. As a result of
independent interest, we stated a “Leftover Hash Lemma over lattices”, that is at the core of our
rerandomization procedure. This new technique is directly applicable to the scheme of [GGH13a].

Due to the novelty of the results, even though most of the security analysis is similar to the
security analysis of the DGHV homomorphic encryption scheme extensively studied in Part II of
this thesis, cryptanalysis is much much needed in the field to assess the reality of this exciting
primitive.

A lot of open problems remain; notably to design multilinear maps based on more “classical”
assumptions such as LWE. Even though our scheme, and the one of [GGH13a], appear not to be
very practical, it is a very exciting problem to optimize the current primitives, in order to make
them practical enough to be used for real life applications. An optimization of the GGH scheme,
called GGHLite, has very recently been proposed by Langlois, Stehlé and Steinfield [LSS14], and
might yield interesting practical results. In Chapter 12, we optimize upon the scheme of this chapter
and present the first implementation of (approximate) cryptographic multilinear maps.

11.A Uniform Sampling of a Parallelepiped

In order to sample a uniformly random element in the half-open parallelepiped defined by the
column vectors $j of matrix Π ∈ Zn×n, one can proceed as follows.

First, compute the Smith Normal Form for Π. This is easily done in polynomial time, and
can be done with near optimal complexity using Storjohann’s algorithm [Sto96]. This yields a
basis (b1, . . . ,bn) of Zn and positive integers d1, . . . , dn such that (d1b1, . . . , dnbn) is a basis of
the lattice L generated by the columns of Π.

Now if we pick integers x1, . . . , xn at random such that xi is uniformly distributed in {0, . . . , di−
1}, then clearly, the vector x = x1b1 + · · ·+ xnbn is uniformly distributed modulo L.

To get a uniformly distributed vector in the half-open parallelepiped defined by the $j ’s, it then
suffices to apply Babai’s round-off algorithm [Bab86], i.e. write x as a rational linear combination
ξ1$1 + · · ·+ ξn$n of the $j ’s and return the vector y given by:

y =
n∑
j=1

(
ξj − bξjc

)
$j .

That vector is congruent to x modulo L, so it is also in Zn and uniformly distributed modulo L,
and it belongs to the parallelepiped by construction, so it is indeed a uniformly distributed element
of the parallelepiped.

11.B Generation of the Matrix H

For the construction of zero-testing parameters, we need to pick, with sufficient entropy, an invertible
matrix H ∈ Zn×n in such a way that both its operator norm and the norm of its inverse are not
too large, namely ‖H‖∞ 6 2β and ‖H−1‖∞ 6 2β . In Section 11.3 the bounds must actually hold
for Ht, so we take the transpose of the resulting matrix.

For that purpose, we propose the following approach. For any matrix A of size bn/2c × dn/2e
with coefficients in {−1, 0, 1}, define HA ∈ Zn×n as:

HA =
(
Ibn/2c A

0 Idn/2e

)
.

Each line of HA has at most 1 + dn/2e non zero coefficients, each in {−1, 0, 1}, so we clearly have
‖HA‖∞ 6 1 + dn/2e. Moreover, HA is invertible with H−1

A = H(−A), so that the operator norm of
its inverse admits a similar bound.

157

11. Multilinear Maps over the Integers

Similarly, the transpose H′A of HA also satisfies ‖H′A‖∞ 6 1 + dn/2e (in fact, the slightly better
bound by 1 + bn/2c also holds) and so does its inverse.

Now let:
β′ =

⌊
β

dlog2(1 + dn/2e)e

⌋
,

and generate β′ uniformly random matrices Ai of size bn/2c × dn/2e with coefficients in {−1, 0, 1};
then pick Hi randomly as either HAi or its transpose for each i ∈ {1, . . . , β′}, and finally compute
H as the product of the Hi’s. Then, since operator norms are sub-multiplicative, we have:

‖H‖∞ 6
β′∏
i=1
‖Hi‖∞ 6 (1 + dn/2e)β

′
6 2β ,

and H−1 satisfies the same bound. The set of matrices H obtained in this manner is not very
simple to describe but it is exponentially large.

158

Chapter 12

Implementation of a N > 3-partite
Diffie-Hellman Key Exchange

12.1 Introduction

We view the construction of approximate multilinear maps in [GGH13a] as a significant breakthrough.
Therefore we find it interesting to obtain a new scheme based on different techniques (even relatively
similar) as in Chapter 11, and this provides more confidence in the feasibility of such a construction.
Also since the basic schemes of Chapter 11 and of Garg, Gentry and Halevi appear to be rather
unpractical, it is interesting to find optimizations (even completely heuristic) to obtain a scheme
that can be implemented in practice. In this chapter, we describe the first implementation of
cryptographic (approximate) multilinear maps, and benchmarking results for multipartite Diffie-
Hellman key exchanges. We obtained that an optimized variant of the construction of Chapter 11
is arguably practical as secure one-round key exchanges up to 7 users run in a few seconds on a
mid-range computer.

This chapter includes the implementation section of the article Practical Multilinear Maps over
the Integers [CLT13b], cosigned with J.-S. Coron and M. Tibouchi, and published at Crypto
2013 [CG13a]. The full version of the article is available at [CLT13c], and the proof-of-concept
implementation of our scheme is openly available at [Lep13]. Additionally, we present two works in
progress as appendices. In Appendix 12.A, we propose a quadratic sampling algorithm that allows
one to provably reduce the size of the public parameters (contrary to our heuristic implemented
optimization). In Appendix 12.B, we provide a min-entropy/memory trade-off by reducing the
number of elements in the zero-testing vector pzt.

Multilinear Maps and Diffie-Hellman Key Exchange. In [Jou00], Joux proposed to use cryptographic
bilinear maps to perform a one-round tripartite Diffie-Hellman key exchange, that is a protocol
that enables three parties to share a common secret without exchanging any messages. In 2003,
Boneh and Silverberg generalized this protocol to multiple parties assuming the existence of
cryptographic multilinear maps, but let as a challenging open problem to build the required
multilinear maps [BS03].

The candidate approximate multilinear maps scheme of Garg, Gentry and Halevi differs quite
substantially from the “ideal” multilinear maps envisaged by Boneh and Silverberg. However, since
the multilinear analogue of the decisional Diffie-Hellman (the Graded Decisional Diffie-Hellman
problem, cf. Section 11.2.4) seems to be hard in their setting, that yields some hope for meaningful
applications.

In particular, they show in [GGH13a] that the “obvious” N -partite Diffie-Hellman key exchange
protocol can be instantiated by their approximation of a (N − 1)-linear maps, and proven to be
secure under the GDDH assumption.

Our Contribution. In this chapter, we show that similarly to GGH [GGH13a], our candidate
multilinear maps of Chapter 11 is applicable to the multipartite Diffie-Hellman key exchange
protocol. Our contribution is to describe the first implementation of cryptographic multilinear maps.

159

12. Implementation of a N > 3-partite Diffie-Hellman Key Exchange

It appears that the basic versions of both [GGH13a] and our scheme as described in Chapter 11 are
rather unpractical, because of the huge public parameter size required to randomize the encodings.
Therefore we use a simple optimization that consists in storing only a small subset of the public
elements and combining them pairwise to generate the full public-key. Such optimization was
originally described in [GH11b] for reducing the size of the encryption of the secret-key bits in the
implementation of Gentry’s FHE scheme [Gen09]. It was also used in [CMNT11] to reduce the
public-key size of the DGHV scheme; however, as opposed to the latter work our randomization
of encodings is heuristic only, whereas in [CMNT11] the semantic security was still guaranteed.
Thanks to this optimization our construction becomes relatively practical: for reasonable security
parameters a multipartite Diffie-Hellman computation with 7 users (resp. 26 users) requires less
than 40 seconds (resp. 5 minutes), with a public parameter size of roughly 2.6 GBytes (resp. 8.3
GBytes); a proof-of-concept implementation is openly available at [Lep13].

In appendix, we describe an optimization similar to the pairwise combination of public key pa-
rameters [GH11b, CMNT11] for the sampling algorithm (rather than the randomization algorithm).
We also describe a technique to reduce the number of elements of the zero-testing vector, providing
a min-entropy/memory trade-off for implementations.

12.2 Diffie-Hellman One-Round Key Exchange

In the seminal paper [DH76], Diffie and Hellman introduced a non-interactive (i.e. one round) key
exchange protocol which is still nowadays one of the most famous cryptographic primitives. This
protocol enables two parties, say Alice and Bob, to share a common secret without exchanging any
messages. We recall the protocol as stated in the introduction (Chapter 2).

The parameters consist of a cyclic group G (denoted additively) of prime order p, generated by
g ∈ G. Alice (resp. Bob) generates a key pair (skA, pkA) = (x, x · g) (resp. (skB , pkB) = (y, y · g))
where x← Zp (resp. y ← Zp) and makes her (resp. his) public key openly available. When Alice
and Bob want to share a secret, they both compute a shared secret key (xy) ·g = y · (x ·g) = x · (y ·g)
with their own secret key and the other’s public key.

This incredibly simple protocol (when hashing the resulting secret along with both identities)
fulfills all the properties expected by a non-interactive key exchange protocol and is very efficient.
Its security is based on the Decisional Diffie-Hellman problem, in which one has to distinguish the
distributions (a · g, b · g, (ab) · g) and (a · g, b · g, c · g) for random a, b, c ∈ Zp where g generates a
cyclic group G of prime order p.

12.2.1 Tripartite Diffie-Hellman Key Exchange
In 2000, Joux proposed a tripartite generalization of Diffie-Hellman key exchange protocol using
the Weil and Tate pairings [Jou00], still non-interactive.

In particular, it uses a symmetric bilinear map, that is a map e : G × G → GT , where G
and GT are cyclic groups of prime order p, which is bilinear (i.e. for all g, h ∈ G and a ∈ Zp,
e(a · g, h) = a · e(g, h) = e(g, a · h)) and non-degenerate (i.e. if G = (g), then GT = (e(g, g))).

Now assume that three parties, say Alice, Bob and Carroll, want to share a secret key. Alice
(resp. Bob, resp. Carroll) generates a key pair (skA, pkA) = (x, x · g) (resp. (skB , pkB) = (y, y · g),
resp. (skC , pkC) = (z, z · g)) and publishes her (resp. his, resp. her) public key. The shared secret
is the value

(xyz) · e(x, x) = z · e(x · g, y · g) = y · e(x · g, z · g) = x · e(y · g, z · g) .

The security of this protocol relies on the Bilinear Decisional Diffie Hellman problem, in which
one has to distinguish the distributions (a · g, b · g, c · g, (abc) · e(g, g)) and (a · g, b · g, c · g, d · e(g, g))
for random a, b, c, d ∈ Zp, where g generates a cyclic group G of prime order p and e : G×G→ GT
is a cryptographic bilinear map.

12.2.2 N -partite Diffie-Hellman Key Exchange
In 2003, Boneh and Silverberg generalized this result and showed how to perform a multipartite
Diffie-Hellman key exchange between N users assuming the existence of cryptographic (N−1)-linear

160

12.3. N -partite Diffie-Hellman Key Exchange Using Approximate Multilinear-Maps

maps [BS03]. Consider N parties wishing to set up a shared secret key s using a one-round protocol
(i.e. in which each party broadcasts one value to all other parties and the N broadcasts occur
simultaneously). Once the N broadcast values are known, each party should be able to locally
compute a global shared secret s. Let us recall the definition of such a protocol using the notation
from [BS03, GGH13a]. A one-round N -way key exchange scheme consists of the following three
randomized probabilistic polynomial-time algorithms:

Setup(λ,N). From a security parameter λ and the number of participants N , this algorithm runs
in polynomial time in λ,N and outputs public parameters params.

Publish(params, i). Given a value i ∈ {1, . . . , N}, this algorithm outputs a key pair (pubi, privi).
Party i broadcasts pubi to all other parties and keep privi secret.

KeyGen(params, i, privi, {pubj}j 6=i). Party i computes KeyGen on all the collected public (broadcast)
values {pubj}j 6=i and its secret value privi. This algorithm outputs a key si.

The protocol is said to be correct if the N parties generate the same shared key s with high
probability, i.e. s = s1 = · · · = sN . A correct protocol is said to be secure if, given all N public
values pubi, no polynomial time algorithm can distinguish the true shared secret s from a random
string.

Assume we have a cryptographic (N − 1)-linear map e : GN−1 → GT . Each user i ∈ {1, . . . , N}
generates a key pair (ski, pki) = (xi, xi · g) and publishes the public key. With its secret key and
the others’ public key, each user can generate the shared secret value(N∏

i=1
xi

)
· e(g, . . . , g) = x1 · e(x2 · g, . . . , xN · g) = · · · = xN · e(x1 · g, . . . , xN−1 · g) .

This protocol is secure under the Multilinear Decisional Diffie-Hellman problem (cf. Definition
11.1) which aims, as previously, to distinguish an encoding of a legitimate product from a random
encoding.

12.3 N -partite Diffie-Hellman Key Exchange Using Approximate
Multilinear-Maps

As pointed out in Chapter 11, the only cryptographic multilinear maps currently available are
only approximations of the cryptographic multilinear maps of Boneh and Silverberg. However,
these approximations are sufficient to perform a one-round N -partite Diffie-Hellman key exchange
protocol in the common reference string model (because the public parameters hide some secrets –
namely the pi’s and z), under the GDDH assumption with N = κ+ 1 users.

Our construction is the same as in [GGH13a]. Consider N parties wishing to set up a shared
secret key s using a one-round protocol (i.e. each party broadcasts one value to all other parties).
The protocol is as follows:

Setup(1λ, 1N). Output (params,pzt)← InstGen(1λ, 1κ) as the public parameter, with κ = N − 1.

Publish(params, i). Each party i samples a random ci ← samp(params) as a secret key, and
publishes as the public key the corresponding level-1 encoding

c′i ← reRand(params, 1, enc(params, 1, ci)) .

KeyGen(params,pzt, i, ci, {c′j}j 6=i). Each party i computes c̃i = ci ·
∏
j 6=i c

′
j , and uses the extraction

routine to compute the (shared) key s← ext(params,pzt, c̃i).

The correctness of the protocols follows from the fact that all parties get valid encodings of the
same vector, hence with the parameters as given in Section 11.3.1, the extraction property implies
that they should extract the same key with overwhelming probability.

The security of the protocol follows from the randomness property of the extraction procedure
and the GDDH hardness assumption.

161

12. Implementation of a N > 3-partite Diffie-Hellman Key Exchange

Theorem 12.1 ([GGH13a]). The protocol described above is a secure one-round N-way Diffie-
Hellman key exchange protocol if the GDDH assumption holds for the underlying encoding scheme.

Proof. We need to show that an attacker who sees all the public keys cannot distinguish the output
of the first party (say) from a uniform random string. Now Party 1 extracts the same string as one
would extract from c = reRand(params, κ,

∏N
i=1 +ci).

By GDDH, the adversary cannot distinguish c from c′ = reRand(params, κ, b) for a random
and independent b← samp(params). Now by the randomness property of the sampling procedure
(i.e. Lemma 11.6), b is nearly uniformly distributed in R. Therefore, by the randomness property of
the extraction function, we conclude that ext(params,pzt, c′) is a nearly uniform string, completing
the proof.

12.4 Optimizations and Implementation

In this section we describe an implementation of our scheme in the one-round N -way Diffie-Hellman
key exchange protocol (cf. Section 12.3).

We note that without optimizations the size of the public parameters makes the scheme of
Chapter 11 completely unpractical; this is also the case in [GGH13a]. Namely, for sampling we
need to store at least n · α encodings (resp. n · ρ encodings for re-randomization), each of size n · η
bits; the public-key size is then at least n2 · η · α bits. With n ' 104, η ' 103 and α ' 80, the
public-key size would be at least 1 TB.1 Therefore we use three heuristic optimizations to reduce
the memory requirement.

1. Non-uniform sampling: for the sampling algorithm we use a small number of encodings ` only;
this implies that the sampling cannot be proved uniform anymore.

2. Quadratic re-randomization: we only store a small subset of encodings which are later combined
pairwise to generate the full set of encodings. This implies that the randomization of encodings
becomes heuristic only.

3. Integer pzt: we use a single integer pzt instead of a vector pzt with n components. An encoding
c of zero still gives a small integer ω = pzt · c mod x0, but the converse does not necessarily hold
anymore.

12.4.1 Non-uniform Sampling
For sampling level-zero encodings we use a smaller value for `, the number of encodings xj in the
public parameters. There is a simple meet-in-the-middle attack with complexity O(2`/2); therefore
we take ` = 2λ. In this case the sampling cannot be proved uniform in R = Zg1 ×· · ·×Zgn anymore.
However this does not seem to make the GDDH problem easier.

Note also that for such small ` given a level-0 encoding c, one can efficiently recover the coefficients
of the subset sum with LLL, since this is a subset-sum problem with density `/(η · n)� 1; however
this does not give an attack, as in GDDH such level-0 encoding c is not available.2

12.4.2 Quadratic Re-randomization
To reduce the parameters size we use a simple optimization that consists in storing only a small subset
of the public elements and combining them pairwise to generate the full public-key. Such optimization
was originally described in [GH11b] for reducing the size of the encryption of the secret-key bits
in the implementation of Gentry’s FHE scheme [Gen09]. It was also used in [CMNT11] to reduce
the public-key size of the DGHV scheme; however, as opposed to [CMNT11] our randomization of
encodings becomes heuristic only, whereas in [CMNT11] the semantic security was still guaranteed.

1In [GGH13a] the following approximate setting is suggested: n = Õ(κλ2), q = 2n/λ and m = O(n2). The
public-key size contains at least m encodings of size n log2 q bits each. Taking exactly n = κλ2 and m = n2, the
public-key size is then m · n · (n/λ) = n4/λ = κ4λ7. With κ = 6 and λ = 80, we get a public-key size of 3400 TB.

2Alternatively, as described in Appendix 12.A, one could use the same quadratic technique as in [CMNT11]; in
that case the sampling could still be proved uniform in R.

162

12.5. Practical Results

For re-randomization we only store ∆ = b
√
nc encoding x(0)

j at level 0 and also ∆ encodings x(1)
j

at level 1. The x(0)
j encode random mj ∈ R, while the x(1)

j are encodings of 0. Then by pairwise
multiplication we can generate ∆2 ' n randomization elements at level 1, which are all encodings
of 0. More precisely, we have for b = 0, 1 and 1 6 j 6 ∆:

x
(b)
j ≡

r
(b)
ij · gi + (1− b) · fij

zb
(mod pi) ,

where r(b)
ij are random ρ-bit integers, and fij are random integers modulo gi.

Given a level-1 encoding c1, we randomize it using a random subset-sum of pairwise products of
the previous encodings:

c′1 = c1 +
∆∑

i,j=1
αij · x(0)

i · x
(1)
j mod x0 ,

where the αij ’s are random bits; note that we don’t use the encodings Πj anymore. As a further
optimization, we can use as in [CMNT11] a sparse vector αij , with small Hamming weight θ. There
is a meet-in-the-middle attack of complexity O(nθ/2). In our implementation we take θ = 16; the
reRand operation then becomes very efficient.

Writing as previously c′1 ≡ (r′i · gi +mi)/z (mod pi), we obtain under this optimization:

|r′i · gi +mi| 6 (`+ θ) · 22(ρ+α) .

When computing the product of κ such level-1 encodings and one level-0 encoding as in multipartite
Diffie-Hellman key exchange, we obtain the following updated bound for the log2 infinite norm of
the vector r from Lemma 11.8:

ρf 6 κ · (2ρ+ 2α+ log2(`+ θ)) + ρ+ log2 `+ 1 .

12.4.3 Zero-Testing Element
Instead of generating a zero-testing vector pzt with n components, we publish a zero-testing element
pzt which is a single integer:

pzt =
n∑
i=1

hi · (zκ · g−1
i mod pi) ·

∏
i′ 6=i

pi′ mod x0

where the hi’s are random β-bit integers. Therefore, we obtain a single integer ω = pzt · c mod x0,
with

ω =
n∑
i=1

hi ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ 6=i

pi′ mod x0.

As before, if ‖r‖∞ < 2ρf we still have |ω| < x0 · 2−ν−λ−2. However the converse is no longer
true: we can have |ω| < x0 · 2−ν for an encoding of a non-zero vector m. This implies that two
encodings of different vectors can now extract to the same value. While it is actually easy to
generate such collisions using LLL, this does not seem to give an attack against the GDDH problem.
The resulting scheme is therefore no longer computationally (and statistically) zero-test secure (cf.
Definition 11.4).

12.5 Practical Results

We have implemented a one-round N -way Diffie-Hellman key exchange protocol with N = 3, 5, 7
and 26 users, in C++ using the GMP library to perform operations on large integers. We refer
to Section 12.3 for a description of the protocol. Our proof-of-concept implementation is openly
available for the community to reproduce our experiments at [Lep13].

We provide our concrete parameters and the resulting timings in Table 12.1 (on page 169), for
security parameters ranging from 52 to 80 bits. We used algorithms similar to the algorithms used
to derive parameters for the multi-slot DGHV scheme in Chapter 7.

163

12. Implementation of a N > 3-partite Diffie-Hellman Key Exchange

The timings of Table 12.1 show that our scheme is relatively practical, as the KeyGen phase of
the 7-partite (resp. 26-partite) Diffie-Hellman protocol requires only a few seconds (resp. minutes)
per user; however the parameter size is still very large even with our optimizations.
Remark 12.2. We could not assess the practicality of our scheme for larger κ because of the costly
Setup phase. However, we can easily estimate the timings more precisely for a multiplication and
the rerandomization procedure (using random elements instead of well-formed ones).3 In particular,
we obtain that for κ = 100 levels each multiplication (resp. modular multiplication) takes about
10 seconds (resp. 30 seconds) and the rerandomization about 3 minutes. In particular, we can
roughly estimate that the KeyGen procedure of a 101-partite key exchange takes about one hour
per participant.

12.6 Conclusion

In this chapter, we proposed some heuristic optimizations for the approximate multilinear maps
scheme over the integers described in Chapter 11, and we described the first implementation of
cryptographic multilinear maps (openly available at [Lep13]).4 In particular, we provide parameters
and timings for a N -partite Diffie-Hellman Key Exchange protocol for N = 3, 5, 7 and 26.

Our results show that using cryptographic multilinear maps for a small number of levels might
be practical enough for some applications, as a key exchange between seven users only took a few
seconds per user with our proof-of-concept implementation on a mid-range computer.

The two constructions of approximate multilinear maps published in 2013 [GGH13a, CLT13b]
provoked a wave of new results and constructions based on multilinear maps. Unfortunately, all
these constructions require a large number of multilinearity levels, practically unreachable by
our implementation. It remains very challenging to propose optimizations to the approximate
multilinear maps scheme candidates, or to propose a new scheme, in order to handle a large number
of levels in a reasonable time.

12.A Quadratic Sampling for Level-Zero Encodings

In order to reduce the size of the public parameters params, one could use the same quadratic
encryption technique as in [CMNT11]. The idea consists in combining on-the-fly a smaller subset of
public parameters x′j ’s multiplicatively. In the following, we describe our new technique to sample
level-zero encodings and we show that the sampling can still be proved uniform in R.
Quadratic Sampling. c ← quadsamp(params). Similarly as before, we publish a set of 2`
integers x′j,b for 1 6 j 6 ` and b ∈ {0, 1}, each one being a level-0 encoding of a random message
aj,b = (aij,b)ni=1 in R. We denote

1 6 j 6 `, b ∈ {0, 1}, x′j,b ≡ r′ij,b · gi + aij,b (mod pi) (12.1)

with r′ij,b’s randomly generated in (−2ρ, 2ρ) ∩ Z.
Our quadratic randomized sampling algorithm quadsamp(params) works as follows: we generate

a random ς-bit integer vector b = (bij) of size `2 and output the level-0 encoding

c =
∑

16i,j6`
bij · x′i,0 · x′j,1 mod x0 .

The output c is a level-0 encoding:

c ≡ ri · gi +mi (mod pi)

of some vector m ∈ Zn; for such level-0 encodings we get |ri · gi +mi| 6 `2 · 2ς+2ρ+2α for all i.
The following Lemma states that, as required, the distribution of m is statistically close to

uniform over R = Zg1 × · · · × Zgn ; the proof is based on applying the Leftover Hash Lemma over
the set R (cf. Section 3.3.1).

3It is worth noting that one does not need the whole public key when multiplying (but only x0) nor during the
rerandomization procedure (only x0 and the rerandomization elements).

4Note that, to this date, no other implementation of multilinear maps has been proposed in the literature, even
though the GGH scheme has been improved upon in [LSS14].

164

12.A. Quadratic Sampling for Level-Zero Encodings

Lemma 12.3. Let c ← quadsamp(params) and write c ≡ ri · gi + mi (mod pi). Let ς · `2 >
max

(
nα, (2ς + 1)`+ log2(`2) + log2(n)

)
+ 2λ. The distribution of (params,m) is statistically close

to the distribution of (params,m′) where m′ ← R.

ε-Pairwise Independent Hash Functions Family. We first recall the notion of ε-pairwise indepen-
dence introduced in [CMNT11].

Definition 12.4. A family H of hash functions h : X → Y is ε-pairwise independent if∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1
|Y |

)
6 |X|2 · ε

|Y |
.

The following generalization of the usual Leftover Hash Lemma is proved in [CMNT11].

Lemma 12.5 (Leftover hash lemma). Let H be a family of ε-pairwise independent hash functions.
Suppose that h ← H and x ← X are chosen uniformly and independently. Then (h, h(x)) is
(1

2
√
|Y |/|X|+ ε)-uniform over H× Y .

Let H be a hash family from X = {0, . . . , 2ς − 1}`2 associated to elements a0 = (ai,0)i and
a1 = (ai,1)i of R for 1 6 i 6 n. For b ∈ {0, . . . , 2ς − 1}`2 , we let:

h(b) =
∑

16i,j6`
bij · a0 · a1

where the multiplication is component-wise in R.

Lemma 12.6. The hash function family H is ε-pairwise independent, with

ε = 1
min(gi)

+ n · `2 · 2(2ς+1)`−ς`2
.

Proof. For each choice of b 6= b′, the probability Prh←H[h(b) = h(b′)] can be expressed in terms
of number of zeros of a system of hyperbolic quadratic forms. More precisely let D = (dij) be the
`× ` matrix in M`(Z) given by dij = bij − b′ij . We have

Pr
h←H

[h(b) = h(b′)] = 1
|R|2`

#

(u1, . . . ,u`,v1, . . . ,v`) ∈ R2` :
∑

16i,j6`
dij · ui · vj = 0


= 1
|Zg1 |2`

#

(u11, . . . , u`1, v11, . . . , v`1) ∈ Z2`
g1

:
∑

16i,j6`
dij · ui1 · vj1 = 0


× · · · ×

1
|Zgn |2`

#

(u1n, . . . , u`n, v1n, . . . , v`n) ∈ Z2`
gn :

∑
16i,j6`

dij · uin · vjn = 0


From [CMNT11, Lemma 4.2], denoting ri the rank of D in Zgi , we have

Pr
h←H

[h(b) = h(b′)] = 1
|R|2`

·
n∏
i=1

(
g2`−1
i + g2`−ri

i − g2`−ri−1
i

)
.

Without loss of generality, we can assume that g1 6 g2 6 · · · 6 gn. Thus, we get

Pr
h←H

[h(b) = h(b′)]− 1
|R|

6
n∏
i=1

(
1
gi

+ 1
grii

)
− 1
g1 × · · · × gn

6
1

g
min(ri)
1 · g2 · · · gn

.

As in [CMNT11], this estimate is not sufficient when min(ri) = 1. Therefore, we need to bound the
number of pairs (b,b′) such that the corresponding matrix D is of rank 1 modulo gj for at least

165

12. Implementation of a N > 3-partite Diffie-Hellman Key Exchange

one j. Let us denote Uς,j the set of matrices of rank 1 in M`(Zgj) with entries in [−2ς + 1, 2ς − 1].
From [CMNT11], we have the coarse bound |Uς,j | 6 `2 · 2(2ς+1)` for all j.

Now, the number of pairs (b,b′) such that the corresponding matrix D is of rank 1 for at least
one of the gj ’s is at most n× |X| × |Uς,j |, since for any choice of b and gj , there are at most |Uς,j |
possible values of b′ such that D is in Uς,j . We can thus bound the value δ defined by

δ = |Y |
|X|2

·
∑
b6=b′

(
Pr
h←H

[h(b) = h(b′)]− 1
|R|

)
as required. Indeed,

δ 6
|R|
2ς`2 ·

 ∑
b6=b′

∀j,D/∈Uς,j

(
Pr
h←H

[h(b) = h(b′)]− 1
|R|

)
+

∑
b6=b′

∃j,D∈Uς,j

(
Pr
h←H

[h(b) = h(b′)]− 1
|R|

)
6

|R|
22ς`2 ·

(
22ς`2 1

g2
1 · g2 · · · gn

+ n2ς`
2
· (`2 · 2(2ς+1)`) · 1

g1 · · · gn

)
6

1
g1

+ n · `2 · 2(2ς+1)`−ς`2
,

which concludes the proof.

Proof of Lemma 12.3. To any encoding (c mod x0) we associate the vector

f(c) =
(
(c mod p1) mod g1, . . . , (c mod pn) mod gn

)
∈ R = Zg1 × · · · × Zgn .

The function f can be viewed as a decryption function: it extracts from an encoding c the encoded
message m. Given two encodings c, c′, we have that if |c mod pi|+ |c′ mod pi| < pi/2 for all i, then
f(c+c′) = f(c)+f(c′). Similarly, if |c mod pi| · |c′ mod pi| < pi/2 for all i, then f(c ·c′) = f(c) ·f(c′).
In the following we only consider encodings which have sufficiently small residues modulo the pi’s
so that f can be considered additively and multiplicatively homomorphic.

The quadratic sampling yields an encoding c such that there exists b and

f(c) = f

 ∑
16i,j6`

bij · x′i,0 · x′j,1

 =
∑

16i,j6`
bij · f(x′i,0) · f(x′j,1) =

∑
16i,j6`

bij · ai,0 · aj,1 .

Since aj,b are randomly chosen in R`, by applying the leftover-hash lemma (Lemma 12.5), we have
that (params, f(c)) is ε-statistically close to (params,m′) for a random m′ in R for

ε = 1
2

√
|R|
2ς`2 + ε

where ε is given in Lemma 12.6. With the condition

ς · `2 > max
(
nα, (2ς + 1)`+ log2(`2) + log2(n)

)
+ 2λ ,

the lemma is proven.

12.B Optimization on the Zero-Testing Elements

In order to test whether a level-κ encoding encodes 0, we publish as part of the instance generation a
zero-testing vector pzt ∈ Zn. Unfortunately, this requires to store n integers of n · η bits, increasing
the public-key size by n2 · η bits. For example with n = 26115 and η = 2438 as in our “Extra”
parameters set in Table 12.1, the zero-testing vector size would be larger than 200GB. Moreover, its
construction relies on an intricate procedure to generate an invertible matrix H ∈ Zn×n such that
its operator norm, and the operator norm of its inverse are bounded by 2β (see Appendix 11.B).

166

12.B. Optimization on the Zero-Testing Elements

In this section, we explain how to reduce the number of elements of pzt from n to only two
and simplify the requirement on H. One drawback is that two encodings of different vectors can
now extract to the same value, i.e. the scheme is no longer zero-test secure (cf. Definition 11.4).
While it is actually easy to generate such collisions using LLL, this does not seem to give an attack
against the GDDH problem; therefore one-round N -way Diffie-Hellman key exchange as described
in Section 12.3 should remain secure under this optimization.

12.B.1 Zero-Testing Element
A first idea would be to publish a zero-testing element pzt as a single integer, instead of a vector
pzt with n components:

pzt =
n∑
i=1

hi · (zκ · g−1
i mod pi) ·

∏
i′ 6=i

pi′ mod x0

where the hi’s are random integers in [1, 2β). Therefore given as input an integer c such that
c ≡ (ri · gi +mi)/zκ (mod pi), we obtain a single integer ω = pzt · c mod x0, with

ω =
n∑
i=1

hi ·Ri mod x0 , (12.2)

where Ri = ((ri+mi ·g−1
i) mod pi) ·(x0/pi). As before, if ‖r‖∞ < 2ρf , we still have |ω| < x0 ·2−ν−2.

However the converse is no longer true: we can have |ω| < x0 · 2−ν+2 for an encoding of a non-zero
vector m. However if mi = 0 for all i > 1, we have the following Lemma, whose proof is similar to
the proof of Lemma 11.8:

Lemma 12.7. Let n, η, α and β be as in our parameter setting. Let ρf be such that β + α+ ρf +
log2 n 6 η − 9, and let ν = η − β − ρf − log2 n− 3 > α+ 6. Let c be such that c ≡ (ri · gi +mi)/zκ
(mod pi) for all 1 6 i 6 n, where 0 6 m1 < g1 and mi = 0 for all i > 1. Let r = (ri)16i6n
and assume that ‖r‖∞ < 2ρf . If m1 = 0 then |ω| < x0 · 2−ν−2. Conversely if m1 6= 0 then
|ω| > x0 · 2−ν+2.

Proof. If m1 = 0 then we have Ri = ri · x0/pi for all i, which gives using pi > 2η−1 for all i:

‖R‖∞ 6 ‖r‖∞ · max
16i6n

(x0/pi) 6 ‖r‖∞ · x0 · 2−η+1 .

Since by definition −p/2 < (z mod p) 6 p/2, we have |z mod p| 6 |z| for any z, p; therefore we
obtain from (12.2) using ‖r‖∞ < 2ρf

|ω| = ‖ht ·R mod x0‖∞ 6 ‖ht ·R‖∞ 6 n · ‖ht‖∞ · ‖R‖∞ < x0 · 2log2 n+β+ρf−η+1 = x0 · 2−ν−2 .

Conversely assume that |ω| < x0 · 2−ν+2. We have from Equation (12.2) that

h1 ·R1 ≡ ω −
n∑
i=2

hi ·Ri (mod x0) .

Now, using the fact that mi = 0 for i > 1, we have as previously that
∣∣∣∑n

i=2 hi · Ri
∣∣∣ 6 x0 ·

2log2(n−1)+β+ρf−η+1 6 x0 · 2−ν−2. Since |h1 ·R1| < x0/2 and
∣∣ω −∑n

i=2 hi ·Ri
∣∣ < x0 · 2−ν+3, the

previous equality must hold over Z. This gives |h1 · R1| < x0 · 2−ν+3, and since h1 6= 0, we get
|R1| < x0 ·2−ν+3. Letting v1 = (r1 +m1 · g−1

1) mod p1, we have |v1| 6 p1 ·2−ν+3. We show that the
equality g1 · (v1 − r1) ≡ m1 (mod p1) must therefore hold over Z. Indeed from |m1| < g1 < p1/2
and g1 6 2α, we have

|g1 · (v1 − r1)| 6 |g1| · (|v1|+ |r1|) 6 p1 · 2α−ν+3 + 2α+ρf 6 p1/8 + p1/8 < p1/2 ,

which implies m1 ≡ 0 (mod p1) and finally m1 = 0.

167

12. Implementation of a N > 3-partite Diffie-Hellman Key Exchange

Thus if c and c′ encode vectors differing only on their first element, by Lemma 12.7 we must have
|(c− c′) · pzt mod x0| > x0 · 2−ν+2, and therefore the ν most significant bits of the corresponding
ω and ω′ must be different. This implies that the min-entropy of msbsν(c · pzt) when c encodes a
message (m1,m2, . . . ,mn) for fixed mi’s, i > 1 and a random m1 ∈ Zg1 is at least log2|Zg1 | > α− 1.
Therefore, the min-entropy of msbsν(c · pzt) when c encodes a random message in R is at least
α − 1. Finally we can use a strong randomness extractor to extract a nearly-uniform bit-string
of length α − 1 − λ bits. Thus to extract λ bits, we must have α > 2λ + 1, instead of α = λ as
recommended in Section 11.3.1. The latter bound is therefore not optimal, as a larger α increases
the size η of the elements pi’s, and therefore the encoding size.

12.B.2 Extension to t 6 n elements
We generalize the previous result to a zero-testing vector with t elements instead of one, namely
pzt ∈ Zt for 1 6 t 6 n:

(pzt)j =
n∑
i=1

hij · (zκ · g−1
i mod pi) ·

∏
i′ 6=i

pi′ mod x0 .

The matrix H = (hij) ∈ Zn×t is randomly generated such that H =
(

Ht
Hn−t

)
where the submatrix

Ht ∈ Zt×t is invertible in Z with both ‖Ht
t‖∞ 6 2β and ‖(Ht

−1)t‖∞ 6 2β (see Section 11.3 and
Appendix 11.B), and the coefficients of Hn−t are random β-bit integers. As previously, if mi = 0
for all i > t, we have the following Lemma:

Lemma 12.8. Let n, t, η, α and β be as in our parameter setting. Let ρf be such that 2β + α+
ρf + log2(n− t+ 1) 6 η − 9, and let ν = η − β − ρf − log2(n− t+ 1)− 3 > β + α + 6. Let c be
such that c ≡ (ri · gi + mi)/zκ (mod pi) for all 1 6 i 6 n, where 0 6 mi < gi for all i 6 t and
mi = 0 for all i > t. Let r = (ri)16i6n and assume that ‖r‖∞ < 2ρf . If mi = 0 for all i then
|ω| < x0 · 2−ν−2. Conversely if there exists j ∈ [1, t] such that mj 6= 0 then |ω| > x0 · 2−ν+2.

Proof. The proof of this Lemma is similar to the proofs of Lemmas 11.8 and 12.7. We sketch
it for completeness. If m = 0, we get as previously that ‖ω‖∞ 6 x0 · 2−ν−2. Assume now that
‖ω‖∞ 6 x0 · 2−ν+2, and denote Rt = (Rt

t,Rn−t
t). We have that

ω = Ht
t ·Rt + Hn−t

t ·Rn−t .

Now ‖Hn−t ·Rn−t‖∞ 6 x0 · 2log2(n−t)+β−η+1+ρf 6 x0 · 2−ν−2 and

Rt ≡ (Ht
−1)t · (ω −Hn−t

t ·Rn−t) mod x0 ,

and this latter equation holds over Z. This yields ‖Rt‖∞ 6 x0 · 2β−ν+3 and we conclude as in
Lemma 11.8 that m = 0.

12.B.3 Two-element vector
Let us consider the case t = 2. In this case, we do not need to use the intricate generation
procedure for H2 described in Appendix 11.B. Indeed, H2 = (hij) is invertible over Z if and only if

h11 · h22 − h12 · h21 = ε ∈ {±1} and its inverse is given by H2
−1 = ε

(
h22 −h12
−h21 h22

)
. Therefore if

‖Ht
t‖∞ 6 2β , then ‖(Ht

−1)t‖∞ 6 2β .
Now, if c and c′ encode vectors m and m′ with (m1,m2) 6= (m′1,m′2) and mi = m′i for all

i > 2, by Lemma 12.8 we must have ‖(c− c′) · pzt mod x0‖ > x0 · 2−ν+2, and therefore the ν most
significant bits of the corresponding ω and ω′ must be different. This implies that the min-entropy
of msbsν(c · pzt) when c encodes a message (m1,m2, . . . ,mn) for fixed mi’s, i > 2 and a random
tuple (m1,m2) ∈ Zg1 × Zg2 is at least log2|Zg1 × Zg2 | > 2(α − 1). Therefore, the min-entropy of
msbsν(c · pzt) when c encodes a random message in R is at least 2(α − 1). Finally we can use a
strong randomness extractor to extract a nearly-uniform bit-string of length 2(α− 1)− λ. Thus to
extract λ bits, this implies to take α > λ+ 1 which is nearly optimal.

168

12.B. Optimization on the Zero-Testing Elements

In
st
an

tia
tio

n
λ

κ
n

η
∆

ρ
γ

=
n
·η

pk
siz

e
Sm

al
l

52
2

61
5

89
7

24
52

0.
5
·1

06
14

M
B

M
ed

iu
m

62
2

24
45

95
7

49
62

2.
2
·1

06
70

M
B

La
rg
e

72
2

10
08
0

10
27

10
0

74
7.

3
·1

06
33
0
M
B

Ex
tr
a

80
2

14
19
0

11
10

11
9

89
12
.0
·1

06
59
9
M
B

Se
tu

p
(o
nc

e)
Pu

bl
ish

(p
er

pa
rt
y)

K
ey

Ge
n
(p
er

pa
rt
y)

1.
8
s

0.
08

s
0.
04

s
20

s
0.
45

s
0.
22

s
10
08

s
2.
4
s

1.
2
s

38
35

s
3.
4
s

1.
7s

(a
)

3-
pa

rt
it
e
D
iffi

e-
H
el
lm

an

In
st
an

tia
tio

n
λ

κ
n

η
∆

ρ
γ

=
n
·η

pk
siz

e
Sm

al
l

52
4

55
5

14
39

23
52

0.
8
·1

06
20

M
B

M
ed

iu
m

62
4

22
05

15
39

46
62

3.
4
·1

06
10
2
M
B

La
rg
e

72
4

88
80

16
48

94
73

14
.6
·1

06
53
6
M
B

Ex
tr
a

80
4

26
55
0

17
82

16
2

87
47
.3
·1

06
1.
6
G
B

Se
tu

p
(o
nc

e)
Pu

bl
ish

(p
er

pa
rt
y)

K
ey

Ge
n
(p
er

pa
rt
y)

5
s

0.
13

s
0.
10

s
30

s
0.
69

s
0.
56

s
12
05

s
3.
4
s

2.
8
s

24
55
4
s

14
.8

s
11
.8

s
(b
)

5-
pa

rt
it
e
D
iffi

e-
H
el
lm

an

In
st
an

tia
tio

n
λ

κ
n

η
∆

ρ
γ

=
n
·η

pk
siz

e
Sm

al
l

52
6

52
5

19
81

22
52

1.
0
·1

06
26

M
B

M
ed

iu
m

62
6

20
55

21
21

45
62

4.
4
·1

06
13
3
M
B

La
rg
e

72
6

82
50

22
61

90
72

18
.7
·1

06
70
9
M
B

Ex
tr
a

80
6

26
11
5

24
38

16
1

85
63
.7
·1

06
2.
6
G
B

Se
tu

p
(o
nc

e)
Pu

bl
ish

(p
er

pa
rt
y)

K
ey

Ge
n
(p
er

pa
rt
y)

7
s

0.
18

s
0.
20

s
38

s
0.
86

s
1.
05

s
20
38

s
4.
9
s

5.
7
s

27
29
5
s

17
.8

s
20
.2

s
(c
)

7-
pa

rt
it
e
D
iffi

e-
H
el
lm

an

In
st
an

tia
tio

n
λ

κ
n

η
∆

ρ
γ

=
n
·η

pk
siz

e
Sm

al
l

52
25

40
5

71
30

20
52

2.
9
·1

06
72

M
B

M
ed

iu
m

62
25

15
90

76
50

39
62

12
.1
·1

06
36
1
M
B

La
rg
e

72
25

62
85

81
70

79
72

51
.3
·1

06
2.
0
G
B

Ex
tr
a

80
25

18
99
0

86
37

13
7

81
16

4.
0
·1

06
8.
3
G
B

Se
tu

p
(o
nc

e)
Pu

bl
ish

(p
er

pa
rt
y)

K
ey

Ge
n
(p
er

pa
rt
y)

9.
5
s

0.
52

s
2.
2
s

19
0
s

2.
9
s

12
.1

s
53
21

s
16
.9

s
74
.4

s
12
36
33

s
59
.1

s
25
4.
5
s

(d
)

26
-p
ar
ti
te

D
iffi

e-
H
el
lm

an

Ta
bl
e
12

.1
–
Pa

ra
m
et
er
s
an

d
tim

in
gs

to
in
st
an

tia
te

a
on

e-
ro
un

d
N
-w

ay
D
iffi

e-
H
el
lm

an
ke
y
ex
ch
an

ge
pr
ot
oc
ol

w
ith

`
=

16
0,
β

=
80
,
α

=
80
,N

=
κ

+
1
an

d
ν

=
16

0
on

a
16

-c
or
e
co
m
pu

te
r
(I
nt
el
(R

)
X
eo
n(
R
)
C
PU

E7
-8
83

7
at

2.
67

G
H
z)

us
in
g
G
M
P

6.
0.
0.

W
e
de

no
te

by
γ
th
e
bi
ts
iz
e
of

th
e
en

co
di
ng

s.
N
ot
e
th
at

th
e

Se
tu

p
st
ep

wa
s
pa

ra
lle

liz
ed

on
th
e

16
co
re
s
to

sp
ee
d-
up

th
e
pr
oc
es
s
w
hi
le

th
e
ot
he

r
st
ep

s
ra
n
on

a
sin

gl
e
co
re
.
W
e
on

ly
de

riv
ed

a
co
m
m
on

ν
-b
it

se
ss
io
n
ke
y

w
ith

ou
t
us
in
g
a
ra
nd

om
ne

ss
ex
tr
ac
to
r.

169

Part Four

Conclusions, Thoughts and Other Works

171

Chapter 13

Conclusion and Thoughts

The huge gap that exists between the scientific state of the art in cryptography and the cryptographic
systems embedded in current security products never fails to astonish me.

One example, among numerous others, concerns the Transport Layer Security (TLS) protocol.
In February 2013, the TLS world was mostly running on RC4-SHA (48.9%) and AES-CBC
(47.5%) [Lanb].1 During the year were presented the Lucky 13 attack [AP13] against all TLS
and DTLS ciphersuites that include CBC-mode encryption, and an attack using RC4 biases in
TLS [ABP+13]. These attacks are quite efficient and make clear that both these major TLS
ciphersuite families, which constitute of 96.4% of the Internet, shall be replaced as soon as possible.
A possible countermeasure (for both attacks) consists in switching to AEAD ciphersuites2 in TLS,
such as AES-GCM. Support for AEAD ciphersuites was specified in TLS 1.2, but this version of TLS
was not, and is still not, widely supported. Moreover, producing a fast AES-GCM implementation
which is not prone to timings attacks is very difficult, and AES-GCM is quite unadapted to
low-powered devices [Lana]. And if that were not enough, the RC4-SHA and AES-CBC ciphersuites
cannot be deactivated because of a long-standing problem: fallback mechanisms. Fallback modes
allow, when a handshake fails (for example because of a – maliciously? – buggy HTTPS server), to
reconnect with a less secure version of the protocol.

This example is one of many situations in which “old” cryptography is used instead of more recent
primitives with strong security guarantees. Only a small fraction of recent research in cryptography
is really used in practice; the majority of the cryptographic protocols lack implementations and
performance measures (and often lack help on parameters selection). Advanced cryptography can
do much more for security applications than just using AES, RSA and ECC – and I believe one of
the great challenge of cryptology in the following years is to find a way to bring recent advances in
real world products in a reasonable time frame, and to find solutions to ensure security when weak
primitives are used3.

I had been very lucky to be offered the opportunity of doing most of my Ph.D. studies at
CryptoExperts, a small company that intends to narrow – and fill – the gap between theoretical
research and practical cryptography. I am also admiring the works of Adam Langley4, Daniel J.
Bernstein and Tanja Lange5 who aim at making the world more secure. Recent cryptographic
competitions such as the SHA-3 and CAESAR competitions [NIS12, CAE16] aim at designing

1RC4 is a secret stream cipher designed in 1987 (and leaked in 1994 [Ano94]) and has become part of some
commonly used encryption protocols and standards. Its wide adoption is mainly due to its speed and simplicity; but
not to its security, as RC4 is known to have a variety of cryptographic weaknesses [GMPS14].

2Authenticated Encryption with Associated Data (AEAD) is a class of block cipher modes which encrypt (parts
of) the message and authenticate the message simultaneously.

3A very interesting work on this subject, that received the best young-author paper at CRYPTO 2013, is the
counter-cryptanalysis paradigm proposed by Marc Stevens [Ste13]. Counter-cryptanalysis “exploits unavoidable
anomalies introduced by cryptanalytic attacks to detect and block cryptanalytic attacks while maintaining full
backwards compatibility”.

4Adam Langley works at Google, and does an amazing job at bringing recent cryptographic primitives (such as
ChaCha20 and Poly1305) into Chrome and on Google servers [Lana, Lanb]; his work impacts millions of people.

5Dan and Tanja are very active and passionate members of the cryptographic community. Among other works,
they are doing an amazing job assessing the security of implementing elliptic-curves in cryptography [BL].

173

13. Conclusion and Thoughts

trusted cryptography for standardization that is fast, efficient, and resists to the latest advances in
cryptanalysis. Another dissemination effort that will certainly have a huge impact on this issue is
the recent Real World Cryptography workshop [RWC] which focuses on uses of cryptography in
real world environments, and brought together more than 400 participants for its 2014 edition.

Throughout my Ph.D. studies, my main research inclination was inspired by bridging the gap
between the theoretical and practical worlds. My work aims to help some of the most recent
cryptographic primitives (lattice-based cryptography, fully homomorphic encryption and multilinear
maps schemes) become more practical. I endeavor, in the long run, to make these supposedly
utterly ludicrously slow primitives (as emphasized e.g. in [Ber]) useful in real world applications.

Thoughts on Lattice-Based Cryptography. Lattice-based cryptography is not a recent field. Quite
surprisingly6, the most promising candidate for lattice-based encryption remains NTRUEncrypt,
presented in 1998 [HPS98]. NTRUEncrypt is standardized [IEE08] and has resisted cryptanalytic
attention for the last 16 years. However, repeated attacks on lattice-based signatures casted doubts
on the maturity of lattice-based cryptography in the community. One of the main problems was
certainly that these cryptographic primitives lacked security proofs, and therefore lacked evidence of
their hardness. However, in the last 10 years, the landscape changed considerably, starting from the
work of Regev [Reg09] that introduces the LWE average-case problem and shows that it reduces to
worst-case algorithmic problems over lattices. The study of the algorithmic over Euclidean lattices
has a long history outside of the cryptographic field because numerous optimization problems rely
on it. The known hardness of these problems, and the worst-case to average-case reduction, prove
that almost all the lattices we will rely on are equally hard, contrary to elliptic curves or finite
field cryptographies in which some parameters choices can end-up yielding a system a lot easier
than expected [BGJT14]. Following Regev’s groundbreaking work, lattice-based cryptography fully
entered modern cryptography by providing strong arguments (and often rigorous proofs) of its
security.

Lattice-based cryptography is amazingly versatile, almost all known – if not all? – cryptographic
primitives can be instantiated from lattices. Unfortunately, this versatility comes at the cost of
simplicity; it seems really difficult to use lattice primitives as black boxes. For example, in his
Ph.D. thesis [Duc13], Ducas discussed this fact when instantiating an HIBE (Hierarchical Identity-
Based Encryption) scheme. Such a scheme can be instantiated from one group using pairings,
independently of the hierarchical level h, while the lattice-based instantiation requires different
parameters according to the value of h (with contributions often hidden in the Landau notation Õ,
extensively used by theoretical cryptographers). This fact is also illustrated throughout Part I of
this thesis. Opening the “black-box” allowed to propose a lot of optimizations that are specific to our
Fiat-Shamir based signature scheme (bimodal Gaussians, compression, use of non-uniform lattices
similar to NTRU lattices). Lattice-based cryptographic schemes require numerous parameters
that are intricately linked together, and that affect tremendously the complexity of the known
attacks and the efficiency of the schemes. Selecting parameters ensuring both correctness and a
given level of security is a delicate optimization problem, that we tackled for the selection of the
parameters of BLISS in Part I (cf. Chapter 6) and in [LN14a]. To optimize our parameters for
BLISS (and throughout all the thesis), we used the mathematical software SAGE [S+14]. I believe
that automatic optimization to select parameters will be unavoidable in the future because of the
numerous constraints due to correctness (of the zillion of lattice-based schemes) and to security.

Lattice-based cryptography is repeatedly claimed throughout the literature to be computationally
simple – as it relies on very simple operations (contrary to elliptic curves operations or exponentiation
modulo a large number) –, powerful and very efficient. Unfortunately, this simplicity is largely
oversold in my opinion, and one lesson I learned from this thesis is that making the mathematically
elegant lattice-based schemes practical is an intricate task.7 One of the first issue concerns one
of the building block of lattice-based cryptography, the discrete Gaussian sampling. The general

6Vadim Lyubashevsky emphasized in a series of talks about lattice-based encryption [Lyu] that the timeline of
lattice-based cryptography is illogical: NTRUEncrypt was discovered first in 1998, although it follows naturally
from a series of works [Reg09, LPR13a, SS11b].

7In light of this information, the lack of parameter choices and concrete instantiations from the lattice-based
cryptographic community makes more sense (but is still irksome).

174

discrete Gaussian sampling still requires to work with floating-point numbers [DN12a], which gainsay
the simple operations (matrix/vector operations) of lattice-based cryptography. Fortunately our
signature scheme BLISS (described in Part I of this thesis) only requires discrete Gaussian sampling
over the integers. In Chapter 4, we proposed simple algorithms (adapted to constrained devices)
to realize this sampling with small memory footprint and nearly optimal entropy consumption.
Another daunting issue is that there are actually two types of lattice-based cryptography: lattices
are either random or have a strong mathematical structure (i.e. are ideal lattices). Unfortunately,
working with random lattices makes schemes much slower and public keys much larger, and is
therefore sadly incompatible with efficiency. Therefore this beseeches the question of the hardness
of algorithmic problems over ideal lattices. Currently, it is not known how to significantly exploit
the additional structure in a lattice compared to a random lattice (this might dramatically change
in the future [Ber]) and parameter selection relies on the best attacks on random lattices currently
known. Moreover a lot of cryptanalytic effort is dedicated to general lattice reduction, and to
algorithmic problems over lattices (such as SVP) and not often to the lattice-based cryptosystems
themselves. My belief is that this lack of cryptanalytic effort is in part due to the fact that most of
the papers that propose new schemes give no concrete targets to attack and only provide asymptotic
parameters constraints. My hope is that all the parameters suggested for BLISS in Chapter 6 (and
those for the schemes in Parts II and III, that can be attacked using lattice reduction algorithms)
make it “worthwhile” for cryptanalysts to work over these problems. In short, one of my hopes is
that the results described in this thesis spur the cryptanalysis that is currently much needed in the
field.

Despites the abovementioned concerns, I am really enthusiastic about the potential of lattice-
based cryptography. Some recent implementation efforts (I would like to mention particularly the
works of Thomas Pöpplemann [GLP12, PG12, PG13, PG14, OPG14] and his co-authors) bring a
lot of confidence in the efficiency of classical primitives such as encryption and signature even for
small architectures. A recent work suggests that the BLISS signature scheme (cf. Chapter 6) is
more efficient on every aspect compared to ECDSA and RSA on reconfigurable hardware (with
a signature size of 5600 bits) [PDG14]. Even though a lot of work remains to construct secure
“real world” lattice-based schemes (therefore also resistant to side-channel attacks) – because of the
novelty of these algorithms compared to more classical cryptography –, I believe striking results
will be obtained in the next decade.

Thoughts on Fully Homomorphic Encryption. The landscape for fully homomorphic encryption
has undoubtedly changed in the last five years. In 2009, Gentry theoretically described the first
FHE scheme [Gen09] over ideal lattices that relies on very strong security assumptions. The first
implementation of this scheme is described in 2011 by Gentry and Halevi [GH11b] and each bit-
multiplication requires a 30-minute refreshing procedure before any subsequent operation is possible.
In 2014, there exist at least four big families of FHE schemes, three of them backed with more or
less efficient implementations, and full-fledged homomorphic evaluations of lightweight block ciphers
(namely Simon and Prince) run in a matter of minutes on mid-range computers. Although these
speed records are rather slow (and might even be considered as ludicrously slow [Ber]), homomorphic
evaluations of shallow circuits (i.e. of constant depth and polynomial size) are becoming really
efficient [NLV11, BLLN13, LN14a]. These latter circuits allow for example to perform statistic
computations (such as the mean8, the variance or statistical tests such as linear regressions [NLV11])
over encrypted data, or machine learning algorithms [GLN12]. In particular, using homomorphic
encryption could prove really useful for numerous real world applications on medical data, biometrics
or localization as long as the multiplicative depth of the circuit remains small.9

Homomorphic encryption is also considered as the main element to secure the “cloud”. Un-
fortunately the huge ciphertext expansion (i.e. the size of the ciphertext compared to the size of
the plaintext) of current schemes makes it prohibitive to send all of a client data in the cloud
encrypted under an FHE scheme. Hybrid solutions, in which data are sent encrypted under an
encryption scheme with no ciphertext expansion (e.g. AES [GHS12c, CCK+13], Simon [LN14a],

8In these statistics computations, one computes independently the numerator and the denominator to avoid the
unnecessary complicated division. Note that since the mean can be computed only from homomorphic additions, a
simply homomorphic encryption scheme such as the Paillier scheme [Pai99] would suffice.

9To give an order of magnitude, let us give the rough estimate of a multiplicative depth of 30 for today’s schemes.

175

13. Conclusion and Thoughts

Prince [DSES14]) and then homomorphically decrypted before being processed, is a current main-
stream subject (in which I have contributed for AES and Simon). Unfortunately, as mentioned
in Section 10.4.1 (page 135) and in a common work with Michael Naehrig [LN14a], dividing the
total time by the number of blocks processed in parallel in a single homomorphic evaluation
might not be really meaningful to assess the practicality of homomorphic encryption for real world
uses. One should rather focus on optimizing the latency (i.e. the time required to perform the
entire homomorphic evaluation), as the throughput can be increased as much as needed using
parallel computing. Note that it is not clear currently what is the best solution with small latency.
Using Prince as a block cipher is a really exciting possibility as it has a multiplicative depth of
“only” 24 levels, but new works in progress suggest that using variants of the one-time pad and
a pseudo-random key stream might be far more efficient for real world uses. However, achieving
fully homomorphic encryption currently remains prohibitive in practice, as using bootstrapping is
required in all existing FHE schemes.

Homomorphic encryption can no longer be considered fully impractical as for today. The
European Commission explicitly mentioned the construction of “Resource efficient, real-time,
highly secure fully homomorphic cryptography” as a key challenge in its last Information and
Communications Technologies call for projects [H20]. This industrially oriented call proves that
homomorphic encryption is considered as a really promising key feature for the near future and
should be investigated for practical deployment.

Thoughts on Multilinear Maps. Cryptographic multilinear maps, a generalization of the very fruitful
bilinear maps [Jou00, SOK00, BF01], were considered back in 2003 by Boneh and Silverberg [BS03].
Even nowadays, constructing such a scheme remains an open problem. However, in a breakthrough
work in 2013, Garg, Gentry and Halevi described a new primitive, called graded encoding systems,
that can be viewed as a generalization of bilinear maps that differs from Boneh and Silverberg gener-
alization. Their candidate multilinear maps scheme still allows to do a N -multipartite Diffie-Hellman
key exchange for any number N of users, and loads of new applications based on this primitive were
proposed these last months. Chiefly among them is certainly the candidate indistinguishability
obfuscation primitive iO of Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13b]. Roughly
speaking, the definition of indistinguishability obfuscation states that given any two equivalent
circuits C0 and C1 of “similar size” (with exactly the same input/output behavior), the obfuscations
of C0 and C1 should be computationally indistinguishable. Indistinguishability obfuscation for
circuits, public-key encryption, and non-interactive zero knowledge also allowed the authors to
achieve functional encryption for all circuits, which was likewise a long standing open problem. I am
also interested in looking into the relation between white-box cryptography and indistinguishability
obfuscation, cf. Appendix A.

A cryptographic multilinear map is a very recent primitive with a certain humongous potential,
but it faces many open problems that cannot be ignored. In particular, both the multilinear
maps candidates of [GGH13a] and described in Part III of this thesis are not backed up with
security proofs (which is unusual in modern public key cryptography). Essentially, the hardness
assumption of these schemes is... that the schemes are secure! Both works present cryptanalytic
arguments, based on state of the art in cryptanalysis, to justify the current hardness of the schemes.
It would be a major result to construct a multilinear maps scheme based on standard assumptions
(such as LWE).10 Another ineludible problem is the practicality of these schemes. With Jean-
Sébastien Coron and Mehdi Tibouchi, we proposed the first proof-of-concept implementation of
multilinear maps [Lep13] as described in Chapter 12, but even our heuristic optimizations only
allowed us to consider a 6-linear map while ensuring arguably reasonable timings (40 seconds for a
one-round key exchange between 7 parties). However, due to the similarity of multilinear maps
with fully homomorphic encryption, I am confident that we have a lot of room for improvement
(as illustrated by the current FHE schemes timings on shallow circuits). Also, I wonder whether

10On a side – but related – note, both multilinear maps candidates can be seen as extensions of SHE schemes.
Namely, the scheme of Garg et al. is similar to Gentry’s FHE scheme (mixed with NTRU-like constructions), while
the scheme of Part III is really similar to the multi-slot DGHV scheme proposed in Chapter 7. One of the main
problems to provide a security proof is the additional zero-testing vector which leaks some information by design. It
remains an open problem – and I plan to look into it in the near future – to obtain multilinear maps from the two
other main SHE schemes [BV11a] and [GSW13].

176

the use of FHE tricks, such as modulus-switching or scale-invariance, would improve the efficiency
and would allow to obtain encodings of constant size (or logarithmic) instead of polynomial in
the multilinearity level. I predict that in 5 years, multilinear maps with 20 to 30 levels will run
in a few milliseconds on mid-range computers (instead of seconds to minutes with the current
implementation, cf. Chapter 12). However, even these practicality improvements would be far
behind what a lot of applications require (even without considering indistinguishability obfuscation
that requires thousands of thousands of levels). I suspect that applications with a small number of
levels might become fully practical in the near future, and I therefore spur the community to work
on applications with a small number of multilinearity levels.

About Noisy Cryptography. Last but not least, I would like to share my thoughts about “noisy”
cryptography. Fully Homomorphic Encryption and Multilinear Maps schemes rely on a design
principle, in which ciphertexts (resp. encodings – that can be viewed as encryptions of scalar values)
contain some noise which grows with successive operations. The downsides of this principle are
multiple; in the following I will briefly emphasize two of them. First, the exponential noise growth
in the first generation of FHE schemes and both multilinear maps candidates severely limits the
number of possible operations in order to keep reasonable timings. (And even the linear growth for
the second generation of FHE scheme does not allow to consider too many levels.) And secondly,
independently of this practical obstacle, this design paradigm implies that the parameters of the
schemes depend on the underlying protocol and cannot be specified once and for all (contrary to
RSA or elliptic curves).

As a consequence parameter selection is a critical and intricate task. I do believe the crypto-
graphic community needs to build models that would allow to automatically choose parameters
according to the protocol and desired security level. To my knowledge, no work except the work
presented in Chapter 9, where we propose an algorithm to determine how to bootstrap based on a
simplified model of the noise growth in FHE schemes, is tackling this issue.

Final Thoughts. Cryptography is a young, fast moving and critical field. Unfortunately, the
profusion of exciting theoretical results has currently limited impact on “real world” cryptography.
Fortunately, more and more people aim at breaking the wall between theory and practice. This goes
from high-speed implementations of modern primitives on numerous architectures to contributions
to standardization. I hope my work on mitigating theory and practice did contribute to fill the
gap between these two aspects of cryptography, and I intend to continue working on bridging the
exciting theoretical results with high-speed secure implementations. My main objective is to ensure
privacy while providing a rich and seamless experience to the end-users.

177

Appendix A

Other Works on White-Box Cryptography

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson and van Oorschot as the
ultimate, worst-case attack model [CEJvO02b, CEJvO02a]. This model considers an attacker far
more powerful than in the classical black-box model (and thus more representative of real-world
attackers); namely the attacker is given full knowledge and full control on both the algorithm and its
execution environment. However, even such powerful capabilities should not allow her to e.g. extract
the embedded key.1 White-box cryptography can hence be seen as a restriction of general obfuscation
where the function to protect belongs to some narrower class of cryptographic functions indexed by
a secret key. From that angle, the ultimate goal of a white-box implementation is to leak nothing
more than what a black-box access to the function would reveal. An implementation achieving this
strong property would be as secure as in the black-box model, in particular it would resist all existing
and future side-channel and fault-based attacks. Although we know that general obfuscation of any
function is impossible to achieve [BGI+01], there is no known impossibility result for white-box
cryptography and positive examples have even been discovered [HRSV07, CCV12]. The work
of Chow and others gave rise to several proposals for white-box implementations of symmetric
ciphers, specifically DES [CEJvO02b, LN05, WP05] and AES [CEJvO02a, BCD06, XL09, Kar10],
even though all these proposals have been broken [JBF02, BGEC04, GMQ07, WMGP07, MGH08,
MWP10, MRP12, LRM+13].

In [CEJvO02b, CEJvO02a], Chow et al. proposed a generic strategy to produce white-box
implementations of (symmetric) cryptographic algorithms, and for which key extraction was
supposedly hard. From this strategy, they derive two candidate white-box implementations of
DES and AES. The followed approach is that look-up tables might be the ideal primitives to
hide information, since they allow to implement any given function. They proposed to express
the algorithm into a network of look-up tables which, combined all together, yield the complete
cryptographic algorithm. To avoid information leakage (and thus key leakage), the basic idea is
to compose each table, on input and on output, with random bijections that annihilate one with
another when composed.

Our Works. In [LRM+13], we show that the last (in 2013) candidate white-box AES implementation
due to Karroumi [Kar10] can be broken by a direct application of Billet et al. attack [BGEC04].2
We also describe an improved version of the latter attack and a new, conceptually simpler attack,
both of complexity 222. Our new cryptanalysis technique exploits collisions (or zero-values) in
output of the first round in order to construct sparse linear systems. Solving these systems then
reveals the input encoding and secret key byte(s) involved in some target look-up table. Applied
to the original scheme, we get an attack of complexity 222, conceptually simpler than all previous
attacks [BGEC04, MGH08].

Although all practical white-box candidates have been broken, neither evidence of existence nor
proofs of impossibility have been provided for this particular setting. This might be in part because

1Quoting [CEJvO02b], the “choice of the implementation is the sole remaining line of defense and is precisely
what is pursued in white-box cryptography”.

2Specifically, we show that for any given secret key, the overall implementation has the exact same distribution
as the implementation of Chow et al. making them both vulnerable to the same attacks.

179

A. Other Works on White-Box Cryptography

it is still quite unclear what white-box cryptography really aims to achieve and which security
properties are expected from white-box programs in applications. Therefore in [DLPR13b] we build
a first step towards a practical answer to this question by translating folklore intuitions behind
white-box cryptography into concrete security notions. Specifically, we introduce the notion of
white-box compiler that turns a symmetric encryption scheme into randomized white-box programs,
and we capture several desired security properties such as one-wayness, incompressibility and
traceability for white-box programs. We also give concrete examples of white-box compilers (coming
from the realm of public-key cryptography) that already achieve some of these notions.3 Overall,
our results open new perspectives on the design of white-box programs that securely implement
symmetric encryption.

Conclusion and Thoughts. Recently, a candidate construction of indistinguishability obfuscation iO
has been proposed by Garg, Gentry and Halevi [GGH13a]. In particular, using iO on two circuits
with the same input/output behavior and of the “same size”, it is unfeasible for an adversary to
distinguish the input circuit. It is worth noting that iO might allow to understand white-box
cryptography better. In particular, assume there exists a white-box implementation of AES which
is unbreakable (i.e. it is unfeasible to recover the embedded AES key). If this implementation
C0 has the same size as a classical AES implementation C1 with the same key, then it should be
unfeasible to distinguish the obfuscations of C0 and C1 when using the iO primitive. In particular,
it should be unfeasible from the obfuscation of C1 (i.e. the obfuscation of the classical AES
implementation) to recover information on the key because of the unbreakability assumption on C0.
In a way, indistinguishability obfuscation is the “best possible obfuscation” [GR07] and might be
an interesting candidate for white-box cryptography.

In practice, obfuscating AES using iO is currently completely prohibitive: in [Cor13], Coron
estimated an obfuscated AES evaluation to take 2 · 1062 years. On the other hand, our last
attacks [LRM+13] cast doubt on the approach to design a (white-box) obfuscation of AES by a
network of lookup tables. It remains therefore a challenging problem to design a new approach to
obfuscate AES, that is efficient and so that the implementation is at least unbreakable (i.e. one
cannot recover the embedded secret key). However, I think that the similarities between Kilian’s
matrix product randomization technique [Kil88] (used in iO) and the randomization of the network
of lookup tables are mind-shattering. In particular, it could be worth investigating whether the
additional randomizations techniques used in [GGH+13b] to achieve iO could be transposed the
look-up tables network approach.

White-box cryptography is definitely a very compelling subject, as an efficient construction
would resist to any present and future side-channel attack. We hope that our works on the subject
will make it “worthwhile” for cryptographers to work on this exciting issue.

3For the first two notions, we show an example of a simple symmetric encryption scheme over an RSA group for
which an efficient white-box compiler exists that provably achieves both notions. We finally show that white-box
programs are efficiently traceable by simple means assuming that functional perturbations can be hidden in them.

180

List of Figures

1.1 Modification du rejet grâce à une distribution Gaussienne bimodale. 3
1.2 Technique du module invariant pour le schéma DGHV. 6

3.1 A two dimensional lattice along with two of its bases, and its volume. 23
3.2 Rejection sampling from the distribution of g to get the distribution of f 27

4.1 Three discrete Gaussian distributions with support a 2-dimensional lattice and with the
same center but different standard deviations σ. Note that the z-axis represents the
probabilities of the elements to be outputted. 32

4.2 Basic Rejection Sampling for Discrete Gaussian Distribution. 33
4.3 Rejection Sampling. 37

5.1 Improvement of Rejection Sampling with Bimodal Gaussian Distributions. In blue is
the distribution of z, for fixed Sc and over the space of all y in Figure (a) and all (b,y)
in Figure (b), before the rejection step and its decomposition as a Cartesian product
over Span{Sc} and (Sc)⊥. In dashed red is the target distribution scaled by 1/M . . . 43

6.1 Results BKZ-20 for n ∈ [48, 150], q ∈ [6000, 25000] and binary search on the λ1-threshold.
On horizontal axis is the value of n+random(0,5) and on vertical axis is

(1
.40
√

qm
2πe
/
λ1
)1/2n 67

6.2 Basis Profile during the Hybrid Attack. 68

7.1 SAGE function to estimate the cost of Chen and Nguyen’s attack. 86
7.2 SAGE function to select γ so that running the orthogonal lattice attack takes at least 2λ

cycles. 91
7.3 SAGE function to select γ so that running the orthogonal lattice attack (even with

BKZ-2.0) takes at least 2λ cycles. 92
7.4 LLL running time in clock cycles using fplll-4.0.4 93
7.5 SAGE function to generate ρ, η and γ for λ bits of security. 104
7.6 SAGE function to generate BDGHV parameters for λ bits of security. 105

8.1 Conversion of a ciphertext after a homomorphic multiplication. 108

9.1 Different bootstrapping solutions in a FHE scheme with `max = 2. Plain lines represent
homomorphic multiplications while dashed lines represent homomorphic additions. The
red lines in (a) reveal that the ciphertext noise will exceed the noise limit. Variables in
a plain rectangle have a “large” noise (`i = `max = 2) and the ones in a dashed blue
rectangle are bootstrapped i.e. are re-encrypted to convert a “large” noise (`i = 2) into
a “small” noise (`i = 1). 120

10.1 Optimized communication with the cloud for homomorphic cryptography using AES. . 130
10.2 Bit ordering in mi in the byte-wise bitslicing representation. 133

181

List of Tables

4.1 Comparison of Discrete Gaussian Sampling Algorithms over the Integers. 39
4.2 Comparison of Discrete Gaussian Sampler Algorithms over the Integers (σ = 215 and

≈ 1640 Runs). 40

5.1 Naive Signature Schemes Parameters. The parameters with parameters set III are
based on the hardness of the SISq,n,m,β problem and parameters set IV are based on
the hardness of the SISq,n,m,β search problem. The root Hermite factor for all the
instantiations is δ = 1.007. 51

6.1 Hardness of the underlying SIS instance. 66
6.2 Cost of finding the Ring-unique shortest vector via primal lattice reduction. 67
6.3 Cost of distinguish the existence of the shortest vector via primal lattice reduction. . . 67
6.4 Hybrid MiM+Lattice Reduction Attack Parameters. 69
6.5 Parameter proposals. 70
6.6 Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM) with

openssl 1.0.1c. 71

7.1 Some lower bounds on γ and ν for usual security levels λ. 82
7.2 Asymptotic Constraints on DGHV and BDGHV Parameters. 98
7.3 Concrete Parameters for BDGHV. 105
7.4 Benchmarking for our Batch DGHV with a compressed public key on a desktop computer

(Intel Core i7 at 3.4Ghz, 32GB RAM). 105

8.1 Concrete Parameters for SIBDGHV. 117
8.2 Benchmarking for our Scale-Invariant Batch DGHV scheme with a compressed public

key on an Intel Xeon E5-2690 at 2.9 GHz. 117

9.1 Minimal number of bootstrappings with level-1 inputs and outputs. 125

10.1 Benchmarking of homomorphic AES encryptions using BDGHV and SIBDGHV. 136

12.1 Parameters and timings to instantiate a one-round N -way Diffie-Hellman key exchange
protocol with ` = 160, β = 80, α = 80, N = κ+ 1 and ν = 160 on a 16-core computer
(Intel(R) Xeon(R) CPU E7-8837 at 2.67GHz) using GMP 6.0.0. We denote by γ the
bitsize of the encodings. Note that the Setup step was parallelized on the 16 cores to
speed-up the process while the other steps ran on a single core. We only derived a
common ν-bit session key without using a randomness extractor. 169

182

List of Algorithms

4.1 Sampling Bexp(−x/f) for x ∈ [0, 2`) using precomputed values {ai = exp(−2i/f)}i=0,...,`−1. 35
4.2 Sampling Ba � Bb. 36
4.3 Sampling D+

σ2
. 37

4.4 Sampling D+
kσ2

for k ∈ Z+. 38
4.5 Sampling Dkσ2 for k ∈ Z+. 39
5.1 Signature Algorithm. 46
5.2 Verification Algorithm. 47
5.3 Hybrid1 . 49
5.4 Hybrid2 . 49
6.1 BLISS Key Generation. 57
6.2 Signature Algorithm. 58
6.3 Hybrid3 . 61
6.4 BLISS Signature Algorithm. 64
6.5 BLISS Verification Algorithm. 64
7.1 Learn-LSB. 82
10.1 Multiplication by 0x02 in GF(28). 132
10.2 Multiplication by 0x03 in GF(28). 132

183

Bibliography

[Abe10] Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT 2010 - 16th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes
in Computer Science. Springer, 2010.
→ Cited on pages 204 and 205.

[ABP+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering,
and Jacob C.N. Schuldt. On the security of RC4 in TLS and WPA. In USENIX
Security Symposium, 2013.
→ Cited on page 173.

[ABS13] Andrew A. Adams, Michael Brenner, and Matthew Smith, editors. Financial Cryp-
tography and Data Security - FC 2013 Workshops, USEC and WAHC 2013, Okinawa,
Japan, April 1, 2013, Revised Selected Papers, volume 7862 of Lecture Notes in
Computer Science. Springer, 2013.
→ Cited on pages 17, 119, 198, and 200.

[AGHS13] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete Gaussian
leftover hash lemma over infinite domains. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT (1), volume 8269 of Lecture Notes in Computer Science, pages 97–116.
Springer, 2013.
→ Cited on pages 142 and 152.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In Canetti and Garay [CG13b],
pages 500–518.
→ Cited on page 15.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Miller [Mil96], pages 99–108.
→ Cited on pages 2, 15, and 25.

[Alb14] Martin Albrecht. Cryptanalysis of the FHE based on GACD?,
2014. http://martinralbrecht.wordpress.com/2014/02/18/
cryptanalysis-of-the-fhe-based-on-gacd/, accessed 12 May 2014.
→ Cited on page 90.

[AMW07] Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors. Selected Areas in
Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada, August
16-17, 2007, Revised Selected Papers, volume 4876 of Lecture Notes in Computer
Science. Springer, 2007.
→ Cited on pages 194 and 206.

[Ano94] Anonymous. Source code of RC4, 1994. http://web.archive.org/web/
20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.

185

http://martinralbrecht.wordpress.com/2014/02/18/cryptanalysis-of-the-fhe-based-on-gacd/
http://martinralbrecht.wordpress.com/2014/02/18/cryptanalysis-of-the-fhe-based-on-gacd/
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html

Bibliography

html, accessed 3 June 2014.
→ Cited on page 173.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In IEEE Symposium on Security and Privacy, pages
526–540. IEEE Computer Society, 2013.
→ Cited on page 173.

[ASP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time.
In Canetti and Garay [CG13a], pages 1–20.
→ Cited on page 73.

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
IACR Cryptology ePrint Archive, 2014:94, 2014. To appear at CRYPTO 2014.
→ Cited on page 77.

[Bab64] Charles Babbage. Passages from the life of a philosopher. Longman, Green, Longman,
Roberts, & Green, 1864.
→ Cited on page 11.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.
→ Cited on page 157.

[BB13] Rachid El Bansarkhani and Johannes Buchmann. Improvement and efficient imple-
mentation of a lattice-based signature scheme. In Lange et al. [LLL13].
→ Cited on pages 29, 40, 41, and 71.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White box cryptography:
Another attempt. IACR Cryptology ePrint Archive, 2006:468, 2006.
→ Cited on pages 8 and 179.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. Prince - a low-latency
block cipher for pervasive computing applications - extended abstract. In Wang and
Sako [WS12], pages 208–225.
→ Cited on pages 8 and 137.

[BCG+13] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and Patrick
Weiden. Discrete Ziggurat: A time-memory trade-off for sampling from a Gaussian
distribution over the integers. Cryptology ePrint Archive, Report 2013/510, 2013.
http://eprint.iacr.org/.
→ Cited on page 40.

[BDHG99] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring N = prq for large
r. In Wiener [Wie99], pages 326–337.
→ Cited on page 81.

[Ben64] Václad E. Beneš. Optimal rearrangeable multistage connecting networks. Bell Systems
Technical Journal, 43(7):1641–1656, 1964.
→ Cited on page 101.

[Ber] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices. http://blog.
cr.yp.to/20140213-ideal.html, accessed 3 June 2014.
→ Cited on pages 4, 6, 174, and 175.

[Ber08] Daniel J. Bernstein. Fast multiplication and its applications. In Joe Buhler and Peter
Stevenhagen, editors, Algorithmic number theory: lattices, number fields, curves and
cryptography, pages 325–384. Cambridge University Press, 2008.
→ Cited on page 58.

186

http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://eprint.iacr.org/
http://blog.cr.yp.to/20140213-ideal.html
http://blog.cr.yp.to/20140213-ideal.html

Bibliography

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Kilian [Kil01], pages 213–229.
→ Cited on pages 6, 15, 139, and 176.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures
based on learning with errors. In Josh Benaloh, editor, CT-RSA, volume 8366 of
Lecture Notes in Computer Science, pages 28–47. Springer, 2014.
→ Cited on page 72.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white box
AES implementation. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science, pages
227–240. Springer, 2004.
→ Cited on pages 8 and 179.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based
homomorphic encryption. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public
Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2013.
→ Cited on pages 4, 73, 77, 79, and 101.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Kilian
[Kil01], pages 1–18.
→ Cited on page 179.

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small
characteristic. In Nguyen and Oswald [NO14], pages 1–16.
→ Cited on page 174.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
325–341. Springer, 2005.
→ Cited on page 75.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS, pages
309–325. ACM, 2012.
→ Cited on pages 1, 3, 4, 5, 26, 73, 77, 80, 107, 110, 119, 120, 123, 129, and 135.

[BHL13] Daniel J. Bernstein, Nadia Heninger, and Tanja Lange. The year in crypto, 2013.
30th Chaos Communication Congress.
→ Cited on page 73.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, FSE,
volume 1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.
→ Cited on pages 129, 130, and 133.

[BL] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography. http://safecurves.cr.yp.to, accessed 3 June 2014.
→ Cited on page 173.

[BLLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In Stam [Sta13], pages 45–64.
→ Cited on pages 6, 8, 32, 73, 77, 78, 119, 123, 137, and 175.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Boneh et al. [BRF13], pages 575–584.
→ Cited on pages 15, 25, 26, and 31.

187

http://safecurves.cr.yp.to

Bibliography

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with
applications to cryptology. J. Cryptology, 26(2):280–312, 2013.
→ Cited on pages 119, 121, 125, 126, 133, and 134.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security,
pages 390–399. ACM, 2006.
→ Cited on pages 45 and 50.

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of
security against impersonation under active and concurrent attacks. In Moti Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 162–177.
Springer, 2002.
→ Cited on pages 2 and 42.

[BP12] Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-Box. In
Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, SEC, volume
376 of IFIP Advances in Information and Communication Technology, pages 287–298.
Springer, 2012.
→ Cited on pages 121, 125, and 126.

[BP13] Fabrice Benhamouda and David Pointcheval. Verifier-based password-authenticated
key exchange: New models and constructions. IACR Cryptology ePrint Archive,
2013:833, 2013.
→ Cited on pages 2, 140, 142, and 156.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Safavi-Naini and Canetti [SNC12], pages 868–886.
→ Cited on pages 5, 32, 73, 74, 77, 107, 108, 117, and 123.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM,
2013.
→ Cited on pages 187 and 194.

[BS03] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.
→ Cited on pages 6, 12, 13, 139, 141, 143, 159, 161, and 176.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers.
IACR Cryptology ePrint Archive, 2013:404, 2013.
→ Cited on pages 8 and 137.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Ostrovsky [Ost11], pages 97–106.
→ Cited on pages 32, 73, 76, 77, 101, 119, 121, 123, and 176.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Rogaway [Rog11], pages
505–524.
→ Cited on pages 5, 32, 73, 77, 78, and 101.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE.
In Moni Naor, editor, ITCS, pages 1–12. ACM, 2014.
→ Cited on pages 73 and 77.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Sako and Sarkar [SS13], pages 280–300.
→ Cited on page 139.

188

Bibliography

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2013:642, 2013. To appear at CRYPTO 2014.
→ Cited on page 139.

[CAE16] CAESAR: Competition for authenticated encryption: Security, applicability, and
robustness, 2013-2016. http://competitions.cr.yp.to/caesar.html.
→ Cited on pages 11 and 173.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède
Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over
the integers. In Johansson and Nguyen [JN13], pages 315–335.
→ Cited on pages v, 4, 5, 8, 9, 18, 73, 75, 80, 81, 86, 119, 120, 121, 123, 129, 142, and 175.

[CCV12] Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional re-
encryption and collusion-resistant obfuscation. In Ronald Cramer, editor, TCC,
volume 7194 of Lecture Notes in Computer Science, pages 404–421. Springer, 2012.
→ Cited on page 179.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-box
cryptography and an AES implementation. In Kaisa Nyberg and Howard M. Heys,
editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 250–270. Springer, 2002.
→ Cited on pages 8 and 179.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Feigenbaum [Fei03], pages
1–15.
→ Cited on pages 8 and 179.

[CG13a] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer,
2013.
→ Cited on pages 17, 18, 31, 41, 53, 141, 159, 186, 190, 191, 192, 194, 196, 200, and 205.

[CG13b] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science. Springer,
2013.
→ Cited on pages 185 and 193.

[CGPV10] Jean-Sébastien Coron, Aline Gouget, Pascal Paillier, and Karine Villegas. SPAKE: A
single-party public-key authenticated key exchange protocol for contact-less applica-
tions. In Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep M. Miret,
Kazue Sako, and Francesc Sebé, editors, Financial Cryptography Workshops, volume
6054 of Lecture Notes in Computer Science, pages 107–122. Springer, 2010.
→ Cited on page 81.

[CH12] Henry Cohn and Nadia Heninger. Approximate common divisors via lattices. In
ANTS X, 2012.
→ Cited on pages 81, 84, and 87.

[cKK09] Çetin Kaya Koç, editor. Cryptographic Engineering. Springer, 2009.
→ Cited on pages 196 and 203.

[CLT13a] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch fully homomor-
phic encryption over the integers. IACR Cryptology ePrint Archive, 2013:36, 2013.
→ Cited on pages 9, 18, 75, 98, 129, and 142.

189

Bibliography

[CLT13b] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Canetti and Garay [CG13a], pages 476–493.
→ Cited on pages v, 6, 7, 9, 18, 86, 98, 141, 159, and 164.

[CLT13c] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. IACR Cryptology ePrint Archive, 2013:183, 2013.
→ Cited on pages 9, 18, 141, and 159.

[CLT14a] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully
homomorphic encryption over the integers. In Krawczyk [Kra14], pages 311–328.
→ Cited on pages v, 4, 5, 8, 9, 18, 73, 75, 80, 107, 109, 123, 129, and 142.

[CLT14b] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully
homomorphic encryption over the integers. IACR Cryptology ePrint Archive, 2014:032,
2014.
→ Cited on pages 9, 18, 73, 107, 109, and 129.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In Rogaway
[Rog11], pages 487–504.
→ Cited on pages 1, 4, 73, 76, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 96, 98, 99,
100, 104, 106, 108, 112, 119, 120, 121, 123, 160, 162, 163, 164, 165, and 166.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2011.
→ Cited on pages 23, 24, 52, 54, 55, 63, 64, 65, 66, 68, 69, 90, 91, and 93.

[CN12] Yuanmi Chen and Phong Q. Nguyen. Faster algorithms for approximate common
divisors: Breaking fully-homomorphic-encryption challenges over the integers. In
Pointcheval and Johansson [PJ12], pages 502–519.
→ Cited on pages 80, 81, 84, 85, 86, 92, 98, 104, 112, 150, and 155.

[CN13] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.
2013. Full version. Available at http://www.di.ens.fr/~ychen/research/Full_
BKZ.pdf.
→ Cited on pages 8, 24, and 91.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression
and modulus switching for fully homomorphic encryption over the integers. In
Pointcheval and Johansson [PJ12], pages 446–464.
→ Cited on pages 1, 4, 5, 73, 76, 77, 78, 80, 81, 84, 86, 91, 96, 98, 101, 103, 104, 105, 106,
107, 108, 110, 112, 113, 116, 117, 119, 120, 121, 123, and 129.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology, 10(4):233–260, 1997.
→ Cited on pages 81 and 87.

[Cor13] Jean-Sébastien Coron. Towards practical obfuscation of the AES, 2013. Private
Slides.
→ Cited on pages 7 and 180.

[CPS13] David Cadé, Xavier Pujol, and Damien Stehlé. fplll, 4.0.4 edition, 2013.
http://perso.ens-lyon.fr/damien.stehle/fplll/.
→ Cited on pages 91, 92, and 93.

[CS87] J. Chidambaraswamy and R. Sitaramachandrarao. On the probability that the values
of m polynomials have a given g.c.d. Journal of Number Theory, 26:237–245, 1987.
→ Cited on page 86.

190

http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

Bibliography

[CT12] Jean-Sébastien Coron and Mehdi Tibouchi. An implementation of the DGHV fully
homomorphic scheme, 2012. Available under the GNU General Public License version
2 at https://github.com/coron/fhe.
→ Cited on pages 73, 76, 77, and 121.

[DDLL13a] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Canetti and Garay [CG13a], pages 40–56.
→ Cited on pages v, 2, 3, 9, 17, 31, 35, 40, 41, and 53.

[DDLL13b] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. IACR Cryptology ePrint Archive, 2013:383, 2013.
→ Cited on pages 9, 17, 31, 41, and 53.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete Gaus-
sians for lattice-based cryptography on a constrained device. Applicable Algebra in
Engineering, Communication and Computing, pages 1–22, 2014.
→ Cited on pages 32, 33, 34, 39, and 40.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.
→ Cited on pages 11, 12, and 160.

[DL13] Léo Ducas and Tancrède Lepoint. A Proof-of-concept Implementation of BLISS, 2013.
Available under the CeCILL License at http://bliss.di.ens.fr.
→ Cited on pages 9, 17, 39, 40, 53, 59, 69, and 71.

[DLPR13a] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain. White-box
security notions for symmetric encryption schemes. IACR Cryptology ePrint Archive,
2013:523, 2013.
→ Cited on pages v, 8, 9, and 19.

[DLPR13b] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain. White-box
security notions for symmetric encryption schemes. In Lange et al. [LLL13].
→ Cited on pages 9, 19, and 180.

[DN12a] Léo Ducas and Phong Q. Nguyen. Faster Gaussian lattice sampling using lazy floating-
point arithmetic. In Wang and Sako [WS12], pages 415–432.
→ Cited on pages 2, 16, 31, and 175.

[DN12b] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In Wang and Sako [WS12], pages 433–450.
→ Cited on pages 41, 55, and 64.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Safavi-Naini and Canetti
[SNC12], pages 643–662.
→ Cited on page 41.

[DSES14] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward practical
homomorphic evaluation of block ciphers using Prince, 2014. WAHC’14 - 2nd
Workshop on Applied Homomorphic Cryptography and Encrypted Computing.
→ Cited on pages 8, 137, and 176.

[DT14] Jintai Ding and Chengdong Tao. A new algorithm for solving the approximate
common divisor problem and cryptanalysis of the FHE based on GACD. IACR
Cryptology ePrint Archive, 2014:42, 2014.
→ Cited on page 90.

[Duc13] Léo Ducas. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyse et
Optimisations. PhD thesis, Université Paris Diderot, 2013.
→ Cited on pages 3, 32, 39, and 174.

191

https://github.com/coron/fhe
http://bliss.di.ens.fr

Bibliography

[ECR12] ECRYPT II. ECRYPT II yearly report on algorithms and keysizes (2011-2012).
Available on http://www.ecrypt.eu.org/, 2012.
→ Cited on pages 52, 69, 71, 81, and 91.

[Fei03] Joan Feigenbaum, editor. Security and Privacy in Digital Rights Management, ACM
CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised
Papers, volume 2696 of Lecture Notes in Computer Science. Springer, 2003.
→ Cited on pages 189 and 196.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In Canetti and Garay
[CG13a], pages 513–530.
→ Cited on page 139.

[FIP01] Specification for the Advanced Encryption Standard (AES). Federal Information Pro-
cessing Standards Publication 197, 2001. http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.
→ Cited on pages 12, 15, 74, 130, and 135.

[FIP12] Secure hash standard (SHS). Federal Information Processing Standards Publication
180-4, 2012. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.
pdf.
→ Cited on page 15.

[FS96] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In Maurer [Mau96], pages 245–255.
→ Cited on page 58.

[FSF+13] Simon Fau, Renaud Sirdey, Caroline Fontaine, Carlos Aguilar Melchor, and Guy
Gogniat. Towards practical program execution over fully homomorphic encryption
schemes. In Fatos Xhafa, Leonard Barolli, Dritan Nace, Salvatore Venticinque, and
Alain Bui, editors, 3PGCIC, pages 284–290. IEEE, 2013.
→ Cited on pages 73 and 77.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.
→ Cited on pages 8, 32, 73, 77, 78, 119, 123, and 137.

[Gab13] Philippe Gaborit, editor. Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of Lecture
Notes in Computer Science. Springer, 2013.
→ Cited on pages 194 and 198.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.
→ Cited on pages 3, 4, 7, 15, 16, 29, 73, 75, 76, 94, 97, 99, 119, 120, 121, 123, 160, 162,
and 175.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 112–131. Springer, 1997.
→ Cited on pages 2, 31, and 41.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Johansson and Nguyen [JN13], pages 1–17.
→ Cited on pages 1, 2, 7, 13, 15, 18, 29, 139, 140, 141, 142, 143, 144, 145, 150, 151, 152,
156, 157, 159, 160, 161, 162, 164, 176, and 180.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all

192

http://www.ecrypt.eu.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Bibliography

circuits. In FOCS, pages 40–49. IEEE Computer Society, 2013.
→ Cited on pages 1, 4, 7, 15, 19, 29, 139, 176, and 180.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Canetti and Garay [CG13b],
pages 479–499.
→ Cited on page 140.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC, volume
8349 of Lecture Notes in Computer Science, pages 74–94. Springer, 2014.
→ Cited on page 139.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In Ostrovsky [Ost11], pages 107–109.
→ Cited on page 73.

[GH11b] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In Paterson [Pat11], pages 129–148.
→ Cited on pages 1, 6, 73, 76, 77, 120, 160, 162, and 175.

[GHM05] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity of DNF and
isomorphism of monotone formulas. In Joanna Jedrzejowicz and Andrzej Szepietowski,
editors, MFCS, volume 3618 of Lecture Notes in Computer Science, pages 410–421.
Springer, 2005.
→ Cited on pages 5 and 122.

[GHPS13] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Field switching in
BGV-style homomorphic encryption. Journal of Computer Security, 21(5):663–684,
2013.
→ Cited on page 73.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully ho-
momorphic encryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,
editors, Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.
→ Cited on page 73.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In Pointcheval and Johansson [PJ12], pages 465–482.
→ Cited on pages 73, 77, 79, 80, 101, and 129.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES
circuit. In Safavi-Naini and Canetti [SNC12], pages 850–867.
→ Cited on pages 1, 5, 6, 73, 74, 77, 107, 126, 129, 130, 135, 137, and 175.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.
→ Cited on pages 194 and 206.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In David S. Johnson, editor, STOC, pages 25–32. ACM, 1989.
→ Cited on page 66.

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. ML confidential: Machine
learning on encrypted data. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, ICISC, volume 7839 of Lecture Notes in Computer Science, pages 1–21.
Springer, 2012.
→ Cited on pages 6 and 175.

193

Bibliography

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In Emmanuel Prouff
and Patrick Schaumont, editors, CHES, volume 7428 of Lecture Notes in Computer
Science, pages 530–547. Springer, 2012.
→ Cited on pages 4, 29, 32, 41, 52, 53, 55, 59, 60, 64, 67, 68, 69, and 175.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Harry R. Lewis, Barbara B. Simons,
Walter A. Burkhard, and Lawrence H. Landweber, editors, STOC, pages 365–377.
ACM, 1982.
→ Cited on page 75.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15:165–189, 2003.
→ Cited on page 92.

[GMPS14] Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. (Non-
)random sequences from (non-)random permutations - analysis of RC4 stream cipher.
J. Cryptology, 27(1):67–108, 2014.
→ Cited on page 173.

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of white
box DES implementations. In Adams et al. [AMW07], pages 278–295.
→ Cited on pages 8 and 179.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart,
editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages
31–51. Springer, 2008.
→ Cited on pages 23, 54, 63, 64, 66, and 90.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In Gilbert [Gil10], pages 257–278.
→ Cited on pages 24, 64, and 91.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software
speed records for lattice-based signatures. In Gaborit [Gab13], pages 67–82.
→ Cited on pages 29, 41, and 53.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–
206. ACM, 2008.
→ Cited on pages 31, 33, 36, 39, and 41.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Vadhan
[Vad07], pages 194–213.
→ Cited on pages 7, 139, and 180.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Miller
[Mil96], pages 212–219.
→ Cited on page 24.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Canetti
and Garay [CG13a], pages 75–92.
→ Cited on pages 73, 77, and 176.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Boneh et al. [BRF13], pages 545–554.
→ Cited on pages 15, 26, and 29.

194

Bibliography

[H20] ICT 2014 - information and communications technologies. http://ec.europa.eu/
research/participants/portal/desktop/en/opportunities/h2020/topics/
96-ict-32-2014.html, accessed 3 June 2014.
→ Cited on pages 6 and 176.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In Silverman [Sil01],
pages 51–66.
→ Cited on pages 4, 80, 81, 84, 87, and 105.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes
in Computer Science, pages 150–169. Springer, 2007.
→ Cited on pages 54, 55, 64, 68, and 69.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSIGN: Digital signatures using the NTRU lattice. In Marc
Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages
122–140. Springer, 2003.
→ Cited on pages 3, 31, 32, 41, 44, 52, 64, and 65.

[HHGPW10] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte. Practical
lattice-based cryptography: NTRUEncrypt and NTRUSign. In Nguyen and Vallée
[NV10], pages 349–390.
→ Cited on page 54.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.
→ Cited on page 26.

[HM08] Mathias Herrmann and Alexander May. Solving linear equations modulo divisors:
On factoring given any bits. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of
Lecture Notes in Computer Science, pages 406–424. Springer, 2008.
→ Cited on page 156.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative
Approach (4. ed.). Morgan Kaufmann, 2007.
→ Cited on page 77.

[HPP06] Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors. Algorithmic Number
Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006,
Proceedings, volume 4076 of Lecture Notes in Computer Science. Springer, 2006.
→ Cited on pages 201 and 207.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Joe Buhler, editor, ANTS, volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer, 1998.
→ Cited on pages 2, 3, 16, 29, 32, 44, 52, 53, 54, 71, and 174.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice
algorithms using dynamical systems. In Rogaway [Rog11], pages 447–464.
→ Cited on pages 24, 64, and 91.

[HPS+13] Jeffrey Hoffstein, Jill Pipher, John Schanck, Joseph H. Silverman, and William Whyte.
Practical signatures from the partial Fourier recovery problem. IACR Cryptology
ePrint Archive, 2013:757, 2013.
→ Cited on page 72.

[HRSV07] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan.
Securely obfuscating re-encryption. In Vadhan [Vad07], pages 233–252.
→ Cited on page 179.

195

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/96-ict-32-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/96-ict-32-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/96-ict-32-2014.html

Bibliography

[HS13] Shai Halevi and Victor Shoup. HElib, 2013. Available under GNU General Public
License (GPL) at https://github.com/shaih/HElib.
→ Cited on pages 73 and 77.

[HSW13a] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled)
multilinear maps and identity-based aggregate signatures. In Canetti and Garay
[CG13a], pages 494–512.
→ Cited on page 139.

[HSW13b] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. IACR Cryptology ePrint Archive,
2013:509, 2013.
→ Cited on page 139.

[IEE08] IEEE Standard Specification for Public Key Cryptographic Techniques Based on
Hard Problems over Lattices. IEEE P1363.1-2008, 2008.
→ Cited on pages 41 and 174.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Vadhan [Vad07], pages 575–594.
→ Cited on page 75.

[JBF02] Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an obfuscated cipher
by injecting faults. In Feigenbaum [Fei03], pages 16–31.
→ Cited on pages 8 and 179.

[JL11] Marc Joye and Tancrède Lepoint. Traitor tracing schemes for protected software
implementations. In Yan Chen, Stefan Katzenbeisser, and Ahmad-Reza Sadeghi,
editors, Digital Rights Management Workshop, pages 15–22. ACM, 2011.
→ Cited on pages 9, 16, and 17.

[JL12] Marc Joye and Tancrède Lepoint. Partial key exposure on RSA with private exponents
larger than N. In Mark Dermot Ryan, Ben Smyth, and Guilin Wang, editors, ISPEC,
volume 7232 of Lecture Notes in Computer Science, pages 369–380. Springer, 2012.
→ Cited on pages 9, 16, and 17.

[JN13] Thomas Johansson and Phong Q. Nguyen, editors. Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science. Springer, 2013.
→ Cited on pages 17, 75, 129, 189, 192, and 199.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma,
editor, ANTS, volume 1838 of Lecture Notes in Computer Science, pages 385–394.
Springer, 2000.
→ Cited on pages 6, 12, 15, 139, 159, 160, and 176.

[Joy09] Marc Joye. Basics of side-channel analysis. In Çetin Kaya Koç [cKK09], pages
365–380.
→ Cited on page 14.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel,
Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,
Walter L. Ruzzo, and Joel I. Seiferas, editors, STOC, pages 193–206. ACM, 1983.
→ Cited on pages 24, 64, and 91.

[Kar10] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In Kyung Hyune
Rhee and DaeHun Nyang, editors, ICISC, volume 6829 of Lecture Notes in Computer
Science, pages 278–291. Springer, 2010.
→ Cited on pages 8 and 179.

196

https://github.com/shaih/HElib

Bibliography

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires,
pages 161–191, 1883.
→ Cited on page 11.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor,
STOC, pages 20–31. ACM, 1988.
→ Cited on page 180.

[Kil01] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science. Springer, 2001.
→ Cited on page 187.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In
David B. Shmoys, editor, SODA, pages 937–941. ACM/SIAM, 2000.
→ Cited on page 31.

[KLYC13] Jinsu Kim, Moon Sung Lee, Aaram Yun, and Jung Hee Cheon. CRT-based fully
homomorphic encryption over the integers. IACR Cryptology ePrint Archive, 2013:57,
2013.
→ Cited on pages 75, 95, 97, and 142.

[Kra14] Hugo Krawczyk, editor. Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer
Science. Springer, 2014.
→ Cited on pages 17, 75, 107, 129, 190, and 198.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2009.
→ Cited on pages 129, 130, and 133.

[Lag82] J. C. Lagarias. The computational complexity of simultaneous diophantine approxi-
mation problems. In FOCS, pages 32–39. IEEE Computer Society, 1982.
→ Cited on page 88.

[Lana] Adam Langley. ChaCha20 and Poly1305 for TLS. https://www.imperialviolet.
org/2013/10/07/chacha20.html, accessed 3 June 2014.
→ Cited on page 173.

[Lanb] Adam Langley. TLS symmetric crypto. https://www.imperialviolet.org/2014/
02/27/tlssymmetriccrypto.html, accessed 3 June 2014.
→ Cited on page 173.

[Len87] Hendrik W. Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.
→ Cited on page 81.

[Lep13] Tancrède Lepoint. An Implementation of Multilinear Maps over the Integers, 2013.
Available under the Creative Commons License BY-NC-SA at https://github.com/
tlepoint/multimap.
→ Cited on pages 9, 18, 159, 160, 163, 164, and 176.

[Lep14] Tancrède Lepoint. A proof-of-concept implementation of the homomorphic evaluation
of SIMON using FV and YASHE leveled homomorphic cryptosystems, 2014. Available
under the CeCILL License at https://github.com/tlepoint/homomorphic-simon.
→ Cited on pages 9, 18, 73, and 77.

197

https://www.imperialviolet.org/2013/10/07/chacha20.html
https://www.imperialviolet.org/2013/10/07/chacha20.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://github.com/tlepoint/multimap
https://github.com/tlepoint/multimap
https://github.com/tlepoint/homomorphic-simon

Bibliography

[LJMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M. Pollard.
The number field sieve. In Harriet Ortiz, editor, STOC, pages 564–572. ACM, 1990.
→ Cited on pages 13 and 81.

[LLL82] Arjen K. Lenstra, Hendrick W. Lenstra Jr., and László Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261(4):515–534, 1982.
→ Cited on pages 2, 23, and 90.

[LLL13] Tanja Lange, Kristin Lauter, and Petr Lisonek, editors. SAC, Lecture Notes in
Computer Science. Springer, 2013.
→ Cited on pages 19, 186, 191, and 199.

[LLLS13] Fabien Laguillaumie, Adeline Langlois, Benoît Libert, and Damien Stehlé. Lattice-
based group signatures with logarithmic signature size. In Sako and Sarkar [SS13],
pages 41–61.
→ Cited on page 72.

[LLNW14] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based group
signature scheme with verifier-local revocation. In Krawczyk [Kra14], pages 345–361.
→ Cited on page 72.

[LLS14] Fabien Laguillaumie, Adeline Langlois, and Damien Stehlé. Chiffrement avancé à
partir du problème Learning with errors. In Sylvain Peyronnet, editor, Informatique
Mathématique une photographie en 2014, pages 179–225. Presses Universitaires de
Perpignan, 2014.
→ Cited on pages 15, 16, 25, and 26.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are
collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in Computer Science,
pages 144–155. Springer, 2006.
→ Cited on page 25.

[LMP13] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Solving the shortest vector
problem in lattices faster using quantum search. In Gaborit [Gab13], pages 83–101.
→ Cited on page 24.

[LMSV11] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-
secure somewhat homomorphic encryption. In Ali Miri and Serge Vaudenay, editors,
Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science,
pages 55–72. Springer, 2011.
→ Cited on page 73.

[LN05] Hamilton E. Link and William D. Neumann. Clarifying obfuscation: Improving the
security of white-box DES. In ITCC (1), pages 679–684. IEEE Computer Society,
2005.
→ Cited on pages 8 and 179.

[LN14a] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption
schemes FV and YASHE. In Pointcheval and Vergnaud [PV14], pages 318–335.
→ Cited on pages v, 6, 8, 9, 18, 73, 91, 137, 174, 175, and 176.

[LN14b] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption
schemes FV and YASHE. IACR Cryptology ePrint Archive, 2014:62, 2014.
→ Cited on pages 9 and 18.

[LP13] Tancrède Lepoint and Pascal Paillier. On the minimal number of bootstrappings in
homomorphic circuits. In Adams et al. [ABS13], pages 189–200.
→ Cited on pages v, 5, 6, 9, 18, 73, and 119.

198

Bibliography

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6):43, 2013.
→ Cited on pages 25, 26, 29, and 174.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE
cryptography. In Johansson and Nguyen [JN13], pages 35–54.
→ Cited on page 26.

[LR13] Tancrède Lepoint and Matthieu Rivain. Another nail in the coffin of white-box AES
implementations. IACR Cryptology ePrint Archive, 2013:455, 2013.
→ Cited on pages 9 and 19.

[LRM+13] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart Preneel.
Two attacks on a white-box AES implementation. In Lange et al. [LLL13].
→ Cited on pages v, 8, 9, 19, 179, and 180.

[LS12] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Cryptology ePrint Archive, Report 2012/090, 2012. http://eprint.iacr.
org/. To appear in Designs, Codes and Cryptography.
→ Cited on page 26.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient
multilinear maps from ideal lattices. In Nguyen and Oswald [NO14], pages 239–256.
→ Cited on pages 142, 143, 157, and 164.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, STOC, pages 1219–1234. ACM, 2012.
→ Cited on pages 7, 54, 73, 77, 78, 119, and 123.

[Lud03] Christoph Ludwig. A faster lattice reduction method using quantum search. In
Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, ISAAC, volume 2906 of
Lecture Notes in Computer Science, pages 199–208. Springer, 2003.
→ Cited on page 24.

[Lyu] Vadim Lyubashevsky. Lattice-based encryption. http://www.di.ens.fr/~lyubash/
talks/LWEcrypto.pdf, accessed 3 June 2014.
→ Cited on page 174.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks.
In Ronald Cramer, editor, Public Key Cryptography, volume 4939 of Lecture Notes in
Computer Science, pages 162–179. Springer, 2008.
→ Cited on pages 2 and 41.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture
Notes in Computer Science, pages 598–616. Springer, 2009.
→ Cited on pages 2 and 41.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and
Johansson [PJ12], pages 738–755.
→ Cited on pages 2, 3, 29, 32, 33, 41, 42, 43, 44, 47, 48, 51, 52, 53, 56, 58, 64, 67, and 69.

[Mau96] Ueli M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer
Science. Springer, 1996.
→ Cited on pages 192 and 203.

199

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.di.ens.fr/~lyubash/talks/LWEcrypto.pdf
http://www.di.ens.fr/~lyubash/talks/LWEcrypto.pdf

Bibliography

[MGH08] Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. Cryptanalysis of a generic
class of white-box implementations. In Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica, editors, Selected Areas in Cryptography, volume 5381 of Lecture Notes
in Computer Science, pages 414–428. Springer, 2008.
→ Cited on pages 8 and 179.

[MHM+13] Ciara Moore, Neil Hanley, John McAllister, Máire O’Neill, Elizabeth O’Sullivan, and
Xiaolin Cao. Targeting FPGA DSP slices for a large integer multiplier for integer
based FHE. In Adams et al. [ABS13], pages 226–237.
→ Cited on pages 73 and 77.

[Mic10] Daniele Micciancio. A first glimpse of cryptography’s Holy Grail. Commun. ACM,
53(3):96, 2010.
→ Cited on pages 1, 4, 16, 75, and 139.

[Mil96] Gary L. Miller, editor. Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996.
ACM, 1996.
→ Cited on pages 185 and 194.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample
complexity of LWE search-to-decision reductions. In Rogaway [Rog11], pages 465–
484.
→ Cited on pages 64, 66, and 69.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Pointcheval and Johansson [PJ12], pages 700–718.
→ Cited on pages 31 and 41.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.
In Canetti and Garay [CG13a], pages 21–39.
→ Cited on page 26.

[MPSW09] Tal Malkin, Chris Peikert, Rocco A. Servedio, and Andrew Wan. Learning an
overcomplete basis: Analysis of lattice-based signatures with perturbations, 2009.
Manuscript. Available in [Wan10, Chapter 6].
→ Cited on pages 41, 55, and 64.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.
→ Cited on pages 25 and 33.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography,
pages 147–191. Springer Berlin Heidelberg, 2009.
→ Cited on pages 26, 29, 64, 66, and 69.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao - Lai
white-box AES implementation. In Lars R. Knudsen and Huapeng Wu, editors,
Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science,
pages 34–49. Springer, 2012.
→ Cited on pages 8 and 179.

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In Guang Gong and Kishan Chand Gupta, editors,
INDOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages 292–310.
Springer, 2010.
→ Cited on pages 8 and 179.

200

Bibliography

[NIS11] NIST Special Publication 800-131A. Transitions: Recommendation for transitioning
the use of cryptographic algorithms and key lengths. Available on http://csrc.nist.
gov, 2011.
→ Cited on pages 52, 69, 71, and 91.

[NIS12] NIST. SHA-3 competition, 2007-2012. http://csrc.nist.gov/groups/ST/hash/sha-
3/index.html.
→ Cited on pages 11 and 173.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors, CCSW,
pages 113–124. ACM, 2011.
→ Cited on pages 6, 73, 77, 129, and 175.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science. Springer, 2014.
→ Cited on pages 187 and 199.

[NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. J. Cryptology, 22(2):139–160, 2009.
→ Cited on pages 41, 55, and 64.

[NS99] Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset sum problem
and its cryptographic implications. In Wiener [Wie99], pages 31–46.
→ Cited on page 155.

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In
Silverman [Sil01], pages 146–180.
→ Cited on pages 15 and 89.

[NS05] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 215–233. Springer, 2005.
→ Cited on page 92.

[NS06] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Hess et al. [HPP06],
pages 238–256.
→ Cited on pages 90, 91, and 92.

[NSV11] Andrew Novocin, Damien Stehlé, and Gilles Villard. An LLL-reduction algorithm
with quasi-linear time complexity: extended abstract. In Lance Fortnow and Salil P.
Vadhan, editors, STOC, pages 403–412. ACM, 2011.
→ Cited on page 93.

[NV10] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and
Applications. Information Security and Cryptography. Springer, 2010.
→ Cited on pages 195, 203, and 205.

[Odl90] Andrew M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology
and Computational Number Theory, volume 42 of Proc. of Symposia in Applied
Mathematics, pages 75–88. AMS, 1990.
→ Cited on page 15.

[OPG14] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and RSA:
Lattice-based digital signatures on constrained devices. In DAC. 2014.
→ Cited on pages 4, 29, 40, 71, and 175.

201

http://csrc.nist.gov
http://csrc.nist.gov

Bibliography

[Ost11] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.
→ Cited on pages 188 and 193.

[OYKU10] Naoki Ogura, Go Yamamoto, Tetsutaro Kobayashi, and Shigenori Uchiyama. An
improvement of key generation algorithm for Gentry’s homomorphic encryption
scheme. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC,
volume 6434 of Lecture Notes in Computer Science, pages 70–83. Springer, 2010.
→ Cited on pages 73 and 76.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.
→ Cited on pages 75 and 175.

[Pat11] Kenneth G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture
Notes in Computer Science. Springer, 2011.
→ Cited on pages 193 and 205.

[PBS11a] Henning Perl, Michael Brenner, and Matthew Smith. Poster: an implementation of the
fully homomorphic Smart-Vercauteren crypto-system. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, ACM Conference on Computer and Communications
Security, pages 837–840. ACM, 2011.
→ Cited on pages 73, 77, 120, and 121.

[PBS11b] Henning Perl, Michael Brenner, and Matthew Smith. Scarab library, 2011. Available
under the MIT license at https://hcrypt.com/scarab-library/.
→ Cited on pages 73, 77, and 121.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signa-
tures on reconfigurable hardware. IACR Cryptology ePrint Archive, 2014:254, 2014.
To appear at CHES 2014.
→ Cited on page 175.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 80–97.
Springer, 2010.
→ Cited on pages 31, 33, and 39.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware. In Alejandro Hevia and Gregory Neven,
editors, LATINCRYPT, volume 7533 of Lecture Notes in Computer Science, pages
139–158. Springer, 2012.
→ Cited on pages 4, 58, and 175.

[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. 2013. SAC 2013.
→ Cited on pages 4, 29, and 175.

[PG14] Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. 2014.
→ Cited on pages 4, 29, and 175.

[PJ12] David Pointcheval and Thomas Johansson, editors. Advances in Cryptology - EURO-
CRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume
7237 of Lecture Notes in Computer Science. Springer, 2012.
→ Cited on pages 190, 193, 199, and 200.

202

https://hcrypt.com/scarab-library/

Bibliography

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC, volume
3876 of Lecture Notes in Computer Science, pages 145–166. Springer, 2006.
→ Cited on page 25.

[Pri51] G. Baley Price. Bounds for determinants with dominant principal diagonal. Proceed-
ings of the American Mathematical Society, 2(3):497–502, 1951.
→ Cited on page 154.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Maurer [Mau96], pages 387–398.
→ Cited on page 45.

[PS14] David Pointcheval and Olivier Sanders. Forward secure non-interactive key exchange,
2014. Manuscript.
→ Cited on page 140.

[PTT10] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal
authenticated data structures with multilinear forms. In Marc Joye, Atsuko Miyaji,
and Akira Otsuka, editors, Pairing, volume 6487 of Lecture Notes in Computer
Science, pages 246–264. Springer, 2010.
→ Cited on pages 139 and 141.

[PV14] David Pointcheval and Damien Vergnaud, editors. Progress in Cryptology -
AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa, Mar-
rakesh, Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in
Computer Science. Springer, 2014.
→ Cited on pages 18 and 198.

[RAD78] Ronald L. Rivest, Leonard M. Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.
→ Cited on pages 4, 73, and 75.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.
→ Cited on pages 3, 5, 15, 25, 107, and 174.

[Reg10a] Oded Regev. Learning with errors over rings. In Guillaume Hanrot, François Morain,
and Emmanuel Thomé, editors, ANTS, volume 6197 of Lecture Notes in Computer
Science, page 3. Springer, 2010.
→ Cited on page 26.

[Reg10b] Oded Regev. On the complexity of lattice problems with polynomial approximation
factors. In Nguyen and Vallée [NV10], pages 475–496.
→ Cited on page 25.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
volume 6841 of Lecture Notes in Computer Science. Springer, 2011.
→ Cited on pages 188, 190, 195, and 200.

[Roh09] Pankaj Rohatgi. Improved techniques for side-channel analysis. In Çetin Kaya Koç
[cKK09], pages 381–406.
→ Cited on page 14.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In TCC, pages 579–598,
2013.
→ Cited on pages 139 and 143.

203

Bibliography

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225
of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.
→ Cited on page 132.

[RS09] Markus Rückert and Dominique Schröder. Aggregate and verifiably encrypted signa-
tures from multilinear maps without random oracles. In Jong Hyuk Park, Hsiao-Hwa
Chen, Mohammed Atiquzzaman, Changhoon Lee, Tai-Hoon Kim, and Sang-Soo Yeo,
editors, ISA, volume 5576 of Lecture Notes in Computer Science, pages 750–759.
Springer, 2009.
→ Cited on page 139.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.
→ Cited on page 13.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In Abe [Abe10], pages 413–430.
→ Cited on page 41.

[RVV13] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High precision
discrete Gaussian sampling on FPGAs. 2013.
→ Cited on pages 34 and 40.

[RWC] Real world cryptography workshop. http://www.realworldcrypto.com/, accessed
3 June 2014.
→ Cited on page 174.

[S+14] W.A. Stein et al. Sage Mathematics Software (Version 6.1.1). The Sage Development
Team, 2014. http://www.sagemath.org.
→ Cited on pages 76, 86, 91, 104, 106, and 174.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO, volume 435 of Lecture Notes in Computer Science, pages
239–252. Springer, 1989.
→ Cited on pages 2 and 42.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.
→ Cited on pages 2 and 23.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
→ Cited on page 15.

[Sil01] Joseph H. Silverman, editor. Cryptography and Lattices, International Conference,
CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers, volume 2146
of Lecture Notes in Computer Science. Springer, 2001.
→ Cited on pages 195 and 201.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer,
2012.
→ Cited on pages 188, 191, and 193.

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In The
2000 Symposium on Cryptography and Information Security, 2000.
→ Cited on pages 6, 15, 139, and 176.

204

http://www.realworldcrypto.com/
http://www.sagemath.org

Bibliography

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Abe
[Abe10], pages 377–394.
→ Cited on pages 73 and 76.

[SS11a] Peter Scholl and Nigel P. Smart. Improved key generation for Gentry’s fully homo-
morphic encryption scheme. In Liqun Chen, editor, IMA Int. Conf., volume 7089 of
Lecture Notes in Computer Science, pages 10–22. Springer, 2011.
→ Cited on pages 73 and 76.

[SS11b] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Paterson [Pat11], pages 27–47.
→ Cited on pages 54 and 174.

[SS13] Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASIACRYPT 2013
- 19th International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II,
volume 8270 of Lecture Notes in Computer Science. Springer, 2013.
→ Cited on pages 188 and 198.

[ST] Nigel P. Smart and Stefan Tillich. Circuits of basic functions suitable for MPC
and FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/,
accessed 12 May 2014.
→ Cited on pages 121, 125, and 126.

[Sta13] Martijn Stam, editor. Cryptography and Coding - 14th IMA International Conference,
IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings, volume 8308 of Lecture
Notes in Computer Science. Springer, 2013.
→ Cited on pages 187 and 206.

[Ste10] Damien Stehlé. Floating-point LLL: Theoretical and practical aspects. In Nguyen
and Vallée [NV10], pages 179–213.
→ Cited on pages 92 and 93.

[Ste11] Damien Stehlé. Euclidean Lattices: Algorithms and Cryptography. Mémoire
d’habilitation à diriger des recherches, École Normale Supérieure de Lyon, Octo-
ber 2011.
→ Cited on page 16.

[Ste13] Marc Stevens. Counter-cryptanalysis. In Canetti and Garay [CG13a], pages 129–146.
→ Cited on page 173.

[Sto96] Arne Storjohann. Near optimal algorithms for computing Smith normal forms of
integer matrices. In Erwin Engeler, B. F. Caviness, and Yagati N. Lakshman, editors,
ISSAC, pages 267–274. ACM, 1996.
→ Cited on page 157.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer, 2010.
→ Cited on pages 73, 76, 77, and 79.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
IACR Cryptology ePrint Archive, 2011:133, 2011.
→ Cited on pages 73, 77, and 79.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. IACR Cryptology ePrint Archive, 2013:454, 2013.
→ Cited on page 139.

205

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Bibliography

[Vad07] Salil P. Vadhan, editor. Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings,
volume 4392 of Lecture Notes in Computer Science. Springer, 2007.
→ Cited on pages 194, 195, and 196.

[Var75] James M. Varah. A lower bound for the smallest singular value of a matrix. Linear
Algebra and its Applications, 11(1):3–5, 1975.
→ Cited on page 154.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Gilbert [Gil10], pages 24–43.
→ Cited on pages 1, 4, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 93, 94, 96, 97,
98, 99, 100, 106, 107, 108, 109, 119, 120, 121, and 123.

[vdPS13] Joop van de Pol and Nigel P. Smart. Estimating key sizes for high dimensional
lattice-based systems. In Stam [Sta13], pages 290–303.
→ Cited on pages 8 and 91.

[vN51] John von Neumann. Various techniques used in connection with random digits. J.
Research Nat. Bur. Stand., Appl. Math. Series, 12:36–38, 1951.
→ Cited on pages 2 and 27.

[Wan10] Andrew Wan. Learning, Cryptography, and the Average Case. PhD thesis, Columbia
University, 2010.
→ Cited on page 200.

[WEJ13] William Whyte, Mark Etzel, and Peter Jenney. Open Source NTRU Public Key
Cryptography Algorithm and Reference Code, 2013. Available under the Gnu Public
License (GPL) at https://github.com/NTRUOpenSourceProject/ntru-crypto.
→ Cited on page 71.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer, 1999.
→ Cited on pages 186 and 201.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of
white-box DES implementations with arbitrary external encodings. In Adams et al.
[AMW07], pages 264–277.
→ Cited on pages 8 and 179.

[WP05] Brecht Wyseur and Bart Preneel. Condensed white-box implementations. Proceedings
of the 26th Symposium on Information Theory in the Benelux, pages 296–301, 2005.
→ Cited on pages 8 and 179.

[WS12] Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume
7658 of Lecture Notes in Computer Science. Springer, 2012.
→ Cited on pages 186 and 191.

[WT99] Alma Whitten and J Doug Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In Proceedings of the 8th USENIX Security Symposium, volume 99.
McGraw-Hill, 1999.
→ Cited on page 73.

[XL09] Yaying Xiao and Xuejia Lai. A Secure Implementation of White-Box AES. In CSA
2009, pages 1–6, 2009.
→ Cited on pages 8 and 179.

206

https://github.com/NTRUOpenSourceProject/ntru-crypto

Bibliography

[YH13] Eric A. Young and Tim J. Hudson. Open Source Secure Sockets Layer (Version
1.0.1c), 2013. http://www.openssl.org/.
→ Cited on page 53.

[ZD06] Paul Zimmermann and Bruce Dodson. 20 years of ECM. In Hess et al. [HPP06],
pages 525–542.
→ Cited on page 81.

207

http://www.openssl.org/

Abstract.

Today, lattice-based cryptography is a thriving scientific field. Its swift expansion
is due, among others, to the attractiveness of fully homomorphic encryption
and cryptographic multilinear maps. Lattice-based cryptography has also been
recognized for its thrilling properties: a security that can be reduced to worst-
case instances of problems over lattices, a quasi-optimal asymptotic efficiency
and an alleged resistance to quantum computers. However, its practical use
in real-world products leaves a lot to be desired. This thesis accomplishes a
step towards this goal by narrowing the gap between theoretical research and
practical implementation of recent public key cryptosystems.
In this thesis, we design and implement a lattice-based digital signature, two
fully homomorphic encryption schemes and cryptographic multilinear maps.
Our highly efficient signature scheme, BLISS, opened the way to implementing
lattice-based cryptography on constrained devices and remains as of today a
promising primitive for post-quantum cryptography. Our fully homomorphic
encryption schemes enjoy competitive homomorphic evaluations of nontrivial cir-
cuits. Finally, we describe the first implementation of cryptographic multilinear
maps. Based on our implementation, a non interactive key exchange between
more than three parties has been realized for the first time, and amounts to a
few seconds per party.

Keywords: public key cryptography, lattices, digital signature, fully homomor-
phic encryption, multilinear maps, implementation.

Résumé.

La cryptographie à base de réseaux euclidiens est aujourd’hui un domaine
scientifique en pleine expansion et connait une évolution rapide et accélérée par
l’attractivité du chiffrement complètement homomorphe ou des applications
multilinéaires cryptographiques. Ses propriétés sont très attractives : une
sécurité pouvant être réduite à la difficulté des pires cas de problèmes sur les
réseaux euclidiens, une efficacité asymptotique quasi-optimale et une résistance
présupposée aux ordinateurs quantiques. Cependant, on dénombre encore peu
de résultats de recherche sur les constructions à visée pratique pour un niveau
de sécurité fixé. Cette thèse s’inscrit dans cette direction et travaille à réduire
l’écart entre la théorie et la pratique de la cryptographie à clé publique récente.
Dans cette thèse, nous concevons et implémentons une signature numérique
basée sur les réseaux euclidiens, deux schémas de chiffrement complètement
homomorphe et des applications multilinéaires cryptographiques.
Notre signature digitale ultra-performante, BLISS, ouvre la voie à la mise en
pratique de la cryptographie à base de réseaux sur petites architectures et est un
candidat sérieux à la cryptographie post-quantique. Nos schémas de chiffrement
complètement homomorphes permettent d’évaluer des circuits non triviaux de
manière compétitive. Finalement, nous proposons la première implémentation
d’applications multilinéaires et réalisons, pour la première fois, un échange de
clé non interactif entre plus de trois participants en quelques secondes.

Mots clés : cryptographie à clé publique, réseaux euclidiens, signature
numérique, chiffrement homomorphe, applications multilinéaires, implémenta-
tion.

	Contents
	(French) Présentation des résultats et perspectives futures
	Contributions à la cryptographie basée sur les réseaux DBLP:conf/crypto/DucasDLL13
	Contributions au chiffrement complètement homomorphe
	Chiffrement par lots complètement homomorphe sur les entiers DBLP:conf/eurocrypt/CheonCKLLTY13
	Minimisation du nombre de bootstrappings dans un circuit homomorphe DBLP:conf/fc/LepointP13
	Chiffrement complètement homomorphe sur les entiers à module invariant DBLP:conf/pkc/CoronLT14
	Conclusion et perspectives

	Contributions aux applications multilinéaires cryptographiques DBLP:conf/crypto/CoronLT13
	Autres travaux
	Comparaison de chiffrements complètement homomorphes basés sur les réseaux DBLP:conf/africacrypt/LepointN14
	Cryptographie en boite blanche LepointRMRP13,DBLP:journals/iacr/DelerableeLPR13

	Liste de publications

	Introduction
	Introduction to Cryptology
	Modern Cryptography
	Lattice-Based Cryptography
	List of Publications

	Preliminaries
	Notation
	Reminders on Lattices
	Lattices
	Average-Case Problems and Algorithmic Problems on Lattices

	Useful Lemmas
	Leftover Hash Lemma
	Rejection Sampling

	Design and Implementation of a Lattice-Based Signature Scheme
	Efficient Discrete Gaussian Sampling over the Integers
	Introduction
	Discrete Gaussian Sampling: Prior Art
	Efficient Sampling from Bernoulli Distributions
	Reduce the Rejection Rate with a Binary Discrete Gaussian Distribution
	Conclusion

	Design of BLISS, an Efficient Lattice-Based Signature Scheme
	Introduction
	Preliminaries
	BLISS: A Lattice Signature Scheme using Bimodal Gaussians
	New Signature and Verification Algorithms
	Rejection Sampling: Correctness and Efficiency
	Security Proof

	Conclusion

	Implementation of BLISS
	Introduction
	NTRU-Based Key Generation
	NTRU Lattices
	Key-Generation
	A Tighter Bound on "026B30D Sc"026B30D
	Final KeyGen Algorithm

	Implementation Details
	Multiplication of two polynomials
	Multiplication of S by a sparse vector c
	Hashing to Bn
	Gaussian Sampling
	Rejection Sampling according to 1/exp and 1/cosh
	Signature Compression
	Final Sign and Verify Algorithms

	Security Analysis
	Brute-force and Meet-in-the-Middle Key Recovery Attack
	Hardness of the underlying SIS problem
	Primal Lattice Reduction Key Recovery
	Dual Lattice Reduction Key Recovery
	Hybrid MiM-Lattice Key Recovery

	Parameters and Benchmarks
	Parameters Sets
	Timings

	Conclusion

	Helping Fully Homomorphic Encryption Become Practical
	Batch Fully Homomorphic Encryption over the Integers
	Introduction
	Background on Fully-Homomorphic Encryption
	The Somewhat Homomorphic DGHV Scheme
	Our Contributions and Techniques

	The Approximate-GCD Problems
	Error-Free Variants of the Computational Approximate-GCD problem
	Equivalence between the (Error-Free) Decisional and Computational Approximate-GCD
	An AGCD Distribution with Several Primes
	Attacks and Parameters Derivation
	Estimating the Running Time of LLL

	Batching the DGHV Scheme
	One-Slot DGHV Scheme
	Multi-Slot DGHV Scheme
	Asymptotic Parameters
	Advantages of the Multi-Slot Variant

	Making the Scheme Fully Homomorphic
	The Squashed Scheme
	Bootstrapping
	Complete Set of Operations for Plaintext Vectors

	Complete Description of the Batch DGHV Scheme with Compressed Public Keys
	Description
	Semantic Security

	Implementation and Benchmarks
	Practical Parameters
	Implementation in C++ and Benchmarking

	Conclusion

	Scale-Invariant Fully Homomorphic Encryption over the Integers
	Introduction
	Scale-Invariant One-Slot DGHV Scheme
	Ciphertexts and Homomorphic Operations
	Conversion from Type-II Ciphertext to Type-I Ciphertext
	Proof of Lemma 8.2
	Description of the Public-Key Leveled Homomorphic Scheme
	Constraints on the Parameters
	Semantic Security

	Scale-Invariant Multi-Slot DGHV Scheme
	Description of the Public-Key Batch Leveled Fully Homomorphic Scheme
	Semantic Security

	Practical Implementation
	Optimization of Scalar Product
	Concrete Parameters and Benchmarking

	Conclusion

	Minimal Number of Bootstrappings in Homomorphic Circuits
	Introduction
	Homomorphic Schemes with 2 Noise Levels
	Stating the Problem
	A Heuristic Solver

	Extension to FHE Schemes with Many Noise Levels
	Extension to One-Modulus FHE Schemes
	Extension to FHE Schemes using Modulus Switching

	Practical Experiments
	MPC/FHE Benchmark Circuits
	The AES S-boxes of Boyar, Matthews and Peralta

	Conclusion

	Implementations of Homomorphic AES Evaluations
	Introduction
	The AES Block Cipher
	Two Implementations of the Homomorphic AES
	State-Wise Bitslicing
	Byte-Wise Bitslicing

	Implementation Results
	Some Thoughts about Homomorphic Evaluations

	Conclusion

	Design and Implementation of Multilinear Maps over the Integers
	Multilinear Maps over the Integers
	Introduction
	Framework for Approximate Multilinear Maps
	Cryptographic Multilinear Maps
	Graded Encoding System
	Multilinear Maps Procedures
	Hardness Assumption

	Our new Encoding Scheme
	Setting the Parameters
	Security of our Construction
	Comparison with GGH Multilinear Maps

	Another Leftover Hash Lemma over Lattices
	Leftover Hash Lemma over Lattices
	Re-Randomization of Encodings: Proof of Lemma 11.7

	Attacks against our Multilinear Maps Scheme
	Lattice Attack on the Encodings
	GCD Attack on the Zero-testing Parameter
	Hidden Subset Sum Attack on Zero Testing
	Attacks on the Inverse Zero Testing Matrix
	A Note on GGH's Zeroizing Attack

	Conclusion
	Uniform Sampling of a Parallelepiped
	Generation of the Matrix H

	Implementation of a N3-partite Diffie-Hellman Key Exchange
	Introduction
	Diffie-Hellman One-Round Key Exchange
	Tripartite Diffie-Hellman Key Exchange
	N-partite Diffie-Hellman Key Exchange

	N-partite Diffie-Hellman Key Exchange Using Approximate Multilinear-Maps
	Optimizations and Implementation
	Non-uniform Sampling
	Quadratic Re-randomization
	Zero-Testing Element

	Practical Results
	Conclusion
	Quadratic Sampling for Level-Zero Encodings
	Optimization on the Zero-Testing Elements
	Zero-Testing Element
	Extension to tn elements
	Two-element vector

	Conclusions, Thoughts and Other Works
	Conclusion and Thoughts
	Other Works on White-Box Cryptography
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

