. Im, PO 4 ] and [C 1 C 4 Pyrr][C 4 HPO 3 ]. For propyne it ranges from 11 × 10 5 Pa for

R. W. Baker, Future Directions of Membrane Gas Separation Technology, Ind. Eng

K. Keyvanloo, J. Towfighi, S. M. Sadrameli, and A. Mohamadalizadeh, Investigating the effect of key factors, their interactions and optimization of naphtha steam cracking by statistical design of experiments, Journal of Analytical and Applied Pyrolysis, vol.87, issue.2, pp.224-230, 2010.
DOI : 10.1016/j.jaap.2009.12.007

R. B. Eldrige, Olefin/paraffin separation technology: a review, Industrial & Engineering Chemistry Research, vol.32, issue.10
DOI : 10.1021/ie00022a002

D. J. Safarik and R. B. Eldridge, Olefin/Paraffin Separations by Reactive Absorption:?? A Review, Industrial & Engineering Chemistry Research, vol.37, issue.7
DOI : 10.1021/ie970897h

M. F. Asaro, Sorbents and Processes for Separation of Olefins from Paraffins

Y. Hu, Z. Liu, C. Xu, and X. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chemical Society Reviews, vol.252, issue.132, pp.3802-3823, 2011.
DOI : 10.1016/j.fluid.2010.08.017

M. Jin, Y. Hou, W. Wu, S. Ren, S. Tian et al., in Ionic Liquids, Solubilities and Thermodynamic Properties of SO 2 in Ionic Liquids, pp.6585-6591, 2011.
DOI : 10.1021/jp1124074

D. Camper, C. Becker, C. Koval, and R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Industrial & Engineering Chemistry Research, vol.44, issue.6, pp.1928-1933, 2005.
DOI : 10.1021/ie049312r

. Dioxide, . Ethane, . Methane, . Oxygen, . Nitrogen et al., Argon, and Carbon Monoxide in 1-Butyl-3-methylimidazolium Tetrafluoroborate Between Temperatures 283 K and 343 K and at Pressures Close to Atmospheric, J. Chem. Thermodyn, vol.38, pp.490-502, 2006.

J. R. Premkumar, D. Vijay, and G. N. Sastry, The significance of the alkene size and the nature of the metal ion in metal???alkene complexes: a theoretical study, Dalton Transactions, vol.132, issue.16
DOI : 10.1039/c2dt30119a

M. Azhin, T. Kaghazchi, and M. Rahmani, A review on olefin/paraffin separation using reversible chemical complexation technology, Journal of Industrial and Engineering Chemistry, vol.14, issue.5, pp.622-638, 2008.
DOI : 10.1016/j.jiec.2008.04.014

R. Faiz and K. Li, Olefin/Paraffin Separation Using Membrane Based Facilitated

R. E. Brown and R. L. Hair, and Phillips Petroleum Company. Monoolefin/Paraffin Separation by Selective Absorption, 1993.

;. D. Andison, and EXXON Chemical Patents Inc. Transition Metal Exchanged Ionomer Membrane for Hydrocarbon Separation, 1990.

. Inc, Separation of Olefins from Paraffins Using ionic Liquid Solutions, 2003.

. Inc, Separation of dienes from Olefins Using Ionic Liquids, 2005.

P. Atkins and J. Paula, Physical Chemistry: Ninth edition, 2010.

C. Gomes, M. F. Pádua, and A. A. , Developments and Applications in Solubility, Chapter 10: Solubility and Molecular Modelling, pp.153-170, 2007.

K. Denbigh, The Principles of Chemical Equilibrium

J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes-de-azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, NJ, 1999.

J. L. Anderson, J. K. Dixon, and J. Brennecke, in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids, Solubility of CO 2, pp.1208-1216, 2007.

P. Wasserscheid and T. Welton, Ionic Liquid in Synthesis, 2002.

M. Maurer and D. Tuma, Ionic Liquids: From Knowledge to Application, ACS Symposium Series

M. Koel, Ionic Liquids in Chemical Analysis, Boca Raton, 2009.

D. Camper, C. Becker, C. Koval, and R. Noble, Diffusion and Solubility Measurements in Room Temperature Ionic Liquids, Industrial & Engineering Chemistry Research, vol.45, issue.1, pp.445-450, 2006.
DOI : 10.1021/ie0506668

C. Gomes, M. F. Pison, L. Pensado, A. S. Padua, and A. A. , Using Ethane and Butane as Probes to the Molecular Structure of 1-Alkyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide Ionic Liquids, Faraday Discuss, pp.41-52, 2012.

R. Battino and H. L. Clever, The Solubility of Gases in Liquids, Chemical Reviews, vol.66, issue.4, pp.395-463, 1966.
DOI : 10.1021/cr60242a003

J. Zhang, Q. Zhang, B. Qiao, and Y. Deng, Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, Journal of Chemical & Engineering Data, vol.52, issue.6, pp.2277-2283, 2007.
DOI : 10.1021/je700297c

P. K. Kilaru and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids

C. Gomes and M. F. , Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343, J
URL : https://hal.archives-ouvertes.fr/hal-00136676

J. L. Anthony, E. J. Maginn, and J. Brennecke, -Butyl-3-methylimidazolium Hexafluorophosphate, The Journal of Physical Chemistry B, vol.106, issue.29, pp.7315-7320, 2002.
DOI : 10.1021/jp020631a

URL : https://hal.archives-ouvertes.fr/hal-01258393

J. Coxam, C. Gomes, and M. F. , Absorption of Carbon Dioxide, Nitrous Oxide, Ethane and Nitrogen by 1-Alkyl-3-methylimidazolium (C n mim
URL : https://hal.archives-ouvertes.fr/hal-00754964

P. Wasserscheid, W. Arlt, H. Kistenmacher, S. Neuendorf, and V. Göke, Ionic Liquids for Propene-Propane Separation, Chem. Eng. Technol, vol.33, pp.63-73, 2010.

P. Scovazzo, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, Journal of Membrane Science, vol.343, issue.1-2, pp.199-211, 2009.
DOI : 10.1016/j.memsci.2009.07.028

J. H. Lee, S. W. Kang, D. Song, J. Wond, and Y. S. Kang, Facilitated olefin transport through room temperature ionic liquids for separation of olefin/paraffin mixtures, Journal of Membrane Science, vol.423, issue.424, pp.423-424
DOI : 10.1016/j.memsci.2012.08.007

A. Ortiz, A. Ruiz, D. Gorri, and I. Ortiz, Room temperature ionic liquid with silver salt as efficient reaction media for propylene/propane separation: Absorption equilibrium, Separation and Purification Technology, vol.63, issue.2, pp.311-318, 2008.
DOI : 10.1016/j.seppur.2008.05.011

B. Lee and S. L. Outcalt, -Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, Journal of Chemical & Engineering Data, vol.51, issue.3, pp.892-897, 2006.
DOI : 10.1021/je050357o

URL : https://hal.archives-ouvertes.fr/hal-00857436

J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. Brennecke, Anion Effects on Gas Solubility in Ionic Liquids, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6366-6374, 2005.
DOI : 10.1021/jp046404l

P. K. Kilaru, R. A. Condemarin, and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium

R. Condemarin and P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chemical Engineering Journal, vol.147, issue.1, pp.51-57, 2009.
DOI : 10.1016/j.cej.2008.11.015

A. Ortiz, L. M. Galán, D. Gorri, A. B. De-haan, and I. Ortiz, Kinetics of reactive absorption of propylene in RTIL-Ag+ media, Kinetics of Reactive Absorption of Propene in RTIL-Ag + Media, pp.106-113, 2010.
DOI : 10.1016/j.seppur.2010.03.008

A. Ortiz and D. Gorri, Irabien, A; Ortiz, I. Separation of Propene

U. Ag and +. Solutions, Evaluation and Comparison of the Performance of Gas-Liquid Contactors, J. Membrane Sci, vol.360, pp.130-141, 2010.

M. Fallanza, A. Ortiz, D. Gorri, and I. Ortiz, Experimental Study of the Separation of Propane/Propene Mixtures by Supported Ionic Liquid Membranes Containing

L. M. Sánchez, G. W. Meindersma, and A. B. Haan, Potential of Silver-Based Room-Temperature Ionic Liquids for Ethene/Ethane Separation, Ind. Eng. Chem

F. Ghaemmaghami, Experimental Kinetic Analysis of Ethene Absorption in Ionic Liquid [Bmim]NO 3 ] with Dissolved AgNO 3 by a Semi-Continuous Process

M. Kim and H. S. , Cu(i)-containing room temperature ionic liquids as selective and reversible absorbents for propyne, Physical Chemistry Chemical Physics, vol.22, issue.42, pp.14196-14202, 2010.
DOI : 10.1039/c004140h

M. Wessling, An Adaptive Self-Healing Ionic Liquid Nanocomposite Membrane for Olefin-Paraffin Separations, Adv. Mater, vol.24, pp.4306-4310, 2012.

P. Wasserscheid, Ionic Liquid Silver Salt Complexes for Propene/Propane Separation, Phys. Chem. Chem. Phys, vol.13, pp.725-731, 2011.

A. Morisato, Z. He, I. Pinnau, and T. C. Merkel, Transport properties of PA12-PTMO/AgBF4 solid polymer electrolyte membranes for olefin/paraffin separation, Desalination, vol.145, issue.1-3, pp.347-351, 2002.
DOI : 10.1016/S0011-9164(02)00434-4

G. Hsiue, Y. , and J. , Novel methods in separation of olefin/paraffin mixtures by functional polymeric membranes, Journal of Membrane Science, vol.82, issue.1-2, pp.117-128, 1993.
DOI : 10.1016/0376-7388(93)85097-G

P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis

P. Wasserscheid and W. Keim, Ionic Liquids???New ???Solutions??? for Transition Metal Catalysis, Angewandte Chemie, vol.15, issue.75, pp.3772-3789, 2000.
DOI : 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

B. Clare, A. Sirwardana, and D. R. Macfarlane, Synthesis, Purification and Characterization of Ionic Liquids, Top. Curr. Chem.: Ionic Liquids, 2009.
DOI : 10.1007/128_2008_31

K. R. Seddon, R. D. Rogers, and . Efficient, Halide Free Synthesis of New, Low Cost Ionic Liquids: 1,3-dialkylimidazolium Salts Containing Methyl-and Ethyl-sulfate

E. Kuhlmann, S. Himmler, H. Giebelhaus, and P. Wasserscheid, Imidazolium dialkylphosphates???a class of versatile, halogen-free and hydrolytically stable ionic liquids, Green Chem., vol.8, issue.3, pp.233-242, 2007.
DOI : 10.1039/b617498a

M. J. Earle and K. R. Seddon, Preparation of Imidazole Carbenes and the Use Thereof for the Synthesis of Ionic Liquids, World Patent, pp.177081-177092, 2001.

A. A. Tomaszowska, D. F. Wassell, and . Greener, Halide-free Approach to Ionic Liquid Synthesis, Pure Appl. Chem, vol.84, pp.723-744, 2012.

M. F. Gomes, Absorption of Carbon Dioxide by Ionic Liquids With Carboxylate Anions, Int. J. Greenh. Gas Con, vol.17, pp.78-88, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00945108

A. Yokozeki, M. B. Shiflett, C. P. Junk, L. M. Grieco, and T. Foo, Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids, The Journal of Physical Chemistry B, vol.112, issue.51
DOI : 10.1021/jp805784u

R. D. Rogers, Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation, Green Chem, vol.3, pp.156-164, 2001.

K. R. Seddon, A. Stark, and M. J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure and Applied Chemistry, vol.72, issue.12, pp.2275-2287, 2000.
DOI : 10.1351/pac200072122275

M. H. Ghatee, M. Zare, F. Moosavi, and A. R. Zolghadr, Temperature-Dependent Density and Viscosity of the Ionic Liquids 1-Alkyl-3-methylimidazolium Iodides: Experiment and Molecular Dynamics Simulation, Journal of Chemical & Engineering Data, vol.55, issue.9, pp.3084-3088, 2010.
DOI : 10.1021/je901092b

G. Schilling, G. Kleinrahm, R. Wagner, and W. , Measurement and correlation of the (p,??,T) relation of liquid n-heptane, n-nonane, 2,4-dichlorotoluene, and bromobenzene in the temperature range from (233.15 to 473.15)K at pressures up to 30MPa for use as density reference liquids, The Journal of Chemical Thermodynamics, vol.40, issue.7, pp.1095-1105, 2008.
DOI : 10.1016/j.jct.2008.02.020

J. A. Coutinho, Surface Tensions of Binary Mixtures of Ionic Liquids with Bis(trifluoromethylsulfonyl)imide as the Common Anion, J. Chem. Thermodyn, vol.64, pp.22-27, 2013.

S. Corderi and B. Gonzalez, Ethanol Extraction From its Azeotropic Mixture with

A. Wandschneider, J. K. Lehmann, and A. Heintz, Surface Tension and Density of

H. J. Guedes and L. P. Rebelo, Thermophysical and Thermodynamic Properties of Ionic Liquids Over an Extended Pressure Range: [bmim][NTf 2 ] and [hmim][NTf 2 ], J. Chem. Thermodyn, vol.37, pp.888-899, 2005.

J. Jacquemin, P. Husson, A. A. Padua, and V. Majer, Density and viscosity of several pure and water-saturated ionic liquids, Green Chem., vol.8, issue.16, pp.172-180, 2006.
DOI : 10.1039/B513231B

URL : https://hal.archives-ouvertes.fr/hal-00126412

J. Jacquemin, P. Husson, V. Majer, C. Gomes, and M. F. , Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion, Journal of Solution Chemistry, vol.5, issue.229, pp.967-979, 2007.
DOI : 10.1007/s10953-007-9159-9

URL : https://hal.archives-ouvertes.fr/hal-00270579

M. Vranes, S. Dozic, V. Djeric, and S. Gadzuric, Physicochemical Characterization of 1-Butyl-3-methylimidazolium and 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide, Journal of Chemical & Engineering Data, vol.57, issue.4, pp.1072-1077, 2012.
DOI : 10.1021/je2010837

K. R. Harris, M. Kanakubo, and L. A. Woolf, Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium

S. Katsuta, Y. Shiozawa, K. Imai, Y. Kudo, and Y. Takeda, Stability of Ion Pairs of Bis(trifluoromethanesulfonyl)amide-Based Ionic Liquids in Dichloromethane, Journal of Chemical & Engineering Data, vol.55, issue.4
DOI : 10.1021/je900694m

J. Jacquemin, P. Husson, V. Mayer, and I. Cibulka, High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids:?? Effect of the Anion, Journal of Chemical & Engineering Data, vol.52, issue.6
DOI : 10.1021/je700224j

URL : https://hal.archives-ouvertes.fr/hal-00270577

H. Shirota, T. Mandai, H. Fukazawa, and T. Kato, Comparison between Dicationic and Monocationic Ionic Liquids: Liquid Density, Thermal Properties, Surface Tension, and Shear Viscosity, Journal of Chemical & Engineering Data, vol.56, issue.5, pp.2453-2459, 2011.
DOI : 10.1021/je2000183

I. Domínguez, E. J. González, R. González, and A. Domínguez, Extraction of

M. Geppert-rybczy?ska, A. Heintz, J. K. Lehmann, and A. Golus, Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents, J

M. R. Newton and M. I. , Density-Viscosity Product of Small-Volume Ionic Liquid Samples Using Quartz Crystal Impedance Analysis, Anal. Chem, vol.80, pp.5806-5811, 2008.

. Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids, J. Chem. Eng. Data, vol.54, pp.2803-2812, 2009.

S. M. Mahurin, J. S. Lee, G. A. Baker, H. Luo, and S. Dai, Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation, Journal of Membrane Science, vol.353, issue.1-2, pp.177-183, 2010.
DOI : 10.1016/j.memsci.2010.02.045

S. M. Mahurin, T. Dai, J. S. Yeary, H. Luo, and S. Dai, Separation, Industrial & Engineering Chemistry Research, vol.50, issue.24, pp.14061-14069, 2011.
DOI : 10.1021/ie201428k

T. K. Carlisle, J. E. Bara, C. J. Gabriel, R. D. Noble, and D. L. Gin, Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach, Industrial & Engineering Chemistry Research, vol.47, issue.18, pp.7005-7012, 2008.
DOI : 10.1021/ie8001217

C. A. Ohlin, P. J. Dyson, and G. Laurenczy, Carbon Monoxide Solubility in Ionic Liquids: Determination, Prediction and Relevance to Hydroformylation., ChemInform, vol.35, issue.32
DOI : 10.1002/chin.200432032

S. V. Dzyuba and R. A. Bartsch, Influence of Structural Variations

S. Mahiuddln and K. Ismail, Concentration Dependence of the Viscosity of

A. Electrolytes, A Probe into Higher Concentration, J. Phys. Chern, vol.87, pp.5241-5244, 1983.

M. C. Ribeiro, Low-frequency Raman spectra and fragility of imidazolium ionic liquids, The Journal of Chemical Physics, vol.133, issue.2, p.24503, 2010.
DOI : 10.1063/1.3462962

A. Mele, Pyrazolium-versus Imidazolium-Based Ionic Liquids: Structure, Dynamics and Physicochemical Properties, J. Phys. Chem. B, vol.117, pp.668-676, 2013.

M. Ikeda and M. Aniya, Understanding the Vogel???Fulcher???Tammann law in terms of the bond strength???coordination number fluctuation model, Journal of Non-Crystalline Solids, vol.371, issue.372, pp.371-372
DOI : 10.1016/j.jnoncrysol.2013.04.034

C. Gomes, M. F. Pison, L. Pensado, A. S. Pádua, and A. A. , Using Ethane and Butane as Probes to the Molecular Structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide Ionic Liquids, Faraday Discuss, pp.41-52, 2012.

A. Orita, K. Kamijima, and M. Yoshida, Allyl-functionalized ionic liquids as electrolytes for electric double-layer capacitors, Journal of Power Sources, vol.195, issue.21, pp.7471-7479, 2010.
DOI : 10.1016/j.jpowsour.2010.05.066

E. Ethane and . Solubility, Ionic Liquids were prepared with the following concentrations: LiNTf 2 at 0, Ni(NTf 2 ) 2 at 0.18 mol L -1 and Cu(NTf 2 ) 2 at less than 0

J. N. Bayard, F. Costa-gomes, and M. F. Pensado, Interaction between the ?-System of Toluene and the Imidazolium Ring of Ionic Liquids: A Combined NMR and Molecular Simulation Study, J. Phys. Chem. B, vol.113, pp.170-177, 2009.

D. Kim, S. Hu, P. Tarakeshwar, and K. S. Kim, Cation????? Interactions:?? A Theoretical Investigation of the Interaction of Metallic and Organic Cations with Alkenes, Arenes, and Heteroarenes, The Journal of Physical Chemistry A, vol.107, issue.8, pp.1228-1238, 2003.
DOI : 10.1021/jp0224214

A. Ortiz, A. Ruiz, and D. Gorri, Ortiz, I. Room Temperature Ionic Liquid with Silver Salt as Efficient Reaction Media for Propene/Propane Separation: Absorption Equilibrium

P. Wasserscheid, W. Arlt, H. Kistenmacher, S. Neuendorf, and V. Göke, Ionic Liquids for Propene-Propane Separation, Chem. Eng. Technol, vol.33, pp.63-73, 2010.

J. H. Dymond, K. N. Marsh, R. C. Wilhoit, and K. Wong, The Virial Coefficients of

C. , C. Gomes, and M. F. , Effect of Unsaturation on the Absorption of Ethane and Ethylene in Imidazolium-Based Ionic Liquids, J. Phys. Chem. B, vol.117, pp.7416-7425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944585

C. Gomes, M. F. Pison, L. Pensado, A. S. Pádua, and A. A. , Using Ethane and Butane as Probes to the Molecular Structure of 1-Alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide Ionic Liquids, Faraday Discuss, pp.41-52, 2012.

L. M. Sánchez, G. W. Meindersma, and A. B. Haan, Potential of Silver-Based Room-Temperature Ionic Liquids for Ethene/Ethane Separation, Ind. Eng. Chem

F. Ghaemmaghami, Experimental Kinetic Analysis of Ethene Absorption in Ionic Liquid [Bmim]NO 3 ] with Dissolved AgNO 3 by a Semi-Continuous Process

M. F. Gomes, Solubility of Carbon Dioxide and Ethane in Three Ionic Liquids Based on the Bis{(trifluoromethyl)sulfonyl}imide Anion, Fluid Phase Equilibr, pp.27-34, 2007.

D. Camper, C. Becker, C. Koval, and R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Industrial & Engineering Chemistry Research, vol.44, issue.6, pp.1928-1933, 2005.
DOI : 10.1021/ie049312r

P. K. Kilaru and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids

P. K. Kilaru, R. A. Condemarin, and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium

J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. Brennecke, Anion Effects on Gas Solubility in Ionic Liquids, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6366-6374, 2005.
DOI : 10.1021/jp046404l

J. Zhang, Q. Zhang, B. Qiao, and Y. Deng, Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, Journal of Chemical & Engineering Data, vol.52, issue.6, pp.2277-2283, 2007.
DOI : 10.1021/je700297c

C. Gomes and M. F. , Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343, J
URL : https://hal.archives-ouvertes.fr/hal-00136676

. Dioxide, . Ethane, . Methane, . Oxygen, . Nitrogen et al., Argon, and Carbon Monoxide in 1-Butyl-3-methylimidazolium Tetrafluoroborate Between Temperatures 283 K and 343 K and at Pressures Close to Atmospheric, J. Chem. Thermodyn, vol.38, pp.490-502, 2006.

J. L. Anderson, J. K. Dixon, and J. Brennecke, in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids, Solubility of CO 2, pp.1208-1216, 2007.

O. Borodin, G. D. Smith, W. Henderson, and . Li, Cation Environment, Transport, and Mechanical Properties of the LiTFSI Doped N-Methyl-N-alkylpyrrolidinium + TFSI

. Im, 14, 29 ; [C 1 C 2 Im][CF 3 SO 3 ] 30 ; [C 1 C 4 Im][FAP] 21

. Im, Im][NTf 2 ] 25 ; [C 1 C 6 Im][NTf 2 ] 35, 36

. Im, 39 ; [C 1 C 1 Im][(C 1 ) 2 PO 4 ] 10, pp.38-38

. Im, HPO 3 ] 39 ; [C 1 C 4 Im][C 1 HPO 3 ] 39

. Im, NTf 2 ] 45 ; [C 1 C 1 Im][C 1 HPO 3 ] 39, 45 ; [C 1 C 2 Im][C 1 HPO 3 ] 45, pp.2-4

. Im, 1 ) 2 PO 4 ] 45 ; [C 1 C 4 Im][OAc] 45 ; [C 1 C 4 Im][TFA] 45, pp.2-4

M. F. Asaro, Sorbents and Processes for Separation of Olefins from Paraffins

Y. Hu, Z. Liu, C. Xu, and X. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chemical Society Reviews, vol.252, issue.132, pp.3802-3823, 2011.
DOI : 10.1016/j.fluid.2010.08.017

J. Palgunadi, H. S. Kim, J. M. Lee, and S. Jung, Ionic liquids for acetylene and ethylene separation: Material selection and solubility investigation, Chemical Engineering and Processing: Process Intensification, vol.49, issue.2, pp.192-198, 2010.
DOI : 10.1016/j.cep.2009.12.009

M. Jin, Y. Hou, W. Wu, S. Ren, S. Tian et al., in Ionic Liquids, The Journal of Physical Chemistry B, vol.115, issue.20, pp.6585-6591, 2011.
DOI : 10.1021/jp1124074

M. B. Shiflett, A. M. Niehaus, and A. Yokozeki, ], The Journal of Physical Chemistry B, vol.115, issue.13, pp.3478-3487, 2011.
DOI : 10.1021/jp107879s

D. Camper, C. Becker, C. Koval, and R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Industrial & Engineering Chemistry Research, vol.44, issue.6, pp.1928-1933, 2005.
DOI : 10.1021/ie049312r

J. Jacquemin, M. F. Costa-gomes, P. Husson, and V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric, The Journal of Chemical Thermodynamics, vol.38, issue.4, pp.490-502, 2006.
DOI : 10.1016/j.jct.2005.07.002

URL : https://hal.archives-ouvertes.fr/hal-00270582

K. Denbigh, The Principles of Chemical Equilibrium, 1981.

J. M. Smith, H. C. Van-ness, and M. M. Abbott, Introduction to chemical engineering thermodynamics, Journal of Chemical Education, vol.27, issue.10, 1996.
DOI : 10.1021/ed027p584.3

J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes-de-azevedo, Molecular Thermodynamics of Fluid- Phase Equilibria, NJ, 1999.

A. Ben-naim, Statistical Thermodynamics for Chemists and Biochemists, 1992.
DOI : 10.1007/978-1-4757-1598-9

V. Majer, J. Sedlbauer, and R. H. Wood, Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions, 2004.

G. Hong, J. Jacquemin, M. Deetlefs, C. Hardacre, P. Husson et al., Solubility of carbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imide anion, Fluid Phase Equilibria, vol.257, issue.1, pp.27-34, 2007.
DOI : 10.1016/j.fluid.2007.05.002

M. F. Costa-gomes, L. Pison, A. S. Pensado, and A. A. Padua, Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids, Faraday Discuss., vol.77, pp.41-52, 2012.
DOI : 10.1039/C1FD00074H

B. Lee and S. L. Outcalt, -Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, Journal of Chemical & Engineering Data, vol.51, issue.3, pp.892-897, 2006.
DOI : 10.1021/je050357o

URL : https://hal.archives-ouvertes.fr/hal-00857436

L. Moura, M. Mishra, V. Bernales, P. Fuentealba, A. A. Padua et al., Effect of Unsaturation on the Absorption of Ethane and Ethylene in Imidazolium-Based Ionic Liquids, The Journal of Physical Chemistry B, vol.117, issue.24, pp.7416-7425, 2013.
DOI : 10.1021/jp403074z

URL : https://hal.archives-ouvertes.fr/hal-00944585

M. F. and C. Gomes, Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K, Journal of Chemical & Engineering Data, vol.52, issue.2, pp.472-475, 2007.
DOI : 10.1021/je0604129

URL : https://hal.archives-ouvertes.fr/hal-00136676

H. Xing, X. Zhao, R. Li, Y. Yang, B. Su et al., Improved Efficiency of Ethylene/Ethane Separation Using a Symmetrical Dual Nitrile-Functionalized Ionic Liquid, ACS Sustainable Chemistry & Engineering, vol.1, issue.11, pp.1357-1363, 2013.
DOI : 10.1021/sc400208b

D. Camper, C. Becker, C. Koval, and R. Noble, Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Industrial & Engineering Chemistry Research, vol.44, issue.6, pp.1928-1933, 2005.
DOI : 10.1021/ie049312r

J. L. Anthony, E. J. Maginn, and J. F. Brennecke, -Butyl-3-methylimidazolium Hexafluorophosphate, The Journal of Physical Chemistry B, vol.106, issue.29, pp.7315-7320, 2002.
DOI : 10.1021/jp020631a

URL : https://hal.archives-ouvertes.fr/hal-01258393

J. L. Anderson, J. K. Dixon, and J. F. Brennecke, in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids, Accounts of Chemical Research, vol.40, issue.11, pp.1208-1216, 2007.
DOI : 10.1021/ar7001649

S. Stevanovic, M. F. , and C. Gomes, Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids, The Journal of Chemical Thermodynamics, vol.59, pp.65-71, 2013.
DOI : 10.1016/j.jct.2012.11.010

URL : https://hal.archives-ouvertes.fr/hal-00795672

X. Liu, W. Afzal, and J. M. Prausnitz, Solubilities of Small Hydrocarbons in Tetrabutylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate and in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, Industrial & Engineering Chemistry Research, vol.52, issue.42, pp.14975-14978, 2013.
DOI : 10.1021/ie402196m

X. Liu, W. Afzal, G. Yu, M. He, and J. M. Prausnitz, High Solubilities of Small Hydrocarbons in Trihexyl Tetradecylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate, The Journal of Physical Chemistry B, vol.117, issue.36, pp.10534-10539, 2013.
DOI : 10.1021/jp403460a

P. K. Kilaru and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity, Industrial & Engineering Chemistry Research, vol.47, issue.3, pp.910-919, 2008.
DOI : 10.1021/ie070836b

P. K. Kilaru, R. A. Condemarin, and P. Scovazzo, Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension, Industrial & Engineering Chemistry Research, vol.47, issue.3, pp.900-909, 2008.
DOI : 10.1021/ie070834r

Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu et al., Physicochemical Properties of Nitrile-Functionalized Ionic Liquids, The Journal of Physical Chemistry B, vol.111, issue.11, pp.2864-2872, 2007.
DOI : 10.1021/jp067327s

J. Zhang, Q. Zhang, B. Qiao, and Y. Deng, Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, Journal of Chemical & Engineering Data, vol.52, issue.6, pp.2277-2283, 2007.
DOI : 10.1021/je700297c

J. M. Lee, J. Palgunadi, J. H. Kim, S. Jung, Y. Choi et al., Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes, Phys. Chem. Chem. Phys., vol.105, issue.8, pp.1812-1816, 2010.
DOI : 10.1039/B915989D

J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke, Anion Effects on Gas Solubility in Ionic Liquids, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6366-6374, 2005.
DOI : 10.1021/jp046404l

S. Jung, J. Palgunadi, J. H. Kim, H. Lee, B. S. Ahn et al., Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures: Pyrrolidinium-based ionic liquids as acetylene transport carriers, Journal of Membrane Science, vol.354, issue.1-2, pp.63-67, 2010.
DOI : 10.1016/j.memsci.2010.02.062

R. Condemarin and P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chemical Engineering Journal, vol.147, issue.1, pp.51-57, 2009.
DOI : 10.1016/j.cej.2008.11.015

L. Ferguson and P. Scovazzo, Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids:?? Data and Correlations, Industrial & Engineering Chemistry Research, vol.46, issue.4, pp.1369-1374, 2007.
DOI : 10.1021/ie0610905

D. Morgan, L. Ferguson, and P. Scovazzo, Diffusivities of Gases in Room-Temperature Ionic Liquids:?? Data and Correlations Obtained Using a Lag-Time Technique, Industrial & Engineering Chemistry Research, vol.44, issue.13, pp.4815-4823, 2005.
DOI : 10.1021/ie048825v

J. Palgunadi, S. Y. Hong, J. K. Lee, H. Lee, S. D. Lee et al., Correlation between Hydrogen Bond Basicity and Acetylene Solubility in Room Temperature Ionic Liquids, The Journal of Physical Chemistry B, vol.115, issue.5, pp.1067-1074, 2011.
DOI : 10.1021/jp108351f