
HAL Id: tel-01066977
https://theses.hal.science/tel-01066977

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-parametric estimation of convex bodies and convex
polytopes

Victor-Emmanuel Brunel

To cite this version:
Victor-Emmanuel Brunel. Non-parametric estimation of convex bodies and convex polytopes. Statis-
tics [math.ST]. Université Pierre et Marie Curie - Paris VI; University of Haifa, 2014. English. �NNT :
�. �tel-01066977�

https://theses.hal.science/tel-01066977
https://hal.archives-ouvertes.fr
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Abstract (English)

In this thesis, we are interested in statistical inference on convex bodies in the Euclidean space

Rd. Two models are investigated. The first one consists of the observation of n independent

random points, with common uniform distribution on an unknown convex body. The second

one is a regression model, with additive subgaussian noise, where the regression function is the

indicator function of an unknown convex body. In the first model, our goal is to estimate the

unknown support of the common uniform density of the observed points. In the second model,

we aim either to estimate the support of the regression function, or to detect whether this

support is nonempty, i.e., the regression function is nonzero. In both models, we investigate the

cases when the unknown set is a convex polytope, and when we know the number of vertices. If

this number is not known, we propose an adaptive method which allows us to obtain a statistical

procedure performing asymptotically as well as in the case of perfect knowledge of that number.

In addition, this procedure allows misspecification, i.e., provides an estimator of the unknown

set, which is optimal in a minimax sense, even if the unknown set is not polytopal, in the

contrary to what may have been thought.

We prove a universal deviation inequality for the volume of the convex hull of the observa-

tions in the first model. We show that this inequality allows one to derive tight bounds on the

moments of the missing volume of this convex hull, as well as on the moments of the number

of its vertices.

In the one-dimensional case, in the second model, we compute the asymptotic minimal size

of the unknown set so that it can be detected by some statistical procedure, and we propose a

decision rule which allows consistent testing of whether of that set is empty.
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Résumé (Français)

Dans ce travail, nous nous intéressons à l’estimation d’ensembles convexes dans l’espace Eu-

clidien Rd, en nous penchant sur deux modèles. Dans le premier modèle, nous avons à notre

disposition un échantillon de n points aléatoires, indépendants et de même loi, uniforme sur un

ensemble convexe inconnu. Le second modèle est un modèle additif de régression, avec bruit

sous-gaussien, et dont la fonction de régression est l’indicatrice d’Euler d’un ensemble convexe

ici aussi inconnu. Dans le premier modèle, notre objectif est de construire un estimateur du

support de la densité des observations, qui soit optimal au sens minimax. Dans le second

modèle, l’objectif est double. Il s’agit de construire un estimateur du support de la fonction de

régression, ainsi que de décider si le support en question est non vide, c’est-à-dire si la fonction

de régression est effectivement non nulle, ou si le signal observé n’est que du bruit.

Dans ces deux modèles, nous nous intéressons plus particulièrement au cas où l’ensemble

inconnu est un polytope convexe, dont le nombre de sommets est connu. Si ce nombre est

inconnu, nous montrons qu’une procédure adaptative permet de construire un estimateur at-

teignant la même vitesse asymptotique que dans le cas précédent. Enfin, nous démontrons que

ce même estimateur pallie à l’erreur de spécification du modèle, consistant à penser à tort que

l’ensemble convexe inconnu est un polytope.

Nous démontrons une inégalité de déviation pour le volume de l’enveloppe convexe des

observations dans le premier modèle. Nous montrons aussi que cette inégalité implique des

bornes optimales sur les moments du volume manquant de cette enveloppe convexe, ainsi que

sur les moments du nombre de ses sommets.

Enfin, dans le cas unidimensionnel, pour le second modèle, nous donnons la taille asympto-

tique minimale que doit faire l’ensemble inconnu afin de pouvoir être détecté, et nous proposons

une règle de décision, permettant un test consistant du caractère non vide de cet ensemble.
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Notation

ρd : Euclidean distance in Rd.

Bd
2 : Euclidean centered unit closed ball in Rd.

Bd
2(a, r) : Euclidean closed ball with center a ∈ Rd and radius r ≥ 0.

βd : Volume of Bd
2 .

Ḡ, G̊, ∂G : Closure, interior and boundary of the set G.

CH(S) : Convex hull of the set S.

Kd : Class of all convex bodies in Rd.

K(1)
d : {G ∈ Kd : G ⊆ [0, 1]d}.

Pr : Class of all convex polytopes in Rd with at most r vertices, and with positive volume

(r ≥ d+ 1).

P(1)
r : {P ∈ Pr : P ⊆ [0, 1]d}, r ≥ d+ 1.

P(1)
r,n : Class of all polytopes in P(1)

r , with vertices whose coordinates are integer multiples of

1/n (r ≥ d+ 1, n ∈ N∗)

P(1)
∞ = K(1)

d .

P =
⋃

r≥d+1 Pr.

P(1) =
⋃

r≥d+1 P
(1)
r .

fk(P ) : number of k-faces of the polytope P .

vii



fk(r, d) : number of k-faces of a d-dimensional cyclic polytope with r vertices.

Gǫ : Closed ǫ-neighborhood of the set G, defined as G+ ǫBd
2 .

1(· ∈ G) : Indicator function of the set G.

| · |d : Lebesgue measure in Rd.

G1△G2 : Symmetric difference between the two sets G1 and G2.

dH(G1, G2) : Hausdorff distance between the two sets G1 and G2.

PG : Probability measure associated to the set G.

Pf : Probability measure associated to the density f .

E : Expectation operator.

EG : Expectation operator corresponding to PG.

Ef : Expectation operator corresponding to Pf .

V : Variance operator.

VG : Variance operator corresponding to PG.

P⊗n : n-product of the probability measure P.

E⊗n : Expectation operator corresponding to P⊗n.

H(P,Q) : Hellinger distance between the two probability measures P and Q.

⌊·⌋ : Integer part.

Lp(E) : Set of real valued and Lebesgue-measurable functions defined on the Borel set E, such

that
∫

E |f |p <∞, p ≥ 1.

‖ · ‖p : Lp-norm, 1 ≤ p <∞.

‖ · ‖∞ : L∞-norm.

f+ = max(f, 0).
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(

N

m

)

=
N !

m!(N −m)!
.

Rn(Ĝn; C) : Risk of the estimator Ĝn on the class C.

Rn(C) : Minimax risk on the class C.

Qn(C) : Minimax weighted risk on the class C.

In this work, we are generally not interested in the explicit form of the constants, but only

in their dependence on the parameters. The sign ‘c’, followed by some indexes or arguments,

will be used for the constants, and its value may vary along the thesis.
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Chapter 1

Introduction

1.1 Why set estimation ?

Geometry and probability have been related since the eighteenth century, when some funda-

mental questions were posed. Here are two examples of questions that received much attention.

If a needle is dropped on a wooden floor, what is the probability that it does not intersect a gap

of that floor ? If four points are chosen at random in the plane, what is the probability that

one of them is in the triangle made by the three others ? The first question is known for having

been addressed by the French Georges-Louis Leclerc, Comte de Buffon. The second question

is well known under the name of Sylverster’s four-point problem. Contradictory answers were

brought to each of these two questions, and despite their differences, they all seemed correct.

The reason was that these questions were not well posed. In particular, it was necessary to

define the probability measures which described best the randomness of the experiments, in

order to give a strict answer. This need was beyond the scope of the theory of random numbers.

Probability measures were to be defined for geometrical objects. This was more or less the birth

of what we call today stochastic geometry. Quite rapidly, new challenging questions were posed,

related to this new field. First leading works were those of Rényi, Sulanke and Efron, in the

1960’s. The study of probabilistic and geometrical properties of random geometrical objects

- e.g. random points, Poisson point processes, random sets - became a hot topic. However,

statistical inference on such objects appeared much later.

One purpose of statistics is to get as precise information as possible about an intricate sys-

tem, of which only a little information can be obtained, whether clean or noisy. For instance, the

blurred aspect of a picture can be modeled as the result of a random process, whose properties

can be described by few parameters only. In this case, statistical modeling is an artificial tool,
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which allows one to describe as simply as possible a macroscopic system, whose microscopic

details behave erratically. Blurred images can be recovered this way: assuming the noise is

random and homogeneous all over the image. In a survey, when the respondents provide ranks

instead of precise values to certain questions, or in order to deal with missing answers, the

theory of partial identification, based on the theory of random sets, allows one to recover some

information [Man03, BMM10].

Statistical inference on sets has gained attractiveness in the last three decades. In particular,

estimation of the support of a density, or more generally, of the level sets of a density, detection

of an object in a blurred - or partially observed - image, or detection of a signal, classification and

clustering, all these possible applications and others, made indispensable statistical inference on

sets, in particular set estimation. Set estimation was probably for the first time introduced by

Geffroy in 1964 [Gef64], followed by Chevalier [Che76]. Chevalier’s work deals with estimation

of the support of a density in general metric spaces, under very general assumptions. A simple

estimator, which was also studied by Devroye and Wise in 1980 [DW80], consists of the union

of small Euclidean balls centered at the points of the sample. Consistency of this estimator is

ensured if the radius ǫn of these balls - n being the total number of available observations -

satisfies both ǫn −→ 0 and nǫdn −→ ∞, as n → ∞, where d is the dimension of the ambient

Euclidean space. Notably, these two conditions remind those for the choice of bandwidth in

Kernel density estimation, leading to consistency. In fact, this estimator is exactly the support

of the Kernel density estimator, with Kernel K(x) = (ρd(x, 0) ≤ ǫ), x ∈ Rd. Estimation of

boundary fragments, i.e., subsets G of Rd which can be described as the subgraph of a positive

function g : [0, 1]d−1 −→ [0, 1]:

G =
{

(x1, . . . , xd) ∈ [0, 1]d : 0 ≤ xd ≤ g(x1, . . . , xd−1)
}

, (1.1)

attracted much attention in the 1980’s, see for example [KT93a] where g satisfies Hölder con-

ditions, or [KST95] where g is monotone or convex. In particular, the function g in (1.1) can

be interpreted as the efficiency frontier of the productivity function of a firm. Estimation of

more general sets, under shape restrictions, was considered as well. In [BCJ00, BC01], con-

sistency of similar estimators to that of [DW80] is proved, when the target is connected, or

star-shaped. Estimation of convex sets is studied as a particular case of estimation of sets with

smooth boundaries in [MT95], and analytical methods, based on functional analysis and not

on geometrical considerations, are developed there. Optimality of the estimators in a minimax
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sense (see Section 1.2.3 for precise definitions) is proved in that work. We refer to [Tsy94]

where estimation of sets is discussed under various statistical models and different kinds of

assumptions on the classes of unknown sets.

1.2 Definitions and Notation

1.2.1 Set-valued estimators

An important part of statistics deals with estimation. From a sample of observations, say,

X , one may expect to be able to understand better the underlying mechanism, which created

that sample. This mechanism may be Nature, or some intricate machinery. For instance, take

X = {X1, . . . , Xn}, where Xi is a binary variable giving the sex of the i-th newborn from a

sample of n newborns. Then Xi can be - maybe artificially - seen as the realization of a random

variable, whose distribution is Bernoulli, with some parameter pi ∈ (0, 1). A common modeling

of this situation consists in assuming that the parameters pi take one common value for all i,

say p, and that the random variables X1, . . . , Xn are mutually independent. In other words,

the observations are assumed to be the realization of one and the same phenomenon repeated

n times. Given this modeling, the only unknown quantity is the value of the parameter p. The

statistician would like to use the observations X1, . . . , Xn, in order to have a precise idea of the

value of that number p. One way to do this is to estimate p. An estimator of p is a random

variable depending on the observations. More precisely, in this example, an estimator can be

written as Sn(X1, . . . , Xn), where Sn is a measurable function from {0, 1}n onto (0, 1).

Let us now be more general. Consider a finite sample X , consisting of n observations, each

of which belongs to a given measurable set E . Assume that these observations are realizations

of random variables, whose distribution depends on one unknown quantity θ ∈ Θ, where Θ is a

measurable set. An estimator of the unknown θ is a random variable of the form Sn(X1, . . . , Xn),

where Sn : En −→ Θ is a measurable function. Therefore, constructing an estimator requires

a structure on the set which contains the unknown quantity of interest. In this thesis, we deal

with estimation of sets and, more precisely, of convex bodies. Hence, we need to allow Θ to

be the class of all convex bodies in Rd, where d is a given positive integer. However, there

is no natural way to provide a non trivial measurability structure on this class. A particular

definition of set-valued random variables is given in [Mol05]. For a given topological space E,

consider the class F of all closed subsets of E. The Effros σ-algebra on F is defined as the

σ-algebra generated by {F ∈ F : F ∩K 6= ∅}, where K runs through the family of all compact
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subsets of E. Denote the Effros σ-algebra by B(F). Let (Ω,F,P) be a probability space. A

map X : Ω −→ F is measurable with respect to F and B(F) if, and only if, for every compact

subset K of E,

{ω ∈ Ω : X(ω) ∩K 6= ∅} ∈ F. (1.2)

If the latest condition is satisfied, the map X is a random variable, valued in F , and is called a

random set. Note that this definition restricts the random sets to be closed subsets of E, but it

is not too restrictive for our purposes, since we only consider compact sets. However, Condition

(1.2) may be too difficult to check, sometimes, and it is not very useful for our purposes. Indeed,

this definition allows one to extend the usual properties of random variables to random sets.

For example, the expectation of a random set is defined in [Mol05]. The random sets that

we consider are estimators, and we are interested in their pointwise accuracy, defined as their

distance to their target. This distance is real-valued, and what is important to us is that it

is a random variable. Indeed, this would allow us to compute its expectation, its probability

deviations, etc.

We can bypass Condition (1.2) by defining a set-valued estimator, as a set-valued mapping,

such that its accuracy, measured with a given distance, is a random variable. This will be the

case most of the time. In order to make this even more simple, we prefer to consider outer

probabilities, in order to avoid measurability conditions.

1.2.2 Notation and first definitions

Before going further in this introduction, we need some notation. In the whole thesis, d ≥ 1

denotes a positive integer, and the ambient space is the Euclidean space Rd.

General notation and definitions Denote by ρd - or simply ρ, when there is no ambiguity -

the Euclidean distance in Rd, by Bd
2 the Euclidean unit closed ball in Rd, and by βd its volume.

Denote by Bd
2(a, r) the Euclidean ball centered at the point a ∈ Rd and of radius r ≥ 0. If

x ∈ Rd and G ⊆ Rd, we denote by ρd(x,G) the Euclidean distance from x to the set G, i.e.,

ρd(x,G) = inf
y∈G

ρd(x, y).

We use the convention that the infimum on the empty set is infinite.

If G ⊆ Rd, we denote by Ḡ its closure, G̊ its interior and ∂G its boundary, i.e., ∂G = Ḡ\G̊.
If G is a closed subset of Rd and ǫ is a positive number, we denote by Gǫ the closed
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ǫ-neighborhood of G, i.e., the set of all x ∈ Rd such that ρ(x,G) ≤ ǫ or, in other words,

Gǫ = G+ ǫBd
2 . If G is any set, 1(· ∈ G) stands for the indicator function of G.

The Lebesgue measure in Rd is denoted by | · |d. For brevity, we omit the dependence on d

when there is no ambiguity.

For two sets G1 and G2, their symmetric difference G1△G2 is defined as (G1\G2)∪(G2\G1).

The Nikodym pseudo-distance between two measurable subsets G1 and G2 of Rd is defined

as the Lebesgue measure of their symmetric difference, namely |G1△G2|d. We will often refer

to this pseudo-distance as the Nikodym distance.

The Hausdorff distance between two subsets G1 and G2 of Rd is denoted by dH(G1, G2),

and is defined as

dH(G1, G2) = inf{ǫ > 0 : G1 ⊆ Gǫ
2, G2 ⊆ Gǫ

1}.

Equivalently, one has:

dH(G1, G2) = max

{

inf
x∈G1

ρ(x,G2), inf
y∈G2

ρ(y,G1)

}

.

If x ∈ R, we denote by ⌊x⌋ its integer part, i.e., the greatest integer smaller or equal to x.

For 1 ≤ p < ∞, and E a measurable subset of Rd, denote by Lp(E) the set of real valued

and measurable functions f , such that
∫

E |f |p <∞. The integral is defined with respect to the

Lebesgue measure. The Lp(E)-norm is denoted by ‖ · ‖p, and is defined as ‖f‖p =
(∫

E
|f |p

) 1
p

.

If f is a bounded function, we set ‖f‖∞ = esssup
x∈E

|f(x)|. If f is a real-valued function, define

f+ = max(f, 0).

Geometric notation and definitions Let S be a subset of Rd. Its convex hull, denoted by

CH(S), is the smallest convex set containing S. Equivalently, it is the intersection of all convex

sets which contain S. Its affine hull is the intersection of all affine subspaces which contain S.

A convex set is said k-dimensional if its affine hull has dimension k (k ∈ N). A convex body

in Rd is a compact and convex subset of Rd with positive volume. We denote by Kd the class

of all convex bodies in Rd, and by K(1)
d the class of those convex bodies that are included in

[0, 1]d. Note that a convex set in Rd has a positive volume if and only if it is d-dimensional.

Thus, considering convex sets of positive volume is equivalent to considering real d-dimensional

convex sets.

A convex body K ∈ Kd is said to have a smooth boundary if and only if its boundary ∂K

is k times continuously differentiable - in the sense of differential submanifolds, see [Sch93a,
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Section 2.5] -, for some integer k ≥ 2.

A convex polytope is the convex hull of a finite set. If P = CH(S) is a convex polytope, S

being a finite subset of Rd, the vertices of P are those x ∈ S such that CH(S\{x}) 6= P . By

polytope, we will always mean convex polytope.

For an integer r ≥ d + 1, we denote by Pr the class of all convex polytopes in Rd with

at most r vertices and with positive volume, and by P(1)
r the class of those P ∈ Pr such that

P ⊆ [0, 1]d. We define P(1)
r,n as the class of all polytopes in P(1)

r with vertices whose coordinates

are integer multiples of 1/n. We denote by P =
⋃

r≥d+1 Pr the class of all convex polytopes in

Rd, and by P(1) =
⋃

r≥d+1 P
(1)
r the class of all convex polytopes in [0, 1]d. We will also use the

notation P(1)
∞ for the class K(1)

d . Note that P(1) ( P(1)
∞ .

A polytope is the convex hull of finitely many points. The dual form of this definition states

that a polytope is a bounded intersection of finitely many closed halfspaces. A polytope can be

described either by its vertices - a polytope is the set of convex combinations of its vertices - or

as intersection of halfspaces - a polytope is a set of points satisfying a finite number of linear

inequalities -. The boundary of a polytope is entirely determined by these halfspaces, and its

structure can be viewed from a combinatorial point of view.

Definition 1.1. ”Supporting hyperplane”

Let K ∈ Kd and let H an affine hyperplane of Rd. We call H a supporting hyperplane of K if

and only if H ∩K 6= ∅ and there exists a non zero vector e, orthogonal to H, such that for all

t > 0, (H + te) ∩K = ∅.
Let x ∈ ∂K. A supporting hyperplane of K at x is a supporting hyperplane of K which

contains the point x.

Note that the supporting hyperplane of a convex body at a point of its boundary need not

be unique.

Definition 1.2. Let P be a polytope and k ∈ {0, . . . , d − 1} be an integer. A face of P is

the intersection of P with a supporting hyperplane. A k-face is a face whose affine hull has

dimension k. The vertices of P are exactly the 0-faces of P . The 1-faces of P are called the

edges of P . The (d− 1)-faces of P are called the facets of P .

There are some universal relations between the numbers of k-faces of a polytope. The most

simple one is Euler’s formula. Let P be any d-dimensional polytope. Let us denote by fk the

number of k-faces of P , for k ∈ {0, . . . , d − 1}. When d = 2, it is clear that f0 = f1. If d = 3,

Euler’s formula states that:

f0 − f1 + f2 = 2. (1.3)
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This formula still holds in any finite dimension (see [BM71] for one of the first proof of this

identity, after several unsuccessful attempts by other mathematicians in the nineteen century):

d−1
∑

k=0

(−1)kfk = 1 + (−1)d−1. (1.4)

Other combinatorial equations exist, in specific cases, e.g. Dehn-Sommerville equations for

simplicial polytopes. We do not provide the details, because we do not consider such cases in

this thesis. We refer to [Bro83, Zie95] for a detailed account.

In this thesis, we deal with the classes Pr, r ≥ d + 1, i.e., the polytopes in Rd with known

value of f0 - or, to be more precise, with known upper bound on f0 -. In dimension 2, the

knowledge of f0 determines completely the value of f1: f0 = f1. In higher dimensions, this is

not true anymore, and a given value of f0 may be compatible with different values of the fk’s,

k = 1, . . . , d−1. We are interested in upper bounds on fk, i.e., in controlling the possible values

of fk, given f0 ≤ r. In particular, for k = d− 1, it will be useful in Section 2.2.1 to know if fd−1

can be bounded from above, uniformly on the class Pr. The answer is positive, and it is given by

Mc Mullen’s bound. In order to be more specific, let us denote by fk(P ) the number of k-faces

of a given polytope P ∈ P. The question addressed in [McM70] consists in maximizing fk(P )

on the class Pr, i.e., finding the maximal number - if not infinite - of k-faces of a d-dimensional

polytope having r vertices. Let fk(r, d) be the number of k-faces of a cyclic polytope with r

vertices. A cyclic polytope with r vertices is the convex hull of r distinct points on the moment

curve {(t, t2, . . . , td) : t ∈ R}. Grünbaum [Gru67, Section 4.7] proved that the combinatorial

structure of a cyclic polytope with r vertices does not depend on the choice of the vertices on

the moment curve. The upper bound conjecture, proved by McMullen in [McM70], states that

max
P∈Pr

fk(P ) = fk(r, d), ∀1 ≤ k < d < r. (1.5)

This equation states that among all d-dimensional polytopes with r vertices, the cyclic polytopes

are those with the largest number of k-faces, for all k = 1, . . . , d−1. The number of k-faces of a

cyclic polytope with r vertices is
(

r
k

)

for k = 0, . . . , ⌊d/2⌋, and is given by the Dehn-Sommerville

formula for the other values of k, see [Bro83, Zie95].

Probabilistic and statistical notation and definitions Let (A,B) be a measurable space,

and C a class of sets in Rd. If {PG : G ∈ C} is a family of probability measures on (A,B),
we denote by EG the expectation operator associated with PG, and by VG the corresponding
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variance operator, for G ∈ C. We keep the same notation PG and EG for the corresponding

outer probability and expectation when necessary, to avoid measurability issues.

If f is a density, we denote by Pf and Ef the corresponding probability measure and expec-

tation operator.

Let P be a probability measure and E the corresponding expectation operator. For any pos-

itive integer n, we denote by P⊗n and E⊗n the n-product of P and its corresponding expectation

operator. In particular, if X1, . . . , Xn are n independent, identically distributed (i.i.d.) random

variables in Rd with probability distribution P, then P⊗n is the probability distribution of the

vector (X1, . . . , Xn). When there is no ambiguity, we may omit the superscript ⊗n.

Let P and Q be two probability measures defined on the same measurable space. Let p and

q be their respective densities with respect to a common σ-finite dominating measure ν. The

Hellinger distance between P and Q is denoted by H(P,Q), and is defined as

H(P,Q) =

(∫

(
√
p−√

q)2dν

)1/2

,

Note that this definition does not depends on the choice of the dominating measure ν.

1.2.3 The minimax setup

Let (Ω,F,P) be a probability space, and (A,B) a measurable space. Let C a class of measurable

subsets of Rd, and {PG : G ∈ C} a family of probability measures on (A,B). Let n be a

positive integer, and Z1, . . . , Zn be i.i.d. random variables defined on (Ω,F), taking values in

(A,B). Assume that the common probability distribution of Z1, . . . , Zn is PG, for some G ∈ C.
This means that for all B ∈ B, P[Z1 ∈ B] = P [{ω ∈ Ω : Z1(ω) ∈ B}] = PG[B]. The vector

(Z1, . . . , Zn) is interpreted as the observation of n independent realizations of a random variable

Z, having PG as its probability distribution, and the set G is unknown to the statistician. Let

Ĝn be an estimator of G, i.e., a set-valued function of (Z1, . . . , Zn).

We measure the accuracy of Ĝn in a minimax framework, and we will always use the Nikodym

distance. The pointwise error of Ĝn is its distance to the target, namely |Ĝn△G|. Its pointwise
risk is the expectation of its pointwise error, i.e., E⊗n

G

[

|Ĝn△G|
]

. The uniform risk, or simply

the risk of Ĝn on the class C, is defined as

Rn(Ĝn; C) = sup
G∈C

EG[|G△Ĝn|].

The rate - a sequence depending on n - of the estimator Ĝn on the class C is the speed at which
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its risk on C converges to zero, when the number n of available observations tends to infinity.

For all estimators defined in the sequel we will be interested in upper bounds on their risk, in

order to get information about their rates.

The minimax risk on C, when n observations are available, is defined as

Rn(C) = inf
Ĝn

Rn(Ĝn; C),

where the infimum is taken over all set estimators depending on n observations. If Rn(C)
converges to zero, we call a minimax rate of convergence on the class C the speed at which Rn(C)
tends to zero, i.e., a positive sequence ψn converging to zero and such that the positive sequence

ψ−1
n Rn(C) is both bounded from above, and bounded from below by a positive constant.

It is interesting to provide a lower bound for Rn(C): By definition, no estimator can achieve

a better rate on C than that of the lower bound. This bound gives also information on how

close the risk of a given estimator is to the minimax risk. If the rate of the upper bound on the

risk of an estimator matches the rate of the lower bound on the minimax risk on the class C,
then the estimator is said to have the minimax rate of convergence on this class.

Similarly to the minimax risk, we define the weighted minimax risk as follows. Let C be

a class of measurable subsets of Rd, of positive volume. For an estimator Ĝn, we define its

weighted risk on the class C as

Qn(Ĝn; C) = sup
G∈C

EG

[

|G△Ĝn|
|G|

]

,

and the minimax weighted risk on the class C, when n observations are available, is defined as

Qn(C) = inf
Ĝn

Qn(Ĝn; C).

Let us mention an alternative to this minimax setup. The minimax risk on a class C is

defined for each number n of available observations. The supremum is taken over all G ∈ C, and
therefore G is allowed to depend on n. In particular, usual methods for proving lower bounds

on the minimax risk are based on hypotheses testing, and the hypotheses often depend on n in

the proofs. This might seem unrealistic, since adding new observations should not change the

unknown distribution measure from which they are generated. The alternative to this minimax

setup consists in defining individual lower rates of convergence on a class C. A sequence of

positive numbers (an) is called an individual lower rate of convergence on the class C if and only
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if

inf
(Ĝn)n∈N

sup
G∈C

limsup
n→∞

EG

[

|G△Ĝn|
]

an
> 0, (1.6)

where the infimum is taken over all sequences (Ĝn)n∈N of estimators. This alternative is pro-

posed in [GKKW02]. It will not be much discussed in this thesis, in which we prefer to focus

on the classical minimax setup. This preference will be motivated when we compare estimation

and testing, in Section 3.5.

1.2.4 Adaptation and misspecification

In our minimax setup, the target set G that we aim to estimate is seen as a member of a class

C, and the risk of estimation is defined uniformly on this class. This class can be very big.

Assume it can be divided into several subclasses:

C =
⋃

τ∈T
Cτ ,

where T is a set of parameters. This decomposition may be interesting, for example, if the

subclasses Cτ are more simple than the whole class C, i.e., much smaller. If so, the minimax

rate on a subclass Cτ might be much smaller than that on the whole class. The target set

G belongs to Cτ for some τ ∈ T. If the value of τ is known, a natural approach consists in

constructing an estimator which knows the value of τ , and in bounding from above its risk on the

class Cτ . However, the value of τ may be unknown. As a consequence, the estimation procedure

cannot take into account the value of this parameter. Yet, we might be interested in achieving

or, at least, approaching, the minimax rate Rn(Cτ ), by constructing an estimator which does

not depend on τ . Such an estimator is said to be adaptive with respect to τ , or to adapt to τ .

It would have exactly, or approximately, the minimax rate of convergence, simultaneously on

all subclasses Cτ , for τ ranging in T.

Let Ĝn be an estimator, based on n random observations, of the target set G belonging to a

class C =
⋃

τ∈T Cτ . For τ ∈ T, let ψn,τ be the minimax rate of convergence on Cτ . The estimator

Ĝn is said to be adaptive minimax with respect to τ if and only if

c1 ≤ sup
τ∈T

ψ−1
n,τRn(Ĝn; Cτ ) ≤ c2

for n large enough, where c1 and c2 are two positive constants. It is not always possible to

construct an adaptive minimax estimator. In particular, not knowing in advance the value of
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τ may unavoidably lead to a loss in the rate of convergence. Such loss often occurs when one

aims to estimate a function at a given point, e.g. a density or a regression function, whose

smoothness is characterized by the parameter τ (see [BL92] for instance).

In this thesis, we will do adaptation when estimating a polytope in Pr - or in P(1)
r - without

knowing the true value of r, i.e., the number of vertices of the target polytope. In this case,

C = P =
⋃

r≥d+1 Pr or C = P(1) =
⋃

r≥d+1 P
(1)
r , and T = {d+ 1, d+ 2, . . .}.

Misspecification Let us now add a point, denoted by ∞, to the set T, and consider a new

class C∞, which is not contained in C. Denote by C′ = C ∪ C∞ =
⋃

τ∈T∪{∞} Cτ . Assume

now that the target to be estimated belongs to this bigger class C′, and not necessarily to C.
This situation corresponds to possible misspecification of the model. Adaptive estimation with

respect to τ ∈ T ∪ {∞} allows one to bypass misspecification, if we are able to construct an

estimator which adapts to τ ∈ T∪{∞}, and which is minimax simultaneously on all subclasses

Cτ , τ ∈ T, and, on the class C∞.

Typically, in this thesis, T is the set of all integers greater than the dimension d, and Cτ = Pτ

or P(1)
τ , while C∞ = Kd or K(1)

d : The class C∞ contains convex bodies which are not polytopes.

The class C is Kd itself, or K(1)
d . In this framework, misspecification consists in mistakenly

believing that the target - a convex body - is a polytope. As we will see, there is a big gap

between the minimax risks on the classes of polytopes with given number of vertices, and on

the class of all convex bodies.

1.3 The statistical models

The density support model (DS) The density support model that we consider in this

thesis consists of the observation of a sample of n i.i.d. random variables Xi, i = 1, . . . , n, with

uniform distribution on some compact subset G of Rd. In this setup, PG stands for the uniform

probability measure on G.

The regression model (RM) Consider the following regression model:

Yi = 1(Xi ∈ G) + ξi, i = 1, . . . , n,

where G is an unknown set in [0, 1]d. The set of points Xi, i = 1, . . . , n is called the design,

and it is observed. Unless we mention otherwise, the design is assumed to be i.i.d. uniformly

distributed in the hypercube [0, 1]d. The errors ξi are i.i.d. random variables, independent of
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the design. In other words, some points in [0, 1]d are labeled, with label 1 if the point belongs to

some set G and 0 otherwise. Instead of observing directly the correct labels, one has access to

their noisy version. From these observations, one wishes to recover G as accurately as possible.

This model can be interpreted as a partial and noisy observation of an image, [0, 1]d, in which

some unknown object G is to be recovered. If there is no noise, i.e., ξi = 0, i = 1, . . . , n, the

observed image has only black and white pixels, the black ones belonging to G. If the signal is

noisy, the image has different levels of gray. In this setup, PG stands for the probability measure

associated to the random couple (X1, Y1) of (1.3).

We assume, along this thesis, that the errors ξi are i.i.d. and subgaussian, i.e., we make the

following assumption.

Assumption A. The random variables ξi, i = 1, . . . , n, are i.i.d. and satisfy the following

exponential inequality.

E[euξi ] ≤ e
u2σ2

2 , ∀u ∈ R,

where σ is a positive number.

In particular, the ξi’s are necessarily centered. Note that i.i.d. zero-mean Gaussian random

variables satisfy Assumption A.

In both setups (DS) and (RM), the set G is unknown and our purpose is to do statistical

inference about this set. In Model (DS), we aim to estimate G. In Model (RM), we want either

to estimate G, or to detect it, i.e., to be able to decide whether G is nonempty. We focus on

two cases. First, we assume that the unknown set G is a polytope, and that it belongs to the

class Pr, for a given and known r. For each model we define an estimator which achieves the

minimax - or nearly minimax, up to a logarithmic factor, in the case of Model (DS) - rate of

convergence on the class P(1)
r , and another estimator which also achieves the minimax rate of

convergence on the class K(1)
d . On the other hand, if G ∈ P(1)

r but the integer r is not known,

we propose an adaptive method to estimate G, and we get the minimax - or, again, nearly

minimax in Model (DS), up to a logarithmic factor - rate of convergence, simultaneously on all

classes P(1)
r , r ≥ d + 1. In addition, we prove that the same estimator achieves the minimax

rate of convergence on the class K(1)
d . These results are presented in Chapter 2 for Model (DS),

and Chapter 3 for Model (RM). In Chapter 2, we prove new additional probabilistic results

on the proposed estimator. In Chapter 3, we also focus on the one-dimensional case in Model

(RM). In this case, a convex body is simply a segment. We prove that our first estimator can be

improved under an assumption either on the location of the unknown set G, or on its size. We

also propose decision rules for testing whether G is nonempty, and give the asymptotic minimal
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size of G so it can be detected by some decision rule. Chapter 4 is mostly devoted to a review of

the literature on estimation of functionals of G, such as its volume, perimeter, or other intrinsic

volumes.
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Chapter 2

Estimation of the convex or

polytopal support of a uniform

density

Here, we consider the density support model (DS) defined in Section 1.3, and we focus on

estimation of G. This problem is of interest in connection with the detection of abnormal

behavior, see [DW80]. In image recovering, when an object is only partially observed, e.g. if

only some pixels are available, one would like to recover the object as accurately as possible. In

the case of polytopal support G, we will propose an estimator when the number of vertices is

known, and an estimator which is adaptive to the number of vertices if that number is unknown.

In the general case, a natural estimator is the convex hull of the available observations. We

study its optimality in a minimax setup, and we analyze asymptotic properties of this random

polytope, as the sample size tends to ∞.

The density of the observations is assumed to be uniform and only the support is unknown.

This is a very strong assumption, and it may be questionable in some practical cases. However,

this is an important setup, which already raises to many questions, both in probabilistic and

statistical prospectives.

Assume that G is a convex body, and denote it byK. The convex hull of the sample is quite a

natural estimator ofK. The properties of this random subset of Rd have been extensively studied

since the early 1960’s, from a geometric and probabilistic prospective. The very original question

associated to this object was the famous Sylvester four-point problem: what is the probability

that one of the four points chosen at random in the plane is inside the triangle formed by the

three others ? We refer to [Bà01] for a historical survey and extensions of Sylvester problem.
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Of course, this question is not well-posed, and one should specify the probability measure of

those four points. The many answers that were proposed, in the 18th century, accompanied

the birth of a new field: geometrical probability, and, later, in the twentieth century, stochastic

geometry. In 1963 and 1964, Rényi and Sulanke [RS63, RS64] studied some basic properties of

the convex hull of n i.i.d. random points in the plane (d = 2), uniformly distributed in some

convex body K. More specifically, if this convex hull is denoted by K̂n, its number of vertices

by Vn and its missing area |K\K̂n| by An, they investigated the asymptotics of the expectations

E[Vn] and E[An]. Their results are highly dependent on the structure of the boundary of K.

The expected number of vertices is of the order n1/3 when the boundary of K is smooth enough,

and r lnn when K is a convex polygon with r vertices, r ≥ 3. The expected missing area is

of the order n−2/3 in the first case and, if K is a square, it is of the order (lnn)/n. May the

square be arbitrarily large or small, only the constants and not the rates are affected by a scale

factor. Rényi and Sulanke [RS63, RS64] provided asymptotic expansions of these expectations

with the explicit constants up to two or three terms. In 1965, Efron [Efr65] showed a very

simple equality which connects the expected value of the number of vertices Vn+1 and that of

the missing area An. Namely, one has

EK [An] =
|K|EK [Vn+1]

n+ 1
, (2.1)

independently of the structure of the boundary of K. In particular, (2.1) allows one to extend

the results of [RS63, RS64] about the missing area to any convex polygon with r vertices. If

K = P is such a polygon, EP [An] is of the order r(lnn)/n, up to a factor of the form c|P |2,
where c is positive and does not depend on r or P . Notably, Efron’s identity (2.1) holds in any

dimension d ≥ 1. Thus, all results concerning the expectation of the missing volume of K̂n can

be adapted for the expected number of vertices of K̂n+1 and conversely. We give a proof of this

identity in Section 2.5.2.

More recently, many efforts were made to extend Rényi and Sulanke’s results to dimensions

3 and higher. We refer to [Wie78], [Gro74], [Dwy88] and the references therein. The most

important results of the literature are presented in the next section.

2.1 Random polytopes

The random set K̂n is a random polytope, called the random convex hull. It is indeed a polytope,

because it is the convex hull of a finite sample of points, and it is random since those points are
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random. There are several other ways to construct random polytopes. For instance, by taking

the intersection of randomly chosen half spaces, or by taking the convex hull of a Poisson point

process. This last example is closely related to the model we are dealing with, and this relation

has been used in the literature (e.g. [Par12]) to derive asymptotic results for K̂n. An extensive

survey on the different kinds of random polytopes is made in [MCRF10]. Let us focus on the

properties of K̂n.

2.1.1 The wet part and the floating convex body

In the late 1980’s, Bàràny and Larman [BL88] (see [BBSW07] for a review) proposed a gener-

alization of the results on the asymptotic expected missing volume of K̂n that were known so

far in particular cases. They made no assumption on the dimension d, on symmetry properties

of K and on the structure of its boundary. They considered the ε-wet part of K, as defined by

Dupin [Dup22] in fluid mechanics, and later by Blaschke [Bla23]. Let us call a cap of K the

intersection of a closed halfspace of Rd with K.

Definition 2.1. Let K ∈ Kd be a convex body and ǫ ∈ (0, 1). The ǫ-wet part of K, denoted by

K(ε), is the union of all caps of K of volume less or equal to ε|K|. The ǫ-floating body of K is

K\K(ε).

To understand this definition and why it was introduced in fluid mechanics, let us set d = 2.

One should imagine that R2 is an ocean, with an iceberg in it. That iceberg is seen from above,

and K is what is seen of the iceberg, i.e., its projection on the horizontal plane. The part of the

iceberg inside the water is the wet part of K, and the floating part of the iceberg is the floating

body of K.

Bàràny and Larman [BL88] proved that if K is of volume one, then the expected missing

volume of K̂n, i.e., EK

[

|K\K̂n|
]

, is of the same order as the volume of the 1/n-wet part.

Theorem 2.1 ([BL88]). Assume that K ∈ Kd has volume 1. Then,

c1|K(1/n)| ≤ EK

[

|K\K̂n|
]

≤ c2(d)|K(1/n)|, ∀n ≥ n0(d), (2.2)

where c1 is a universal positive constant, c2(d) is a positive constant which depends on d only,

and n0(d) is a positive integer which depends on d only.

Note that it is not necessary to assume that K is of volume one, and by rescaling, (2.2) still

holds for all K ∈ Kd.

As a consequence of (2.2), the problem of computing the expected missing volume of the

random polytope K̂n becomes analytical, and studying its asymptotic properties reduces to
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analyzing those of the wet part of K. The wet part has been studied extensively in convex

analysis and geometry. We state the following result, taken from [BL88], which gives the

smallest value of |K(ǫ)|, for all possible K ∈ Kd of volume 1, and shows that up to positive

constants independent of ǫ, this value is attained by polytopes.

Theorem 2.2 ([BL88]). Let K ∈ Kd, such that |K| = 1, and ǫ ∈ (0, 1). There exists a positive

constant c(d), which depends on d only, such that

c(d)ǫ

(

ln

(

1

ǫ

))d−1

≤ |K(ǫ)|.

In addition, if K is a polytope, then

|K(ǫ)| ≤ c(K)ǫ

(

ln

(

1

ǫ

))d−1

,

for some positive constant c(K) which depends on K.

The first term of the asymptotic expansion of the ǫ-wet part of a convex body K in Rd,

when ǫ → 0, is given with precise constants when ∂K is smooth enough, in [SW90, Sch93b].

Note that the volume of the ǫ-wet part of K, renormalized by the volume of K, is invariant

under invertible affine transformations, that is, if T is such a transformation, and K ′ = TK,

|K(ǫ)|
|K| =

|K ′(ǫ)|
|K ′| .

The same property holds for the expected ratio EK

[

|K\K̂n|
|K|

]

. Indeed, if X1, . . . , Xn are

i.i.d. uniformly distributed in K, then the random points TX1, . . . , TXn are i.i.d., uniformly

distributed in TK. In addition,

CH(TX1, . . . , TXn) = T (CH(X1, . . . , Xn)) .

Therefore,

EK

[

|K\K̂n|
|K|

]

= EK′

[

|K ′\K̂n|
]

.

Hence, by taking T = |K|−1/dId, where Id : Rd → Rd is the identity function, so that TK has

volume one, we see that it is sufficient to consider convex bodies of volume one.

The next section is devoted to the asymptotic properties of the expected missing volume of

K̂n.
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2.1.2 Convergence of the random convex hull

Rate of convergence

Together with Theorem 2.1, Theorem 2.2 proves that the expected missing volume of K̂n con-

verges to zero at a slower rate than (lnn)d−1/n, for all K ∈ Kd, and this rate is achieved if K

is a polytope.

Conversely, Groemer [Gro74] proved the following:

Theorem 2.3 ([Gro74]). Let n be a positive integer. Let K ∈ Kd, and let B be a Euclidean

ball in Rd with the same volume as K. Then

EK

[

|K\K̂n|
]

≤ EB

[

|B\K̂n|
]

,

with equality if and only if K is an ellipsoid.

It is not hard to see (cf. [Wer06] for instance) that if B is a volume one Euclidean ball in

Rd, then

c1(d)ǫ
2/(d+1) ≤ |B(ǫ)| ≤ c2(d)ǫ

2/(d+1), ∀ǫ ∈ (0, 1/2), (2.3)

for some positive constants c1(d) and c2(d) which depend on d only.

Therefore, using (2.2), Theorem 2.3 and (2.3), the expected missing volume of K converges

to zero at a faster rate than n−2/(d+1), and this rate is achieved when K is an ellipsoid.

It is now clear that for n ≥ n0(d),

c1(d)
(lnn)d−1

n
≤ EK

[

|K\K̂n|
|K|

]

≤ c2(d)n
−2
d+1 , ∀K ∈ Kd, (2.4)

where n0(d) is a positive integer which depends on d only, and c1(d) and c2(d) are positive

constants which depend on d only. The lower bound is tight when K is a polytope, and the

upper bound is tight when K is an ellipsoid.

We end this section with a remark. As we saw previously, it was shown by Groemer [Gro74]

that if K ∈ Kd, then

EK

[

|K\K̂n|
]

≤ EB

[

|B\K̂n|
]

,

where B is a Euclidean ball in Rd with the same volume as K. On the other hand, it was shown

that the equality holds if and only if K is an ellipsoid. In other words, among all convex bodies

of a given volume, the ellipsoids are the hardest to estimate by K̂n. We also saw that the rate

of convergence of the convex hull K̂n is the best for polytopes. Is there such an inequality as
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in Theorem 2.3, which specifies for which K ∈ Kd the minimum value of the expected missing

volume of K̂n is achieved ? Barany and Buchta [BB93] partially answered this question. They

proved that among all convex bodies of a given volume, the simplices are the easiest to estimate

by K̂n in the following sense.

Theorem 2.4 ([BB93]). Assume d ≥ 2. Let K ∈ Kd and ∆ be a simplex in Rd with the same

volume as K. Then,

liminf
n→∞

EK

[

|K\K̂n|
]

E∆

[

|∆\K̂n|
] ≥ 1 +

1

d+ 1
,

unless K is itself a simplex.

We recall that a simplex is an (invertible) affine transformation of the regular simplex,

defined as the convex hull of the origin and the canonical base vectors in Rd. This result is

asymptotic, so it is weaker than that of Groemer [Gro74]. The authors in [BB93] conjectured

the following inequality, of the type of Groemer’s result:

EK

[

|K\K̂n|
]

≥ E∆

[

|∆\K̂n|
]

, ∀n ≥ 1,

as soon as K ∈ Kd and ∆ is a simplex with the same volume as K. Dimension d would be any

positive integer. To our knowledge, this stronger result has not been proved yet.

Exact rates of convergence

The first term of the asymptotic expansion of the expected missing volume of K̂n, in a convex

body K ⊆ Rd, is known when ∂K is smooth enough [Bà92] or under weaker assumptions [Bà92],

and when K is a polytope [BB93]. The two following theorems can be found in the references

above.

Theorem 2.5 ([Sch94]). Let K ∈ Kd be a convex body. Denote by κ(x) the generalized Gauss-

Kronecker curvature of ∂K at point x, and by µ the Lebesgue measure on ∂K. Then,

c(d) lim
n→∞

EK [|K\K̂n|]
(

|K|
n

) 2
d+1

=

∫

∂K
κ(x)

1
d+1dµ(x),

where

c(d) = 2

(

βd−1

d+ 1

) 2
d+1 (d+ 3)(d+ 1)!

(d2 + d+ 2)(d2 + 1)Γ
(

d2+1
d+1

) .

In this theorem, Γ denotes Euler’s Gamma function, defined as Γ(x) =
∫∞
0 tx−1e−xdt, ∀x > 0.

For a definition of the Gauss-Kronecker curvature, we refer to [Sch93a, Section 2.5, p. 106].
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The notion of generalized Gauss-Kronecker curvature is introduced in [Sch94]. If K = rBd
2 is

a Euclidean ball of radius r > 0, then κ(x) = r−(d−1), ∀x ∈ ∂K, and the last theorem implies

that the expected missing volume of K̂n is asymptotically equivalent to c′(d)rdn−2/(d+1), i.e., a

positive constant which depends on d, multiplied by the volume of K, times the rate n−2/(d+1).

Theorem 2.5 shows that the rate n−2/(d+1) is attained by K̂n not only when K is an ellipsoid,

but also as soon as the set of points x ∈ ∂K at which the generalized Gauss-Kronecker curvature

is positive, is of positive measure with respect to µ.

The next theorem concerns convex polytopes. For a polytope P ∈ P, a tower of P is any

increasing sequence F0 ⊆ F1 ⊆ . . . ⊆ Fd−1, where Fk is a k-face of P , for k = 0, . . . , d − 1.

Denote by T (P ) the number of such towers of P .

Theorem 2.6 ([BB93]). Let d ≥ 2 and P ∈ P. Then,

lim
n→∞

n

(lnn)d−1
EP [|P\K̂n|] =

|P |T (P )
(d+ 1)d−1(d− 1)!

.

The positive constant appearing in the limit in the last theorem is the volume of P multiplied

by a constant, which depends on P through its facial structure only, i.e., through its boundary.

Both theorems 2.5 and 2.6 suggest that the expected missing volume of K̂n, normalized by

the volume K, depends, asymptotically, only on the facial structure of K, i.e., on the algebraic

structure of its boundary.

We have shown that the best rate of convergence of the expected missing volume of K̂n

is achieved when K is a polytope, and this rate is of the order (lnn)d−1/n. This remark

motivates our focus on polytopes. On the other hand, polytopes are very important objects in

convex geometry and convex analysis. They are the most simple convex bodies. They can be

described by a finite number of inequalities. Equivalently, they are defined by the knowledge of

a finite number of parameters - the coordinates of their vertices. In particular, polytopes can

be used to approximate convex bodies. We refer to [Gru93] for results on best approximation

of convex bodies by polytopes, and to [Rei03] for an interesting comparison of best polytopal

approximation of convex bodies and their approximation by random polytopes.

In the next section, we present the main result on the asymptotic structure of the random

polytope K̂n, due to Bàràny and Buchta [BB93].
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2.1.3 Asymptotic facial structure

As we mentioned above, the asymptotics for expectation of the missing volume of K̂n is well

known. Thus, thanks to Efron’s identity (2.1), it is easy to get the asymptotics for expectation

of the number of vertices of K̂n. This object, K̂n, has been of much interest in the probabilistic

and geometric literature since the leading works of Rényi and Sulanke [RS63, RS64], which

were an important step in stochastic geometry. The volume, the perimeter, and the number of

vertices of K̂n, in dimension d = 2, were investigated. Naturally, the results were extended to

higher dimensions. In particular, in dimension d ≥ 3, the facial structure of K̂n becomes more

intricate. An easy fact is that every k-face of K̂n, for k = 1, . . . , d−1, has exactly k+1 vertices,

PK-almost surely. Indeed, a vertex of any k-face is necessarily a vertex of K̂n, and therefore it

belongs to the sample {X1, . . . , Xn}. Therefore, PK-almost surely, no more than k + 1 of the

points X1, . . . , Xn can belong to the same affine subspace of dimension k. Bàràny and Buchta,

in [BB93], investigated, in Model (DS), the expected number of k-faces of K̂n, 1 ≤ k ≤ d − 1,

when G = P is a polytope. They showed that this expected number is of the same order for all

values of k = 0, . . . , d− 1:

Theorem 2.7 ([BB93]). Let P ∈ P and 0 ≤ k ≤ d− 1. For all n ≥ 1,

EP [fk(K̂n)] = c(d, k)T (P )(lnn)d−1 + ǫn,

where c(d, k) is a positive constant which depends on d and k, and the residual term ǫn satisfies

ǫn ≤ c0(d, k, P )(lnn)
d−2 ln lnn, for some positive constant c0(d, k, P ) which depends only on d,

k and P .

It is clear from this theorem that fk(K̂n) is not a consistent estimator of fk(P ). In Section

2.2.3, we will propose an estimator r̂ of f0(P ). Again, this estimator will not be shown to be

consistent. However, it will allow us to select among a family of preliminary estimators of P ∈ P
one which achieves a reasonable rate of convergence in the case of unknown value of f0(P ). It

is actually not possible to estimate f0(P ) consistently and uniformly on the class P, or even on

a smaller class Pr or P(1)
r . On these two classes, f0(P ) ≤ r. To make the ideas clear, assume

that d = 2. A vertex may be undetectable if its angle is close to 180 degrees. An open question

would be whether it is possible to estimate, say for d = 2, the number of vertices of P ∈ P,

provided that at each of its vertices, the angle is less than 180 − α, where α > 0 is given and

known. Statistical inference on the facial structure of polytopes has not been investigated yet.
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2.2 Minimax estimation

All the works discussed in the previous sections were developed in a geometric and probabilistic

prospective. No efforts were made at this stage to understand whether the K̂n is optimal if

seen as an estimator of the unknown support. Only in the 1990’s, this question was invoked in

the statistical literature. Mammen and Tsybakov [MT95] showed that under some restrictions

on the volume of K, the convex hull is optimal in a minimax sense (see the next section for

details). Korostelev and Tsybakov [KT93b] give a detailed account of the topic of set estimation.

Cuevas and Rodriguez-Cazal [CRC04], and Pateiro Lopez [PL08], studied the properties of set

estimators of the support of a density under several geometric assumptions on the boundary

of the unknown set. See also [Cue09], [CF10], [CRC04], [Gun12], for an overview of recent

developments about estimation of the support of a probability measure.

Let us now look at the random polytope K̂n as a set estimator, in the minimax setup. The

right side of (2.4) shows that n−2/(d+1) is an upper bound of the minimax weighted risk of K̂n

on the class Kd.

Hence, this provides both an upper bound for the minimax weighted risk Qn(Kd) on Kd,

and an upper bound for the minimax risk Rn(K(1)
d ) on K(1)

d (see Section 1.2.3 for the definition

of the risks):

Theorem 2.8 ([Bru14a]). There exists a positive integer n0(d), which depends on d only, such

that for all n ≥ n0(d)

Qn(Kd) ≤ c1(d)n
− 2

d+1 ,

and

Rn(K(1)
d ) ≤ c1(d)n

− 2
d+1 ,

where c1(d) is a positive constant which depends on d only.

A natural question is whether these upper bounds are sharp, i.e., if the minimax weighted risk

on Kd and the minimax risk on Kd are of this order. This question will be answered positively

in Section 2.2.2. In addition, Theorem 2.6 suggests that the minimax weighted risk on the class

of polytopes with uniformly bounded number of towers, is at most of the order (lnn)d−1/n.

Theorem 2.2 shows that the convex hull estimator cannot perform better, in terms of rate of

convergence, on that class. In Section 2.2.1, we will show that the convex hull estimator does

not have the minimax rate of convergence on the classes Pr, r ≥ d + 1, and we will construct

a new random polytope, which nearly attains the minimax rate of convergence on the classes

P(1)
r , r ≥ d+ 1, up to a single logarithmic factor.
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2.2.1 Estimation of polytopes

Upper bound

The case of polytopes has not been investigated from the statistical prospective. In Section

2.1.1, we saw that if K is a polytope, denoted by P , then the expected missing volume of

the convex hull estimator K̂n is of the order (lnn)d−1/n. However, the constant, in the upper

bound, depends on P , not only through its volume, but also through its facial structure:

EP [|P\K̂n|] ≤ c(d, P )
(lnn)d−1

n
, ∀n ≥ n0(d). (2.5)

It seems quite clear that EP

[

|P\K̂n|
|P |

]

cannot be uniformly bounded from above by a

positive constant times (lnn)d−1/n on the class P of polytopes. The reason is that, since every

convex body can be arbitrarily well approximated by a polytope, it seems quite reasonable to

think that supP∈P EP

[

|P\K̂n|
|P |

]

= supK∈Kd
EK

[

|K\K̂n|
|K|

]

, and Corollary 2.3 would contradict a

uniform upper bound of Qn(P) of the order (lnn)d−1/n.

Instead of considering the whole class P, let us restrict ourselves to Pr, for a given r ≥ d+1.

Intuitively, the convex hull estimator can be improved, and the logarithmic factor can be, at least

partially, dropped. Indeed, a polytope with a given and known number of vertices is completely

determined by the coordinates of its vertices, and therefore belongs to some parametric family.

Hence, the rate may be expected to be 1/n, instead of (lnn)d−1/n.

Figure 2.1: Convex hull of n = 500 random points in a triangle

Figure 2.1 illustrates why there is a logarithmic factor in the risk of K̂n. Let us set the

dimension d to 2, for simplicity’s sake. Many of the points are expected to be close to the

edges of P - a triangle, in Figure 2.1 -, at a distance of the order 1/n, as for the minimum
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of a sample of i.i.d. random variables, uniformly distributed on [0, 1], expected to be of the

order 1/n. However, close to the vertices of P , there is less room for the Xi’s, and one can see

on Figure 2.1 that K̂n underestimates P around the vertices, although it is locally much more

accurate near the edges, far from the vertices.

Let P ∈ P(1)
r . The estimator K̂n is the convex hull of the random sample. It is a convex

polytope, and using (2.4) and Efron’s identity (2.1), its expected number of vertices is greater

than (lnn)d−1, and thus much greater than r. On Figure 2.1, one can see that K̂n has, indeed,

more than 3 vertices, and that they are much concentrated around the vertices of P . Instead

of taking K̂n, which does not use take into consideration that the number of vertices of P is

known, let us define P̂
(r)
n as one of the polytopes in P(1)

r of smallest volume, which contains all

the sample points:

P̂ (r)
n ∈ argmin

P∈P(1)
r ,Xi∈P,i=1,...,n

|P |. (2.6)

The existence of such a polytope is ensured by compactness arguments. Note that P̂
(r)
n needs not

be unique. The next theorem establishes an exponential deviation inequality for the estimator

P̂
(r)
n .

Theorem 2.9 ([Bru14a]). Let r ≥ d+ 1 be an integer, and n ≥ 2. Then,

sup
P∈P(1)

r

PP

[

n

(

|P̂ (r)
n △P | − 4dr lnn

n

)

≥ x

]

≤ c(d)e−x/2, ∀x > 0,

for some positive constant c(d), which depends on d only.

We restrict ourselves to P(1)
r instead of the whole class Pr for technical reasons only. How-

ever, we believe that such an inequality as that of Theorem 2.9 could be achieved, by replacing

P(1)
r with Pr, and |P̂ (r)

n △P | with |P̂ (r)
n △P |/|P |.

From the deviation inequality of Theorem 2.9 one can easily derive that the risk of the

estimator P̂
(r)
n on the class P(1)

r is of the order lnn
n . Indeed, we have the next corollary.

Corollary 2.1. Let the assumptions of Theorem 2.9 be satisfied. Then, for any positive number

q, there exists a constant c(d, q), which depends on d and q only, such that,

sup
P∈P(1)

r

EP

[

|P̂ (r)
n △P |q

]

≤ c(d, q)

(

r lnn

n

)q

.

Corollary 2.1 shows that the risk Rn(P̂
(r)
n ;P(1)

r ) of the estimator P̂
(r)
n on the class P(1)

r is

bounded from above by r lnn
n , up to some positive constant which depends on d only. Therefore
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we have the following upper bound for the minimax risk on the class P(1)
r :

Rn(P(1)
r ) ≤ c(d)

r lnn

n
, ∀n ≥ 2. (2.7)

Lower bound

It is now natural to ask whether the rate lnn
n is minimax, i.e. whether it is possible to find

a lower bound for Rn(P(1)
r ) which converges to zero at the rate lnn

n , or the logarithmic factor

should be dropped.

In the 2-dimensional case, we provide a lower bound of the order 1/n, with a factor which

depends linearly on the number of vertices r. Namely, the following theorem holds.

Theorem 2.10 ([Bru14a]). Let r ≥ 9 be an integer, and n ≥ r. Assume d = 2. Then,

Rn(P(1)
r ) ≥ cr

n
,

for some positive universal constant c.

Combined with (2.7), this bound shows that, as a function of r, Rn(P(1)
r ) behaves linearly

in r in dimension two. In greater dimensions, it is quite easy to show that Rn(P(1)
r ) ≥ c(d)

n , for

some positive constant c(d), which depends on d only. But this lower bound does not show the

dependency on r. However, the upper bound (2.7) shows that Rn(P(1)
r ) is at most linear in r.

The logarithmic factor in the upper bound

We conjecture that the logarithmic factor can be removed in the upper bound of Rn(P(1)
r ), r ≥

d+ 1. In fact, for the class Pr, we conjecture that, for the weighted risk,

Qn(Pr) ≤
c(d, r)

n
, ∀n ≥ 2,

where c(d, r) is a positive constant which depends on d and r. Our conjecture is motivated by

Efron’s identity (2.1). It turns out that we can follow almost all the proof of this identity when

the underlying set is a polytope. Instead the estimator P̂
(r)
n , defined in Section 2.2.1, consider

P̃ (r)
n ∈ argmin

P∈Pr,Xi∈P,i=1,...,n
|P |.

The difference with P̂
(r)
n is that it is not constrained to be included in [0, 1]d.

Let r ≥ d + 1 be an integer and P ∈ Pr. Let P̃
(r)
n be the estimator defined above. In this

section, we denote this estimator simply by P̃n: we omit the dependence on r, for simplicity’s
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sake. Note that this estimator does not satisfy the nice property P̃n ⊆ P , unlike the convex

hull. However, by construction, |P̃n| ≤ |P |, so |P△P̃n| ≤ 2|P\P̃n|, and we have:

E⊗n
P [|P̃n△P |] ≤ 2E⊗n

P [|P\P̃n|]

= 2|P |E⊗n
P

[

1

|P |

∫

P
I(x /∈ P̃n)dx

]

= 2|P |E⊗n
P

[

PP [X /∈ P̃n|X1, . . . , Xn]
]

, (2.8)

where X is a random variable of the same distribution as X1, and independent of the sample

X1, . . . , Xn, and PP [·|X1, . . . , Xn] denotes the conditional distribution of X given X1, . . . , Xn.

We set Xn+1 = X, and we consider the bigger sample X1, . . . , Xn+1. For i = 1, . . . , n + 1, we

denote by P̃−i the same estimator as P̃n, but this time based on the sample X1, . . . , Xn+1 from

which the i-th variable Xi is withdrawn. In other words, P̃−i is a convex polytope with at

most r vertices, which contains the whole sample X1, . . . , Xn+1 but maybe the i-th variable, of

minimum volume. Then, P̃n = P̃−(n+1), and by continuing (2.8),

E⊗n
P [|P̃n△P |] ≤ 2|P |P⊗n+1

P [Xn+1 /∈ P̃−(n+1)]

=
2|P |
n+ 1

n+1
∑

i=1

P⊗n+1
P [Xi /∈ P̃−(i)]

=
2|P |
n+ 1

E⊗n+1
P

[

n+1
∑

i=1

I(Xi /∈ P̃−(i))

]

=
2|P |E⊗n+1

P [V ′
n+1]

n+ 1
, (2.9)

where V ′
n+1 stands for the number of points Xi falling outside P̃−i, i = 1, . . . , n+ 1. Note that

in this description we assume the uniqueness of such a polytope, which we conjecture to hold

PP -almost surely, as long as n is large enough. It is not clear that if a point Xi is not in P̃
−i,

then Xi lies on the boundary of P̃n+1. However, if this were true, then PP -almost surely V ′
n+1

would be less or equal to d+1 times the number of facets of P̃n+1. Indeed, a facet is supported

by an affine hyperplane of Rd, which, with probability one, cannot contain more than d + 1

points of the sample at a time. Besides, the maximal number of facets of a d-dimensional convex

polytope with at most r vertices is bounded by McMullen’s upper bound (1.5), and we could

have our conjecture proved:

E⊗n
P

[

|P̃n△P |
|P |

]

≤ cfd−1(r, d)

n
,

for some positive constant c. However, there might be some cases when some points Xi are
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not in P̃−i, though they do not lay on the boundary of P̃n+1. So it may be of interest to work

directly on the variable V ′
n+1. This remains an open problem.

2.2.2 Estimation of convex bodies

In Theorem 2.8, we gave an upper bound of the minimax risk Rn(K(1)
d ), and on the minimax

weighted risk Qn(Kd). These two upper bounds, of the order n−2/(d+1), were obtained using the

convex hull estimator K̂n, whose both risk on the class K(1)
d , and weighted risk on the class Kd,

were of that order. In this section, we show that n−2/(d+1) is exactly the rate of both Rn(K(1)
d )

and Qn(Kd).

Theorem 2.11 ([Bru14a]). There exists a positive integer n0(d), which depends on d, such that

the following statements hold.

• The minimax risk on the class K(1)
d satisfies

c1(d)n
− 2

d+1 ≤ Rn(K(1)
d ) ≤ c2(d)n

− 2
d+1 , ∀n ≥ n0(d),

for some positive constants c1(d) and c2(d) which depend on d only. In addition, the

convex hull estimator has the minimax rate of convergence on K(1)
d .

• The minimax weighted risk on the class Kd satisfies

c3(d)n
− 2

d+1 ≤ Qn(Kd) ≤ c4(d)n
− 2

d+1 , ∀n ≥ n0(d),

for some positive constants c3(d) and c4(d) which depend on d only - with c3(d) = c1(d) -

. In addition, the convex hull estimator has the minimax rate of convergence on Kd, with

respect to the minimax weighted risk.

The proof of the lower bound for the minimax risk Rn(K(1)
d ) can be found in [MT95]. For

the minimax weighted risk, it is quite clear that Rn(K(1)
d ) ≤ Qn(Kd), so the same lower bound

still holds.

2.2.3 Adaptation and misspecification

In the previous sections, we proposed estimators which highly depend on the structure of the

boundary of the unknown support. In particular, when the support was supposed to be poly-

topal with at most r vertices, for some known integer r, our estimator was also, by construction,

a polytope with at most r vertices. Now we will construct an estimator which does not depend

on any other knowledge than the convexity of the unknown support, and the fact that it is
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included in [0, 1]d. This estimator will achieve the same rate as the estimators of Section 2.2.1

in the polytopal case, that is, r lnn/n, where r is the unknown number of vertices of the sup-

port, and the same rate as the convex hull estimator K̂n, in the case where the support is not

polytopal, or is polytopal but with a large number of vertices. Note that if the unknown support

is a polytope with r vertices, with r larger than (lnn)−1n
d−1
d+1 , then the rate of convergence of

the risk of K̂n, not larger than n
−2/(d+1), is smaller than the rate r(lnn)/n of the upper bound

of the risk of P̂
(r)
n . The idea which we develop here is inspired by Lepski’s method [Lep91]. The

classes P(1)
r , r ≥ d + 1, are nested, that is, P(1)

r ⊆ P(1)
r′ , for r ≤ r′. So if the true value of r is

unknown, it seems better to overestimate, than to underestimate it. Intuitively, it makes sense

to fit some polytope with more vertices to P , while the opposite may be impossible (e.g. on any

triangle, it is possible to fit well some quadrilateral, but on a square, it is impossible to fit well

a triangle). We use this idea in order to select an estimator among the preliminary estimators

P̂
(r)
n , r ≥ d+ 1, and K̂n.

Set Rn = ⌊n(d−1)/(d+1)/(lnn)⌋. For r = d+ 1, . . . , Rn − 1, denote by Q̂
(r)
n = P̂

(r)
n and define

Q̂
(Rn)
n = K̂n. Let C = βd + max(2dβd, c4), where c4 is the constant appearing in (2.10) and

define

r̂ = min

{

r ∈ {d+ 1, . . . , Rn} : |Q̂(r)
n △Q̂(r′)

n | ≤ 2Cr′ lnn
n

, ∀r′ = r, . . . , Rn

}

.

The integer r̂ is well defined ; indeed, the set in the brackets in the last display is not empty,

since the inequality is satisfied for r = Rn. Note that the definition of r̂ requires the knowledge

of the constant C, which can be made explicit by an investigation of the proofs, and depend on

d only.

The adaptive estimator is defined as P̂ adapt
n = Q̂

(r̂)
n . Then, if we denote by P∞ = K1, we

have the following theorem.

Theorem 2.12. Let n ≥ 2. Let φn,r = min
(

r lnn
n , n−

2
d+1

)

, for all integers r ≥ d + 1 and

r = ∞. There exists a positive constant c(d), which depends on d only, such that

sup
d+1≤r≤∞

sup
P∈Pr

EP

[

φ−1
n,r|P̂ adapt

n △P |
]

≤ c(d),

Thus, we show that one and the same estimator P̂ adapt
n attains the optimal rate, up to a

logarithmic factor, simultaneously on all the classes Pr, r ≥ d + 1, and on the class K1 of all

convex bodies in [0, 1]d. In particular, the adaptive estimator deals well with misspecification.

If the model is misspecified, e.g., the true support is believed to be polytopal, although it is
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not, the adaptive estimator P̂ adapt
n will perform as well as K̂n, as far as the rate of convergence

is concerned.

The proof of this theorem is similar to that of Theorem 3.6, in Section 3.6. It requires a

deviation inequality for K̂n, which will be given (2.10), see Section 2.3.1.

2.3 Further results and open problems

2.3.1 A universal deviation inequality for the random convex hull

In this section, we are interested in deviation inequalities for the missing volume of K̂n, i.e., in

bounding from above the probability

PK [|K\K̂n| > ǫ|K|],

for K ∈ Kd and ǫ > 0. This would yield, as a consequence, upper bounds for the moments

EK [|K\K̂n|q], q > 0. In order to obtain a deviation inequality, we first prove that it is sufficient

to obtain a deviation inequality for K ∈ K(1)
d , by a scaling argument. Then, we use the metric

entropy of the class K(1)
d . The deviation inequality that we prove is uniform on the class Kd,

hence it is of much interest in a statistical framework, in the minimax setup.

As we saw in Section 2.1.2, many - asymptotic or not - properties of the expected missing

volume are now very well-understood. Much less is known about its higher moments and devi-

ation probabilities. Using a jackknife inequality for symmetric functions of n random variables,

Reitzner [Rei03] proved that if K is a d-dimensional convex body with smooth boundary, the

variance of the missing volume is bounded from above by a positive constant times n−(d+3)/(d+1),

and he conjectured that this is the actual order of magnitude for the variance. In addition, he

proved that the second moment of the missing volume is exactly of the order n−4/(d+1), with

explicit constants in terms of the affine surface area of K. Vu [Vu05] obtained deviation in-

equalities for general convex bodies of volume one, involving quantities such as the volume of

the wet part, and derived precise deviation inequalities in the cases when K is a polytope, and

when it has a smooth boundary. These inequalities involve constants which depend on K in a

non explicit way. The main tools are martingale inequalities. As a consequence, upper bounds

on the moments of the missing volume are proved, again with implicit constants depending

on K. If K has a smooth boundary and is of volume one, Vu [Vu05] showed the existence of

positive constants c and α, which depend on K, such that for any λ ∈
(

0, (α/4)n
− (d−1)(d+3)

(d+1)(3d+5)

]

,
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the following holds:

P

[

∣

∣

∣
|K̂n| − E[|K̂n|]

∣

∣

∣
≥
√

αλn−
d+3
d+1

]

≤ 2 exp(−λ/4) + exp
(

−cn
d−1
3d+5

)

.

This inequality leads to upper bounds on the variance and on the q-th moment of the missing

volume, respectively of orders n−(d+3)/(d+1) and n−2q/(d+1), for q > 0, for a convex body K of

volume one with smooth boundary, up to constant factors depending on K in an unknown way.

We propose, in this section, a universal deviation inequality and upper bounds on the moments

of the missing volume, i.e., results with no restriction on the volume and boundary structure of

K, and with constants which do not depend on K. The only assumptions on K are compactness

and convexity.

Theorem 2.13 ([Bru14c]). There exist two positive constants c1 and c2, which depend on d

only, such that, for all n ≥ 1,

sup
K∈Kd

PK

[

n

(

|K\K̂n|
|K| − c2n

−2/(d+1)

)

> x

]

≤ c1e
−x/(dd), ∀x > 0.

In Theorem 2.13, the constant c2 depends exponentially on the dimension d. This seems to

be the price for getting a uniform deviation inequality on Kd. Note that the missing volume is

normalized here by the volume of K. Theorem 2.13 may be refined by normalizing the missing

volume by another functional of K, which could be expressed in terms of the affine surface area

of K, as in [Sch94] where only the first moment of the missing volume is considered.

Note that an easy adaptation of the proof of Theorem 2.13 yields an similar result for the

smaller class K(1)
d :

sup
K∈K(1)

d

PK

[

n
(

|K\K̂n| − c4n
−2/(d+1)

)

> x
]

≤ c1e
−x/βd , ∀x > 0, (2.10)

where c4 = c2βd/(d
d), c2 being the same constant as in Theorem 2.13, and c1 is the same

positive constant as in Theorem 2.13 as well. This deviation inequality, uniform on K(1)
d , is

useful for adaptation in Theorem 2.12.

Theorem 2.13 allows one to derive upper bounds for all the moments of the missing volume.

Indeed, applying Fubini’s theorem leads to the following corollary.

Corollary 2.2. For every positive number q, there exists some positive constant c(d, q), which
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depends on d and q only, such that, for all n ≥ 1,

EK

[

|K\K̂n|q
]

≤ c(d, q)|K|qn−2q/(d+1), ∀K ∈ Kd.

Note that no restriction is made on K except for its compactness and convexity. In par-

ticular, its boundary may not be smooth, and K may be located anywhere in the space, not

necessarily in some given compact set. In this sense, the exponential deviation inequality (2.13)

and the inequality on the moments in the previous corollary are universal. Combining this

corollary with the lower bound for the minimax risk given in [MT95] in a statistical framework

yields the following result.

Corollary 2.3. For every positive number q, there exist some positive constants c1(d, q) and

c2(d, q), which depend on d and q only, such that, for all n ≥ 1,

c1(d, q)n
−2q/(d+1) ≤ sup

K∈Kd

EK

[(

|K\K̂n|
|K|

)q]

≤ c2(d, q)n
−2q/(d+1).

This corollary shows that the upper bound in Corollary 2.2 is sharp, up to constants. In

next Section, we prove an upper bound of the moments of the number of vertices of K̂n, and

we show that this upper bound is tight.

2.3.2 Moments of the number vertices of the convex hull estimator

Let q ≥ 1 be a positive integer. Let us reproduce the same scheme of the proof of (2.1). Denote

by Vn+q the set of vertices of K̂n+q, and by Vn+q its cardinality, i.e., the number of vertices of

K̂n+q. For j = 1, . . . , q, it is clear that if Xn+j is a vertex of K̂n+q, then Xn+j /∈ K̂n. Therefore,

E⊗n
K [|K\K̂n|q] = E⊗n

K

[∫

Kq

1(xn+1 /∈ K̂n, . . . , xn+q /∈ K̂n)dxn+1 . . . dxn+q

]

= |K|qP⊗n+q
K

[

Xn+j /∈ K̂n, ∀j = 1, . . . , q
]

≥ |K|qP⊗n+q
K [Xn+j ∈ Vn+q, ∀j = 1, . . . , q]

=
|K|q
(

n+q
q

)

∑

1≤i1<...<iq≤n+q

P
⊗n+q
K

[

Xij ∈ Vn+q, ∀j = 1, . . . , q
]

=
|K|q
(

n+q
q

)E
⊗n+q
K





∑

1≤i1<...<iq≤n+q

1
(

Xij ∈ Vn+q, ∀j = 1, . . . , q
)
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=
|K|q
(

n+q
q

)E
⊗n+q
K

[(

Vn+q

q

)]

=
|K|qE⊗n+q

K [Vn+q(Vn+q − 1) . . . (Vn+q − q + 1)]

(n+ q)(n+ q − 1) . . . (n+ 1)
.

This yields the following:

E
⊗n+q
K [Vn+q(Vn+q − 1) . . . (Vn+q − q + 1)]

≤ E⊗n
K

[(

|K\K̂n|
|K|

)q]

(n+ q)(n+ q − 1) . . . (n+ 1). (2.11)

Combined with Corollary 2.2, (2.11) implies:

sup
K∈Kd

EK [Vn(Vn − 1) . . . (Vn − q + 1)] ≤ cn
q(d−1)
d+1 ,

where c is a positive constant, which depends on d and q only. Since the polynomial xq is a

linear combination of the polynomials x(x−1) . . . (x−k+1), 0 ≤ k ≤ q, the following inequality:

sup
K∈Kd

EK [V q
n ] ≤ Bd,qn

q(d−1)
d+1 , (2.12)

for some positive constant Bd,q which depends on d and q only. Note that (2.12) can be extended

to non integer values of q, by Hölder inequality.

Let K ∈ Kd, n a positive integer, and q ≥ 1. By Hölder inequality, EK [V q
n ] ≥ EK [Vn]

q and,

by Efron’s identity (2.1),

EK [V q
n ] ≥ nqEK

[

|K\K̂n−1|
|K|

]q

.

If the affine surface area of K is positive, which occurs, for instance, when the boundary of K

is smooth with positive Gauss curvature, then it is known that EK

[

|K\K̂n−1|
|K|

]

is exactly of the

order of n−2/(d+1) (see [Sch93b]). Therefore, for such convex bodies K, the rate of the upper

bound in (2.12) is tight.

Theorem 2.14. Let n be a positive integer, and q any real number greater or equal to one.

Then, for some positive constants bd,q and Bd,q which depend on d and q only,

bd,qn
q(d−1)
d+1 ≤ sup

K∈Kd

EK [V q
n ] ≤ Bd,qn

q(d−1)
d+1 .
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2.3.3 Efron’s identity revisited

An extension of Efron’s identity

We have already mentioned Efron’s identity (2.1) several times. It connects the expected volume

of the convex hull K̂n of n i.i.d. random points uniformly distributed in some convex body,

and the expected number of vertices of K̂n+1. We used a similar idea in Section 2.3.2. As in

the proof of (2.1), cf. Section 2.5.2, it is clear that the vertices of K̂n+1 are those points of the

sample of size n+ 1, which are not included in the convex hull of all the other n points of that

sample. Let now C be a given class of compact and measurable sets of positive volume in Rd,

and let G ∈ C. Let X1, . . . , Xn+1 be i.i.d. random variables, uniformly distributed in G. Denote

by Ĝn the maximum likelihood estimator on the class C, based on X1, . . . , Xn and defined as

Ĝn ∈ argmin
G′∈C,Xi∈G′,i=1,...,n

|G′|. (2.13)

This is the maximum likelihood estimator, when the candidates are all members of C. The

random set Ĝn is a set of minimal volume among all sets in C, which contain the whole sam-

ple X1, . . . , Xn. We assume there exists such a set. By definition, |Ĝn| ≤ |G| and therefore

|Ĝn△G| ≤ 2|G\Ĝn|. For i = 1, . . . , n+ 1, consider

Ĝn+1,−i ∈ argmin
G′∈C,Xj∈G′,j=1,...,n+1,j 6=i

|G′|.

This is the maximum likelihood estimator on the class C, based on the sample of size n + 1

excluding the i-th observation. Assume that for each i, Ĝn+1,−i exists and that it is unique

PG-almost surely. Note that Ĝn = Ĝn+1,−(n+1). Then, similarly to the argument in Section

2.2.1, it is clear that

EG[|Ĝn△G|] ≤
2|G|EG[V

′
n+1]

n+ 1
, (2.14)

where V ′
n+1 is the number of such Xi, that do not belong to Ĝn+1,−i, for i = 1, . . . , n + 1. If

C = Kd, it is clear that V ′
n+1 = Vn+1, which is the number of vertices of K̂n+1. We saw, in

Section 2.2.1, that the properties of the random variable V ′
n+1 are more intricate if C = Pr. In

particular, in that case, it is not clear that this variable is bounded from above by a constant

which does not depend on n, as would suggets our intuition. However, there are some other

cases for which the properties of the random variable V ′
n+1 are more simple, and we give as an

example, the case of closed Euclidean balls.
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Parametric families of supports

Let us keep the notation of the previous section, and denote by V ′′
n+1 the number of points of

the sample X1, . . . , Xn+1 which are on the boundary of Ĉn+1. The main idea of this section

is to use that if Xi does not belong to Ĉn+1,−i, then it should be on the boundary ∂Ĉn+1 of

Ĉn+1. In Section 2.2.1, we saw that this is not true if C = Pr. However, this holds for several

classes of sets, i.e., V ′
n+1 = V ′′

n+1. For some parametric families C, the boundary of any C ′ ∈ C
is entirely determined by a finite number of parameters, and therefore, among points in general

position, only a fixed number of them can be on the boundary of one and the same set C ′ ∈ C.
This number will be an upper bound for V ′′

n+1, PG-almost surely. We do not give a precise

definition of the notion of being in general position, but if n is large enough, any set of n i.i.d.

random points in Rd, whose probability distribution is absolutely continuous with respect to the

Lebesgue measure, is in general position, PG-almost surely. We propose the following example.

Estimation of balls Consider the class Bd of all closed Euclidean balls in Rd with positive ra-

dius. In this case, Ĉn+1 is the ball of smallest radius, containing the whole sample X1, . . . , Xn+1.

The smallest enclosing circle problem, in the plane, was originally posed by Sylvester [Syl57],

and its generalizations to higher dimensions are still challenging problems, both for theoreti-

cal and computational reasons, see for instance [Wel91, CHM06, DMM07] and the references

therein. If S is a finite subset of Rd, we denote by B(S) the smallest closed Euclidean ball which

contains S. It is called the smallest enclosing ball of S. We give two useful lemmas.

Lemma 1 (Existence and Uniqueness of the Enclosing Ball). Let S be a set of n distinct points

in Rd, for n ≥ 2. The smallest enclosing ball B(S) exists and is unique.

The uniqueness is very simple and intuitive. Let B1 and B2 be two closed balls of minimal

radius, both containing S, and assume B1 6= B2. Let a1 and a2 the respective centers of B1 and

B2, and let r > 0 be their common radius. It is clear that B1 ∩ B2 6= ∅, since both B1 and B2

contain S. Thus, r ≥ ρ(a1,a2)
2 . Let a = a1+a2

2 . The Euclidean ball B0 = Bd
2

(

a,

√

r2 − ρ(a1,a2)2

4

)

contains B1 ∩B2, and therefore S ⊆ B0, and its volume is strictly less than r. This contradicts

the minimality of r.

Lemma 2. Let S be a finite set of points in Rd, and x ∈ Rd\S. If x /∈ B(S), then x ∈
∂B (S ∪ {x}).

The proofs of these lemmata can be found in the appendix of this chapter.
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Therefore, it follows that (2.14) can be applied, with V ′
n+1 being the number of Xi, i =

1, . . . , n + 1 which belong to the boundary of Ĉn+1, by Lemma 2. The weighted minimax risk

on the class Bd, for Model (DS), is at most of the order 1/n:

Theorem 2.15. For all n ∈ N∗,

Qn(Bd) ≤
2d+ 2

n
.

Proving a lower bound of the order of 1/n for Qn(Bd) is straightforward, using usual argu-

ments for the lower bound.

Non parametric families of supports

In this section, our main purpose is to present general ideas, and to show that they can lead to

optimal results.

Let C be a class of compact and measurable subsets of [0, 1]d with positive volume. Let

(CM )M≥1 be a nested family of parametric classes of subsets of Rd : CM ⊆ CM+1, ∀M ≥ 1.

Assume that there exists a positive number α, which may depend on d, such that for allM ≥ 1,

the dimension of CM is less or equal to αM , i.e., there is an surjective function from a subset of

Rk onto CM , for some k ≤ αM . This means that any G ∈ CM can be described by a parameter

θ ∈ Rk. Assume that each G ∈ C can be well approximated by some G∗
M ∈ CM , containing G.

Namely, assume that there exists a parameter β > 0 and a positive constant c, such that for all

G ∈ C and all M ≥ 1, there exists G∗
M ∈ CM satisfying G ⊆ G∗

M , and such that:

|G∗
M\G| ≤ cM−β .

Note that the classes CM ,M ≥ 1 need not be included in C. In particular, we do not assume

that the sets which belong to CM are included in [0, 1]d.

Assume Model (DS), with G ∈ C. ForM ≥ 1, let Ĝ
(M)
n be the maximum likelihood estimator

of G, selected from the class of candidates CM :

Ĝ(M)
n ∈ argmin

G′∈CM ,Xi∈G′,i=1,...,n
|G′|.

For i = 1, . . . , n+ 1, define also

Ĝ
(M)
n+1,−i ∈ argmin

G′∈CM ,Xj∈G′,j=1,...,n+1,j 6=i
|G′|.

Assume that for each i, Ĝn+1,−i exists and is unique, PG-almost surely. By definition, |Ĝ(M)
n | ≤
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|G∗
M | and therefore, |Ĝ(M)

n △G∗
M | ≤ 2|G∗

M\Ĝ(M)
n |. Let us bound the risk of Ĝ

(M)
n :

EG[|Ĝ(M)
n △G|] ≤ EG[|Ĝ(M)

n △G∗
M |] + |G∗

M△G| by the triangle inequality

≤ 2EG[|G∗
M\Ĝ(M)

n |] + cM−β

≤ 2|G∗
M\G|+ 2EG[|G\Ĝ(M)

n |] + cM−β

≤ 2EG[|G\Ĝ(M)
n |] + 3cM−β , (2.15)

where we used the inequality |A\C| ≤ |A\B| + |B\C|, for all measurable sets A,B and C.

Following (2.14),

EG[|G\Ĝ(M)
n |] ≤ |G|EG[V

′
n+1]

n+ 1

where V ′
n+1 is the number of Xi that do not belong to Ĝ

(M)
n+1,−i, for i = 1, . . . , n + 1. Then,

continuing (2.15), and recalling that |G| ≤ 1, since G ⊆ [0, 1]d,

EG[|Ĝ(M)
n △G|] ≤ 2EG[V

′
n+1]

n+ 1
+ 3cM−β . (2.16)

Assume that if Xi /∈ Ĝ
(M)
n+1,−i, then Xi ∈ ∂Ĝ

(M)
n+1, PG-almost surely. Then, V ′

n+1 ≤ V ′′
n+1, where

V ′′
n+1 is the number of Xi’s that are on the boundary of Ĝ

(M)
n+1, i = 1, . . . , n+ 1. It is natural to

assume that V ′′
n+1 ≤ αM PG-almost surely. Indeed, Ĝ

(M)
n+1 belongs to the parametric class CM ,

and thus, it is entirely determined by at most αM real parameters. Then, (2.16) becomes:

EG[|Ĝ(M)
n △G|] ≤ 2M

n
+ 3cM−β . (2.17)

An optimal choice of the tuning parameter M is M∗ = ⌊n1/(β+1)⌋, and yields:

EG[|Ĝ(M∗)
n △G|] ≤ c′n−

β
β+1 , ∀G ∈ C, (2.18)

where c′ is a constant independent on n and G. Let us give two examples.

Convex bodies and circumscribed polytopes Let C = K(1)
d , and let CM be the class of all

d-dimensional polytopes with at most M facets. We recall that a facet is a (d− 1)-dimensional

face. The dimension of CM is (d + 1)M . In addition, it is well known (see [Gru91, GG97])

that every G ∈ K(1)
d can be approximated by a circumscribed polytope G∗

M ∈ CM satisfying

|G∗
M\G| ≤ cM−2/(d−1), for some positive constant c which depends on d only. Here, β = 2/(d−1)

and β/(β + 1) = 2/(d+ 1), which is the exponent of the minimax rate on the class K(1)
d .
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Boundary fragments The second example deals with boundary fragments. Let us introduce

some notation. Let L2([0, 1]) be the set of all real valued measurable functions f defined on the

interval [0, 1], such that
∫ 1
0 f

2 <∞. The Fourier basis (φj)j≥0 of L2([0, 1]) is defined as follows.

Let φ0(x) = 1, ∀x ∈ [0, 1]. For j ∈ N∗, let φ2j−1 and φ2j be the functions

φ2j−1(x) =
√
2 sin(2πjx) and φ2j(x) =

√
2 cos(2πjx), ∀x ∈ [0, 1].

Let the sequence (aj)j≥0 be defined as

aj =







2π(j + 1) if j is odd,

2πj if j is even.

The Fourier coefficients of a function f ∈ L2([0, 1]) are the projections of f on the complete

orthonormal system {φj : j ≥ 0} of L2([0, 1]), with respect to the scalar product < f1, f2 >=
∫ 1
0 f1f2, ∀f1, f2 ∈ L2([0, 1]). Let γ and L be positive numbers, and let Θ(γ, L) be the class of

all real valued sequences (θ(j))j≥0 satisfying

∞
∑

j=1

aγj |θ(j)| ≤ L.

Denote by Σ(γ, L) the class of all functions f ∈ L2([0, 1]), whose coefficients are in Θ(γ, L), and

such that 0 ≤ f ≤ 1. If M is a positive integer, consider

ΘM (γ, L) =







(τ (0), . . . , τ (M−1)) ∈ RM :

M−1
∑

j=0

aγj τ
(j) ≤ L.







,

and denote by ΣM (γ, L) the class of all functions f =

M−1
∑

j=0

τ (j)φj , such that (τ (0), . . . , τ (M−1)) ∈

ΘM (γ, L). Let f =
∑∞

j=0 τ
(j)φj ∈ Σ(γ, L), and let fM be the truncation of f up to the M first

terms: fM =
∑M−1

j=0 τ (j)φj . For x ∈ [0, 1],

|f(x)− fM (x)| ≤
√
2

∞
∑

j=M

|τ (j)|
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≤
√
2

aγM

∞
∑

j=M

aγM |τ (j)|

≤
√
2L

(2πM)γ
. (2.19)

Thus, if we consider f∗M = fM +
√
2L

(2πM)γ , then

f∗M ≥ f, (2.20)

and f∗M ∈ ΣM (γ, L). In addition, by (2.19),

∫ 1

0
|f∗M − f | ≤ 2

√
2L

(2πM)γ
. (2.21)

Denote by G the boundary fragment associated to f , that is,

G = {(x, y) ∈ [0, 1]× R : 0 ≤ y ≤ f(x)}.

Similarly, denote by G∗
M the boundary fragment associated to f∗M . Denote by C(γ, L) the class

of all sets which are boundary fragments associated to a function in Σ(γ, L), and by CM (γ, L)

the class of all sets which are boundary fragments associated to a function in ΣM (γ, L), for

M ≥ 1. For M ≥ 1, the class ΣM (γ, L) has dimension M . In addition, by (2.20) and (2.21),

G ⊆ G∗
M

and

|G∗
M\G| ≤ 2

√
2L

(2πM)γ
.

Here, β = γ, and β/(β + 1) = γ/(γ + 1), which is a usual exponent for the minimax rate of

convergence.

2.3.4 Non uniform distributions

The density is separated from zero

Model (DS) consists in observing realizations of a uniform distribution on some unknown subset

of Rd. The assumption that the underlying distribution is uniform is very strong, and may be

too restrictive. An easy relaxation consists in assuming that the density is supported on an

unknown convex body, and that it is separated from zero on its support. Let a ∈ (0, 1] be

a given positive number. For K ∈ Kd, denote by FK(a) the class of all densities f on Rd,
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such that ∀x ∈ K, f(x) ≥ a
|K| and ∀x ∈ Rd\K, f(x) = 0. Assume that X1, . . . , Xn are i.i.d.

random variables, with density f ∈ FK(a), for some K ∈ Kd. As for Model (DS), the maximum

likelihood estimator of K is still K̂n = CH(X1, . . . , Xn), or P̂
(r)
n if K is known to belong to the

class P(1)
r .

It is easy to adapt the proofs of Theorem 2.13 and 2.9 to show the following.

Theorem 2.16. Let a ∈ (0, 1]. There exist a positive constant c1 which depends on d only and

a positive constant c3, which depends on d and a only, such that:

sup
K∈Kd

sup
f∈FK(a)

Pf

[

n

(

|K\K̂n|
|K| − c3n

−2/(d+1)

)

> x

]

≤ c1e
−ax/(dd), ∀x > 0.

The constant c1 is the same as in Theorem 2.13, and c3 = c2/a, where c2 is the same as in

Theorem 2.13.

In the polytopal case, the following theorem holds:

Theorem 2.17. Let a ∈ (0, 1]. Let r ≥ d + 1 be an integer, and n ≥ 2. Then, there exists a

positive constant c1, which depends on d and a only, such that:

sup
P∈P(1)

r

sup
f∈FP (a)

Pf

[

n

(

|P̂ (r)
n △P | − 4dr lnn

an

)

≥ x

]

≤ c1e
−ax/2, ∀x > 0.

From these two theorems, it follows that K ∈ Kd and P ∈ P(1)
r can be estimated at the same

speed of convergence in the non uniform case considered in this section, as in the uniform case.

It is clear that the lower bounds proved in the uniform case still hold here, since the uniform

density on a convex body K belongs to the class FK(a), for all a ∈ (0, 1].

The density decreases slowly to zero

Estimation of the compact and convex support K of a density in Rd seems still possible if

that density does not decrease too fast to zero near the boundary of K. Let α,L be positive

numbers. Assume that f is a density supported on some K ∈ Kd. For ǫ ∈ (0, 1), consider

Kǫ =
{

x ∈ K : f(x) ≤ ǫ
|K|

}

. Suppose that f satisfies a margin condition of this kind:

|Kǫ| ≤ L|K|ǫα, ∀ǫ ∈ (0, 1), (2.22)

Similar conditions appear in classification, e.g. in smooth discrimination analysis, see

[MT99], and in inference on level sets [Pol95, Tsy97]. In [CF97], such an assumption is made on

the density whose support is to be estimated, using a plug-in estimator. It allows to separate

39



well but smoothly the two sets we are interested in here, namely K and its complement. Other

conditions of slow decrease of f near the boundary of K can be considered. See [Tsy97] for

example: f(x) can be assumed to decrease at most as r1/α, where r is the distance from x to

∂K.

LetX1, . . . , Xn be i.i.d. random points with density f in Rd. Again, the maximum likelihood

estimator of K ∈ Kd is K̂n = CH(X1, . . . , Xn). Let us adapt the proof of Efron’s identity (2.1)

to the present case. For any ǫ ∈ (0, 1), we have :

E⊗n
f

[

|K\K̂n|
]

= E⊗n
f

[∫

K
1(x /∈ K̂n)dx

]

= E⊗n
f

[

∫

Kǫ

1(x /∈ K̂n)dx+

∫

K\Kǫ

1(x /∈ K̂n)dx

]

≤ |Kǫ|+
|K|
ǫ

E⊗n
f

[

∫

K\Kǫ

1(x /∈ K̂n)f(x)dx

]

≤ L|K|ǫα +
|K|
ǫ

P⊗n+1
f

[

Xn+1 /∈ K̂n

]

≤ L|K|ǫα +
|K|E⊗n+1

f [Vn+1]

(n+ 1)ǫ
, (2.23)

where Vn+1 is the number of vertices of K̂n+1.

The choice ǫ =
(

E⊗n+1
f [Vn+1]/(n+ 1)

)1/(α+1)
yields:

Theorem 2.18. Let K ∈ Kd, and f a density supported on K and satisfying (2.22). The risk

of the convex hull estimator is bounded from above by:

E⊗n
f

[

|K\K̂n|
|K|

]

≤ (L+ 1)

(

E⊗n+1
f [Vn+1]

(n+ 1)

) α
α+1

.

The uniform distribution on K corresponds to the limiting case, L = 0, α = ∞, and this

theorem gives exactly Efron’s identity (2.1). In general, E⊗n+1
f [Vn+1] is not known, and its

computation remains an open problem. It can take a broad range of values, see for example

the work [HRW08] in the two-dimensional case, taken from game theory. Note that if f is a

concave function and α = 2, then f is the density of the random variable π(X̃), where pi is the

orthogonal projection of Rd+1 on Rd and X̃ is a random variable with uniform distribution on

a convex body K̃ ∈ Kd+1 satisfying π(K̃) = K. Therefore, in that case, Vn+1 is the number of

vertices of the orthogonal projection in Rd of the convex hull of n + 1 i.i.d. random variables

uniformly distributed in K̃.

40



In the one-dimensional case, d = 1, Vn+1 = 2, K̂n = [X(1), X(n)], where X(i) is the i-th order

statistic of X1, . . . , Xn, and Theorem 2.18 yields:

E⊗n
f

[

|K\K̂n|
|K|

]

≤ 2
1

α+1 (L+ 1)n−
α

α+1 .

2.3.5 Estimation of log-concave densities

Model (DS) consists of estimating the convex support of a uniform density in Rd. Such densities

are log-concave, i.e. their logarithm, taking values in [−∞,∞), is a concave function. Estimation

of log-concave densities in Rd is a particular case of density estimation under shape constraints.

It is a challenging domain, and log-concave densities are of particular interest, especially for

some of their properties, which are useful in many applications. First of all, some very important

and useful densities are log-concave, such as Gaussian densities, logistic, Gumbel, Laplace, etc.

Their level sets are convex. They are unimodal, and their convolution with any unimodal density

unimodal. In addition, the class of log-concave densities is closed under weak convergence.

In some recent leading works [CS10, CSS10, DW13], the maximum likelihood estimator of

a log-concave density has been studied. In particular, this estimator is proved to exist and

to be unique, and it is a tent function: it is supported on the convex hull of the sample, and

the subgraph of its logarithm on its support is a convex polytope. Its consistency and its

rate of convergence, measured with the Hellinger distance, have been studied, mostly in small

dimensions, d = 1, 2. In case of misspecification, i.e., when the true density is not log-concave,

under mild assumptions, the maximum likelihood estimator converges to the projection of that

density - with respect to the Kullback-Leiber divergence - on the class of log-concave densities.

Some questions, related to our work, remain open. In particular, how many vertices does

the graph of the maximum likelihood estimator have ? More generally, how many k-faces does

it have, for k = 1, . . . , d − 1 ? Is it possible, similarly to Efron’s identity, to connect the risk

of this estimator to its geometrical properties ? Does this estimator achieve the minimax rate

of convergence, if measured using the Hellinger distance between densities ? Or using a Lp

distance ?
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2.4 Proofs

Proof of Theorem 2.9

Let r ≥ d + 1 be an integer, and n ≥ 2. Let P0 ∈ P(1)
r and consider a sample X1, . . . , Xn of

i.i.d. random variables with uniform distribution on P0. For simplicity’s sake, we will denote

P̂n instead of P̂
(r)
n in this Section.

Let P̂n be the estimator defined in Theorem 2.9. Recall that P(1)
r,n is the class of all convex

polytopes of P(1)
r whose vertices lay on the grid

(

1
nZ
)d
, i.e. have as coordinates integer multiples

of 1/n. We first apply Lemma 6, in Section 2.5.1. In particular, taking P = P0 or P = P̂n in

Lemma 6, we can find two polytopes P ∗ and P̃n in P(1)
r,n such that











|P ∗△P0| ≤ K1
n

P ∗ ⊆ P
√
d/n

0 , P0 ⊆ (P ∗)
√
d/n

and










|P̃n△P̂n| ≤ K1
n

P̃n ⊆ P̂
√
d/n

n , P̂n ⊆ P̃
√
d/n

n .

Note that P̃n is random. Let ǫ > 0. By construction, |P̂n| ≤ |P0|, so |P̂n△P0| ≤ 2|P0\P̂n|.
Besides, if G1, G2 and G3 are three measurable subsets of Rd, the following triangle inequality

holds :

|G1\G3| ≤ |G1\G2|+ |G2\G3|. (2.24)

Let us now write the following inclusions between the events.

{

|P̂n△P0| > ǫ
}

⊆
{

|P0\P̂n| > ǫ/2
}

⊆
{

|P ∗\P̃n| > ǫ/2− 2K1

n

}

⊆
⋃

P

{

P̃n = P
}

, (2.25)

where the last union is over the class of all P ∈ P(1)
r,n that satisfy the inequality |P ∗\P | >

ǫ/2− 2K1
n . Let P be such a polytope, then if P̃n = P , then necessarily the sample {X1, . . . , Xn}
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is included in P
√
d

n , by definition of P̃n, and (2.25) becomes

PP0

[

P̃n = P
]

≤ PP0

[

Xi ∈ P
√
d

n , i = 1, . . . , n
]

≤
(

1− |P0\P
√

d
n |

|P0|

)n

≤
(

1− |P0\P
√
d

n |
)n

, since |P0| ≤ 1

≤
(

1− |P ∗\P |+ |P ∗\P0|+ |P
√
d

n \P |
)n

, using (2.24) twice

≤
(

1− ǫ/2 +
4K1

n

)n

≤ C1 exp(−nǫ/2), (2.26)

where C1 = e4K1 . Therefore, using (2.25) and (2.26) and denoting by #P(1)
r,n the cardinality of

the finite class P(1)
r,n ,

PP0

[

|P̂n△P0| > ǫ
]

≤ #P(1)
r,nC1 exp(−nǫ/2)

≤ (n+ 1)drC1 exp(−nǫ/2)

≤ C1 exp(−nǫ/2 + 2dr lnn). (2.27)

It turns out that if we take ǫ of the form
4dr lnn

n
+
x

n
, (2.27) becomes

PP0

[

n

(

|P̂n△P0| −
4dr lnn

n

)

≥ x

]

≤ C1e
−x/2, (2.28)

which holds for any x > 0 and any P0 ∈ P(1)
r . Theorem 2.9 is proved. �

Proof of Theorem 2.10

Let r ≥ 9 be an integer, supposed to be even, without loss of generality and assume n ≥ r.

Consider a regular convex polytope P ∗ in [0, 1]2 with center C = (1/2, 1/2) and with r/2

vertices, denoted by A0, A2, . . . , Ar−2, such that for all k = 0, . . . , r/2− 1, the distance between

A2k and the center C is 1/2. Let A1, A3, . . . , Ar−1 be r/2 points built as in Figure 2.2: for

k = 0, . . . , r/2 − 1, A2k+1 is on the mediator of the segment [A2k, A2k+2], outside P ∗, at a

distance δ = h/2 cos(2π/r) tan(4π/r) of P ∗, with h ∈ (0, 1) to be chosen. Note that by our

construction, A2k and A2k+2 are vertices of the convex hull of A0, A2, . . . , Ar−2 and A2k+1.

Let us denote by Dk the smallest convex cone with apex C, containing the points A2k, A2k+1

and A2k+2, as drawn in Figure 2.2. Note that the cones Dk have pairwise a null Lebesgue
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Figure 2.2: Construction of hypotheses for the lower bound

measure intersection. For ω = (ω0, . . . , ωr/2−1) ∈ {0, 1}r/2, we denote by Pω the convex hull of

P ∗ and the points A2k+1, k = 0, . . . , r/2− 1 such that ωk = 1.

The proof is inspired by Assouad’s lemma, see [Tsy09, Section 2.7.2].

For k = 0, . . . , r/2− 1, and (ω0, . . . , ωk−1, ωk+1, . . . , ωr/2−1) ∈ {0, 1}r/2−1, we denote by

ω(k,0) = (ω0, . . . , ωk−1, 0, ωk+1, . . . , ωr/2−1) and by

ω(k,1) = (ω0, . . . , ωk−1, 1, ωk+1, . . . , ωr/2−1).

Note that for k = 0, . . . , r/2 − 1, and (ω0, . . . , ωk−1, ωk+1, . . . , ωr/2−1) ∈
{0, 1}r/2−1,

|Pω(k,0)△Pω(k,1) | = δ

2
cos(2π/r).

By a simple computation,

1− H(Pω(k,0) , Pω(k,1))2

2
=

√

1− |Pω(k,1)\Pω(k,0) |
|Pω(k,1) |

=

√

1− δ/2 cos(2π/r)

|Pω(k,1) |

≥
√

1− δ cos(2π/r)

4
(2.29)
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since |Pω(k,1) | ≥ |P ∗| ≥ 1/2. Now, let P̂ be any estimator of P ∗, based on a sample of n i.i.d.

random variables.

We have the following inequalities.

sup
P∈P(1)

r

EP

[

|P△P̂ |
]

≥ 1

2r/2

∑

ω∈{0,1}r/2
EPω

[

|Pω△P̂ |
]

≥ 1

2r/2

∑

ω∈{0,1}r/2

r/2−1
∑

k=0

EPω

[

|(Pω ∩Dk)△(P̂ ∩Dk)|
]

=
1

2r/2

r/2−1
∑

k=0

∑

ω∈{0,1}r/2
EPω

[

|(Pω ∩Dk)△(P̂ ∩Dk)|
]

=
1

2r/2

r/2
∑

k=0

∑

. . .
∑

ω1,...,ωk−1,ωk+1,...,ωR/2−1

(

E
P

(k,0)
ω

[

|(P (k,0)
ω ∩Dk)△(P̂ ∩Dk)|

]

+ E
P

(k,1)
ω

[

|(P (k,1)
ω ∩Dk)△(P̂ ∩Dk)|

] )

. (2.30)

For k = 1, . . . , r/2− 1, and (ω0, . . . , ωk−1, ωk+1, . . . , ωr/2−1) ∈ {0, 1}r/2−2 we have

E
P

(k,0)
ω

[

|(P (k,0)
ω ∩Dk)△(P̂ ∩Dk)|

]

+ E
P

(k,1)
ω

[

|(P (k,1)
ω ∩Dk)△(P̂ ∩Dk)|

]

=

∫

(R2)n
|(P (k,0)

ω ∩Dk)△(P̂ ∩Dk)|dP⊗n

P
(k,0)
ω

+

∫

(R2)n
|(P (k,1)

ω ∩Dk)△(P̂ ∩Dk)|dP⊗n

P
(k,1)
ω

≥
∫

(R2)n

(

|(P (k,0)
ω ∩Dk)△(P̂ ∩Dk)|+ |(P (k,1)

ω ∩Dk)△(P̂ ∩Dk)|
)

×

min(dP⊗n

P
(k,0)
ω

, dP⊗n

P
(k,1)
ω

)

≥
∫

(R2)n

(

|(P (k,0)
ω ∩Dk)△(P (k,1)

ω ∩Dk)|
)

min(dP⊗n

P
(k,0)
ω

, dP⊗n

P
(k,1)
ω

),

by the triangle inequality,

=
δ cos(2π/r)

2

∫

(R2)n
min(dP⊗n

P
(k,0)
ω

, dP⊗n

P
(k,1)
ω

)

≥ δ cos(2π/r)

4



1−
H2(P⊗n

P
(k,0)
ω

,P⊗n

P
(k,1)
ω

)

2





2
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=
δ cos(2π/r)

4

(

1−
H2(P

P
(k,0)
ω

,P
P

(k,1)
ω

)

2

)2n

, (2.31)

using properties of the Hellinger distance (cf. Lemma 7).

Finally, by (2.29), (2.30) and (2.31),

sup
P∈P(1)

r

EP

[

|P△P̂n|
]

≥ rδ cos(2π/r)

16

(

1− δ cos(2π/r)

4

)n

≥ rh cos
(

2π
r

)2
tan

(

4π
r

)

16

(

1− h cos
(

2π
r

)2
tan

(

4π
r

)

8

)n

. (2.32)

Note that if we denote by x =
2π

r
> 0 and φ(x) =

1

x
cos(x)2 tan(2x), then φ(x) ≥ c1 for

some universal positive constant c1, since r is supposed to be greater or equal to 9. Therefore,

by the choice h = r/n ≤ 1 (we assumed that n ≥ r), (2.32) becomes

sup
P∈P(1)

r

EP

[

|P△P̂n|
]

≥ cr

n
,

for some universal positive constant c, and Theorem 2.10 is proved. �

Proof of Theorem 2.13

For the proof of Theorem 2.13, we first refer to lemmata 3 and 4, in Section 2.5.1.

The proof of Theorem 2.13 is inspired by that of Theorem 1 in [KST95], which derives an

upper bound of the risk of a convex hull type estimator of a convex function. Let K ∈ Kd. Let

E be an ellipsoid which satisfies the properties of Lemma 3, and T an affine transform in Rd

which maps E to the unit ball Bd
2 . Note that βd = | detT ||E|, so T is invertible. Let us denote

K ′ = T (K) and X ′
i = T (Xi), i = 1, . . . , n. Let K̂ ′

n be the convex hull of X ′
1, . . . , X

′
n. By the

definition of T , the following properties hold :

(i) K ′ ∈ K1
d,

(ii) X ′
1, . . . , X

′
n are i.i.d. uniformly distributed in K ′,

(iii) T (K̂n) = K̂ ′
n.

Furthermore, one has the following:

|K\K̂n|
|K| =

|K ′\K̂ ′
n|

| detT ||K| = |K ′\K̂ ′
n|

|E|
βd|K| ≤

dd

βd
|K ′\K̂ ′

n|. (2.33)
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Let δ = n−2/(d+1), and {G1, . . . , GNδ
} be a δ-net of K(1)

d with respect to the Hausdorff distance

dH , where Nδ ≤ τ1 exp
(

τ2δ
− d−1

2

)

, cf. Lemma 5. The definition of a δ-net is also given in

Lemma 5. Let j∗, ĵ ∈ {1, . . . , Nδ} be such that:

dH(K ′, Gj∗) ≤ δ and dH(K̂ ′
n, Gĵ) ≤ δ.

Let ε > 0. By (2.33) and (ii),

PK

[

|K\K̂n|
|K| > ε

]

≤ PK′

[

|K ′\K̂ ′
n| >

βd
dd
ε

]

. (2.34)

Let us recall that if G,G′ and G′′ are three Borel subsets of Rd, then the following triangle

inequality holds:

|G\G′′| ≤ |G\G′|+ |G′\G′′|. (2.35)

Thus, |K ′\K̂ ′
n| ≤ |K ′\Gj∗ | + |Gj∗\Gĵ | + |Gĵ\K̂ ′

n| and, by the definition of j∗ and ĵ, and by

Lemma 4 and (2.34),

PK

[

|K\K̂n|
|K| > ε

]

≤ PK′

[

|Gj∗\Gĵ | >
βd
dd
ε− 2α1δ

]

. (2.36)

Set ε′ = βd

dd
ε− 2α1δ. (2.36) implies

PK

[

|K\K̂n|
|K| > ε

]

≤
∑

j=1,...,Nδ :|Gj∗\Gj |>ε′

PK′

[

ĵ = j
]

. (2.37)

Let j ∈ {1, . . . , Nδ} be fixed, such that |Gj∗\Gj | > ε′. Recall that K̂ ′
n ⊆ Gδ

ĵ
, and thus if ĵ = j,

then X ′
i ∈ Gδ

j , i = 1, . . . , n. So,

PK′

[

ĵ = j
]

≤
(

PK′

[

X ′
1 ∈ Gδ

j

])n

≤
(

1−
|K ′\Gδ

j |
|K ′|

)n

≤
(

1− 1

βd
(|Gj∗\Gj | − |Gj∗\K ′| − |Gδ

j\Gj |)
)n

,

using the triangle inequality (2.35) and the fact that |K ′| ≤ βd. Denote by Iε′ = 1 if ε′ < βd,

and 0 otherwise. Continuing (2.37), and using (2.41), one gets:
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PK

[

|K\K̂n|
|K| > ε

]

≤
∑

j=1,...,Nδ :|Gj∗\Gj |>ε′

(

1− ε′

βd
+

(α1 + α2)δ

βd

)n

≤ Nδ

(

1− ε′

βd
+

(α1 + α2)δ

βd

)n

Iε′

≤ C1 exp

(

δ−
d−1
2 − εn

dd
+

(3α1 + α2)δn

βd

)

≤ C1 exp
(

α3δn− εn

dd

)

,

where α3 = 1+ 3α1+α2
βd

is a positive constant which depends on d only (recall that δ−
d−1
2 = δn).

Finally, by choosing ε = α3d
dδ + x/n, for any x > 0, and by setting the constant c2 = α3d

d,

one gets Theorem 2.13. �

2.5 Appendix to Chapter 2

2.5.1 Lemmata

Lemma 3. Let G ∈ Kd. There exists an ellipsoid E in Rd such that G ⊆ E and |E| ≤ dd|G|.

Proof of Lemma 3 can be found in [Lei59] and [HS07].

Next lemma is based on the Steiner formula for convex bodies. It shows that on K(1)
d , the

Nikodym distance is bounded from above by the Hausdorff distance, up to a positive constant.

Lemma 4. There exists some positive constant α1 which depends on d only, such that

|G△G′| ≤ α1dH(G,G′), ∀G,G′ ∈ K(1)
d .

The following lemma is due to Bronshtein [Bro76], and gives an upper bound for the metric

entropy of the class K(1)
d , with respect to the Nikodym distance. The original result is given

with respect to the Hausdorff distance, but using Lemma 4, an analogous version of this result

could be given with respect to the Nikodym distance. A δ-net (δ > 0) of a subclass C of K(1)
d ,

with respect to the Hausdorff distance, is a collection Gδ of sets of K(1)
d , such that for each

G ∈ C, there exists G∗ ∈ Gδ satisfying dH(G,G∗) ≤ δ.

Lemma 5 ([Bro76]). Let δ > 0. There exists a finite δ-net of K(1)
d , with respect to dH , of

cardinality Nδ ≤ τ1 exp
(

τ2δ
− d−1

2

)

, for some positive constants τ1 and τ2, which depend on d

only.

The value of the constants τ1 and τ2 can be found by investigating the proof of this lemma,
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in [Bro76]. Another result on the metric entropy of K(1)
d was obtained by Dudley [Dud74], but

in a weaker form than Bronshtein’s upper bound, and could not be used in our work.

Lemma 6. Let r ≥ d+1, n ≥ 2. There exists a positive constant K1, which depends on d only,

such that for any convex polytope P in P(1)
r there is a convex polytope P ∗ ∈ P(1)

r,n such that :











|P ∗△P | ≤ K1
n

P ∗ ⊆ P
√
d/n, P ⊆ (P ∗)

√
d/n.

Lemma 7 ([Tsy09, Section 2.4]). Let P and Q are two probability measures on the same prob-

ability space. The Hellinger distance satisfies the following properties.

• It is a distance between probability measures on a common probability space.

• 1− H (P⊗n,Q⊗n)
2

2
=

(

1− H (P,Q)2

2

)n

.

• Le Cam inequality:
∫

min(dP, dQ) ≥ 1

2

(

1− H(P,Q)2

2

)2

,

where we denoted by
∫

min(dP, dQ) =
∫

min(p, q)dν, where p and q are the respective

densities of P and Q with respect to a common σ-finite dominating measure ν.

2.5.2 Proofs of Lemmata and others

Proof of Efron’s identity (2.1) Let X1, . . . , Xn be n i.i.d. random variables, uniformly

distributed on a convex body K. Let K̂n = CH(X1, . . . , Xn). PK-almost surely, K̂n ⊆ K, so

E⊗n
K [|K̂n△K|] = E⊗n

K [|K\K̂n|]

= E⊗n
K

[∫

K
I(x /∈ K̂n)dx

]

= |K|E⊗n
K

[

1

|K|

∫

K
I(x /∈ K̂n)dx

]

= |K|E⊗n
K

[

PK [X /∈ K̂n|X1, . . . , Xn]
]

, (2.38)

where X is a random variable with the same distribution as X1, and independent of the sample

X1, . . . , Xn, and PK [·|X1, . . . , Xn] denotes the conditional distribution given X1, . . . , Xn. In

what follows, we set Xn+1 = X, so that we can consider the bigger sample X1, . . . , Xn+1. For

i = 1, . . . , n+ 1, we denote by K̂−i the convex hull of the sample X1, . . . , Xn+1 from which the

i-th variable Xi is withdrawn. Then K̂n = K̂−(n+1), and by continuing (2.38), and by using the
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symmetry of the sample,

E⊗n
K [|K̂n△K|] = |K|P⊗n+1

K [Xn+1 /∈ K̂−(n+1)]

=
|K|
n+ 1

n+1
∑

i=1

P⊗n+1
K [Xi /∈ K̂−(i)]

=
|K|
n+ 1

n+1
∑

i=1

P⊗n+1
K [Xi ∈ V (K̂n+1)], (2.39)

where V (K̂n+1) is the set of vertices of K̂n+1 = CH(X1, . . . , Xn+1). Indeed, with probability

one, the point Xi is not in the convex hull of the n other points if and only if it is a vertex of the

convex hull of the whole sample. By rewriting the probability of an event as the expectation of

its indicator function, one gets from (2.39),

E⊗n
K [|K̂n△K|] = |K|

n+ 1

n+1
∑

i=1

E⊗n+1
K [I(Xi ∈ V (K̂n+1))]

=
|K|
n+ 1

E⊗n+1
K

[

n+1
∑

i=1

I(Xi ∈ V (K̂n+1))

]

=
|K|E⊗n+1

K [Vn+1]

n+ 1
,

where Vn+1 denotes the cardinality of V (K̂n+1), i.e. the number of vertices of the convex hull

K̂n+1. Efron’s equality is then proved. �

Proof of Lemma 4 Let G ∈ Kd. Steiner formula (see Section 4.1 in [Sch93a]) states that

there exist some positive numbers L1(G), . . . , Ld(G), such that

|Gλ\G| =
d
∑

j=1

Lj(G)λ
j , λ ≥ 0. (2.40)

Besides, the Lj(G), j = 1, . . . , d are increasing functions of G. In particular, if G ∈ K(1)
d , then

Lj(G) ≤ Lj(B
d
2).

Let G,G′ ∈ K(1)
d , and let λ = dH(G,G′). Since G and G′ are included in the unit ball, λ is

not greater than its diameter, so λ ≤ 2. By definition of the Hausdorff distance, G ⊆ G′λ and

G′ ⊆ Gλ. Hence,

|G△G′| = |G\G′|+ |G′\G| ≤ |G′λ\G′|+ |Gλ\G|
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≤ 2
d
∑

j=1

Lj(B
d
2)λ

j ≤ λ
d
∑

j=1

Lj(B
d
2)2

j .

Lemma 4 is proved by setting α1 =
∑d

j=1 Lj(B
d
2)2

j .

Note that since δ ≤ 1, Steiner formula (2.40) implies, for G ∈ K(1)
d , that

|Gδ\G| ≤ α2δ, (2.41)

where α2 =
∑d

j=1 Lj(B
d
2). �

Proof of Lemma 6 Let r ≥ d+1, n ≥ 2 and P ∈ Pr. The convex polytope P ∗ is constructed

as follows. For any vertex x of P , let x∗ be the closest point to x in [0, 1]d with coordinates that

are integer multiples of 1
n (if there are several such points x∗, take any of them). The euclidean

distance between x and x∗ is bounded by
√
d
n .

Let us define P ∗ as the convex hull of all these resulting x∗. Then P ∗ ∈ P(1)
r,n .

It is clear that the Hausdorff distance between P and P ∗ is less than
√
d
n . Therefore if we

denote ǫ =
√
d
n we have P ∗ ⊆ P ǫ and P ⊆ (P ∗)ǫ.

Using Lemma 4, |P ∗△P | ≤ α1dH(P ∗, P ) ≤ α1

√
d

n . Lemma 6 is proved, by takingK1 = α1

√
d.

�

Proof of Lemma 1 For t > 0, let

C(t) =
⋂

p∈S
Bd

2(p, t).

When t is sufficiently large, the C(t) is nonempty. If t is too small, C(t) = ∅. In addition, note

that C(t) is strictly increasing with t, i.e., C(t) ( C(t′), ∀t < t′. Let t∗ = inf {t ≥ 0 : C(t) 6= ∅}.
Write C(t∗) as

C(t∗) =
⋂

k∈N∗
C(t∗ + 1/k).

For k ∈ N∗, the set C(t∗+1/k) is nonempty by the definition of t∗, and it is compact, as a finite

intersection of compact sets. Then, C(t∗) 6= ∅, as the intersection of a decreasing sequence of

nonempty compact sets. On the other hand, note that C(t) = ∅ for t < t∗. Let c ∈ C(t∗). Let

us show that Bd
2(c, t

∗) is an enclosing ball of S of minimal volume. Assume there exists a closed

ball B of radius t < t∗, such that S ⊆ B. Let a be the center of B. Then ρ(a, p) ≤ t, ∀p ∈ S.

This means that a ∈
⋂

p∈S
Bd

2(p, t) = C(t). This is impossible, since C(t) = ∅, t being strictly
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smaller than t∗.

The uniqueness of the smallest enclosing ball has been already proved. Note that it implies,

in particular, that the set C(t∗) contains exactly one point. �

Proof of Lemma 2 Let x ∈ Rd\S, and assume that x /∈ B(S).
Let r1 be the radius of B(S), and r2 that of B(S ∪ {x}). It is clear that r1 ≤ r2. Note also

that r1 < r2. Otherwise, if r1 were equal to r2, then by the uniqueness of B(S), this would mean

that B(S) = B(S ∪ {x}). This is impossible, since we have assumed that x /∈ B(S), although
x ∈ B(S ∪ {x}). Thus, r1 < r2.

Let c1 and c2 be the respective centers of B(S) and B(S ∪ {x}). We need to show that

ρ(c2, x) = r2. Assume the opposite, i.e., ρ(c2, x) < r2. Denote by C1(t) =
⋂

p∈S
Bd

2(p, t) and

C2(t) =
⋂

p∈S∪{x}
Bd

2(p, t), for t ≥ 0. Write

C2(r2) =





⋂

p∈S
Bd

2(p, r2)



 ∩Bd
2(x, r2)

= C1(r2) ∩Bd
2(x, r2). (2.42)

Since ρ(c2, x) < r2, B
d
2(c2, ǫ) ⊆ Bd

2(x, r2), for some small enough ǫ > 0. On the other hand,

C2(t) ⊆ C1(t), ∀t ≥ 0. In particular, c2 ∈ C2(r2) ⊆ C1(r2). Since C1(t) is strictly increasing

with t, and C1(r1) contains one point, C1(r2) must contain at least one point c other than c2.

By the convexity of the set C1(r2) - which is an intersection of convex sets -, the whole segment

[c, c2] is contained in C1(r2). Therefore, by (2.42), [c, c2]∩Bd
2(c2, ǫ) ⊆ C2(r2). This is impossible,

since C2(r2) must contain only one point, as proved in the proof of Lemma 1. �
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Chapter 3

A nonparametric regression model

In this chapter, we are interested in statistical inference in the regression model (RM). As in

the previous chapter, we investigate the polytopal case, with either known or unknown number

of vertices, and the general case. In addition, we concentrate on the one-dimensional case, in

order to understand what assumptions on the location, or on the size of the unknown set, yield

an improvement on the minimax rate of convergence. Finally, still in the one-dimensional case,

we compute the minimal size of the set so it can be detected, and we propose a decision rule

for testing consistently whether it is nonempty.

Estimation of convex bodies in a regression model with multiplicative noise has been inves-

tigated by Mammen and Tsybakov [MT95]. In [MT95] Mammen and Tsybakov proposed an

estimator of a convex set G, based on likelihood maximization over an ε-net, whose cardinality

is bounded in terms of the metric entropy [Dud74]. They showed that if the design is i.i.d.,

uniformly distributed in [0, 1]d, then the rate of their estimator is n−2/(d+1). In addition, they

proved that this is the minimax rate on the class K(1)
d for this multiplicative model, and that

if the design is arbitrary - not necessarily i.i.d. and uniformly distributed in [0, 1]d -, this rate

cannot be beaten by any estimator.

The regression model with additive noise (RM) has been studied in [KT92, KT93b], in the

case where G belongs to a smooth class of boundary fragments and the errors are i.i.d. Gaussian

variables with known variance. If γ is the smoothness parameter of the studied class, it is shown

that the rate of the minimax risk on the class is n−γ/(γ+d−1). The case of convex boundary

fragments is covered by the case γ = 2, which leads to the expected rate n−2/(d+1) for the

minimax risk. It is important to note that in these works the authors always assumed that the

fragment, which is included in [0, 1]d, has a boundary which is uniformly separated from 0 and

1. We do not make such an assumption in our work. Korostelev and Tsybakov [KT92, KT93b]
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also considered non-gaussian noises, making more general assumptions.

One problem has not been investigated yet: What is the minimax rate of convergence if one

assumes that the unknown set G in Model (RM) is a convex polytope with a bounded number

of vertices ? More generally, what is the minimax rate of convergence on parametric families of

supports ? Parametric families are considered in the method proposed in [KT92, KT93b], where

the true fragment is first approximated by an element of a parametric family of fragments, whose

dimension is chosen afterwards according to the optimal bias-variance tradeoff. The estimator

targets that parametric version of the fragment. Thus, a parametric approximation of the

fragment G and not directly G itself is estimated. This idea will be exploited when we estimate

convex bodies. We will first approximate a convex body by a convex polytope, and then estimate

that polytope. This method, using polytopal approximation, will provide an explicit estimator

but its risk will be shown to be suboptimal. This is why we will propose another method,

which is rather classical, using the metric entropy, and yields an estimator which achieves the

minimax rate of convergence. The parametric case of polytopes, with a given number of vertices,

is interesting by itself, not only as a step for estimating general convex bodies. We will discuss

why the minimax rate on such classes of polytopes is not, as one may expect, 1/n, but it is

altered by a logarithmic factor.

3.1 Estimation of polytopes

3.1.1 Upper bound

We denote by P0 the true polytope, i.e. G = P0 in (RM) and we assume that P0 ∈ P(1)
r .

Denote by P(1)
r,n the class of all the convex polytopes in [0, 1]d, with at most r vertices, and

with coordinates that are integer multiples of 1
n . It is clear that the set P(1)

r,n is finite and its

cardinality is less than (n+ 1)dr.

We estimate P0 by a polytope in P(1)
r,n which minimizes the sum of squared errors

A(P, {(Xi, Yi)}i=1,...,n) =
n
∑

i=1

(1− 2Yi)I(Xi ∈ P ). (3.1)

In what follows, we will write A(P ) instead of A(P, {(Xi, Yi)}i=1,...,n) in order to simplify the

notations. Note that if the noise variables ξi are Gaussian, then minimization of A(P ) is
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equivalent to maximization of the likelihood. Consider the set estimator of P0 defined as

P̂ (r)
n ∈ argmin

P∈P(1)
r,n

A(P ). (3.2)

Note that since P(1)
r,n is finite, the estimator P̂

(r)
n exists but is not necessarily unique.

The next theorem establishes an exponential deviation inequality for the estimator P̂
(r)
n .

Theorem 3.1 ([Bru13]). Let r ≥ d+ 1 be an integer, and n ≥ 2. Consider Model (RM), with

G = P , where P ∈ P(1)
r . Let Assumption A be satisfied. For the estimator P̂

(r)
n , there exist two

positive constants c1 and c2, which depend on d and σ only, such that

sup
P∈P(1)

r

PP

[

n

(

|P̂ (r)
n △P | − 2dr lnn

c2n

)

≥ x

]

≤ c1e
−c2x, ∀x > 0.

The explicit expressions of the constants c1 and c2 are given in the proof. From the deviation

inequality of Theorem 3.1, one can easily derive that the risk of the estimator P̂
(r)
n on the class

P(1)
r is of the order lnn

n . Indeed, we have the following result.

Corollary 3.1. Let n ≥ 2. Let the assumptions of Theorem 3.1 be satisfied. Then, for any

positive number q, there exists a constant c1(σ, d, q) which depends on σ, d and q such that

sup
P∈P(1)

r

EP

[

|P̂ (r)
n △P |q

]

≤ c1(σ, d, q)

(

r lnn

n

)q

.

Note that the construction of P̂
(r)
n does not require the knowledge of σ.

3.1.2 Lower bound

Corollary 3.1 provides an upper bound of the order lnn
n for the risk of P̂

(r)
n . The next result

shows that if the noise is Gaussian, then lnn
n is the minimax rate of convergence on the class

P(1)
r .

Theorem 3.2 ([Bru13]). Let r ≥ d+ 1 be an integer. Consider Model (RM) and assume that

the errors ξi are zero-mean Gaussian random variables with variance σ2 > 0. For any large

enough n, we have the following lower bound.

inf
P̂

sup
P∈P(1)

r

EP

[

|P̂△P |
]

≥ α2σ2 lnn

n
,

where α =
1

2
− ln 2

2 ln 3
≈ 0.29...
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Corollary 3.1 together with Theorem 3.1.2 give the following bound on the class P(1)
r , in the

case of Gaussian noise with variance σ2.

0 < α2σ2 ≤ n

lnn
Rn(P(1)

r ) ≤ c1(σ, d, 1)r <∞,

for n large enough and r ≥ d + 1. Note that the lower bound does not depend on the number

of vertices r. This is because we prove our lower bound for the class P(1)
d+1 and we use that

P(1)
r ⊇ P(1)

d+1, for r ≥ d+1. The minimax rate of convergence on any of the classes P(1)
r , r ≥ d+1,

is therefore of the order (lnn)/n.

An inspection of the proofs shows that these results still hold for d = 1, r = 2 ; namely, in

Model (RM), the minimax risk for the estimation of segments in [0, 1] is of order (lnn)/n.

3.2 Estimation of convex bodies

A first estimator

Now we aim to estimate convex bodies, not necessarily polytopes. If G is a convex body in

Model (RM), an idea is to approximate G by a convex polytope. For example one can select

r points on the boundary of G and take their convex hull. This will give a convex polytope

Pr with r vertices inscribed in G. In Section 3.1.1 we showed how to estimate such a r-vertex

convex polytope as Pr. Thus, if Pr approximates well G, an estimator of Pr, for example P̂
(r)
n ,

is a candidate to be a good estimator of G. The larger is r, the better Pr should approximate

G with respect to the Nikodym distance. At the same time, when r increases the upper bound

of Corollary 3.1 increases as well. Therefore r should be chosen according to the bias-variance

tradeoff. The bias term, due to to the approximation of G by Pr, will be of the order 1/r
2/(d−1),

by Lemma 10. The variance term, will be of the order r(lnn)/n, by Corollary 3.1. The bias-

variance tradeoff should lead to the choice of r of the order (n/ lnn)
d−1
d+1 .

Theorem 3.3 ([Bru13]). Let n ≥ 2. Consider Model (RM) where G is any convex subset of

[0, 1]d. Set r =

⌊

( n

lnn

)
d−1
d+1

⌋

, and let P̂
(r)
n the estimator defined in (3.2). Let Assumption A be

satisfied. Then, there exist positive constants c1, c2 and c3, which depend on d and σ only, such

that

sup
G∈K(1)

d

PG

[

n

(

|P̂ (r)
n △G| −

(

c3 lnn

n

)2/(d+1)
)

≥ x

]

≤ c1e
−c2x, ∀x > 0.

The constants c1 and c2 are the same as in Theorem 3.1, and c3 is given explicitly in the

proof of the theorem. From Theorem 3.3 we get the next corollary.
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Corollary 3.2. Let the assumptions of Theorem 3.3 be satisfied. Then, for any positive number

q there exists a positive constant c2(σ, d, q) which depends on σ, d and q such that

sup
G∈K(1)

d

EG

[

|P̂ (r)
n △G|q

]

≤ c2(σ, d, q)

(

lnn

n

)
2q
d+1

.

Note again that the construction of our estimator does not require the knowledge of σ.

Corollary 3.2 shows that the estimator given in Theorem 3.3 achieves the rate
(

lnn
n

)
2

d+1 .

This estimator has an advantage: it is computable and its definition comes from an intuitive

geometrical argument, polytopal approximation of convex sets. However, as we will show next,

there exists an estimator which achieves the same rate without the logarithmic factor. That

estimator is based on the metric entropy of the class K(1)
d , and is mainly of theoretical interest.

We recall that a δ-net of a class C ⊆ K(1)
d , with respect to the Nikodym distance, is a family Gδ

of sets such that, for all G ∈ C, there exists G∗ ∈ Gδ satisfying |G△G∗| ≤ δ. If there exists such

a family, that is finite, it provides a discrete and finite version of the class C, and the smaller

that family can be chosen, the more simple the class C is.

Improvement of the upper bound

We propose an estimator whose construction is similar to [MT95], where the multiplicative

model was considered. First of all, let us recall that Lemma 5, in Section 2.5.1, gives an upper

bound of the cardinality of a δ-net of K(1)
d , with respect to the Hausdorff distance, for all δ > 0.

Let δ = n−2/(d+1). Let {G1, . . . , GN} be a δ-net of K(1)
d with respect to the Hausdorff

distance dH , with N ≤ τ1e
τ2δ−(d−1)/2

. Let G ∈ K(1)
d be the true set in Model (RM). We define

the estimator G̃n = Gĵ , where ĵ minimizes the sum of squared errors, as in Section 3.1.1:

ĵ ∈ argmin
j=1,...,N

A(Gj), (3.3)

where A is defined in (3.1). Note again that ĵ may not be unique. We have the following result.

Theorem 3.4 ([Bru13]). Let n ≥ 1. Consider Model (RM) with G ∈ K(1)
d . Set G̃n = Gĵ, where

ĵ is defined in (3.3). Let Assumption A be satisfied. Then, there exist a positive integer n0(d)

which depends on d only and positive constants c0 and c2, which depend on d and σ only, such

that

sup
G∈K(1)

d

PG

[

|G̃n△G| ≥ c0n
−2/(d+1) +

x

n

]

≤ τ1e
−c2x, ∀x > 0.
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Here, c0 =
c̃1α1+τ2

c1
, where the constants c̃1, c1 and c2 are given in the proof of Theorem 3.1

and α1, which depends on d only, comes from Lemma 4 in Section 2.5.1. Note again that the

construction of the estimator G̃n does not require the knowledge of the noise level σ.

As for the estimator of the previous section, we derive from Theorem 3.4 an upper bound

of the risk of the estimator G̃n, and we have the following result.

Corollary 3.3. Let the assumptions of Theorem 3.4 be satisfied. Then, for any positive number

q there exists a positive constant c3(σ, d, q) such that

sup
G∈K(1)

d

EG

[

|G̃n△G|q
]

≤ c3(σ, d, q)n
− 2q

d+1 .

Lower bound

In this section we give a lower bound of the minimax risk on the class K(1)
d .

Theorem 3.5 ([Bru13]). Let n ≥ 125. Consider the Model (RM) and assume that the errors ξi

are zero-mean Gaussian random variables, with variance σ2 > 0. There exist a positive constant

c4 which depends only on the dimension d and on σ, such that for any estimator Ĉn, based on

n observations,

sup
C∈K(1)

d

EC

[

|C△Ĉ|
]

≥ c4n
−2/(d+1).

The explicit form of the constant c4 can be found in the proof of the theorem.

From Theorem 3.5 and Corollary 3.3, one gets, for n ≥ 125 and in the case of Gaussian

noise,

0 < c4 ≤ n
2

d+1Rn(K(1)
d ) ≤ c3(σ, d, q) <∞,

and therefore the minimax risk on the class K(1)
d is of the order n−2/(d+1).

3.3 Adaptation and misspecification

In Section 3.1.1, we proposed an estimator that depends on the parameter r. A natural question

is to find an estimator that is adaptive to r, i.e. that does not depend on r, but achieves the

optimal rate on the class P(1)
r . The idea of the following comes from Lepski’s method for

adaptation (see [Lep91], or [Chi12], Section 1.5, for a nice overview). Assume that the true

number of vertices, denoted by r∗, is unknown, but is bounded from above by a given integer

Rn ≥ d + 1 that may depend on n and be arbitrarily large. Theorem 3.1 would provide the

estimator P̂
(Rn)
n , but it is clearly suboptimal if r∗ is small and Rn is large. Indeed the rate of

convergence of P̂
(Rn)
n is Rn lnn

n , although the rate r∗ lnn
n can be achieved according to Theorem
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3.1, when r∗ is known. The procedure that we propose selects an integer r̂ based on the

observations, and the resulting estimator is P̂
(r̂)
n .

Note that Rn should not be of order larger than (lnn)−1n
d−1
d+1 , since for larger values of r,

Corollaries 1 and 3 show that the estimation rate is better when one considers the class K(1)
d

instead of P(1)
r . Let us denote, for r = d + 1, . . . , Rn − 1, Q̂

(r)
n = P̂

(r)
n , and Q̂

(Rn)
n = G̃n, the

estimator defined in Section 3.2. Let ca = 1
c2

+max
(

2d
c2
, c0

)

, where the constants c0 and c2 are

given in theorems 3.1 and 3.4 respectively. The explicit form of the constant ca in known and

can be deduced from the proofs of theorems 3.1 and 3.4. This constant depends on d and σ.

r̂ = min

{

r ∈ {d+ 1, . . . , Rn} : |Q̂(r)
n △Q̂(r′)

n | ≤ 2car
′ lnn
n

, ∀r′ = r, . . . , Rn

}

.

The integer r̂ is well defined ; indeed, the set in the brackets in the last display is not empty,

since the inequality is satisfied for r = Rn.

The adaptive estimator is defined as P̂ adapt
n = Q̂

(r̂)
n . Note that the construction of P̂ adapt

n

requires the knowledge of σ through the definition of r̂ ; it depends on the constant c2 of Theorem

3.1, which depends itself on σ. Recall that P(1)
∞ = K(1)

d . We have the following theorem.

Theorem 3.6 ([Bru13]). Let n ≥ 2. Let Assumption A be satisfied. Let Rn =

⌊(lnn)−1n
d−1
d+1 ⌋ and φn,r = min

(

r lnn
n , n−

2
d+1

)

, for all integers r ≥ d + 1 and r = ∞. There

exists a positive constant c5 that depends on d and σ only, such that the adaptive estimator

P̂ adapt
n satisfies the following inequality.

sup
d+1≤r≤∞

sup
P∈P(1)

r

EP

[

φ−1
n,r|P̂ adapt

n △P |
]

≤ c5.

Thus, we show that one and the same estimator P̂ adapt
n attains the optimal rate simultane-

ously on all the classes P(1)
r , d+1 ≤ r, and on the class K(1)

d of all convex subsets of [0, 1]d. The

explicit form of the constant c5 can be easily derived from the proof of the theorem.

3.4 Discussion

Theorem 3.4 shows that the logarithmic factor in Corollary 3.3 can be dropped and that the

minimax rate of convergence on the class K(1)
d is n−2/(d+1). However, Theorems 3.1 and 3.4

show that the logarithmic factor is significant in the case of convex polytopes. Let us try to

understand what brings this logarithmic factor in one case and not in the other.

Let us first ask the following question: What makes the estimation of sets on a given

class C ⊆ K(1)
d difficult in Model (RM) ? First, it is the complexity of the class, which can
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be expressed, for example, in terms of the metric entropy. We worked with this notion of

complexity in Theorem 3.4, using δ-nets. The second issue is how detectable the individual

sets of the given class are, in the model. If the unknown set G is too small, then, with high

probability, it contains no points of the design. Conditionally to this event, all the data have

the same distribution and no information in the sample can be used in order to detect G. A

set G has to be large enough in order to be detectable by some procedure. The threshold on

the volume beyond which a subset cannot be detected by any procedure should give a lower

bound for the rate of the minimax risk. This comparison between the minimax risk and the

detection bound motivates Section 3.5. In [Jan87], Janson studied asymptotic properties of

the maximal volume of holes with a given shape. A hole is a subset of [0, 1]d that contains no

point of the design (X1, . . . , Xn). Janson showed that with high probability, there are convex

and polytopal holes that have a volume of order (lnn)/n. This result suggests that a lower

bound of the minimax risk in Theorem 3.5 should be of the order (lnn)/n. Our lower bound

is attained on the polytopes with very small volumes. We do not use the specific structure of

these polytopes to derive the lower bound ; we only use the fact that some of them cannot

be distinguished from the empty set, no matter what the shape of their boundary is, when we

choose their volume of order no larger than lnn
n . This shows that the rate 1/n, which could be

expected on the parametric class P(1)
r , is not the right minimax rate of convergence: the order

(lnn)/n is dominating. On the other hand, the proof of the lower bound of the order n−2/(d+1)

for general convex bodies uses only the structure and regularity of the boundaries ; we do not

deal especially with small hypotheses. The order n−2/(d+1) is much larger than the detectability

bound (lnn)/n, and therefore seems to determine the minimax risk on the class K(1)
d .

Let us add two remarks in this discussion. First, if d = 2 it is easy to prove a better lower

bound for the minimax risk on the class P(1)
r , for any integer r ≥ 3, using the scheme of the

proof of Theorem 3.5 in the case d = 2:

Rn(P̂
(r)
n ;P(1)

r ) ≥ max

(

λ1 lnn

n
,
λ2r

n

)

, (3.4)

for some positive constants λ1 and λ2, which do not depend on r. It seems to us that this lower

bound should remain true for any value of d.

In (3.4), if lnn is larger than r, then the minimax risk is controlled from below by the

rate lnn
n . On the opposite, if the number of vertices of the unknown convex polytope can be

arbitrarily large, then the dominating term in (3.4) is of the order r
n .
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Our second remark is the following. Let µ0 be a fixed positive number. If one considers

the subclass P(1)
r (µ0) = {P ∈ P(1)

r : |P | ≥ µ0}, then subsets of [0, 1]d with too small volume

are excluded. The proof of the lower bound of Theorem 3.2 is based on hypotheses testing,

with very small hypotheses, i.e., candidates P ov small volume, depending on n. Therefore, the

construction used in the proof of Theorem 3.4 is no more valid and we expect the minimax rate

of convergence on this class to be of the order r/n, i.e., without a logarithmic factor. This will

be discussed later. In addition, after a discussion with Lazlo Györfi, we believe that 1/n is an

individual lower rate of convergence (1.6) on the class P(1)
r , although (lnn)/n is not. The right

rate of convergence, in that setup, seems to be 1/n. This is not proved yet.

3.5 The one-dimensional case and the change point problem

Consider Model (RM), with dimension d equal to one. The unknown set G is a segment in [0, 1].

In this section, we no longer assume that the design points Xi are necessarily i.i.d. uniformly

distributed in [0, 1]. Instead, we distinguish two types of design:

(DD) Deterministic, and regular design: Xi = i/n, i = 1, . . . , n;

(RD) Random, uniform design: the variables Xi, i = 1, . . . , n, are i.i.d. uniform on [0, 1].

In the sequel, the design will be denoted by X . In this one-dimensional case, we will not

only focus on estimation of G, but also on its detection. The motivation is mainly given in the

discussion of Section 3.4. As we already said before, Model (RM) can be interpreted as a partial

and noisy observation of an image, [0, 1], in which there is an unknown object G. From this

observation, one may like to determine whether it is true that there is an object - the unknown

set G might be empty -, and/or to recover that object, i.e., to estimate G. Another framework

for this model is the noisy observation of some signal, here 1(Xi ∈ G), and one would like to

determine if the observation comes from a pure noise, or if there actually is some signal, and/or

to recover that signal.

We would like to understand under which assumptions detection is not an obstacle for

estimating G. In particular, the two following assumptions will be of interest for us :

Assumption 1. The set G is of the form [0, θ], for some unknown number 0 ≤ θ ≤ 1.

Assumption 2. |G| ≥ µ.

Here and in the rest of the chapter, µ ∈ (0, 1) is a given positive number.
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Let us discuss these two assumptions in order to understand, intuitively, why they yield

easier detection of G. The first one gives some information on the location of G. In other

words, it tells that the set G starts from the left side of the frame. The second one tells that

G is not too small, and thus should not be unnoticed by the statistician. This was discussed in

Section 3.4. Model (RM), together with Assumption 1, is well known under the name of the

change point problem. It can be rewritten as :

Yi = 1(Xi ≤ θ) + ξi, i = 1, . . . , n, (3.5)

for some number θ ∈ [0, 1]. The change point problem was studied in [KT93b, Sec. 1.9], and

a continuous-time version of this model is addressed in [Kor06]. The aim is to estimate the

breakpoint θ. In the continuous time version, Korostelev [Kor06] proposed a more general

framework. Instead of the indicator function in the regression equation (3.5), he considered a

function with a jump at the point θ, and satisfying a Lipschitz condition both on the left and

on the right sides of θ. In these two works [Kor06, KT93b], the change point θ is estimated

with a precision, in expectation, of the order of 1/n, if θ is assumed to be separated from 0 and

1 : h ≤ θ ≤ 1 − h, for some h ∈ (0, 1/2). Ibragimov and Khasminskii [IK84], under, among

others, the same assumption of separation from 0 and 1, also proposed a consistent estimator of

the discontinuity point of a regression function, with precision of order 1/n as well. As we have

already mentioned, this separation hypothesis is common in this kind of estimation problems.

For instance, it is made in [KT92] and [KT93b, Chap 3], where Tsybakov and Korostelev propose

an estimator for boundary fragments. The authors study a similar model to Model (RM), where

G is a boundary fragment instead of a segment. This is one possible generalization in higher

dimensions of our problem. They assume that the true g belongs to some Hölder class, and is

separated from 0 and 1:

h ≤ g(x) ≤ 1− h, ∀x ∈ [0, 1]d−1,

for a given parameter h ∈ (0, 1/2). In [KT92], the same authors estimate the support of a

uniform density, assuming it is a boundary fragment. Again, they make the hypothesis that

the underlying function g is separated from 0 and 1. In both models, they build a piecewise

polynomial estimator of the function g, and prove that it is optimal in a minimax sense - see

more details bellow -. Our concern is to understand whether this separation hypothesis is

necessary, in the simple case of dimension 1.
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In [CW13], the detection question is addressed in a slightly different framework. In Model

(RM), we assume that the strength of the signal is given, equal to 1. It is also interesting to

deal with the case of a signal of unknown strength, i.e.

Yi = δ1(Xi ∈ G) + ξi, i = 1, . . . , n, (3.6)

where δ is a positive number. For the signal to be detectable, there should be a tradeoff between

its length |G| and its strength δ. Naturally, if δ is small, then the set G should be big enough

and conversely, if δ is large, the set G is allowed to be small, so that the signal can be detected.

Testing the presence of a signal, i.e. whether δ = 0 or not, is considered in [CW13]. This work

is concerned with the power of two tests: the scan - or maximum - likelihood ratio, and the

average likelihood ratio. The two tests are compared in two regimes: signals of small scales,

i.e. |G| −→
n→∞

0, and signals of large scales, i.e. liminf
n→∞

|G| > 0. The design is (DD), and it

is proved that if δ
√

n|G| ≥
√

2 ln
1

|G| + bn, for some sequence bn such that bn −→ ∞, then

there is a test with asymptotic power 1. Note that here, δ
√

|G| is exactly the L2-norm of the

signal, ‖δ1(· ∈ G)‖2 = δ
√

|G|. In [LT00], signals of unknown shape but known smoothness

are considered. Exact minimax separation rates, in terms of the L∞-norm of the signal, for

distinguishing the null hypothesis, under which observations are pure noise, and the alternative

one, under which there is a signal, are given. Detection is harder in that framework, because

unlike in Model (RM) or (3.6), where the shape of the signal is known - it is piecewise constant

-, only its smoothness is known, and the separation rates are larger than those of models (RM)

and (3.6), in the sense that they allow less freedom for the size of the signal. However, this

problem is different from ours, since we are concerned with the location of the signal, not the

signal itself.

Model (RM) deals with change points in the mean of the observations, conditionally to the

design. Under Assumption 1, there is only one change point, and under Assumption 2, there

are two. A problem of interest, in time series analysis, is that of detecting change points in

the mean, the covariance function, or other characteristics of the series. We refer to [SZ10]

and the references therein. In [FMSnt], a sample of n independent observations Y1, . . . , Yn is

given, and one assumes that Yi admits a density f(·, ϑ( i
n)) with respect to a given measure, for

i = 1, . . . , n, where f belongs to an exponential parametric class of densities. The real valued

function ϑ is assumed to be piecewise constant on [0, 1], with a finite number K of jumps, and

K is not necessarily known. Under a similar condition on δ and |G| to that of [CW13], it is
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shown that at least one change point is consistently detectable: the proposed estimator of K is

positive with probability that goes to 1, as n → ∞. When f(·, θ) is the density of a Gaussian

distribution with mean θ and given variance σ2 > 0, the problem was addressed in [Leb03].

This model includes models (RM) and (3.6), when the design is (DD). However, Assumption

2 is not considered in that work, and optimality of the estimator of the change point is not

treated, in the case when it is assumed to be unique - which corresponds to our Assumption 1

- or when it is known that there are only two of them.

A test consists in deciding whether to reject or not a given hypothesis, called the null

hypothesis, when it is compared to an alternative one. Let h ∈ (0, 1). In the whole paper, we

will consider the following null hypothesis:

H0 : G = ∅,

and the alternative hypothesis:

H1 : |G| ≥ h.

Testing H0 against H1 is equivalent to deciding whether the signal is pure noise. A test is a

random variable τn, which is built from the data set, and whose possible values are 0 and 1.

The decision associated to the test τn is to reject H0 if and only if τn = 1. We measure the

performance of a test τn on a class C using

γn(τn, C) = P∅ [τn = 1] + sup
G∈C,|G|≥h

PG [τn = 0] .

This quantity is the sum of the errors of the first and the second kinds of the test τn. This way

of measuring the performance gives the same importance to the two kinds of errors. We say

that τn is consistent on the class C if and only if γn(τn, C) −→ 0, when n→ ∞. Let us allow the

number h to depend on n. We call the separation rate on the class C any sequence of positive

numbers rn such that:

• if
h

rn
−→
n→∞

∞, then there exists a consistent test on C, and

• if
h

rn
−→
n→∞

0, then no test is consistent test on C.

With regard to both Assumptions 1 and 2, we focus on three different classes of sets, which

are defined as bellow:

- S = {[a, b] : 0 ≤ a ≤ b ≤ 1} is the class of all segments on [0, 1],
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- S0 = {[0, θ] : 0 ≤ θ ≤ 1} is the class of all segments on [0, 1], satisfying Assumption 1,

- S(µ) = {G ∈ S : |G| ≥ µ} is the class of all segments on [0, 1], satisfying Assumption 2.

Since the design and the noise are assumed to be independent, reordering the Xi’s does

not modify the model. Indeed, there exists a reordering {i1, . . . , in} of {1, . . . , n}, such that

Xi1 ≤ . . . ≤ Xin . The random indexes i1, . . . , in are independent of the noise, and therefore the

new noise vector (ξi1 , . . . , ξin) has the same distribution as (ξ1, . . . , ξn). Thus, we assume from

now on that X is the reordering of a preliminary design, and therefore X1 ≤ . . . ≤ Xn almost

surely, without loss of generality.

3.5.1 Detection of a segment

We consider the problem of testing the null hypothesis H0 : G = ∅, against the alternative

hypothesis H1 : |G| ≥ h. We find the minimal magnitude of h, as a function of n, so the null

and the alternative hypothesis are sufficiently well separated, and there exists a consistent test.

Intuitively, the a priori knowledge that the unknown set G belongs to the class S0 gives useful

information about the location of this set, and therefore it makes it detect easier. Actually, the

following theorem confirms this intuition, by showing that the separation rate is smaller - by a

logarithmic factor - for the subclass S0 than for the whole class S.
The idea, for the class S0, is the following. Under H1, [0, h] ⊆ G. Therefore, we check among

those observations (Xi, Yi) for which Xi ≤ h if there is a sufficiently large number of Yi’s that

are large, e.g. larger than 1/2. Let N = max{i = 1, . . . , n : Xi ≤ h} = #(X ∩ [0, h]). Let S be

the following test statistics:

S = #{i = 1, . . . , N : Yi ≤
1

2
}.

If the alternative hypothesis holds, i.e. if |G| ≥ h, all the Xi, i = 1, . . . , N fall inside the set

G, and the corresponding Yi should not be too small. The test statistic S counts how many of

these Yi’s are suspiciously small. This is how we build the test T 0
n :

T 0
n = 1(S ≤ cN),

where c ∈ (P[ξ1 ≤ −1/2]),P[ξ1 ≤ 1/2]), assuming this interval nonempty.

For the class S, we propose a scan test, i.e., a procedure which scans the whole frame

[0, 1] and seeks for a large enough quantity of successive observations for which Yi is large. If

G ∈ S, let R(G) =∑n
i=1 Yi1(Xi ∈ G)− #(X∩G)

2 , and R = sup|G|≥hR(G). Under the alternative

hypothesis, R should be quite large, and we define the test T 1
n = 1(R ≥ 0).
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Theorem 3.7 ([Bru14b]). Let Model (RM) hold.

1. Assume that the design is (DD) or (RD), and that the noise satisfies:

P[ξ1 ≤ −1/2] < P[ξ1 ≤ 1/2].

Then, if nh −→ ∞, the test T 0
n is consistent, i.e. γn(T

0
n ,S0) −→ 0. If, in addition, the

noise is Gaussian, then a separation rate on the class S0 is rn = 1/n.

2. Assume that the design is (DD) or (RD). Then, if nh/ lnn −→ ∞, the test T 1
n is consis-

tent, i.e. γn(T
1
n ,S) −→ 0. If, in addition, the noise is Gaussian, then a separation rate

on the class S is rn = ln(n)/n.

Note that the construction of the test T 0
n requires the knowledge of the law of the noise.

In the next section, we show that the separation rates given in Theorem 3.7 are the minimax

rates of convergence on the corresponding classes.

3.5.2 Estimation of a segment

Least square estimators

Let Model (RM) hold. For G′ ∈ S, let A0(G
′) =

∑n
i=1 (Yi − 1(Xi ∈ G′))2 be the sum of squared

errors. A way to estimate G is to find a random set Ĝn which minimizes A0(G
′), among all

possible candidates G′. Note that minimizing A0(G
′) is equivalent to maximizing

A(G′) =
n
∑

i=1

(2Yi − 1)1(Xi ∈ G′). (3.7)

Denote by S = {i = 1, . . . , n : Xi ∈ G} and by S′ = {i = 1, . . . , n : Xi ∈ G′}, for some G′ ∈ S.
Denote by #(·) the cardinality, for finite sets. The criterion A(G′) becomes, if denoted as a

function of S′,

A(S′) =
∑

i∈S′
(2Yi − 1)

=
∑

i∈S′
(21(Xi ∈ G) + 2ξi − 1)

= 2#(S ∩ S′)−#S′ + 2
∑

i∈S′
ξi,

so,

A(S′)−A(S) = −#(S△S′) + 2





∑

i∈S′\S
ξi −

∑

i∈S\S′

ξi



 . (3.8)
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A subset S′ of {1, . . . , n} is called convex if and only if it is of the form {i, . . . , j}, for some

1 ≤ i ≤ j ≤ n. It is clear that if a convex subset S′ of {1, . . . , n} maximizes A(S′)−A(S), then

by defining G′ = [XminS′ , XmaxS′ ], the segment G′ maximizes A(G′) (cf. (3.7)).

Estimation of a unique change point

Let Model (RM) hold, with design (DD). Assume that G belongs to S0. This is the change

point problem. For some θ ∈ [0, 1], G can be written as G = [0, θ]. Let us make one preliminary

remark. For any estimator Ĝn of G, the random segment G̃n = [0, sup Ĝn] performs better

than Ĝn, since |G̃n△G| ≤ |Ĝn△G| PG-almost surely. Therefore, it is sufficient to consider only

estimators of the form Ĝn = [0, θ̂n], where θ̂n is a random variable. Then, |Ĝn△G| = |θ̂n − θ|,
and the performance of the estimator Ĝn of G is that of the estimator θ̂n of θ. Let us build a

least square estimator (LSE) of θ. For M = 1, . . . , n, let

F (M) = A({1, . . . ,M})

=

M
∑

i=1

(2Yi − 1).

Let M̂n ∈ ArgMax
M=1,...,n

F (M), and θ̂n = XM̂n
. The following theorem follows.

Theorem 3.8 ([Bru14b]). Let n ≥ 1. Let Model (RM) hold, with design (DD). Let Ĝn = [0, θ̂n].

Then,

sup
G∈S0

PG

[

|Ĝn△G| ≥
x

n

]

≤ c0e
−x/(8σ2), ∀x > 0,

where c0 is a positive constant which depends on σ only.

A simple application of Fubini’s theorem leads to the following result.

Corollary 3.4. Let the assumptions of Theorem 3.8 be satisfied. Then, for all q > 0, there

exists a positive constant c(σ, q) which depends on σ and q only, such that

sup
G∈S0

EG

[

|Ĝn△G|q
]

≤ c(σ, q)

nq
.

This corollary shows that the minimax risk on the class S0 is bounded from above by 1/n,

up to multiplicative constants. Next theorem proves that up to a positive constant, 1/n is also

a lower bound of the minimax risk, if the noise is Gaussian.

Theorem 3.9 ([Bru14b]). Consider Model (RM), with design (DD), and assume the noise is
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Gaussian. Then for all integer n ≥ 1,

Rn(S0) ≥
1

2n
.

Combining Theorems 3.8 and 3.9 yields

Theorem 3.10 ([Bru14b]). Consider Model (RM), with design (DD) and Gaussian noise.

Then, the minimax risk on the class S satisfies

c1
n

≤ Rn(S0) ≤
c2
n
, ∀n ≥ 1,

where the constants c1 and c2 depend on σ.

Recovering any segment

Let us now assume that the unknown set G does not necessarily contain 0. We shall prove

that whether to assume that G belongs to the class S(µ) or not does not lead to the same

minimax rate. As we saw in Section 3.5.2, an estimator of G in Model (RM) can be obtained

by maximizing the Gaussian process (3.8) over all segments of {1, . . . , n}. This is not the track

that we will borrow, but it would be interesting to work precisely on this process. This would

probably be the first step to extensions of our results in higher dimensions. However, this

problem remains open for now. The methods that we develop in this section are quite different.

If G is only assumed to belong to the biggest class S, the proposed estimator is the LSE, which

was already detailed in [Bru13] for convex polytopes, in higher dimension. If |G| is a priori

known to be greater or equal to µ, then we first build a preliminary estimator of G - the LSE

-, using one half of the observed sample. This estimator is not optimal, but it is close to G

with high probability. We show that the middle point m̂n of this estimator is in G with high

probability. This brings us back to the change point problem, where 0 is now replaced by m̂n,

and we use the second half of the observed sample to estimate two change points.

Let us first state the following theorem, which is, for the design (RD), a particular case of

Theorem 3.1, for d = 1.

Theorem 3.11 ([Bru14b]). Let n ≥ 2. Let Model (1.3) hold, with design (DD) or (RD). Let

Ĝn ∈ ArgMax
G′∈S

A(G′) be a LSE estimator of G. Then, there exist two positive constants c1 and

c2 which depend on σ only, such that

sup
G∈S

PG

[

n

(

|Ĝn△G| −
4 lnn

c2n

)

≥ x

]

≤ c1e
−c2x, ∀x > 0.
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The expressions of c1 and c2 are given in the proof of Theorem 3.1, for the design (RD). For

the design (DD), we do not give a proof of this theorem here, but it can be easily adapted from

that of the case of the design (RD). The next corollary is immediate.

Corollary 3.5. Let the assumptions of Theorem 3.11 be satisfied. Then, for all q > 0, there

exists a positive constant Bq which depends on q and σ only, such that

sup
G∈S

EG

[

|Ĝn△G|q
]

≤ Bq

(

lnn

n

)q

.

This corollary shows that the minimax risk on the class S is bounded from above by ln(n)/n,

up to a multiplicative constant. The following theorem establishes a lower bound, if the noise

is supposed to be Gaussian.

Theorem 3.12 ([Bru14b]). Consider Model (RM), with design (DD) or (RD). Assume that

the noise terms ξi are i.i.d. Gaussian random variables, with variance σ2 > 0. For any large

enough n,

Rn(S) ≥
α2σ2 lnn

n
,

where α is a universal positive constant.

This lower bound comes from [Bru13, Theorem 2] in the case of the design (RD), and the

proof is easily adapted for the design (DD). Eventually, the minimax risk on the class S is of

the order ln(n)/n:

Theorem 3.13 ([Bru14b]). Consider Model (RM), with design (DD) or (RD). Assume that

the noise terms ξi are i.i.d. Gaussian random variables, with variance σ2 > 0. The minimax

risk on the class S satisfies:

c2 lnn

n
≤ Rn(S) ≤

c2 lnn

n
, ∀n ≥ n0,

where n0 is a positive integer which depends on σ, as for the positive constants c1 and c2.

Recovering a segment in S(µ)

For the design (DD), we combine both Theorems 3.8 and 3.11 to find the minimax rate on the

class S(µ). Let Model (RM) hold, and let G ∈ S(µ). First, we split the sample into two equal

parts. Let D0 be the set of sample points with even indexes, and D1 the set of sample points

with odd indexes. Note that D0 ∪ D1 is exactly the initial sample, that these two subsample

are independent, and that each of them is made of at least (n − 1)/2 data points. Let Ĝn be

the LSE estimator of G given in Theorem 3.11, built from the subsample D0. Let m̂n be the
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middle of Ĝn. As it will be shown in the proof of the next theorem, m̂n satisfies both following

properties, with high probability:

1. m̂n ∈ G,

2. µ/2 ≤ m̂n ≤ 1− µ/2.

This brings us to estimating two change points - the endpoints of G - , using the second

subsample D1. From Theorem 3.8, we know that this can be done at the speed 1/n, up to

multiplicative constants.

Theorem 3.14 ([Bru14b]). Consider Model (RM), with design (DD). There exists an estimator

G̃n of G, such that

sup
G∈S(µ)

PG

[

|G̃n△G| ≥
x

n

]

≤ 2c0e
−µx/(256σ2) + c1n

4e−c2µn/2, ∀x > 0,

for n large enough. The positive constants c0 and c2 appeared in Theorems 3.8 and 3.11.

Naturally, Theorem 3.14 leads to the next corollary.

Corollary 3.6. Let the assumptions of Theorem 3.14 be satisfied. Then, for all q > 0, there

exists a positive constant c(q, µ, σ) which depends on q, µ and σ only, such that

sup
G∈S(µ)

EG

[

|G̃n△G|q
]

≤ c(q, µ, σ)

nq
, ∀n ≥ 1.

This corollary, for q = 1, shows that the minimax risk on the class S(µ) is bounded from

above by 1/n, up to a multiplicative constant. A very similar proof to that of Theorem 3.9

yields a lower bound for this minimax risk, which yields next Theorem.

Theorem 3.15 ([Bru14b]). Consider Model (RM), with design (DD) and Gaussian noise. The

minimax risk on the class S(µ) satisfies:

c1
n

≤ Rn(S(µ)) ≤
c2
n
, ∀n ≥ n0,

for some positive integer n0 depending on µ and σ, and positive constants c1 and c2 depending

on µ and σ as well.

Remark 3.1. Note that, in Theorem 3.14, the upper bound contains one residual term which

does not depend on x. This term, in order to be sufficiently small, requires that µ - if allowed to

depend on n - is of larger order than ln(n)/n. This reminds Theorem 3.7, in which we showed

that the smallest set which can be detected has measure of this order exactly. In addition, if µ

is of the order of ln(n)/n, then the proof of the lower bound of Theorem 3.12 can be applied,

and the minimax risk on the class S(µ) will be of the order lnn
n .
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3.5.3 Conclusion and discussion

We summarize our results in Table 3.1. The rates that are written in this table hold for Gaussian

noise, which is the most important case. In each case we indicate the design for which the rate

has been proved.

S S0 S(µ)
Minimax rate ln(n)/n (DD,RD) 1/n (DD) 1/n (DD)

Separation rate ln(n)/n (DD,RD) 1/n (DD,RD) ·

Table 3.1: Minimax risks and separation rates for the classes S, S0 and S(µ).

Note that in two cases, only the design (DD) has been considered. This is for technical

reasons, and we believe that the rates are still the same for the design (RD).

It comes out that asymptotically, a segment can be estimated infinitely faster when it is

a priori supposed either to contain a given point (e.g., 0), or to be large enough. The main

question that remains is: does this phenomenon still hold for two - or higher - dimensional sets

? An important - if not essential - assumption which has been done is the convexity of the

unknown set. In dimension 1, the class of convex subsets of [0, 1] is simple, and parametric. In

dimension d ≥ 2, the class K(1)
d is much more complex. In particular, its metric entropy is much

larger than that of a parametric family [Bro76], and it seems to us that it is the complexity of

this class that makes it harder to estimate a set, than detectability.

In Model (RM), if G belongs to K(1)
d , estimation of G can be done at the minimax rate

n−2/(d+1) [Bru13]. However, an adaptation of the proof of 3.2 shows the following: on any

subclass of Kd invariant under translations and invertible affine transformations - which keep a

set G inside the frame [0, 1]d -, the minimax rate is at least of order ln(n)/n. In addition, we

believe this is the separation rate for the detection problem, on any such subclass of K(1)
d .

For the whole class K(1)
d , since ln(n)/n is much smaller than n−2/(d+1), the minimax rate

is of the order of n−2/(d+1). However, for a parametric subclass, such as that of all convex

polytopes with a given number of vertices, we believe that the complexity of the class leads to

a term of order 1/n in the minimax risk, which is dominated by the term ln(n)/n that comes

from detectability. In our opinion, this is what explains that, as shown in [Bru13], the minimax

risk on the class of all convex polytopes of [0, 1]d, with a given number of vertices, is of order

ln(n)/n.

Motivated by Theorem 3.14, we also conjecture that 1/n is the minimax rate on the class

of all convex polytopes of [0, 1]d, of volume greater than a given µ > 0. However, note that
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it is not possible to extend Theorem 3.8 to higher dimensions. An adaptation of the proof of

Theorem 3.2, by taking, as the M hypotheses used in the proof, sets which contain the origin

and have pairwise zero measure intersections, would show that (lnn)/n remains a lower bound

under the assumption that 0 ∈ G. Yet, we believe that if the unknown set is assumed to contain

a given section of positive (d− 1)-dimensional Lebesgue measure, of a given hyperplane in Rd,

e.g. [0, 1]d−1 × {0} then an analog of Theorem 3.8 should hold, and the minimax rate should

be of order 1/n.

3.6 Proofs

Proof of Theorem 3.1

Let P0 ∈ Pr be the true polytope. We have the following lemma, which is a direct consequence

of Lemma 6, see Section 2.5.1.

Lemma 8. Let r ≥ d + 1, n ≥ 2. For any convex polytope P in P(1)
r there exists a convex

polytope P ∗ ∈ P(1)
r,n such that

|P ∗△P | ≤ 2dd+1(3/2)dβd
n

. (3.9)

Let P ∗ ∈ P(1)
r,n such that |P ∗△P0| ≤ 2dd+1(3/2)dβd

n . Note that for all ǫ > 0,

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

= PP0

[

∃P ∈ P(n)
r,1 : A(P ) ≤ A(P ∗), |P△P0| ≥ ǫ

]

, (3.10)

where P ∗ is a convex polytope chosen in P(1)
r,n satisfying |P ∗\P0| ≤ 2dd+1(3/2)dβd

n , cf. (3.9). For

any P we have, by a simple algebra,

A(P )−A(P ∗) =
n
∑

i=1

Zi, (3.11)

where

Zi =I(Xi ∈ P )− I(Xi ∈ P ∗)− 2I(Xi ∈ P0) [I(Xi ∈ P )− I(Xi ∈ P ∗)]

− 2ξi [I(Xi ∈ P )− I(Xi ∈ P ∗)] , i = 1, . . . , n.

The random variables Zi depend on P but we omit this dependence in the notation. Therefore,

(3.10) implies that
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PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(1)
r,n:|P△P0|≥ǫ

PP0

[

n
∑

i=1

Zi ≤ 0

]

≤
∑

P∈P(1)
r,n:|P△P0|≥ǫ

EP0

[

exp (−u
n
∑

i=1

Zi)

]

, (3.12)

for all positive number u, by Markov’s inequality. Since Zi’s are mutually independent, we

obtain

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(1)
r,n:|P△P0|≥ǫ

n
∏

i=1

EP0 [exp (−uZi)] . (3.13)

By conditioning on X1 and denoting by W = I(X1 ∈ P )− I(X1 ∈ P ∗) we have

EP0 [exp(−uZ1)] = EP0 [EP0 [exp(−uZ1)|X1]]

= EP0 [exp (−uW + 2uI(X1 ∈ P0)W )EP0 [exp (2uξ1W ) |X1]]

= EP0

[

exp (−uW + 2uI(X1 ∈ P0)W ) exp
(

2σ2u2I(X1 ∈ P△P ∗)
)]

= EP0

[

exp
(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)]

. (3.14)

We will now reduce the last expression in (3.14). It is convenient to use Table 3.2: the first three

columns represent the values that can be taken by the binary variables I(X1 ∈ P ), I(X1 ∈ P ∗)

and I(X1 ∈ P0) respectively, and the last column gives the resulting value of the term under

the expectation in (3.14), that is exp
(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)

.

P P ∗ P0 Value

1 1 1 1

1 1 0 1

1 0 1 exp(2σ2u2 + u)

1 0 0 exp(2σ2u2 − u)

0 1 1 exp(2σ2u2 − u)

0 1 0 exp(2σ2u2 + u)

0 0 1 1

0 0 0 1

Table 3.2: Values of exp
(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)
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Hence one can write

EP0 [exp(−uZ1)] = 1− |P△P ∗|+ e2σ
2u2+u (|(P ∩ P0)\P ∗|+ |P ∗\(P ∪ P0)|)

+ e2σ
2u2−u (|(P ∗ ∩ P0)\P |+ |P\(P ∗ ∪ P0)|) .

Besides by the triangle inequality,

|P△P0| ≤ |P△P ∗|+ |P ∗△P0|,

which implies

EP0 [exp(−uZ1)] ≤ 1− |P△P0|+ |P ∗△P0|+ e2σ
2u2+u (|P0\P ∗|+ |P ∗\P0|)

+ e2σ
2u2−u (|P0\P |+ |P\P0|)

≤1− |P△P0|+ |P ∗△P0|+ e2σ
2u2+u|P ∗△P0|+ e2σ

2u2−u|P△P0| (3.15)

≤1− |P△P0|
(

1− e2σ
2u2−u

)

+
2dd+1(3/2)dβd

n

(

1 + e2σ
2u2+u

)

.

Choose u = 1
4σ2 . Then the quantity 1− e2σ

2u2−u is positive and if |P△P0| ≥ ǫ, then

EP0 [exp(−uZ1)] ≤ 1− ǫ
(

1− e−
1

4σ2

)

+
2dd+1(3/2)dβd

n

(

1 + e
3

8σ2

)

. (3.16)

We set c̃1 = 1+ e
3

8σ2 and c2 = 1− e−
1

4σ2 . These are positive constants that do not depend on n

or P0. Recall that P(1)
r,n has cardinality less than (n+ 1)dr. From (3.13) and (3.16), and by the

independence of Zi’s we have

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(1)
r,n:|P△P0|≥ǫ

(

1− c2ǫ+
2dd+1(3/2)dβdc̃1

n

)n

(3.17)

≤ (n+ 1)dr
(

1− c2ǫ+
2dd+1(3/2)dβdc̃1

n

)n

≤ exp
(

dr ln(n+ 1)− c2ǫn+ 2dd+1(3/2)dβdc̃1

)

≤ exp
(

2dr lnn− c2ǫn+ 2dd+1(3/2)dβdc̃1

)

, (3.18)

where c1 = exp
(

2dd+1(3/2)dβdc̃1
)

, noting that n + 1 ≤ n2. Therefore if we set ǫ = 2dr lnn
c2n

+ x
n

for a positive number x, we get the following deviation inequality

PP0

[

n

(

|P̂ (r)
n △P0| −

2dr lnn

c2n

)

≥ x

]

≤ c1e
−c2x.
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Proof of Theorem 3.2

This proof is a simple application of Fano’s method, see Corollary 2.6 in [Tsy09] or, for a more

general setting, [Gun11]. Let M be a positive integer, and h = 1
M+1 . Let Tk, k = 0, . . . ,M

be M disjoint convex polytopes in P(1)
d+1 and with same volume: |T0| = . . . = |TM | = h/2.

Such a finite family of M + 1 disjoint convex polytopes can be constructed by dividing the

hypercube [0, 1]d into the M + 1 subsets [k/(M + 1), (k + 1)/(M + 1)] × [0, 1]d−1, which have

volume h = 1/(M + 1), and by constructing a convex polytope of Pd+1, of volume h/2, in each

of them.

For k = 1, . . . ,M , we use the notation Pk and Ek instead of PTk
and ETk

, respectively, for

simplicity’s sake. A simple computation shows that the Kullback-Leibler divergence K(Pk,Pl)

between Pk and Pl, for k 6= l, is equal to nh
4σ2 . On the other hand, the distance between Tk and

Tl, for k 6= l, is |Tk△Tl| = |Tk|+ |Tl| = h. Then

1

M + 1

M
∑

j=1

K(Pj ,P0) =
Mnh

4(M + 1)σ2
≤ n

4Mσ2
.

Let α ∈ (0, 1), and γ = 1
2σ2α

. Then, if M = γn
lnn , supposed without loss of generality to be an

integer, we have

4σ2αM lnM = 2n− 2n
ln lnn

lnn
+ 2n

ln γ

lnn
≥ n

for n large enough, so that

1

M + 1

M
∑

j=1

K(Pj ,P0) ≤ α lnM.

Therefore, applying Corollary 2.6 in [Tsy09] with the Nikodym distance, we set, for r ≥ d+ 1,

the following inequality

Rn(P(1)
r ) ≥ 1

M + 1

(

ln (M + 1)− ln 2

lnM
− α

)

.

For n great enough, we haveM ≥ 3 and ln (M+1)−ln 2
lnM ≥ 1− ln 2

ln 3 . We choose α = 1
2− ln 2

2 ln 3 ∈ (0, 1).

So, we get

Rn(P(1)
r ) ≥ α

M + 1
≥ α

2M
≥ α lnn

γn
≥ α2σ2 lnn

n
.

This immediately implies Theorem 3.2. �
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Proof of Theorem 3.3

The idea of the proof is very similar to that of Theorem 3.1. Here, we need to control an extra

bias term, due to the approximation of G by a convex polytope. We first refer to Lemma 10 (cf.

[GMR95]), for polytopal approximation of convex bodies: let r ≥ d+ 1, and Pr ∈ Pr satisfying

Pr ⊆ G and:

|G△Pr| ≤ cd
|G|

r2/(d−1)
.

Note that since Pr ⊆ G, Pr ∈ P(1)
r .

Let P ∗ be a polytope chosen in P(1)
r,n such that|P ∗△Pr| ≤ (4d)d+1βd

n , like in the proof of

Theorem 3.1. Thus by the triangle inequality,

|P ∗△G| ≤ |P ∗△Pr|+ |Pr△G| ≤
cd

r2/(d−1)
+

(4d)d+1βd
n

.

We now bound from above the probability PG

[

|P̂ (r)
n △G| ≥ ǫ

]

for any ǫ > 0. As in (3.10) and

(3.12) we have

PG

[

|P̂ (r)
n △G| ≥ ǫ

]

≤ PG

[

∃P ∈ P(1)
r,n ,A(P ) ≤ A(P ∗), |P△G| ≥ ǫ

]

≤
∑

P∈P(1)
r,n:|P△G|≥ǫ

PG [A(P ) ≤ A(P ∗)] .

Repeating the argument in (3.11) with G instead of P0 we set

A(P )−A(P ∗) =
n
∑

i=1

Zi,

where

Zi =I(Xi ∈ P )− I(Xi ∈ P ∗)− 2I(Xi ∈ G) [I(Xi ∈ P )− I(Xi ∈ P ∗)]

− 2ξi [I(Xi ∈ P )− I(Xi ∈ P ∗)] , i = 1, . . . , n.

The rest of the proof is very similar to the one of Theorem 3.1. Indeed, replacing P0 by G in

that proof between (3.10) and (3.15), and 2dd+1(3/2)dβd

n by 2dd+1(3/2)dβd

n + cd
r2/(d−1) in (3.16) and

(3.18) one gets
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PG

[

|P̂ (r)
n △G| ≥ ǫ

]

≤
∑

P∈P(1)
r,n:|P△G|≥ǫ

(

1− c2ǫ+ c̃1

(

cd

r2/(d−1)
+

2dd+1(3/2)dβd
n

))n

≤ (n+ 1)dr
(

1− c2ǫ+ c̃1

(

cd

r2/(d−1)
+

2dd+1(3/2)dβd
n

))n

≤ exp

(

2dr lnn− c2ǫn+ c̃1

(

cdn

r2/(d−1)
+ 2dd+1(3/2)dβd

))

.

Therefore if we set ǫ = 2dr lnn
c2n

+ c̃1cd
c2r2/(d−1) +

x
n for a positive number x, we get the following

deviation inequality

PG

[

n

(

|P̂ (r)
n △G| − 2dr lnn

c2n
− c̃1cd

c2r2/(d−1)

)

≥ x

]

≤ c1e
−c2x,

where the constants are defined as in the previous section. That ends the proof of Theorem 3.3,

by choosing r = ⌊
(

n
lnn

)
d−1
d+1 ⌋, and the constant c3 is given by

c3 = (1 + c̃1c)
d

c2
=
(

1 + (1 + e3/(8σ
2))c
) d

1− e−1/(4σ2)
.

�

Proof of Theorem 3.4

The proof is similar to the proof of Theorem 3.1. The difference is that we now use a δ-net

instead of a grid. If G is the true set, let i∗, 1 ≤ i∗ ≤ N , be the index of a set of the δ-net

whose Hausdorff distance to G is not greater than δ. By Lemma 4 in Section 2.5.1,

|G△Gi∗ | ≤ α1δ.

It follows, from the definition of the estimator, that

PG

[

|G̃△G| ≥ ǫ
]

≤
∑

i∈{1,...,N}:|Gi△G|≥ǫ

PG [A(Gi) ≤ A(Gi∗)]

This leads to the same inequality as (3.17) where the sum is now over i = 1, . . . , N, for

which |Gi△G| ≥ ǫ, and the term 2dd+1(3/2)dβdc̃1
n should be replaced by c̃1α1δ:
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PG

[

|G̃△G| ≥ ǫ
]

≤
∑

i∈{1,...,N}:|Gi△G|≥ǫ

(1− c2ǫ+ c̃1α1δ)
n

≤ N exp (−c2ǫn+ c̃1α1δn)

≤ τ1 exp
(

−c2ǫn+ c̃1α1δn+ τ2δ
−(d−1)/2

)

≤ τ1 exp (−c2ǫn+ (c̃1α1 + τ2)δn) ,

since our choice of δ guarantees that nδ = δ−(d−1)/2. Hence, by choosing ǫ = x
n + c̃1α1+τ2

c2
, we

get Theorem 3.4. �

Proof of Theorem 3.5

We first prove this theorem in the case d = 2 and then generalize the proof for d ≥ 3.

We more or less follow the lines of the proof of the lower bound in [KT94] (which is similar

to the proof of Assouad’s lemma, see [Tsy09, Section 2.7.2]). Let G be the disk centered in

(1/2, 1/2) of radius 1/2, and P be a regular convex polygon with M vertices, all of them lying

on the edge of G. Each edge of P cuts a cap off G, of area h, with π3/(12M3) ≤ h ≤ π3/M3 as

soon as M ≥ 6, which we will assume in the sequel. We denote these caps by D1, . . . , DM , and

for any ω = (ω1, . . . , ωM ) ∈ {0, 1}M we denote by Gω the set made of G out of which we took

all the caps Dj for which ωj = 0, j = 1, . . . ,M .

For j = 1, . . . ,M , and (ω1, . . . , ωj−1, ωj+1, . . . , ωM ) ∈ {0, 1}M−1 we denote by

ω(j,0) = (ω1, . . . , ωj−1, 0, ωj+1, . . . , ωM ) and by

ω(j,1) = (ω1, . . . , ωj−1, 1, ωj+1, . . . , ωM ).

Note that for j = 1, . . . ,M , and (ω1, . . . , ωj−1, ωj+1, . . . , ωM ) ∈
{0, 1}M−1,

|Gω(j,0)△Gω(j,1) | = h.

Now, let us consider any estimator Ĝ. For j = 1, . . . ,M we denote by Aj the smallest convex

cone with origin at (1/2, 1/2) and which contains the cap Dj . Note that the cones Aj , j =

1, . . . ,M have pairwise a null Lebesgue measure intersection. Then, we have the following

inequalities.
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sup
G∈K2

EG

[

|G△Ĝ|
]

≥ 1

2M

∑

ω∈{0,1}M
EGω

[

|Gω△Ĝ|
]

≥ 1

2M

∑

ω∈{0,1}M

M
∑

j=1

EGω

[

|(Gω ∩Aj)△(Ĝ ∩Aj)|
]

=
1

2M

M
∑

j=1

∑

ω∈{0,1}M
EGω

[

|(Gω ∩Aj)△(Ĝ ∩Aj)|
]

=
1

2M

M
∑

j=1

∑

. . .
∑

ω1,...,ωj−1,ωj+1,...,ωM

(

E
G

(j,0)
ω

[

|(G(j,0)
ω ∩Aj)△(Ĝ ∩Aj)|

]

+ E
G

(j,1)
ω

[

|(G(j,1)
ω ∩Aj)△(Ĝ ∩Aj)|

] )

. (3.19)

Besides for j = 1, . . . ,M and (ω1, . . . , ωj−1, ωj+1, . . . , ωM ) ∈ {0, 1}M−1 we have

E
G

(j,0)
ω

[

|(G(j,0)
ω ∩Aj)△(Ĝ ∩Aj)|

]

+ E
G

(j,1)
ω

[

|(G(j,1)
ω ∩Aj)△(Ĝ ∩Aj)|

]

=

∫

([0,1]2×R)n
|(G(j,0)

ω ∩Aj)△(Ĝ ∩Aj)|dP⊗n

G
(j,0)
ω

+

∫

([0,1]2×R)n
|(G(j,1)

ω ∩Aj)△(Ĝ ∩Aj)|dP⊗n

G
(j,1)
ω

≥
∫

([0,1]2×R)n

(

|(G(j,0)
ω ∩Aj)△(Ĝ ∩Aj)|+ |(G(j,1)

ω ∩Aj)△(Ĝ ∩Aj)|
)

×

min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

)

≥
∫

([0,1]2×R)n

(

|(G(j,0)
ω ∩Aj)△(G(j,1)

ω ∩Aj)|
)

min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

),

by triangle inequality,

= h

∫

([0,1]2×R)n
min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

)

≥ h

2



1−
H2(P⊗n

G
(j,0)
ω

,P⊗n

G
(j,1)
ω

)

2





2

=
h

2

(

1−
H2(P

G
(j,0)
ω

,P
G

(j,1)
ω

)

2

)2n

, (3.20)

using properties of the Hellinger distance (cf. Lemma 7). To compute the Hellinger distance

between P
G

(j,0)
ω

and P
G

(j,1)
ω

we use Lemma 11, in Section 2.5.1.
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Then if we denote by c9 = 1− e−
1

8σ2 , it follows from (3.19) and (3.20) that

sup
G∈K2

EG

[

|G△Ĝ|
]

≥ 1

2M
M2M−1h

2
(1− c9h)

2n

≥ Mh

4
(1− c9h)

2n

≥ π3

12M2
(1− π3c9/M

3)2n.

Besides, since we assumed that M ≥ 6, we have that

π3c9/M
3 ≤ π3c9/6

3 =
π3

63

(

1− exp(− 1

8σ2
)

)

≤ π3

63
< 1,

and if we take M = ⌊n1/3⌋, we get by concavity of the logarithm

sup
G∈K2

EG

[

|G△Ĝ|
]

≥ π3

12M2
exp





432 ln(1− π3/216)
(

1− e−
1

8σ2

)

nM−3

π3





≥ c14n
−2/3,

where c14 =
π3

12
exp





432 ln(1− π3/216)
(

1− e−
1

8σ2

)

π3



 is a positive constant that depends on

σ only. This inequality holds for n ≥ 216, so that M ≥ 6.

We now deal with the case d ≥ 3. Let us first recall some definitions and resulting properties,

that can also be found in [KT59].

Definition 3.1. Let (S, ρ) be a metric space and η a positive number. A family Y ⊆ S is called

an η-packing family if and only if ρ(y, y′) ≥ η, for (y, y′) ∈ Y with y 6= y′. An η-packing family

is called maximal if and only if it is not strictly included in any other η-packing family. A

family Z is called an η-net if and only if for all x ∈ S, there is an element z ∈ Z which satisfies

ρ(x, z) ≤ η.

The construction of the hypotheses used for the lower bound in the case d = 2 requires a

little more work in the general dimension case, since it is not always possible to construct a

regular convex polytope with a fixed number of vertices or facets, and inscribed in a given ball.

For the following geometrical construction, we refer to Figure 3.1.

Let G0 be the closed ball in Rd, with center a0 = (1/2, . . . , 1/2) and radius 1/2, so that

G0 ⊆ [0, 1]d. Let η ∈ (0, 1) which will be chosen precisely later, and {y1, . . . , yMη} a maximal η-

packing family of S = ∂G0. The integer Mη satisfies (3.46) by Lemma 12. For j ∈ {1, . . . ,Mη},
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1

2

η/2η2

4

Hj

G0

Uj

a0
yj

Figure 3.1: Construction of the hypotheses

we set by Uj = S∩Bd(yj , η/2), and denote byWj the (d−2)-dimensional sphere S∩∂Bd(yj , η/2).

Let Hj be affine hull of Wj , i.e. its supporting hyperplane. This hyperplane dissects the space

Rd into two halfspaces. Let H−
j be the one that contains the point yj . For ω = (ω1, . . . , ωMη) ∈

{0, 1}Mη , we set

Gω = G0\(
⋂

j=1,...,Mη :ωj=0

H−
j ).

The set Gω is made of G0 from which we remove all the caps cut off by the hyperplanes Hj , for

all the indices j such that ωj = 0.

For each j ∈ {1, . . . ,Mη}, let Aj be the smallest closed convex cone with vertex a0 =

(1/2, . . . , 1/2) that contains Uj . Note that the cones Aj , j = 1, . . . ,Mη have pairwise empty

intersection, since G0 is convex and the sets Uj are disjoint. We are now all set to reproduce

the proof written in the case d = 2. Note that

|Gω(j,0)△Gω(j,1) | = |(Gω(j,0) ∩Aj)△(Gω(j,1) ∩Aj)| ,

for all ω ∈ {0, 1}Mη and j ∈ {1 . . . ,Mη}, and this quantity is equal to

∫ η2

4

0
|Bd−1(0,

√

r − r2)|d−1dr,

since, as mentioned before, η2/4 is the height of the cap cut off by Hj , which is equal to the

distance between yj and the hyperplane Hj , and which is independent of the index j.
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Therefore,

|Gω(j,0)△Gω(j,1) | =
∫ η2

4

0
|Bd−1(0,

√

r − r2)|d−1dr

=

∫ η2

4

0
βd−1(r − r2)(d−1)/2dr

= βd−1

∫ η2

4

0
(r − r2)(d−1)/2dr

=
βd−1η

d+1

4d+1

∫ 1

0
u(d−1)/2

(

1− η2u

4

)(d−1)/2

du.

Since 0 < η2/4 < 1/4, we then get

3(d−1)/2ηd+1βd−1

23d(d+ 1)
≤ |Gω(j,0)△Gω(j,1) | ≤ ηd+1βd−1

22d+1(d+ 1)
. (3.21)

Now, continuing (3.19) and (3.20), replacing M by Mη and h by the lower bound in (3.21)

and using lemmas 11 and 12, we get that

sup
G∈Kd

EG

[

|G△Ĝ|
]

≥ c8η
2
(

1− c9η
d+1
)2n

, (3.22)

where

c8 =
3(d−1)/2βd−1d

24d+1(d+ 1)
√
d+ 2

and

c9 =
(1− e−

1
8σ2 )βd−1

22d+1(d+ 1)
.

Note that since the ball Bd−1(0, 1/2) is included in the (d− 1)-dimensional hypercube cen-

tered at the origin, with sides of length 1, the following inequality holds

|Bd−1(0,
1

2
)| = βd−1

2d−1
≤ 1,

and this shows that c9 < 1. Therefore, since η < 1 as well, the concavity of the logarithm leads

(3.22) to

sup
G∈Kd

EG

[

|G△Ĝ|
]

≥ c8η
2 exp

(

2n ln(1− c9)η
d+1
)

.

Let us choose η = n−1/(d+1), so that (3.22) becomes

sup
G∈Kd

EG

[

|G△Ĝ|
]

≥ c10n
− 2

d+1 ,
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where c10 = c8(1− c9)
2 > 0. �

Proof of Theorem 3.6

Let r∗ be a given and finite integer such that d + 1 ≤ r∗ ≤ Rn − 1. Recall that by definition,

Q̂
(r∗)
n = P̂

(r∗)
n . Note that if r∗ ≤ r ≤ r′, then P(1)

r∗ ⊆ P(1)
r ⊆ P(1)

r′ . Therefore if P ∈ P(1)
r∗ and

G = P in model (1.3), by Theorem 3.1 it is likely that with high probability we have, using the

triangle inequality,

|P̂ (r)
n △P̂ (r′)

n | ≤ Cdr′ lnn
n

, (3.23)

for any r∗ ≤ r ≤ r′, where C is a constant. Therefore it is reasonable to select r̂ as the minimal

integer that satisfies (3.23).

Let r̂ be chosen as in Theorem 3.6. For r = d + 1, . . . , Rn, let us denote by Ar the event

following event.

Ar =

{

∀r′ = r, . . . , Rn, |Q̂(r)
n △Q̂(r′)

n | ≤ 2car
′ lnn
n

}

,

where c2 is the same constant as in Theorem 3.1. Then r̂ is the smallest integer r ≤ Rn such

that Ar holds.

Let P ∈ P(1)
r∗ . We write the following.

EP [|P̂ adapt
n △P |] = EP [|P̂ adapt

n △P |I(r̂ ≤ r∗)] + EP [|P̂ adapt
n △P |I(r̂ > r∗)], (3.24)

and we bound separately the two terms in the right side. Note that if r̂ ≤ r∗, then, since the

event Ar̂ holds by definition,

|Q̂(r∗)
n △Q̂(r̂)

n | ≤ 2car
∗ lnn
n

.

Therefore, using the triangle inequality,

EP [|P̂ adapt
n △P |I(r̂ ≤ r∗)]

≤ EP [|P̂ adapt
n △Q̂(r∗)

n |I(r̂ ≤ r∗)] + EP [|Q̂(r∗)
n △P |I(r̂ ≤ r∗)]

≤ 2car
∗ lnn
n

+
c1(σ, d, q)dr

∗ lnn
n

by Corollary 3.1, since Q̂(r∗)
n = P̂ (r∗)

n

≤ c11r
∗ lnn
n

, (3.25)

where c11 depends only on d and σ. The second term of (3.24) is bounded differently. First

note that for all r = d + 1, . . . , Rn, Q̂
(r)
n ⊆ [0, 1]d, so |Q̂(r)

n | ≤ 1. Thus, if Ar∗ stands for the

complement of the event Ar∗ , we have the following inequalities.
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EP [|P̂ adapt
n △P |I(r̂ > r∗)]

≤ 2PP [r̂ > r∗]

≤ 2PP

[

Ar∗
]

≤ 2

Rn
∑

r=r∗
PP

[

|Q̂(r∗)
n △Q̂(r)

n | > 2car lnn

n

]

≤ 2

Rn
∑

r=r∗
PP

[

|Q̂(r∗)
n △P |+ |Q̂(r)

n △P | > 2car lnn

n

]

≤ 2

Rn
∑

r=r∗

(

PP

[

|Q̂(r∗)
n △P | > car lnn

n

]

+ PP

[

|Q̂(r)
n △P | > car lnn

n

])

≤ 2

Rn−1
∑

r=r∗

(

PP

[

|P̂ (r∗)
n △P | > car

∗ lnn
n

]

+ PP

[

|P̂ (r)
n △P | > car lnn

n

])

+ 2PP

[

|P̂ (r∗)
n △P | > car

∗ lnn
n

]

+ 2PP

[

|G̃△P | > caRn lnn

n

]

(3.26)

Note that since P ∈ P(1)
r∗ , it is also true that P ∈ P(1)

r , ∀r ≥ r∗. Therefore, if r∗ ≤ r ≤ R∗−1,

we have, using Theorem 3.1, with x = (ca − 2d/c2)r lnn ≥ r lnn/c2,

PP

[

|P̂ (r)
n △P | > car lnn

n

]

≤ c1e
−r lnn ≤ c1n

−(d+1).

In addition, by Theorem 3.4, with x = (ca − c0)Rn lnn ≥ Rn lnn/c2,

PP

[

|G̃△P | > caRn lnn

n

]

≤ τ1e
−Rn lnn ≤ τ1n

−(d+1).

It comes from (3.26) that

EP [|P̂ adapt
n △P |I(r̂ > r∗)] ≤ 2

Rn−1
∑

r=r∗
2c1n

−(d+1) + 2c1n
−(d+1) + 2τ1n

−(d+1)

≤ 4max(c1, τ1)Rnn
−(d+1). (3.27)

Finally, using (3.25) and (3.27),

EP [|P̂ adapt
n △P |] ≤ c12r

∗ lnn
n

,

where c12 is a positive constant that depends on d and σ. Let us now assume that r∗ is a given

integer larger than Rn, possibly infinite, and that P ∈ P(1)
r∗ . Recall that if r∗ = ∞ we denote by
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P(1)
∞ the class K(1)

d . Then with probability one, r̂ ≤ r∗. First of all, note that obviously, since

by definition, r̂ ≤ Rn,

|Q̂(Rn)
n △Q̂(r̂)

n | ≤ 2caRn lnn

n
≤ 2can

− 2
d+1

with probability one. Then, by the triangle inequality,

EP [|P̂ adapt
n △P |] ≤ 2can

− 2
d+1 + EP [|Q̂(Rn)

n △P |]

≤ 2can
− 2

d+1 + c3(σ, d, q)n
− 2

d+1 ,

by Corollary 3.3, since P ∈ P(1)
r∗ ⊆ P(1)

∞ and Q̂
(Rn)
n is the estimator of Theorem 3.4. Theorem

3.6 is then proven. �

Proof of Theorem 3.7

On the class S0

Upper bound Let us first prove the upper bound, i.e. assume that nh → ∞, and prove

that there exists a consistent test. Recall that N = max{i = 1, . . . , n : Xi ≤ h} = #(X ∩ [0, h]).

If the design is (DD), then N is just equal to the integer part of nh. If the design (RD), then

N is a binomial random variable, with parameters n and h. Let us show first that the error of

the first kind of the test T 0
n goes to zero, when n→ ∞.

P∅ [S ≤ cN ] = P∅

[

#

{

i = 1, . . . , N : Yi >
1

2

}

≥ (1− c)N

]

≤ E

[

P∅

[

#

{

i = 1, . . . , N : ξi >
1

2

}

≥ (1− c)N |X
]]

.

Since the ξi’s are independent of X , the distribution of #{i = 1, . . . , N : ξi >
1
2} conditionally to

X is binomial, with parameters N and β, where β = P [ξ1 > 1/2] ∈ [0, 1). Thus, by Bernstein’s

inequality for binomial random variables, by defining γ =
(1− c− β)2

2β(1− β) + (1− c− β)/3
> 0,

P∅ [S ≤ cN ] ≤ E [exp (−γN)] .

If X satisfies (DD), then N ≥ nh− 1 and it is clear that P∅ [S ≤ cN ] −→ 0. If X satisfies (RD),

then

E [exp (−γN)] = exp
(

−nh
(

1− e−γ
))

,

so P∅ [S ≤ cN ] −→ 0.
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Let us show, now, that the error of the second kind goes to zero as well. Let G ∈ S0

satisfying the alternative hypothesis, i.e. |G| ≥ h. Denote by β′ = P[ξ1 ≤ −1/2], and by

γ′ =
(c− β′)2

2β′(1− β′) + (c− β′)/3
> 0

PG [S > cN ] = PG

[

#

{

i = 1, . . . , N : Yi ≤
1

2

}

> cN

]

≤ E

[

P∅

[

#

{

i = 1, . . . , N : ξi ≤ −1

2

}

> cN |X
]]

≤ E
[

exp
(

−γ′N
)]

,

by a similar computation to that for the error of the first kind. Since the right-side of the last

inequality does not depend on G,

sup
|G|≥h

PG [S > cN ] ≤ E
[

exp
(

−γ′N
)]

and therefore, by the same argument as for the error of the first kind, goes to zero when n→ ∞,

for both designs (DD) and (RD).

Lower bound Assume, now, that nh → 0. Let τn be any test. Let G1 = [0, h]. We

denote by H the Hellinger distance between probability measures. The following computation

uses properties of this distance, which can be found in [Tsy09].

γn(τn, C) ≥ E∅ [τn] + EG1 [1− τn]

≥
∫

min (dP∅, dPG1)

≥ 1

2

(

1− H(P∅,PG1)

2

)2

. (3.28)

Let G,G′ ∈ S. A simple computation shows that, for the design (DD),

1− H(PG,PG′)

2
= exp

(

−#(X ∩ (G△G′))
8σ2

)

, (3.29)

and for the design (RD),

1− H(PG,PG′)

2
=
(

1−
(

1− e−
1

8σ2

)

|G△G′|
)n
. (3.30)
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In particular, for the design (DD),

1− H(P∅,PG1)

2
≥ exp

(

− nh

8σ2

)

,

and for the design (RD),

1−
H(P∅,P

⊗n
G1

)

2
=
(

1−
(

1− e−
1

8σ2

)

h
)n
.

In both cases, we showed that the right side of (3.28) tends to 1/2, when n → ∞. Therefore

the test τn is not consistent.

On the class S

Upper bound Assume that
nh

lnn
−→ ∞. Let us first show that the error of the first kind

of T 1
n goes to zero, when n → ∞. Recall that T 1

n = 1(R ≥ 0), where R = sup|G|≥hR(G) and

R(G) =
∑n

i=1 Yi1(Xi ∈ G)− #(X∩G)
2 , for all G ∈ S. Note that R(G) is piecewise constant, and

can only take a finite number of values. It is clear that

{R(G) : G ∈ S, |G| ≥ h} = {R([Xk, Xl)) : 1 ≤ k < l ≤ n,Xl −Xk > h}.

Recall that for 1 ≤ k < l ≤ n, R([Xk, Xl)) =
1

2

l−1
∑

i=k

(2Yi − 1). Therefore,

P∅[R ≥ 0] = P∅



 max
1≤k<l≤n
Xl−Xk>h

R([Xk, Xl)) > 0





≤ P∅





⋃

1≤k<l≤n

{R([Xk, Xl)) > 0} ∩ {Xl −Xk > h}





≤
∑

1≤k<l≤n

P∅ [R([Xk, Xl)) > 0, Xl −Xk > h]

≤
∑

1≤k<l≤n

P∅

[

l−1
∑

i=k

(2ξi − 1) > 0

]

P[Xl −Xk > h]. (3.31)

For 1 ≤ k < l ≤ n,

P∅

[

l−1
∑

i=k

(2ξi − 1) > 0

]

≤ exp

(

−(l − k)σ2

8

)

, (3.32)

using Markov’s inequality and Assumption A.

If the design is (DD), then P[Xl − Xk > h] is 1 if and only if l − k > nh, 0 otherwise, so
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from (3.31) and (3.32) we get that

P∅[R ≥ 0] ≤
∑

l−k>nh

exp

(

−(l − k)σ2

8

)

≤
∑

l−k>nh

exp

(

(−nh)σ2
8

)

≤ n2

2
exp

(

(−nh)σ2
8

)

−→ 0,

when n→ ∞, which proves that the error of the first kind goes to zero.

If the design is (RD), let us use the following Lemma.

Lemma 9. Let X1, . . . , Xn be the (RD) design. Then, for any 1 ≤ k < l ≤ n, and h > 0,

P[Xl −Xk > h] ≤ n exp
(

−nh(1− e−u) + u(l − k)
)

, ∀u > 0.

Therefore, by (3.31), (3.32) and (3.47), and Lemma 9 with u = σ2/8,

P∅[R ≥ 0] ≤
∑

1≤k<l≤n

exp

(

−(l − k)σ2

8
− nh(1− e−u) + u(l − k)

)

≤ n2

2
exp

(

−nh(1− e−σ2/8)
)

−→ 0,

when n→ ∞, which proves that the error of the first kind goes to zero.

Let us bound, now, the error of the second kind. Let G ∈ S satisfying |G| ≥ h. For this G,

denote by NG = #(X ∩G). Then,

PG[R < 0] ≤ PG [R(G) ≤ NG/2]

≤ P

[

n
∑

i=1

ξi1(Xi ∈ G) ≤ −NG/2

]

. (3.33)

For the design (DD), NG is the integer part of n|G|, so NG ≥ nh. Therefore, by Markov’s

inequality, and by Assumption A, (3.33) becomes

PG[R < 0] ≤ exp

(

−NG

8σ2

)

≤ exp

(

− nh

8σ2

)

. (3.34)

For the design (RD), NG is a random binomial variable, with parameters n and |G|. By
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conditioning to the design and using Markov’s inequality, (3.33) becomes

PG[R < 0] ≤ P

[

n
∑

i=1

−ξi1(Xi ∈ G) ≥ NG/2

]

≤ E

[

exp

(

−NG

8σ2

)]

≤ exp (−Cn|G|) ≤ exp (−Cnh) , (3.35)

where C = 1− e−
1

8σ2 .

In both cases (3.34) and (3.35), the right side does not depend on G, and goes to zero as

n→ ∞. We conclude that, for both designs (DD) and (RD),

sup
|G|≥h

PG[R < 0] −→ 0,

which ends the proof of the upper bound.

Lower bound We more or less reproduce the proof of [Gay01], Theorem 3.1. Here, the

noise is supposed to be Gaussian, with variance σ2. Let us assume that
nh

lnn
−→ 0. Let M =

1/h, assumed to be an integer, without loss of generality. For q = 0, . . . ,M , let Gq = [qh, (q +

1)h]. For q = 1, . . . ,M , let Zq =
dPGq

dP∅
(X1, Y1, . . . , Xn, Yn), and denote by Z̄ = 1

M

∑M
q=1 Zq. Let

τn be any test. Then,

γn(τn,S) ≥ P∅ [τn = 1] +
1

M

M
∑

q=1

PGq [τn = 0]

≥ 1

M

M
∑

q=1

(

P∅ [τn = 1] + PGq [τn = 0]
)

≥ 1

M

M
∑

q=1

(

E∅ [τn] + EGq [1− τn]
)

≥ 1

M

M
∑

q=1

E∅ [τn + (1− τn)Zq]

≥ E∅
[

τn + (1− τn)Z̄
]

≥ E∅
[(

τn + (1− τn)Z̄
)

1(Z̄ ≥ 1/2)
]

≥ 1

2
P∅
[

Z̄ ≥ 1/2
]

. (3.36)

Let us prove that E∅[Z̄] = 1, and that V∅[Z̄] −→ 0. This will imply that the right side term of

(3.36) goes to zero, when n→ ∞.
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For q = 1, . . . ,M , under the null hypothesis,

Zq = exp

(

− 1

2σ2

n
∑

i=1

(

(Yi − 1(Xi ∈ Gq))
2 − Y 2

i

)

)

= exp

(

1

2σ2

n
∑

i=1

(2ξi − 1)1(Xi ∈ Gq)

)

. (3.37)

By its definition, Zq has expectation 1 under P∅:

E∅[Z̄] = 1. (3.38)

Since, almost surely, no design point falls in two Gq’s at the time, a simple computation

shows that the random variables Zq, q = 1, . . . ,M , are not correlated. Thus,

V∅[Z̄] =
1

M2

M
∑

q=1

V∅[Zq].

Let us bound from above V∅[Zq], for q = 1, . . . ,M :

V∅[Zq] ≤ E∅[Z
2
q ]

= E

[

exp

(

−#(X ∩Gq)

σ2

)

E∅

[

exp

(

2

σ2

n
∑

i=1

ξ1(Xi ∈ Gq)

)

|X
]]

= E

[

exp

(

#(X ∩Gq)

σ2

)]

. (3.39)

If the design is (DD), then we get that

V∅[Zq] ≤ exp

(

nh+ 1

σ2

)

,

and the variance of Z̄ is then bounded from above:

V∅[Z̄] ≤ h exp

(

nh+ 1

σ2

)

. (3.40)

If the design is (RD), then #(X ∩Gq) is a binomial random variable with parameters n and

h, so from (3.39), we get that

V∅[Zq] ≤
(

1 +
(

e1/σ
2 − 1

)

h
)n

≤ exp (Cnh) ,
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where C = e1/σ
2 − 1, and the variance of Z̄ is then bounded from above:

V∅[Z̄] ≤ h exp (Cnh) . (3.41)

Since we assumed that nh/ lnn −→ 0, the right side terms of (3.40) and (3.41) go to zero,

and therefore, for both designs (DD) and (RD),

V∅[Z̄] −→ 0. (3.42)

Finally, we get from (3.36), (3.38) and (3.42), that

liminf
n→∞

γn(τn,S) ≥
1

2
.

This concludes the proof. �

Proof of Theorem 3.8

The beginning of this proof holds for any design {X1, . . . , Xn}, independent of the noise ξi, i =

1, . . . , n. Let G ∈ S0. Let M = max{i = 1, . . . , n : Xi ∈ G} - set M = 0 if the set is empty -.

Then, M̂n ∈ ArgMax
M ′=1,...,n

(F (M ′)− F (M)), and, by (3.8),

F (M ′)− F (M) = −|M ′ −M |+































2
∑M

i=M ′+1 ξi if M > M ′,

0 if M ′ =M,

−2
∑M ′

i=M+1 ξi if M < M ′.

Let us complete the i.i.d. sequence ξ1, . . . , ξn to obtain an infinite double sided i.i.d. sequence

(ξi)i∈Z, independent of the design. Let k ∈ N∗ be any positive integer. Define, for i ∈ Z, ξ̃i =

ξi+M . Since M depends on the design only, it is independent of the ξi, i ∈ Z, and therefore, the

ξ̃i, i ∈ Z are i.i.d., with same distribution as ξ1. Let Ek be the event {M̂n ≥ M + k}. If Ek

holds, then :

0 ≤ F (M̂n)− F (M) =M − M̂n − 2

M̂n
∑

i=M+1

ξi,
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and it follows that

0 ≤ max
M+k≤j≤n

(

M − j − 2

j
∑

i=M+1

ξi

)

≤ max
M+k≤j≤n

(

M − j − 2

j−M
∑

i=1

ξ̃i

)

≤ max
k≤j≤n−M

(

−j − 2

j
∑

i=1

ξ̃i

)

.

Hence, for all u > 0,

PG[Ek] ≤ PG

[

max
k≤j

(

−j − 2

j
∑

i=1

ξ̂i

)

≥ 0

]

≤ P

[

max
k≤j

(

−j − 2

j
∑

i=1

ξi

)

≥ 0

]

≤
∞
∑

j=k

P

[

−2

j
∑

i=1

ξi ≥ j

]

≤
∞
∑

j=k

E
[

e−2u
∑j

i=1 ξi
]

euj
, by Markov’s inequality

≤
∞
∑

j=k

e(−u+2σ2u2)j , by Assumption A

and, by choosing u = 1/(4σ2),

PG[Ek] ≤ Ce−k/(8σ2),

where C =
(

1− e−1/(8σ2)
)−1

is a positive constant. By symmetry, we obtain that :

PG[|M̂n −M | ≥ k] ≤ 2Ce−k/(8σ2). (3.43)

If the design is (DD), the conclusion is straightforward, since |Xi−Xj | = |i−j|
n , i, j = 1, . . . , n,

and Theorem 3.8 is proved. �

If the design is (RD), it is not clear how to go from (3.43) to an upper bound for the

probability PG[|θ̂n − θ| ≥ ǫ], for ǫ > 0. This question should be addressed in a future work.
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Proof of Theorem 3.9

The proof is straightforward. Let G1 = [0, 0] and G2 = [0, 1/(2n)]. Then PG1 = PG2 , since no

point of the design falls in G1△G2, and for any estimator Ĝn,

sup
G∈S0

EG

[

|Ĝn△G|
]

≥ EG1

[

|Ĝn△G1|
]

+ EG2

[

|Ĝn△G2|
]

≥ EG1

[

|Ĝn△G1|+ |Ĝn△G2|
]

≥ EG1 [|G1△G2|] by the triangle inequality

≥ 1

2n
.

�

Proof of Theorem 3.14

Let I0 be the set of even positive integers less or equal to n, and I1 the set of odd such

integers. Note that {Xi : i ∈ I0} is a deterministic and regular design, with step 2/n. Let

Ĝn ∈ ArgMax
G′∈S

∑

i∈I0(2Yi − 1)1(Xi ∈ G′) be the LSE estimator given in Theorem 3.11, built

using only the subsample {Xi : i ∈ I0}. Let x > 0, whose value will be specified in the course of

the proof. Consider the event Ex = {|Ĝn△G| < x lnn
n }. By Theorem 3.11, this event holds with

probability at least 1 − c1e
−(c2x−4) lnn. Choose x such that x lnn

n ≤ µ/2. This choice implies

that on the event Ex, |Ĝn△G| < µ ≤ |G|, so necessary, Ĝn and G must intersect. Thus, still

on the event Ex,

|Ĝn△G| = |b̂n − b|+ |ân − a|,

where we denoted byG = [a, b] and Ĝn = [ân, b̂n]. Letm = a+b
2 and m̂n = ân+b̂n

2 be, respectively,

the middle points of G and Ĝn. From now on, let us assume that Ex holds. Then,

|m̂n −m| ≤ 1

2
(|b̂n − b|+ |ân − a|)

≤ 1

2
|Ĝn△G|

≤ x lnn

2n

≤ µ

4
. (3.44)

Therefore, m̂n ∈ G and, combining (3.44) with the fact that |G| ≥ µ,

min(m̂n, 1− m̂n) ≥
µ

4
. (3.45)
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Let us define

I+1 = {i ∈ I1 : Xi ≥ m̂n},

and

I−1 = {i ∈ I1 : Xi ≤ m̂n}.

By (3.45), #Iǫ1 ≥ µn
8 − 1 ≥ µn

16 for n large enough, and for ǫ ∈ {+,−}. Note that {Xi : i ∈ I+1 }
(resp. {Xi : i ∈ I−1 }) is a deterministic and regular design of the segment [m̂n, 1] (resp. [0, m̂n]),

of cardinality greater or equal to µn
16 , as we saw just before. Then, since we have both

Yi = 1(Xi ≤ b) + ξi, ∀i ∈ I+1

and

Yi = 1(Xi ≥ a) + ξi, ∀i ∈ I−1 ,

the change points a and b can be estimated as in Theorem 3.8, using the subsamples {(Xi, Yi) :

i ∈ I+1 } and {(Xi, Yi) : i ∈ I−1 } respectively, and we get two estimators ãn and b̃n which satisfy:

PG

[

|ãn − a| ≥ 16y

µn
,Ex

]

≤ c0e
−y/(8σ2)

and

PG

[

|b̃n − b| ≥ 16y

µn
,Ex

]

≤ c0e
−y/(8σ2),

for all y > 0. Set G̃n = [ãn, b̃n], on the event Ex, and G̃n = ∅ on its complementary Ēx. By

setting x = µn
2 lnn , which is the maximal value authorized in this proof,

PG

[

|G̃n△G| ≥
y

n

]

≤ PG

[

|G̃n△G| ≥
y

n
,Ex

]

+ PG[Ēx]

≤ 2c0e
−µy/(256σ2) + c1n

4e−c2µn/2,

which ends the proof of Theorem 3.14. �
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3.7 Appendix to Chapter 3

3.7.1 Lemmata

Lemma 10 ([GMR95]). Let r ≥ d+1 be a positive integer. For any convex body G ∈ Kd there

exists a convex polytope Pr ∈ Pr such that Pr ⊆ G, and

|G△Pr| ≤ cd
|G|

r2/(d−1)
,

where c is a universal positive constant.

Lemma 11. Let d ≥ 1. Assume Model (RM) holds. Let G1, G2 ∈ K(1)
d . The Hellinger distance

between PG1 and PG2 is equal to:

H2(PG1 ,PG2) = 2(1− e−
1

8σ2 )|G1△G2|.

Lemma 12. Let S be the sphere with center a0 = (1/2, . . . , 1/2) ∈ Rd and radius 1/2, and ρ

the Euclidean distance in Rd. We still denote by ρ its restriction on S. Let η ∈ (0, 1). Then

any η-packing family of (S, ρ) is finite, and any maximal η-packing family has a cardinality Mη

that satisfies the inequalities

d
√
2π

2d−1
√
d+ 2ηd−1

≤Mη ≤ 4d−2
√
2πd

3(d−3)/2ηd−1
. (3.46)

3.7.2 Proof of the lemmata

Proof of Lemma 9 Note that the event {Xl−Xk > h} is equivalent to {#(X∩(Xk, Xk+h)) <

l − k}. Let us denote by X ′
1, . . . , X

′
n the preliminary design, from which X1, . . . , Xn is the

reordered version. The random variables X ′
1, . . . , X

′
n are then i.i.d., with uniform distribution

on [0, 1]. Hence,

P[Xl −Xk > h] =
n
∑

j=1

P
[

#(X ∩ (Xk, Xk + h)) < l − k,Xk = X ′
j

]

≤
n
∑

j=1

P
[

#(X ∩ (X ′
j , X

′
j + h)) < l − k

]

≤
n
∑

j=1

E
[

P
[

#(X ∩ (X ′
j , X

′
j + h)) < l − k|X ′

j

]]

≤
n
∑

j=1

E
[

P
[

n−#(X ∩ (X ′
j , X

′
j + h)) ≥ n− l + k|X ′

j

]]

≤
n
∑

j=1

E
[

f(X ′
j)
]

, (3.47)
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where f(x) = P [n−#(X ∩ (x, x+ h)) ≥ n− l + k], for all x ∈ [0, 1]. The random variable

n−#(X ∩ (x, x+ h)) is binomial with parameters n and 1− h, and by Markov’s inequality, for

all u > 0,

f(x) ≤ enu
(

1− h(1− e−u)
)n
e−u(n−l+k), (3.48)

and (3.47) and (3.48) yield the lemma. �

Proof of Lemma 12 The fact that any η-packing family of (S, ρ) is finite is clear and comes

from the fact that S is compact. Consider now a maximal η-packing family of (S, ρ), denoted

by {y1, . . . , yMη}. The surface area of Bd(yj , η/2)∩S is independent of j ∈ {1, . . . ,Mη}, and we

denote it by V (η/2). A simple application of the Pythagorean theorem shows thatBd(yj , η/2)∩S
is a cap of height η2/4 of S. Therefore, using Lemma 2.3 of [RSW01]

V (η/2) ≥ βd−1

(

1− η2

4

)(d−3)/2

ηd−1.

Besides, since {y1, . . . , yMη} is an η-packing family of (S, ρ), the sets Bd(yj , η/2) ∩ S, j =

1, . . . ,Mη are pairwise disjoint and the surface area of their union is less than the surface area

of S, which is equal to
dβd
2d−1

, so we get

MηV (η/2) ≤ dβd
2d−1

.

Therefore,

Mη ≤ dβd
2d−1V (η/2)

≤ dβd

2d−1βd−1

(

1− η2

4

)(d−3)/2
ηd−1

.

and the right inequality of Lemma 12 follows from the fact that η2/4 ≤ 1/4 and Lemma 2.2 of

[RSW01] which states that √
2π√
d+ 2

≤ βd
βd−1

≤
√
2π√
d
. (3.49)

The left inequality of Lemma 12 comes from the fact that any maximal η-packing family is

an η-net. Indeed, consider a maximal η-packing family Y, and assume it is not an η-net. Then

there exists x ∈ S such that for all y ∈ Y, ρ(x, y) > ǫ. Therefore {x} ∪ Y is an η-net that

contains Y strictly. This contradicts maximality of Y. In particular, the family {y1, . . . , yMη}
is an η-net of S, and the caps Bd(yj , η) ∩ S, j = 1, . . . ,Mη cover the sphere S.
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It follows that

MηV (η) ≥ dβd
2d−1

.

Using again Lemma 2.3 of [RSW01], we bound V (η) from above

V (η) ≤ βd−1η
d−1,

and then the desired result follows again from (3.49). �
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Chapter 4

Estimation of functionals

Instead of the set G itself, it is sometimes interesting to estimate its functionals, such as its

volume, surface area, diameter, center of gravity, etc. For instance, in medical imaging, one

may want to estimate the volume of a tumor rather than its boundary. A plug-in estimator of

a functional S(G) of G is of the form S(Ĝn), where Ĝn is a preliminary estimator of G. Even

if Ĝ is an optimal estimator of G, the plug-in estimator can be suboptimal. For example, in

[KT93a], it is proved that the plug-in estimator of the volume of a boundary fragment can be

improved, and the risk of the resulting estimator tends infinitely faster to zero. In [Gay97], a

method consisting of modifying the plug-in estimator is proposed. First, the sample is divided

into three subsamples of the same size. One is used to construct the plug-in estimator, and

the two others are used to estimate its error. Although a convex body can be estimated at the

speed n−2/(d+1) in Model (DS), its volume can be estimated much faster. We give more details

in Section 4.1.

In this chapter, we propose an overview of the known results about the estimation of a

particular type of functionals. In particular, we cover estimation of the volume and the surface

area, but not of the diameter, or the center of gravity. Let us recall Steiner formula for convex

bodies (2.40). For K ∈ Kd, |Kǫ| is a polynomial of degree d in ǫ, ǫ ≥ 0:

|Kǫ| =
d
∑

j=0

βd−jvj(K)ǫj ,

If j ≥ 1, vj(K) = (βd−j)
−1Lj(K), cf. (2.40). The coefficients vj(K) are positive. They are

called the intrinsic volumes of K. For j = 0, v0(K) = |K| is the volume of K, and v1(K) is

its surface area. The coefficient v2(K) is called the mean width of K, and vd(K) = 1. For

j = 1, . . . , d − 1, the intrinsic volume vd−j(K) is the mean volume of projections of K on
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j-dimensional linear subspaces of Rd:

vd−j(K) =

(

d
j

)

βd

βjβd−j

∫

Ld
j

|πL(K)|jµj(dL), (4.1)

where Ld
j is the Grassmannian of all j-dimensional linear subspaces of Rd, equipped with the

Haar probability measure µj and πL is the orthogonal projection onto L, for L ∈ Ld
j . In order

to simplify the notation, we denote by | · |j the j-dimensional Lebesgue measure on any L ∈ Ld
j .

In this Chapter, we are interested in the estimation of the intrinsic volumes, in both models

(DS) and (RM).

4.1 The density support model

4.1.1 Estimation of the volume of a convex body

As we mentioned above, Gayraud [Gay97] has proved that the volume of a convex body, in

Model (DS), can be estimated at a better speed than the convex body itself, under certain

conditions. First, let us note that it is clear that the plug-in estimator associated to the convex

hull estimator K̂n achieves the same speed of convergence as the estimator K̂n. Indeed, for

K ∈ Rd, since K̂n ⊆ K PK-almost surely,
∣

∣

∣
|K| − |K̂n|

∣

∣

∣
= |K\K̂n| = |K△K̂n|. Therefore,

sup
K∈K(1)

d

EK

[∣

∣

∣
|K| − |K̂n|

∣

∣

∣

]

is of the order n−
2

d+1 and the plug-in estimator achieves the same

rate on the class K(1)
d as the convex hull estimator. On the classes P(1)

r , r ≥ d + 1, it is not

clear that the risk of the plug-in estimator has the same rate of convergence as that of P̂
(r)
n ,

but at least it is not worse, since, if P ∈ P(1)
r , we have

∣

∣

∣
|P | − |P̂ (r)

n |
∣

∣

∣
≤ |P△P̂ (r)

n | by the triangle

inequality. The inclusion P̂
(r)
n ⊆ P does not necessarily hold, and this is why the last inequality

may be strict, so that EP [||P | − |P̂ (r)
n |] may converge to zero faster than EP [|P△P̂ (r)

n |]. The

quite simple case of triangles in the plane (d = 2, r = 3), is addressed in the next section.

We measure the error of an estimator of a functional using the expected absolute value of

the difference between the estimator and its target. For convex bodies, the following theorem

holds.

Theorem 4.1. There exists an estimator V̂n of the volume, whose minimax risk on the class

K(1)
d is of a smaller order than n−(d+3)/(2d+2):

sup
K∈K(1)

d

EK

[∣

∣

∣
V̂n − |K|

∣

∣

∣

]

≤ c(d)n−
d+3
2d+2 , ∀n ≥ n0(d),

where n0(d) is a positive integer and c(d) a positive constant, which depend on d only.
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In [Gay97], this upper bound is proved if the supremum is taken over all K ∈ K(1)
d such that

K contain a given Euclidean ball of positive volume. This assumption can be dropped, and

Theorem 4.1 is a direct consequence of the proof of the same upper bound given in [Gay97] and

of our Theorem 2.13. A lower bound of the minimax risk is also given in [Gay97], whose rate

matches the upper bound in Theorem 4.1. This proves that the minimax rate of convergence

on K(1)
d , for the estimation of the volume, is n−(d+3)/(2d+2), and that it is achieved by V̂n. Let

us present how the estimator V̂n is constructed in [Gay97].

Let K ∈ K(1)
d . Assume without loss of generality that three independent samples X1 =

{X1, . . . , Xn}, X2 = {X ′
1, . . . , X

′
n} and X3 = {X ′′

1 , . . . , X
′′
n} of i.i.d. random variables uniformly

distributed inK are available. Otherwise, we can divide the initial sample into three subsamples.

From X1, we construct K̂n, the convex hull estimator. The error of the corresponding plug-in

estimator |K̂n| is

∣

∣

∣
|K| − |K̂n|

∣

∣

∣
=

∫

K
1(x /∈ K̂n)dx

= EK

[

|K|1(X /∈ K̂n)
∣

∣

∣X1

]

. (4.2)

We estimate this error using the samples X2 and X3. For this purpose, replace, in (4.2), the

volume |K| by the volume |K̂ ′
n| of the convex hull of X2, and the conditional expectation by its

empirical version. Let f̂n be a kernel estimator of the density of the observations constructed

using the subsample X2. The estimator V̂n is defined as

V̂n = |K̂n|+
1

n

n
∑

i=1

1(X ′′
i /∈ K̂n)min

(

2,
1

f̂n(X ′′
i )

)

. (4.3)

The same construction is used in order to estimate functionals of the form
∫

K φ, where φ is

a real valued function defined on Rd. If φ is the constant unit function, then this is the volume.

Combinations of such functionals are also estimated, to get, for example, the center of gravity of

K. In [Gay97], the density of the observations is not assumed to be uniform, but only separated

from zero on its support K. More precisely, let f be the unknown density of the observations,

and assume it satisfies f(x) ≥ a0, ∀x ∈ K, where a0 is a given positive number, and K ∈ K(1)
d

is the unknown support. The estimator Vn of |K| is then given by

V̂n = |K̂n|+
1

n

n
∑

i=1

1(X ′′
i /∈ K̂n)min

(

2

a0
,

1

f̂n(X ′′
i )

)

.

Surprisingly, if the density of the observations is known to be uniform, only its support being
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unknown, it is still better to keep an estimator f̂n of the density in (4.3), than to replace the

term min

(

2,
1

f̂n(X ′′
i )

)

by |K̂ ′
n|. This comes from the fact that the density of the uniform

distribution on K is very smooth on K - since it is constant -, and thus can be estimated at a

good speed. Let us define a similar estimator to V̂n, where we replace the term 1/f̂n(X
′′
i ) by

|K̂ ′
n|:

Ṽn = |K̂n|+
|K̂ ′

n|
n

n
∑

i=1

1(X ′′
i /∈ K̂n).

The advantage of this estimator is that its weighted risk can be bounded uniformly on the whole

class Kd of convex bodies. However, the rate of convergence of its weighted risk is minimax

only for d ≤ 5.

Theorem 4.2. Assume Model (DS). The weighted risk of Ṽn satisfies:

sup
K∈Kd

EK





∣

∣

∣
V̂n − |K|

∣

∣

∣

|K|



 ≤ c(d)max
(

n−
4

d+1 , n−
d+3
2d+2

)

, ∀n ≥ 1,

where c(d) is a positive constant which depends on d only.

As soon as d ≥ 6, the upper bound is of the order n−
4

d+1 , but we believe this is not the

minimax rate of convergence.

Proof. Let us write

V̂n − |K| = 1

n

n
∑

i=1

(ρi + τi),

where ρi = |K|1(X ′′
i /∈ K̂n) − |K\K̂n| and τi = −|K\K̂ ′

n|1(X ′′
i /∈ K̂n). Let us bound from

above EK

[

(V̂n − |K|)2
]

. By the Cauchy-Schwarz inequality, this will provide an upper bound

for EK

[∣

∣

∣
V̂n − |K|

∣

∣

∣

]2
. First, we have

EK

[

(V̂n − |K|)2
]

≤ 2EK





(

1

n

n
∑

i=1

ρi

)2


+ 2EK





(

1

n

n
∑

i=1

τi

)2


 . (4.4)

Let us condition the first expectation by the subsample X1. Conditionally on X1, the ρi have
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zero mean and are i.i.d. Thus,

EK





(

1

n

n
∑

i=1

ρi

)2
∣

∣

∣

∣

∣

∣

X1



 =
1

n
EK

[

ρ21
∣

∣X1

]

≤ |K|2
n

EK

[

1(X ′′
1 /∈ K̂n)

∣

∣

∣X1

]

≤ |K|2
n

|K\K̂n|
|K| .

Therefore,

EK





(

1

n

n
∑

i=1

ρi

)2


 ≤ c1|K|2n−
d+3
d+1 , (4.5)

by Corollary 2.2, where c1 is a positive constant which depends on d only.

Let us now condition the second expectation in (4.4) by both subsamples X1 and X2. First,

the expression under the expectation sign is

(

1

n

n
∑

i=1

τi

)2

=
1

n2





n
∑

i=1

τ2i + 2
∑

1≤i<j≤n

τiτj



 ,

so that

EK





(

1

n

n
∑

i=1

τi

)2
∣

∣

∣

∣

∣

∣

X1 ∪ X2



 =
1

n
EK

[

τ21
∣

∣X1 ∪ X2

]

+
n− 1

n
EK [τ1τ2|X1 ∪ X2]

=
1

n

|K\K̂ ′
n|2|K\K̂n|
|K| +

n− 1

n

|K\K̂ ′
n|2|K\K̂n|2
|K|2 ,

and then, using again Corollary 2.2,

EK





(

1

n

n
∑

i=1

τi

)2


 ≤ c2|K|2
(

n−
d+7
d+1 + n−

8
d+1

)

, (4.6)

where c2 is a positive constant which depends on d only.

Hence, by (4.4), (4.5) and (4.6),

EK

[

(V̂n − |K|)2
]

≤ c|K|2max
(

n−
d+3
d+1 , n−

8
d+1

)

.

The constant c does not depend on K, and Theorem 4.2 is proved.
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4.1.2 Estimation of the area of a triangle

Let us focus on the case d = 2, and assume that K = T is a triangle in the plane. We will

show that the plug-in estimator |P̂ (3)
n |, which is the area of the smallest triangle containing the

whole sample, attains the rate 1/n, with no extra logarithmic factor. Let T be a triangle, and

let A,B,C be its vertices. Let ǫ and λ in (0, 1). At each vertex, we define three new points,

as on Figure 4.1. At vertex A, for example: Let A′
1 ∈ [A,B] such that ρ(A,A′

1) = λρ(A,B),

and let A1 ∈ T , such that the lines (A′
1A1) and (AC) are parallel, and such that ρ(A′

1, A1) =

ǫρ(A,C). Denote by RA,1 the parallelogram with A, A′
1 and A1 as vertices. Similarly, define

RA,2, RB,1, RB,2, RC,1 and RC,2. These six subsets of T have the same area 2ǫλ|T |, and the

intersection of RM,1 and RM,2, for M ∈ {A,B,C}, has area 2ǫ2|T |. Denote by R1, . . . , R6 these

six parallelograms. Denote by A′ the intersection point of the lines (A1B2) and (A2C1), by B
′

that of the lines (A1B2) and (B1C2), and by C ′ that of the lines (B1C2) and (C1A2), as on

Figure 4.1.

Figure 4.1: Construction for the estimation of the area of a triangle

If each of the Rj , j = 1, . . . , 6 meets the sample, i.e., if for each j = 1, . . . , 6, there exists

i ∈ {1, . . . , n}, such that Xi ∈ Rj , then P̂
(3)
n contains A1, A2, B1, B2, C1 and C2. Therefore, its

area is larger than the area of the smallest triangle containing those six points. If λ ≤ 1/3, then

the smallest triangle containing A1, A2, B1, B2, C1 and C2 is the triangle with vertices A′, B′

and C ′. Its area is greater or equal to |T | − 6ǫ|T |. Conversely, if |P̂ (3)
n | ≤ |T | − 6ǫ|T |, then one
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of the Rj , j = 1, . . . , 6 does not meet the sample, and

PT

[

|P̂ (3)
n | ≤ |T | − 6ǫ|T |

]

≤
6
∑

j=1

PT [Xi /∈ Rj , ∀i = 1, . . . , n]

≤ 6(1− 2ǫλ)n

≤ 6e−2λǫn.

Note that, by definition,
∣

∣

∣
|P̂ (3)

n | − |T |
∣

∣

∣
= |T | − |P̂ (3)

n |. Taking λ = 1/3 yields the following

theorem:

Theorem 4.3. Let d = 2. Let Model (DS) hold, with G = T being a triangle in R2, and let

P̂
(3)
n be the estimator defined in (2.6). Then,

PT



n

∣

∣

∣|P̂ (3)
n | − |T |

∣

∣

∣

|T | ≥ x



 ≤ 6e−x/9, ∀x ≥ 0.

This theorem yields the corollary:

Corollary 4.1. Let d = 2. Let Model (DS) hold. Then,

sup
T∈P3

ET









∣

∣

∣
|P̂ (3)

n | − |T |
∣

∣

∣

|T |





q

 ≤ 6q9q(q − 1)!

nq
.

In particular, the minimax weighted risk for the estimation of the area of a triangle in Model

(DS) is of the order 1/n.

4.1.3 Estimation of intrinsic volumes

In order to estimate intrinsic volumes vj(K) of a convex body K, for j = 1, . . . , d − 1, (4.1)

suggests to estimate the volumes of the projections of K on linear subspaces of Rd. Assume that

Model (DS) holds. If L ∈ Lj
d, then πL(X1), . . . , πL(Xn) are i.i.d. random points in L, with a

distribution that is supported on πL(K). This distribution admits a density with respect to the

j-dimensional Lebesgue measure on L, and this density is concave on πL(K). In addition, the

convex hull of πL(X1), . . . , πL(Xn) is equal to πL(K̂n), and its volume |πL(K̂n)|j is the plug-in

estimator of |πL(K)|j . The plug-in estimator of vj(K) is defined as

v̂j = vj(K̂n) =

(

d
j

)

βd

βjβd−j

∫

Ld
j

|πL(K̂n)|jµj(dL).
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The risk of the plug-in estimator has been computed in [Bà92] when the boundary of K is three

times continuously differentiable with everywhere positive Gauss curvature, in [Rei04] when

it is twice differentiable with everywhere positive curvature, and in [BHH08] under weaker

assumptions on ∂K. We say that a ball rolls freely inside K if and only if there exists some

positive number r, such that for each point x ∈ ∂K, there exists a Euclidean ball B of radius

r, containing x and included in K. In particular, if ∂K is twice differentiable, then a ball

rolls freely in K (cf. [Lei98]). For j = 1, . . . , d − 1 and x ∈ ∂K, denote by σj(x) the j-th

normalized elementary symmetric function of the principal curvatures of ∂K at point x (see

[Sch93a, Section 2.5, p. 106]). The following result holds:

Theorem 4.4 ([BHH08]). Let K ∈ Kd, in which a ball rolls freely. Then, for j = 1, . . . , d− 1,

lim
n→∞

(

n

|K|

) 2
d+1

EK

[

vj(K)− vj(K̂n)
]

= cd,j

∫

∂K
σd−1(x)

1
d+1σj(x)dµ(x),

where µ is the Lebesgue measure on ∂K and cd,j is a positive constant which depends on d and

j only.

Note also that in [BFV10], the variance of vj(K̂n) is shown to be of the order n−(d+3)/(d+1)

under the same assumptions as in [Rei04].

The condition of a freely rolling ball in K allows for flat parts on ∂K, i.e., the intersection

of K with a supporting hyperplane can have a (d− 1)-dimensional affine hull. This would not

be allowed by the assumptions of theorems in [Bà92] or [Rei04]. However, the freely rolling ball

condition does not allow for situations where ∂K has a corner. In particular, Rényi and Sulanke

[RS63] showed that if K is a square in the plane (d=2), then the expected perimeter of K̂n

makes a difference with that of the square of the order of n−1/2, which is much larger than the

n−2/3 provided by the theorem above. It is shown (cf. [BHH08]) that if j < d/2, there exists

K ∈ Kd, whose boundary is infinitely many times differentiable everywhere except at one point

of ∂K where it is only continuously differentiable, with positive Gauss curvature everywhere on

∂K, and such that

lim
n→∞

(

n

|K|

) 2
d+1

EK

[

vj(K)− vj(K̂n)
]

= ∞.

This shows that the rate of the risk of the plug-in estimator of vj(K) is not bounded from

above by n−2/(d+1), uniformly on the class K(1)
d . On the class K(1,+)

d of such K ∈ K(1)
d in which

a ball rolls freely, it is not clear if this estimator achieves the rate n−2/(d+1) uniformly, since

the integral in the limit in Theorem 4.4 may be arbitrarily large. It seems that some additional

assumptions should be added on that class to guarantee that the risk of the plug-in estimator
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is bounded from above by n−2/(d+1) up to a constant factor independent of K.

As for the estimation of the volume, a natural question is whether the plug-in estimator of

the j-th intrinsic volume can be improved. In particular, it seems that a similar technique as

for the plug-in estimator of the volume can be used. The error of the plug-in estimator of the

j-th intrinsic volume vj(K) is equal to:

vj(K)− vj(K̂n) =

(

d
j

)

βd

βjβd−j

∫

Ld
j

|πL(K)\πL(K̂n)|jµj(dL).

As before, assume without loss of generality that we have three independent samples X1 =

{X1, . . . , Xn},X2 = {X ′
1, . . . , X

′
n} and X3 = {X ′′

1 , . . . , X
′′
n} of i.i.d. random variables uniformly

distributed in K. Let K̂n be the convex hull of the first sample. Let L ∈ Ld
j . The distribution

of the variables πL(X
′
i), i = 1, . . . , n is not uniform on πL(K) and their density denoted by fL

is concave on its support πL(K). Precisely, fL(x) =
∣

∣x+
(

K ∩ L⊥)∣
∣

d−j
/|K|, x ∈ L, where L⊥

is the orthogonal linear subspace to L. Let f̂n,L be an estimator of fL, based on the sample X2.

Similarly to (4.3), one could define an estimator of vj(K) as:

ṽj = vj(K̂n) +

∫

Ld
j

n
∑

i=1

1

f̂n,L(X ′′
i )

1(X ′′
i /∈ K̂n)dL. (4.7)

Note that fL decreases to zero near the boundary of πL(K), and therefore there is no a0 > 0

such that fL(x) ≥ a0, ∀x ∈ πL(K). Thus, the technique used in [Gay97] needs to be adapted

here. The risk of the estimator ṽj depends on the choice of the estimators f̂n,L, L ∈ Ld
j . This

problem will be a subject of future work.

4.2 The regression model

To our knowledge, in a regression setup, the previous works considered mainly the estimation

of the volume [KT93b] and of the surface area of a convex body. In [CFRC07], the surface area

of a set G ∈ [0, 1]d is interpreted as its Minkowski content :

v0(G) = lim
ǫ→0

|(∂G)ǫ|
2ǫ

, (4.8)

provided that this limit exists and is finite. If G is a convex body, the Minkowski content of G is

well defined. Cuevas, Fraiman and Rodriguez-Casal [CFRC07] propose a consistent estimator

of v0(G), using observations generated by Model (RM), which they assume to be noise free, i.e.,

ξi = 0, ∀i = 1, . . . , n. At each point of the design X1, . . . , Xn, the perfect label 1(Xi ∈ G) is
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observed. These authors cover a broader class of sets than convex bodies, but let us focus here

on the class K(1)
d . If G ∈ K(1)

d , then the limit in (4.8) exists, is finite, and is equal to the surface

area of G. The estimator of v0(G) is defined as follows. Let ǫn be a positive sequence. Let

Pn = {Xi : Yi = 1} be the set of all points in the design which are labeled 1, i.e., which belong

to G, and let Nn = {Xi : Yi = 0} be all the other points. Let T̂n be the set of all points z ∈ Rd

such that both Bd
2(z, ǫn) ∩ Pn and Bd

2(z, ǫn) ∩Nn are nonempty. The points in T̂n are close to

the boundary ∂G in the sense that T̂n ⊆ (∂G)ǫn . The proposed estimator of v0(G) is defined as

v̂n =
|T̂n|
2ǫn

. (4.9)

Note that the computation of this estimator does not require that of a preliminary estimator

of G. The sequence ǫn should be chosen so it converges to zero not too fast. In particular, it is

shown in [CFRC07] that if ǫn = n−1/(2d) then, under some conditions on G,

EG[|v̂n − v0(G)|] ≤ c(G, d)n−1/(2d), (4.10)

where the positive constant c(G, d) depends on d, and on G. The conditions on G is that its

boundary should not have neither inner, not outer peaks: there should exist a positive constant

C, such that for small enough ǫ > 0,































|Bd
2 (z,ǫ)∩G|
|G| ≥ C|Bd

2(z, ǫ)|,

and

|Bd
2 (z,ǫ)\G|
1−|G| ≥ C|Bd

2(z, ǫ)|,

(4.11)

for all z ∈ ∂G.

These results on estimation of the Minkowski content - or surface area - v0(G) are not

embedded in a minimax setup. In particular, the constants that enter into consideration in

(4.10) depend on G and it is not clear if such a bound can be given uniformly on the class of

sets in K(1)
d satisfying (4.11). It is not clear whether the same procedure can be used if the labels

Yi are contaminated by some noise. In that case, an idea would be to define Pn = {Xi : Yi ≥ 1/2}
and Nn = {Xi : Yi ≤ 1/2}. The set Tn would be defined as the set of all points z ∈ Rd such

that the cardinality of Bd
2(z, ǫn)∩ Pn is at least an and that of Bd

2(z, ǫn)∩Nn is at least bn, for

some real sequences an and bn to be chosen.
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Chapter 5

Conclusion, contributions

This thesis dealt with estimation of convex bodies, and more specifically of convex polytopes.

Two setups were addressed. The first one consists in estimating the support of the density of n

observed random points. In most of the cases, we assumed that the density was uniform. In the

second setup, a set of n design points is given. To each of these points, the label 1 is assigned

if the point belongs to the unknown set and 0 otherwise. The labels are not observed directly

but a contaminated version of them with some noise is available. In both setups, the unknown

sets were assumed to be convex bodies. We focused on the case of convex polytopes when

the number of vertices is known. In this case, we proposed estimators and proved deviation

inequalities for their risks when the accuracy is measured using the Nikodym distance. The

constants in these deviation inequalities do not depend on the unknown set, which makes these

inequalities uniform on the considered classes of sets. These deviation inequalities provide

upper bounds on the risks of the corresponding estimators. On the other hand, we proved

lower bounds for the minimax risks on the considered classes. For the class of convex polytopes

with given number of vertices, we showed that the minimax rate of convergence is between 1/n

and (lnn)/n. Although we showed that the logarithmic factor is unavoidable in the regression

setup, we still do not know if it is also the case in the density support setup. Our conjecture is

that the right rate of convergence is the parametric rate 1/n. In the one-dimensional case, this

conjecture is true. For higher dimensions, the question remains open. In the regression setup,

in dimension one, we proved that the logarithmic factor which appears in the minimax rate,

can be dropped if either the unknown set is not too small, i.e., its length is greater than a given

positive number, or it contains a known and given point.

The deviation inequalities also allow us to construct estimators which adapt to the number

of vertices of the unknown set when it is assumed to be a polytope. In particular, our adaptive
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estimators achieve the same rates of convergence as the previous estimators that required the

knowledge of the true number of vertices. In addition, these estimators achieve the minimax

rate of convergence if the true set is not necessarily a polytope, but a general convex body.

In the density support setup, we were particularly interested in the estimator which is the

convex hull of the available observations. This random polytope has attracted much attention

in the literature during the last seventy years. We proved a new deviation inequality for this

random polypope, uniformly on the class of all d-dimensional convex bodies. This inequality

yields upper bounds on all the moments of the missing volume of the random polytope. We

also proved upper bounds on the moments of the number of vertices of this random polytope.

These bounds are uniform on the class of all d-dimensional convex bodies and we showed that

they are tight.

In the regression setup, in dimension higher than 1, we have conjectured that the minimax

rate of convergence on the class of polytopes with known number of vertices, and whose volume

is separated from zero, is 1/n. In other words, if we add a restriction on the volume of the

unknown polytope, the logarithmic factor can be dropped. This seems to be a reasonable

extension of the one dimensional case.

Estimation of functionals, such as intrinsic volumes, is still a new topic, and very few results

are known. We provided some refinements of the upper bounds in estimation of the volume, a

discussion of open problems and some ideas to construct new estimators.
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