M. R. Albert, A. M. Grannas, J. Bottenheim, P. B. Shepson, and F. E. Perron, Processes and properties of snow???air transfer in the high Arctic with application to interstitial ozone at Alert, Canada, Atmospheric Environment, vol.36, issue.15-16, pp.2779-2787, 2002.
DOI : 10.1016/S1352-2310(02)00118-8

A. Alfreider, J. Pernthaler, R. Amann, B. Sattler, F. Glockner et al., Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization, Appl. Environ. Microbiol, vol.62, pp.2138-2144, 1996.

M. O. Andreae and D. Rosenfeld, Aerosol???cloud???precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Science Reviews, vol.89, issue.1-2, pp.13-41, 2008.
DOI : 10.1016/j.earscirev.2008.03.001

P. A. Ariya, Microbiological degradation of atmospheric organic compounds, Geophysical Research Letters, vol.9, issue.2, 2002.
DOI : 10.1029/2002GL015637

P. A. Ariya and M. Amyot, New Directions: The role of bioaerosols in atmospheric chemistry and physics, Atmospheric Environment, vol.38, issue.8, pp.1231-1232, 2004.
DOI : 10.1016/j.atmosenv.2003.12.006

P. A. Ariya, A. P. Dastoor, M. Amyot, W. H. Schroeder, L. Barrie et al., The Arctic: a sink for mercury, Tellus B: Chemical and Physical Meteorology, vol.29, issue.1, pp.397-403, 2004.
DOI : 10.1029/2003JD003625

T. Barkay, M. Gillman, and R. R. Turner, Effects of dissolved organic carbon and salinity on bioavailability of mercury, Appl. Environ. Microbiol, vol.63, pp.4267-4271, 1997.

T. Barkay, S. M. Miller, and A. O. Summers, Bacterial mercury resistance from atoms to ecosystems, FEMS Microbiology Reviews, vol.27, issue.2-3, pp.355-384, 2003.
DOI : 10.1016/S0168-6445(03)00046-9

T. Barkay and A. J. Poulain, Mercury (micro)biogeochemistry in polar environments, FEMS Microbiology Ecology, vol.59, issue.2, pp.232-241, 2007.
DOI : 10.1111/j.1574-6941.2006.00246.x

T. Barkay and I. Wagner-döbler, Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment, Advances in Applied Microbiology, pp.1-52, 2005.
DOI : 10.1016/S0065-2164(05)57001-1

T. Bartels-rausch, G. Krysztofiak, A. Bernhard, M. Schläppi, M. Schwikowski et al., Photoinduced reduction of divalent mercury in ice by organic matter, Chemosphere, vol.82, issue.2, pp.199-203, 2011.
DOI : 10.1016/j.chemosphere.2010.10.020

B. Lyons, W. Welch, K. A. Fountain, A. G. Dana, G. L. Vaughn et al., Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry, Hydrological Processes, vol.21, issue.1, pp.115-130, 2003.
DOI : 10.1002/hyp.1205

F. J. Black, B. A. Poulin, R. Flegal, and A. , Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters, Geochimica et Cosmochimica Acta, vol.84, 2012.
DOI : 10.1016/j.gca.2012.01.019

S. B. Brooks, A. Saiz-lopez, H. Skov, S. E. Lindberg, J. M. Plane et al., The mass balance of mercury in the springtime arctic environment, Geophysical Research Letters, vol.38, issue.D4, 2006.
DOI : 10.1029/2005GL025525

A. Cabanes, L. Legagneux, and F. Dominé, Evolution of the specific surface area and of crystal morphology of Arctic fresh snow during the ALERT 2000 campaign, Atmospheric Environment, vol.36, issue.15-16, pp.2767-2777, 2002.
DOI : 10.1016/S1352-2310(02)00111-5

L. M. Campbell, R. J. Norstrom, K. A. Hobson, D. C. Muir, S. Backus et al., Mercury and other trace elements in a pelagic Arctic marine food web, 2005.

E. J. Carpenter, S. Lin, and D. G. Capone, Bacterial Activity in South Pole Snow, Applied and Environmental Microbiology, vol.66, issue.10, pp.4514-4517, 2000.
DOI : 10.1128/AEM.66.10.4514-4517.2000

A. F. Castoldi, T. Coccini, S. Ceccatelli, and L. Manzo, Neurotoxicity and molecular effects of methylmercury, Brain Research Bulletin, vol.55, issue.2, pp.197-203, 2001.
DOI : 10.1016/S0361-9230(01)00458-0

V. Celo, D. Lean, and S. Scott, Abiotic methylation of mercury in the aquatic environment, Science of The Total Environment, vol.368, issue.1, pp.126-137, 2006.
DOI : 10.1016/j.scitotenv.2005.09.043

B. Chen, T. Wang, Y. Yin, B. He, and G. Jiang, Methylation of inorganic mercury by methylcobalamin in aquatic systems, Applied Organometallic Chemistry, vol.304, issue.6, pp.462-467, 2007.
DOI : 10.1002/aoc.1221

J. Chen, S. O. Pehkonen, and C. Lin, Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters, Water Research, vol.37, issue.10, pp.2496-2504, 2003.
DOI : 10.1016/S0043-1354(03)00039-3

S. C. Choi, T. Chase, . Jr, and R. Bartha, Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS, Appl. Environ. Microbiol, vol.60, pp.1342-1346, 1994.

P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Marine Chemistry, vol.51, issue.4, pp.325-346, 1996.
DOI : 10.1016/0304-4203(95)00062-3

S. C. Colbeck, Water flow through heterogeneous snow, Cold Regions Science and Technology, vol.1, issue.1, pp.37-45, 1979.
DOI : 10.1016/0165-232X(79)90017-X

S. C. Colbeck, A simulation of the enrichment of atmospheric pollutants in snow cover runoff, Water Resources Research, vol.8, issue.31, p.1383, 1981.
DOI : 10.1029/WR017i005p01383

S. C. Colbeck, Snow Particle Morphology in the Seasonal Snow Cover, Bulletin of the American Meteorological Society, vol.64, issue.6, pp.602-609, 1983.
DOI : 10.1175/1520-0477(1983)064<0602:SPMITS>2.0.CO;2

S. C. Colbeck, The layered character of snow covers, Reviews of Geophysics, vol.17, issue.4, p.81, 1991.
DOI : 10.1029/90RG02351

G. L. Daly and F. Wania, Simulating the Influence of Snow on the Fate of Organic Compounds, Environmental Science & Technology, vol.38, issue.15, pp.4176-4186, 2004.
DOI : 10.1021/es035105r

D. Caritat, P. Hall, G. G??-slason, S. Belsey, W. Braun et al., Chemical composition of arctic snow: concentration levels and regional distribution of major elements, Science of The Total Environment, vol.336, issue.1-3, pp.183-199, 2005.
DOI : 10.1016/j.scitotenv.2004.05.031

I. I. Dietz, R. Outridge, P. M. Hobson, and K. A. , Anthropogenic contributions to mercury levels in present-day Arctic animals???A review, Science of The Total Environment, vol.407, issue.24, pp.6120-6131, 2009.
DOI : 10.1016/j.scitotenv.2009.08.036

F. Domine, Air-Snow Interactions and Atmospheric Chemistry, Science, vol.297, issue.5586, pp.1506-1510, 2002.
DOI : 10.1126/science.1074610

A. Dommergue, E. Bahlmann, R. Ebinghaus, C. Ferrari, and C. Boutron, Laboratory simulation of Hg0 emissions from a snowpack, Analytical and Bioanalytical Chemistry, vol.106, issue.D6, pp.319-327, 2007.
DOI : 10.1007/s00216-007-1186-2

URL : https://hal.archives-ouvertes.fr/insu-00376234

W. Dong, Y. Bian, L. Liang, and B. Gu, Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique, Environmental Science & Technology, vol.45, issue.8, 2011.
DOI : 10.1021/es104207g

W. Dong, L. Liang, S. Brooks, G. Southworth, and B. Gu, Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee, Environmental Chemistry, vol.7, issue.1, p.94, 2010.
DOI : 10.1071/EN09091

T. A. Douglas, Elevated mercury measured in snow and frost flowers near Arctic sea ice leads, Geophysical Research Letters, vol.383, issue.23, 2005.
DOI : 10.1029/2004GL022132

T. A. Douglas and M. Sturm, Arctic haze, mercury and the chemical composition of snow across northwestern Alaska, Atmospheric Environment, vol.38, issue.6, pp.805-820, 2004.
DOI : 10.1016/j.atmosenv.2003.10.042

R. Ebinghaus, S. G. Jennings, H. H. Kock, R. G. Derwent, A. J. Manning et al., Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009, Atmospheric Environment, vol.45, issue.20, pp.3475-3480, 1996.
DOI : 10.1016/j.atmosenv.2011.01.033

A. Eichler, M. Schwikowski, and H. W. Gaggeler, Meltwater-induced relocation of chemical species in Alpine firn, Tellus B: Chemical and Physical Meteorology, vol.7, issue.6, pp.192-203, 2001.
DOI : 10.3402/tellusa.v16i4.8993

X. Fain, C. P. Ferrari, A. Dommergue, M. R. Albert, M. Battle et al., Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s, Proc. Natl. Acad. Sci, pp.16114-16119, 2009.
DOI : 10.1073/pnas.0905117106

URL : https://hal.archives-ouvertes.fr/insu-00497912

C. Ferrari, P. Gauchard, K. Aspmo, A. Dommergue, O. Magand et al., Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-??lesund, Svalbard, Atmospheric Environment, vol.39, issue.39, pp.7633-7645, 2005.
DOI : 10.1016/j.atmosenv.2005.06.058

E. J. Fleming, E. E. Mack, P. G. Green, and D. C. Nelson, Mercury Methylation from Unexpected Sources: Molybdate-Inhibited Freshwater Sediments and an Iron-Reducing Bacterium, Applied and Environmental Microbiology, vol.72, issue.1, 2006.
DOI : 10.1128/AEM.72.1.457-464.2006

K. Gåardfeldt, J. Munthe, D. Strömberg, and O. Lindqvist, A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase, Science of The Total Environment, vol.304, issue.1-3, pp.127-136, 2003.
DOI : 10.1016/S0048-9697(02)00562-4

G. R. Golding, C. A. Kelly, R. Sparling, P. C. Loewen, and T. Barkay, Evaluation of Mercury Toxicity as a Predictor of Mercury Bioavailability, Environmental Science & Technology, vol.41, issue.16, pp.5685-5692, 2007.
DOI : 10.1021/es070138i

B. Gu, Y. Bian, C. L. Miller, W. Dong, X. Jiang et al., Mercury reduction and complexation by natural organic matter in anoxic environments, Proc. Natl. Acad. Sci, pp.1479-1483, 2011.
DOI : 10.1073/pnas.1008747108

C. R. Hammerschmidt and W. F. Fitzgerald, Photodecomposition of Methylmercury in an Arctic Alaskan Lake, Environmental Science & Technology, vol.40, issue.4, pp.1212-1216, 2006.
DOI : 10.1021/es0513234

C. R. Hammerschmidt, C. H. Lamborg, and W. F. Fitzgerald, Aqueous phase methylation as a potential source of methylmercury in wet deposition, Atmospheric Environment, vol.41, issue.8, pp.1663-1668, 2007.
DOI : 10.1016/j.atmosenv.2006.10.032

M. Harada, Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution, Critical Reviews in Toxicology, vol.19, issue.1, pp.1-24, 1995.
DOI : 10.3109/10408449509089885

F. He, W. Zheng, L. Liang, and B. Gu, Mercury photolytic transformation affected by lowmolecular-weight natural organics in water, Sci. Total Environ, 2012.

M. E. Hines, P. M. Crill, R. K. Varner, R. W. Talbot, J. H. Shorter et al., Rapid consumption of low concentrations of methyl bromide by soil bacteria, 1998.

M. E. Hines, K. N. Duddleston, and R. P. Kiene, compounds in northern wetlands, Geophysical Research Letters, vol.227, issue.22, pp.4251-4254, 2001.
DOI : 10.1029/2001GL012901

K. Iwahori, F. Takeuchi, K. Kamimura, and T. Sugio, Ferrous Iron-Dependent Volatilization of Mercury by the Plasma Membrane of Thiobacillus ferrooxidans, Applied and Environmental Microbiology, vol.66, issue.9, pp.3823-3827, 2000.
DOI : 10.1128/AEM.66.9.3823-3827.2000

H. Jacobi and B. Hilker, A mechanism for the photochemical transformation of nitrate in snow, Journal of Photochemistry and Photobiology A: Chemistry, vol.185, issue.2-3, 2007.
DOI : 10.1016/j.jphotochem.2006.06.039

F. Joint, . Who-expert-committee-on-food, . Additives, and W. H. Meeting, Evaluation of certain food additives and contaminants sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives, World Health Organization, 2007.

E. J. Kerin, C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates et al., Mercury Methylation by Dissimilatory Iron-Reducing Bacteria, Applied and Environmental Microbiology, vol.72, issue.12, pp.7919-7921, 2006.
DOI : 10.1128/AEM.01602-06

I. Introduction-kirk, J. L. St, V. L. Louis, and M. J. Sharp, Rapid Reduction and Reemission of Mercury Deposited into Snowpacks during Atmospheric Mercury Depletion Events at Churchill, Manitoba, Canada, Environmental Science & Technology, vol.40, issue.24, pp.7590-7596, 2006.
DOI : 10.1021/es061299+

L. Krnavek, W. R. Simpson, D. Carlson, F. Domine, T. A. Douglas et al., The chemical composition of surface snow in the Arctic: Examining marine, terrestrial, and atmospheric influences, Atmospheric Environment, vol.50, 2011.
DOI : 10.1016/j.atmosenv.2011.11.033

M. Kuhn, Abstract, Journal of Glaciology, vol.22, issue.113, pp.24-26, 1987.
DOI : 10.1007/BF00123990

M. Kuhn, The nutrient cycle through snow and ice, a review, Aquatic Sciences, vol.63, issue.2, pp.150-167, 2001.
DOI : 10.1007/PL00001348

J. D. Lalonde, A. J. Poulain, and M. Amyot, The Role of Mercury Redox Reactions in Snow on Snow-to-Air Mercury Transfer, Environmental Science & Technology, vol.36, issue.2, pp.174-178, 2002.
DOI : 10.1021/es010786g

R. C. Larock, Organomercury Compounds in Organic Synthesis, Angewandte Chemie International Edition in English, vol.17, issue.1, pp.27-37, 1978.
DOI : 10.1002/anie.197800271

R. C. Larock and J. C. Bernhardt, Mercury in organic chemistry VIII. A convenient synthesis of ???,??-unsaturated ketones, Tetrahedron Letters, vol.17, issue.36, pp.3097-3100, 1976.
DOI : 10.1016/S0040-4039(00)93851-6

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

C. Larose, A. Dommergue, N. Marusczak, J. Coves, C. P. Ferrari et al., Bioavailable Mercury Cycling in Polar Snowpacks, Environmental Science & Technology, vol.45, issue.6, 2011.
DOI : 10.1021/es103016x

URL : https://hal.archives-ouvertes.fr/insu-00604947

S. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng et al., A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition, AMBIO: A Journal of the Human Environment, vol.36, issue.1, pp.19-32, 2007.
DOI : 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2

L. L. Loseto, D. R. Lean, and S. D. Siciliano, Snowmelt Sources of Methylmercury to High Arctic Ecosystems, Environmental Science & Technology, vol.38, issue.11, pp.3004-3010, 2004.
DOI : 10.1021/es035146n

D. Malinovsky and F. Vanhaecke, Mercury isotope fractionation during abiotic transmethylation reactions, International Journal of Mass Spectrometry, vol.307, issue.1-3, 2011.
DOI : 10.1016/j.ijms.2011.01.020

H. Mao, R. W. Talbot, B. C. Sive, Y. Kim, S. Blake et al., Arctic mercury depletion and its quantitative link with halogens, Journal of Atmospheric Chemistry, vol.453, issue.D4, pp.145-170, 2011.
DOI : 10.1007/s10874-011-9186-1

T. Meyer, Y. D. Lei, I. Muradi, and F. Wania, Organic Contaminant Release from Melting Snow. 1. Influence of Chemical Partitioning, Environmental Science & Technology, vol.43, issue.3, pp.657-662, 2009.
DOI : 10.1021/es8020217

T. Meyer, Y. D. Lei, and F. Wania, Measuring the Release of Organic Contaminants from Melting Snow under Controlled Conditions, Environmental Science & Technology, vol.40, issue.10, pp.3320-3326, 2006.
DOI : 10.1021/es060049q

V. Minganti, R. Capelli, G. Drava, and R. De-pellegrini, Solubilization and methylation of HgS, PbS, and SnS by iodomethane, a model experiment for the aquatic environment, Chemosphere, vol.67, issue.5, pp.1018-1024, 2007.
DOI : 10.1016/j.chemosphere.2006.10.053

F. M. Morel, A. M. Kraepiel, and M. Amyot, THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY, Annual Review of Ecology and Systematics, vol.29, issue.1, pp.543-566, 1998.
DOI : 10.1146/annurev.ecolsys.29.1.543

L. Mowat, Influence of Forest Canopies on the Deposition of Methylmercury to Boreal Ecosystem Watersheds, Environmental Science & Technology, vol.45, issue.12, 2010.
DOI : 10.1021/es104377y

H. Niki, P. S. Maker, C. M. Savage, and L. P. Breitenbach, A Fourier-transform infrared study of the kinetics and mechanism of the reaction of atomic chlorine with dimethylmercury, The Journal of Physical Chemistry, vol.87, issue.19, 1983.
DOI : 10.1021/j100242a029

O. 'concubhair, R. O-'sullivan, D. Sodeau, and J. R. , Dark Oxidation of Dissolved Gaseous Mercury in Polar Ice Mimics, Environmental Science & Technology, vol.46, issue.9, pp.4829-4836, 2012.
DOI : 10.1021/es300309n

R. S. Oremland, C. W. Culbertson, and M. R. Winfrey, Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation, Appl. Environ. Microbiol, vol.57, pp.130-137, 1991.

E. G. Pacyna, J. M. Pacyna, K. Sundseth, J. Munthe, K. Kindbom et al., Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020, Atmospheric Environment, vol.44, issue.20, pp.2487-2499, 2010.
DOI : 10.1016/j.atmosenv.2009.06.009

J. M. Parks, A. Johs, M. Podar, R. Bridou, R. A. Hurt et al., The Genetic Basis for Bacterial Mercury Methylation, Science, vol.339, issue.6125, pp.1332-1335, 2013.
DOI : 10.1126/science.1230667

D. K. Perovich, Light reflection and transmission by a temperate snow cover, Journal of Glaciology, vol.53, issue.181, pp.201-210, 2007.
DOI : 10.3189/172756507782202919

N. Pirrone, S. Cinnirella, X. Feng, R. B. Finkelman, H. R. Friedli et al., Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmospheric Chemistry and Physics, vol.10, issue.13, pp.5951-5964, 2010.
DOI : 10.5194/acp-10-5951-2010

I. Introduction-pongratz, R. Heumann, and K. G. , Production of methylated mercury and lead by polar macroalgae ? A significant natural source for atmospheric heavy metals in clean room compartments, 1998.

R. Pongratz and K. G. Heumann, Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions, Chemosphere, vol.39, issue.1, 1999.
DOI : 10.1016/S0045-6535(98)00591-8

A. J. Poulain, M. Amyot, D. Findlay, S. Telor, T. Barkay et al., Biological and photochemical production of dissolved gaseous mercury in a boreal lake, Limnology and Oceanography, vol.49, issue.6, pp.2265-2275, 2004.
DOI : 10.4319/lo.2004.49.6.2265

A. J. Poulain, J. D. Lalonde, M. Amyot, J. A. Shead, F. Raofie et al., Redox transformations of mercury in an Arctic snowpack at springtime, Atmospheric Environment, vol.38, issue.39, pp.6763-6774, 2004.
DOI : 10.1016/j.atmosenv.2004.09.013

H. E. Ratcliffe, G. M. Swanson, and L. J. Fischer, Human Exposure to Mercury: A Critical Assessment of the Evidence of Adverse Health Effects, Journal of Toxicology and Environmental Health, vol.27, issue.3, pp.221-270, 1996.
DOI : 10.1007/BF02337482

M. Ravichandran, Interactions between mercury and dissolved organic matter??????a review, Chemosphere, vol.55, issue.3, pp.319-331, 2004.
DOI : 10.1016/j.chemosphere.2003.11.011

A. P. Rutter, J. J. Schauer, M. M. Shafer, J. E. Creswell, M. R. Olson et al., Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment, Atmospheric Environment, vol.45, issue.4, 2011.
DOI : 10.1016/j.atmosenv.2010.11.025

J. K. Schaefer, J. Yagi, J. R. Reinfelder, T. Cardona, K. M. Ellickson et al., Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters, Environmental Science & Technology, vol.38, issue.16, pp.4304-4311, 2004.
DOI : 10.1021/es049895w

W. H. Schroeder, K. G. Anlauf, L. A. Barrie, J. Y. Lu, A. Steffen et al., Arctic springtime depletion of mercury, Nature, vol.394, issue.6691, pp.331-332, 1998.
DOI : 10.1038/28530

I. R. Schultz and M. C. Newman, ) after intravascular administration, Environmental Toxicology and Chemistry, vol.107, issue.5, p.990, 1997.
DOI : 10.1002/etc.5620160518

T. Segawa, K. Miyamoto, K. Ushida, K. Agata, N. Okada et al., Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR, Applied and Environmental Microbiology, vol.71, issue.1, pp.123-130, 2005.
DOI : 10.1128/AEM.71.1.123-130.2005

L. Si and P. A. Ariya, ): Kinetic and Product Studies, Environmental Science & Technology, vol.42, issue.14, pp.5150-5155, 2008.
DOI : 10.1021/es800552z

L. Si and P. A. Ariya, Aqueous photoreduction of oxidized mercury species in presence of selected alkanethiols, Chemosphere, vol.84, issue.8, 2011.
DOI : 10.1016/j.chemosphere.2011.04.061

S. D. Siciliano and D. R. Lean, Methyltransferase: An enzyme assay for microbial methylmercury formation in acidic soils and sediments, Environmental Toxicology and Chemistry, vol.13, issue.6, p.1184, 2002.
DOI : 10.1002/etc.5620210610

S. D. Siciliano, N. J. O-'driscoll, R. Tordon, J. Hill, S. Beauchamp et al., Abiotic Production of Methylmercury by Solar Radiation, Environmental Science & Technology, vol.39, issue.4, pp.1071-1077, 2005.
DOI : 10.1021/es048707z

W. R. Simpson, M. D. King, H. J. Beine, R. E. Honrath, and M. C. Peterson, Atmospheric photolysis rate coefficients during the Polar Sunrise Experiment ALERT2000, Atmospheric Environment, vol.36, issue.15-16, pp.2471-2480, 2002.
DOI : 10.1016/S1352-2310(02)00123-1

W. R. Simpson, M. D. King, H. J. Beine, R. E. Honrath, and X. Zhou, Radiation-transfer modeling of snow-pack photochemical processes during ALERT 2000, Atmospheric Environment, vol.36, issue.15-16, pp.2663-2670, 2000.
DOI : 10.1016/S1352-2310(02)00124-3

A. L. Soerensen, D. J. Jacob, D. G. Streets, M. L. Witt, R. Ebinghaus et al., Multi-decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations, Geophysical Research Letters, vol.12, issue.15
DOI : 10.5194/acpd-12-2603-2012

. St, V. L. Louis, M. J. Sharp, A. Steffen, A. May et al., Some Sources and Sinks of Monomethyl and Inorganic Mercury on Ellesmere Island in the Canadian High Arctic, Environ. Sci. Technol, vol.39, pp.2686-2701, 2005.

A. Steffen, T. Douglas, M. Amyot, P. Ariya, K. Aspmo et al., A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmospheric Chemistry and Physics, vol.8, issue.6, pp.1445-1482, 2008.
DOI : 10.5194/acp-8-1445-2008

URL : https://hal.archives-ouvertes.fr/hal-00328572

C. R. Stephens, P. B. Shepson, A. Steffen, J. W. Bottenheim, J. Liao et al., The relative importance of chlorine and bromine radicals in the oxidation of atmospheric mercury at Barrow, Alaska, Journal of Geophysical Research: Atmospheres, vol.38, issue.10, 2012.
DOI : 10.1016/j.atmosenv.2004.02.059

T. Sugio, M. Fujii, F. Takeuchi, A. Negishi, T. Maeda et al., Strain MON-1, Bioscience, Biotechnology, and Biochemistry, vol.67, issue.7, pp.1537-1544, 2003.
DOI : 10.1271/bbb.67.1537

D. Toom-sauntry and L. A. Barrie, Chemical composition of snowfall in the high Arctic, pp.1990-1994, 2002.

I. Introduction-ullrich, S. M. Tanton, T. W. Abdrashitova, and S. A. , Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation, Critical Reviews in Environmental Science and Technology, vol.31, issue.3, pp.241-293, 2001.
DOI : 10.1080/20016491089226

R. Wagemann, S. Innes, and P. R. Richard, Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic, Science of The Total Environment, vol.186, issue.1-2, pp.41-66, 1996.
DOI : 10.1016/0048-9697(96)05085-1

I. Wängberg, J. Munthe, T. Berg, R. Ebinghaus, H. H. Kock et al., Trends in air concentration and deposition of mercury in the coastal environment of the North Sea Area, Atmospheric Environment, vol.41, issue.12, pp.2612-2619, 2007.
DOI : 10.1016/j.atmosenv.2006.11.024

C. Waring and R. Pellin, The kinetics and mechanism of the thermal decomposition of dimethylmercury, The Journal of Physical Chemistry, vol.71, issue.7, p.2044, 1967.
DOI : 10.1021/j100866a011

B. Weiss, T. W. Clarkson, and W. Simon, Silent Latency Periods in Methylmercury Poisoning and in Neurodegenerative Disease, Environmental Health Perspectives, vol.110, issue.s5, pp.851-854, 2002.
DOI : 10.1289/ehp.02110s5851

L. Whalin, E. Kim, and R. Mason, Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters, Marine Chemistry, vol.107, issue.3, pp.278-294, 2007.
DOI : 10.1016/j.marchem.2007.04.002

C. D. Wren, A review of metal accumulation and toxicity in wild mammals, Environmental Research, vol.40, issue.1, pp.210-244, 1986.
DOI : 10.1016/S0013-9351(86)80098-6

S. N. Wren and D. J. Donaldson, How does deposition of gas phase species affect pH at frozen salty interfaces?, Atmospheric Chemistry and Physics, vol.12, issue.21, pp.10065-10073, 2012.
DOI : 10.5194/acp-12-10065-2012

M. Yamamoto, Possible mechanism of elemental mercury oxidation in the presence of sh compounds in aqueous solution, Chemosphere, vol.31, issue.2, pp.2791-2798, 1995.
DOI : 10.1016/0045-6535(95)00126-S

Y. Yin, B. Chen, Y. Mao, T. Wang, J. Liu et al., Possible alkylation of inorganic Hg(II) by photochemical processes in the environment, Chemosphere, vol.88, issue.1, 2012.
DOI : 10.1016/j.chemosphere.2012.01.006

E. Yokoo, J. Valente, L. Grattan, S. Schmidt, I. Platt et al., Low level methylmercury exposure affects neuropsychological function in adults, Environmental Health, vol.108, issue.section A, 2003.
DOI : 10.1289/ehp.00108s3511

H. Zhang, Photochemical Redox Reactions of Mercury Recent Developments in Mercury Science, pp.37-79, 2006.

R. Berzas-nevado, J. J. , R. Martín-doimeadios, R. C. Krupp, E. M. et al., Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis, Journal of Chromatography A, vol.1218, issue.28, 2011.
DOI : 10.1016/j.chroma.2011.05.036

K. L. Bowman and C. R. Hammerschmidt, Extraction of monomethylmercury from seawater for low-femtomolar determination, Limnology and Oceanography: Methods, vol.9, issue.4, pp.121-128, 2011.
DOI : 10.4319/lom.2011.9.121

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

M. Monperrus, R. C. Rodriguez-martin-doimeadios, J. Scancar, D. Amouroux, and O. F. Donard, Simultaneous Sample Preparation and Species-Specific Isotope Dilution Mass Spectrometry Analysis of Monomethylmercury and Tributyltin in a Certified Oyster Tissue, Analytical Chemistry, vol.75, issue.16, pp.4095-4102, 2003.
DOI : 10.1021/ac0263871

M. Monperrus, E. Tessier, S. Veschambre, D. Amouroux, and O. Donard, Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis, Analytical and Bioanalytical Chemistry, vol.29, issue.5, pp.854-862, 2004.
DOI : 10.1007/s00216-004-2973-7

C. M. Tseng, A. De-diego, H. Pinaly, D. Amouroux, and O. F. Donard, Cryofocusing coupled to atomic absorption spectrometry for rapid and simple mercury speciation in environmental matrices, Journal of Analytical Atomic Spectrometry, vol.13, issue.8, pp.755-764, 1998.
DOI : 10.1039/a802344a

A. Dommergue, E. Bahlmann, R. Ebinghaus, C. Ferrari, and C. Boutron, Laboratory simulation of Hg0 emissions from a snowpack, Analytical and Bioanalytical Chemistry, vol.106, issue.D6, pp.319-327, 2007.
DOI : 10.1007/s00216-007-1186-2

URL : https://hal.archives-ouvertes.fr/insu-00376234

X. Fain, C. P. Ferrari, P. Gauchard, O. Magand, and C. Boutron, Fast depletion of gaseous elemental mercury in the Kongsvegen Glacier snowpack in Svalbard, Geophys. Res. Lett, vol.33, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00375463

C. Ferrari, P. Gauchard, K. Aspmo, A. Dommergue, O. Magand et al., Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-??lesund, Svalbard, Atmospheric Environment, vol.39, issue.39, pp.7633-7645, 2005.
DOI : 10.1016/j.atmosenv.2005.06.058

J. L. Kirk, . St, V. L. Louis, and M. J. Sharp, Rapid Reduction and Reemission of Mercury Deposited into Snowpacks during Atmospheric Mercury Depletion Events at Churchill, Manitoba, Canada, Environmental Science & Technology, vol.40, issue.24, pp.7590-7596, 2006.
DOI : 10.1021/es061299+

J. D. Lalonde, A. J. Poulain, and M. Amyot, The Role of Mercury Redox Reactions in Snow on Snow-to-Air Mercury Transfer, Environmental Science & Technology, vol.36, issue.2, pp.174-178, 2002.
DOI : 10.1021/es010786g

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

E. Mann, T. Meyer, C. P. Mitchell, and F. Wania, Mercury fate in ageing and melting snow: Development and testing of a controlled laboratory system, Journal of Environmental Monitoring, vol.42, issue.10, p.2695, 2011.
DOI : 10.1039/c1em10297d

T. Meyer, Y. D. Lei, I. Muradi, and F. Wania, Organic Contaminant Release from Melting Snow. 1. Influence of Chemical Partitioning, Environmental Science & Technology, vol.43, issue.3, pp.657-662, 2009.
DOI : 10.1021/es8020217

A. J. Poulain, J. D. Lalonde, M. Amyot, J. A. Shead, F. Raofie et al., Redox transformations of mercury in an Arctic snowpack at springtime, Atmospheric Environment, vol.38, issue.39, pp.6763-6774, 2004.
DOI : 10.1016/j.atmosenv.2004.09.013

W. H. Schroeder, K. G. Anlauf, L. A. Barrie, J. Y. Lu, A. Steffen et al., Arctic springtime depletion of mercury, Nature, vol.394, issue.6691, pp.331-332, 1998.
DOI : 10.1038/28530

W. R. Simpson, M. D. King, H. J. Beine, R. E. Honrath, and X. Zhou, Radiation-transfer modeling of snow-pack photochemical processes during ALERT 2000, Atmospheric Environment, vol.36, issue.15-16, pp.2663-2670, 2000.
DOI : 10.1016/S1352-2310(02)00124-3

. St, V. L. Louis, M. J. Sharp, A. Steffen, A. May et al., Some Sources and Sinks of Monomethyl and Inorganic Mercury on Ellesmere Island in the Canadian High Arctic, Environ. Sci. Technol, vol.39, pp.2686-2701, 2005.

A. Steffen, T. Douglas, M. Amyot, P. Ariya, K. Aspmo et al., A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmospheric Chemistry and Physics, vol.8, issue.6, pp.1445-1482, 2008.
DOI : 10.5194/acp-8-1445-2008

URL : https://hal.archives-ouvertes.fr/hal-00328572

A. Alfreider, J. Pernthaler, R. Amann, B. Sattler, F. Glockner et al., Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization, Appl. Environ. Microbiol, vol.62, pp.2138-2144, 1996.

T. Barkay and A. J. Poulain, Mercury (micro)biogeochemistry in polar environments, FEMS Microbiology Ecology, vol.59, issue.2, pp.232-241, 2007.
DOI : 10.1111/j.1574-6941.2006.00246.x

E. K. Bigg and C. Leck, The composition of fragments of bubbles bursting at the ocean surface, Journal of Geophysical Research, vol.106, issue.D23, 2008.
DOI : 10.1029/2007JD009078

D. R. Bittrich, Speciation of Mercury (II) and Methylmercury in Cloud and Fog Water, Aerosol and Air Quality Research, 2011.
DOI : 10.4209/aaqr.2010.08.0067

E. J. Carpenter, S. Lin, and D. G. Capone, Bacterial Activity in South Pole Snow, Applied and Environmental Microbiology, vol.66, issue.10, pp.4514-4517, 2000.
DOI : 10.1128/AEM.66.10.4514-4517.2000

W. C. Chin, M. V. Orellana, and P. Verdugo, Spontaneous assembly of marine dissolved organic matter into polymer gels, Nature, vol.391, pp.568-572, 1998.

H. Fischer, M. Siggaard-andersen, U. Ruth, R. Röthlisberger, and E. Wolff, Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition, Reviews of Geophysics, vol.110, issue.22, 2007.
DOI : 10.1029/2004JD005489

K. Gåardfeldt, J. Munthe, D. Strömberg, and O. Lindqvist, A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase, Science of The Total Environment, vol.304, issue.1-3, pp.127-136, 2003.
DOI : 10.1016/S0048-9697(02)00562-4

Q. Gao, C. Leck, C. Rauschenberg, and P. A. Matrai, On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer, Ocean Science, vol.8, issue.4, pp.401-418, 2012.
DOI : 10.5194/os-8-401-2012

B. Hall, H. Manolopoulos, J. Hurley, J. Schauer, V. Stlouis et al., Methyl and total mercury in precipitation in the Great Lakes region, Atmospheric Environment, vol.39, issue.39, pp.7557-7569, 2005.
DOI : 10.1016/j.atmosenv.2005.04.042

C. R. Hammerschmidt and W. F. Fitzgerald, Photodecomposition of Methylmercury in an Arctic Alaskan Lake, Environmental Science & Technology, vol.40, issue.4, pp.1212-1216, 2006.
DOI : 10.1021/es0513234

C. R. Hammerschmidt, C. H. Lamborg, and W. F. Fitzgerald, Aqueous phase methylation as a potential source of methylmercury in wet deposition, Atmospheric Environment, vol.41, issue.8, pp.1663-1668, 2007.
DOI : 10.1016/j.atmosenv.2006.10.032

H. Wedepohl and K. , The Composition of the Continental Crust, Mineralogical Magazine, vol.58, issue.2, pp.1217-1232, 1995.
DOI : 10.1180/minmag.1994.58A.2.234

I. Hawkins, L. N. Russell, and L. M. , Polysaccharides, Proteins, and Phytoplankton Fragments: Four Chemically Distinct Types of Marine Primary Organic Aerosol Classified by Single Particle Spectromicroscopy, Advances in Meteorology, vol.29, issue.16, pp.1-14, 2010.
DOI : 10.1038/35345

H. W. Jacobi, D. Voisin, J. L. Jaffrezo, J. Cozic, and T. A. Douglas, Chemical composition of the snowpack during the OASIS spring campaign 2009 at Barrow, Alaska. Journal of Geophysical Research, vol.117, 2012.

S. Kang, D. Quin, P. Mayewski, and Y. Gjessing, Snow chemistry in Svalbard, Arctic. Bulletin of Glaciological Research, vol.18, pp.9-13, 2001.

K. Bigg, E. Leck, C. Tranvik, and L. , Particulates of the surface microlayer of open water in the central Arctic Ocean in summer, Marine Chemistry, vol.91, issue.1-4, pp.131-141, 2004.
DOI : 10.1016/j.marchem.2004.06.005

L. Krnavek, W. R. Simpson, D. Carlson, F. Domine, T. A. Douglas et al., The chemical composition of surface snow in the Arctic: Examining marine, terrestrial, and atmospheric influences, Atmospheric Environment, vol.50, 2011.
DOI : 10.1016/j.atmosenv.2011.11.033

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

C. Larose, A. Dommergue, N. Marusczak, J. Coves, C. P. Ferrari et al., Bioavailable Mercury Cycling in Polar Snowpacks, Environmental Science & Technology, vol.45, issue.6, 2011.
DOI : 10.1021/es103016x

URL : https://hal.archives-ouvertes.fr/insu-00604947

C. Leck, Chemical composition and sources of the high Arctic aerosol relevant for cloud formation, Journal of Geophysical Research, vol.106, issue.110, 2002.
DOI : 10.1029/2001JD001463

C. Leck, Source and evolution of the marine aerosol-A new perspective, Geophysical Research Letters, vol.39, issue.D12, 2005.
DOI : 10.1029/2005GL023651

E. Leu, S. Falk-petersen, S. Kwa?niewski, A. Wulff, K. Edvardsen et al., Fatty acid dynamics during the spring bloom in a High Arctic fjord: importance of abiotic factors versus community changes, Canadian Journal of Fisheries and Aquatic Sciences, vol.63, issue.12, pp.2760-2779, 2006.
DOI : 10.1139/f06-159

L. L. Loseto, D. R. Lean, and S. D. Siciliano, Snowmelt Sources of Methylmercury to High Arctic Ecosystems, Environmental Science & Technology, vol.38, issue.11, pp.3004-3010, 2004.
DOI : 10.1021/es035146n

K. Nejbert, K. P. Krajewski, E. Dubinska, and Z. Pécskay, Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province, Polar Research, vol.78, issue.1, 2011.
DOI : 10.3402/polar.v30i0.7306

H. Niki, P. S. Maker, C. M. Savage, and L. P. Breitenbach, A Fourier-transform infrared study of the kinetics and mechanism of the reaction of atomic chlorine with dimethylmercury, The Journal of Physical Chemistry, vol.87, issue.19, pp.3722-3724, 1983.
DOI : 10.1021/j100242a029

S. Oh, M. Kim, Y. Lee, and K. Zoh, Effect of Abiotic and Biotic Factors on the Photo-Induced Production of Dissolved Gaseous Mercury, Water, Air, & Soil Pollution, vol.35, issue.1-4, pp.353-363, 2011.
DOI : 10.1007/s11270-011-0759-z

R. Heumann and K. G. , Production of methylated mercury and lead by polar macroalgae ? A significant natural source for atmospheric heavy metals in clean room compartments, iii. Discussion on the MMHg sources Pongratz, 1998.

R. Pongratz and K. G. Heumann, Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions, Chemosphere, vol.39, issue.1, 1999.
DOI : 10.1016/S0045-6535(98)00591-8

R. Guevara, S. Queimaliños, C. P. Diéguez, M. Del, C. Arribére et al., Methylmercury production in the water column of an ultraoligotrophic lake of Northern Patagonia, Argentina, Chemosphere, vol.72, issue.4, pp.578-585, 2008.
DOI : 10.1016/j.chemosphere.2008.03.011

R. Iversen, K. Seuthe, and L. , Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates, Polar Biology, vol.412, issue.1, pp.731-749, 2010.
DOI : 10.1007/s00300-010-0929-2

N. L. Rose, J. Munthe, and A. Mccartney, Winter peaks of methylmercury in deposition to a remote Scottish mountain lake, Chemosphere, vol.90, issue.2, pp.805-811, 2013.
DOI : 10.1016/j.chemosphere.2012.09.088

R. L. Rudnick, H. D. Holland, and K. K. Turekian, The crust, 2004.

U. Ruth, C. Barbante, M. Bigler, B. Delmonte, H. Fischer et al., Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores, Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores, pp.5675-5681, 2008.
DOI : 10.1021/es703078z

K. J. Scott, Bioavailable Mercury in Arctic Snow Determined by a Light-emitting <i>mer-lux</i> Bioreporter, ARCTIC, vol.54, issue.1, pp.92-95, 2001.
DOI : 10.14430/arctic767

T. Segawa, K. Miyamoto, K. Ushida, K. Agata, N. Okada et al., Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR, Applied and Environmental Microbiology, vol.71, issue.1, pp.123-130, 2005.
DOI : 10.1128/AEM.71.1.123-130.2005

L. Seuthe, R. Iversen, K. Narcy, and F. , Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates, Polar Biology, vol.61, issue.5, pp.751-766, 2010.
DOI : 10.1007/s00300-010-0930-9

S. D. Siciliano, N. J. O-'driscoll, R. Tordon, J. Hill, S. Beauchamp et al., Abiotic Production of Methylmercury by Solar Radiation, Environmental Science & Technology, vol.39, issue.4, pp.1071-1077, 2005.
DOI : 10.1021/es048707z

. St, V. L. Louis, M. J. Sharp, A. Steffen, A. May et al., Some Sources and Sinks of Monomethyl and Inorganic Mercury on Ellesmere Island in the Canadian High Arctic, Environ. Sci. Technol, vol.39, pp.2686-2701, 2005.

J. Ström, J. Umegård, K. Tørseth, P. Tunved, H. Hansson et al., One year of particle size distribution and aerosol chemical 138 III. Identification of the primary sources of methylmercury in a coastal arctic snowpack composition measurements at the Zeppelin Station, pp.1181-1190, 2000.

R. Bittrich and D. R. , Speciation of Mercury (II) and Methylmercury in Cloud and Fog Water, Aerosol and Air Quality Research, 2011.
DOI : 10.4209/aaqr.2010.08.0067

L. Castro, A. Dommergue, C. Ferrari, and L. Maron, A DFT study of the reactions of O3 with Hg?? or Br???, Atmospheric Environment, vol.43, issue.35, pp.5708-5711, 2009.
DOI : 10.1016/j.atmosenv.2009.07.038

URL : https://hal.archives-ouvertes.fr/insu-00497852

F. Domine, M. Albert, T. Huthwelker, H. Jacobi, A. A. Kokhanovsky et al., Snow physics as relevant to snow photochemistry, Atmospheric Chemistry and Physics, vol.8, issue.2, pp.171-208, 2008.
DOI : 10.5194/acp-8-171-2008

URL : https://hal.archives-ouvertes.fr/hal-00328560

W. Dong, Y. Bian, L. Liang, and B. Gu, Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique, Environmental Science & Technology, vol.45, issue.8, 2011.
DOI : 10.1021/es104207g

W. Dong, L. Liang, S. Brooks, G. Southworth, and B. Gu, Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee, Environmental Chemistry, vol.7, issue.1, p.94, 2010.
DOI : 10.1071/EN09091

H. L. Drake, K. Küsel, and C. Matthies, Acetogenic Prokaryotes The Prokaryotes, pp.354-420, 2006.

K. Gåardfeldt, J. Munthe, D. Strömberg, and O. Lindqvist, A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase, Science of The Total Environment, vol.304, issue.1-3, pp.127-136, 2003.
DOI : 10.1016/S0048-9697(02)00562-4

B. Hall, H. Manolopoulos, J. Hurley, J. Schauer, V. Stlouis et al., Methyl and total mercury in precipitation in the Great Lakes region, Atmospheric Environment, vol.39, issue.39, pp.7557-7569, 2005.
DOI : 10.1016/j.atmosenv.2005.04.042

C. R. Hammerschmidt, C. H. Lamborg, and W. F. Fitzgerald, Aqueous phase methylation as a potential source of methylmercury in wet deposition, Atmospheric Environment, vol.41, issue.8, pp.1663-1668, 2007.
DOI : 10.1016/j.atmosenv.2006.10.032

F. He, W. Zheng, L. Liang, and B. Gu, Mercury photolytic transformation affected by lowmolecular-weight natural organics in water, Science of The Total Environment, 2012.

W. C. Keene and J. N. Galloway, Considerations regarding sources for formic and acetic acids in the troposphere, Journal of Geophysical Research, vol.319, issue.D13, 1986.
DOI : 10.1029/JD091iD13p14466

M. Legrand and R. Delmas, Formation of HCl in the Antarctic atmosphere, Journal of Geophysical Research: Atmospheres, vol.33, issue.D6, pp.7153-7168, 1988.
DOI : 10.1029/JD093iD06p07153

N. Pirrone, S. Cinnirella, X. Feng, R. B. Finkelman, H. R. Friedli et al., Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmospheric Chemistry and Physics, vol.10, issue.13, pp.5951-5964, 2010.
DOI : 10.5194/acp-10-5951-2010

M. Ravichandran, Interactions between mercury and dissolved organic matter??????a review, Chemosphere, vol.55, issue.3, pp.319-331, 2004.
DOI : 10.1016/j.chemosphere.2003.11.011

N. L. Rose, J. Munthe, and A. Mccartney, Winter peaks of methylmercury in deposition to a remote Scottish mountain lake, Chemosphere, vol.90, issue.2, pp.805-811, 2013.
DOI : 10.1016/j.chemosphere.2012.09.088

W. R. Simpson, M. D. King, H. J. Beine, R. E. Honrath, and X. Zhou, Radiation-transfer modeling of snow-pack photochemical processes during ALERT 2000, Atmospheric Environment, vol.36, issue.15-16, pp.2663-2670, 2000.
DOI : 10.1016/S1352-2310(02)00124-3

F. Sprovieri, N. Pirrone, R. Ebinghaus, H. Kock, and A. Dommergue, A review of worldwide atmospheric mercury measurements, Atmospheric Chemistry and Physics, vol.10, issue.17, pp.8245-8265, 2010.
DOI : 10.5194/acp-10-8245-2010

URL : https://hal.archives-ouvertes.fr/insu-00554374

D. Toom-sauntry and L. A. Barrie, Chemical composition of snowfall in the high Arctic: 1990???1994, Atmospheric Environment, vol.36, issue.15-16, pp.2683-2693, 2002.
DOI : 10.1016/S1352-2310(02)00115-2

S. G. Warren, R. E. Brandt, and T. C. Grenfell, Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Applied Optics, vol.45, issue.21, 2006.
DOI : 10.1364/AO.45.005320

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

T. Meyer, Y. D. Lei, I. Muradi, and F. Wania, Organic Contaminant Release from Melting Snow. 1. Influence of Chemical Partitioning, Environmental Science & Technology, vol.43, issue.3, pp.657-662, 2009.
DOI : 10.1021/es8020217

P. A. Ariya, A. P. Dastoor, M. Amyot, W. H. Schroeder, L. Barrie et al., The Arctic: a sink for mercury, Tellus B: Chemical and Physical Meteorology, vol.29, issue.1, pp.397-403, 2004.
DOI : 10.1029/2003JD003625

T. Barkay and A. J. Poulain, Mercury (micro)biogeochemistry in polar environments, FEMS Microbiology Ecology, vol.59, issue.2, pp.232-241, 2007.
DOI : 10.1111/j.1574-6941.2006.00246.x

B. A. Bergquist and J. D. Blum, Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems, Science, vol.318, issue.5849, pp.417-420, 2007.
DOI : 10.1126/science.1148050

B. A. Bergquist and J. D. Blum, The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation, Elements, vol.5, issue.6, pp.353-357, 2009.
DOI : 10.2113/gselements.5.6.353

X. Fain, C. P. Ferrari, A. Dommergue, M. R. Albert, M. Battle et al., Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s, Proc. Natl. Acad. Sci, pp.16114-16119, 2009.
DOI : 10.1073/pnas.0905117106

URL : https://hal.archives-ouvertes.fr/insu-00497912

K. Gåardfeldt, J. Munthe, D. Strömberg, and O. Lindqvist, A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase, Science of The Total Environment, vol.304, issue.1-3, pp.127-136, 2003.
DOI : 10.1016/S0048-9697(02)00562-4

K. Kritee, T. Barkay, and J. D. Blum, Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury, Geochimica et Cosmochimica Acta, vol.73, issue.5, 2009.
DOI : 10.1016/j.gca.2008.11.038

K. Kritee, J. D. Blum, and T. Barkay, Mercury Stable Isotope Fractionation during Reduction of Hg(II) by Different Microbial Pathways, Environmental Science & Technology, vol.42, issue.24, pp.9171-9177, 2008.
DOI : 10.1021/es801591k

C. Larose, A. Dommergue, M. De-angelis, D. Cossa, B. Averty et al., Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic, Geochimica et Cosmochimica Acta, vol.74, issue.22, pp.6263-6275, 2010.
DOI : 10.1016/j.gca.2010.08.043

URL : https://hal.archives-ouvertes.fr/insu-00562243

D. Malinovsky and F. Vanhaecke, Mercury isotope fractionation during abiotic transmethylation reactions, International Journal of Mass Spectrometry, vol.307, issue.1-3, 2011.
DOI : 10.1016/j.ijms.2011.01.020

A. L. Robinson, R. Subramanian, N. M. Donahue, and W. F. Rogge, Source Apportionment of Molecular Markers and Organic Aerosol1. Polycyclic Aromatic Hydrocarbons and Methodology for Data Visualization, Environmental Science & Technology, vol.40, issue.24, pp.7803-7810, 2006.
DOI : 10.1021/es0510414

N. L. Rose, J. Munthe, and A. Mccartney, Winter peaks of methylmercury in deposition to a remote Scottish mountain lake, Chemosphere, vol.90, issue.2, pp.805-811, 2013.
DOI : 10.1016/j.chemosphere.2012.09.088

P. Grandjean, R. F. Weihe, F. White, S. Debes, K. Araki et al., Cognitive Deficit in 7-Year-Old Children with Prenatal Exposure to Methylmercury, Neurotoxicology and Teratology, vol.19, issue.6, pp.417-428, 1997.
DOI : 10.1016/S0892-0362(97)00097-4

J. Myers, P. W. Davidson, C. Cox, C. Shamlaye, E. Cernichiari et al., Twenty-Seven Years Studying the Human Neurotoxicity of Methylmercury Exposure, Environmental Research, vol.83, issue.3, pp.275-285, 2000.
DOI : 10.1006/enrs.2000.4065

P. Kjellstrom, S. Kennedy, A. Wallis, L. Stewart, B. Friberg et al., Physical and Mental Development of Children with Prenatal Exposure to Mercury from Fish. Stage II: Interviews and Psychological Tests at Age 6,N a t i o n a lS w e d i s hE n v i r o n m ental Protection Board, 1989.

E. Lindberg, S. Brooks, C. J. Lin, K. J. Scott, M. S. Landis et al., Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise, Environmental Science & Technology, vol.36, issue.6, pp.1245-1256, 2002.
DOI : 10.1021/es0111941

R. Bahlmann, W. Ebinghaus, and . Ruck, Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils, Journal of Environmental Management, vol.81, issue.2, pp.114-125, 2006.
DOI : 10.1016/j.jenvman.2005.09.022

G. Amyot, D. R. Mierle, D. J. Lean, and . Mcqueen, Sunlight-Induced Formation of Dissolved Gaseous Mercury in Lake Waters, Environmental Science & Technology, vol.28, issue.13, pp.2366-2371, 1994.
DOI : 10.1021/es00062a022

E. Dommergue, R. Bahlmann, C. Ebinghaus, C. Ferrari, and . Boutron, Laboratory simulation of Hg0 emissions from a snowpack, Analytical and Bioanalytical Chemistry, vol.106, issue.D6, pp.319-327, 2007.
DOI : 10.1007/s00216-007-1186-2

URL : https://hal.archives-ouvertes.fr/insu-00376234

. Fig, 10 Optimized geometries of HgCl 3 À solvated by 9 (left) and 12 (right) water molecules

D. F. Worms, C. S. Simon, K. J. Hassler, and . Wilkinson, Bioavailability of??trace metals to??aquatic microorganisms: importance of??chemical, biological and??physical processes on??biouptake, Biochimie, vol.88, issue.11, pp.1721-1731, 2006.
DOI : 10.1016/j.biochi.2006.09.008

M. M. Morel, A. M. Kraepiel, and M. Amyot, THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY, Annual Review of Ecology and Systematics, vol.29, issue.1, pp.543-566, 1998.
DOI : 10.1146/annurev.ecolsys.29.1.543

. Gutknecht, Inorganic mercury (Hg2+) transport through lipid bilayer membranes, The Journal of Membrane Biology, vol.73, issue.1, pp.61-66, 1981.
DOI : 10.1007/BF01870753

M. Kuechle, H. Dolg, H. Stoll, and . Preuss, pseudopotentials for Hg through Rn, Molecular Physics, vol.270, issue.6, pp.1245-1263, 1991.
DOI : 10.1063/1.459823

M. Bergner, W. Dolg, H. Kuechle, H. Stoll, and . Preuss, Ab initio energy-adjusted pseudopotentials for elements of groups 13???17, Molecular Physics, vol.80, issue.6, pp.1431-1441, 1993.
DOI : 10.1080/00268979300103121

W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth et al., A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc???Cu, Y???Ag and La???Au, Chemical Physics Letters, vol.208, issue.1-2, pp.111-114, 1993.
DOI : 10.1016/0009-2614(93)80086-5

C. Maron and . Teichteil, On the accuracy of averaged relativistic shape-consistent pseudopotentials, Chemical Physics, vol.237, issue.1-2, pp.105-122, 1998.
DOI : 10.1016/S0301-0104(98)00243-2

J. Hehre, R. Ditchfield, and J. A. Pople, Self???Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian???Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, vol.56, issue.5, pp.2257-2261, 1972.
DOI : 10.1063/1.1677527

P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, pp.13244-13249, 1992.
DOI : 10.1103/PhysRevB.45.13244

E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews, vol.88, issue.6, pp.899-926, 1988.
DOI : 10.1021/cr00088a005

L. Raynaud, J. P. Maron, F. Daudey, and . Jolibois, Reconsidering Car???Parrinello molecular dynamics using direct propagation of molecular orbitals developed upon Gaussian type atomic orbitals, Phys. Chem. Chem. Phys., vol.109, issue.18, pp.4226-4232, 2004.
DOI : 10.1039/B402163K

URL : https://hal.archives-ouvertes.fr/hal-00410105

I. Akesson, M. Persson, U. Sandstrom, and . Wahlgren, Structure and Bonding of Solvated Mercury(II) and Thallium(III) Dihalide and Dicyanide Complexes by XAFS Spectroscopic Measurements and Theoretical Calculations, Inorganic Chemistry, vol.33, issue.17, pp.3715-3723, 1994.
DOI : 10.1021/ic00095a015