A. Weston and . Anderson, Electrical current shims for correcting magnetic fields, Review of Scientific Instruments, vol.32, issue.3, p.241, 1961.

H. Jan, B. Ardenkjaer-larsen, A. Fridlund, G. Gram, L. Hansson et al., Increase in signal-to-noise ratio of> 10,000 times in liquid-state NMR, Proceedings of the National Academy of Sciences, pp.10158-10163, 2003.

M. Baibich, . Broto, . Fert, and . Van-dau, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Physical Review Letters, vol.61, issue.21, pp.612472-2475, 1988.
DOI : 10.1103/PhysRevLett.61.2472

N. Bloembergen, E. M. Purcell, and R. V. Pound, Relaxation Effects in Nuclear Magnetic Resonance Absorption, Physical Review, vol.73, issue.7, p.679, 1948.
DOI : 10.1103/PhysRev.73.679

D. Budker and M. Romalis, Optical magnetometry, Nature Physics, vol.185, issue.4, pp.227-234, 2007.
DOI : 10.1063/1.126327

URL : https://hal.archives-ouvertes.fr/hal-00975236

S. Busch, M. Hatridge, M. Mößle, W. Myers, T. Wong et al., Measurements of T1-relaxation in ex vivo prostate tissue at 132 ??T, Magnetic Resonance in Medicine, vol.53, issue.4, pp.1138-1145, 2012.
DOI : 10.1002/mrm.24177

W. H. Campbell, Introduction to geomagnetic fields, 2003.

R. Cantor, L. P. Lee, M. Teepe, V. Vinetskiy, and J. Longo, Low-noise, single-layer YBa/sub 2/Cu/sub 3/O/sub 7-x/ DC SQUID magnetometers at 77 K, IEEE Transactions on Appiled Superconductivity, vol.5, issue.2, pp.2927-2930, 1995.
DOI : 10.1109/77.403205

J. Clarke, M. Hatridge, and M. Mößle, SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.389-413, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.152010

R. Coehoorn, Giant magnetoresistance and magnetic interactions in exchange-biased spin-valves. Handbook of magnetic materials, 1999.

C. H. Cunningham, J. M. Pauly, and K. S. Nayak, Saturated double-angle method for rapidB1+ mapping, Magnetic Resonance in Medicine, vol.51, issue.6, pp.1326-1333, 2006.
DOI : 10.1002/mrm.20896

R. Damadian, L. Goldsmith, and . Minkoff, NMR in cancer: XVI. FONAR image of the live human body, Physiological chemistry and physics, vol.9, issue.108, pp.97-100, 1977.

H. Dyvorne, Superconducting-Giant MagnetoResistive Mixed Sensors for Nuclear Magnetic Resonance, p.33

R. R. Ernst, Application of Fourier Transform Spectroscopy to Magnetic Resonance, Review of Scientific Instruments, vol.37, issue.1, p.93, 1966.
DOI : 10.1063/1.1719961

M. Espy, S. Baguisa, D. Dunkerley, P. Magnelind, A. Matlashov et al., Progress on Detection of Liquid Explosives Using Ultra-Low Field MRI, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.530-533, 2011.
DOI : 10.1109/TASC.2011.2105235

C. Fermon, M. Pannetier-lecoeur, N. Biziere, and B. Cousin, Optimised GMR sensors for low and high frequencies applications . Sensors and Actuators A: Physical, pp.203-206, 2006.

S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol.41, issue.11, p.2251, 1996.
DOI : 10.1088/0031-9155/41/11/002

A. Guedes, . Jm-almeida, . Cardoso, P. Ferreira, and . Freitas, Improving Magnetic Field Detection Limits of Spin Valve Sensors Using Magnetic Flux Guide Concentrators, IEEE Transactions on Magnetics, vol.43, issue.6, pp.2376-2378, 2007.
DOI : 10.1109/TMAG.2007.893119

A. Haase, . Frahm, . Matthaei, K. Hanicke, and . Merboldt, FLASH imaging. rapid NMR imaging using low flip-angle pulses, Journal of Magnetic Resonance, vol.67, issue.134, pp.258-266, 1969.

G. Helms, H. Dathe, and P. Dechent, Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation, Magnetic Resonance in Medicine, vol.52, issue.3, pp.667-672, 2008.
DOI : 10.1002/mrm.21542

F. N. Hooge, 1/?? noise is no surface effect, Physics Letters A, vol.29, issue.3, pp.139-140, 1969.
DOI : 10.1016/0375-9601(69)90076-0

L. Thomas and . James, Fundamentals of NMR. Department of Pharmaceutical Chemistry University of California, 1998.

J. Jaycox and M. Ketchen, Planar coupling scheme for ultra low noise DC SQUIDs, IEEE Transactions on Magnetics, vol.17, issue.1, pp.400-403, 1981.
DOI : 10.1109/TMAG.1981.1060902

S. Jeon, G. Jang, H. Choi, and S. Park, Magnetic Navigation System With Gradient and Uniform Saddle Coils for the Wireless Manipulation of Micro-Robots in Human Blood Vessels, IEEE Transactions on Magnetics, vol.46, issue.6, pp.1943-1946, 2010.
DOI : 10.1109/TMAG.2010.2040144

R. Klucznik, D. Carrier, R. Pyka, and . Haid, Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome., Radiology, vol.187, issue.3, pp.855-856, 1993.
DOI : 10.1148/radiology.187.3.8497645

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, A subfemtotesla multichannel atomic magnetometer, Nature, vol.249, issue.6932, pp.596-599, 2003.
DOI : 10.1103/PhysRevA.16.1877

S. Lee, K. L. Sauer, S. J. Seltzer, O. Alem, and M. V. Romalis, Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance, Applied Physics Letters, vol.89, issue.21, p.214106, 2006.
DOI : 10.1063/1.2390643

L. Terri, L. Lindholm, E. Botes, A. Engman, T. Frank et al., Leif Svensson, and Per Julin. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?, BMC Medical Imaging, vol.9, issue.1, p.15, 2009.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed Sensing MRI, IEEE Signal Processing Magazine, vol.25, issue.2, pp.72-82, 2008.
DOI : 10.1109/MSP.2007.914728

M. Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, vol.170, issue.6, pp.1182-1195, 2007.
DOI : 10.1002/mrm.21391

V. I. Madai, F. C. Von-samson-himmelstjerna, M. Bauer, K. L. Stengl, M. A. Mutke et al., Ultrahigh-Field MRI in Human Ischemic Stroke ??? a 7 Tesla Study, PLoS ONE, vol.23, issue.5, p.37631, 2012.
DOI : 10.1371/journal.pone.0037631.t002

P. Mansfield, Multi-planar image formation using NMR spin echoes, Journal of Physics C: Solid State Physics, vol.10, issue.3, p.55, 1977.
DOI : 10.1088/0022-3719/10/3/004

S. Sunderarajan, M. Mohan, S. P. Del-mar-hershenson, T. H. Boyd, and . Lee, Simple accurate expressions for planar spiral inductances. Solid-State Circuits, IEEE Journal, vol.34, issue.10, pp.1419-1424, 1999.

M. Mößle, S. Han, R. Whittier, . Myers, N. Seung-kyun-lee et al., SQUID-detected microtesla MRI in the presence of metal, Journal of Magnetic Resonance, vol.179, issue.1, pp.146-151, 2006.
DOI : 10.1016/j.jmr.2005.11.005

M. Moszligle, W. R. Myers, S. Lee, N. Kelso, M. Hatridge et al., SQUID-Detected in vivo MRI at Microtesla Magnetic Fields, IEEE Transactions on Appiled Superconductivity, vol.15, issue.2, pp.757-760, 2005.
DOI : 10.1109/TASC.2005.850043

P. John, T. A. Mugler, and . Altes, Hyperpolarized 129 xe MRI of the human lung, Journal of Magnetic Resonance Imaging, vol.37, issue.2, pp.313-331, 2013.

W. Myers, D. Slichter, M. Hatridge, S. Busch, M. Mößle et al., Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10??T to 1.5T, Journal of Magnetic Resonance, vol.186, issue.2, pp.182-192, 2007.
DOI : 10.1016/j.jmr.2007.02.007

A. Overhauser, Polarization of Nuclei in Metals, Physical Review, vol.92, issue.2, pp.411-415, 1953.
DOI : 10.1103/PhysRev.92.411

M. Pannetier, Femtotesla Magnetic Field Measurement with Magnetoresistive Sensors, Science, vol.304, issue.5677, pp.1648-1650, 2004.
DOI : 10.1126/science.1096841

M. Pannetier, C. Fermon, and L. Goff, Noise in small magnetic systems -Applications to very sensitive magnetoresistive sensors . . . . and magnetic materials, pp.8-10, 2005.

P. Paolantonio, R. Ferrari, F. Vecchietti, S. Cucchiara, and A. Laghi, Current status of MR imaging in the evaluation of IBD in a pediatric population of patients, European Journal of Radiology, vol.69, issue.3, pp.418-424, 2009.
DOI : 10.1016/j.ejrad.2008.11.023

G. A. Rinard, R. W. Quine, G. R. Eaton, S. S. Eaton, E. D. Barth et al., Magnet and gradient coil system for low-field EPR imaging, Concepts in Magnetic Resonance, pp.51-58, 2002.
DOI : 10.1002/cmr.10018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Romeo and D. I. Hoult, Magnet field profiling: Analysis and correcting coil design, Magnetic Resonance in Medicine, vol.25, issue.1, pp.44-65, 1984.
DOI : 10.1002/mrm.1910010107

I. Savukov and T. Karaulanov, Anatomical MRI with an atomic magnetometer, Journal of Magnetic Resonance, vol.231, pp.39-45, 2013.
DOI : 10.1016/j.jmr.2013.02.020

URL : http://arxiv.org/abs/1212.5223

I. M. Savukov, V. S. Zotev, P. L. Volegov, M. A. Espy, A. N. Matlashov et al., MRI with an atomic magnetometer suitable for practical imaging applications, Journal of Magnetic Resonance, vol.199, issue.2, pp.188-191, 2009.
DOI : 10.1016/j.jmr.2009.04.012

H. C. Seton, J. M. Hutchison, and D. M. Bussell, Gradiometer pick-up coil design for a low field SQUID-MRI system, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, vol.15, issue.2, pp.116-120, 1999.
DOI : 10.1007/BF02590528

B. H. Suits and D. E. Wilken, Improving magnetic field gradient coils for NMR imaging, Journal of Physics E: Scientific Instruments, vol.22, issue.8, p.565, 1989.
DOI : 10.1088/0022-3735/22/8/007

E. Unger, M. Cohen, and T. Brown, Gradient-echo imaging of hemorrhage at 1.5 Tesla, Magnetic Resonance Imaging, vol.7, issue.2, pp.163-172, 1989.
DOI : 10.1016/0730-725X(89)90700-5

P. Vedrine, G. Aubert, F. Beaudet, J. Belorgey, J. Beltramelli et al., The Whole Body 11.7 T MRI Magnet for Iseult/INUMAC Project, IEEE Transactions on Applied Superconductivity, vol.18, issue.2, pp.868-873, 2008.
DOI : 10.1109/TASC.2008.920786

S. Bouchard, D. Antonijevic, A. Budker, and . Pines, Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor, Proceedings of the National Academy of Sciences, pp.2271-2273, 2008.

M. Zierhofer, Geometric Approach for Coupling Enhance of Magnetically Coupled Coils, pp.708-714, 1996.

V. S. Zotev, A. N. Matlashov, I. M. Savukov, T. Owens, P. L. Volegov et al., SQUID-Based Microtesla MRI for In Vivo Relaxometry of the Human Brain, IEEE Transactions on Applied Superconductivity, vol.19, issue.3, pp.823-826, 2009.
DOI : 10.1109/TASC.2009.2018764