L. Baudouin and S. Ervedoza, Osses -Stability of an inverse problem for the discrete wave equation and convergence results

L. Baudouin, E. Cerpa, and E. Crépeau, Mercado -On the determination of the principal coefficient from boundary measurements in a KdV equation. à paraître dans le Journal of Inverse and Ill-posed problems

L. Baudouin, M. De-buhan, and S. , Global Carleman Estimates for Waves and Applications, Communications in Partial Differential Equations, vol.75, issue.5, pp.823-859, 2013.
DOI : 10.1137/S0363012999350298

URL : https://hal.archives-ouvertes.fr/hal-00633562

L. Baudouin, Ervedoza -Convergence of an inverse problem for discrete wave equations, SIAM J. Control and Optimization, vol.511, pp.556-598, 2013.

L. Baudouin, E. Cerpa, E. Crépeau, and A. Mercado, Lipschitz stability in an inverse problem for the Kuramoto???Sivashinsky equation, Applicable Analysis, vol.44, issue.2, pp.2084-2102, 2013.
DOI : 10.1137/S0363012904439696

URL : https://hal.archives-ouvertes.fr/hal-00510506

B. Robu, L. Baudouin, and C. , Active vibration control of a fluid/plate system using a pole placement controller, International Journal of Control, vol.18, issue.6, pp.684-694, 2012.
DOI : 10.1016/j.conengprac.2004.12.018

URL : https://hal.archives-ouvertes.fr/hal-00584586

B. Robu, L. Baudouin, and C. Prieur, Simultaneous <formula formulatype="inline"><tex Notation="TeX">$H_\infty$</tex> </formula> Vibration Control of Fluid/Plate System via Reduced-Order Controller, IEEE Transactions on Control Systems Technology, vol.20, issue.3, pp.700-711, 2012.
DOI : 10.1109/TCST.2011.2144984

B. Robu, L. Baudouin, and C. , Contr??le actif des vibrations dans un syst??me fluide/structure, Journal Europ??en des Syst??mes Automatis??s, vol.45, issue.7-10, pp.495-511, 2012.
DOI : 10.3166/jesa.45.495-511

URL : https://hal.archives-ouvertes.fr/hal-00584310/document

L. Baudouin and E. Crépeau, Global Carleman estimate on a network for the wave equation and application to an inverse problem, Mathematical Control and Related Fields, vol.1, issue.3, pp.307-330, 2011.
DOI : 10.3934/mcrf.2011.1.307

URL : https://hal.archives-ouvertes.fr/hal-00576296

L. Baudouin and J. Salomon, Analysis of the ???Toolkit??? Method for??the??Time-Dependent Schr??dinger Equation, Journal of Scientific Computing, vol.123, issue.14, pp.111-136, 2011.
DOI : 10.1007/s10915-010-9450-6

L. Baudouin and A. , Mercado -An inverse problem for Schrödinger equations with discontinuous main coefficient, Applicable Analysis, vol.87, pp.10-11, 2008.

L. Baudouin, C. Prieur, and F. Guignard, Robust control of a bimorph mirror for adaptive optics systems, Applied Optics, vol.47, issue.20, pp.3637-3645, 2008.
DOI : 10.1364/AO.47.003637

L. Baudouin and J. , Salomon -Constructive solutions of a bilinear control problem for a Schrödinger equation , Systems and Control Letters, pp.453-464, 2008.

L. Baudouin and A. Mercado, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem, Inverse Problems, vol.23, issue.1, pp.257-278, 2007.
DOI : 10.1088/0266-5611/23/1/014

URL : https://hal.archives-ouvertes.fr/hal-00271925

L. Baudouin, O. Kavian, and J. , Regularity for a Schr??dinger equation with singular potentials and application to bilinear optimal control, Journal of Differential Equations, vol.216, issue.1, pp.188-222, 2005.
DOI : 10.1016/j.jde.2005.04.006

L. Baudouin and J. , Uniqueness and stability in an inverse problem for the Schr??dinger equation, Inverse Problems, vol.18, issue.6, pp.1537-1554, 2002.
DOI : 10.1088/0266-5611/18/6/307

L. Baudouin, S. Neild, and A. , Rondepierre et D. Wagg -Robust measurement feedback control of an inclined cable. 1st IFAC workshop on control of systems modeled by partial differential equations, 2013.

L. Baudouin and S. Neild, Wagg -H ? -control with state feedback of an inclined cable, European Control Conference 2013, 2013.

B. Robu, V. Pommier-budinger, L. Baudouin, and C. Prieur, Arzelier -Simultaneous H ? vibration control of fluid/plate system via reduced-order controller, 49th IEEE Conference on Decision and Control, 2010.

B. Robu, L. Baudouin, and C. , Prieur -A controlled distributed parameter model for a fluid-flexible structure system : numerical simulations and experiment validations, 48th IEEE Conference on Decision and Control, 2009.

L. Baudouin, C. Prieur, and F. Guignard, Arzelier -Control of adaptive optics system : an H ? approach, 17th IFAC world congress, 2008.

L. Baudouin and C. Prieur, Arzelier -Robust control of a bimorph mirror for adaptive optics system, 17th International Symposium on Mathematical Theory of Networks and Systems, 2006.

L. Baudouin and J. , Constructive solution of a bilinear control problem, Comptes Rendus Mathematique, vol.342, issue.2, pp.119-124, 2006.
DOI : 10.1016/j.crma.2005.11.021

URL : https://hal.archives-ouvertes.fr/hal-00271940

L. Baudouin and J. , D??termination du potentiel dans l'??quation de Schr??dinger ?? partir de mesures sur une partie du bord, Comptes Rendus Mathematique, vol.334, issue.11, pp.967-972, 2002.
DOI : 10.1016/S1631-073X(02)02391-9

]. F. Bibliographieakbgbdt11, A. Ammar-khodja, M. Benabdallah, L. González-burgos, and . De-teresa, Recent results on the controllability of linear coupled parabolic problems : a survey, Math. Control Relat. Fields, vol.1, issue.3, pp.267-306, 2011.

G. [. Avdonin, V. Leugering, and . Mikhaylov, On an inverse problem for tree-like networks of elastic strings, ZAMM, vol.21, issue.1, pp.136-150, 2010.
DOI : 10.1002/zamm.200900295

L. [. Alessandrini, E. Rondi, S. Rosset, and . Vessella, The stability for the Cauchy problem for elliptic equations Balas, Active control of flexible systems, Inverse Problems J. Optim. Theory Appl, vol.25, issue.25 3, pp.47-415, 1978.

]. V. Bar95 and . Barbu, H ? boundary control with state feedback : the hyperbolic case, SIAM J. Control Optim, vol.33, issue.3, pp.684-701, 1995.

P. [. Bensoussan and . Bernhard, On the standard problem of H ? -optimal control for infinitedimensional systems, Identification and control in systems governed by partial differential equations, SIAM, pp.117-140, 1992.

R. [. Bontsema and . Curtain, A note on spillover and robustness for flexible systems, IEEE Transactions on Automatic Control, vol.33, issue.6, pp.567-569, 1988.
DOI : 10.1109/9.1253

M. [. Bellassoued and . Choulli, Logarithmic stability in the dynamical inverse problem for the Schr??dinger equation by arbitrary boundary observation, Journal de Math??matiques Pures et Appliqu??es, vol.91, issue.3, pp.233-255, 2009.
DOI : 10.1016/j.matpur.2008.06.002

Y. [. Benabdallah, J. L. Dermenjian, and . Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, Journal of Mathematical Analysis and Applications, vol.336, issue.2, pp.865-887, 2007.
DOI : 10.1016/j.jmaa.2007.03.024

URL : https://hal.archives-ouvertes.fr/hal-00017486

]. M. Bel04a and . Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, vol.20, issue.3, pp.647-672, 2004.

]. M. Bel04b and . Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation, Inverse Problems, vol.20, issue.4, pp.1033-1052, 2004.

A. Benabdallah, P. Gaitan, and J. L. Rousseau, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, Appl. Anal. SIAM J. Control Optim, vol.83, issue.46 5, pp.983-1014, 2004.

]. F. Bhlr10a, F. Boyer, J. L. Hubert, and . Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, J. Math. Pures Appl, vol.93, issue.9 3, pp.240-276, 2010.

S. J. Applications, Uniform controllability properties for space/time-discretized parabolic equations, Control Optim. Numer. Math, vol.48, issue.118 4, pp.5357-5397, 2010.

M. [. Bukhge?-im and . Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, vol.260, issue.2, pp.269-272, 1981.

L. Beilina and M. V. Klibanov, A Globally Convergent Numerical Method for a Coefficient Inverse Problem, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.478-509, 2008.
DOI : 10.1137/070711414

]. R. Ble79 and . Blevins, Formulas for natural frequency and mode shape, 1079.

J. [. Boyer and . Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, p.46, 2013.
DOI : 10.1016/j.anihpc.2013.07.011

URL : https://hal.archives-ouvertes.fr/hal-00724766

G. [. Bukhgeim and . Uhlmann, RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA, Communications in Partial Differential Equations, vol.1, issue.3-4, pp.3-4, 2002.
DOI : 10.1081/PDE-120002868

M. [. Bellassoued and . Yamamoto, Inverse source problem for a transmission problem for a parabolic equation, J. Inverse Ill-Posed Probl, pp.47-56, 2006.

]. T. Car39 and . Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths, Ark. Mat., Astr. Fys. J. Eur. Math. Soc. (JEMS), vol.26, issue.6 3, pp.367-398, 1939.

E. [. Cerpa and . Crépeau, Boundary controllability for the nonlinear Korteweg???de Vries equation on any critical domain, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.2, pp.457-475, 2009.
DOI : 10.1016/j.anihpc.2007.11.003

URL : https://hal.archives-ouvertes.fr/hal-00678473

M. [. Cardoulis, P. Cristofol, and . Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl, pp.127-146, 2008.

]. Cdnb07, B. Coron, G. Novel, and . Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, vol.52, issue.1, pp.2-11, 2007.

]. E. Cer07 and . Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim, vol.46, issue.3, pp.877-899, 2007.

E. [. Cîndae, A. Fernández-cara, and . Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, ESAIM: Control, Optimisation and Calculus of Variations, vol.19, issue.4, pp.1076-1108, 2013.
DOI : 10.1051/cocv/2013046

P. [. Cardoulis and . Gaitan, Simultaneous identification of the diffusion coefficient and the potential for the Schr??dinger operator with only one observation, Inverse Problems, vol.26, issue.3, pp.35012-35022, 2010.
DOI : 10.1088/0266-5611/26/3/035012

J. [. Cristofol, F. Garnier, L. Hamel, and . Roques, Uniqueness from pointwise observations in a multi-parameter inverse problem, Communications on Pure and Applied Analysis, vol.11, issue.1, pp.173-188, 2012.
DOI : 10.3934/cpaa.2012.11.173

URL : https://hal.archives-ouvertes.fr/hal-00596238

A. [. Cazenave and . Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 1998.

A. [. Cerpa and . Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto???Sivashinsky equation, Journal of Differential Equations, vol.250, issue.4, pp.2024-2044, 2011.
DOI : 10.1016/j.jde.2010.12.015

C. [. Crépeau and . Prieur, Control of a clamped-free beam by a piezoelectric actuator, ESAIM: Control, Optimisation and Calculus of Variations, vol.12, issue.3, pp.545-563, 2006.
DOI : 10.1051/cocv:2006008

H. [. Correia, C. Raynaud, J. Kulcsár, and . Conan, Minimum-Variance Control for Astronomical Adaptive Optics with Resonant Deformable Mirrors, European Journal of Control, vol.17, issue.3, pp.222-236, 2011.
DOI : 10.3166/ejc.17.222-236

J. Conan, G. Rousset, and P. Madec, Wave-front temporal spectra in high-resolution imaging through turbulence, Journal of the Optical Society of America A, vol.12, issue.7, pp.1559-1570, 1995.
DOI : 10.1364/JOSAA.12.001559

M. [. Crépeau and . Sorine, A reduced model of pulsatile flow in an arterial compartment, Chaos, Solitons & Fractals, vol.34, issue.2, pp.594-605, 2007.
DOI : 10.1016/j.chaos.2006.03.096

M. [. Cipolatti and . Yamamoto, An inverse problem for a wave equation with arbitrary initial values and a finite time of observations Concentration and lack of observability of waves in highly heterogeneous media, Inverse Problems Arch. Ration. Mech. Anal, vol.27, issue.9 1, pp.164-203, 2002.

]. R. Dat70 and . Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl, vol.32, pp.610-616, 1970.

A. [. Doubova and . Osses, Rotated weights in global Carleman estimates applied to an inverse problem for the wave equation, Inverse Problems, vol.22, issue.1, pp.265-296, 2006.
DOI : 10.1088/0266-5611/22/1/015

]. F. Dod00 and . Dodge, The new "dynamic behavior of liquids in moving containers, Southwest Research Institute, 2000.

A. [. Doubova, J. Osses, G. E. Puel, F. G. Dullerud, and . Paganini, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim A course in robust control theory : a convex approach, A tribute to J. L. Lions. [DP00], pp.621-661, 2000.

E. [. Dáger and . Zuazua, Wave propagation, observation and control in 1-d flexible multistructures, Mathématiques & Applications, vol.50, 1996.

[. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Transactions on Automatic Control, vol.46, issue.9, pp.1384-1400, 2001.
DOI : 10.1109/9.948466

E. [. Ervedoza and . Zuazua, The wave equation : Control and numerics, Control of Partial Differential Equations, Lecture Notes in Mathematics, CIME Subseries, 2011.

A. [. Fridman and . Blighovsky, Robust sampled-data control of a class of semilinear parabolic systems, Automatica, vol.48, issue.5, pp.826-836, 2012.
DOI : 10.1016/j.automatica.2012.02.006

S. [. Fernández-cara and . Guerrero, Global Carleman Inequalities for Parabolic Systems and Applications to Controllability, SIAM Journal on Control and Optimization, vol.45, issue.4, pp.1399-1446, 2006.
DOI : 10.1137/S0363012904439696

]. Fer11 and . Ferreira, Carleman estimates and applications to inverse problems and unique continuation, HdR, Université Paris 13, Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, 1996.

R. [. Fedrigo, D. Muradore, and . Zilio, High performance adaptive optics system with fine tip/tilt control, Control Engineering Practice, vol.17, issue.1, pp.122-135, 2009.
DOI : 10.1016/j.conengprac.2008.05.015

Y. [. Fridman and . Orlov, Exponential stability of linear distributed parameter systems with time-varying delays, Automatica, vol.45, issue.1, pp.194-201, 2009.
DOI : 10.1016/j.automatica.2008.06.006

A. Gonzalez-buelga, S. A. Neild, D. J. Wagg, and J. H. Macdonald, Modal stability of inclined cables subjected to vertical support excitation, Journal of Sound and Vibration, vol.318, issue.3, pp.565-579, 2008.
DOI : 10.1016/j.jsv.2008.04.031

J. [. Glover and . Doyle, State-space formulae for all stabilizing controllers that satisfy an H???-norm bound and relations to relations to risk sensitivity, Systems & Control Letters, vol.11, issue.3, pp.167-172, 1988.
DOI : 10.1016/0167-6911(88)90055-2

O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, PAMM, vol.2, issue.10??????12, pp.61-100, 2008.
DOI : 10.1002/pamm.200701006

URL : https://hal.archives-ouvertes.fr/hal-00139614

D. [. Gumussoy, M. Henrion, M. L. Millstone, and . Overton, Multiobjective Robust Control with HIFOO 2.0, Proceedings of the IFAC Symposium on Robust Control Design, 1996.
DOI : 10.3182/20090616-3-IL-2002.00025

URL : https://hal.archives-ouvertes.fr/hal-00385733

]. P. Guz13 and . Guzman, Lipschitz stability in an inverse problem for the main coefficient of a kuramotosivashinsky type equation, J. Math. Anal. Appl, vol.408, issue.1, pp.275-290, 2013.

]. J. Had53 and . Hadamard, Lectures on Cauchy's problem in linear partial differential equations, 1953.

]. G. Hai12 and . Haine, Observateurs en dimension infinie. application à l'étude de quelques problèmes inverse Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I Math, vol.302, issue.12, pp.443-446, 1986.

]. L. Hör63 and . Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Bd, 1963.

K. [. Haine and . Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, Numerische Mathematik, vol.47, issue.2, pp.307-343, 2012.
DOI : 10.1007/s00211-011-0408-x

URL : https://hal.archives-ouvertes.fr/hal-00730512

V. [. Imanuvilov, M. Isakov, and . Yamamoto, New realization of the pseudoconvexity and its application to an inverse problem, Applicable Analysis, vol.268, issue.5, pp.637-652, 2009.
DOI : 10.1137/S0363012997331482

K. [. Ito and . Morris, An Approximation Theory of Solutions to Operator Riccati Equations for $H^\infty$ Control, SIAM Journal on Control and Optimization, vol.36, issue.1, pp.82-99, 1998.
DOI : 10.1137/S0363012994274422

A. [. Ignat, L. Pazoto, and . Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, and MM.arius Tucsnak, A time reversal based algorithm for solving initial data inverse problems, Discrete Contin, Inverse Problems Dyn. Syst. Ser. S, vol.28, issue.4 3, pp.641-652, 2011.

]. V. Isa06 and . Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences, vol.127, 2006.

Z. [. Iqbal, F. Wu, and . Ben-amara, Mixed-Sensitivity <formula formulatype="inline"><tex Notation="TeX">$H_\infty$</tex></formula> Control of Magnetic-Fluid-Deformable Mirrors, IEEE/ASME Transactions on Mechatronics, vol.15, issue.4, pp.548-556, 2010.
DOI : 10.1109/TMECH.2010.2051452

M. [. Imanuvilov and . Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, vol.14, issue.5, pp.1229-1245, 1998.
DOI : 10.1088/0266-5611/14/5/009

E. [. Infante and . Zuazua, Boundary observability for the space semi-discretizations of the 1 ??? d wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.2, pp.407-438, 1999.
DOI : 10.1051/m2an:1999123

H. [. Iftime, R. F. Zwart, and . Curtain, A representation of all solutions of the control algebraic Riccati equation for infinite-dimensional systems, International Journal of Control, vol.63, issue.7, pp.505-520, 2005.
DOI : 10.1137/S0363012995285417

M. V. Klibanov and L. Beilina, Approximate global convergence and adaptivity for coefficient inverse problems Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities, Appl. Anal, vol.50, issue.12, pp.93-102, 1993.

]. M. Kli92 and . Klibanov, Inverse problems and Carleman estimates, Inverse Problems, vol.8, issue.4, pp.575-596, 1992.

C. Kulcsár, H. Raynaud, C. Petit, J. Conan, and P. , Optimal control, observers and integrators in adaptive optics, Optics Express, vol.14, issue.17, pp.7464-7476, 2006.
DOI : 10.1364/OE.14.007464

A. [. Klibanov and . Timonov, Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series Lipschitz stability of an inverse problem for an acoustic equation, VSP Appl. Anal, issue.5, pp.85-515, 2004.

]. A. Lei69 and . Leissa, Vibration of plates, Scientific and Technical Information Division, NASA, 1969.

E. [. Liu and . Fridman, Wirtinger???s inequality and Lyapunov-based sampled-data stabilization, Automatica, vol.48, issue.1, pp.102-108, 2012.
DOI : 10.1016/j.automatica.2011.09.029

[. Luo, O. Guo, and B. , Stability and stabilization of infinite dimensional systems with applications, Communications and Control Engineering Series, 1999.

G. [. Lagnese, E. J. Leugering, and . Schmidt, Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. tome 1. contrôlabilité exacte Modeling, analysis and control of dynamic elastic multi-link structures, Systems & Control : Foundations & Applications, 1988.

J. [. Lasiecka, R. Lions, and . Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl, vol.65, issue.9 2, pp.149-192, 1986.

[. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 1972.

V. [. Losse, L. Mehrmann, T. Poppe, and . Reis, The Modified Optimal $\mathcal{H}_\infty$ Control Problem for Descriptor Systems, SIAM Journal on Control and Optimization, vol.47, issue.6, pp.2795-2811, 2009.
DOI : 10.1137/070710093

C. [. Lenczner and . Prieur, Asymptotic model of an active mirror, Int. J. Tomogr. Stat, vol.5, issue.W07, pp.68-72, 2007.

L. [. Lebeau and . Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math, J, vol.86, issue.3, pp.465-491, 1997.
DOI : 10.1215/s0012-7094-97-08614-2

[. Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.18, issue.3, pp.712-747, 2012.
DOI : 10.1051/cocv/2011168

URL : https://hal.archives-ouvertes.fr/hal-00351736

J. , L. Rousseau, and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Ration. Mech. Anal, vol.195, issue.3, pp.953-990, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00193885

R. [. Lasiecka, P. Triggiani, and . Yao, Inverse/Observability Estimates for Second-Order Hyperbolic Equations with Variable Coefficients, Mac94] E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim, pp.245-336, 1994.
DOI : 10.1006/jmaa.1999.6348

P. [. Macki, P. Nistri, and . Zecca, Mathematical Models for Hysteresis, SIAM Review, vol.35, issue.1, pp.94-123, 1993.
DOI : 10.1137/1035005

]. K. Mor01 and . Morris, H ? -output feedback of infinite-dimensional systems via approximation, Systems Control Lett, vol.44, issue.3, pp.211-217, 2001.

A. [. Mercado, L. Osses, and . Rosier, Inverse problems for the Schr??dinger equation via Carleman inequalities with degenerate weights, Inverse Problems, vol.24, issue.1, pp.15017-15035, 2008.
DOI : 10.1088/0266-5611/24/1/015017

]. K. Mor10 and . Morris, Control of systems governed by partial differential equations The Control Handbook, Electrical Engineering HandbookMZ02] F. Macià and E. Zuazua, On the lack of observability for wave equations : a Gaussian beam approach, pp.32-33, 2002.

]. R. Nol76 and . Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am, vol.66, issue.3, pp.207-211, 1976.

J. [. Nguyen and . Raymond, Boundary Stabilization of the Navier--Stokes Equations in the Case of Mixed Boundary Conditions, SIAM Journal on Control and Optimization, vol.53, issue.5, 2013.
DOI : 10.1137/13091364X

]. A. Oss01 and . Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control, SIAM J. Control Optim, vol.40, issue.3, pp.777-800, 2001.

D. [. Paschall and . Anderson, Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements, Applied Optics, vol.32, issue.31, pp.6347-6358, 1993.
DOI : 10.1364/AO.32.006347

]. A. Paz83 and . Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.

]. C. Pgdsjt13, . Prieur, S. Gomes, S. Jr, and . Tarbouriech, Wave and beam equation with saturated input, 2013.

]. K. Phu10 and . Phung, Waves, damped wave and observation, Some problems on nonlinear hyperbolic equations and applications, Contemp. Appl. Math. CAM, vol.15, pp.386-412, 2010.

[. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, vol.12, issue.6, pp.995-1002, 1996.
DOI : 10.1088/0266-5611/12/6/013

]. [-ray10 and . Raymond, Feedback stabilization of a fluid-structure model, SIAM J. Control Optim, vol.48, issue.8, pp.5398-5443, 2010.

]. B. Le-roux, J. Conan, C. Kulcsár, H. Raynaud, L. M. Mugnier et al., Optimal control law for classical and multiconjugate adaptive optics, Journal of the Optical Society of America A, vol.21, issue.7, pp.1261-1276, 2004.
DOI : 10.1364/JOSAA.21.001261

]. L. Rob95 and . Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Anal, pp.95-115, 1995.

B. Robu, Active vibration control of a fluid/plate system, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00584586

]. L. Ros97 and . Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var, vol.2, pp.33-55, 1997.

R. [. Smrz, A. Bastaits, and . Preumont, Active damping of the camera support mast of a cherenkov gamma-ray telescope, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, pp.44-52, 2011.

]. E. Sch92 and . Schmidt, On the modelling and exact controllability of networks of vibrating strings, SIAM J. Control Optim, vol.30, issue.1, pp.229-245, 1992.

E. [. Smyshlyaev, M. Cerpa, and . Krstic, Boundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping, SIAM Journal on Control and Optimization, vol.48, issue.6, pp.4014-4031, 2010.
DOI : 10.1137/080742646

]. A. Sg13a, F. Seuret, and . Gouaisbaut, Hierarchy of lmi-conditions for the stability of time delay systems, Automatica, 2013.

]. A. Sg13b, F. Seuret, and . Gouaisbaut, Wirtinger-based integral inequality : Application to time-delay systems, Automatica, vol.49, issue.9, pp.2860-2866, 2013.

F. [. Seuret, Y. Gouaisbaut, and . Ariba, Bessel inequality for robust stability analysis of timedelay system, Proceedings of the IEEE Conference on Decision and Control, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860375

F. [. Seuret, E. Gouaisbaut, and . Fridman, Stability of systems with fast-varying delay using improved Wirtinger's inequality, 52nd IEEE Conference on Decision and Control, 2013.
DOI : 10.1109/CDC.2013.6760004

C. [. Seuret, S. Prieur, L. Tarbouriech, and . Zaccarian, Event-triggered sampling for linear closed-loop systems with plant input saturation, Symposium on Nonlinear Control Systems (NOLCOS), 2013.

]. J. Sto57 and . Stoker, Water waves : the mathematical theory with applications, 1957.

G. [. Sylvester and . Uhlmann, A Global Uniqueness Theorem for an Inverse Boundary Value Problem, The Annals of Mathematics, vol.125, issue.1, pp.153-169, 1987.
DOI : 10.2307/1971291

G. [. Stefanov and . Uhlmann, Recovery of a source term or a speed with one measurement and applications, Transactions of the American Mathematical Society, vol.365, issue.11, pp.5737-5758, 2013.
DOI : 10.1090/S0002-9947-2013-05703-0

]. P. Tab07 and . Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Transactions on Automatic Control, vol.52, issue.9, pp.1680-1685, 2007.

]. G. Tad90 and . Tadmor, Worst-case design in the time domain : the maximum principle and the standard H ? problem, Math. Control Signals Systems, vol.3, issue.4, pp.301-324, 1990.

]. D. Tat96 and . Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl, vol.75, issue.9 4, pp.367-408, 1996.

G. [. Tarbouriech, J. M. Garcia, I. Gomes-da-silva-jr, and . Queinnec, Stability and stabilization of linear systems with saturating actuators Stability analysis and stabilization of systems presenting nested saturations, TPGdS06] S. Tarbouriech, C. Prieur, and JM Gomes da Silva, pp.51-1364, 2006.

]. S. Tpgdsj05, C. Tarbouriech, J. Prieur, I. Gomes-da-silva-jr, T. Queinnec et al., An anti-windup strategy for a flexible cantilever beam Ultimate bounded stability and stabilization of linear systems interconnected with generalized saturated functions, Proc. of the 16th IFAC World Congress, pp.1473-1481, 2005.

M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkäuser Advanced Texts, vol.XI, 2009.
DOI : 10.1007/978-3-7643-8994-9

URL : https://hal.archives-ouvertes.fr/hal-00590673

M. [. Visco-comandini, M. Mirrahimi, and . Sorine, Some inverse scattering problems on star-shaped graphs, Journal of Mathematical Analysis and Applications, vol.378, issue.1, pp.343-358, 1993.
DOI : 10.1016/j.jmaa.2010.12.047

URL : https://hal.archives-ouvertes.fr/inria-00548917

]. B. Van-keulen, M. Peters, and R. Curtain, H???-control with state-feedback, J. Math. Systems Estim. Control, vol.3, issue.1, pp.1-39, 1993.
DOI : 10.1007/978-1-4612-0347-6_4

E. [. Valein and . Zuazua, Stabilization of the Wave Equation on 1-d Networks, SIAM Journal on Control and Optimization, vol.48, issue.4, pp.2771-2797, 2009.
DOI : 10.1137/080733590

S. [. Wagg and . Neild, Nonlinear vibration with control : For flexible and adaptive structures, Solid mechanics and its applications, 2010.

M. [. Yuan and . Yamamoto, Lipschitz stability in the determination of the principal part of a parabolic equation, ESAIM: Control, Optimisation and Calculus of Variations, vol.15, issue.3, pp.525-554, 2009.
DOI : 10.1051/cocv:2008043

]. X. Zha00 and . Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Control Optim, vol.39, issue.3, pp.812-834, 2000.

I. [. Torres-zúñiga and A. Queinnec, Observer-based output feedback linearizing control strategy for a nitrification???denitrification biofilter, Chemical Engineering Journal, vol.191, issue.0, pp.243-255, 2012.
DOI : 10.1016/j.cej.2012.03.011

A. [. Zaccarian and . Teel, Modern anti-windup synthesis, 2011.
DOI : 10.1515/9781400839025

]. E. Zua05 and . Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev, vol.47, issue.2, pp.197-243, 2005.