E. Alvarado, D. S. Berg, and S. Picford, Modelling large forest fires as extreme events, Northwest Sci, vol.72, pp.66-75, 1998.

P. Artzner, F. Delbaen, J. Eber, and D. Heath, Coherent measures of risk, Mathematical Finance, issue.9, pp.203-228, 1999.

A. Balkema and L. De-haan, Residual Life Time at Great Age, The Annals of Probability, vol.2, issue.5, pp.792-804, 1974.
DOI : 10.1214/aop/1176996548

J. Beirlant, G. Dierckx, A. Guilllou, and C. St?aric?ast?aric?st?aric?a, On exponential representations of log-spacings of extreme order statistics, Extremes, vol.5, issue.2, pp.157-180, 2002.
DOI : 10.1023/A:1022171205129

J. Beirlant, G. Dierckx, and A. Guillou, Estimation of the extreme value index and regression on generalized quantile plots, Annals of Statistics, vol.11, issue.6, pp.949-970, 2005.

J. Beirlant, G. Dierckx, G. Y. , and G. Matthys, Tail index estimation and an exponential regression model, Extremes, vol.2, issue.2, pp.177-200, 1999.
DOI : 10.1023/A:1009975020370

J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of extremes: theory and applications, Wiley Series in Probability and Statistics, 2004.
DOI : 10.1002/0470012382

J. Beirlant, Y. Goegebeur, R. Verlaack, and P. Vynckier, Burr regression and portfolio seg-mentation, Insurance: Mathematics and Economics, issue.23, pp.231-250, 1998.

J. Beirlant and G. Matthys, Estimating the extreme value index and high quantiles with exponential regression models, Statistica Sinica, vol.13, issue.3, pp.853-880, 2003.

J. Beirlant, G. Matthys, and G. Dierckx, Abstract, ASTIN Bulletin, vol.10, issue.01, pp.37-58, 2001.
DOI : 10.2307/1427870

J. Beirlant, P. Vynckier, and J. Teugels, Excess Functions and Estimation of the Extreme-Value Index, Bernoulli, vol.2, issue.4, pp.293-318, 1996.
DOI : 10.2307/3318416

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol.27, 1987.
DOI : 10.1017/CBO9780511721434

H. Buhlmann, An economic premium principle, Astin Bulletin Ì, issue.11 11, p.52, 1980.

F. Caeiro, M. Gomes, and D. Pestana, Direct reduction of bias of the classical hill estimator, Statistical Journal, vol.3, issue.2, pp.113-136, 2005.

F. Caeiro, M. I. Gomes, and L. H. Rodrigues, Reduced-Bias Tail Index Estimators Under a Third-Order Framework, Communications in Statistics - Theory and Methods, vol.70, issue.7, pp.1019-1040, 2009.
DOI : 10.1111/j.1467-842X.2004.00331.x

J. Cai, L. De-haan, and C. Zhou, Bias correction in extreme value statistics with index around zero, Extremes, vol.73, issue.364, 2011.
DOI : 10.1007/s10687-012-0158-x

A. C. Ceberián, M. Denuit, and P. Lambert, Generalzed pareto fit to the society of actuariesâlarge claims database, North American Actuarial Journal, issue.7, pp.18-36, 2003.

M. Centeno, J. Andrade, and . Silva, Applying the proportional hazard premium calculation principle, Astin Bulletin, issue.35, pp.409-425, 2005.

M. Centeno and M. Guerra, The optimal reinsurance strategy ??? the individual claim case, Insurance: Mathematics and Economics, vol.46, issue.3, pp.450-460, 2010.
DOI : 10.1016/j.insmatheco.2010.01.002

S. Cheng and L. Peng, Confidence Intervals for the Tail Index, Bernoulli, vol.7, issue.5, pp.751-760, 2001.
DOI : 10.2307/3318540

G. Ciuperca and C. Mercadier, Semi-parametric estimation for heavy tailed distributions, Extremes, vol.73, issue.364, pp.55-87, 2010.
DOI : 10.1007/s10687-009-0086-6

URL : https://hal.archives-ouvertes.fr/hal-00292587

R. Cont, La statistique face aux événements rares = statistics dealing with rare events, Pour la science, issue.385, pp.116-123, 2009.

M. Csörgö, S. Csörg?, L. Horváth, and D. Mason, Weighted Empirical and Quantile Processes, The Annals of Probability, vol.14, issue.1, pp.31-85, 1986.
DOI : 10.1214/aop/1176992617

S. Csörgö, P. Deheuvels, and D. Mason, Kernel Estimates of the Tail Index of a Distribution, The Annals of Statistics, vol.13, issue.3, pp.1050-1077, 1985.
DOI : 10.1214/aos/1176349656

S. Csörgö and D. Mason, Central limit theorems for sums of extreme values, Mathematical Proceedings of the Cambridge Philosophical Society, vol.86, issue.03, pp.547-558, 1985.
DOI : 10.1214/aos/1176343247

J. Danielsson, L. De-haan, L. Peng, and C. De-vries, Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation, Journal of Multivariate Analysis, vol.76, issue.2, pp.226-248, 2001.
DOI : 10.1006/jmva.2000.1903

J. Danielsson, D. W. , and C. G. De-vries, The method of moments ratio estimator for the tail shape parameter, Communications in Statistics - Theory and Methods, vol.44, issue.4, pp.711-720, 1996.
DOI : 10.1016/0927-5398(94)90004-3

R. Davis and S. Resnick, Tail Estimates Motivated by Extreme Value Theory, The Annals of Statistics, vol.12, issue.4, pp.1467-1487, 1984.
DOI : 10.1214/aos/1176346804

A. C. Davison and R. L. Smith, Models for exceedances over high thresholds, Journal of the Royal Statistical Society, B, vol.52, issue.3, pp.393-442, 1990.

L. De-haan, On regular variation and its application to the weak convergence of sample extremes, MMathematical Centre Tracts, vol.32, 1970.

L. De-haan and A. Ferreira, Extreme Value Theory: An Introduction, Series in Operations Research and Financial Engineering, 2006.
DOI : 10.1007/0-387-34471-3

L. De-haan and L. Peng, Comparison of tail index estimators, Statistica Neerlandica, vol.52, issue.1, pp.60-70, 1998.
DOI : 10.1111/1467-9574.00068

L. De-haan and S. Resnick, A simple asymptotic estimate for the index of a stable law, Journal of the Royal Statistical Society (B), pp.83-87, 1980.

L. De-haan and H. Rootzén, On the estimation of high quantiles, Journal of Statistical Planning and Inference, vol.35, issue.1, pp.1-13, 1993.
DOI : 10.1016/0378-3758(93)90063-C

P. Deheuvels, E. Haeusler, and D. Mason, Almost sure convergence of the Hill estimator, Mathematical Proceedings of the Cambridge Philosophical Society, vol.44, issue.02, pp.371-381, 1988.
DOI : 10.2307/3214094

P. Deheuvels, E. Haeusler, and M. Mason, Laws of the iterated logarithm for sums of extreme values in the domain of attraction of a gumbel law, Bull. Sci. Math, 1989.

A. Dekkers and L. De-haan, On the Estimation of the Extreme-Value Index and Large Quantile Estimation, The Annals of Statistics, vol.17, issue.4, pp.1795-1832, 1989.
DOI : 10.1214/aos/1176347396

A. Dekkers, J. H. Einmalh, and L. De-hann, A Moment Estimator for the Index of an Extreme-Value Distribution, The Annals of Statistics, vol.17, issue.4, pp.1833-1855, 1989.
DOI : 10.1214/aos/1176347397

A. L. Dekkers and L. De-haan, Optimal Choice of Sample Fraction in Extreme-Value Estimation, Journal of Multivariate Analysis, vol.47, issue.2, pp.173-195, 1993.
DOI : 10.1006/jmva.1993.1078

E. H. Deme, L. Gardes, and S. Girard, On the estimation of the second order parameter for heavy-tailed distributions, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00634573

E. H. Deme, S. Girard, and A. Guillou, Reduced-bias estimator of the Proportional Hazard Premium for heavy-tailed distributions, Insurance: Mathematics and Economics, vol.52, issue.3, pp.550-559, 2013.
DOI : 10.1016/j.insmatheco.2013.03.010

URL : https://hal.archives-ouvertes.fr/hal-00763978

M. Denuit and A. Charpentier, Mathématiques de lâassurance non-vie : Tarification et provisionnement, 2005.

J. Diebolt, M. El-aroui, M. Garrido, and S. Girard, Quasi-conjugate bayes estimates for gpd parameters and application to heavy tails modeling, Extremes, issue.8, pp.57-78, 2005.

J. Diebolt, L. Gardes, S. Girard, and A. Guillou, Bias-reduced estimators of the Weibull tail-coefficient, TEST, vol.34, issue.3, pp.311-331, 2008.
DOI : 10.1007/s11749-006-0034-6

URL : https://hal.archives-ouvertes.fr/hal-00008881

J. Diebolt, L. Gardes, S. Girard, and A. Guillou, Bias-reduced extreme quantile estimators of Weibull tail-distributions, Journal of Statistical Planning and Inference, vol.138, issue.5, pp.1389-1401, 2008.
DOI : 10.1016/j.jspi.2007.04.025

J. Diebolt, L. Gardes, and A. Guillou, Bias-reduced estimators of the Weibull tail-coefficient, TEST, vol.34, issue.3, pp.311-331, 2008.
DOI : 10.1007/s11749-006-0034-6

URL : https://hal.archives-ouvertes.fr/hal-00008881

J. Diebolt, A. Guillou, and I. Rached, A new look at probability-weighted moments estimators, Serie I, pp.629-634, 2004.
DOI : 10.1016/j.crma.2004.02.011

J. Diebolt, A. Guillou, and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method, Journal of Statistical Planning and Inference, vol.137, issue.3, pp.841-857, 2007.
DOI : 10.1016/j.jspi.2006.06.012

URL : https://hal.archives-ouvertes.fr/hal-00693666

A. Diop and G. Lo, Generalized hill's estimator, Journal of Theorical Statistic, vol.20, issue.2, pp.129-149, 2006.

A. Diop and G. S. Lo, Ratio of Generalized Hill???s estimator and its asymptotic normality theory, Mathematical Methods of Statistics, vol.18, issue.2, pp.117-133, 2009.
DOI : 10.3103/S1066530709020021

H. Drees, Refined Pickands estimators of the extreme value index, The Annals of Statistics, vol.23, issue.6, pp.2059-2080, 1995.
DOI : 10.1214/aos/1034713647

H. Drees and E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value estimation, Stochastic Processes and their Applications, pp.149-172, 1998.
DOI : 10.1016/S0304-4149(98)00017-9

S. El-adlouni, B. Bobée, and T. B. Ouarda, Caracterisation des distributions à queues lourdes pour l'analyse des crues, 2007.

E. Methni, J. , L. Gardes, S. Girard, and A. Guillou, Estimation of extreme quantiles from heavy and light tailed distributions, Journal of Statistical Planning and Inference, vol.142, issue.10, pp.2735-2747, 2012.
DOI : 10.1016/j.jspi.2012.03.025

URL : https://hal.archives-ouvertes.fr/hal-00627964

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling of extremal events in insurance and finance, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.73, issue.1, 1997.
DOI : 10.1007/BF01440733

A. Ferreira, L. De-haan, and L. Peng, On optimising the estimation of high quantiles of a probability distribution, Statistics, vol.74, issue.5, pp.401-434, 2003.
DOI : 10.2307/2286285

A. Feuerverger and P. Hall, Estimating a tail exponent by modeling departure from a pareto distribution, Annals of Statistics, vol.27, pp.760-781, 1999.

R. Fisher and L. Tippet, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.02, pp.180-190, 1928.
DOI : 10.1017/S0305004100015681

F. Alves, M. , L. De-haan, and T. Lin, Estimation of the parameter controlling the speed of convergence in extreme value theory, Mathematical Methods of Statistics, vol.12, pp.155-176, 2003.

F. Alves, M. , M. Gomes, and L. De-haan, A new class of semi-parametric estimators of the second order parameter, Portugaliae Mathematica, vol.60, pp.193-214, 2003.

M. Fréchet, Sur la loi de probabilité de l'écart maximum, Annales de la Société Polonaise de Mathématique, vol.6, pp.93-116, 1927.

L. Gardes and S. Girard, Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels, Extremes, vol.73, issue.2, pp.177-204, 2010.
DOI : 10.1007/s10687-010-0100-z

URL : https://hal.archives-ouvertes.fr/hal-00371757

J. Geluck and L. De-haan, Regular variation, extensions and tauberian theorems, cwi tract 40, center for mathematics and computer science, 1987.

B. Gnedenko, Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire, The Annals of Mathematics, vol.44, issue.3, pp.423-453, 1943.
DOI : 10.2307/1968974

Y. Goegebeur, J. Beirlant, and D. T. , Kernel estimators for the second order parameter in extreme value statistics, Journal of Statistical Planning and Inference, vol.140, issue.9, pp.2632-2652, 2010.
DOI : 10.1016/j.jspi.2010.03.029

Y. Goegebeur, T. De, and . Wet, Estimation of the third-order parameter in extreme value statistics, TEST, vol.21, issue.2, pp.330-354, 2012.
DOI : 10.1007/s11749-011-0246-2

M. Gomes, L. De-haan, and L. Peng, Semi-parametric estimation of the second order parameter in statistics of extremes, pp.387-414, 2002.

M. Gomes and M. Martins, Bias reduction and explicit semi-parametric estimation of the tail index, Journal of Statistical Planning and Inference, vol.124, issue.2, pp.361-378, 2004.
DOI : 10.1016/S0378-3758(03)00205-2

M. I. Gomes, Generalized jackknife moment estimator of the tail index, Bulletin of the International Statistical Institute, vol.58, issue.1, pp.401-402, 1999.

M. I. Gomes, F. Figueiredo, and S. Mendonça, Asymptotically best linear unbiased tail estimators under a second-order regular variation condition, Journal of Statistical Planning and Inference, vol.134, issue.2, pp.409-433, 2005.
DOI : 10.1016/j.jspi.2004.04.013

M. I. Gomes and M. Martins, Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter, pp.5-31, 2002.

M. I. Gomes, M. Martins, and M. Neves, Improving second order reduced bias extreme value index estimator, REVSTAT -Statistical Journal, vol.5, issue.2, pp.177-207, 2007.

M. I. Gomes and O. Oliveira, The bootstrap methodology in statistics of extremes: theory and applications -choice of the optimal sample fraction, Extremes, vol.4, issue.4, pp.331-358, 2001.
DOI : 10.1023/A:1016592028871

M. I. Gomes, H. Pereira, and M. Miranda, Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index, Communications in Statistics - Theory and Methods, vol.44, issue.2, pp.319-335, 2005.
DOI : 10.1007/BF02127580

M. I. Gomes, D. Pestana, and C. Frederico, A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator, Statistics & Probability Letters, vol.79, issue.3, pp.295-303, 2009.
DOI : 10.1016/j.spl.2008.08.016

URL : https://hal.archives-ouvertes.fr/hal-00504135

M. Goovaerts, F. De-vylder, and J. Haezendonck, Insurance premiums, 1984.

D. Griselda and P. Guillaume, Théorie du risque et réassurance, 2006.

P. Groeneboom, H. P. Lopuhaa, and P. De-wolf, Kernel-type estimators for the extreme value index, Annals of Statistics, vol.31, pp.1956-1995, 2003.

E. J. Gumbel, Statistics of extremes: theory and applications, 1958.

H. Drees and S. Resnick, How to make a Hill plot, The Annals of Statistics, vol.28, issue.1, pp.254-274, 2000.
DOI : 10.1214/aos/1016120372

E. Haeusler and J. Teugels, On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation, The Annals of Statistics, vol.13, issue.2, pp.743-756, 1985.
DOI : 10.1214/aos/1176349551

P. Hall, On some simple estimates of an exponent of regular variation, Journal of the Royal Statistical Society, vol.44, pp.37-42, 1982.

P. Hall and A. Welsh, Adaptive Estimates of Parameters of Regular Variation, The Annals of Statistics, vol.13, issue.1, pp.331-341, 1985.
DOI : 10.1214/aos/1176346596

B. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics, vol.3, issue.5, pp.1163-1174, 1975.
DOI : 10.1214/aos/1176343247

J. R. Hosking and J. R. Wallis, Parameter and Quantile Estimation for the Generalized Pareto Distribution, Technometrics, vol.4, issue.3, pp.339-1349, 1987.
DOI : 10.1016/0022-1694(85)90108-8

A. F. Jenkinson, The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Quarterly Journal of the Royal Meteorological Society, vol.17, issue.348, pp.158-171, 1955.
DOI : 10.1002/qj.49708134804

B. L. Jones and R. Zitikis, Empirical Estimation of Risk Measures and Related Quantities, North American Actuarial Journal, vol.44, issue.1, pp.44-54, 2003.
DOI : 10.1080/10920277.2003.10596117

M. Kratz and S. Resnick, The qq-estimator and heavy tails, Communications in Statistics. Stochastic Models, vol.23, issue.4, pp.699-724, 1996.
DOI : 10.1214/aop/1176993783

URL : https://hal.archives-ouvertes.fr/hal-00179391

M. R. Leadbetter, Extremes and local dependence of stationnary sequences, Z. Wahr. verw. Gebiete, issue.65, pp.291-306, 1983.

G. Lo, Sur quelques estimateurs de lâindex dâune loi de Pareto : Estimation de Deheuvels Csorgo, Mason, de De Haan-Resnick et lois limites pour des sommes de valeurs extrêmes pour une variable dans le domaine de Gumbel, Thèse de Doctorat, 1986.

G. Lo, A note on the asymptotic normality of sums of extreme values. 127 ournal of Statistical Planning and Inference, pp.127-136, 1989.

G. Lo and E. H. Deme, A functional generalized hill process and applications, International Journal of Statistics and Probability, vol.1, issue.2, pp.250-268, 2012.

G. Lo, E. H. Deme, and A. Diop, On the Generalized Hill Process for Small Parameters and Applications, Journal of Statistical Theory and Applications, vol.12, issue.1, pp.397-418, 2012.
DOI : 10.2991/jsta.2013.12.1.3

G. S. Lo, Sur une caract´risation empirique des extrêmes, Mathematical Reports of the Academy of Science. Canada (XIV, vol.2, issue.3, pp.89-94, 1992.

N. Markovich, High quantile estimation for heavy-tailed distributions, Performance Evaluation, vol.62, issue.1-4, pp.178-192, 2005.
DOI : 10.1016/j.peva.2005.07.014

D. Mason, Laws of Large Numbers for Sums of Extreme Values, The Annals of Probability, vol.10, issue.3, pp.754-764, 1982.
DOI : 10.1214/aop/1176993783

D. Mason and T. Turova, Weak convergence of the hill estimator pro-cess. in j. galambos, j. lechner and simiu, editors, extreme value theory and applications

G. Matthys and J. Beirlant, Estimating the extreme value in-dex and high quantiles with exponential regression models, Statistica Sinica, vol.13, pp.853-880, 2003.

J. Mcculloch, Measuring tail thickness to estimate the stable index ? : A critique, Journal of Business & Economic Statistics, issue.15, pp.74-81, 1997.

A. Mcneil, Abstract, ASTIN Bulletin, vol.38, issue.01, pp.117-137, 1997.
DOI : 10.1111/j.1467-9574.1990.tb01526.x

A. Necir and K. Boukhetala, Estimating the risk adjusted premium of the largest reinsurance covers, Proceeding in Compu-tational Statistics (Edited by Jaromir Antoch), pp.1577-1584, 2004.

A. Necir and D. Meraghni, Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts, Insurance: Mathematics and Economics, vol.45, issue.1, pp.49-58, 2009.
DOI : 10.1016/j.insmatheco.2009.03.004

A. Necir, D. Meraghni, and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal, issue.3, pp.147-161, 2007.

L. Peng, Asymptotically unbiased estimators for the extreme-value index, Statistics & Probability Letters, vol.38, issue.2, pp.107-115, 1998.
DOI : 10.1016/S0167-7152(97)00160-0

J. Pickands, Statistical inference using extreme order statistics, Annals of Statistics, vol.3, issue.1, pp.119-131, 1975.

R. Reiss and M. Thomas, Statistical analysis of extreme values, 2001.
DOI : 10.1007/978-3-0348-6336-0

R. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkh Ìuser, 1997.

R. Reiss and M. Thomas, Abstract, ASTIN Bulletin, vol.29, issue.02, pp.339-349, 1999.
DOI : 10.1007/978-1-4613-3638-9_7

S. Resnick, Extreme Values, regular Variation, and Point Process, 1987.

S. Resnick and C. Starica, Consistency of hill's estimator for dependent data, Journal of Applied Probability, issue.32, pp.139-167, 1995.

H. Rootzen and N. Tajvidin, Extreme value statistics and wind storm losses: A case study, Scandinavian Actuarial Journal, vol.2, issue.1, pp.70-94, 1997.
DOI : 10.1214/ss/1177012400

O. Rosen and I. Weissman, Comparison of estimation methods in extreme value theory, Communications in Statistics - Theory and Methods, vol.47, issue.4, pp.759-773, 1996.
DOI : 10.2307/2286285

J. Schultze and J. Steinebach, ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT, Statistics & Risk Modeling, vol.14, issue.4, pp.353-372, 1996.
DOI : 10.1524/strm.1996.14.4.353

G. Shorack and J. Wellner, Empirical Processes with Applications to Statistics, 1986.
DOI : 10.1137/1.9780898719017

R. L. Smith, Estimating Tails of Probability Distributions, The Annals of Statistics, vol.15, issue.3, pp.1174-1207, 1987.
DOI : 10.1214/aos/1176350499

B. Sousa, A contribution to the estimation of the tail index of heavy-tailed distributions. phd. thesis, university of michigan, 2002.

Z. Tsourti and J. Panaretos, A simulation study on the performance of extremevalue index estimators and proposed robustifying modifications, 5th Hellenic Eu-ropean Conference on Computer Mathematics and its Applications, pp.847-852, 2001.

Z. Tsourti and J. Panaretos, Stochastic musings : Perspectives from the pioneers of the late 20th century, Laurence Erlbaum, pp.141-160, 2003.

G. Valiron, Cours dâAnalyse Math´matique : Th´orie des fonctions, 1990.

A. W. Van-der-vaart and J. A. Wellner, Weak Convergence and Empirical Processes. With Applications to Statistics, 1996.

B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation of reinsurance premiums, Insurance: Mathematics and Economics, vol.38, issue.3, pp.441-459, 2006.
DOI : 10.1016/j.insmatheco.2005.11.002

L. Viharos, Limit theorems for linear combinations of extreme values with applications to inference about the tail of a distribution, Acta Scientiarum Mathematicarum, vol.60, pp.761-777, 1995.

R. Von-mises, La distribution de la plus grande de n valeurs, Revue de Mathématique Union Interbalcanique, issue.1, pp.141-160, 1936.

S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards transforms, Insurance: Mathematics and Economics, vol.17, issue.1, pp.43-54, 1995.
DOI : 10.1016/0167-6687(95)00010-P

S. Wang, Abstract, ASTIN Bulletin, vol.50, issue.01, pp.71-92, 1996.
DOI : 10.2143/AST.21.2.2005365

URL : https://hal.archives-ouvertes.fr/hal-00953003

I. Weissman, Estimation of parameters and large quantiles based on the k-largest observations, Journal of the American Statistical Association, vol.73, issue.364, pp.812-815, 1978.

J. Worms and R. Worms, Estimation of second order parameters using probability weighted moments, ESAIM: Probability and Statistics, 2011.
DOI : 10.1051/ps/2010017

URL : https://hal.archives-ouvertes.fr/hal-00365305

M. Yaari, The Dual Theory of Choice under Risk, Econometrica, vol.55, issue.1, pp.95-115, 1987.
DOI : 10.2307/1911158