G. P. Young, Population-based screening for colorectal cancer: Australian research and implementation, Journal of Gastroenterology and Hepatology, vol.19, issue.5, pp.33-42, 2009.
DOI : 10.1111/j.1440-1746.2009.06069.x

S. J. Winawer, Screening of Colorectal Cancer, Screening of colorectal cancer, pp.699-722, 2005.
DOI : 10.1016/j.soc.2005.05.009

L. Estève and . Remontet, Velten, « Cancer incidence and mortality in France over the period, Rev Epidemiol Sante Publique, vol.56, issue.3, pp.159-175, 1980.

B. Denis, I. Gendre, F. Aman, F. Ribstein, P. Maurin et al., Colorectal cancer screening with the addition of flexible sigmoidoscopy to guaiac-based faecal occult blood testing: A French population-based controlled study (Wintzenheim trial), European Journal of Cancer, vol.45, issue.18, pp.18-3282, 2009.
DOI : 10.1016/j.ejca.2009.06.015

L. Alnaim, Therapeutic drug monitoring of cancer chemotherapy, Therapeutic drug monitoring of cancer chemotherapy, pp.207-221, 2007.
DOI : 10.1177/1078155207081133

K. Nakano, T. Nakao, K. H. Schram, W. M. Hammargren, T. D. Mcclure et al., Urinary excretion of modified nucleosides as biological marker of RNA turnover in patients with cancer and AIDS, Clinica Chimica Acta, vol.218, issue.2, pp.169-183, 1993.
DOI : 10.1016/0009-8981(93)90181-3

E. Yuan and . Shi, « Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer, Analytical Biochemistry, vol.397, issue.2, pp.212-217, 2010.

J. Zhang, Y. Wang, J. Xue, Y. He, H. Yang et al., A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-???turning on??? mechanism, Journal of Pharmaceutical and Biomedical Analysis, vol.70, pp.362-368
DOI : 10.1016/j.jpba.2012.05.032

R. T. Fortner, A. H. Eliassen, D. Spiegelman, W. C. Willett, R. L. Barbieri et al., Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses' Health Study II, Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses' Health Study II », p.19, 2013.
DOI : 10.1016/j.steroids.2011.10.002

M. Pruvot, T. L. Forde, J. Steele, S. J. Kutz, J. D. Buck et al., The modification and evaluation of an ELISA test for the surveillance of Mycobacterium avium subsp. paratuberculosis infection in wild ruminants, BMC Veterinary Research, vol.9, issue.1, pp.5-2013
DOI : 10.1016/j.vetmic.2007.12.011

R. Agius, T. Nadulski, and H. Kahl, Dufaux, « Comparison of LUCIO®-direct ELISA with CEDIA immunoassay for 'zero tolerance' drug screening in urine as required by the German re-licensing guidelines, Drug Testing and Analysis, 2013.

D. Diamond and . Éd, Principles of Chemical and Biological Sensors, 1 re éd, 1998.

J. Polster, G. Prestel, M. Wollenweber, G. Kraus, and E. G. Gauglitz, Simultaneous determination of penicillin and ampicillin by spectral fibre-optical enzyme optodes and multivariate data analysis based on transient signals obtained by flow injection analysis, Talanta, vol.42, issue.12, pp.12-2065, 1995.
DOI : 10.1016/0039-9140(95)01684-8

Z. Li, X. Wang, G. Wen, S. Shuang, C. Dong et al., Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor, Biosensors and Bioelectronics, vol.26, issue.11, pp.4619-4623, 2011.
DOI : 10.1016/j.bios.2011.04.057

F. R. Teles, L. P. Fonseca, and . Trends, Trends in DNA biosensors, DNA biosensors, pp.606-623, 2008.
DOI : 10.1016/j.talanta.2008.07.024

L. Gorton, Biosensors and Modern Biospecific Analytical Techniques, 2005.

C. Yeh, Y. Chang, H. Lin, T. Chang, and Y. Lin, A newly developed optical biochip for bacteria detection based on DNA hybridization, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.1168-1175, 2012.
DOI : 10.1016/j.snb.2011.10.016

J. Liu, X. Liu, Y. Han, E. W. Cui, and . Wang, Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization, Biosensors and Bioelectronics, vol.25, issue.7, pp.1640-1645, 2010.
DOI : 10.1016/j.bios.2009.11.026

P. Banerjee and A. K. Bhunia, Cell-based biosensor for rapid screening of pathogens and toxins, Biosensors and Bioelectronics, vol.26, issue.1, pp.99-106, 2010.
DOI : 10.1016/j.bios.2010.05.020

H. Yoon, J. Kim, N. Lee, B. Kim, and E. J. Jang, A Novel Sensor Platform Based on Aptamer-Conjugated Polypyrrole Nanotubes for Label-Free Electrochemical Protein Detection, ChemBioChem, vol.57, issue.4, pp.634-641, 2008.
DOI : 10.1002/cbic.200700660

O. S. Kwon, S. J. Park, and E. J. Jang, A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor, Biomaterials, vol.31, issue.17, pp.17-4740, 2010.
DOI : 10.1016/j.biomaterials.2010.02.040

F. Chauveau, C. Pestourie, and E. B. Tavitian, Les aptam??res ou??l'??volution mol??culaire dirig??e??: s??lection et??applications, Pathologie Biologie, vol.54, issue.4, pp.251-258, 2006.
DOI : 10.1016/j.patbio.2006.03.002

F. Horemans, J. Alenus, E. Bongaers, A. Weustenraed, R. Thoelen et al., MIP-based sensor platforms for the detection of histamine in the nano- and micromolar range in aqueous media, Sensors and Actuators B: Chemical, vol.148, issue.2, pp.392-398, 2010.
DOI : 10.1016/j.snb.2010.05.003

D. Kriz and K. Mosbach, Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer, Analytica Chimica Acta, vol.300, issue.1-3, pp.71-75, 1995.
DOI : 10.1016/0003-2670(94)00368-V

M. Pesavento, G. D. Agostino, and R. Biesuz, Molecularly Imprinted Polymer-Based Sensors for Amperometric Determination of Nonelectroactive Substances, Electroanalysis, vol.31, issue.3-5, pp.604-611, 2009.
DOI : 10.1002/elan.200804456

J. De, R. M. Neto, W. De, J. R. Santos, P. R. Lima et al., « A hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy carbon electrode as a selective sensor for 4-aminophenol amperometric, Sensors and Actuators B: Chemical, vol.152, issue.2, pp.220-225, 2011.

M. C. Blanco-lopez, M. J. Lobo-castanon, A. J. Miranda-ordieres, and E. P. Tunon-blanco, Electrochemical sensors based on molecularly imprinted polymers, Electrochemical sensors based on molecularly imprinted polymers, pp.36-48
DOI : 10.1016/S0165-9936(04)00102-5

L. Y. Heng, E. A. Hall, and . Producing, Producing ???Self-Plasticizing??? Ion-Selective Membranes, Analytical Chemistry, vol.72, issue.1, pp.42-51, 2000.
DOI : 10.1021/ac9904765

Y. Liu, L. Zhu, and Z. Luo, Tang, « Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide, Sensors and Actuators B: Chemical

S. Sadeghi, F. Fathi, and E. J. Abbasifar, Potentiometric sensing of levamisole hydrochloride based on molecularly imprinted polymer, Sensors and Actuators B: Chemical, vol.122, issue.1, pp.158-164, 2007.
DOI : 10.1016/j.snb.2006.05.018

R. Liang, R. Zhang, and E. W. Qin, Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk, Sensors and Actuators B: Chemical, vol.141, issue.2, pp.544-550, 2009.
DOI : 10.1016/j.snb.2009.05.024

K. K. Reddy and K. V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis, Sensors and Actuators B: Chemical, vol.183, pp.356-363
DOI : 10.1016/j.snb.2013.04.015

M. C. Blanco-lópez, M. J. Lobo-castañón, and A. J. Miranda-ordieres, Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes, Biosensors and Bioelectronics, vol.18, issue.4, pp.353-362, 2003.
DOI : 10.1016/S0956-5663(02)00151-3

A. C. Roy, V. S. Nisha, C. Dhand, M. A. Ali, and B. D. Malhotra, Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection, Analytica Chimica Acta, vol.777, pp.63-71, 2013.
DOI : 10.1016/j.aca.2013.03.014

E. Liu and . Lin, « Optical sensing of urinary melatonin with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays, Biosensors and Bioelectronics, vol.47, pp.56-61, 2013.

C. Sulitzky, B. Rückert, A. J. Hall, F. Lanza, and K. Unger, Grafting of Molecularly Imprinted Polymer Films on Silica Supports Containing Surface-Bound Free Radical Initiators, Macromolecules, vol.35, issue.1, pp.79-91, 2002.
DOI : 10.1021/ma011303w

T. Jing, H. Du, Q. Dai, H. Xia, J. Niu et al., Magnetic molecularly imprinted nanoparticles for recognition of lysozyme, Magnetic molecularly imprinted nanoparticles for recognition of lysozyme, pp.301-306, 2010.
DOI : 10.1016/j.bios.2010.08.044

P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn et al., Advances in biosensors for detection of pathogens in food and water, Enzyme and Microbial Technology, vol.32, issue.1, pp.3-13, 2003.
DOI : 10.1016/S0141-0229(02)00232-6

K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy, Analytica Chimica Acta, vol.489, issue.2, pp.191-198, 2003.
DOI : 10.1016/S0003-2670(03)00760-8

S. Li, Y. Ge, A. P. Turner, and «. A. , A Catalytic and Positively Thermosensitive Molecularly Imprinted Polymer, Advanced Functional Materials, vol.18, issue.6, pp.1194-1200, 2011.
DOI : 10.1002/adfm.201001906

H. Bao, T. Wei, H. Meng, and E. B. Liu, Surface Plasmon Resonance Sensor for Supersensitive Detection of Clenbuterol Using Molecularly Imprinted Film, Chemistry Letters, vol.41, issue.3, pp.237-239, 2012.
DOI : 10.1246/cl.2012.237

H. Tarbague, « Étude et mise au point d'une plateforme de biodétection de microorganismes couplant immunocapteur à ondes de love et dispositifs PDMS microfluidique, 2011.

K. Haupt, K. Noworyta, and E. W. Kutner, Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance, Analytical Communications, vol.326, issue.11-12, 1999.
DOI : 10.1039/a907844d

F. Liu, X. Liu, S. Ng, and H. S. Chan, Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan, Sensors and Actuators B: Chemical, vol.113, issue.1, pp.234-240, 2006.
DOI : 10.1016/j.snb.2005.02.058

M. R. Guerra, I. Chianella, E. V. Piletska, K. Karim, A. P. Turner et al., Development of a piezoelectric sensor for the detection of methamphetamine, The Analyst, vol.542, issue.8, pp.1565-1570, 2009.
DOI : 10.1039/b819351g

S. E. Diltemiz, D. Hür, R. Keçili, A. Ersöz, and E. R. Say, New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors, The Analyst, vol.155, issue.5, pp.1558-1563
DOI : 10.1039/c2an36291k

F. L. Dickert and S. Thierer, Molecularly imprinted polymers for optochemical sensors, Advanced Materials, vol.60, issue.12, pp.987-990, 1996.
DOI : 10.1002/adma.19960081209

C. Liang, H. Peng, X. Bao, L. Nie, and E. S. Yao, Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine, The Analyst, vol.124, issue.12, pp.12-1781, 1999.
DOI : 10.1039/a905112k

C. Liang, H. Peng, A. Zhou, L. Nie, and E. S. Yao, Molecular imprinting polymer coated BAW bio-mimic sensor for direct determination of epinephrine, Analytica Chimica Acta, vol.415, issue.1-2, pp.135-141, 2000.
DOI : 10.1016/S0003-2670(00)00845-X

H. Peng, C. Liang, D. He, L. Nie, and E. S. Yao, Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine, Talanta, vol.52, issue.3, pp.441-448, 2000.
DOI : 10.1016/S0039-9140(00)00393-3

J. Slobodnik, A. J. Et, and A. J. Budreau, at microwave frequencies, Journal of Applied Physics, vol.43, issue.8, pp.3278-3283, 1972.
DOI : 10.1063/1.1661707

R. Dessy and H. Wohltjen, An instrument simulator for use in computer interfacing laboratories, Journal of Chemical Education, vol.56, issue.3, p.153, 1979.
DOI : 10.1021/ed056p153

C. Caliendo, P. Verardi, E. Verona, A. D-'amico, C. D. Natale et al., Advances in SAW-based gas sensors, Smart Materials and Structures, vol.6, issue.6, p.689, 1997.
DOI : 10.1088/0964-1726/6/6/005

C. Mah and K. B. Thurbide, Acoustic methods of detection in gas chromatography, Journal of Separation Science, vol.3, issue.23, pp.1922-1930, 2006.
DOI : 10.1002/jssc.200500424

J. E. Roederer and G. J. Bastiaans, Microgravimetric immunoassay with piezoelectric crystals, Microgravimetric immunoassay with piezoelectric crystals, pp.2333-2336, 1983.
DOI : 10.1021/ac00264a030

N. Moll, « Étude et réalisation d'un système immunocapteurs à ondes de Love : application à la détection de toxines, de virus ou de bactéries, These de doctorat, 2007.

B. Sellergren, Molecularly Imprinted Polymers, 2000.
DOI : 10.1002/9780470661345.smc137

URL : https://hal.archives-ouvertes.fr/hal-00092159

F. H. Dickey, The Preparation of Specific Adsorbents, Proceedings of the National Academy of Sciences, vol.35, issue.5, pp.227-229, 1949.
DOI : 10.1073/pnas.35.5.227

G. Wulff, A. Sarhan, and E. K. Zabrocki, Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Letters, vol.14, issue.44, pp.44-4329, 1973.
DOI : 10.1016/S0040-4039(01)87213-0

D. R. Kryscio and N. A. , Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin, Analytica Chimica Acta, vol.718, pp.109-115, 2012.
DOI : 10.1016/j.aca.2012.01.006

B. Sellergren and K. J. Shea, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, Journal of Chromatography A, vol.635, issue.1, pp.31-49, 1993.
DOI : 10.1016/0021-9673(93)83112-6

G. Wulff, « Molecular imprinting in cross-linked materials with the aid of molecular templates -A way towards artificial antibodies, Angewandte Chemie - International Edition in English, vol.34, pp.17-1812, 1995.

E. L. Holthoff and F. V. Bright, Molecularly Imprinted Xerogels as Platforms for Sensing, Accounts of Chemical Research, vol.40, issue.9, pp.756-767, 2007.
DOI : 10.1021/ar700087t

R. Arshady and K. Mosbach, « Synthesis of substrate-selective polymers by hostguest polymerization, Die Makromolekulare Chemie, pp.687-692, 1981.

N. Pérez, M. J. Whitcombe, and E. N. Vulfson, Surface Imprinting of Cholesterol on Submicrometer Core???Shell Emulsion Particles, Surface Imprinting of Cholesterol on Submicrometer Core?Shell Emulsion Particles, pp.830-836, 2001.
DOI : 10.1021/ma001079v

Y. Uluda, S. A. Piletsky, A. P. Turner, and M. A. Cooper, Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes, FEBS Journal, vol.20, issue.21, pp.5471-5480, 2007.
DOI : 10.1111/j.1742-4658.2007.06079.x

M. Jakusch, M. Janotta, B. Mizaikoff, K. Mosbach, and E. K. Haupt, Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy. A Chemical Sensors Approach, Analytical Chemistry, vol.71, issue.20, pp.20-4786, 1999.
DOI : 10.1021/ac990050q

A. Kugimiya and T. Takeuchi, Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone, Electroanalysis, vol.71, issue.15, pp.1158-1160, 1999.
DOI : 10.1002/(SICI)1521-4109(199911)11:15<1158::AID-ELAN1158>3.0.CO;2-P

C. J. Percival, S. Stanley, T. M. Galle, A. Braithwaite, M. I. Newton et al., Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes, Analytical Chemistry, vol.73, issue.17, pp.17-4225, 2001.
DOI : 10.1021/ac0155198

F. L. Dickert, P. Lieberzeit, S. G. Miarecka, K. J. Mann, and O. Hayden, Synthetic receptors for chemical sensors???subnano- and micrometre patterning by imprinting techniques, Biosensors and Bioelectronics, vol.20, issue.6, pp.1040-1044, 2004.
DOI : 10.1016/j.bios.2004.07.011

T. Lin, C. Hu, and T. Chou, Determination of albumin concentration by MIP-QCM sensor, Biosensors and Bioelectronics, vol.20, issue.1, pp.75-81, 2004.
DOI : 10.1016/j.bios.2004.01.028

B. S. Ebarvia and F. Sevilla, Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid, Sensors and Actuators B: Chemical, vol.107, issue.2, pp.782-790
DOI : 10.1016/j.snb.2004.12.018

T. Piacham, Å. Josell, H. Arwin, and V. Prachayasittikul, Ye, « Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator », Analytica Chimica Acta, vol.536, 2005.

A. Wu and M. Syu, Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system, Biosensors and Bioelectronics, vol.21, issue.12, pp.12-2345, 2006.
DOI : 10.1016/j.bios.2006.01.017

N. Tsuru, M. Kikuchi, H. Kawaguchi, and E. S. Shiratori, A quartz crystal microbalance sensor coated with MIP for ???Bisphenol A??? and its properties, Thin Solid Films, vol.499, issue.1-2, pp.380-385, 2006.
DOI : 10.1016/j.tsf.2005.07.005

H. Liao, Z. Zhang, L. Nie, and E. S. Yao, Electrosynthesis of imprinted polyacrylamide membranes for the stereospecific l-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectric quartz crystal technique, Journal of Biochemical and Biophysical Methods, vol.59, issue.1, pp.75-87, 2004.
DOI : 10.1016/j.jbbm.2003.12.001

L. Feng, Y. Liu, Y. Tan, and E. J. Hu, Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers, Biosensors and Bioelectronics, vol.19, issue.11, pp.1513-1519, 2004.
DOI : 10.1016/j.bios.2003.12.007

M. Ávila, M. Zougagh, and Á. Ríos, Molecularly imprinted polymers for selective piezoelectric sensing of small molecules, TrAC Trends in Analytical Chemistry, vol.27, issue.1, pp.54-65, 2008.
DOI : 10.1016/j.trac.2007.10.009

M. Lasáková and P. Jandera, « Molecularly imprinted polymers and their application in solid phase extraction, J Sep Sci, vol.32, pp.799-812, 2009.

B. Sellergren, Imprinted chiral stationary phases in high-performance liquid chromatography, Journal of Chromatography A, vol.906, issue.1-2, pp.227-52, 2001.
DOI : 10.1016/S0021-9673(00)00929-8

M. Kempe and K. Mosbach, Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases, Journal of Chromatography A, vol.691, issue.1-2, pp.317-323, 1995.
DOI : 10.1016/0021-9673(94)00820-Y

B. Sellergren, B. Ekberg, and E. K. Mosbach, Molecular imprinting of amino acid derivatives in macroporous polymers, Journal of Chromatography A, vol.347, pp.1-10, 1985.
DOI : 10.1016/S0021-9673(01)95464-0

M. Monier and A. M. , Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of l-glutamic acid, International Journal of Biological Macromolecules, vol.47, issue.2, pp.207-213, 2010.
DOI : 10.1016/j.ijbiomac.2010.04.020

J. Haginaka, H. Sanbe, and E. H. Takehira, Uniform-sized molecularly imprinted polymer for (S)-ibuprofen, Journal of Chromatography A, vol.857, issue.1-2, pp.117-125, 1999.
DOI : 10.1016/S0021-9673(99)00764-5

M. Kempe and K. Mosbach, Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase, Journal of Chromatography A, vol.664, issue.2, pp.276-279, 1994.
DOI : 10.1016/0021-9673(94)87016-0

F. G. Tamayo and E. Turiel, Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends, Journal of Chromatography A, vol.1152, issue.1-2, pp.32-40, 2007.
DOI : 10.1016/j.chroma.2006.08.095

E. Caro, R. M. Marcé, F. Borrull, P. A. Cormack, and D. C. Sherrington, Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples, TrAC Trends in Analytical Chemistry, vol.25, issue.2, pp.143-154, 2006.
DOI : 10.1016/j.trac.2005.05.008

D. Spivak, M. A. Gilmore, and K. J. Shea, Evaluation of Binding and Origins of Specificity of 9-Ethyladenine Imprinted Polymers, Journal of the American Chemical Society, vol.119, issue.19, pp.4388-4393, 1997.
DOI : 10.1021/ja963510v

S. Scorrano and L. Longo, Vasapollo, « Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine

R. , D. Sole, A. Scardino, and M. R. Lazzoi, Vasapollo, « Molecularly imprinted polymer for solid phase extraction of nicotinamide in pork liver samples, Journal of Applied Polymer Science, vol.120, issue.3, pp.1634-1641, 2011.

M. Javanbakht and M. H. Namjumanesh, Molecularly imprinted solid-phase extraction for the selective determination of bromhexine in human serum and urine with high performance liquid chromatography, Talanta, vol.80, issue.1, pp.133-138
DOI : 10.1016/j.talanta.2009.06.033

P. Qi, J. Wang, J. Jin, F. Su, and E. J. Hen, 2,4-Dimethylphenol imprinted polymers as a solid-phase extraction sorbent for class-selective extraction of phenolic compounds from environmental water, Talanta, vol.81, issue.4-5, pp.4-5
DOI : 10.1016/j.talanta.2010.03.015

F. G. Tamayo, J. L. Casillas, and E. A. Martin-esteban, Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples, Analytica Chimica Acta, vol.482, issue.2, pp.165-173, 2003.
DOI : 10.1016/S0003-2670(03)00213-7

E. Caro, R. M. Marcé, P. A. Cormack, D. C. Sherrington, and E. F. Borrull, Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water, Journal of Chromatography A, vol.1047, issue.2, pp.175-180, 2004.
DOI : 10.1016/S0021-9673(04)01138-0

A. Molinelli, R. Weiss, and E. B. Mizaikoff, Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, Journal of Agricultural and Food Chemistry, vol.50, issue.7, pp.1804-1808
DOI : 10.1021/jf011213q

K. Farrington, E. Magner, and E. F. Regan, Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction, Analytica Chimica Acta, vol.566, issue.1, pp.60-68
DOI : 10.1016/j.aca.2006.02.057

B. Sellergren, Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer, Analytical Chemistry, vol.66, issue.9, pp.1578-1582, 1994.
DOI : 10.1021/ac00081a036

W. Li and S. Li, Molecular Imprinting: A??Versatile Tool for Separation, Sensors and Catalysis, Oligomers -Polymer Composites -Molecular Imprinting, pp.191-210, 2007.
DOI : 10.1007/12_2006_105

G. Wulff, Enzyme-like Catalysis by Molecularly Imprinted Polymers, Chemical Reviews, vol.102, issue.1, pp.1-27, 2002.
DOI : 10.1021/cr980039a

K. M. Shokat, C. J. Leumann, R. Sugasawara, and P. G. Schultz, A new strategy for the generation of catalytic antibodies, Nature, vol.338, issue.6212, pp.6212-269, 1989.
DOI : 10.1038/338269a0

O. Ramström and K. Mosbach, Synthesis and catalysis by molecularly imprinted materials, Current Opinion in Chemical Biology, vol.3, issue.6, pp.759-764, 1999.
DOI : 10.1016/S1367-5931(99)00037-X

A. Leonhardt and K. Mosbach, « Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions », Reactive Polymers, 1987.
DOI : 10.1016/0167-6989(87)90099-7

M. Javanbakht, S. E. Fard, A. Mohammadi, M. Abdouss, M. R. Ganjali et al., Molecularly imprinted polymer based potentiometric sensor for the determination of hydroxyzine in tablets and biological fluids, Analytica Chimica Acta, vol.612, issue.1, pp.65-74, 2008.
DOI : 10.1016/j.aca.2008.01.085

S. A. Piletsky, N. W. Turner, and E. P. Laitenberger, Molecularly imprinted polymers in clinical diagnostics???Future potential and existing problems, Medical Engineering & Physics, vol.28, issue.10, pp.971-977, 2006.
DOI : 10.1016/j.medengphy.2006.05.004

S. Lépinay, K. Kham, and M. Millot, Carbonnier, « In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on, Chem. Pap, vol.66, issue.5, pp.340-351, 2010.

O. Y. Henry, S. A. Piletsky, and D. C. Cullen, Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation, Biosensors and Bioelectronics, vol.23, issue.12, pp.12-1769, 2008.
DOI : 10.1016/j.bios.2008.02.010

E. Yildirim, E. Turan, and E. T. Caykara, Construction of myoglobin imprinted polymer films by grafting from silicon surface, J. Mater. Chem., vol.50, issue.2, pp.636-642, 2011.
DOI : 10.1039/C1JM12470F

R. Pernites, R. Ponnapati, and M. J. Felipe, Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers, Biosensors and Bioelectronics, vol.26, issue.5, pp.2766-2771
DOI : 10.1016/j.bios.2010.10.027

C. Weng, W. Yeh, K. Ho, and G. Lee, A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine, Sensors and Actuators B: Chemical, vol.121, issue.2, pp.576-582, 2007.
DOI : 10.1016/j.snb.2006.04.111

M. Syu, T. Chiu, C. Lai, and Y. Chang, Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film, Biosensors and Bioelectronics, vol.22, issue.4, pp.550-557, 2006.
DOI : 10.1016/j.bios.2006.07.035

K. Prasad, K. P. Prathish, J. M. Gladis, G. R. Naidu, and T. P. Rao, Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine, Sensors and Actuators B: Chemical, vol.123, issue.1, pp.65-70, 2007.
DOI : 10.1016/j.snb.2006.07.022

T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva et al., Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection, Analytica Chimica Acta, vol.392, issue.2-3, pp.105-111, 1999.
DOI : 10.1016/S0003-2670(99)00225-1

S. A. Piletsky, E. V. Piletskaya, K. Yano, A. Kugimiya, A. V. Elgersma et al., A Biomimetic Receptor System for Sialic Acid Based on Molecular Imprinting, Analytical Letters, vol.6, issue.2, pp.157-170, 1996.
DOI : 10.1016/0032-3861(90)90090-L

E. P. Lai, A. Fafara, V. A. Vandernoot, M. Kono, and E. B. Polsky, Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine, Canadian Journal of Chemistry, vol.76, issue.3, pp.265-273, 1998.
DOI : 10.1139/v98-007

B. K. Lavine, D. J. Westover, N. Kaval, N. Mirjankar, L. Oxenford et al., Swellable molecularly imprinted polyN-(N-propyl)acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy, Talanta, vol.72, issue.3, pp.1042-1048, 2007.
DOI : 10.1016/j.talanta.2006.12.046

Z. Yang and C. Zhang, Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution, Sensors and Actuators B: Chemical, vol.142, issue.1, pp.210-215, 2009.
DOI : 10.1016/j.snb.2009.08.029

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and E. P. Yong, Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator, Sensors and Actuators B: Chemical, vol.125, issue.2, pp.422-427, 2007.
DOI : 10.1016/j.snb.2007.02.037

B. Jakoby, G. M. Ismail, M. P. Byfield, and M. J. Vellekoop, A novel molecularly imprinted thin film applied to a Love wave gas sensor, Sensors and Actuators A: Physical, vol.76, issue.1-3, pp.93-97, 1999.
DOI : 10.1016/S0924-4247(98)00357-4

R. H. Schmidt, K. Mosbach, E. K. Haupt, and «. A. , A Simple Method for Spin-Coating Molecularly Imprinted Polymer Films of Controlled Thickness and Porosity, Advanced Materials, vol.218, issue.8, pp.719-722, 2004.
DOI : 10.1002/adma.200306374

URL : https://hal.archives-ouvertes.fr/hal-00080325

Y. Fuchs, O. Soppera, and E. K. Haupt, Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications???A review, Analytica Chimica Acta, vol.717, pp.7-20, 2012.
DOI : 10.1016/j.aca.2011.12.026

URL : https://hal.archives-ouvertes.fr/hal-00782724

O. Soppera, S. Jradi, and D. J. Lougnot, Photopolymerization with microscale resolution: Influence of the physico-chemical and photonic parameters, Journal of Polymer Science Part A: Polymer Chemistry, vol.18, issue.11, pp.3783-3794
DOI : 10.1002/pola.22727

URL : https://hal.archives-ouvertes.fr/hal-00323567

S. Stanley, C. J. Percival, T. Morel, A. Braithwaite, M. I. Newton et al., Enantioselective detection of l-serine, Sensors and Actuators B: Chemical, vol.89, issue.1-2, pp.103-106, 2003.
DOI : 10.1016/S0925-4005(02)00449-5

M. Kobaisi, « Rapid on-site monitoring of pesticide residues with MIP sensors, Thèse de doctorat, 2007.

F. Razan, Etude de microcapteurs à ondes acoustiques dédiés à la détection fine de produits chimiques à l'échelle laboratoire et industrielle. Application à la détection de monomères résiduels et à la mesure de cinétique en réacteurs, 2005.

J. J. Belbruno, A. Richter, and U. J. Gibson, Amazing Pores: Processing, Morphology and Functional States of Molecularly Imprinted Polymers as Sensor Materials, Molecular Crystals and Liquid Crystals, vol.76, issue.1, pp.179-190, 2008.
DOI : 10.1016/j.talanta.2006.02.038

B. A. Auld, Acoustic fields and waves in solids, 1990.

F. S. Macintyre and D. C. Sherrington, Control of Porous Morphology in Suspension Polymerized Poly(divinylbenzene) Resins Using Oligomeric Porogens, Macromolecules, vol.37, issue.20, pp.20-7628
DOI : 10.1021/ma0491053

M. Hamid, R. Naheed, M. Fuzail, and E. E. Rehman, The effect of different diluents on the formation of N-vinylcarbazole-divinylbenzene copolymer beads, European Polymer Journal, vol.35, issue.10, pp.1799-1811, 1999.
DOI : 10.1016/S0014-3057(98)00267-5

R. Drake, R. Dunn, D. C. Sherrington, and S. J. Et-thomson, Optimisation of Polystyrene Resin-supported Pt Catalysts in Room Temperature, Solvent-less, Oct-l-ene Hydrosilylation using Methyldichlorosilane, Combinatorial Chemistry & High Throughput Screening, vol.5, issue.3, pp.201-209
DOI : 10.2174/1386207024607293

J. Park, C. Han, J. Lee, S. Kim, J. Kim et al., Synthesis of extraction resin containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and its performance for separation of rare earths (Gd, Tb), Separation and Purification Technology, vol.43, issue.2, pp.111-116, 2005.
DOI : 10.1016/j.seppur.2004.10.007

H. Hentze and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications, Reviews in Molecular Biotechnology, vol.90, issue.1, pp.27-53, 2002.
DOI : 10.1016/S1389-0352(01)00046-0

P. D. Verweij and D. C. Sherrington, High-surface-area resins derived from 2,3-epoxypropyl methacrylate cross-linked with trimethylolpropane trimethacrylate, Journal of Materials Chemistry, vol.1, issue.3, pp.371-374, 1991.
DOI : 10.1039/jm9910100371

J. Courtois, M. Szumski, and F. Georgsson, Assessing the Macroporous Structure of Monolithic Columns by Transmission Electron Microscopy, Analytical Chemistry, vol.79, issue.1, pp.335-344, 2007.
DOI : 10.1021/ac0614902

M. M. Conn, G. Deslongchamps, J. De-mendoza, and E. J. Rebek, Convergent functional groups. 13. High-affinity complexation of adenosine derivatives within induced binding pockets, Journal of the American Chemical Society, vol.115, issue.9, pp.3548-3557, 1993.
DOI : 10.1021/ja00062a020

S. C. Zimmerman and Z. Zeng, Improved binding of adenine by a synthetic receptor, The Journal of Organic Chemistry, vol.55, issue.16, pp.4789-4791, 1990.
DOI : 10.1021/jo00303a006

J. C. Adrian and C. S. Wilcox, « Orderly functional group dyads. Recognition of biotin and adenine derivatives by a new synthetic host, Journal of the American Chemical Society, vol.111, pp.20-8055, 1989.

L. Blanc, « Développement et modélisation de plateformes à ondes acoustiques de surface guidées : caractérisation des propriétés mécaniques de films minces mésoporeux. », thèse de doctorat, 2011.

G. Tortissier, « Étude et développement d'une plateforme de détection chimique à ondes acoustiques de surface pour environnement sévère haute température, 2009.

Y. Tominaga, T. Kubo, K. Yasuda, K. Kato, and E. K. Hosoya, Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds, Microporous and Mesoporous Materials, pp.161-165
DOI : 10.1016/j.micromeso.2012.02.020

K. Min, H. Jo, K. Song, M. Cho, Y. Chun et al., Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (???) prostate cancers, Biomaterials, vol.32, issue.8, pp.2124-2132, 2011.
DOI : 10.1016/j.biomaterials.2010.11.035

Y. Choi, J. Kwak, and J. W. Park, Nanotechnology for Early Cancer Detection, Sensors, vol.10, issue.1, pp.428-455, 2010.
DOI : 10.3390/s100100428

M. Solomon and G. G. Souza, Recent progress in the therapeutic applications of nanotechnology, Current Opinion in Pediatrics, vol.23, issue.2, pp.215-220, 2011.
DOI : 10.1097/MOP.0b013e32834456a5

S. Mousa and . Biosensors, the new wave in cancer diagnosis, Nanotechnology, Science and Applications, issue.1, 2010.

?. N. Omar-aouled, N. Lebal, R. Delepée, L. Agrofoglio, C. Dejous et al., Study of Gaseous Compounds Adsorption with a Love Wave Sensor Based on Molecularly Imprinted Polymeric Thin Film, Sensors & Transducers, vol.149, issue.2, pp.37-42, 2013.

?. N. Communications-dans-des-conférences, N. Omar-aouled, R. Lebal, L. Delepée, C. Agrofoglio et al., Study of Gaseous Compounds Adsorption with a Love Wave Sensor Based on Molecularly Imprinted Polymeric Thin Film, 8èmes Journées Maghreb-Europe, Matériaux et Applications aux Dispositifs et Capteurs Sousse (Tunisie), 2012.

?. N. Omar-aouled, H. Hallil, B. Plano, R. Delepée, L. Agrofoglio et al., Love wave Based Thin Film Molecularly Imprinted Polymer : MIP layer Morphology and Nucléosides Analogs Detection, IEEE SENSORS, pp.4-6, 2013.

?. H. Hallil, N. Omar-aouled, B. Plano, R. Delepée, L. Agrofoglio et al., SH-SAW sensing system based on thin film molecularly imprinted polymer: Study of Volatile organic compounds adsorption, 28th Symposium on Microelectronics Technology and Devices (SBMicro 2013), pp.2-6, 2013.
DOI : 10.1109/SBMicro.2013.6676129

URL : https://hal.archives-ouvertes.fr/hal-00938255

?. I. Gammoudi, F. Moroté, N. Omar-aouled, H. B. Ouada, T. Cohen-bouhacina et al., Love wave sensor and AFM for the characterization of polyelectrolyte multilayer, 7èmes Journées Maghreb-Europe, Les Matériaux et leurs Applications aux Dispositifs et Capteurs Tabarka (Tunisie), pp.20-22, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00584271

?. I. Gammoudi, F. Moroté, N. Omar-aouled, H. B. Ouada, T. Cohen-bouhacina et al., Caractérisation d'un capteur à base de Bactérie pour la détection de métaux lourds par des mesures acoustiques et AFM, Forum, 2011.

?. I. Gammoudi, F. Moroté, N. Omar-aouled, H. B. Ouada, A. Othmane et al., Etude par des mesures acoustiques et par AFM à l'air et en milieu liquide d'un capteur à base de bactérie pour la détection de métaux lourds, SFP2011), pp.4-7, 2011.