Skip to Main content Skip to Navigation
Theses

Etude de solutions OFDM en technologie "Photonique Silicium" pour les futures générations de réseaux optiques passifs

Abstract : In the context of Passive Optical Networks (PON), operators are looking for innovative solutions to increase aggregated data-rate, split-ratio and reach. Another requirement is that transceivers should be as low-cost as possible. The optical Orthogonal Frequency Division Multiplexing (OFDM) technique can improve performance of the transmission in terms of data-rate and reach as compared to classical single-carrier On-Off Keying (OOK) modulation. At the same time, the silicon photonics technology can lower the cost per unit of the transceiver, due to its mass production and E/O integration capabilities. Optical OFDM has already shown its potential using commercially available optical components. However, its use with silicon photonics Directly-Modulated Lasers (DML) and modulators is more challenging. The objective of this work is to study the performance of OFDM -based solutions for future PON, using silicon photonics transmitters. For that purpose, a dedicated simulation platform is developed. The OFDM modem is implemented, as well as models of silicon photonic devices built during this thesis. These models are validated by characterizing physical components available for test. In parallel, an experimental test-bed is developed. The silicon photonics transmitters are benchmarked with commercial-available transmitters for OFDM-based optical systems. For Intensity-Modulated/Directly-Detected (IM/DD) links, the use of optical OFDM with adaptive bit and power loading is proposed to maximize spectral efficiency. Two types of silicon photonics transmitters are considered: directly modulated III/V-on-silicon lasers (experiment) and external optical modulators such as Mach-Zehnder Modulator (MZM) (simulation) and ring-resonator (simulation and experiment). Experimental results show that the hybrid DML can provide more than 10Gbps aggregated data-rate over at least 50km, which is a requirement for future uplink PON (from the subscriber to the central office). For the silicon ring modulator, because of the high coupling loss in and out of the photonic chip, reach was limited to 20km for a data-rate higher than 10Gbps. These are the first experimental demonstrations of OFDM modulation with hybrid III/V-on-silicon lasers and silicon ring-resonator modulator. Besides, simulation results show that reach can be indeed improved up to 100km if the optical signal is amplified or the coupling loss reduced. A modulation technique called Single-Side Band (SSB)-OFDM is known to improve the [bandwidth x reach] product of the link, as compared to IM/DD (Dual-Side Band (DSB)) systems. However, it requires expensive transmitters with several discrete optical components. As silicon photonics technology allows a very high level of integration between different optical components and between electrical and optical devices, a silicon optical IQ modulator enabling ac{SSB}-ac{OFDM} technique is investigated. Simulation results of a study-case reveal that a relatively low optical budget penalty (up to 3dB) of the silicon photonics transmitters as compared to the LiNbO3 modulator is achieved. The solutions presented in this thesis are demonstrated to be compliant with future PON in terms of data-rate, with relatively low bandwidth (<6.25GHz) electronics. This is a great asset for the considered application. The driving voltages required for typical IM/DD systems showed to be closer to what CMOS driving circuitry can provide (about 2Vpp). Recent developments on high-speed digital signal processors and D/A-A/D converters, using CMOS technologies, make optical-OFDM an attractive solution for future PONs as full-Silicon-transmitters could be used.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01061786
Contributor : Abes Star :  Contact
Submitted on : Monday, September 8, 2014 - 2:46:15 PM
Last modification on : Thursday, June 11, 2020 - 5:04:06 PM
Long-term archiving on: : Tuesday, December 9, 2014 - 12:07:22 PM

File

37463_BENINCA_these_2014.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01061786, version 1

Collections

STAR | CEA | DRT | LETI | CEA-GRE

Citation

Giovanni Beninca de Farias. Etude de solutions OFDM en technologie "Photonique Silicium" pour les futures générations de réseaux optiques passifs. Autre. Université de Grenoble, 2013. Français. ⟨NNT : 2013GRENT083⟩. ⟨tel-01061786⟩

Share

Metrics

Record views

910

Files downloads

1282