N. Sharon and H. Lis, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, vol.14, issue.11, pp.53-62, 2004.
DOI : 10.1093/glycob/cwh122

A. Varki, Biological roles of oligosaccharides: all of the theories are correct, Glycobiology, vol.3, issue.2, pp.97-130, 1993.
DOI : 10.1093/glycob/3.2.97

N. Sharon, Lectins: Carbohydrate-specific Reagents and Biological Recognition Molecules, Journal of Biological Chemistry, vol.282, issue.5, pp.2753-2764, 2007.
DOI : 10.1074/JBC.X600004200

M. Almant, Conception de ligands à charpente saccharidique pour le ciblage multivalent et la vectorisation, thèse de doctorat en chimie organique, 2010.

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Accounts of Chemical Research, vol.28, issue.8, pp.28-321, 1995.
DOI : 10.1021/ar00056a001

S. G. Gouin, Multimeric Lactoside ???Click Clusters??? as Tools to Investigate the Effect of Linker Length in Specific Interactions with Peanut Lectin, Galectin-1, and -3, ChemBioChem, vol.18, issue.10, pp.11-1430, 2010.
DOI : 10.1002/cbic.201000167

G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, pp.930-933, 1986.

G. Kada, F. Kienberger, and P. Hinterdorfer, Atomic force microscopy in bionanotechnology, Nano Today, vol.3, issue.1-2, pp.12-19, 2008.
DOI : 10.1016/S1748-0132(08)70011-2

M. Almant and A. Mastouri, Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin, Chemistry - A European Journal, vol.18, issue.2, pp.729-738, 2013.
DOI : 10.1002/chem.201202319

M. Mammen, S. Choi, and G. M. Whitesides, Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angewandte Chemie International Edition, issue.20, pp.37-2754, 1998.

T. Pritchett and J. Paulson, Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin, Journal of Biological Chemistry, issue.17, pp.264-9850, 1989.

R. T. Lee, Ligand-binding characteristics of rat serum-type mannose-binding protein (MBP-A) Homology of binding site architecture with mammalian and chicken hepatic lectins, Journal of Biological Chemistry, issue.8, pp.266-4810, 1991.

J. J. Lundquist, The Cluster Glycoside Effect, Chemical Reviews, vol.102, issue.2, pp.555-578, 2002.
DOI : 10.1021/cr000418f

W. P. Jencks, On the attribution and additivity of binding energies, Proceedings of the National Academy of Sciences, pp.4046-4050, 1981.
DOI : 10.1073/pnas.78.7.4046

E. Fan, High-affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design, Journal of the American Chemical Society, issue.11, pp.122-2663, 2000.

C. Heldin, Dimerization of cell surface receptors in signal transduction, Cell, vol.80, issue.2, pp.213-223, 1995.
DOI : 10.1016/0092-8674(95)90404-2

M. Gómez-garcía, Probing Secondary Carbohydrate???Protein Interactions with Highly Dense Cyclodextrin-Centered Heteroglycoclusters:?? The Heterocluster Effect, Journal of the American Chemical Society, vol.127, issue.22, pp.127-7970, 2005.
DOI : 10.1021/ja050934t

T. K. Dam, Binding Studies of ??-GalNAc-specific Lectins to the ??-GalNAc (Tn-antigen) Form of Porcine Submaxillary Mucin and Its Smaller Fragments, Journal of Biological Chemistry, vol.282, issue.38, pp.282-28256, 2007.
DOI : 10.1074/jbc.M704677200

S. Cecioni, Approche multivalente des interactions saccharides-lectines: synthèse de glycoclusters et analyse de la reconnaissance biomoléculaire Université Claude Bernard-Lyon I. 21, Clusters, bundles, arrays and lattices: novel mechanisms for lectin?saccharide-mediated cellular interactions, Thèse de doctorat en chimie, pp.12-616, 2002.

B. N. Stillman, Galectin-3 and Galectin-1 Bind Distinct Cell Surface Glycoprotein Receptors to Induce T Cell Death, The Journal of Immunology, vol.176, issue.2, pp.778-789, 2006.
DOI : 10.4049/jimmunol.176.2.778

G. Ercolani, Assessment of Cooperativity in Self-Assembly, Journal of the American Chemical Society, vol.125, issue.51, pp.16097-16103, 2003.
DOI : 10.1021/ja038396c

T. K. Dam and C. F. Brewer, Thermodynamic Studies of Lectin???Carbohydrate Interactions by Isothermal Titration Calorimetry, Chemical Reviews, vol.102, issue.2, pp.387-430, 2002.
DOI : 10.1021/cr000401x

T. K. Dam, T. A. Gerken, and C. F. Brewer, Thermodynamics of Multivalent Carbohydrate???Lectin Cross-Linking Interactions: Importance of Entropy in the Bind and Jump Mechanism, Biochemistry, vol.48, issue.18, pp.48-3822, 2009.
DOI : 10.1021/bi9002919

C. R. Sanders, Biomolecular Ligand-Receptor Binding Studies: Theory, Practice, and Analysis, 2010.

T. Ando, A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences, pp.98-12468, 2001.

E. Donnelly and I. Goldstein, Glutaraldehyde-insolubilized concanavalin A: an adsorbent for the specific isolation of polysaccharides and glycoproteins, Biochemical Journal, vol.118, issue.4, pp.679-680, 1970.
DOI : 10.1042/bj1180679

E. A. Merritt, Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide, Protein Science, vol.155, issue.2, pp.166-175, 1994.
DOI : 10.1002/pro.5560030202

I. J. Goldstein and R. Poretz, Isolation, physicochemical characterization, and carbohydratebinding specificity of lectins. The lectins: properties, functions and applications in biology and medicine, pp.33-248, 1986.

A. Imberty, Structures of the lectins from< i> Pseudomonas aeruginosa</i>: insights into the molecular basis for host glycan recognition. Microbes and Infection, pp.221-228, 2004.

C. R. Bertozzi and L. L. Kiessling, Chemical Glycobiology, Science, vol.291, issue.5512, pp.291-2357, 2001.
DOI : 10.1126/science.1059820

R. Barkai-golan, D. Mirelman, and N. Sharon, Studies on growth inhibition by lectins of Penicillia and Aspergilli. Archives of microbiology, pp.119-124, 1978.

W. J. Peumans and E. Van-damme, Lectins as Plant Defense Proteins, Plant Physiology, vol.109, issue.2, pp.347-352, 1995.
DOI : 10.1104/pp.109.2.347

J. W. Kijne, M. A. Bauchrowitz, and C. L. Diaz, Root Lectins and Rhizobia, Plant Physiology, vol.115, issue.3, p.869, 1997.
DOI : 10.1104/pp.115.3.869

M. Bevilacqua, Selectins: A family of adhesion receptors, Cell, vol.67, issue.2, pp.233-233, 1991.
DOI : 10.1016/0092-8674(91)90174-W

E. Töpfer-petersen, Spermadhesins: A new protein family. Facts, hypotheses and perspectives, Andrologia, vol.30, issue.4-5, pp.4-5, 1998.
DOI : 10.1111/j.1439-0272.1998.tb01163.x

M. Inbar and L. Sachs, INTERACTION OF THE CARBOHYDRATE-BINDING PROTEIN CONCANAVALIN A WITH NORMAL AND TRANSFORMED CELLS, Proceedings of the National Academy of Sciences, pp.1418-1425, 1969.
DOI : 10.1073/pnas.63.4.1418

G. L. Nicolson, The Interactions of Lectins with Animal Cell Surfaces, Int. Rev. Cytol, vol.39, issue.89, pp.90-190, 1974.
DOI : 10.1016/S0074-7696(08)60939-0

J. Mier and R. Gallo, The purification and properties of human T cell growth factor, The Journal of Immunology, vol.128, issue.3, pp.1122-1127, 1982.

P. Sears and C. H. Wong, Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition, Angewandte Chemie International Edition, issue.16, pp.38-2300, 1999.

H. Feinberg, Multiple Modes of Binding Enhance the Affinity of DC-SIGN for High Mannose N-Linked Glycans Found on Viral Glycoproteins, Journal of Biological Chemistry, vol.282, issue.6, pp.282-4202, 2007.
DOI : 10.1074/jbc.M609689200

N. Sharon, Carbohydrate?Lectin Interactions in Infectious Disease, in Toward Anti-Adhesion Therapy for Microbial Diseases, pp.1-8, 1996.

A. Imberty, E. P. Mitchell, and M. Wimmerová, Structural basis of high-affinity glycan recognition by bacterial and fungal lectins, Current Opinion in Structural Biology, vol.15, issue.5, pp.525-534, 2005.
DOI : 10.1016/j.sbi.2005.08.003

E. A. Merritt and W. Hol, AB5 toxins, Current Opinion in Structural Biology, vol.5, issue.2, pp.165-171, 1995.
DOI : 10.1016/0959-440X(95)80071-9

G. E. Soto and S. J. Hultgren, Bacterial adhesins: common themes and variations in architecture and assembly, Journal of bacteriology, vol.181, issue.4, pp.1059-1071, 1999.

M. Nishiyama, Structural basis of chaperone?subunit complex recognition by the type 1 pilus assembly platform FimD. The EMBO journal, pp.24-2075, 2005.

K. A. Kline, A tale of two pili: assembly and function of pili in bacteria, Trends in Microbiology, vol.18, issue.5, pp.224-232, 2010.
DOI : 10.1016/j.tim.2010.03.002

T. M. Hooton, A Prospective Study of Risk Factors for Symptomatic Urinary Tract Infection in Young Women, New England Journal of Medicine, vol.335, issue.7, pp.335-468, 1996.
DOI : 10.1056/NEJM199608153350703

L. Cegelski, The biology and future prospects of antivirulence therapies, Nature Reviews Microbiology, vol.92, issue.1, pp.17-27, 2008.
DOI : 10.1038/nrmicro1818

G. Zhou, Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding, Journal of cell science, issue.22, pp.114-4095, 2001.

I. U. Mysorekar and S. J. Hultgren, Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract, Proceedings of the National Academy of Sciences, pp.14170-14175, 2006.
DOI : 10.1073/pnas.0602136103

A. Wellens, Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH???Oligomannose-3 Complex, PLoS ONE, vol.165, issue.4, p.2040, 2008.
DOI : 10.1371/journal.pone.0002040.s002

C. H. Jones, FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae., Proceedings of the National Academy of Sciences, pp.92-2081, 1995.
DOI : 10.1073/pnas.92.6.2081

C. S. Hung, Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection, Molecular Microbiology, vol.93, issue.4, pp.903-915, 2002.
DOI : 10.1046/j.1365-2958.2002.02915.x

S. L. Chen, Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding, Proceedings of the National Academy of Sciences, pp.106-22439, 2009.
DOI : 10.1073/pnas.0902179106

J. D. Schilling, M. A. Mulvey, and S. J. Hultgren, Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections, Journal of Infectious Diseases, pp.183-219, 2001.

N. Sharon, Bacterial lectins, cell-cell recognition and infectious disease, FEBS Letters, vol.54, issue.2, pp.145-157, 1987.
DOI : 10.1016/0014-5793(87)80654-3

J. Bouckaert, The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Molecular microbiology, pp.61-1556, 2006.

M. J. Duncan, The Distinct Binding Specificities Exhibited by Enterobacterial Type 1 Fimbriae Are Determined by Their Fimbrial Shafts, Journal of Biological Chemistry, vol.280, issue.45, pp.280-37707, 2005.
DOI : 10.1074/jbc.M501249200

W. E. Thomas, Bacterial Adhesion to Target Cells Enhanced by Shear Force, Cell, vol.109, issue.7, pp.913-923, 2002.
DOI : 10.1016/S0092-8674(02)00796-1

W. E. Thomas, V. Vogel, and E. Sokurenko, Biophysics of Catch Bonds, Annual Review of Biophysics, vol.37, issue.1, pp.399-416, 2008.
DOI : 10.1146/annurev.biophys.37.032807.125804

O. Yakovenko, FimH Forms Catch Bonds That Are Enhanced by Mechanical Force Due to Allosteric Regulation, Journal of Biological Chemistry, vol.283, issue.17, pp.283-11596, 2008.
DOI : 10.1074/jbc.M707815200

P. Aprikian, The Bacterial Fimbrial Tip Acts as a Mechanical Force Sensor, PLoS Biology, vol.30, issue.5, p.1000617, 2011.
DOI : 10.1371/journal.pbio.1000617.s011

N. Sharon, Carbohydrates as future anti-adhesion drugs for infectious diseases, BBA)-General Subjects, pp.527-537, 2006.
DOI : 10.1016/j.bbagen.2005.12.008

M. D. Disney, Detection of Bacteria with Carbohydrate-Functionalized Fluorescent Polymers, Journal of the American Chemical Society, vol.126, issue.41, pp.126-13343, 2004.
DOI : 10.1021/ja047936i

D. Sicard, AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters, Chemical Communications, vol.264, issue.33, pp.47-9483, 2011.
DOI : 10.1039/c1cc13097h

URL : https://hal.archives-ouvertes.fr/hal-00619415

J. Bouckaert, Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin, Molecular Microbiology, vol.114, issue.2, pp.441-455, 2005.
DOI : 10.1111/j.1365-2958.2004.04415.x

A. Schierholt, M. Hartmann, and T. K. Lindhorst, Bi- and trivalent glycopeptide mannopyranosides as inhibitors of type 1 fimbriae-mediated bacterial adhesion: variation of valency, aglycon and scaffolding, Carbohydrate Research, vol.346, issue.12, pp.346-1519, 2011.
DOI : 10.1016/j.carres.2011.04.023

O. Schwardt, Design, synthesis and biological evaluation of mannosyl triazoles as FimH antagonists, Bioorganic & Medicinal Chemistry, vol.19, issue.21, pp.6454-6473, 2011.
DOI : 10.1016/j.bmc.2011.08.057

M. Hartmann, Inhibition of bacterial adhesion to live human cells: Activity and cytotoxicity of synthetic mannosides, FEBS Letters, vol.22, issue.10, pp.1459-1465, 2012.
DOI : 10.1016/j.febslet.2012.03.059

S. G. Gouin, Synthetic multimeric heptyl mannosides as potent antiadhesives of uropathogenic Escherichia coli, ChemMedChem, issue.45, pp.749-755, 2009.

D. Deniaud, K. Julienne, and S. G. Gouin, Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands, Org. Biomol. Chem., vol.7, issue.4, pp.966-979, 2011.
DOI : 10.1039/C0OB00389A

M. Almant, Clustering of Escherichia coli Type-1 Fimbrial Adhesins by Using Multimeric Heptyl ??-D-Mannoside Probes with a Carbohydrate Core, Chemistry - A European Journal, vol.36, issue.36, pp.17-10029, 2011.
DOI : 10.1002/chem.201100515

URL : https://hal.archives-ouvertes.fr/hal-00641795

N. Firon, Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells, Infection and immunity, vol.55, issue.2, pp.472-476, 1987.

M. Aronson, Prevention of Colonization of the Urinary Tract of Mice with Escherichia coli by Blocking of Bacterial Adherence with Methyl ??-D-Mannopyranoside, Journal of Infectious Diseases, vol.139, issue.3, pp.329-332, 1979.
DOI : 10.1093/infdis/139.3.329

M. Mouricout, Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis, Infection and immunity, vol.58, issue.1, pp.98-106, 1990.

I. Idänpään-heikkilä, Oligosaccharides Interfere with the Establishment and Progression of Experimental Pneumococcal Pneumonia, The Journal of Infectious Diseases, vol.176, issue.3, pp.704-712, 1997.
DOI : 10.1086/514094

J. V. Mysore, Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound, Gastroenterology, vol.117, issue.6, pp.1316-1325, 1999.
DOI : 10.1016/S0016-5085(99)70282-9

M. Ambrosi, N. R. Cameron, and B. G. Davis, Lectins: tools for the molecular understanding of the glycocode, Organic & Biomolecular Chemistry, vol.33, issue.9, pp.1593-1608, 2005.
DOI : 10.1039/b414350g

R. Lotan, The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea), Journal of Biological Chemistry, issue.21, pp.250-8518, 1975.

M. Pereira, Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydrate research, pp.107-118, 1976.

K. J. Neurohr, Kinetics of binding of methyl .alpha.- and .beta.-D-galactopyranoside to peanut agglutinin: a carbon-13 nuclear magnetic resonance study, Biochemistry, vol.20, issue.12, pp.20-3499, 1981.
DOI : 10.1021/bi00515a030

J. Pratap, The combination of molecular dynamics with crystallography for elucidating protein???ligand interactions: a case study involving peanut lectin complexes with T-antigen and lactose, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.11, pp.57-1584, 2001.
DOI : 10.1107/S0907444901011957

P. Adhikari, Mutational Analysis at Asn-41 in Peanut Agglutinin: A RESIDUE CRITICAL FOR THE BINDING OF THE TUMOR-ASSOCIATED THOMSEN-FRIEDENREICH ANTIGEN, Journal of Biological Chemistry, vol.276, issue.44, pp.40734-40739, 1978.
DOI : 10.1074/jbc.M103040200

M. Decastel, Effect of pH on oligomeric equilibrium and saccharide-binding properties of peanut agglutinin. Archives of biochemistry and biophysics, pp.811-819, 1985.

S. Dev and A. Surolia, Dynamic light scattering study of peanut agglutinin: Size, shape and urea denaturation, Journal of Biosciences, vol.88, issue.5, pp.31-551, 2006.
DOI : 10.1007/BF02708406

K. Neurohr, N. M. Young, and H. H. Mantsch, Determination of the carbohydrate-binding properties of peanut agglutinin by ultraviolet difference spectroscopy, Journal of Biological Chemistry, pp.255-9205, 1980.

R. Banerjee, Conformation, Protein-Carbohydrate Interactions and a Novel Subunit Association in the Refined Structure of Peanut Lectin-Lactose Complex, Journal of Molecular Biology, vol.259, issue.2, pp.281-296, 1996.
DOI : 10.1006/jmbi.1996.0319

V. Srinivas, Legume lectin family, the ???natural mutants of the quaternary state???, provide insights into the relationship between protein stability and oligomerization, BBA)-General Subjects, pp.1527-102, 2001.
DOI : 10.1016/S0304-4165(01)00153-2

P. Rougé, La lectine de l'arachide. Revue Francaise d'Allergologie, pp.281-284, 2010.

K. W. Olsen and R. L. Miller, Crystallization and preliminary X-ray data for peanut agglutinin, FEBS Letters, vol.154, issue.2, pp.303-307, 1982.
DOI : 10.1016/0014-5793(82)80188-9

D. Salunke, Crystallization and preliminary X-ray studies of the anti-T lectin from peanut (Arachis hypogaea), Journal of Molecular Biology, vol.154, issue.1, pp.177-178, 1982.
DOI : 10.1016/0022-2836(82)90425-9

E. J. Zaluzec and M. Z. Zaluzec, Crystallization and preliminary X-ray analysis of peanut agglutinin-N6-benzylaminopurine complex, Journal of Molecular Biology, vol.219, issue.2, pp.151-153, 1991.
DOI : 10.1016/0022-2836(91)90556-L

K. Natchiar and S. , Multivalency in lectins-a crystallographic, modelling and lightscattering study involving peanut lectin and a bivalent ligand, Current science, issue.9, pp.90-1230, 2006.

Y. Reisner, M. Linker-israeli, and N. Sharon, Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin, Cellular Immunology, vol.25, issue.1, pp.129-134, 1976.
DOI : 10.1016/0008-8749(76)90103-9

C. Toumey, Probing the history of nanotechnology, Nature Nanotechnology, vol.56, issue.4, pp.205-206, 2012.
DOI : 10.1038/nnano.2012.47

Y. F. Dufrêne, Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology, Current Opinion in Microbiology, vol.6, issue.3, pp.317-323, 2003.
DOI : 10.1016/S1369-5274(03)00058-4

G. Binnig, Surface studies by scanning tunneling microscopy. Physical review letters, pp.57-61, 1982.

J. Pethica and W. Oliver, Tip Surface Interactions in STM and AFM, Physica Scripta, vol.19, issue.T19A, pp.61-71, 1987.
DOI : 10.1088/0031-8949/1987/T19A/010

U. Landman, W. Luedtke, and A. Nitzan, Dynamics of tip-substrate interactions in atomic force microscopy, Surface Science Letters, vol.210, issue.3, pp.177-184, 1989.

N. A. Burnham and R. J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.4, pp.2906-2913, 1989.
DOI : 10.1116/1.576168

A. Weisenhorn, Forces in atomic force microscopy in air and water, Applied Physics Letters, vol.54, issue.26, pp.2651-2653, 1989.
DOI : 10.1063/1.101024

B. Drake, Imaging crystals, polymers, and processes in water with the atomic force microscope, Science, vol.243, issue.4898, pp.1586-1589, 1989.
DOI : 10.1126/science.2928794

W. Häberle, In situ investigations of single living cells infected by viruses, Ultramicroscopy, vol.42, pp.1161-1167, 1992.

M. Tortonese, R. Barrett, and C. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters, vol.62, issue.8, p.834, 1993.
DOI : 10.1063/1.108593

Q. Zhong, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surface Science Letters, vol.290, issue.1, pp.688-692, 1993.

C. Putman, Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy, Biophysical Journal, vol.67, issue.4, pp.1749-1753, 1994.
DOI : 10.1016/S0006-3495(94)80649-6

P. Hansma, Tapping mode atomic force microscopy in liquids, Applied Physics Letters, vol.64, issue.13, pp.1738-1740, 1994.
DOI : 10.1063/1.111795

G. U. Lee, L. A. Chrisey, and R. J. Colton, Direct measurement of the forces between complementary strands of DNA, Science, vol.266, issue.5186, pp.266-771, 1994.
DOI : 10.1126/science.7973628

E. Florin, V. T. Moy, and H. E. Gaub, Adhesion forces between individual ligand-receptor pairs, Science, vol.264, issue.5157, pp.264-415, 1994.
DOI : 10.1126/science.8153628

W. Han, Cryo Atomic Force Microscopy: A New Approach for Biological Imaging at High Resolution, Biochemistry, vol.34, issue.26, pp.8215-8220, 1995.
DOI : 10.1021/bi00026a001

F. J. Giessibl, Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy, Science, vol.267, issue.5194, pp.68-71, 1995.
DOI : 10.1126/science.267.5194.68

R. Young, J. Ward, and F. Scire, The Topografiner: An Instrument for Measuring Surface Microtopography, Review of Scientific Instruments, vol.43, issue.7, pp.43-999, 1972.
DOI : 10.1063/1.1685846

G. Binnig, 7× 7 reconstruction on Si (111) resolved in real space. Physical review letters, pp.120-123, 1983.

C. Toumey, 35 atoms that changed the nanoworld, Nature Nanotechnology, vol.331, issue.95, pp.239-241, 2010.
DOI : 10.1038/nnano.2010.61

P. Hinterdorfer, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy., Proceedings of the National Academy of Sciences, pp.93-3477, 1996.
DOI : 10.1073/pnas.93.8.3477

M. Rief, Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM, Science, vol.276, issue.5315, pp.1109-1112, 1997.
DOI : 10.1126/science.276.5315.1109

R. Merkel, Energy landscapes of receptor???ligand bonds explored with dynamic force spectroscopy, Nature, vol.394, issue.6714, pp.50-53, 1999.
DOI : 10.1038/16219

. Israelachvil, Intermolecular and Surface Forces, 1992.

I. G. Kaplan, Intermolecular interactions: physical picture, computational methods and model potentials, 2006.
DOI : 10.1002/047086334X

H. Butt, M. Cappella, and . Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface science reports, pp.1-152, 2005.

P. Mazeran, Microscopie À Force Atomique et Imagerie Mécanique, Thèse de doctorat en physique, 1998.

C. Basire and C. Fretigny, Experimental Study of the Friction Regimes on Viscoelastic Materials, ACS Symposium Series ACS Publications, pp.741-239, 2000.
DOI : 10.1021/bk-2000-0741.ch014

D. J. Müller, G. Büldt, and A. Engel, Force-induced conformational change of bacteriorhodopsin, Journal of Molecular Biology, vol.249, issue.2, pp.239-243, 1995.
DOI : 10.1006/jmbi.1995.0292

D. J. Müller, Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope, Biophysical Journal, vol.76, issue.2, pp.1101-1111, 1999.
DOI : 10.1016/S0006-3495(99)77275-9

F. Gaboriaud and Y. F. Dufrêne, Atomic force microscopy of microbial cells: Application to nanomechanical properties, surface forces and molecular recognition forces, Colloids and Surfaces B: Biointerfaces, vol.54, issue.1, pp.10-19, 2007.
DOI : 10.1016/j.colsurfb.2006.09.014

V. S. Craig, An historical review of surface force measurement techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.75-93, 1997.

E. Evans, K. Ritchie, and R. Merkel, Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces, Biophysical Journal, vol.68, issue.6, pp.68-2580, 1995.
DOI : 10.1016/S0006-3495(95)80441-8

H. Miyata, R. Yasuda, and K. K. Jr, Strength and lifetime of the bond between actin and skeletal muscle ??-actinin studied with an optical trapping technique, BBA)-General Subjects, pp.1290-83, 1996.
DOI : 10.1016/0304-4165(96)00003-7

G. Kaplanski, Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow, Biophysical Journal, vol.64, issue.6, pp.1922-1933, 1993.
DOI : 10.1016/S0006-3495(93)81563-7

R. Alón, D. A. Hammer, and T. A. Springer, Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow, Nature, vol.374, issue.6522, pp.374-539, 1995.
DOI : 10.1038/374539a0

J. N. Israelachvili and P. M. Mcguiggan, Adhesion and short-range forces between surfaces. Part I: New apparatus for surface force measurements, Journal of Materials Research, vol.229, issue.10, pp.2223-2231, 1990.
DOI : 10.1557/JMR.1990.2232

M. Salomo, Optical tweezers to study single Protein A/Immunoglobulin G interactions at varying conditions, European Biophysics Journal, vol.270, issue.6, pp.927-934, 2008.
DOI : 10.1007/s00249-008-0310-3

M. C. Williams, Optical tweezers: measuring piconewton forces Biophysics Textbook Online, 2002.

L. R. Brewer and P. R. Bianco, Laminar flow cells for single-molecule studies of DNA-protein interactions, Nature Methods, vol.103, issue.6, pp.517-525, 2008.
DOI : 10.1038/nmeth.1217

E. Evans and K. Kinoshita, Using Force to Probe Single???Molecule Receptor???Cytoskeletal Anchoring Beneath the Surface of a Living Cell, Methods in Cell Biology, vol.83, pp.373-396, 2007.
DOI : 10.1016/S0091-679X(07)83016-0

C. Gourier, A Nanospring Named Erythrocyte. The Biomembrane Force Probe, Cellular and Molecular Bioengineering, vol.17, issue.4, pp.263-275, 2008.
DOI : 10.1007/s12195-008-0030-x

E. Kirat and K. , Sample preparation procedures for biological atomic force microscopy, Journal of Microscopy, vol.70, issue.3, pp.199-207, 2005.
DOI : 10.1016/0014-5793(92)81241-D

URL : https://hal.archives-ouvertes.fr/hal-00017269

W. Baumgartner, Cadherin interaction probed by atomic force microscopy, Proceedings of the National Academy of Sciences, pp.4005-4010, 2000.
DOI : 10.1073/pnas.070052697

H. G. Hansma and D. E. Laney, DNA binding to mica correlates with cationic radius: assay by atomic force microscopy, Biophysical Journal, vol.70, issue.4, pp.1933-1939, 1996.
DOI : 10.1016/S0006-3495(96)79757-6

T. Tätte, Preparation of smooth siloxane surfaces for AFM visualization of immobilized biomolecules, Surface Science, vol.532, issue.535, pp.1085-1091, 2003.
DOI : 10.1016/S0039-6028(03)00486-2

I. Safenkova, A. Zherdev, and B. Dzantiev, Application of atomic force microscopy for characteristics of single intermolecular interactions, Biochemistry (Moscow), vol.77, issue.13, pp.77-1536, 2012.
DOI : 10.1134/S000629791213010X

S. Karrasch, Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution, Biophysical Journal, vol.65, issue.6, pp.2437-2446, 1993.
DOI : 10.1016/S0006-3495(93)81327-4

V. Kollár, Dynamic Strength of Titin's Z-Disk End, Journal of Biomedicine and Biotechnology, vol.6, issue.3, 2010.
DOI : 10.1073/pnas.120048697

D. C. Cullen and C. R. Lowe, AFM Studies of Protein Adsorption, Journal of Colloid and Interface Science, vol.166, issue.1, pp.102-108, 1994.
DOI : 10.1006/jcis.1994.1276

J. Yang, K. Takeyasu, and Z. Shao, Atomic force microscopy of DNA molecules, FEBS Letters, vol.75, issue.2, pp.173-176, 1992.
DOI : 10.1016/0014-5793(92)81241-D

C. C. Dupont-gillain, B. Nysten, and P. G. Rouxhet, Collagen adsorption on poly(methyl methacrylate): net-like structure formation upon drying, Polymer International, vol.25, issue.4, pp.271-276, 1999.
DOI : 10.1002/(SICI)1097-0126(199904)48:4<271::AID-PI119>3.0.CO;2-J

V. Dupres, Nanoscale mapping and functional analysis of individual adhesins on living bacteria, Nature methods, issue.27, pp.515-520, 2005.

A. Berquand, Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy, Langmuir, vol.21, issue.12, pp.5517-5523, 2005.
DOI : 10.1021/la050162e

P. Wagner, Formation and in Situ Modification of Monolayers Chemisorbed on Ultraflat Template-Stripped Gold Surfaces, Langmuir, vol.11, issue.10, pp.3867-3875, 1995.
DOI : 10.1021/la00010a043

Y. Dufrêne, Life at the Nanoscale: Atomic Force Microscopy of Live Cells, 2011.
DOI : 10.1201/b11404

T. Albrecht, Microfabrication of cantilever styli for the atomic force microscope, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.8, issue.4, pp.3386-3396, 1990.
DOI : 10.1116/1.576520

Y. Sugawara, Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy, Science, vol.270, issue.5242, pp.1646-1648, 1995.
DOI : 10.1126/science.270.5242.1646

M. Tomitori and T. Arai, Tip cleaning and sharpening processes for noncontact atomic force microscope in ultrahigh vacuum Applied surface science, pp.432-438, 1999.

G. Francius, Stretching polysaccharides on live cells using single molecule force spectroscopy, Nature Protocols, vol.37, issue.6, pp.939-946, 2009.
DOI : 10.1529/biophysj.106.088989

J. Vesenka, Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope, Ultramicroscopy, vol.42, issue.44, pp.1243-1249, 1992.
DOI : 10.1016/0304-3991(92)90430-R

R. Emch, Morphological difference between fibronectin sprayed on mica and on PMMA, Ultramicroscopy, vol.42, issue.44, pp.1155-1160, 1992.
DOI : 10.1016/0304-3991(92)90417-I

Y. Lyubchenko, Atomic force microscopy of long DNA: imaging in air and under water., Proceedings of the National Academy of Sciences, pp.90-2137, 1993.
DOI : 10.1073/pnas.90.6.2137

A. R. Kirby, A. P. Gunning, and V. J. Morris, Imaging polysaccharides by atomic force microscopy, Biopolymers, vol.150, issue.44, pp.355-366, 1996.
DOI : 10.1002/(SICI)1097-0282(199603)38:3<355::AID-BIP8>3.0.CO;2-T

N. Gour and S. Verma, Synthesis and AFM studies of lectin???carbohydrate self-assemblies, Tetrahedron, vol.64, issue.30-31, pp.7331-7337, 2008.
DOI : 10.1016/j.tet.2008.05.055

H. Butt, K. H. Downing, and P. K. Hansma, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophysical Journal, vol.58, issue.6, pp.58-1473, 1990.
DOI : 10.1016/S0006-3495(90)82492-9

S. Morandat, Atomic force microscopy of model lipid membranes, Analytical and Bioanalytical Chemistry, vol.395, issue.5, pp.1445-1461, 2013.
DOI : 10.1007/s00216-012-6383-y

URL : https://hal.archives-ouvertes.fr/hal-00782691

I. Reviakine and A. Brisson, Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy, Langmuir, vol.16, issue.4, pp.1806-1815, 2000.
DOI : 10.1021/la9903043

J. Jass, T. Tjärnhage, and G. Puu, From Liposomes to Supported, Planar Bilayer Structures on Hydrophilic and Hydrophobic Surfaces: An Atomic Force Microscopy Study, Biophysical Journal, vol.79, issue.6, pp.79-3153, 2000.
DOI : 10.1016/S0006-3495(00)76549-0

C. D. Blanchette, Domain Nucleation Rates and Interfacial Line Tensions in Supported Bilayers of Ternary Mixtures Containing Galactosylceramide, Biophysical Journal, vol.94, issue.7, pp.94-2691, 2008.
DOI : 10.1529/biophysj.107.122572

C. D. Blanchette, Galactosylceramide Domain Microstructure: Impact of Cholesterol and Nucleation/Growth Conditions, Biophysical Journal, vol.90, issue.12, pp.90-4466, 2006.
DOI : 10.1529/biophysj.105.072744

R. F. Epand, Self-assembly of influenza hemagglutinin: studies of ectodomain aggregation by in situ atomic force microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1513, issue.2, pp.1513-167, 2001.
DOI : 10.1016/S0005-2736(01)00350-9

J. D. Sipe and A. S. Cohen, Review: History of the Amyloid Fibril, Journal of Structural Biology, vol.130, issue.2-3, pp.88-98, 2000.
DOI : 10.1006/jsbi.2000.4221

C. M. Yip and J. Mclaurin, Amyloid-?? Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption, Biophysical Journal, vol.80, issue.3, pp.1359-1371, 2001.
DOI : 10.1016/S0006-3495(01)76109-7

C. M. Yip, A. A. Darabie, and J. Mclaurin, A??42-Peptide Assembly on Lipid Bilayers, Journal of Molecular Biology, vol.318, issue.1, pp.318-97, 2002.
DOI : 10.1016/S0022-2836(02)00028-1

P. R. Leroueil, Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers, Nano Letters, vol.8, issue.2, pp.420-424, 2008.
DOI : 10.1021/nl0722929

A. Mecke, Direct observation of lipid bilayer disruption by poly (amidoamine) dendrimers. Chemistry and physics of lipids, pp.3-14, 2004.

S. Parimi, T. J. Barnes, and C. A. Prestidge, PAMAM Dendrimer Interactions with Supported Lipid Bilayers: A Kinetic and Mechanistic Investigation, Langmuir, vol.24, issue.23, pp.24-13532, 2008.
DOI : 10.1021/la8022858

D. J. Müller and A. Engel, Conformations, Flexibility, and Interactions Observed on Individual Membrane Proteins by Atomic Force Microscopy, Methods in Cell Biology, vol.68, pp.257-299, 2002.
DOI : 10.1016/S0091-679X(02)68014-8

D. J. Müller, M. Amrein, and A. Engel, Adsorption of Biological Molecules to a Solid Support for Scanning Probe Microscopy, Journal of Structural Biology, vol.119, issue.2, pp.172-188, 1997.
DOI : 10.1006/jsbi.1997.3875

D. J. Muller, A. Engel, and M. Amrein, Preparation techniques for the observation of native biological systems with the atomic force microscope, Biosensors and Bioelectronics, vol.12, issue.8, pp.12-867, 1997.
DOI : 10.1016/S0956-5663(97)00051-1

Y. Chen, after Filamentous Bacteriophage Infection, Langmuir, vol.25, issue.8, pp.4607-4614, 2009.
DOI : 10.1021/la8036346

M. Andersson, A Structural Basis for Sustained Bacterial Adhesion: Biomechanical Properties of CFA/I Pili, Journal of Molecular Biology, vol.415, issue.5, pp.415-918, 2012.
DOI : 10.1016/j.jmb.2011.12.006

G. Francius, Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress, PLoS ONE, vol.95, issue.97, p.20066, 2011.
DOI : 10.1371/journal.pone.0020066.s008

URL : https://hal.archives-ouvertes.fr/pasteur-01393507

G. Francius, Strain, Langmuir, vol.29, issue.15, pp.4847-4856, 2013.
DOI : 10.1021/la4001895

URL : https://hal.archives-ouvertes.fr/hal-01115085

G. Francius, Detection, Localization, and Conformational Analysis of Single Polysaccharide Molecules on Live Bacteria, ACS Nano, vol.2, issue.9, pp.1921-1929, 2008.
DOI : 10.1021/nn800341b

P. Tripathi, Deciphering the Nanometer-Scale Organization and Assembly of Lactobacillus rhamnosus GG Pili Using Atomic Force Microscopy, Langmuir, vol.28, issue.4, pp.2211-2216, 2011.
DOI : 10.1021/la203834d

A. Touhami, Nanoscale Characterization and Determination of Adhesion Forces of Pseudomonas aeruginosa Pili by Using Atomic Force Microscopy, Journal of Bacteriology, vol.188, issue.2, pp.370-377, 2006.
DOI : 10.1128/JB.188.2.370-377.2006

A. Touhami, Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions, Microbiology, vol.149, issue.10, pp.2873-2878, 2003.
DOI : 10.1099/mic.0.26431-0

V. Dupres, The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo, Nature Chemical Biology, vol.269, issue.11, pp.857-862, 2009.
DOI : 10.1016/0378-1119(88)90185-0

H. K. Webb, Physico-mechanical characterisation of cells using atomic force microscopy ??? Current research and methodologies, Journal of Microbiological Methods, vol.86, issue.2, pp.131-139, 2011.
DOI : 10.1016/j.mimet.2011.05.021

G. Lee, Observation of angiotensin II-induced changes in fixed and live mesangial cells by atomic force microscopy. Micron, pp.41-220, 2010.

M. J. Wozniak, Monitoring of mechanical properties of serially passaged bovine articular chondrocytes by atomic force microscopy, Micron, vol.40, issue.8, pp.40-870, 2009.
DOI : 10.1016/j.micron.2009.06.002

L. W. Francis, Progesterone induces nano-scale molecular modifications on endometrial epithelial cell surfaces, Biology of the Cell, vol.282, issue.8, pp.481-493, 2009.
DOI : 10.1042/BC20080189

R. Kaul-ghanekar, Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study, BMC Cancer, vol.14, issue.Pt 1, p.350, 2009.
DOI : 10.1091/mbc.E02-10-0667

M. Hu, Nanostructure and nanomechanics analysis of lymphocyte using AFM: From resting, activated to apoptosis, Journal of Biomechanics, vol.42, issue.10, pp.42-1513, 2009.
DOI : 10.1016/j.jbiomech.2009.03.051

Z. Dragnevska, Development, optimisation and application of novel thermal probe techniques for the study of biological systems, 2011.

E. Canetta, A. K. Adya, and G. M. Walker, Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS microbiology letters, pp.308-315, 2006.

J. C. Fernandes, Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation, Ultramicroscopy, vol.109, issue.8, pp.854-860, 2009.
DOI : 10.1016/j.ultramic.2009.03.015

M. Plomp, Spore Coat Architecture of Clostridium novyi NT Spores, Journal of Bacteriology, vol.189, issue.17, pp.6457-6468, 2007.
DOI : 10.1128/JB.00757-07

K. Sahu, Atomic force microscopic study on morphological alterations induced by photodynamic action of Toluidine Blue O in Staphylococcus aureus and Escherichia coli, Journal of Photochemistry and Photobiology B: Biology, vol.96, issue.1, pp.96-105, 2009.
DOI : 10.1016/j.jphotobiol.2009.03.008

F. Quilès, Production of Extracellular Glycogen by Pseudomonas fluorescens: Spectroscopic Evidence and Conformational Analysis by Biomolecular Recognition, Biomacromolecules, vol.13, issue.7, pp.2118-2127, 2012.
DOI : 10.1021/bm300497c

V. Vadillo-rodriguez, T. J. Beveridge, and J. R. Dutcher, Surface Viscoelasticity of Individual Gram-Negative Bacterial Cells Measured Using Atomic Force Microscopy, Journal of Bacteriology, vol.190, issue.12, pp.190-4225, 2008.
DOI : 10.1128/JB.00132-08

C. Chung, Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film, Surface and Coatings Technology, vol.203, issue.8, pp.203-1081, 2009.
DOI : 10.1016/j.surfcoat.2008.09.036

P. Schaer-zammaretti and J. Ubbink, Imaging of lactic acid bacteria with AFM???elasticity and adhesion maps and their relationship to biological and structural data, Ultramicroscopy, vol.97, issue.1-4, pp.199-208, 2003.
DOI : 10.1016/S0304-3991(03)00044-5

V. Vadillo-rodríguez and J. R. Dutcher, Viscoelasticity of the bacterial cell envelope, Soft Matter, vol.168, issue.9, pp.4101-4110, 2011.
DOI : 10.1039/c0sm01054e

M. Chandraprabha, P. Somasundaran, and K. Natarajan, Modeling and analysis of nanoscale interaction forces between Acidithiobacillus ferrooxidans and AFM tip, Colloids and Surfaces B: Biointerfaces, vol.75, issue.1, pp.310-318, 2010.
DOI : 10.1016/j.colsurfb.2009.09.002

K. Colville, Bacteria, Langmuir, vol.26, issue.4, pp.2639-2644, 2009.
DOI : 10.1021/la902826n

M. Doktycz, AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces, Ultramicroscopy, vol.97, issue.1-4, pp.209-216, 2003.
DOI : 10.1016/S0304-3991(03)00045-7

B. Park, T. Haines, and N. I. , Abu-Lail, A correlation between the virulence and the adhesion of< i> Listeria monocytogenes</i> to silicon nitride: An atomic force microscopy study, Colloids and Surfaces B: Biointerfaces, issue.2, pp.73-237, 2009.

H. J. Busscher, W. Norde, H. C. Van, and . Mei, Specific Molecular Recognition and Nonspecific Contributions to Bacterial Interaction Forces, Applied and Environmental Microbiology, vol.74, issue.9, pp.74-2559, 2008.
DOI : 10.1128/AEM.02839-07

A. Cerf, Nanomechanical Properties of Dead or Alive Single-Patterned Bacteria, Langmuir, vol.25, issue.10, pp.5731-5736, 2009.
DOI : 10.1021/la9004642

H. Butt and V. Franz, Rupture of molecular thin films observed in atomic force microscopy. I. Theory, Physical Review E, vol.66, issue.3, pp.31601-031610, 2002.
DOI : 10.1103/PhysRevE.66.031601

P. Carl and H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing, Pfl??gers Archiv - European Journal of Physiology, vol.2, issue.Suppl 1, pp.551-559, 2008.
DOI : 10.1007/s00424-008-0524-3

M. Radmacher, Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophysical Journal, vol.70, issue.1, pp.556-567, 1996.
DOI : 10.1016/S0006-3495(96)79602-9

C. Rotsch, K. Jacobson, and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proceedings of the National Academy of Sciences, pp.921-926, 1999.
DOI : 10.1073/pnas.96.3.921

F. Rico, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E, vol.72, issue.2, pp.21914-021925, 2005.
DOI : 10.1103/PhysRevE.72.021914

P. E. Marszalek, Atomic levers control pyranose ring conformations, Proceedings of the National Academy of Sciences, pp.7894-7898, 1999.
DOI : 10.1073/pnas.96.14.7894

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22158

H. Li, Single-Molecule Force Spectroscopy on Xanthan by AFM, Advanced Materials, vol.10, issue.4, pp.316-319, 1998.
DOI : 10.1002/(SICI)1521-4095(199803)10:4<316::AID-ADMA316>3.0.CO;2-A

M. Rief, H. Clausen-schaumann, and H. E. Gaub, Sequence-dependent mechanics of single DNA molecules, Nature Structural & Molecular Biology, vol.6, issue.4, pp.346-349, 1999.

P. Parot, Past, present and future of atomic force microscopy in life sciences and medicine, Journal of Molecular Recognition, vol.74, issue.44, pp.418-431, 2007.
DOI : 10.1002/jmr.857

M. Rabbi and P. E. Marszalek, Measuring Protein Mechanics by Atomic Force Microscopy, Cold Spring Harbor Protocols, vol.2007, issue.24, p.4901, 2007.
DOI : 10.1101/pdb.prot4901

F. Oesterhelt, Unfolding Pathways of Individual Bacteriorhodopsins, Science, vol.288, issue.5463, pp.143-146, 2000.
DOI : 10.1126/science.288.5463.143

P. Hinterdorfer and Y. F. Dufrêne, Detection and localization of single molecular recognition events using atomic force microscopy, Nature Methods, vol.34, issue.5, pp.347-355, 2006.
DOI : 10.1038/nmeth871

G. U. Lee, D. A. Kidwell, and R. J. Colton, Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy, Langmuir, vol.10, issue.2, pp.354-357, 1994.
DOI : 10.1021/la00014a003

J. Fritz, Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy, Proceedings of the National Academy of Sciences, pp.95-12283, 1998.
DOI : 10.1073/pnas.95.21.12283

M. Grandbois, How strong is a covalent bond? Science, pp.1727-1730, 1999.

Y. Harada, M. Kuroda, and A. Ishida, Specific and Quantized Antigen???Antibody Interaction Measured by Atomic Force Microscopy, Langmuir, vol.16, issue.2, pp.708-715, 2000.
DOI : 10.1021/la990236k

Y. Bustanji, Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force, Proceedings of the National Academy of Sciences, pp.100-13292, 2003.
DOI : 10.1073/pnas.1735343100

P. Hinterdorfer, A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy, pp.177-188, 1998.

T. Strunz, Dynamic force spectroscopy of single DNA molecules, Proceedings of the National Academy of Sciences, pp.11277-11282, 1999.
DOI : 10.1073/pnas.96.20.11277

A. Yersin, Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy, Proceedings of the National Academy of Sciences, pp.8736-8741, 2003.
DOI : 10.1073/pnas.1533137100

A. Kamruzzahan, Antibody Linking to Atomic Force Microscope Tips via Disulfide Bond Formation, Bioconjugate Chemistry, vol.17, issue.6, pp.1473-1481, 2006.
DOI : 10.1021/bc060252a

M. Benoit, Discrete interactions in cell adhesion measured by single-molecule force spectroscopy, Nature cell biology, issue.26, pp.313-317, 2000.

B. Bonanni, Single Molecule Recognition between Cytochrome C 551 and Gold-Immobilized Azurin by Force Spectroscopy, Biophysical Journal, vol.89, issue.4, pp.2783-2791, 2005.
DOI : 10.1529/biophysj.105.064097

E. Evans and K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophysical Journal, vol.72, issue.4, pp.1541-1555, 1997.
DOI : 10.1016/S0006-3495(97)78802-7

D. T. Le, Measuring Kinetic Dissociation/Association Constants Between Lactococcus lactis Bacteria and Mucins Using Living Cell Probes, Biophysical Journal, vol.101, issue.11, pp.2843-2853, 2011.
DOI : 10.1016/j.bpj.2011.10.034

URL : http://doi.org/10.1016/j.bpj.2011.10.034

Y. Zhang, Single-molecule study on intermolecular interaction between C60 and porphyrin derivatives: toward understanding the strength of the multivalency, Langmuir, issue.12, pp.25-6627, 2009.

T. A. Sulchek, Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds, Proceedings of the National Academy of Sciences of the United States of America, pp.102-16638, 2005.
DOI : 10.1073/pnas.0505208102

T. Sulchek, R. W. Friddle, and A. Noy, Strength of Multiple Parallel Biological Bonds, Biophysical Journal, vol.90, issue.12, pp.90-4686, 2006.
DOI : 10.1529/biophysj.105.080291

M. Ludwig, W. Dettmann, and H. Gaub, Atomic force microscope imaging contrast based on molecular recognition, Biophysical Journal, vol.72, issue.1, pp.445-448, 1997.
DOI : 10.1016/S0006-3495(97)78685-5

M. Gad, A. Itoh, and A. Ikai, MAPPING CELL WALL POLYSACCHARIDES OF LIVING MICROBIAL CELLS USING ATOMIC FORCE MICROSCOPY, Cell Biology International, vol.21, issue.11, pp.697-706, 1997.
DOI : 10.1006/cbir.1997.0214

M. Grandbois, Affinity Imaging of Red Blood Cells Using an Atomic Force Microscope, Journal of Histochemistry & Cytochemistry, vol.37, issue.5, pp.719-724, 2000.
DOI : 10.1177/002215540004800516

P. Lehenkari, Adapting atomic force microscopy for cell biology, Ultramicroscopy, vol.82, issue.1-4, pp.289-295, 2000.
DOI : 10.1016/S0304-3991(99)00138-2

N. Almqvist, Elasticity and Adhesion Force Mapping Reveals Real-Time Clustering of Growth Factor Receptors and Associated Changes in Local Cellular Rheological Properties, Biophysical Journal, vol.86, issue.3, pp.1753-1762, 2004.
DOI : 10.1016/S0006-3495(04)74243-5

C. M. Stroh, Simultaneous Topography and Recognition Imaging Using Force Microscopy, Biophysical Journal, vol.87, issue.3, pp.1981-1990, 2004.
DOI : 10.1529/biophysj.104.043331

C. Stroh, Single-molecule recognition imaging microscopy, Proceedings of the National Academy of Sciences, vol.101, issue.34, pp.12503-12507, 2004.
DOI : 10.1073/pnas.0403538101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514657

A. Ebner, Localization of Single Avidin-Biotin Interactions Using Simultaneous Topography and Molecular Recognition Imaging, ChemPhysChem, vol.100, issue.5, pp.897-900, 2005.
DOI : 10.1002/cphc.200400545

C. Madwar, Perfluorophenyl Azide Immobilization Chemistry for Single Molecule Force Spectroscopy of the Concanavalin A/Mannose Interaction, Langmuir, vol.26, issue.22, pp.26-16677, 2010.
DOI : 10.1021/la1036579

Y. Li, Molecular recognition force spectroscopy of a specific lectin???carbohydrate interaction at single-molecule level, Journal of Structural Biology, vol.176, issue.1, pp.46-51, 2011.
DOI : 10.1016/j.jsb.2011.05.018

I. Ofek, D. L. Hasty, and N. Sharon, Anti-adhesion therapy of bacterial diseases: prospects and problems, FEMS Immunology & Medical Microbiology, vol.38, issue.3, pp.181-191, 2003.
DOI : 10.1016/S0928-8244(03)00228-1

R. Levy and M. Maaloum, Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods, Nanotechnology, vol.13, issue.1, p.33, 2002.
DOI : 10.1088/0957-4484/13/1/307

R. W. Stark, T. Drobek, and W. M. Heckl, Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy, Ultramicroscopy, vol.86, issue.1-2, pp.207-215, 2001.
DOI : 10.1016/S0304-3991(00)00077-2

G. Francius, Détermination des propriétés viscoélastiques de films multicouches de polyélectrolytes par sonde colloïdale au microscope de force atomique, Thèse de doctorat en chimie physique, 2006.

W. B. Turnbull and J. F. Stoddart, Design and synthesis of glycodendrimers, Reviews in Molecular Biotechnology, vol.90, issue.3-4, pp.231-255, 2002.
DOI : 10.1016/S1389-0352(01)00062-9

M. Almant, Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin, Chemistry - A European Journal, vol.18, issue.2, pp.729-738, 2013.
DOI : 10.1002/chem.201202319

P. Roach, D. Farrar, and C. C. Perry, Interpretation of Protein Adsorption:?? Surface-Induced Conformational Changes, Journal of the American Chemical Society, vol.127, issue.22, pp.127-8168, 2005.
DOI : 10.1021/ja042898o

A. Ebner, A New, Simple Method for Linking of Antibodies to Atomic Force Microscopy Tips, Bioconjugate Chemistry, vol.18, issue.4, pp.1176-1184, 2007.
DOI : 10.1021/bc070030s

C. K. Riener, Simple test system for single molecule recognition force microscopy, Analytica Chimica Acta, vol.479, issue.1, pp.59-75, 2003.
DOI : 10.1016/S0003-2670(02)01373-9

A. P. Gunning, Mining the "glycocode"--exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy, The FASEB Journal, vol.27, issue.6, pp.27-2342, 2013.
DOI : 10.1096/fj.12-221416

A. Patel and T. K. Lindhorst, Multivalent glycomimetics: synthesis of nonavalent mannoside clusters with variation of spacer properties. Carbohydrate research, pp.341-1657, 2006.

. Bell, Models for the specific adhesion of cells to cells, Science, vol.200, issue.4342, pp.618-627, 1978.
DOI : 10.1126/science.347575

W. Baumgartner, Affinity of Trans-interacting VE-cadherin Determined by Atomic Force Microscopy, Single Molecules, vol.7, issue.2, pp.119-122, 2000.
DOI : 10.1002/1438-5171(200006)1:2<119::AID-SIMO119>3.0.CO;2-K

P. Bongrand, Ligand-receptor interactions, Reports on Progress in Physics, vol.62, issue.6, p.921, 1999.
DOI : 10.1088/0034-4885/62/6/202

URL : https://hal.archives-ouvertes.fr/hal-00320498

T. V. Ratto, Force Spectroscopy of the Double-Tethered Concanavalin-A Mannose Bond, Biophysical Journal, vol.86, issue.4, pp.2430-2437, 2004.
DOI : 10.1016/S0006-3495(04)74299-X

T. V. Ratto, Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy, Langmuir, vol.22, issue.4, pp.1749-1757, 2006.
DOI : 10.1021/la052087d

E. Evans, Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annual review of biophysics and biomolecular structure, pp.105-128, 2001.

E. Miller, The Mechanical Properties of E. coli Type 1 Pili Measured by Atomic Force Microscopy Techniques, Biophysical Journal, vol.91, issue.10, pp.91-3848, 2006.
DOI : 10.1529/biophysj.106.088989

E. Hahn, Exploring the 3D Molecular Architecture of Escherichia coli Type 1 Pili, Journal of Molecular Biology, vol.323, issue.5, pp.845-857, 2002.
DOI : 10.1016/S0022-2836(02)01005-7

G. Pasparakis, A. Cockayne, and C. Alexander, Control of Bacterial Aggregation by Thermoresponsive Glycopolymers, Journal of the American Chemical Society, vol.129, issue.36, pp.129-11014, 2007.
DOI : 10.1021/ja074349z

A. Razatos, Molecular determinants of bacterial adhesion monitored by atomic force microscopy, Proceedings of the National Academy of Sciences, pp.95-11059, 1998.
DOI : 10.1073/pnas.95.19.11059

A. Bolshakova, Comparative studies of bacteria with an atomic force microscopy operating in different modes, Ultramicroscopy, vol.86, issue.1-2, pp.121-128, 2001.
DOI : 10.1016/S0304-3991(00)00075-9

M. Andersson, B. E. Uhlin, and E. Fällman, The Biomechanical Properties of E. coli Pili for Urinary Tract Attachment Reflect the Host Environment, Biophysical Journal, vol.93, issue.9, pp.93-3008, 2007.
DOI : 10.1529/biophysj.107.110643

C. Volle, Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.67, issue.1, pp.32-40, 2008.
DOI : 10.1016/j.colsurfb.2008.07.021

J. Morandat, S. , E. Kirat, K. Gouin, and S. , Probing the nature of the cluster effect observed with synthetic multivalent galactosides and peanut agglutinin lectin, Chemistry-A European Journal, vol.19, issue.2, pp.729-738, 2013.

S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, and K. Kirat, Atomic force microscopy of model lipid membranes, Analytical and Bioanalytical Chemistry, vol.395, issue.5, pp.1445-1461, 2013.
DOI : 10.1007/s00216-012-6383-y

URL : https://hal.archives-ouvertes.fr/hal-00782691

A. Mastouri, M. Almant, S. Morandat, J. Kovensky, S. Gouin et al., Molecular recognition force spectroscopy of a synthetic carbohydrate terminated ligand and peanuts agglutinin interaction at single-molecule level