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Résumé

Résumé

Dans cette thèse, nous étudions l’existence, non existence et multiplicité des ondes sta-
tionnaires avec les normes prescrites pour deux types d’équations aux dérivées partielles
non linéaires elliptiques découlant de différents modèles physiques. La stabilité orbitale des
ondes stationnaires est également étudiée dans certains cas. Les principales méthodes de
nos preuves sont des arguments variationnels. Les solutions sont obtenues comme points
critiques de fonctionnelle associée sur une contrainte.

La thèse se compose de sept chapitres. Le Chapitre 1 est l’introduction de la thèse. Dans
les Chapitres 2 à 4, nous étudions une classe d’équations de Schrödinger-Poisson-Slater
non linéaires. Nous établissons dans le Chapitre 2 des résultats optimaux non existence
de solutions d’énergie minimale ayant une norme L2 prescrite. Dans le Chapitre 3, nous
montrons un résultat d’existence de solutions L2 normalisées, dans une cas où la fonc-
tionnelle associée n’est pas bornée inférieurement sur la contrainte. Nos solutions sont
trouvées comme des points de selle de la fonctionnelle, mais ils correspondent à des solu-
tions d’énergée minimale. Nous montrons également que les ondes stationnaires associées
sont orbitalement instables. Ici, puisque nos points critiques présumés ne sont pas des
minimiseurs globaux, il n’est pas possible d’utiliser de façon systématique les méthodes
de compacité par concentration développées par P. L. Lions. Ensuite, dans le Chapitre
4, nous montrons que sous les hypothèses du Chapitre 3, il existe une infinité de solu-
tions ayant une norme L2 prescrite. Dans les deux chapitres suivants, nous étudions une
classe d’équations de Schrödinger quasi-linéaires. Des résultats optimaux non existence de
solutions d’énergie minimale sont donnés dans le Chapitre 5. Dans le Chapitre 6, nous
prouvons l’existence de deux solutions positives ayant une norme donnée. L’une d’elles,
relativement à la contrainte L2, est de type point selle. L’autre est un minimum, soit local
ou global. Le fait que la fonctionnelle naturelle associée à cette équation n’est pas bien
définie nécessite l’utilisation d’une méthode de perturbation pour obtenir ces deux points
critiques. Enfin, au Chapitre 7, nous mentionnons quelques questions que cette thèse a
soulevées.

Mots-clefs

ondes stationnaires, norme L2 prescrite, non existence optimale, minimiseurs globaux ou
locaux, multiplicité des solutions normalisées, forte instabilité par explosion, méthodes
variationnelles, arguments de perturbation, équations de Schrödinger-Poisson-Slater, équa-
tions de Schrödinger quasi-linéaires.
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Existence, non-existence and multiplicity of normalized
standing waves for some nonlinear elliptic equations

Abstract

In this thesis, we study the existence, non-existence and multiplicity of standing waves with
prescribed norms for two types of nonlinear elliptic partial differential equations arising
from various physical models. The orbital stability of the standing waves is also discussed
in some cases. The main ingredients of our proofs are variational arguments. The solutions
are found as critical points of an associated functional on a constraint.

The thesis consists of seven chapters. Chapter 1 is the Introduction of the thesis.
In Chapters 2 to 4, we study a class of nonlinear Schrödinger-Poisson-Slater equations.
We establish in Chapter 2 sharp non-existence results of least energy solutions having a
prescribed L2-norm. In Chapter 3 we prove an existence result for L2-normalized solutions,
in a situation where the associated functional is unbounded from below on the constraint.
Our solutions are found as saddle points of the functional but they correspond to least
energy solutions. We also prove that the associated standing waves are orbitally unstable.
Here a key feature is that, since our suspected critical points are not global minimizers, it
is not possible to use in a standard way the machinery of compactness by concentration
developed by P. L. Lions. Then, in Chapter 4, we prove that under the assumptions of
Chapter 3, there do exist infinitely many solutions having a prescribed L2-norm. In the
following two chapters, we investigate a class of quasi-linear Schrödinger equations. Sharp
non-existence results of least energy solutions are given in Chapter 5. In Chapter 6 we
prove the existence of two positive solutions having a given norm. One of them, is relative
to the L2-norm constraint, of saddle point type. The other one is a minimum, either local
or global. The fact that the natural functional associated with this equation is not well
defined requires the use of a perturbation approach to obtain these two critical points.
Finally, in Chapter 7 we mention some questions that this thesis has raised.

Keywords

standing waves, prescribed L2-norm, sharp non-existence, global or local minimizers, mul-
tiplicity of normalized solutions, strong instability by blow up, variational methods, per-
turbation arguments, Schrödinger-Poisson-Slater equations, quasi-linear Schrödinger equa-
tions.
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Notations

We list below the notations and definitions that we use throughout the thesis.

(1) C,R,Z,N denote respectively the set of complex numbers, real numbers, integers
and positive integers.

(2) i denotes the imaginary unit.

(3) Let Re z, Im z denote respectively the real and imaginary parts of a complex number
z ∈ C.

(4) R
N denotes the N-dimensional real Euclidean space, R = R

1, and a typical point in
R

N is x = (x1, x2, ..., xN ).

(5) R
+ := {x ∈ R | x > 0} and R

− := {x ∈ R | x < 0}.

(6) Denote u+(x)(u−) the positive (negative) part of the function u(x), namely u+ =
max{u, 0}, u− = max{−u, 0}. In particular, u = u+ − u− and |u| = u+ + u−.

(7) B(x, r) denotes a closed ball with center x, radius r > 0.

(8) The sign function is defined as

sgn(x) :=





1 if x > 0,
0 if x = 0,

−1 if x < 0.

(9) χE(x) :=

{
1, if x ∈ E,
0, if x /∈ E.

, denotes the characteristic function of the set E.

(10) The convolution of the functions f, g is denoted by

f ∗ g.

(11) ∇u denotes the gradient of a differentiable function u, namely ∇u = (∂x1u, ..., ∂xN
u).

When N = 1, we replace ∇ by d/dx.

(12) ∆ denotes the Laplacian operator, ∆ := ΣN
i=1∂

2/∂2
xi

.

(13) Let Ω be a bounded domain in R
N . Then ∂Ω denotes the boundary of Ω, and

Ω̄ := Ω ∪ ∂Ω denotes the closure of Ω.

(14) supp u denotes the support of a function u defined in R
N , that is

supp u = {x ∈ RN | u(x) 6= 0}.
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(15) u∗ denotes the Schwartz symmetrization of a function u.

(16) For any 1 ≤ q < +∞, we write Lq(RN ) as the usual Lebesgue space endowed with
the norm

‖u‖q
q :=

∫

RN
|u|qdx,

and W 1,q(RN ) the usual Sobolev space endowed with the norm

‖u‖W 1,q := ‖∇u‖q + ‖u‖q.

In particular, we denote briefly ‖ · ‖ := ‖ · ‖W 1,2 .

(17) W 1,q
r (RN ) denotes the radial symmetric subspace of W 1,q(RN ).

(18) L∞(RN ) denotes the set of almost everywhere bounded functions defined in R
N .

(19) 2∗ denotes the critical exponent of the Sobolev embedding, namely

2∗ =
2N
N − 2

if N ≥ 3 and 2∗ = +∞ if N = 1, 2.

(20) D1,2(RN ) := {u ∈ L2∗

(RN ) : ∇u ∈ L2(RN )}.

(21) X∗ denotes the dual of a Banach space X.

(22) Let U, V,W be three open subsets of RN . We write

V ⊂⊂ U

if V ⊂ V̄ ⊂ U and V̄ is compact, and say V is compactly contained in U .

(23) For any 1 ≤ p < ∞, Lp
loc(R

N ) := {u : RN → R | u ∈ Lp(Ω) for each Ω ⊂⊂ R
N }.

(24) In a metric space (X, ρ) with the metric ρ, we denote by dist{U, V } the distance
between two sets U ⊂ X and V ⊂ X, namely

dist{U, V } := inf
x∈U,y∈V

ρ(x, y).

(25) For convenience, we denote for u ∈ W 1,2(R3) the following quantities

A(u) :=
∫

R3
|∇u|2dx, B(u) :=

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy

C(u) :=
∫

R3
|u|pdx, D(u) :=

∫

R3
|u|2dx.

(26) Throughout the thesis, we denote by C > 0 various positive constants which may
vary from one line to another but not affect the analysis of the problem.
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Chapter 1

Introduction

This thesis is devoted to the study of two types of nonlinear elliptic partial differential
equations, namely a class of nonlinear Schrödinger-Poisson-Slater equations and a class
of quasi-linear Schrödinger equations. These equations originate from various models
in theoretical or applied physics. Due to their sound physical backgrounds as well as the
mathematical challenges that they present, the study of these equations has been extremely
active during the last decade. In this thesis, we are concerned with the existence, non-
existence and multiplicity of standing waves for the two types of equations. In some
cases, we also establish the orbital instability of the standing waves. A common feature
of our results is that we deal with solutions having a prescribed L2-norm. The study of
normalized solutions is important from the point of view of physics. The main ingredients
of our proofs are variational arguments. The solutions are indeed found as critical points
of an associated functional on a constraint.

In addition to this Introduction, the thesis consists of other six chapters. In Chapters
2 to 4, we study a class of nonlinear Schrödinger-Poisson-Slater equations. We establish
in Chapter 2 sharp non-existence results of least energy solutions having a prescribed L2-
norm. In Chapter 3 we prove an existence result for L2-normalized solutions, in a situation
where the associated functional is unbounded from below on the constraint. Our solutions
are found as saddle points of the functional but they correspond to least energy solutions.
We also prove that the associated standing waves are orbitally unstable. Here a key feature
is that, since our suspected critical points are not global minimizers, it is not possible to
use in a standard way the machinery of compactness by concentration developed by P. L.
Lions [83]. Then, in Chapter 4, we prove that under the assumptions of Chapter 3 there
do exist infinitely many normalized solutions. In the following two chapters, we investigate
a class of quasi-linear Schrödinger equations. Sharp non-existence results of least energy
solutions having a prescribed L2-norm, are given in Chapter 5. In Chapter 6 we prove
the existence of two positive solutions having a given norm. One of them, is relative to
the L2-norm constraint, of saddle point type. The other one is a minimum, either local
or global. The fact that the natural functional associated with this equation is not well
defined requires the use of a perturbation approach to obtain these two critical points.
Finally in Chapter 7 we mention some of the questions that this thesis has raised.

All the material of the thesis correspond to some already published works or to some
preprints. In particular Chapters 2 and 5 correspond to the paper [65] in collaboration
with L. Jeanjean. Chapter 3 corresponds to the work [16] with J. Bellazzini (Univ. Sassari
- Italy) and L. Jeanjean. Chapter 4 to [90] and Chapter 6 to a work with L. Jeanjean and
Z.-Q. Wang (Univ. Logan - USA) [66].
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1.1 Schrödinger-Poisson-Slater Equations

Consider the time-dependent Hartree-Fock system in R
3:

i∂tψj + ∆ψj − κ(|x|−1 ∗ ρ)ψj + (Vex • ψj) = 0, j ∈ N, (1.1.1)

where κ ∈ R, ψj = ψj(t, x) : R
+ ×R

3 → C is the jth component of a vector function ψ, ρ is
the local density, given by ρ :=

∑
k∈N θk|ψk|2 with {θk} ⊂ R being a non-negative sequence

satisfying
∑

k∈N θk = 1, and (Vex •ψj) is called by the Fock potential. In particular, when
1 ≤ j ≤ N for N ∈ N, it is given precisely that

(Vex • ψj) :=
N∑

k=1

∫

R3
|x− y|−1ψk(x)ψ̄k(y)ψj(y)dy.

This system has been widely used in the study of systems of many particles in Atomic
Physics and Quantum Mechanics. In (1.1.1), the term κ(|x|−1 ∗ ρ) is called by Hartree
potential, formally similar with the fundamental solution of a Poisson equation (see [21,
102]). The sign of the parameter κ ∈ R depends on the type of interaction between the
particles: κ > 0 in the repulsive case and κ < 0 in the attractive case. However, in this
system, the Fock potential (Vex • ψj), especially when N > 0 is large, is too complex to
allow practical calculations. Thus J. Slater [106] proposed a simple approximation of this
term in the form

(Vex • ψj) ≃ ηρ1/3ψj , 1 ≤ j ≤ N,

where η > 0 is a positive constant. Then the Hartree-Fock system is simplified as

i∂tψj + ∆ψj − κ(|x|−1 ∗ ρ)ψj + ηρ1/3ψj = 0, ∀ 1 ≤ j ≤ N. (1.1.2)

The equations (1.1.2) are known as the Schrödinger-Poisson-Slater system. This system
is an important model used for the study of quantum transport in semiconductor devices
(see [6]).

Particularly, when θ1 = 1 and θk = 0 for k ≥ 2, the system (1.1.2) is reduced to the
single-state-case, which serves as a local single-particle approximation of the Hartree-Fock
system. When θk = 1/K if 1 ≤ k ≤ K for some K ≤ N , and θk = 0 otherwise, (1.1.2) ap-
pears in the case of K coupled equations. Such a model stems from the density functional
theory, having been used in the Molecular Quantum Chemistry. See for instance [73]. In
addition, when θk ∈ l1, (1.1.2) describes the mixed-state-case. In that direction, we refer
to a result established by F. Castella [33], concerning the existence and uniqueness of L2

solution for (1.1.2) as η = 0.

In this thesis, we are concerned with the following single-state-case of the Schrödinger-
Poisson-Slater equations:

i∂tψ + ∆ψ − (|x|−1 ∗ |ψ|2)ψ + |ψ|p−2ψ = 0, in R
+ × R

3, (1.1.3)

where p ∈ (2, 6). Here we have generalized the term |ψ|2/3ψ by the local nonlinear term
|ψ|p−2ψ. As we shall see the results we shall obtain on (1.1.3) will depend strongly on the
value of p ∈ (2, 6). Some particular cases have a direct physical interpretation, for exam-
ple the value p = 10

3 gives rise to the so-called Dirac correction (see e.g. [102]). Observe
that when p < 2 or p > 6 the embedding of H1(R3) into Lp(R3) is lost. That is why we
restrict our analysis to the range p ∈ (2, 6). Note also that in the study of the attractive
case, namely κ < 0 in (1.1.2), one is allowed to introduce symmetric rearrangements that
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contribute to simplify some computations, see e.g. [76, 80]. By contrast, the repulsive case
(1.1.3) is more difficult and thus we shall deal only with it. The modified system (1.1.3),
has also a wide range of applications in other fields, for instance in the Thomas-Fermi the-
ory (see [78, 79]). Such kinds of approximations are usually called Xα-approaches (here
α := p), see e.g. [6, 21, 102]. In view of these, over the past few decades, an extensive body
of studies have contributed to the problem (1.1.3). The pertinent literature is rather wide
and rich. We restrict ourselves to cite [4, 43, 70, 71, 72, 99, 100, 102] and their references
given there. In the cited references, a central issue is the study of standing wave solutions
of (1.1.3).

By standing waves of (1.1.3), we mean solutions of the form

ψ(t, x) = e−iλtu(x),

where λ ∈ R is a parameter. Then the function u(x) satisfies the stationary Schrödinger-
Poisson-Slater equation

−∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0, in R
3. (Eλ)

The equation (Eλ) also was proposed by V. Benci and D. Fortunato [17] as a model to
describe the interaction of a quantum particle with an electromagnetic field.

To find solutions of (Eλ), mainly two approaches have been developed. A first one is
to consider λ ∈ R as a fixed parameter and then to search for a u(x) solving (Eλ). Then
solutions of (Eλ) correspond to critical points of the functional defined in H1(R3),

Fλ(u) :=
1
2

‖∇u‖2
2 − λ

2
‖u‖2

2 +
1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|pdx. (1.1.4)

Along this line, the existence, non-existence and multiplicity of solutions have been exten-
sively studied by many authors. See e.g. [4, 7, 43, 45, 62, 63, 70, 71, 72, 99, 104, 108, 112]
and their references therein.

An alternative approach motivated in particular by the fact that physicists are in-
terested in “normalized solutions” is to search for solutions of (Eλ), having a prescribed
L2-norm. More precisely, for given c > 0, one looks to

(uc, λc) ∈ H1(R3) × R solutions of (Eλ) with ‖uc‖2
2 = c.

In this case, a solution uc ∈ H1(R3) of (Eλ) can be obtained as a constrained critical
point of the functional

F (u) :=
1
2

‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|pdx, (1.1.5)

on the constraint

S(c) :=
{
u ∈ H1(R3) : ‖u‖2

2 = c, c > 0
}
. (1.1.6)

The parameter λc ∈ R, in this situation, can not fixed any more and it appears as a
Lagrange parameter. Note that for any p ∈ (2, 6), the functional F , defined by (1.1.5), is
well defined and C1 on S(c), see e.g. [99].

In Chapters 2 to 4, we investigate the existence, non-existence, multiplicity and dynam-
ics of standing waves of (1.1.3). The standing waves are obtained as constrained critical
points of the functional F on S(c).
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1.1.1 Solutions as global minimizers

To find critical points of F on S(c), we first consider the following minimization problem

m(c) := inf
u∈S(c)

F (u). (1.1.7)

Clearly, minimizers of m(c) are critical points of F restricted to S(c), and then solutions
of (Eλ) for some λ ∈ R. We observe, see Remark 2.1.3, that for any c ∈ (0,∞), p = 10

3
is a threshold value for m(c). Namely m(c) ∈ (−∞, 0] if p ∈ (2, 10

3 ) and m(c) = −∞ if
p ∈ (10

3 , 6). When m(c) > −∞, it is possible to search for solutions of (Eλ) as minimizers
of m(c). Previous results on that problem had been established in [14, 15, 102, 105]. See
also [34, 72] for a closely related problem. We collect these results in the following theorem.

Theorem 1.1.1 ([14, 15, 102, 105]). (1) Let p ∈ (2, 3). Then there exists a c∗
1 > 0, such

that for all c ∈ (0, c∗
1), m(c) < 0 and it admits a minimizer.

(2) Let p ∈ (3, 10
3 ). Then there exists a c∗

2 > 0, such that for all c ∈ (c∗
2,∞), m(c) < 0 and

it admits a minimizer.

We point out that it is still not known if the minimizers of m(c), or at least one of them,
are radially symmetric. In that direction we are only aware of the result of V. Georgiev,
F. Prinari and N. Visciglia [52] which gives a positive answer when p ∈ (2, 3) and for
c > 0 sufficiently small. In this range the critical point is found as a minimizer of F (u) on
S(c). Since there may not exist a minimizer which is radially symmetric, it is not possible
to restrict the variational problem to the subset of radially symmetric functions. Such
restriction would simplify the treatment of the possible loss of compactness by proving a
weakly lower semi-continuous property to F .

The main ingredient in the proofs of the results presented in Theorem 1.1.1 is the use
of the concentration compactness principle of P. L. Lions [83]. The key point is to show
that the minimizing sequences for m(c) are, up to translations, pre-compact. In [83] it has
been proved that a necessary and sufficient condition to this compactness property is the
following strict additivity condition

m(c) < m(ρ) +m(c− ρ), ∀ 0 < ρ < c. (1.1.8)

Now we focus on the case p ∈ [3, 10
3 ]. In Chapter 2, we first establish a non-existence

result of minimizers of m(c). This result is sharp in the sense that we explicit a threshold
value of c > 0 that separates the existence and non-existence of the minimizers. More
generally, we prove in Chapter 2 that constrained critical points of F do not exist when
c > 0 is sufficiently small.

Before presenting precisely the non-existence results, let us indicate some properties
of the function c → m(c) when p ∈ [3, 10

3 ]. The study of this function is interesting for
itself, but also it is a key of our approach to establish the existence or non-existence of
minimizers. Let

c1 := inf{c > 0 : m(c) < 0}. (1.1.9)

Theorem 1.1.2. (I) When p ∈ (3, 10
3 ) we have

(i) c1 ∈ (0,∞);

(ii) m(c) = 0, as c ∈ (0, c1];
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(iii) m(c) < 0 and is strictly decreasing about c, as c ∈ (c1,∞);

(iv) The function c → m(c) is continuous at each c > 0.

(II) When p = 3 or p = 10
3 we have

(v) When p = 3, m(c) = 0 for all c > 0;

(vi) When p = 10
3 , we denote

c2 := inf{c > 0 : ∃ u ∈ S(c) such that F (u) ≤ 0}, (1.1.10)

then c2 ∈ (0,∞) and {
m(c) = 0, as c ∈ (0, c2);
m(c) = −∞, as c ∈ (c2,∞).

(1.1.11)

Our result concerning the existence or non-existence of minimizers of m(c) is

Theorem 1.1.3. (i) When p ∈ (3, 10
3 ), m(c) has a minimizer if and only if c ∈ [c1,∞).

(ii) When p = 3 or p = 10
3 , m(c) has no minimizer for any c > 0.

Theorem 1.1.3 provides a fairly complete answer to the issue of global minimizers for
F on S(c) when p ∈ [3, 10

3 ]. By contrast, when p ∈ (2, 3), as one sees in Theorem 1.1.1, the
situation is much less understood. It is only known that a minimizer exists when c > 0
is sufficiently small. Clearly for any c > 0, m(c) < 0 and any minimizing sequence is
bounded. However in trying to develop a minimization process one faces the difficulty in
ruling out the possible dichotomy of the minimizing sequences. Thus it is still an open
question whether or not m(c) is reached for c > 0 large.

To establish our non-existence results, we explicit an identity, see Lemma 2.2.1, satisfied
by all the critical points of F on S(c). That is, if u0 is a critical point of F on S(c), then
necessarily

‖∇u0‖2
2 +

1
4

∫

R3

∫

R3

|u0(x)|2 |u0(y)|2
|x− y| dxdy − 3(p− 2)

2p

∫

R3
|u0|pdx = 0. (1.1.12)

In addition to the non-existence results of Theorem 1.1.3, we give also a more general
non-existence result concerning the critical points of F on S(c). Precisely

Theorem 1.1.4. When p ∈ (3, 10
3 ], there exists c̄ > 0 such that for any c ∈ (0, c̄), there

are no critical points of F restricted to S(c). When p = 3, for all c > 0, F does not admit
critical points on the constraint S(c).

Theorem 1.1.4 is, up to our knowledge, the first result where a non-existence result of
small L2-norm solutions is established for (Eλ). Note however that it was independently
proved by H. Kikuchi [70] and D. Ruiz [99] that when p ∈ (2, 3) there exists a λ0 < 0 such
that (Eλ) has only trivial solution when λ ∈ (−∞, λ0).

Following our study of the case p ∈ [3, 10
3 ], a systematic treatment of the case p ∈ [2, 10

3 ],
as far as the existence of global minimizers is concerned, has been done recently in [34].
The main aim of [34] is to show that the previous results on this issue can be reproved by a
unified approach based on the concentration-compactness principle of P. L. Lions and the
use of some interpolation inequalities which generalize the Gagliardo-Nirenberg inequality



18 Chapter 1. Introduction

(see [34] for more details). Some new results are also obtained. In [34] the authors study
the existence of global minimizers of the functional

Ed(u) :=
1
2

‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − d

p

∫

R3
|u|pdx, d > 0,

on the constraint S(c). In the range p ∈ (3, 10
3 ) they manage to give in term of some best

Sobolev constants an “explicit” value for the threshold value c1 > 0 (c1 is given in (1.1.9)).
Also when p = 3 they prove that there exists a d0 > 0 such that for any c > 0, m(c) < 0
and the functional Ed has a global minimizer on S(c) if d > d0. On the contrary m(c) = 0
and Ed has no minimizer when d < d0. This result which should be set in parallel with
Theorem 1.1.2 (II) (v) and Theorem 1.1.3 (ii), gives a new light on the case p = 3.

1.1.2 Solutions of saddle point type

In Chapter 3, we consider the case p ∈ (10
3 , 6). For this range of power the functional F

is no more bounded from below on S(c) and thus it is impossible to find a solution as
a global minimizer. We shall nevertheless be able to find a critical point of F assuming
c > 0 sufficiently small. As a first step we observe that the functional F has a mountain
pass geometry on S(c) for any c > 0.

Definition 1.1.5. Given c > 0, we say that F has a mountain pass geometry on S(c) if
there exists a Kc > 0, such that

γ(c) := inf
g∈Γc

max
t∈[0,1]

F (g(t)) > max
{

max
g∈Γc

F (g(0)),max
g∈Γc

F (g(1))
}
, (1.1.13)

holds in the set

Γc :=
{
g ∈ C([0, 1], S(c)) : g(0) ∈ AKc , F (g(1)) < 0

}
,

where AKc := {u ∈ S(c) : ‖▽u‖2
2 ≤ Kc}.

We shall look to a critical point of F on S(c) at the mountain pass level γ(c). Our
result concerning the existence of solutions of (Eλ) is given by the following

Theorem 1.1.6. Let p ∈ (10
3 , 6) and c > 0. Then F has a mountain pass geometry on

S(c). Moreover there exists c0 > 0 such that for any c ∈ (0, c0) there exists a couple
(uc, λc) ∈ H1(R3) × R

− solution of (Eλ) with ||uc||22 = c and F (uc) = γ(c). In addition

λc → −∞, as c → 0. (1.1.14)

The fact that the mountain pass geometry of F on S(c) holds is based on the fact
that when p ∈ (10

3 , 6), the nonlinearity |u|p−2u grows “sufficiently fast” at infinity. Having
proved that F has a mountain pass geometry we know by Ekeland’s variational principle
(see [107]), that there exists a Palais-Smale sequence for F at the level of γ(c). Namely a
sequence {un} ⊂ S(c) has the property as n → ∞ that

F (un) → γ(c), and F ′|S(c)(un) → 0 in H−1(R3).

To hope to obtain a critical point at the level γ(c), one first needs to show that at least
one of such sequences is bounded. However, under the assumption of Theorem 1.1.6, this
aim seems to be challenging. To overcome the difficulty, we introduce the functional

Q(u) := ‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 3(p− 2)

2p

∫

R3
|u|pdx, (1.1.15)
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the set
V (c) :=

{
u ∈ S(c) : Q(u) = 0

}

and we prove that
γ(c) = inf

u∈V (c)
F (u) > 0. (1.1.16)

This additional variational characterization is central in our proofs. The proof of (1.1.16)
is given in Lemma 3.2.6. Moreover, we show that each constrained critical point of F (u)
on S(c) must lie in V (c), namely V (c) acts as a natural constraint. At this point, taking
advantage of the nice “shape” of some sequence of paths {gn} ⊂ Γc such that

max
t∈[0,1]

F (gn(t)) → γ(c),

we construct a special Palais-Smale sequence {un} ⊂ S(c) at the level γ(c) which concen-
trates around V (c), see Section 3.3 in Chapter 3. This localization leads to its boundedness
but also provides the additional information that Q(un) = o(1). This last property is cru-
cially used in the study of the compactness of the sequence.

To obtain a critical point of F at the level γ(c) one still needs to show that, up to some
translations and passing to a subsequence, {un} converges in H1(R3). Since the equation
(Eλ) is set in the whole R

3, one has to face a classical lack of compactness of the Sobolev
embedding. In addition with respect to the case where one looks to a global minimizer, and
in particular searches for a critical point at a strictly negative level, the fact that we deal
here with strictly positive suspected critical level γ(c) brings new difficulties. It appears
hard to follow the classical vanishing-dichotomy-compactness scenario. In particular the
strict subadditivity condition (1.1.8) loses its pertinence to discuss the compactness of the
sequence {un} ⊂ S(c).

To overcome this difficulty, we first study the behavior of the function c → γ(c). The
theorem below summarizes its properties.

Theorem 1.1.7. Let p ∈ (10
3 , 6), and for any c > 0 let γ(c) be the mountain pass level,

given by (1.1.13). Then

(i) c → γ(c) is continuous at each c > 0.

(ii) c → γ(c) is non-increasing.

(iii) There exists c0 > 0 such that in (0, c0) the function c → γ(c) is strictly decreasing.

(iv) There exists c∞ > 0 such that for all c ≥ c∞ the function c → γ(c) is constant.

(v) lim
c→0

γ(c) = +∞ and lim
c→∞

γ(c) =: γ(∞) > 0.

We show that if the function c → γ(c) is strictly decreasing, then the constructed
Palais-Smale sequence {un} ⊂ S(c) converges strongly in H1(R3), up to a subsequence
and translations if necessary, see Lemma 3.4.4. Thus there exists a critical point uc ∈ S(c)
of F on S(c) such that F (uc) = γ(c). However, as one sees in Theorem 1.1.7 (iii), we are
only able to prove that c → γ(c) is strictly decreasing for c > 0 sufficiently small. That is
the reason why our existence results in Theorem 1.1.6 are restricted for small c > 0. As
for the other values of c > 0 the information that c → γ(c) is non-increasing permits us
to reduce the problem of convergence to the one of showing that the associated Lagrange
multiplier λc ∈ R is non zero (see Lemma 3.4.5). However we do prove that λc = 0 holds
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for any c > 0 sufficiently large (see Lemma 3.7.3). In view of this point, we conjecture
that γ(c) is not a critical value for c > 0 large enough. Remark 3.7.4 shows us the details
in that direction.

We point out that the fact that c → γ(c) is non increasing could be expected in our
problem. This property is in some sense the analogue of the large subadditivity condition

m(c) ≤ m(ρ) +m(c− ρ), ∀ 0 < ρ < c. (1.1.17)

which holds for general minimization problem [83]. To establish this property we rely
on some ideas of [67] where it was done, using a so called “added mass technique” on a
particular minimization problem.

To prove Theorem 1.1.7 (iv) and that γ(c) → γ(∞) > 0 as c → ∞ in (v) we take
advantage of some results of I. Ianni and D. Ruiz [63]. In [63] the static equation

−∆v + (|x|−1 ∗ |v|2)v − |v|p−2v = 0 in R
3 (1.1.18)

which corresponds to the case λ = 0 in (Eλ), is considered. The authors established in
[63] the existence of a critical point of F in the space

E :=
{
u ∈ D1,2(R3) :

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy < ∞

}
. (1.1.19)

This critical point is a ground state solution to (1.1.18).

In addition, it is proved in [63, Theorem 6.1] that any radial solution of (1.1.18)
decreases exponentially at infinity. We extend here this result to any solution of (1.1.18).
More precisely we prove

Theorem 1.1.8. Let p ∈ (3, 6) and (u, λ) ∈ E × R with λ ≤ 0 be a solution of (Eλ).
Then there exist constants C1 > 0, C2 > 0 and R > 0 such that

|u(x)| ≤ C1|x|− 3
4 e−C2

√
|x|, ∀ |x| > R. (1.1.20)

In particular, u ∈ H1(R3).

Theorem 1.1.8 implies that any solution of (1.1.18) belongs to L2(R3). This information
is crucial to derive Theorem 1.1.7 (iv)-(v). In addition, the exponential decay property of
the solutions, as we shall see later, is crucially used for the analysis of the dynamics of
standing wave solutions to the Cauchy problem of (1.1.3).

The fact that c → γ(c) becomes constant as c > 0 large (which leads very likely to the
conclusion that γ(c) is not a critical level for c > 0 large), is due to the term (|x|−1 ∗|u|2)u.
In order to try to understand this, we draw a comparison between (1.1.3) and the classical
nonlinear Schrödinger equation

iψt + ∆ψ + |ψ|p−2ψ = 0 in R
3. (1.1.21)

In [64], L. Jeanjean considered the existence of standing waves for (1.1.21) on S(c) when
p ∈ [10

3 , 6). Then the associated functional is unbounded from below. In [64] a solution was
obtained for any given c > 0 after having shown that the associated Lagrange multiplier is
strictly negative for any c > 0. In this thesis we complement and enlighten this result by
showing that the mountain pass value γ̃(c) associated with (1.1.21) is strictly decreasing
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as a function of c > 0 and that γ̃(c) → 0 as c → ∞.

The fact that (1.1.16) holds and that any constrained critical point of F lies in V (c)
implies that the solutions found in Theorem 1.1.6 can be considered as ground states
within the solutions having the same L2-norm.

Now we denote the set of minimizers of F on V (c) as

Mc := {uc ∈ V (c) : F (uc) = inf
u∈V (c)

F (u)}, (1.1.22)

where we have enlarged the space of functions toH1(R3,C). This extension will be required
to discuss later the dynamics of the standing waves and in particular their orbital stability.

Theorem 1.1.9. Let p ∈ (10
3 , 6) and c > 0. For each uc ∈ Mc, there exists a λc ≤ 0 such

that (uc, λc) ∈ H1(R3) × R solves (Eλ).

Clearly to prove Theorem 1.1.9, one needs to show that any minimizer of F (u) on V (c)
is a critical point of F restricted to S(c). As additional properties of elements of Mc we
obtain:

Lemma 1.1.10. Let p ∈ (10
3 , 6) and c > 0 be arbitrary. Then

(i) If uc ∈ Mc then also |uc| ∈ Mc .

(ii) Any minimizer uc ∈ Mc has the form eiθ|uc| for some θ ∈ S
1 and |uc(x)| > 0 a.e.

in R
3.

In view of Lemma 1.1.10, each elements of Mc is a real positive function multiplied
by a constant complex factor. This lemma shows in particular that least energy solutions
can be searched for only within real valued functions.

Remark 1.1.11. A natural question that arises, as a consequence of Theorem 1.1.9, is
why not search for solutions of (Eλ) with a prescribed norm by directly minimizing F on
V (c). However starting from an arbitrary minimizing sequence {un} ⊂ V (c) and trying
to show its convergence seem to be challenging. From the definition of V (c) it is easy to
prove that any minimizing sequence is bounded in H1(R3) and thus we can assume that
un ⇀ ū in H1(R3) for some ū ∈ H1(R3). Also ruling out the vanishing is not a problem as
it can be seen from Lemma 3.4.2. But to show that the dichotomy does not occur it seems
necessary to know that ū ∈ V (||ū||22). For our Palais-Smale sequence we use, in Lemma
3.4.4, the information that ū ∈ H1(R3) is a non-trivial solution of (Eλ). Then by Lemma
3.4.3, Q(ū) = 0 and ū ∈ V (||ū||22). For an arbitrary minimizing sequence it does not
seem possible to show that the weak limit ū ∈ H1(R3) belongs to V (||ū||22). Having such
information seems to require some information on the derivative of F along the sequence
and that is why we introduce Palais-Smale sequences to solve our minimization problem.

1.1.3 Dynamics of standing waves

Now we turn our attention to the analysis of the dynamics of standing waves for (1.1.3).
First recall from [37] that, the Cauchy problem of (1.1.3) is locally well posed in H1(R3,C)
and keeps the quantities of energy and charge conserved in time. Namely,

Proposition 1.1.12. Assume that p ∈ (2, 6). Then for every ψ0 ∈ H1(R3,C), there exists
a T = T (‖ψ0‖) > 0 and a unique solution ψ(t) ∈ C([0, T ), H1(R3,C)) of (1.1.3) with the
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initial datum ψ(0) = ψ0, such that either T = ∞ (we say that ψ(t) exists globally) or
lim
t→T

‖∇ψ(t)‖2 = ∞ (we say that ψ(t) blows up in a finite time), and satisfy that

F (ψ(t)) = F (ψ0), ‖ψ(t)‖2 = ‖ψ0‖2, ∀ t ∈ [0, T ).

In addition, if ψ0 ∈ H1(R3,C) such that |x|ψ0 ∈ L2(R3,C), then the virial identity

d2

dt2
‖xψ(t)‖2

2 = 8Q(ψ(t)),

holds for all t ∈ [0, T ), where Q(ψ) is given by (1.1.15).

We say that standing waves are orbitally stable or unstable in the following sense:

Definition 1.1.13. (i) Let Ω ⊂ H1(R3,C). Then the set Ω is orbitally stable, if for
any ε > 0, there exists a δ > 0 with the following property: for each ψ0 ∈ H1(R3,C)
satisfying inf

φ∈Ω
‖ψ0 − φ‖ < δ, there holds that

sup
t>0

inf
φ∈Ω

‖ψ(t) − φ‖ < ε,

where ψ(t) is the solution of (1.1.3) with the initial datum ψ(0) = ψ0. Otherwise,
we say that Ω is orbitally unstable.

(ii) A standing wave e−iλtu(x) of (1.1.3) is said to be orbitally stable if the orbit
{eiθu(· − y) : ∀ θ ∈ R,∀ y ∈ R

3} is stable.

(iii) A standing wave e−iλtu(x) of (1.1.3) is said to be strongly unstable in the sense that
for any ε > 0, there exists a ψ0 ∈ H1(R3,C) satisfying ‖ψ0 − u(x)‖ < ε, such that
the solution ψ(t) of (1.1.3) with ψ(0) = ψ0 blows up in a finite time.

Following the approach of Cazenave-Lions [36], it was proved in [14, 15, 105] that

Theorem 1.1.14. Assume that p ∈ (2, 3) ∪ (3, 10
3 ). Let uc ∈ S(c) be a minimizer of m(c),

obtained in Theorem 1.1.1. Then the orbit

{eiθuc(· − y) : ∀ θ ∈ R,∀ y ∈ R
3}

is stable. Namely the standing wave e−iλctuc(x) is orbitally stable, where λc ∈ R is the
corresponding Lagrange parameter of uc.

The key to prove Theorem 1.1.14 is the information that all minimizing sequences of
m(c) are pre-compact. This point has been established by [14, 15, 102, 105] in the proof
of Theorem 1.1.1.

In the case p ∈ (10
3 , 6), the global existence in time of solutions of the Cauchy problem

associated with (1.1.3) does not hold for arbitrary initial condition, see e.g. [72]. However
we are able to prove the following global existence result.

Theorem 1.1.15. Let p ∈ (10
3 , 6) and u0 ∈ H1(R3,C) be an initial condition associated

with (1.1.3) with c = ||u0||22. If

Q(u0) > 0 and F (u0) < γ(c),

then the solution of (1.1.3) with the initial condition u0 exists globally in time.
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In Remark 3.8.2 we prove that the set

O = {u0 ∈ S(c) : Q(u0) > 0 and F (u0) < γ(c)}

is not empty.

Theorem 1.1.15 is, at its modest level, in the spirit of recent works [48, 60, 93, 94, 109]
which try to understand deeply the dynamics of some nonlinear equations.

In what follows, we prove that the standing waves corresponding to elements of Mc

are strongly unstable.

Theorem 1.1.16. Let p ∈ (10
3 , 6) and c > 0. For each uc ∈ Mc, the standing wave

e−iλctuc of (1.1.3) where λc ∈ R is the Lagrange multiplier, is strongly unstable.

In view of (1.1.16), this theorem yields the strong instability of the standing waves we
obtained in Theorem 1.1.6. The proof of Theorem 1.1.16 borrows elements of the original
approach of H. Berestycki and T. Cazenave [18]. The starting point is the variational
characterization of uc ∈ Mc and the decay estimates, established in Theorem 1.1.8, prove
crucial to use the virial identity.

For previous results concerning the instability of standing waves of (1.1.3), we refer
to H. Kikuchi [72] (see also [71]). In [72], working in the subspace of radially symmetric
functions, it is proved that for λ < 0 fixed and p ∈ (10

3 , 6), the equation (1.1.3) admits a
ground state which is strongly unstable.

As a consequence of Theorem 1.1.16, we obtain

Theorem 1.1.17. Let p ∈ (10
3 , 6). Any ground state of (1.1.18) is strongly unstable.

An equation like (1.1.18) where λ = 0, is usually referred to as of zero mass type.
Actually, in the zero mass case, there seems to be few results of stability or instability of
standing waves. We are only aware of a stability result of M. Kaminaga and M. Ohta [68].

1.1.4 Multiplicity of normalized solutions

In Chapter 4, we establish the existence of infinitely many normalized solutions for equation
(Eλ). Precisely, we prove

Theorem 1.1.18. Assume that p ∈ (10
3 , 6). There exists a c0 > 0 such that for any

c ∈ (0, c0), the equation (Eλ) admits an unbounded sequence of distinct pairs of solutions
(±un, λn) with ‖un‖2

2 = c and λn < 0 for each n ∈ N.

Clearly the sequence of solutions (±un, λn) ∈ H1(R3) × R will be obtained as critical
points and associated Lagrange multipliers of the functional F on the L2-norm constraint
S(c).

In view that F is unbounded from below on S(c) when p ∈ (10
3 , 6), the genus of the

sublevel set Fα := {u ∈ S(c) : F (u) ≤ α} is always infinite. Thus to obtain the existence
of infinitely many solutions, classical arguments based on the Kranoselski genus, see [107],
do not apply.

Since we are not concerned here, as it was the case in Chapters 2 and 3, by the search of
least energy solutions, we can work in the subspaceH1

r (R3) of radially symmetric functions.
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It is classical that a critical point of F restricted to H1
r (R3) ∩ S(c) is a critical point of F

restricted to H1(R3) ∩ S(c). The advantage of working in H1
r (R3) is that the embedding

of H1
r (R3) into Lq(R3) is compact for q ∈ (2, 6). However, as it can easily be checked,

despite this property, F restricted to S(c) does not satisfy the Palais-Smale condition.

To overcome these difficulties we rely on a recent work of T. Bartsch and S. De Valeriola
[12]. In [12] the authors consider the problem of finding infinitely many critical points for

E(u) :=
1
2

‖∇u‖2
2 − 1

p

∫

R3
|u|pdx, (1.1.23)

on the constraint

Sr(c) :=
{
u ∈ H1

r (R3) : ‖u‖2
2 = c, c > 0

}
, (1.1.24)

when p ∈ (10
3 , 6). Actually in [12] more general nonlinearities can be handled and in any

dimension N ≥ 2.

In the problem treated in [12] the difficulties presented above already exist. To over-
come these difficulties the authors present a new type of linking geometry for the functional
E on Sr(c). This geometry is, according to the authors of [12], motivated by the fountain
theorem (see [11]). In [12] to set up a min-max scheme and identify a sequence {ln} ⊂ R,
ln → ∞ of suspected critical levels, the cohomological index for spaces with an action on
the group G = {−1, 1} is used. Indeed observe that the functional E is even, this is also
the case of F . This index which was introduced in [31] permits to establish the key inter-
section property, see [12, Lemma 2.3] or our Lemma 4.2.3. The fact that the suspected
critical levels ln do correspond to critical levels is then obtained using ideas from [64]. The
key point is the construction, for each fixed n ∈ N, of a bounded Palais-Smale sequence
associated with ln. In that aim one introduces an auxiliary functional which permits to
incorporate into the variational procedure the information that any critical point of E on
Sr(c) must satisfy a version of Pohozaev identity. Having obtained the boundedness of
a Palais-Smale sequence it remains to show that it converges. The information that the
associated Lagrange multiplier is strictly negative is here crucially used.

In our proof of Theorem 1.1.18 we follow closely the strategy of [12]. The restriction
that c ∈ (0, c0) originates in the need to show that the suspected associated Lagrange
multipliers are strictly negative. This property is used to show that the weak limit of our
Palais-Smale sequences do belong to Sr(c). A similar limitation on c > 0 was already
necessary for the existence of just one critical point. More generally Chapter 4 makes a
strong use of results derived in Chapter 3.

Up to our knowledge, Theorem 1.1.18 is the first result in the literature on the existence
of infinitely many L2-normalized solutions for equation (Eλ). Previous results had already
been obtained when λ ∈ R is a fixed parameter. We refer to [4, 8, 42, 104] and their
references in that direction.

1.2 Quasi-linear Schrödinger Equations

In Chapters 5 and 6, we deal with a class of quasi-linear Schrödinger equations of the form

i∂tϕ+ ∆ϕ+ ϕ∆|ϕ|2 + |ϕ|p−1ϕ = 0, in R
+ × R

N , (1.2.1)
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where N ∈ N and the unknown ϕ = ϕ(t, x) : R+ × R
N → C is a complex valued func-

tion. The equation (1.2.1) is viewed as a special case of the following general quasi-linear
Schrödinger equations

i∂tϕ+ ∆ϕ+ f(|ϕ|2)ϕ− σ∆h(|ϕ|2)h′(|ϕ|2)ϕ, in R
+ × R

N , (1.2.2)

where σ ∈ R is a constant, V (x) is a given potential function, and f, h are real functions.
Equation (1.2.2), has been derived as models of several physical phenomena corresponding
to various types of functions h. For example, when h(s) = s1/2 the equation (1.2.2), is
called the superfluid film equation, was used in plasma physics by S. Kurihara [74]. When
h(s) = (1+s)1/2, (1.2.2) models the self-channeling of high-power ultra short laser in matter
[22, 46, 98]. Moreover, depending on different types of f and h, (1.2.2) also appears in
other models of plasma physics and fluid mechanics [55, 85], in the theory of Heisenberg
ferromagnets and magnons [13], in dissipative quantum mechanics [58], and in condensed
matter theory [91].

By letting h(s) = s1/2, σ = 1 and f(s) = s(p−1)/2, p > 1, (1.2.2) is reduced to (1.2.1). In
[26, 27, 28, 29, 57], (1.2.1) has been introduced to study a model of self-trapped electrons
in quadratic or hexagonal lattices.

From the physical as well as mathematical point of view, a central issue is the existence
and dynamics of standing waves of (1.2.1). Observe that the standing wave e−iλtu(x) where
λ ∈ R, solves (1.2.1) if and only if u(x) satisfies the following stationary equation

−∆u− u∆(u2) − λu− |u|p−1u = 0, in R
N . (Pλ)

A function u is called a weak solution of equation (Pλ) if

Re

∫

RN

(
∇u · ∇φ+ ∇(|u|2) · ∇(uφ) − λuφ− |u|p−1uφ

)
dx = 0 (1.2.3)

for all φ ∈ C∞
0 (RN ,R).

In (Pλ), when λ ∈ R is a fixed parameter, the existence and multiplicity of solutions
of (Pλ) have been intensively studied during the last decade. See [5, 40, 41, 50, 86, 87, 88,
89, 96, 97, 101] and their references therein. We also refer to the works [1, 5, 54, 103] for
the uniqueness of ground states of (Pλ). Ground states here mean solutions of (Pλ) which
minimize among all nontrivial solutions of (Pλ) the associated energy functional

Iλ(u) :=
1
2

∫

RN
|∇u|2dx− λ

2

∫

RN
|u|2dx+

∫

RN
|u|2|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx,

defined on the natural space

X :=
{
u ∈ W 1,2(RN ) :

∫

RN
|u|2|∇u|2dx < ∞

}
.

It is easy to check that u is a weak solution of (Pλ) if and only if

I ′
λ(u)φ := lim

t→0+

Iλ(u+ tφ) − Iλ(u)
t

= 0,

for every direction φ ∈ C∞
0 (RN ,R).
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Compared with semi-linear equations such as (Eλ), the search of solutions of (Pλ)
presents a major new difficulty. The functional associated with the quasi-linear term
u∆(|u|2),

V (u) :=
∫

RN
|u|2|∇u|2dx,

is non differentiable in the space X as soon as N ≥ 2. When N = 1 it is of class C1

because of the inclusion W 1,2(R) ⊂ L∞(R). To overcome this difficulty, various arguments
have been developed. First in [87, 97], solutions of (Pλ) are obtained by minimizing the
functional Iλ on the set {

u ∈ X :
∫

RN
|u|p+1dx = 1

}
.

In the proofs of [87, 97] the non-differentiability of Iλ essentially does not come into
play. Alternatively in [40, 88], by a change of unknown, the quasi-linear problem (Pλ) is
transformed into a semi-linear problem. For that semi-linear problem standard variational
methods can be applied to yield a solution. Also in [89, 101] the authors have developed
an approach based on the use of a Nehari manifold by which one reduces the search of
solutions of (Pλ) to the problem of showing that the functional Iλ has a global minimizer
on the Nehari manifold. Since these pioneering works there has been a large literature on
the equation (Pλ) where are addressed the questions of multiplicity, of concentration type
issue or of critical exponent type.

In this thesis, we focus on the existence of solutions of (Pλ) having a prescribed L2-
norm. Up to our knowledge the first results in that direction were obtained in [41], see
also [38]. In [41], for any given c > 0, the authors consider the minimization problem

m̄(c) := inf
u∈S̄(c)

J(u), (1.2.4)

where
S̄(c) :=

{
u ∈ X : ‖u‖2

2 = c
}
. (1.2.5)

Here the functional J : S̄(c) → R, is defined as

J(u) :=
1
2

‖∇u‖2
2 +

∫

RN
|u|2|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx, (1.2.6)

with p ∈ (1, 2 · 2∗ − 1). In [41, Theorem 4.6]), it is shown that for each minimizer u ∈ S̄(c)
of m̄(c), there exists a Lagrange parameter λ < 0 such that the couple (u, λ) solves (Pλ).

It is also shown in [41] that if p < 3 + 4
N then m̄(c) > −∞ for any c > 0. On the

contrary, when p > 3 + 4
N , we have m̄(c) = −∞ for any c > 0.

Remark 1.2.1. The key point to show that m̄(c) > −∞ if p ∈ (1, 3 + 4
N ) is the use of

the following Gagliardo-Nirenberg inequality which was proved in [41, (4.5)]. That is, for
some K > 0 depending only on N and p, there holds for any u ∈ X that,

∫

RN
|u|p+1dx ≤ K

( ∫

RN
|u|2dx

)1−θ( ∫

RN
|u|2|∇u|2dx

) θN
N−2

, (1.2.7)

where θ = (p−1)(N−2)
2(N+2) . One notes that θN

N−2 < 1 when p < 3 + 4
N , then the negative term

in J can be controlled by the second one, which leads to m̄(c) 6= −∞. Recall that the
corresponding functional setting associated with

−∆u− λu = |u|p−1u, in R
N , (1.2.8)
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is given, on H1(RN ), by

I(u) :=
1
2

∫

RN
|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx

and
d(c) := inf{I(u) : u ∈ H1(RN ), ‖u‖2

2 = c}.
In this case to control the negative term in I so that d(c) > −∞, one needs to require
that p < 1 + 4

N . These considerations show that the exponent 3 + 4
N for (Pλ) plays the

same role as 1 + 4
N for (1.2.8). In addition, the inequality (1.2.7), and the definition of

X , permit to extend the range of the power for the negative term to 1 < p < 2 · 2∗ − 1.
Indeed, the exponent p = 2 · 2∗ − 1 is critical with respect to the existence of solutions for
(Pλ), see [89, 101] for instance.

It is also proved in [41] that when p ∈ (1, 1 + 4
N ) a minimizer of m̄(c) exists for all

c > 0. When p ∈ (1 + 4
N , 3 + 4

N ] it is claimed that there exists a c(p,N) > 0 such that
minimizers of m̄(c) do not exist for c < c(p,N) but do exist for c > c(p,N). However
there are some gaps in the proofs of [41].

In Chapter 5, we focus on the range p ∈ [1+ 4
N , 3+ 4

N ], and we try to clarify and extend
the results of [41]. In particular we settle the question of existence for the threshold value
c(p,N). Our main result is as follows.

Theorem 1.2.2. Assume that p ∈ (1, 3N+2
N−2 ) if N ≥ 3 and p ∈ (1,∞) if N = 1, 2. Then

(1) Concerning the properties of the function c → m̄(c), we have

i) For all c > 0, m̄(c) ∈ (−∞, 0] as p ∈ (1, 3 + 4
N );

ii) For all c > 0, m̄(c) = −∞ as p ∈ (3 + 4
N ,

3N+2
N−2 ) if N ≥ 3 and p ∈ (3 + 4

N ,∞)
if N = 1, 2;

iii) For p = 3 + 4
N , there exists a cN > 0, given by

cN := inf{c > 0 : ∃ u ∈ S̄(c) such that J(u) ≤ 0},

such that {
m̄(c) = 0, as c ∈ (0, cN );
m̄(c) = −∞, as c ∈ (cN ,∞).

(2) ([41, Theorems 1.12]) When p ∈ (1, 1 + 4
N ), for all c > 0, m̄(c) < 0 and m̄(c) has a

minimizer.

(3) When p ∈ (1 + 4
N , 3 + 4

N ), there exists a c(p,N) > 0, given by

c(p,N) := inf{c > 0 : m̄(c) < 0}, (1.2.9)

such that

i) If c ∈ (0, c(p,N)), m̄(c) = 0 and m̄(c) has no minimizer;

ii) If c = c(p,N), m̄(c) = 0 and m̄(c) admits a minimizer;

iii) If c ∈ (c(p,N),∞), m̄(c) < 0 and m̄(c) admits a minimizer.

(4) When p = 3 + 4
N , for all c > 0, m̄(c) admits no minimizers.
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(5) ([41, Theorems 1.9]) The standing waves obtained as minimizers of m̄(c) are orbitally
stable.

Also we prove an analogue of Theorem 1.1.4 concerning the non-existence of solutions
with small L2-norm.

Theorem 1.2.3. Assume that p ∈ [1 + 4
N , 3 + 4

N ] holds. Then there exists a ĉ > 0 such
that for all c ∈ (0, ĉ), the equation (Pλ) has no solution belonging to S̄(c).

Key to our non existence result is an identity similar to (1.1.12). Actually if v0 ∈ S̄(c)
is a solution of (Pλ), it must satisfy the identity

‖∇v0‖2
2 + (N + 2)

∫

RN
|v0|2|∇v0|2dx− N(p− 1)

2(p+ 1)

∫

RN
|v0|p+1 = 0. (1.2.10)

This identity combined with the assumption that ||v0||22 = c permits to show that (Pλ) has
no solution with small L2-norm.

In Chapter 6, we consider the range p ∈ (1 + 4
N , 3 + 4

N ), N ≥ 1. From Theorem 1.2.2
(3), we know that in this range the functional J has, for c ≥ c(p,N), a critical point on
S̄(c), which is a global minimizer. Here we extend this result in two directions. First we
prove that there exists a c0 ∈ (0, c(p,N)) such that, for each c ∈ (c0, c(p,N)) the functional
J admits on S̄(c) a local minimizer. By Theorem 1.2.2 (3) i), this local minimizer can not
be a global one. Secondly we show that when c ∈ (c0,∞) the functional J admits on S̄(c)
a second critical point. This critical point is of mountain pass type. Note that since J is
not differentiable we must give a meaning to what we call a critical point of J on S̄(c).
By definition it will be a solution of (Pλ) belonging to S̄(c).

Theorem 1.2.4. Assume that p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2 ] if

N ≥ 4. Then there exists a c0 ∈ (0, c(p,N)) such that for any c ∈ (c0,∞) the functional
J admits two critical points uc and vc on S̄(c). In addition

(1) J(uc) > J(vc) for any c ∈ (c0,∞).

(2) J(uc) > 0 for all c ∈ (c0,∞) and J(uc) is a mountain pass level.

(3) J(vc)





> 0, if c ∈ (c0, c(p,N));
= 0, if c = c(p,N);
< 0, if c ∈ (c(p,N),∞).

Also vc is a local minimum of J when c ∈ (c0, c(p,N)) and a global minimum of J
when c ∈ [c(p,N),∞).

(4) uc and vc are Schwarz symmetric functions.

(5) There exist Lagrange multipliers λc < 0 and βc < 0 such that (uc, λc) and (vc, βc)
solve (Pλ).

Remark 1.2.5. In the case c ∈ [c(p,N),∞) the critical point vc is just a global minimizer
already obtained in [41, 65] whose existence is recalled in Theorem 1.2.2 (3).

From Theorem 1.2.3, we know that no critical points of J on S̄(c) exist when c ∈ (0, ĉ)
for some ĉ > 0 small enough. But it is still an open question whether or not we can
take c0 = ĉ in Theorem 1.2.4. Already it would be interesting to know if the set of
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c ∈ (0, c(p,N)] for which one can find the two critical points uc and vc of Theorem 1.2.4
is an interval.

The following figure gives us an intuition of the above results concerning the existence
of critical points of J on S̄(c) when p ∈ (1 + 4

N , 3 + 4
N ).

Figure 1.1

To overcome the lack of differentiability of J , we apply a perturbation method recently
developed in [86]. That is, we consider first the perturbed functional

Jµ(u) :=
µ

4

∫

RN
|∇u|4dx+ J(u), (1.2.11)

where µ ∈ (0, 1] is a parameter. For any given c > 0, we denote

Σc :=
{
u ∈ W 1,4 ∩W 1,2(RN ) :

∫

RN
|u|2dx = c

}
.

One may observe that Jµ is well-defined and C1 in Σc (see [86]).

The idea is to look to critical points of Jµ, for each µ > 0 small and then, having
obtained these critical points, to show that they converge to suitable critical points of J .

A first critical point uc
µ of Jµ is obtained at a critical value γµ(c) > 0 which corresponds

to a mountain pass level. When c ∈ (c0, c(p,N)) a second critical point vc
µ is obtained

as a local minimizer of Jµ. The corresponding energy level m̃µ(c) is strictly positive. To
derive these results we first check the geometric properties of Jµ allowing to search for such
critical points. To show that these critical levels are actually reached, several difficulties
have to be overcome. Since Jµ is coercive on Σc any Palais-Smale sequence {un} ⊂ Σc is
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bounded and thus we can assume that un ⇀ uc. It is also standard to show that there
exists a λc ∈ R such that J ′

µ(uc) − λcuc = 0. Finally we mention that, by constructing
Palais-Smale sequences which consist of almost Schwarz symmetric functions we can avoid
any problems related to possible dichotomy of our sequences, in the sense of P. L. Lions
[83]. The first main difficulty is to show that uc 6= 0. To overcome it we need, for both
γµ(c) and m̃µ(c), to establish the existence of Palais-Smale sequences having the additional
property that Qµ(un) → 0. Here Qµ(u) = 0 corresponds to the identity (1.2.10).

In the case of γµ(c) the existence of such Palais-Smale sequence is proved using the
trick, first introduced in [64], to construct an auxiliary functional on Σc × R. This trick,
which has been used recently on various problems [8, 59, 95] permits to incorporate in the
variational procedure the information that any critical point of Jµ on Σ(c) must satisfy
Qµ(u) = 0. For m̃µ(c) we can directly construct a minimizing sequence {un} ⊂ Σ(c)
satisfying Qµ(un) = 0,∀n ∈ N. It readily leads to the fact that the weak limit of the
associated Palais-Smale sequence is non trivial.

Another main difficulty is to show that the weak limit uc does belong to Σc, namely
that ||uc||22 = c. For this we need to require that λc ∈ R satisfies λc < 0. Here, and only
here, comes the need to restrict our result from the natural range (1 + 4

N , 3 + 4
N ) for any

N ≥ 1 to the range (1 + 4
N , 3 + 4

N ) when N = 1, 2, 3 and (1 + 4
N ,

N+2
N−2) when N ≥ 4.

It is not clear to us if it is possible to prove that λc < 0 for our critical points in all
the range (1 + 4

N , 3 + 4
N ). Also we do not know if λc < 0 is necessary to get a critical

point on Σc. However let us mention that in [16] we faced a similar issue but there strong
indications incline to think it is necessary for the suspected Lagrange multipliers to be
strictly negative.

Having proved the existence of the critical points uc
µ and vc

µ at the levels γµ(c) and
m̃µ(c) respectively we pass to the limit µ → 0 and we show that uc

µ → uc and vµ(c) → vc

where uc and vc are as presented in Theorem 1.2.4. In this part we strongly rely on the
machinery developed in [86].

This chapter also contains a result on the behavior of the Lagrange multipliers corre-
sponding to the global minimizers of J .

Lemma 1.2.6. Assume that p ∈ (1 + 4
N , 3 + 4

N ) and that c ∈ [c(p,N),∞). Let vc be a
global minimizer of J on S̄(c) and βc < 0 be its Lagrange multiplier. Then

βc → −∞, as c → ∞.

Finally, we present a relationship between the ground states of (Pλ) and the global
minimizers of m̄(c).

Theorem 1.2.7. Assume that p ∈ (1, 3 + 4
N ). For some c > 0 let uc ∈ S̄(c) be a global

minimizer of m(c) and βc < 0 be its Lagrange multiplier. Then uc is a ground state
solution of (Pλ) with λ = βc.

Note however that the converse of Theorem 1.2.7 does not hold in general. Indeed
on one hand our mountain pass solution is non negative. On the other hand we know
in several cases that (Pλ) has a unique non negative solution when λ > 0 is fixed. This
is the case in particular when N = 1, see [41, Theorem 1.3] or [5]. Thus when this
uniqueness property holds our mountain pass solution must necessarily be a ground state.
This observation shows that not all ground states of (Pλ) for p ∈ (1 + 4

N , 3 + 4
N ) can be

obtained as minimizers of J on the corresponding constraint.
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Remark 1.2.8. From Theorem 1.2.7 we deduce that any global minimizer uc has a given
sign and that |uc| is a radially symmetric, decreasing function with respect to one point.
This follows directly from [41, Theorem 1.3].

Finally, we end this thesis by giving in Chapter 7 some remarks of our works and also
some perspectives on the problems we studied.





Chapter 2

Sharp non-existence results of
prescribed L2-norm solutions for a
class of Schrödinger-Poisson-Slater
equations

2.1 Introduction

The following stationary nonlinear Schrödinger-Poisson equation

−∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0 in R
3, (Eλ)

where p ∈ (2, 6) and λ ∈ R has attracted considerable attention in the recent period.
Part of the interest is due to the fact that a pair (u(x), λ) solution of (Eλ) corresponds a
standing wave φ(x) = e−iλtu(x) of the evolution equation

i∂tφ+ ∆φ− (|x|−1 ∗ |φ|2)φ+ |φ|p−2φ = 0 in R
+ × R

3. (2.1.1)

This class of Schrödinger type equations with a repulsive nonlocal Coulombic potential is
obtained by approximation of the Hartree-Fock equation describing a quantum mechanical
system of many particles, see for instance [10, 81, 84, 92]. For physical reasons, solutions
are searched in H1(R3).

In this chapter, we are concerned with solutions of (Eλ), which is in H1(R3) and have
a prescribed L2-norm. More precisely, for given c > 0 we look to

(uc, λc) ∈ H1(R3) × R solution of (Eλ) with ‖uc‖2
2 = c.

To this purpose, solutions of (Eλ) are considered as constrained critical points of the
functional

F (u) :=
1
2

‖▽u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|p dx

on the constraint
S(c) :=

{
u ∈ H1(R3) : ‖u‖2

2 = c, c > 0
}
.

The parameter λ ∈ R, in this situation, can’t be fixed any longer and it is determined by
the corresponding Lagrange multiplier.
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Schrödinger-Poisson-Slater equations

It is well known, see e.g. [99], that for any p ∈ (2, 6), F is a well defined and C1-
functional. We set

m(c) := inf
u∈S(c)

F (u).

Clearly minimizers of m(c) are critical points of F restricted to S(c), and thus solutions
of (Eλ). Also it can be checked in many cases that the set of minimizers is orbitally stable
under the flow of (2.1.1). Thus the search of minimizers can provide us some information
on the dynamics of (2.1.1).

By scaling arguments, see Remark 2.1.3, it is readily seen that for any c ∈ (0,∞),
m(c) ∈ (−∞, 0] if p ∈ (2, 10

3 ) and m(c) = −∞ if p ∈ (10
3 , 6). When m(c) > −∞, the

existence of minimizers of m(c) has been studied in [14, 15, 102], see also [34, 72] for a
closely related problem. In [102], the authors prove the existence of minimizers when p = 8

3
and c ∈ (0, c0) for a suitable c0 > 0. It is shown in [15] that a minimizer exists if p ∈ (2, 3)
and c > 0 is small enough, and in [14] that when p ∈ (3, 10

3 ), m(c) admits a minimizer for
any c > 0 sufficiently large.

The aim of this chapter is to establish non-existence results of minimizers for m(c) and
more generally of constrained critical points of F on S(c) in the range p ∈ [3, 10

3 ]. As we
shall see, our results are sharp in the sense that we explicit a threshold value of c > 0
separating existence and non-existence of minimizers.

Before to proceed, we first give a detailed study of the function c → m(c) when
p ∈ [3, 10

3 ]. This study is, we believe, interesting for itself, but it is also a key to establish
the existence or the non-existence of minimizers. Let

c1 := inf{c > 0 : m(c) < 0}. (2.1.2)

Theorem 2.1.1. (I) When p ∈ (3, 10
3 ) we have

(i) c1 ∈ (0,∞);

(ii) m(c) = 0, as c ∈ (0, c1];

(iii) m(c) < 0 and is strictly decreasing about c, as c ∈ (c1,∞).

(II) When p = 3 or p = 10
3 we have

(iv) When p = 3, m(c) = 0 for all c > 0;

(v) When p = 10
3 , we denote

c2 := inf{c > 0 : ∃ u ∈ S(c) such that F (u) ≤ 0}, (2.1.3)

then c2 ∈ (0,∞) and {
m(c) = 0, as c ∈ (0, c2);
m(c) = −∞, as c ∈ (c2,∞).

(2.1.4)

Our result concerning the existence or non-existence of a minimizer is

Theorem 2.1.2. (i) When p ∈ (3, 10
3 ), m(c) has a minimizer if and only if c ∈ [c1,∞).

(ii) When p = 3 or p = 10
3 , m(c) has no minimizer for any c > 0.
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Remark 2.1.3. One always has m(c) ≤ 0 for any c > 0. Indeed let u ∈ S(c) be arbitrary
and consider the scaling ut(x) = t

3
2u(tx). We have ut ∈ S(c) for any t > 0 and also

F (ut) =
t2

2

∫

R3
|∇u|2dx+

t

4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − t

3
2

(p−2)

p

∫

R3
|u|pdx.

Thus F (ut) → 0 as t → 0 and the conclusion follows.

Remark 2.1.4. In [34], the authors recently study the existence of global minimizers of
the functional

Ed(u) =
1
2

‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − d

p

∫

R3
|u|pdx, d > 0,

on the constraint S(c). In the range p ∈ (3, 10
3 ), they manage to give in term of some best

Sobolev constants an “explicit” value for the threshold value c1 > 0 (c1 is given in (2.1.2)).
Also when p = 3 they prove that there exists a d0 > 0 such that for any c > 0, m(c) < 0
and the functional Ed has a global minimizer on S(c) if d > d0. On the contrary m(c) = 0
and Ed has no minimizer when d < d0. This result which should be set in parallel with
Theorem 2.1.1 (II) (iv) and Theorem 2.1.2 (ii), gives a new light on the case p = 3. In
addition, Theorem 2.1.2 (ii) implies that necessarily d0 > 1.

Remark 2.1.5. Theorem 2.1.2 provides a fairly complete answer to the issue of global
minimizers for F on S(c) when p ∈ [3, 10

3 ]. By contrast, when p ∈ (2, 3), as one sees in
Theorem 1.1.1, the situation is much less understood. It is only known that a minimizer
exists when c > 0 is sufficiently small. Clearly for any c > 0, m(c) < 0 and any minimizing
sequence is bounded. However in trying to develop a minimization process one faces the
difficulty in ruling out the possible dichotomy of the minimizing sequences. Thus it is still
an open question whether or not m(c) is reached for c > 0 large.

In addition to the non-existence results of Theorem 2.1.2, we also show that, taking
eventually c > 0 smaller, there are no critical points of F on S(c). Precisely

Theorem 2.1.6. When p ∈ (3, 10
3 ], there exists c̄ > 0 such that for any c ∈ (0, c̄), there

are no critical points of F restricted to S(c). When p = 3, for all c > 0, F does not admit
critical points on the constraint S(c).

Remark 2.1.7. Theorem 2.1.6 is, up to our knowledge, the only result where a non-
existence result of small L2-norm solutions is established for (Eλ). Note however that in
[70, 99] it was independently proved that when p ∈ (2, 3] there exists a λ0 < 0 such that
(Eλ) has only trivial solution when λ ∈ (−∞, λ0).

2.2 Preliminary results

To obtain our non-existence results we use the fact that any critical point of F on S(c)
satisfies Q(u) = 0 where

Q(u) :=
∫

R3
|∇u|2dx+

1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 3(p− 2)

2p

∫

R3
|u|pdx.

Indeed we have
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Lemma 2.2.1. If u0 is a critical point of F on S(c), then Q(u0) = 0.

Proof. First we denote

Tλ(u) := 〈S′
λ(u), u〉 = A(u) − λD(u) +B(u) − C(u), (2.2.1)

Pλ(u) :=
1
2
A(u) − 3

2
λD(u) +

5
4
B(u) − 3

p
C(u). (2.2.2)

Here λ ∈ R is a parameter and Sλ(u) is the energy functional corresponding to the equation
(Eλ), i.e.

Sλ(u) :=
1
2
A(u) − λ

2
D(u) +

1
4
B(u) − 1

p
C(u). (2.2.3)

Clearly Sλ(u) = F (u) − λ
2D(u) and simple calculations imply that

3
2
Tλ(u) − Pλ(u) = Q(u). (2.2.4)

Now from [43] or [99, Theorem 2.2], we know that Pλ(u) = 0 is a Pohozaev identity for
the Schrödinger-Poisson equation (Eλ). In particular any critical point u of Sλ(u) satisfies
Pλ(u) = 0.

On the other hand, since u0 is a critical point of F restricted to S(c), there exists a
Lagrange multiplier λ0 ∈ R, such that

F ′(u0) = λ0u0.

Thus for any φ ∈ H1(R3),

〈S′
λ0

(u0), φ〉 = 〈F ′(u0) − λ0u0, φ〉 = 0, (2.2.5)

which shows that u0 is also a critical point of Sλ0(u). Hence

Pλ0(u0) = 0, Tλ0(u0) = 〈S′
λ0

(u0), u0〉 = 0,

and Q(u0) = 0 follows from (2.2.4).

We now give an estimate on the nonlocal term, which is useful to control the functionals
F and Q.

Lemma 2.2.2. When p ∈ [3, 4], there exists a constant C > 0, depending only on p, such
that, for any u ∈ S(c),

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy ≥ − 1

16π
‖▽u‖2

2 + C · ‖u‖
p

4−p
p

‖▽u‖
3(p−3)

4−p

2 ‖u‖
p−3
4−p

2

. (2.2.6)

Proof. Since p ∈ [3, 4], by interpolation, we have

‖u‖p
p ≤ ‖u‖3(4−p)

3 ‖u‖4(p−3)
4 . (2.2.7)

In addition, since (|x|−1 ∗ |u|2) ∈ D1,2(R3) solves the equation

−∆Φ = 4π|u|2 in R
3, (2.2.8)
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on one hand multiplying (2.2.8) by (|x|−1 ∗ |u|2) ∈ D1,2(R3) and integrating we get

4π
∫

R3
(|x|−1 ∗ |u|2)|u|2dx =

∫

R3
|∇(|x|−1 ∗ |u|2)|2dx. (2.2.9)

On the other hand, multiplying (2.2.8) by |u| and integrating we get for any η > 0,

4πη
∫

R3
|u|3dx = η

∫

R3
−∆(|x|−1 ∗ |u|2)|u|dx

≤ η

∫

R3
∇(|x|−1 ∗ |u|2) · ∇|u|dx (2.2.10)

≤
∫

R3
|∇(|x|−1 ∗ |u|2)|2dx+

η2

4

∫

R3
|∇u|2dx.

Thus, taking η = 1 in (2.2.10) it follows from (2.2.9) and (2.2.10) that

∫

R3
|u|3 dx ≤

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy +

1
16π

‖▽u‖2
2 . (2.2.11)

Now, using Gagliardo-Nirenberg’s inequality, there exists a constant C > 0, depending
only on p, such that

∫

R3
|u|4 dx ≤ C ‖▽u‖3

2 ‖u‖2 . (2.2.12)

Taking (2.2.11) and (2.2.12) into (2.2.7), we obtain

‖u‖p
p ≤ C

(∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy +

1
16π

‖∇u‖2
2

)(4−p)

‖∇u‖3(p−3)
2 ‖u‖(p−3)

2 ,

which implies (2.2.6).

The estimate (2.2.6) leads to a lower bound on Q(u).

Lemma 2.2.3. When p ∈ (3, 10
3 ), there exists a constant C > 0, depending only on p,

such that, for any u ∈ S(c)

Q(u) ≥ 64π − 1
64π

A(u) − C ·A(u)
3
2 · c 1

2 . (2.2.13)

Proof. By Lemma 2.2.2 there exists a constant C > 0 depending only on p, such that, for
any u ∈ S(c),

Q(u) ≥ 64π − 1
64π

A(u) + C · C(u)
1

4−p

A(u)
3(p−3)
2(4−p) ·D(u)

p−3
2(4−p)

− 3(p− 2)
2p

C(u). (2.2.14)

To obtain (2.2.13) from (2.2.14) we introduce the auxiliary function

fK(x) =
(

64π − 1
64π

)
K +D · x

1
4−p − 3(p− 2)

2p
· x, x > 0

with D = C ·
(
K

3(p−3)
2(4−p) · c

p−3
2(4−p)

)−1

. Its study will provide us an estimate independent of

C(u). Clearly

f ′
K(x) = D · 1

4 − p
· x

p−3
4−p − 3(p− 2)

2p
,
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f ′′
K(x) = D · 1

4 − p
· p− 3

4 − p
· x

p−3
4−p

−1
> 0, for all x > 0.

Therefore fK(x) has the unique global minimum at

x̄ =
(

3(p− 2)(4 − p)
2pD

) 4−p
p−3

,

and

fK(x̄) =
64π − 1

64π
K +D ·

(
3(p− 2)(4 − p)

2pD

) 1
p−3

− 3(p− 2)
2p

·
(

3(p− 2)(4 − p)
2pD

) 4−p
p−3

=
64π − 1

64π
K −

(
3(p− 2)(4 − p)

2p

) 1
p−3

· p− 3
4 − p

·D
p−4
p−3

=
64π − 1

64π
K −

(
3(p− 2)(4 − p)

2p

) 1
p−3

· p− 3
4 − p

· C
p−4
p−3 ·K 3

2 · c 1
2 .

Thus fK(x) ≥ fK(x̄) for all x > 0. This, together with (2.2.14) implies (2.2.13).

Finally we recall the following results obtained in [14, 15].

Lemma 2.2.4. Let p ∈ (3, 10
3 ), then

(i) For any c > 0 such that m(c) < 0, m(c) admits a minimizer.

(ii) There exists d > 0, such that for all c ∈ (d,∞), m(c) < 0.

(iii) The function c → m(c) is continuous at each c > 0.

Remark 2.2.5. Points (i) and (ii) of Lemma 2.2.4 are proved in [14]. Concerning Point
(iii), in [15] the authors prove the continuity of m(c) about c > 0 when p ∈ (2, 3). However
inspecting their proof reveals that it also holds for p ∈ [3, 10

3 ).

2.3 Proofs of the main results

We first give the following non-existence result.

Lemma 2.3.1. When p ∈ (3, 10
3 ), there exists a c3 > 0, such that m(c) has no minimizer

for all c ∈ (0, c3).

Proof. Let us assume by contradiction that there exist sequences {cn} ⊂ R
+, with cn → 0

as n → ∞, and {un} ⊂ S(cn) such that F (un) = m(cn). Then by Lemma 2.2.1, Q(un) = 0
for any n ∈ N.

Since m(c) ≤ 0 for any c > 0, see Remark 2.1.3, we know that F (un) ≤ 0. Thus

1
2
A(un) +

1
4
B(un) ≤ 1

p
C(un)

≤ C

p
A(un)

3
4

(p−2) ·D(un)
6−p

4 , (2.3.1)

by Gagliardo-Nirenberg’s inequality. Since p ∈ (3, 10
3 ), 1 > 3

4(p − 2) and thus (2.3.1)
implies that

A(un) → 0, as n → ∞. (2.3.2)
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Now due to (2.3.2) and Lemma 2.2.3, when n ∈ N is sufficiently large,

Q(un) ≥ 64π − 1
64π

A(un) − C ·A(un)
3
2 · c

1
2
n

≥ 64π − 1
64π

A(un) − C ·A(un)
3
2 > 0.

Obviously this contradicts Lemma 2.2.1 and this ends the proof.

The following lemma is crucial to establish a precise threshold between existence and
non-existence.

Lemma 2.3.2. Assume that p ∈ (3, 10
3 ) holds. For any c > 0 such that m(c) < 0 or such

that m(c) = 0 and m(c) has a minimizer we have

m(tc) < tm(c), for all t > 1.

Proof. By Lemma 2.2.4 (i) without restriction we can assume that m(c) ≤ 0 admit a
minimizer uc ∈ S(c). We set (uc)t(x) = t2uc(tx) for t > 1. Then D((uc)t) = tD(uc) = tc,
and since 2p− 6 > 0 in case of p ∈ (3, 10/3] and C(uc) > 0, we obtain

m(tc) ≤ F ((uc)t) = t3 ·
(

1
2
A(uc) +

1
4
B(uc) − t2p−6

p
C(uc)

)

< t3 ·
(

1
2
A(uc) +

1
4
B(uc) − 1

p
C(uc)

)
(2.3.3)

= t3 · F (uc) = t3m(c).

Since m(c) ≤ 0 and t > 1, we conclude from (2.3.3) that m(tc) < t3m(c) ≤ tm(c).

In the case p = 10
3 , we first have

Lemma 2.3.3. When p = 10
3 , we have c2 ∈ (0,∞), where c2 is given by (2.1.3).

Proof. First observe that by Gagliardo-Nirenberg’s inequality, when p = 10
3 we have

C(u) ≤ C ·A(u) · c 2
3 , for all u ∈ S(c), (2.3.4)

where C > 0 independent of c > 0. Thus for any u ∈ S(c), there holds

F (u) ≥ 1
2
A(u) +

1
4
B(u) − 3

10
C ·A(u) · c 2

3

≥ A(u)
(

1
2

− 3
10
C · c 2

3

)
. (2.3.5)

Thus F (u) > 0, for all u ∈ S(c) if c > 0 is sufficiently small and it proves that c2 > 0.
Now take u1 ∈ S(1) arbitrary and consider the scaling

ut(x) = t2u1(tx), for all t > 0. (2.3.6)

Then ut ∈ S(t) and

F (ut) =
t3

2
A(u1) +

t3

4
B(u1) − 3

10
t

11
3 C(u1)

= t3
(

1
2
A(u1) +

1
4
B(u1) − 3

10
t

2
3C(u1)

)
. (2.3.7)

This shows that F (ut) < 0 for t > 0 large enough and proves that c2 < ∞.
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We can now give the

Proof of Theorem 2.1.1. First we prove that c1 > 0 by contradiction. If we assume that
c1 = 0 then, from the definition of c1, m(c) < 0 for all c > 0. Thus Lemma 2.2.4 (i) implies
the existence of a minimizer for any c > 0 and this contradicts Lemma 2.3.1. Additionally
Lemma 2.2.4 (ii) shows that c1 < ∞, thus Point (i) follows. To prove Point (ii) we observe
that since m(c) ≤ 0 for all c > 0, from the definition of c1 > 0 it follows that m(c) = 0
if c ∈ (0, c1). Using the continuity of c 7→ m(c), see Lemma 2.2.4 (iii), we obtain that
m(c1) = 0 and then Point (ii) holds. Point (iii) is a direct consequence of Lemma 2.3.2
and of the definition of c1 > 0.

Concerning Point (iv), it is enough to show that if p = 3, for any c > 0 one has

F (u) > 0, for all u ∈ S(c). (2.3.8)

Indeed, since m(c) ≤ 0 for all c > 0, (2.3.8) implies immediately Point (iv). To check
(2.3.8), we use (2.2.10) with η = 4/3. From (2.2.9) and (2.2.10) we then get

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy ≥ − 1

36π
||∇u||22 +

1
3

||u||33.

Thus when p = 3, for any u ∈ S(c),

F (u) ≥ 1
2

||∇u||22 − 1
36π

||∇u||22 > 0

and (2.3.8) holds.
Finally since, by Lemma 2.3.3, c2 ∈ (0,∞), to prove Point (v) it is enough to verify

(2.1.4). From the definition of c2, it follows directly that m(c) = 0 for any c ∈ (0, c2). Now
if c ∈ (c2,∞), we first claim that there exists a v ∈ S(c) such that F (v) ≤ 0. Indeed if we
assume that F (u) > 0 for all u ∈ S(c) we reach a contradiction as follows. For an arbitrary
ĉ ∈ [c2, c) taking any u ∈ S(ĉ) we scale it as in (2.3.6) where t = c/ĉ. Then ut ∈ S(c) and
it follows from (2.3.7) that F (ut) ≤ t3F (u). This implies that F (u) > 0 for all u ∈ S(ĉ)
and since ĉ ∈ [c2, c) is arbitrary this contradicts the definition of c2 > 0. Hence, for any
c ∈ (c2,∞), there exists a u0 ∈ S(c) such that F (u0) ≤ 0.

Consider now the scaling

uθ(x) := θ
3
2u0(θx), for all θ > 0. (2.3.9)

We have uθ ∈ S(c) for all θ > 0 and

F (uθ) =
θ2

2
A(u0) +

θ

4
B(u0) − 10

3
θ2C(u0)

=
θ

4
B(u0) −

(
10
3
C(u0) − 1

2
A(u0)

)
· θ2. (2.3.10)

Since F (u0) ≤ 0, necessarily
10
3
C(u0) − 1

2
A(u0) > 0.

Thus we see from (2.3.10) that limθ→∞ F (uθ) = −∞ and m(c) = −∞ follows. At this
point the proof of the theorem is completed.

Before giving the proof of Theorem 2.1.2 we consider the case where c = c1 that requires
a special treatment.
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Lemma 2.3.4. Assume that p ∈ (3, 10
3 ) holds. Then m(c1) admits a minimizer.

Proof. Let kn := c1 +1/n, for all n ∈ N. We have kn → c1 and thus, by Lemma 2.2.4 (iii),
m(kn) → m(c1) = 0. Furthermore, by Theorem 2.1.1 (iii) and Lemma 2.2.4 (i) we know
that for each n ∈ N, m(kn) < 0 and m(kn) admits a minimizer un. Now we claim that
the sequence {un} is bounded in H1(R3). Indeed, by Gagliardo-Nirenberg’s inequality, we
have

1
2
A(un) +

1
4
B(un) =

1
p
C(un) + F (un)

≤ CA(un)
3(p−2)

4 k
6−p

4
n +m(kn).

This implies that {A(un)} is bounded, since m(kn) ≤ 0 and 1 > 3(p − 2)/4. Thus we
conclude that {un} is bounded in H1(R3).

Now we claim that C(un) 9 0. By contradiction let us assume that C(un) → 0 as
n → ∞. Since F (un) → m(c1) = 0 it then follows that

A(un) → 0 and B(un) → 0, as n → ∞. (2.3.11)

Now, similarly to the proof of Lemma 2.2.3, using (2.2.6), we can estimate F (u) from
below by

F (u) ≥ 32π − 1
64π

A(u) − C ·A(u)
3
2 · c 1

2 , for all u ∈ S(c) (2.3.12)

where C > 0 is constant, depending only on p. In particular

F (un) ≥ A(un)
(

32π − 1
64π

− C ·A(un)
1
2 · k

1
2
n

)
. (2.3.13)

Taking (2.3.11) into account, (2.3.13) implies that F (un) ≥ 0 for n ∈ N sufficiently large.
This contradicts the fact that F (un) = m(kn) < 0 for all n ∈ N and proves the claim.

Now, by [83, Lemma I.1], we deduce that {un} does not vanish. Namely that there
exists a constant δ > 0 and a sequence {xn} ⊂ R

3 such that
∫

B(xn,1)
|un|2dx ≥ δ > 0,

or equivalently ∫

B(0,1)
|un(· + xn)|2dx ≥ δ > 0. (2.3.14)

Now let vn(·) := un(· + xn). Clearly {vn} is bounded in H1(R3) and thus there exists
v0 ∈ H1(R3) such that

vn ⇀ v0 weakly in H1(R3) and vn → v0 in L2
loc(R

3).

We note that v0 6= 0, since by (2.3.14)

0 < δ ≤ lim
n→∞

∫

B(0,1)
|vn|2dx =

∫

B(0,1)
|v0|2dx.

Let us prove that v0 is a minimizer of m(c1). First we show that F (v0) = 0. Clearly

lim
n→∞

‖vn‖2
2 = ‖v0‖2

2 + lim
n→∞

‖vn − v0‖2
2 = c1 (2.3.15)
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and using Lemma 2.2.4 (iii) we deduce from (2.3.15) that

lim
n→∞F (vn − v0) ≥ lim

n→∞m(||vn − v0||22) = m(c1 − ||v0||22) = 0. (2.3.16)

Here we make the convention that m(0) = 0. Now using [112, Lemma 2.2], we have

0 = m(c1) = lim
n→∞F (vn) = F (v0) + lim

n→∞F (vn − v0). (2.3.17)

Since ||v0||22 ≤ c1 we have m(||v0||22) = 0 and it shows that F (v0) < 0 is impossible. From
(2.3.16) and (2.3.17) we deduce that F (v0) = 0 and that v0 is a minimizer associated with
m(||v0||22). If we assume that ||v0||22 < c1 we get a contradiction with Lemma 2.3.2 since
m(c1) = 0. Thus necessarily ‖v0‖2

2 = c1 and this ends the proof.

Proof of Theorem 2.1.2. To prove Point (i) we assume by contradiction that there exists
c̃ ∈ (0, c1) such that m(c̃) admits a minimizer. Then from the definition of c1 > 0 we get
that m(c̃) = 0 and Lemma 2.3.2 implies that m(c) < 0 for any c > c̃. This contradicts the
definition of c1 > 0. Now when c > c1 the result clearly follows from Theorem 2.1.1 (iii)
and Lemma 2.2.4 (i). Finally the case c = c1 is considered in Lemma 2.3.4. For Point
(ii), first observe that, because of (2.3.8), when p = 3, for any c > 0, m(c) does not have
a minimizer. Then we note that, from the definition of Q(u), it holds, for any u ∈ S(c),

F (u) − 2
3(p− 2)

Q(u) =
3p− 10
6(p− 2)

A(u) +
3p− 8

12(p− 2)
B(u). (2.3.18)

Taking p = 10
3 in (2.3.18) we obtain

F (u) − 1
2
Q(u) =

1
8
B(u). (2.3.19)

Thus if we assume by contradiction that m(c) has a minimizer uc ∈ S(c) for some c > 0
we see from Lemma 2.2.1 and (2.3.19) that

0 ≥ m(c) = F (uc) =
1
8
B(uc) > 0.

This contradiction ends the proof of Point (ii) and of the theorem.

Proof of Theorem 2.1.6. We first consider the case p ∈ (3, 10
3 ] and we assume by contra-

diction that there exists sequences {cn} ⊂ R
+, with cn → 0, as n → ∞, and {un} ⊂ S(cn)

such that un ∈ S(cn) is a critical point of F restricted to S(cn). Then since

Q(un) = A(un) +
1
4
B(un) − 3(p− 2)

2p
C(un) = 0,

we deduce, from Gagliardo-Nirenberg’s inequality, that for some C > 0,

A(un) ≤ 3(p− 2)
2p

C(un) ≤ C ·A(un)
3(p−2)

4 · c
6−p

4
n . (2.3.20)

Thus there holds
A(un)

10−3p
4 ≤ C · c

6−p
4

n

and we get that

A(un) → 0 as n → ∞ (2.3.21)
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if p ∈ (3, 10
3 ) and directly a contradiction if p = 10

3 . Now when p ∈ (3, 10
3 ) by Lemma 2.2.3

we know, since Q(un) = 0, that there exists a constant C > 0 such that

64π − 1
64π

A(un) ≤ C ·A(un)
3
2 · c

1
2
n

or equivalently that
64π − 1

64π
≤ C ·A(un)

1
2 · c

1
2
n . (2.3.22)

But (2.3.22) implies that A(un) → ∞ as n → ∞ and this contradicts (2.3.21).
Now when p = 3, it is enough to prove that, for any c > 0, there holds

Q(u) > 0, for all u ∈ S(c). (2.3.23)

Indeed, if (2.3.23) holds true, we can conclude the non-existence of minimizers directly
from Lemma 2.2.1. To check (2.3.23), we use (2.2.10) with η = 2. Then, from (2.2.9) and
(2.2.10), we get

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy ≥ − 1

16π
||∇u||22 +

1
2

||u||33.

Thus, for any u ∈ S(c),

Q(u) = ||∇u||22 +
1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − 1

2
||u||33

≥ ||∇u||22 − 1
16π

||∇u||22 > 0.

At this point the proof is completed.





Chapter 3

Existence and instability of
standing waves with prescribed
norm for a class of
Schrödinger-Poisson-Slater
equations

3.1 Introduction

In this chapter we prove the existence and the strong instability of standing waves with a
prescribed L2-norm for the following Schrödinger-Poisson-Slater equations:

i∂tϕ+ ∆ϕ− (|x|−1 ∗ |ϕ|2)ϕ+ |ϕ|p−2ϕ = 0 in R × R
3. (3.1.1)

This class of Schrödinger type equations with a repulsive nonlocal Coulombic potential is
obtained by approximation of the Hartree-Fock equation describing a quantum mechanical
system of many particles, see for instance [10, 81, 84, 92]. We look for standing waves
solutions of (3.1.1). Namely for solutions in the form

ϕ(t, x) = e−iλtu(x),

where λ ∈ R is a parameter. Then the function u(x) satisfies the equation

−∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0 in R
3. (Eλ)

Thus to that purpose, one of the aims is, for given c > 0, to search for

(uc, λc) ∈ H1(R3) × R solution of (Eλ) with ‖uc‖2
2 = c.

One notes that a solution uc of (Eλ) can be obtained as constrained critical points of the
functional

F (u) :=
1
2

‖▽u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|p dx

on the constraint
S(c) :=

{
u ∈ H1(R3) : ‖u‖2

2 = c, c > 0
}
.
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The parameter λc ∈ R in this situation appears as a Lagrange multiplier in (Eλ).

We recall that the functional F is a well defined and C1 functional on S(c) for any
p ∈ (2, 6] (see [99] for example), and when p ∈ (2, 10

3 ), F is bounded from below and
coercive on S(c), which permits to obtain critical points of F on S(c) by considering
global minimizers of F on the constraint. We refer to Chapter 2 for more details in that
direction.

In this chapter, we consider the case p ∈ (10
3 , 6). For this range of power the functional

F is no more bounded from below on S(c). No hope can be expected to find a solution as
a global minimizer for F on S(c). However, we shall prove that the constrained functional
has a mountain pass geometry.

Definition 3.1.1. Given c > 0, we say that F has a mountain pass geometry on S(c) if
there exists a Kc > 0, such that

γ(c) := inf
g∈Γc

max
t∈[0,1]

F (g(t)) > max
{

max
g∈Γc

F (g(0)),max
g∈Γc

F (g(1))
}
,

holds in the set

Γc =
{
g ∈ C([0, 1], S(c)) : g(0) ∈ AKc , F (g(1)) < 0

}
,

where AKc = {u ∈ S(c) : ‖▽u‖2
2 ≤ Kc}.

In order to find critical points of F on S(c), we look at the mountain pass level γ(c).
Our main result concerning the existence of solutions of (Eλ) is given by the following

Theorem 3.1.2. Let p ∈ (10
3 , 6) and c > 0, then F has a mountain pass geometry on

S(c). Moreover there exists c0 > 0 such that for any c ∈ (0, c0) there exists a couple
(uc, λc) ∈ H1(R3) × R

− solution of (Eλ) with ||uc||22 = c and F (uc) = γ(c).

In addition, we prove that

Lemma 3.1.3. Assume that p ∈ (10
3 , 6). Let (uc, λc) with ‖uc‖2

2 = c, be a solution of
(Eλ). Then necessarily

λc → −∞, as c → 0. (3.1.2)

Now let us underline some of the difficulties that arise in the study of the existence
of critical points for our functional on S(c). First the mountain pass geometry does not
guarantee the existence of a bounded Palais-Smale sequence. To overcome this difficulty
we introduce the functional

Q(u) :=
∫

R3
|∇u|2dx+

1
4

∫

R3

∫

R3

|u(x)|2 |u(y)|2
|x− y| dxdy − 3(p− 2)

2p

∫

R3
|u|pdx,

the set
V (c) :=

{
u ∈ S(c) : Q(u) = 0

}

and we first prove that
γ(c) = inf

u∈V (c)
F (u) > 0. (3.1.3)
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We also show that each constrained critical point of F must lie in V (c). At this point,
taking advantage of the nice “shape” of some sequence of paths {gn} ⊂ Γc such that

max
t∈[0,1]

F (gn(t)) → γ(c),

we construct a special Palais-Smale sequence {un} ⊂ S(c) at the level γ(c), which con-
centrates around V (c). This localization leads to its boundedness but also provides the
information that Q(un) = o(1). This last property is crucially used in the study of the
compactness of the sequence. Next, since we look for solutions with a prescribed L2-norm,
we must deal with a possible lack of compactness for sequences which do not minimize
globally F on S(c). In our setting, it seems not be possible to reduce the problem to
the classical vanishing-dichotomy-compactness scenario and to the check of the associated
strict subadditivity inequalities, see [83]. To overcome this difficulty, we first study the
behavior of the function c → γ(c). The theorem below summarizes its properties.

Theorem 3.1.4. Let p ∈ (10
3 , 6) and for any c > 0 let γ(c) be the mountain pass level.

Then

(i) c → γ(c) is continuous at each c > 0.

(ii) c → γ(c) is non-increasing.

(iii) There exists c0 > 0 such that in (0, c0) the function c → γ(c) is strictly decreasing.

(iv) There exists c∞ > 0 such that for all c ≥ c∞ the function c → γ(c) is constant.

(v) lim
c→0

γ(c) = +∞ and lim
c→∞

γ(c) =: γ(∞) > 0.

We show that if γ(c) < γ(c1), for all c1 ∈ (0, c) then there exists a uc ∈ H1(R3) such
that ||uc||22 = c and F (uc) = γ(c). However we are only able to prove this for c > 0
sufficiently small. For the other values of c > 0, the information that c → γ(c) is non
increasing permits to reduce the problem of convergence to the one of showing that the
associated Lagrange multiplier λc ∈ R is non zero. But we do prove that λc = 0 holds
for any c > 0 is sufficiently large. In view of this point, we conjecture that γ(c) is not a
critical value for c > 0 large enough. See Remark 3.7.4 in that direction.

Remark 3.1.5. The proof that c → γ(c) is non increasing is not derived through the use
of some scaling. Due to the presence of three terms in F (u) which scale differently such
an approach seems difficult. Instead we show that if one adds in a suitable way L2-norm
in R

3 then this does not increase the mountain pass level. This approach is reminiscent
of the one developed in [67] but here the fact that we deal with a function defined by a
mountain pass instead of a global minimum and that F (u) has a nonlocal term makes the
proof more delicate.

To show Theorem 3.1.4 (iv) and that γ(c) → γ(∞) > 0 as c → ∞ in (v) we take
advantage of some results of [63]. In [63] the equation

−∆v + (|x|−1 ∗ |v|2)v − |v|p−2v = 0 in R
3 (3.1.4)

is considered. Real solutions of (3.1.4) are searched in the space

E :=
{
u ∈ D1,2(R3) :

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy < ∞

}
(3.1.5)
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which contains H1(R3). This space is the natural space when λ = 0 in (Eλ). In [63] it
is shown that F defined in E possess a ground state. It is also proved, see [63, Theorem
6.1], that any real radial solution of (3.1.4) decreases exponentially at infinity. We extend
here this result to any real solution of (3.1.4). More precisely we prove

Theorem 3.1.6. Let p ∈ (3, 6) and (u, λ) ∈ E × R with λ ≤ 0 be a real solution of (Eλ).
Then there exist constants C1 > 0, C2 > 0 and R > 0 such that

|u(x)| ≤ C1|x|− 3
4 e−C2

√
|x|, ∀ |x| > R. (3.1.6)

In particular, u ∈ H1(R3).

Remark 3.1.7. Clearly the difficult case here is when λ = 0 and it corresponds to the
so-called zero mass case, see [19]. This part of Theorem 3.1.6 was kindly provided to
us by L. Dupaigne [47]. We point out that the exponential decay when λ = 0 is due to
the fact that the nonlocal term is sufficiently strong at infinity. Actually we prove that
(|x|−1 ∗ |v|2) ≥ C|x|−1 for some C > 0 and |x| large. In contrast we recall that for the
equation

−∆u+ V (x)u− |u|p−2u = 0, x ∈ H1(R3), (3.1.7)

if we assume that lim sup|x|→∞ V (x)|x|2+δ = 0 for some δ > 0, then positive solutions
of (3.1.7) decay no faster than |x|−1. This can be seen by comparing with an explicit
subsolution at infinity |x|−1(1 + |x|−δ) of −∆ + V .

Theorem 3.1.6 is interesting for itself and also it answers a conjecture of [63, Remark
6.2]. For our study the information that any solution of (3.1.4) belongs to L2(R3) is crucial
to derive Theorem 3.1.4 (iv)-(v) and the exponential decay is also used later to prove that
our solutions correspond to standing waves unstable by blow-up.

The fact that c → γ(c) becomes constant for c > 0 large (which leads very likely to the
fact that γ(c) is not a critical level for c > 0 large) is due to the term (|x|−1 ∗ |u|2)u. In
order to try to understand this, we draw a comparison between (3.1.1) and the classical
nonlinear Schrödinger equation

iψt + ∆ψ + |ψ|p−2ψ = 0 in R
3. (3.1.8)

In [64], L. Jeanjean considered the existence of standing waves for (3.1.8) on S(c) when
p ∈ [10

3 , 6). Then the associated functional is unbounded from below. In [64] a solution was
obtained for any given c > 0 after having shown that the associated Lagrange multiplier
is strictly negative for any c > 0. In this thesis we complement and enlighten this result
by showing that the mountain pass value γ̃(c) associated with (3.1.8) is strictly decreasing
as a function of c > 0 and that γ̃(c) → 0 as c → ∞.

The fact that (3.1.3) holds and that any constrained critical point of F lies in V (c)
implies that the solutions found in Theorem 3.1.2 can be considered as ground-states
within the solutions having the same L2-norm.

Let us denote the set of minimizers of F on V (c) as

Mc := {uc ∈ V (c) : F (uc) = inf
u∈V (c)

F (u)}. (3.1.9)

Then we prove

Theorem 3.1.8. Let p ∈ (10
3 , 6) and c > 0. For each uc ∈ Mc there exists a λc ≤ 0 such

that (uc, λc) ∈ H1(R3) × R solves (Eλ).
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Clearly to prove Theorem 3.1.8 we need to show that any minimizer of F on V (c) is
a critical point of F restricted to S(c), namely that V (c) acts as a natural constraint. As
additional properties of elements of Mc, we have :

Lemma 3.1.9. Let p ∈ (10
3 , 6) and c > 0 be arbitrary. Then

(i) If uc ∈ Mc then also |uc| ∈ Mc .

(ii) Any minimizer uc ∈ Mc has the form eiθ|uc| for some θ ∈ S
1 and |uc(x)| > 0 a.e.

in R
3.

In view of Lemma 3.1.9 each elements of Mc is a real positive function multiply by a
constant complex factor.

Remark 3.1.10. A natural question that arises, as a consequence of Theorem 3.1.8, is
why not search for solutions of (Eλ) with a prescribed norm by directly minimizing F on
V (c). However starting from an arbitrary minimizing sequence {un} ⊂ V (c) and trying
to show its convergence seem to be challenging. From the definition of V (c) it is easy to
prove that any minimizing sequence is bounded in H1(R3) and thus we can assume that
un ⇀ ū in H1(R3) for some ū ∈ H1(R3). Also ruling out the vanishing is not a problem as
it can be seen from Lemma 3.4.2. But to show that the dichotomy does not occur it seems
necessary to know that ū ∈ V (||ū||22). For our Palais-Smale sequence we use, in Lemma
3.4.4, the information that ū ∈ H1(R3) is a non-trivial solution of (Eλ). Then by Lemma
3.4.3, Q(ū) = 0 and ū ∈ V (||ū||22). For an arbitrary minimizing sequence it does not
seem possible to show that the weak limit ū ∈ H1(R3) belongs to V (||ū||22). Having such
information seems to require some information on the derivative of F along the sequence
and that is why we introduce Palais-Smale sequences to solve our minimization problem.

Concerning the dynamics we first consider the question of global existence of solutions
for the Cauchy problem. In the case p ∈ (2, 10

3 ) global existence in time is guaranteed for
initial data in H1(R3), see for instance [37]. In the case p ∈ (2, 10

3 ) the standing waves
found in [14, 15, 102] by minimization are orbitally stable. This is proved following the
approach of Cazenave-Lions [36]. In the case p ∈ (10

3 , 6) the global existence in time of
solutions for the Cauchy problem associated with (3.1.1) does not hold for arbitrary initial
condition. However we are able to prove the following global existence result.

Theorem 3.1.11. Let p ∈ (10
3 , 6) and u0 ∈ H1(R3,C) be an initial condition associated

with (3.1.1) with c = ||u0||22. If

Q(u0) > 0 and F (u0) < γ(c),

then the solution of (3.1.1) with initial condition u0 exists globally in time.

In Remark 3.8.2 we prove that the set

O = {u0 ∈ S(c) : Q(u0) > 0 and F (u0) < γ(c)}

is not empty.
Theorem 3.1.11 is, at its modest level, in the spirit of recent works [48, 60, 93, 94, 109]

which try to understand deeply the dynamics of some nonlinear equations.

In what follows, we prove that the standing waves corresponding to elements of Mc

are strongly unstable.
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Theorem 3.1.12. Let p ∈ (10
3 , 6) and c > 0. For each uc ∈ Mc, the standing wave

e−iλctuc of (3.1.1) where λc ∈ R is the Lagrange multiplier, is strongly unstable.

Remark 3.1.13. In view of (3.1.3), Theorem 3.1.12 yields the strong instability of the
standing waves we obtained in Theorem 3.1.2. The proof of Theorem 3.1.12 borrows
elements of the original approach of H. Berestycki and T. Cazenave [18]. The starting
point is the variational characterization of uc ∈ Mc and the decay estimates established
in Theorem 3.1.6 proves crucial to use the virial identity.

Remark 3.1.14. For previous results concerning the instability of standing waves of
(3.1.1) we refer to [72] (see also [71]). In [72], working in the subspace of radially symmetric
functions, it is proved that for λ < 0 fixed and p ∈ (10

3 , 6) the equation (Eλ) admits a
ground state which is strongly unstable. However when we work in all H1(R3) it is still not
known if ground states, or at least one of them, are radially symmetric. In that direction
we are only aware of the result of [52] which gives a positive answer when p ∈ (2, 3) and
for c > 0 sufficiently small. In this range the critical point is found as a minimizer of F
on S(c).

Finally we prove

Theorem 3.1.15. Let p ∈ (10
3 , 6). Any ground state of (3.1.4) is strongly unstable.

Remark 3.1.16. The problem (3.1.4) is usually seen as the one of the zero mass type.
Actually, in the zero mass case, there seems to be few results of stability or instability of
standing waves. We are only aware of a stability result of M. Kaminaga and M. Ohta [68].

The chapter is organized as follows. In Section 3.2 we establish the mountain pass
geometry of F on S(c). In Section 3.3 we construct the special bounded Palais-Smale
sequence at the level γ(c). In Section 3.4 we show the convergence of the Palais-Smale
sequence and we conclude the proof of Theorem 3.1.2. In Section 3.5 some parts of Theorem
3.1.4 are established. In Section 3.6 we prove Theorem 3.1.8 and Lemma 3.1.9. In Section
3.7 we prove Theorem 3.1.6 and using elements from [63] we end the proof of Theorem
3.1.4. Section 3.8 is devoted to the proof of Theorems 3.1.11, 3.1.12 and 3.1.15. Finally
in Section 3.9 we discuss the nonlinear Schrödinger equation case.

Acknowledgement: The authors thanks Professor Louis Dupaigne for providing to
them a proof of Theorem 3.1.6 in the case λ = 0. We also thanks Professor Masahito Ohta
for pointing to us the interest of studying the stability/instability of the ground states of
(3.1.4).

3.2 The mountain pass geometry on the constraint

In this section, we discuss the Mountain Pass Geometry (“MP Geometry” for short) of
the functional F on the L2-constraint S(c). We show the following:

Theorem 3.2.1. When p ∈ (10
3 , 6), for any c > 0, F has a MP geometry on the constraint

S(c).

Before proving Theorem 3.2.1 we establish some lemmas. We first introduce the
Cazenave scaling [37]. For u ∈ S(c), we set ut(x) = t

3
2u(tx), t > 0, then

A(ut) = t2A(u) , D(ut) = D(u),

B(ut) = tB(u) , C(ut) = t
3
2

(p−2)C(u).
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Thus

F (ut) =
t2

2
A(u) +

t

4
B(u) − t

3
2

(p−2)

p
C(u). (3.2.1)

Lemma 3.2.2. Let u ∈ S(c), c > 0 be arbitrary but fixed and p ∈ (10
3 , 6), then:

(1) A(ut) → ∞ and F (ut) → −∞, as t → ∞.

(2) There exists k0 > 0 such that Q(u) > 0 if ||∇u||2 ≤ k0 and C(u) ≥ k0 if Q(u) = 0.

(3) If F (u) < 0 then Q(u) < 0.

Proof. We notice that

F (u) − 2
3(p− 2)

Q(u) =
3p− 10
6(p− 2)

A(u) +
3p− 8

12(p− 2)
B(u). (3.2.2)

Thus (3) holds since the RHS is always positive. Moreover, thanks to Gagliardo-Nirenberg’s
inequality there exists a constant C > 0 such that

Q(u) ≥ A(u) − C ·A(u)
3(p−2)

4 D(u)
6−p

4 .

The fact that 3(p−2)
4 > 1 insures that Q(u) > 0 for sufficiently small A(u). Also when

Q(u) = 0

C(u) =
2p

3(p− 2)

[
A(u) +

1
4
B(u)

]
≥ 2p

3(p− 2)
A(u)

and this ends the proof of (2). Finally (1) follows directly from (3.2.1) and since A(ut) =
t2A(u).

Our next lemma is inspired by [37, Lemma 8.2.5].

Lemma 3.2.3. When p ∈ (10
3 , 6), given u ∈ S(c) we have:

(1) There exists a unique t⋆(u) > 0, such that ut⋆ ∈ V (c);

(2) The mapping t 7→ F (ut) is concave on [t⋆,∞);

(3) t⋆(u) < 1 if and only if Q(u) < 0;

(4) t⋆(u) = 1 if and only if Q(u) = 0;

(5) Q(ut)

{
> 0, ∀ t ∈ (0, t⋆(u));
< 0, ∀ t ∈ (t⋆(u),∞).

(6) F (ut) < F (ut⋆
), for any t > 0 and t 6= t⋆;

(7) ∂
∂tF (ut) = 1

tQ(ut), ∀t > 0.

Proof. Since

F (ut) =
t2

2
A(u) +

t

4
B(u) − t

3
2

(p−2)

p
C(u),

we have that

∂

∂t
F (ut) = tA(u) +

1
4
B(u) − 3(p− 2)

2p
t

3
2

(p−2)−1C(u) =
1
t
Q(ut),
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and this proves (7). Now we denote

y(t) = tA(u) +
1
4
B(u) − 3(p− 2)

2p
t

3
2

(p−2)−1C(u),

and observe that Q(ut) = t · y(t). After direct calculations, we see that:

y′(t) = A(u) − 3(p− 2)(3p− 8)
4p

t
3p−10

2 C(u);

y′′(y) = −3(p− 2)(3p− 8)
4p

· 3p− 10
2

· t 3p−12
2 C(u).

From the expression of y′(t) we know that y′(t) has a unique zero that we denote t0 > 0.
Since p ∈ (10

3 , 6) we see that y′′(t) < 0 and t0 is the unique maximum point of y(t). Thus
in particular the function y(t) satisfies:

(i) y(t0) = max
t>0

y(t);

(ii) y(0) = 1
4B(u);

(iii) lim
t→∞

y(t) = −∞;

(iv) y(t) decreases strictly in [t0,+∞) and increases strictly in (0, t0].

Since B(u) 6= 0, by the continuity of y(t), we deduce that y(t) has a unique zero t⋆ > 0.
Then Q(ut⋆

) = 0 and point (1) follows. Point (2) (3) and (5) are also easy consequences
of (i)-(iv). Since ∂

∂tF (ut)|t=t⋆ = 0, ∂2

∂t2F (ut)|t=t⋆ = y′(t⋆) < 0 and t⋆ is unique we get (4)
and (6).

Remark 3.2.4. It is not difficult to observe from the proof that Lemma 3.2.3 holds also
for p = 10

3 .

Proof of Theorem 3.2.1. We denote

αk := sup
u∈Ck

F (u) and βk := inf
u∈Ck

F (u)

where
Ck := {u ∈ S(c) : A(u) = k, k > 0}.

Let us show that there exist 0 < k1 < k2 such that

αk < βk2 for all k ∈ (0, k1] and Q(u) > 0 if A(u) < k2. (3.2.3)

Notice that, from the Hardy-Littlewood-Sobolev and Gagliardo-Nirenberg inequalities, it
follows that

F (u) ≤ 1
2
A(u) +

1
4
B(u) ≤ 1

2
A(u) + C · ‖u‖4

L
12
5

≤ 1
2
A(u) + C ·A(u)

1
2 ·D(u)

3
2 .

In particular αk1 → 0+ as k1 → 0+. On the other hand still by the Gagliardo-Nirenberg
inequality we have

F (u) ≥ 1
2
A(u) − 1

p
C(u) ≥ 1

2
A(u) − C ·A(u)

3(p−2)
4 ·D(u)

6−p
4 .
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Thus, since 3(p−2)
4 > 1, βk2 ≥ 1

4k2 for any k2 > 0 small enough. These two observations
and Lemma 3.2.2 (2) prove that (3.2.3) hold. We now fix a k1 > 0 and a k2 > 0 as in
(3.2.3). Thus for

Γc = {g ∈ C([0, 1], S(c)), g(0) ∈ Ak1 , F (g(1)) < 0},

if Γc 6= ∅, then from the definition of γ(c), we have γ(c) ≥ βk2 > 0. Thus we only need to
verify that Γc 6= ∅. But this fact follows from Lemma 3.2.2 (1). At his point, we are done
with the proof.

Remark 3.2.5. As it is clear from the proof of Theorem 3.2.1 we can assume without
restriction that

sup
u∈AKc

F (u) < γ(c)/2

where AKc is introduced in the Definition 3.1.1.

Lemma 3.2.6. When p ∈ (10
3 , 6), we have

γ(c) = inf
u∈V (c)

F (u).

Proof. Let us argue by contradiction. Suppose there exists v ∈ V (c) such that F (v) < γ(c),
and let, for λ > 0,

vλ(x) = λ3/2v(λx).

Then, since A(vλ) = λ2A(v) there exists 0 < λ1 < 1 sufficiently small so that vλ1 ∈ Ak1 .
Also by Lemma 3.2.2 (1) there exists a λ2 > 1 sufficiently large so that F (vλ2) < 0.
Therefore if we define

g(t) = v(1−t)λ1+tλ2 , for t ∈ [0, 1]

we obtain a path in Γc. By definition of γ(c) and using Lemma 3.2.3,

γ(c) ≤ max
t∈[0,1]

F (g(t)) = F
(
g(

1 − λ1

λ2 − λ1
)
)

= F (v),

and thus
γ(c) ≤ inf

u∈V (c)
F (u).

On other hand thanks to Lemma 3.2.2 any path in Γc crosses V (c) and hence

max
t∈[0,1]

F (g(t)) ≥ inf
u∈V (c)

F (u).

3.3 Localization of a PS sequence

In this section we prove a localization lemma for a specific Palais-Smale sequence {un} ⊂
S(c) for F constrained to S(c). From this localization we deduce that the sequence is
bounded and that Q(un) = o(1). This last property will be essential later to establish the
compactness of the sequence. First we observe that, for any fixed c > 0, the set

L :=
{
u ∈ V (c), F (u) ≤ γ(c) + 1

}
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is bounded. This follows directly from the observation that

F (u) − 2
3(p− 2)

Q(u) =
3p− 10
6(p− 2)

A(u) +
3p− 8

12(p− 2)
B(u) (3.3.1)

and the fact that 3p−10
6(p−2) > 0, 3p−8

12(p−2) > 0 if p ∈ (10
3 , 6).

Let R0 > 0 be such that L ⊂ B(0, R0) where B(0, R0) := {u ∈ H1(R3), ||u|| ≤ R0}.
The crucial localization result is the following.

Lemma 3.3.1. Let p ∈ (10
3 , 6) and

Kµ :=
{
u ∈ S(c) s.t. |F (u) − γ(c)| ≤ µ, dist(u, V (c)) ≤ 2µ, ||F ′ |S(c)(u)||H−1 ≤ 2µ

}
,

then for any µ > 0, the set Kµ ∩B(0, 3R0) is not empty.

In order to prove Lemma 3.3.1 we need to develop a deformation argument on S(c).
Following [20] we recall that, for any c > 0, S(c) is a submanifold of H1(R3) with codi-
mension 1 and the tangent space at a point ū ∈ S(c) is defined as

TūS(c) :=
{
v ∈ H1(R3) s.t. (ū, v)2 = 0

}
.

The restriction F|S(c)
: S(c) → R is a C1 functional on S(c) and for any ū ∈ S(c) and any

v ∈ TūS(c)
〈F ′

|S(c)
(ū), v〉 = 〈F ′(ū), v〉.

We use the notation ||dF|S(c)
(ū)|| to indicate the norm in the cotangent space TūS(c)′, i.e

the dual norm induced by the norm of TūS(c), i.e

||dF|S(c)
(ū)|| := sup

||v||≤1, v∈TūS(c)
|〈dF (ū), v〉|.

Let S̃(c) := {u ∈ S(c) s.t. dF |S(c)(u) 6= 0}. We know from [20] that there exists a locally
Lipschitz pseudo gradient vector field Y ∈ C1(S̃(c), T (S(c)) ( here T (S(c)) is the tangent
bundle) such that

‖Y (u)‖ ≤ 2 ||dF|S(c)
(u)||, (3.3.2)

and
〈F ′

|S(c)
(ū), Y (u)〉 ≥ ||dF|S(c)

(u)||2, (3.3.3)

for any u ∈ S̃(c). Note that ||Y (u)|| 6= 0 for u ∈ S̃(c) thanks to (3.3.3). Now for an
arbitrary but fixed µ > 0 we consider the sets

Ñµ := {u ∈ S(c) s.t. |F (u) − γ(c)| ≤ µ, dist(u, V (c)) ≤ 2µ, ||Y (u)|| ≥ 2µ}

Nµ := {u ∈ S(c) s.t. |F (u) − γ(c)| < 2µ}
where, for a subset A of S(c), dist(x,A) := inf{||x − y|| : y ∈ A}. Assuming that Ñµ is
non empty there exists a locally Lipschitz function g : S(c) → [0, 1] such that

g =

{
1 on Ñµ,
0 on N c

µ.
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We also define on S(c) the vector field W by

W (u) :=

{
−g(u) Y (u)

||Y (u)|| , if u ∈ S̃(c),
0, if u ∈ S(c)\S̃(c).

(3.3.4)

and the pseudo gradient flow
{

d
dtη(t, u) = W (η(t, u)),
η(0, u) = u.

(3.3.5)

The existence of a unique solution η(t, ·) of (3.3.5) defined for all t ∈ R follows from
standard arguments and we refer to [20, Lemma 5] for this. Let us recall some of its basic
properties that will be useful to us

• η(t, ·) is a homeomorphism of S(c);

• η(t, u) = u for all t ∈ R if |F (u) − γ(c)| ≥ 2µ;

• d
dtF (η(t, u)) = 〈dF (η(t, u)),W (η(t, u))〉 ≤ 0 for all t ∈ R and u ∈ S(c).

Proof of Lemma 3.3.1. : Let us define, for µ > 0,

Λµ :=
{
u ∈ S(c) s.t. |F (u) − γ(c)| ≤ µ, dist(u, V (c)) ≤ 2µ

}
.

In order to prove Lemma 3.3.1 we argue by contradiction assuming that there exists
µ̄ ∈ (0, γ(c)/4) such that

u ∈ Λµ̄ ∩B(0, 3R0) =⇒ ||F ′ |S(c)(u)||H−1 > 2µ̄. (3.3.6)

Then it follows from (3.3.3) that

u ∈ Λµ̄ ∩B(0, 3R0) =⇒ u ∈ Ñµ̄. (3.3.7)

Also notice that, since by (3.3.5),

|| d
dt
η(t, u)|| ≤ 1, ∀t ≥ 0, ∀u ∈ S(c),

there exists s0 > 0 depending on µ̄ > 0 such that, for all s ∈ (0, s0),

u ∈ Λ µ̄
2

∩B(0, 2R0) =⇒ η(s, u) ∈ B(0, 3R0) and dist(η(s, u), V (c)) ≤ 2µ̄. (3.3.8)

We claim that, taking ε > 0 sufficiently small, we can construct a path gε(t) ∈ Γc such
that

max
t∈[0,1]

F (gε(t)) ≤ γ(c) + ε

and
F (gε(t)) ≥ γ(c) =⇒ gε(t) ∈ Λ µ̄

2
∩B(0, 2R0). (3.3.9)

Indeed, for ε > 0 small, let u ∈ V (c) be such that F (u) ≤ γ(c) + ε and consider the path
defined in Lemma 3.2.6 by

gε(t) = u(1−t)λ1+tλ2 , for t ∈ [0, 1]. (3.3.10)
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Clearly
max
t∈[0,1]

F (gε(t)) ≤ γ(c) + ε.

Also for t∗ε > 0 such that (1 − t∗ε)λ1 + t∗ελ2 = 1 we have, since gε(t∗ε) ∈ V (c), that

d2

d2s
F (gε(s))|t∗

ε
= −1

4
B(u) − 3

2p
(p− 2)(5 − 3

2
p)C(u) ≤ −C · k0 < 0 (3.3.11)

where k0 > 0 is given in Lemma 3.2.2 (2). The estimate (3.3.11) is uniform with respect
to the choice of ε > 0 and of u ∈ V (c). Thus, by Taylor’s formula, it is readily seen that

{t ∈ [0, 1] : F (gε(t)) ≥ γ(c)} ⊂ [t∗ε − αε, t
∗
ε + αε]

for some αε > 0 with αε → 0 as ε → 0. The claim (3.3.10) follows for continuity arguments.

We fix a ε ∈ (0, 1
4 µ̄s0) such that (3.3.9) hold. Applying the pseudo gradient flow,

constructed with µ̄ > 0, on gε(t) we see that η(s, gε(·)) ∈ Γc for all s > 0. Indeed η(s, u) = u
for all s > 0 if |F (u) − γ(c)| ≥ 2µ̄ and we conclude by Remark 3.2.5.

We claim that taking s∗ :=
4ε
µ̄
< s0

max
t∈[0,1]

F (η(s∗, gε(t))) < γ(c). (3.3.12)

If (3.3.12) holds we have a contradiction with the definition of γ(c) and thus the lemma is
proved. To prove (3.3.12) for simplicity we set w = gε(t) where t ∈ [0, 1]. If F (w) < γ(c)
there is nothing to prove since then F (η(s∗, w) ≤ F (w) < γ(c) for any s > 0. If F (w) ≥
γ(c) we assume by contradiction that F (η(s, w)) ≥ γ(c) for all s ∈ [0, s∗]. Then by (3.3.8)
and (3.3.9), η(s, w) ∈ Λµ̄ ∩ B(0, 3R0) for all s ∈ [0, s∗]. In particular ||Y (η(s, w))|| ≥ 2µ̄
and g(η(s, w)) = 1 for all s ∈ [0, s∗]. Thus

d

ds
F (η(s, w)) = 〈dF (η(s, w)),− Y (η(t, u))

||Y (η(t, u))|| 〉.

By integration, and since s∗ =
4ε
µ̄
, we get

F (η(s∗, w)) ≤ F (w) − µ̄s∗ ≤ (γ(c) + ε) − 2ε < γ(c) − ε.

This proves the claim (3.3.12) and the lemma.

Lemma 3.3.2. Let p ∈ (10
3 , 6), then there exists a sequence {un} ⊂ S(c) and a constant

α > 0 fulfilling

Q(un) = o(1), F (un) = γ(c) + o(1),

||F ′ |S(c)(un)||H−1 = o(1), ||un|| ≤ α.

Proof. First let us consider {un} ⊂ S(c) such that {un} ⊂ B(0, 3R0),

dist(un, V (c)) = o(1), |F (un) − γ(c)| = o(1), ||F ′ |S(c)(un)||H−1 = o(1).

Such sequence exists thanks to Lemma 3.3.1. To prove the lemma we just have to show
that Q(un) = o(1). It is readily checked that ||dQ(·)||H−1 is bounded on any bounded set
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of H1(R3) and thus in particular on B(0, 3R0). Now, for any n ∈ N and any w ∈ V (c) we
can write

Q(un) = Q(w) + dQ(aun + (1 − a)w)(un − w)

where a ∈ [0, 1]. Thus since Q(w) = 0 we have

|Q(un)| ≤ max
u∈B(0,3R0)

||dQ||H−1 ||un − w||. (3.3.13)

Finally choosing {wm} ⊂ V (c) such that

||un − wm|| → dist(un, V (c)) as m → ∞,

since dist(un, V (c)) → 0 we obtain from (3.3.13) that Q(un) = o(1).

3.4 Compactness of our Palais-Smale sequence

Proposition 3.4.1. Let {vn} ⊂ S(c) be a bounded Palais-Smale for F restricted to S(c)
such that F (vn) → γ(c). Then there is a sequence {λn} ⊂ R, such that, up to a subse-
quence:

(1) vn ⇀ vc weakly in H1(R3);

(2) λn → λc in R;

(3) −∆vn − λnvn + (|x|−1 ∗ |vn|2)vn − |vn|p−2vn → 0 in H−1(R3);

(4) −∆vn − λcvn + (|x|−1 ∗ |vn|2)vn − |vn|p−2vn → 0 in H−1(R3);

(5) −∆vc − λcvc + (|x|−1 ∗ |vc|2)vc − |vc|p−2vc = 0 in H−1(R3).

Proof. Point (1) is trivial. Since {vn} ⊂ H1(R3) is bounded, following Berestycki and
Lions [20, Lemma 3], we know that:

F ′|S(c)(vn) −→ 0 in H−1(R3)

⇐⇒ F ′(vn) − 〈F ′(vn), vn〉vn −→ 0 in H−1(R3).

Thus, for any w ∈ H1(R3),

〈F ′(vn) − 〈F ′(vn), vn〉vn, w〉 =
∫

R3
∇vn∇wdx+

∫

R3

∫

R3

|vn(x)|2
|x− y| vn(y)w(y)dxdy

−
∫

R3
|vn|p−2vnwdx− λn

∫

R3
vn(x)w(x)dx,

with

λn :=
1

‖vn‖2
2

{
‖∇vn‖2

2 +
∫

R3

∫

R3

|vn(x)|2vn(x)2

|x− y| dxdy − ‖vn‖p
p

}
. (3.4.1)

Thus we obtain (3) with {λn} ⊂ R defined by (3.4.1). If (2) holds then (4) follows
immediately from (3). To prove (2), it is enough to verify that {λn} ⊂ R is bounded.
But since {vn} ⊂ H1(RN ) is bounded, by the Hardy-Littlewood-Sobolev and Gagliardo-
Nirenberg inequalities, it is easy to see that all terms in the RHS of (3.4.1) are bounded.
Finally we refer to [112, Lemma 2.2] for a proof of (5).
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Lemma 3.4.2. Let p ∈ (10
3 , 6) and {un} ⊂ S(c) be a bounded sequence such that

Q(un) = o(1) and F (un) → γ(c) with γ(c) > 0,

then, up to a subsequence and up to translation un ⇀ ū 6= 0.

Proof. If the lemma does not hold it means by standard arguments that {un} ⊂ S(c)
is vanishing and thus that C(un) = o(1) (see [83]). Thus let us argue by contradiction
assuming that C(un) = o(1), i.e. that, since Q(un) = o(1), A(un) + 1

4B(un) = o(1). Now
from (3.3.1) we immediately deduce that F (un) = o(1) and this contradicts the assumption
that F (un) → γ(c) > 0.

Lemma 3.4.3. Let p ∈ (10
3 , 6), λ ∈ R. If v ∈ H1(R3) is a weak solution of

−∆v +
(
|x|−1 ∗ |v|2

)
v − |v|p−2v = λv (3.4.2)

then Q(v) = 0. Moreover if λ ≥ 0, there exists a constant c0 > 0 independent on λ ∈ R

such that the only solution of (3.4.2) fulfilling ||v||22 ≤ c0 is the null function.

Proof. The following Pohozaev type identity holds for v ∈ H1(R3) weak solution of (3.4.2),
see [43],

1
2

∫

R3
|∇v|2dx+

5
4

∫

R3

∫

R3

|v(x)|2 |v(y)|2
|x− y| dxdy − 3

p

∫

R3
|v|p dx =

3λ
2

∫

R3
|v|2 dx.

By multiplying (3.4.2) by v and integrating we derive a second identity

∫

R3
|∇v|2dx+

∫

R3

∫

R3

|v(x)|2 |v(y)|2
|x− y| dxdy −

∫

R3
|v|p dx = λ

∫

R3
|v|2 dx.

With simple calculus we obtain the following relations

A(v) +
1
4
B(v) − 3

(
p− 2

2p

)
C(v) = 0,

(
p− 6
3p− 6

)A(v) + (
5p− 12
3p− 6

)
B(v)

2
= λD(v).

(3.4.3)

The first relation of (3.4.3) is Q(v) = 0. This identity together with the Gagliardo-
Nirenberg inequality assures the existence of a constant C > 0 such that

A(v) − C ·A(v)
3(p−2)

4 D(v)
6−p

4 ≤ A(v) − 3
(
p− 2

2p

)
C(v) ≤ 0, (3.4.4)

i.e
A(v)

10−3p
4 ≤ C ·D(v)

6−p
4 . (3.4.5)

Now we recall that by the Hardy-Littlehood-Sobolev and Gagliardo-Nirenberg inequalities
we have

B(v) ≤ C ·A(v)
1
2D(v)

3
2 , (3.4.6)

then, from the second relation of (3.4.3) we obtain

λD(v) ≤ (
p− 6
3p− 6

)A(v) + C ·A(v)
1
2D(v)

3
2 . (3.4.7)

Notice that (3.4.5) tells us that, for any solution u of (3.4.2) with small L2-norm, A(u)
must be large. This fact assures that the left hand side of (3.4.7) cannot be non negative
when D(v) is sufficiently small.
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As a consequence of the proof of Lemma 3.4.3, we could immediately prove Lemma
3.1.3.

Proof of Lemma 3.1.3. Let (vc, λc) solves weakly (3.4.2). Then from (3.4.5) we have that
A(vc) → +∞ as c → 0. Thus it follows from (3.4.7) that

λc → −∞, as c → 0.

This yields that λc → −∞ as c → 0.

Lemma 3.4.4. Let p ∈ (10
3 , 6). Assume that the bounded Palais-Smale sequence {un} ⊂

S(c) given by Lemma 3.3.2 is weakly convergent, up to translations, to the nonzero function
ū. Moreover assume that

∀c1 ∈ (0, c), γ(c1) > γ(c). (3.4.8)

Then ‖un − ū‖ → 0. In particular it follows that ū ∈ S(c) and F (ū) = γ(c).

Proof. Let T (u) := 1
4B(u) − 1

pC(u) such that

F (u) =
1
2

‖∇u‖2
2 + T (u). (3.4.9)

In [14] or [112] it is shown that the nonlinear term T fulfills the following splitting properties
of Brezis-Lieb type (see [24]),

T (un − ū) + T (ū) = T (un) + o(1). (3.4.10)

We argue by contradiction and assume that c1 = ||ū||22 < c. By Proposition 3.4.1 (5) and
Lemma 3.4.3 we have Q(ū) = 0 and thus ū ∈ V (c1). Now since un − ū ⇀ 0,

‖∇(un − ū)‖2
2 + ‖∇ū‖2

2 = ‖∇un‖2
2 + o(1). (3.4.11)

Also since {un} ⊂ S(c) is a sequence at the level γ(c) we get

1
2

‖∇un‖2
2 + T (un) = γ(c) + o(1). (3.4.12)

Combining (3.4.10) - (3.4.12) we deduce that

1
2

‖∇(un − ū)‖2
2 +

1
2

‖∇ū‖2
2 + T (un − ū) + T (ū) = γ(c) + o(1). (3.4.13)

At this point, using that ū ∈ V (c1) and Lemma 3.2.6 we get from (3.4.13) that

F (un − ū) + γ(c1) ≤ γ(c) + o(1). (3.4.14)

On the other hand,

F (un − ū) − 2
3(p− 2)

Q(un − ū) =
3p− 10
6(p− 2)

A(un − ū) +
3p− 8

12(p− 2)
B(un − ū) (3.4.15)

and
Q(un − ū) = Q(un − ū) +Q(ū) = Q(un) + o(1) = o(1). (3.4.16)

From (3.4.15) and (3.2.2) we deduce that F (un − ū) ≥ o(1). But then from (3.4.14)
we obtain a contradiction with (3.4.8). This contradiction proves that ‖ū‖2

2 = c and
F (ū) ≥ γ(c). Now still by (3.4.14) we get F (un − ū) ≤ o(1) and thanks to (3.4.15) and
(3.4.16) A(un − ū) = o(1). i.e ‖∇(un − ū)‖2 = o(1).
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Lemma 3.4.5. Let p ∈ (10
3 , 6). Assume that the bounded Palais-Smale sequence {un} ⊂

S(c) given by Lemma 3.3.2 is weakly convergent, up to translations, to the nonzero function
ū. Moreover assume that

∀c1 ∈ (0, c), γ(c1) ≥ γ(c) (3.4.17)

and that the Lagrange multiplier given by Proposition 3.4.1 fulfills

λc 6= 0.

Then ‖un − ū‖ → 0. In particular it follows that ū ∈ S(c) and F (ū) = γ(c).

Proof. Let us argue as in Lemma 3.4.4. We obtain again

F ((un − ū)) + γ(c1) ≤ γ(c) + o(1),

F (un − ū) − 2
3(p− 2)

Q(un − ū) =
3p− 10
6(p− 2)

A(un − ū) +
3p− 8

12(p− 2)
B(un − ū)

and

Q(un − ū) = Q(un − ū) +Q(ū) = Q(un) + o(1) = o(1).

Thanks to (3.4.17) we conclude that

3p− 10
6(p− 2)

A(un − ū) +
3p− 8

12(p− 2)
B(un − ū) = o(1).

Then

A(un − ū) = o(1), B(un − ū) = o(1) and also C(un − ū) = o(1), (3.4.18)

since Q(un − ū) = o(1). Now we use (5) of Proposition 3.4.1, i.e

A(un) − λcD(un) +B(un) − C(un) = A(ū) − λcD(ū) +B(ū) − C(ū) + o(1).

Thanks to the splitting properties of A(u), B(u), C(u) and to (3.4.18) we get

−λcD(un) = −λcD(ū) + o(1),

which implies D(un − ū) = o(1), i.e ||un − ū||2 = o(1). From this point we conclude as in
the proof of Lemma 3.4.4.

Admitting for the moment that c → γ(c) is non-increasing (we shall prove it in the
next section) we can now complete the proof of Theorem 3.1.2.

Proof of Theorem 3.1.2. By Lemmas 3.3.2 and 3.4.2 there exists a bounded Palais-Smale
sequence {un} ⊂ S(c) such that, up to translation, un ⇀ uc 6= 0. Thus, by Proposition
3.4.1 there exists a λc ∈ R such that (uc, λc) ∈ H1(R3)\{0}×R solves (Eλ). Now by Lemma
3.4.3 there exists a c0 > 0 such that λc < 0 if c ∈ (0, c0). Also we know from Theorem
3.1.4 (ii) that (3.4.17) holds. At this point the proof follows from Lemma 3.4.5.
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3.5 The behavior of c → γ(c)

In this section we give the proof of Theorem 3.1.4. Let us denote

γ1(c) := inf
u∈S(c)

max
t>0

F (ut), (3.5.1)

and

γ2(c) := inf
u∈V (c)

F (u). (3.5.2)

Lemma 3.5.1. For p ∈ (10
3 , 6), we have:

γ(c) = γ1(c) = γ2(c).

Proof. When p ∈ (10
3 , 6), from Lemma 3.2.6, we know that γ(c) = γ2(c). In addition, by

Lemma 3.2.3, it is clear that for any u ∈ S(c), there exists a unique t0 > 0, such that
ut0 ∈ V (c) and maxt>0 F (ut) = F (ut0) ≥ γ2(c), thus we get γ1(c) ≥ γ2(c). Meanwhile, for
any u ∈ V (c), maxt>0 F (ut) = F (u) and this readily implies that γ1(c) ≤ γ2(c). Thus we
conclude that γ1(c) = γ2(c).

Lemma 3.5.2. Denote

f(a, b, c) := max
t>0

{
a · t2 + b · t− c · t 3

2
(p−2)

}
,

where p ∈ (10
3 , 6) and a > 0, b ≥ 0, c > 0 which are totally independent of t > 0. Then the

function: (a, b, c) 7→ f(a, b, c) is continuous in R
+ × R

c
− × R

+ (here R
c
− denotes the set of

non-negative real numbers).

Proof. Let g(a, b, c, t) := a · t2 + b · t− c · t 3
2

(p−2), then

∂tg(a, b, c, t) = 2a · t+ b− 3
2

(p− 2) · c · t 3p−8
2 ,

∂2
ttg(a, b, c, t) = 2a− 3p− 6

2
· 3p− 8

2
· c · t 3p−10

2 .

It’s not difficult to see that for any (a0, b0, c0) with a0 > 0, b0 ≥ 0, c0 > 0, there ex-
ists a unique t1 > 0, such that ∂tg(a0, b0, c0, t1) = 0 and ∂2

ttg(a0, b0, c0, t1) < 0, thus
f(a0, b0, c0) = g(a0, b0, c0, t1). Then applying the Implicit Function Theorem to the func-
tion ∂tg(a, b, c, t), we deduce the existence of a continuous function t = t(a, b, c) in some
neighborhood O of (a0, b0, c0) that satisfies ∂tg(a, b, c, t(a, b, c)) = 0, ∂2

ttg(a, b, c, t(a, b, c)) <
0. Thus f(a, b, c) = g(a, b, c, t(a, b, c)) in O. Now since the function g(a, b, c, t) is continu-
ous in (a, b, c, t), it follows that f(a, b, c) is continuous in (a0, b0, c0). The point (a0, b0, c0)
being arbitrary this concludes the proof.

Lemma 3.5.3. Let p ∈ (10
3 , 6), then the function c → γ(c) is non increasing for c > 0.

Proof. To show that c 7→ γ(c) is non increasing, it is enough to verify that: for any c1 < c2

and ε > 0 arbitrary, we have

γ(c2) ≤ γ(c1) + ε. (3.5.3)

By the definition of γ2(c1), there exists u1 ∈ V (c1) such that F (u1) ≤ γ2(c1) + ε
2 . Thus by

Lemma 3.5.1, we have

F (u1) ≤ γ(c1) +
ε

2
(3.5.4)
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and also
F (u1) = max

t>0
F (ut

1). (3.5.5)

We truncate u1 into a function with compact support ũ1 as follows. Let η ∈ C∞
0 (R3) be

radial and such that

η(x) =





1, |x| ≤ 1,
∈ [0, 1], 1 < |x| < 2,
0, |x| ≥ 2.

For any small δ > 0, let

ũ1(x) = η(δx) · u1(x). (3.5.6)

It is standard to show that ũ1(x) → u1(x) in H1(R3) as δ → 0. Then, by continuity, we
have, as δ → 0,

A(ũ1) → A(u1), B(ũ1) → B(u1) and C(ũ1) → C(u1). (3.5.7)

Thus applying Lemma 3.5.2, we deduce that there exists δ > 0 small enough, such that

max
t>0

F (ũt
1) = max

t>0

{ t2

2
A(ũ1) + tB(ũ1) − t

3
2

(p−2)C(ũ1)
}

≤ max
t>0

{ t2

2
A(u1) + tB(u1) − t

3
2

(p−2)C(u1)
}

+
ε

4

= max
t>0

F (ut
1) +

ε

4
. (3.5.8)

Now let v(x) ∈ C∞
0 (R3) be radial and such that supp v ⊂ B2Rδ+1\B2Rδ

. Here supp v
denotes the support of v and Rδ = 2

δ . Then we define

v0 := v · (c2 − ‖ũ1‖2
2)/‖v‖2

2,

for which we have ‖v0‖2
2 = c2 − ‖ũ1‖2

2. Finally letting vλ
0 = λ

3
2 v0(λx), for λ ∈ (0, 1), we

have ‖vλ
0 ‖2

2 = ‖v0‖2
2 and

A(vλ
0 ) = λ2 ·A(v0), B(vλ

0 ) = λ ·B(v0) and C(vλ
0 ) = λ

3
2

(p−2) · C(v0). (3.5.9)

Now for any λ ∈ (0, 1) we define wλ = ũ1 + vλ
0 . We observe that

dist{supp ũ1, supp v
λ
0 } ≥ 2Rδ

λ
−Rδ =

2
δ

(
2
λ

− 1). (3.5.10)

Thus ‖wλ‖2
2 = ‖ũ1‖2

2 + ‖vλ
0 ‖2

2 and wλ ∈ S(c2). Also

A(wλ) = A(ũ1) +A(vλ
0 ) and C(wλ) = C(ũ1) + C(vλ

0 ). (3.5.11)

We claim that, for any λ ∈ (0, 1) , there holds that
∣∣∣B(wλ) −B(ũ1) −B(vλ

0 )
∣∣∣ ≤ λ ‖ũ1‖2

2 · ‖vλ
0 ‖2

2. (3.5.12)

Indeed, from (3.5.10),

(
ũ1 + vλ

0

)2
(x) = ũ2

1(x) +
(
vλ

0

)2
(x),

(
ũ1 + vλ

0

)2
(y) = ũ2

1(y) +
(
vλ

0

)2
(y).
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Thus

B(wλ) =
∫

R3

∫

R3

(
ũ1 + vλ

0

)2
(x) ·

(
ũ1 + vλ

0

)2
(y)

|x− y| dxdy

=
∫

R3

∫

R3

ũ2
1(x) · ũ2

1(y)
|x− y| dxdy + 2

∫

R3

∫

R3

ũ2
1(x) ·

(
vλ

0

)2
(y)

|x− y| dxdy

+
∫

R3

∫

R3

(
vλ

0

)2
(x) ·

(
vλ

0

)2
(y)

|x− y| dxdy

= B(ũ1) +B(vλ
0 ) + 2

∫

R3

∫

R3

ũ2
1(x) ·

(
vλ

0

)2
(y)

|x− y| dxdy

with

∫

R3

∫

R3

ũ2
1(x) ·

(
vλ

0

)2
(y)

|x− y| dxdy =
∫

supp ũ1

∫

supp vλ
0

ũ2
1(x) ·

(
vλ

0

)2
(y)

|x− y| dxdy

≤ δλ

2(2 − λ)

∫

supp ũ1

∫

supp vλ
0

ũ2
1(x) ·

(
vλ

0

)2
(y)dxdy

≤ δλ

2(2 − λ)
‖ũ1‖2

2 ·
∥∥∥vλ

0

∥∥∥
2

2

≤ λ

2
‖ũ1‖2

2 ·
∥∥∥vλ

0

∥∥∥
2

2

and then (3.5.12) holds. Now from (3.5.11), (3.5.12) and using (3.5.9) we see that

A(wλ) → A(ũ1), B(wλ) → B(ũ1) and C(wλ) → C(ũ1), as λ → 0. (3.5.13)

Thus from Lemma 3.5.2 we have that, fixing λ > 0 small enough,

max
t>0

F (wt
λ) ≤ max

t>0
F (ũt

1) +
ε

4
. (3.5.14)

Now, using Lemma 3.5.1, (3.5.14), (3.5.8), (3.5.5) and (3.5.4) we have that

γ(c2) ≤ max
t>0

F (wt
λ) ≤ max

t>0
F (ũt

1) +
ε

4

≤ max
t>0

F (ut
1) +

ε

2

= F (u1) +
ε

2
≤ γ(c1) + ε,

and this ends the proof.

Lemma 3.5.4. When p ∈ (10
3 , 6), c → γ(c) is continuous at each c > 0.

Proof. Since, by Lemma 3.5.3, c → γ(c) is non increasing proving that it is continuous at
c > 0 is equivalent to show that for any sequence cn → c+

γ(c) ≤ lim
cn→c+

γ(cn). (3.5.15)

Let ε > 0 be arbitrary but fixed. By Lemma 3.2.6 we know that there exists un ∈ V (cn)
such that

F (un) ≤ γ(cn) +
ε

2
. (3.5.16)
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We define ũn =
√

c
cn

· un := ρn · un. Then ũn ∈ S(c) and ρn → 1−. In addition

γ(c) ≤ max
t>0

F (ũt
n)

= max
t>0

{ t
2

2
ρ2

nA(un) +
t

4
ρ4

nB(un) − t
3p−6

2

p
ρp

nC(un)}. (3.5.17)

Since un ∈ V (cn) and cn → c+, using the identity

F (un) − 2
3(p− 2)

Q(un) =
3p− 10
6(p− 2)

A(un) +
3p− 8

12(p− 2)
B(un), (3.5.18)

it is not difficult to check that A(un), B(un) and C(un) are bounded both from above and
from zero. Thus without restriction we can get that

A(un) → A > 0, B(un) → B ≥ 0 and C(un) → C > 0.

Indeed, A ≥ 0, B ≥ 0, C ≥ 0 are trivial and it is also easy to verify by contradiction that
A 6= 0, C 6= 0 from (3.4.6), (3.5.18) and the fact

Q(un) = A(un) +
1
4
B(un) − 3p− 6

2p
C(un) = 0.

Now recording that ρn → 1−, using Lemma 3.5.2 twice, we get from (3.5.17), for any
n ∈ N sufficiently large

max
t>0

F (ũt
n) ≤ max

t>0
{(
A

2
)t2 + (

B

4
)t− (

C

p
)t

3
2

(p−2)} +
ε

4

≤ max
t>0

{(
A(un)

2
)t2 + (

B(un)
4

)t− (
C(un)
p

)t
3
2

(p−2)} +
ε

2

= max
t>0

F (ut
n) +

ε

2
= F (un) +

ε

2
. (3.5.19)

Now from (3.5.16) and (3.5.19) it follows that γ(c) ≤ γ(cn) + ε for n ∈ N large enough and
since ε > 0 is arbitrary (3.5.15) holds.

Lemma 3.5.5. Let p ∈ (10
3 , 6) and (uc, λc) ∈ H1(R3) × R solves

−∆v − λv + (|x|−1 ∗ |v|2)v − |v|p−2v = 0 in R
3,

with F (uc) = infu∈V (c) F (u) = γ(c). Then λc ≤ 0 and moreover if λc < 0 the function
c → γ(c) is strictly decreasing in a neighborhood of c.

Proof. To prove the lemma it suffices to show that if λc < 0 (λc > 0) the function c → γ(c)
is strictly decreasing (increasing) in a neighborhood of c. Indeed, in view of Lemma 3.5.3
the case λc > 0 is then impossible.

The strict monotonicity of the function c → γ(c) when λc 6= 0 is obtained as a conse-
quence of the Implicit Function Theorem.

Let us consider the following rescaled functions ut,θ(x) = θ
3
2 t

1
2uc(θx) ∈ S(tc) with

θ ∈ (0,∞) and t ∈ (0,∞). We define the following quantities

α(t, θ) = F (ut,θ), (3.5.20)

β(t, θ) = Q(ut,θ). (3.5.21)
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Simple calculus shows that

∂α(t, θ)
∂t |(1,1)

=
1
2

(
A(uc) +B(uc) − C(uc)

)
=

1
2
λcc (3.5.22)

∂α(t, θ)
∂θ |(1,1)

= 0,
∂2α(t, θ)
∂2θ |(1,1)

< 0. (3.5.23)

Following the classical Lagrange Theorem we get, for any δt ∈ R, δθ ∈ R,

α(1 + δt, 1 + δθ) = α(1, 1) + δt
∂α(t, θ)
∂t |(t̄,θ̄)

+ δθ
∂α(t, θ)
∂θ |(t̄,θ̄)

(3.5.24)

where |1 − t̄| ≤ |δt| and |1 − θ̄| ≤ |δθ|, and by continuity, for sufficiently small δt > 0 and
sufficiently small |δθ|,

α(1 + δt, 1 + δθ) < α(1, 1) if λc < 0 (3.5.25)

α(1 − δt, 1 + δθ) < α(1, 1) if λc > 0. (3.5.26)

To conclude the proof it is enough to show that β(t, u) = 0 in a neighborhood of (1, 1)
is the graph of a function g : [1 − ε, 1 + ε] → R with ε > 0, such that β(t, g(t)) = 0 for
t ∈ [1 − ε, 1 + ε]. Indeed in this case we have when λc < 0 by (3.5.25)

γ((1 + ε)c) = inf
u∈V ((1+ε)c)

F (u) ≤ F (u1+ε,g(1+ε)) < F (uc) = γ(c)

and when λc > 0 we have by (3.5.26)

γ((1 − ε)c) = inf
u∈V ((1−ε)c)

F (u) ≤ F (u1−ε,g(1−ε)) < F (uc) = γ(c).

To show the graph property by the Implicit Function Theorem it is sufficient to show that

∂β(t, θ)
∂θ |(1,1)

6= 0. (3.5.27)

By simple calculus we get

∂β(t, θ)
∂θ |(1,1)

= 2A(uc) +
B(uc)

4
− 1
p

(3
2

(p− 2)
)2
C(uc).

Using the fact that Q(uc) = 0 we then obtain

∂β(t, θ)
∂θ |(1,1)

= (5 − 3
2
p)A(uc) + (1 − 3

8
p)B(uc).

Then, since p > 10
3 we see that to have

∂β(t, θ)
∂θ |(1,1)

= 0

necessarily A(uc) = 0 and B(uc) = 0. Thus the derivative is never zero.

Lemma 3.5.6. Let p ∈ (10
3 , 6), then we have γ(c) → ∞ as c → 0.
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Proof. By Theorem 3.1.2 we know that for any c > 0 sufficiently small there exists a couple
(uc, λc) ∈ H1(R3) ×R

− solution of (Eλ) with ||uc||22 = c and F (uc) = γ(c). In addition by
Lemma 3.4.3, Q(uc) = 0. Thus uc ∈ H1(R3) fulfills

0 = Q(uc) = A(uc) +
1
4
B(uc) − 3(p− 2)

2p
C(uc) (3.5.28)

γ(c) = F (uc) =
1
2
A(uc) +

1
4
B(uc) − 1

p
C(uc). (3.5.29)

We deduce from (3.5.28) that A(uc) ≤ −3(p−2)
2p C(uc) and thus it follows from Gagliardo-

Nirenberg’s inequality, for some constant C > 0 that

‖∇uc‖2
2 ≤ 3(p− 2)

2p
‖uc‖p

p ≤ C · ‖∇uc‖
3(p−2)

2
2 · ‖uc‖

6−p
2

2 ,

i.e

1 ≤ C · ‖∇uc‖
3p−10

2
2 · c 6−p

4 . (3.5.30)

Since p ∈ (10
3 , 6), we obtain that

‖∇uc‖2
2 → ∞, as c → 0. (3.5.31)

Now from (3.5.28) and (3.5.29) we deduce that

γ(c) = F (uc) =
3p− 10
6(p− 2)

A(uc) +
3p− 8

12(p− 2)
B(uc). (3.5.32)

and thus from (6.2.18) we get immediately that γ(c) → ∞ as c → 0.

3.6 Proof of Theorem 3.1.8 and Lemma 3.1.9

In this section we prove Theorem 3.1.8. Let us first show

Lemma 3.6.1. Let p ∈ (10
3 , 6), for each uc ∈ Mc there exists a λc ∈ R such that (uc, λc) ∈

H1(R3) × R solves (Eλ).

Proof. From Lagrange multiplier theory, to prove the lemma, it suffices to show that any
uc ∈ Mc is a critical point of F constrained on S(c).

Let uc ∈ Mc and assume, by contradiction, that ‖F ′|S(c)(uc)‖H−1(R3) 6= 0. Then, by
the continuity of F ′, there exist δ > 0, µ > 0 such that

v ∈ Buc(3δ) =⇒ ‖F ′|S(c)(v)‖H−1(R3) ≥ µ,

where Buc(δ) := {v ∈ S(c) : ‖v − uc‖ ≤ δ}.
Let ε := min{γ(c)/4, µδ/8}. We claim that it is possible to construct a deformation

on S(c) such that

(i) η(1, v) = v if v /∈ F−1([γ(c) − 2ε, γ(c) + 2ε]),

(ii) η(1, F γ(c)+ε ∩Buc(δ)) ⊂ F γ(c)−ε,

(iii) F (η(1, v)) ≤ F (v), ∀ v ∈ S(c).
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Here, F d := {u ∈ S(c) : F (u) ≤ d}. For this we use the pseudo gradient flow on S(c)
defined in (3.3.5) but where now g : S(c) → [0, δ] satisfies

g(v) :=

{
δ if v ∈ Buc(2δ) ∩ F−1([γ(c) − ε, γ(c) + ε])
0 if v /∈ F−1([γ(c) − 2ε, γ(c) + 2ε]).

With this definition clearly (i) and (iii) hold. To prove (ii) first observe that if v ∈
F γ(c)+ε ∩Buc(δ), then η(t, v) ∈ Buc(2δ) for all t ∈ [0, 1]. Indeed

‖η(t, v) − v‖ =
∥∥∥∥
∫ t

0
−g(η(s, v))

Y (η(s, v))
‖Y (η(s, v))‖ds

∥∥∥∥

≤
∫ t

0
‖g(η(s, v))‖ ds ≤ tδ ≤ δ.

In particular for s ∈ [0, 1], g(η(s, v)) = δ as long as F (η(s, v)) ≥ γ(c)−ε. Thus if we assume
that there exists a v ∈ F γ(c)+ε ∩Buc(δ) such that F (η(1, v)) > γ(c) − ε we have

F (η(1, v)) = F (v) +
∫ 1

0

d

dt
F (η(t, v))dt

= F (v) +
∫ 1

0
〈dF (η(t, v)),−g(η(t, v))

Y (η(t, v))
‖Y (η(t, v))‖〉dt

≤ F (v) − µδ

4
≤ γ(c) + ε− µδ

4
≤ γ(c) − ε,

i.e. η(1, v) ∈ F γ(c)−ε. This contradiction proves that (ii) also hold.

Now let g ∈ Γc be the path constructed in the proof of Lemma 3.2.6 by choosing
v = uc ∈ V (c). We claim that

max
t∈[0,1]

F (η(1, g(t))) < γ(c). (3.6.1)

By (i) and Remark 3.2.5 we have η(1, g(t)) ∈ Γc. Thus if (3.6.1) holds, it contradicts the
definition of γ(c). To prove (3.6.1), we distinguish three cases:
a) If g(t) ∈ S(c) \Buc(δ), then using (iii) and Lemma 3.2.3 (6),

F (η(1, g(t))) ≤ F (g(t)) < F (uc) = γ(c).

b) If g(t) ∈ F γ(c)−ε, then by (iii)

F (η(1, g(t))) ≤ F (g(t)) ≤ γ(c) − ε.

c) If g(t) ∈ F−1([γ(c) − ε, γ(c) + ε]) ∩Buc(δ), then by (ii)

F (η(1, g(t))) ≤ γ(c) − ε.

Note that since F (g(t)) ≤ γ(c), for all t ∈ [0, 1] one of the three cases above must occurs.
This proves that (3.6.1) hold and the proof of the lemma is completed.

Proof of Theorem 3.1.8. We know from Lemma 3.6.1 that to each uc ∈ Mc is associated
a λc ∈ R such that (uc, λc) ∈ H1(R3) ×R is solution of (Eλ). Now using Lemmas 3.5.5 we
deduce that necessarily λc ≤ 0.
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Proof of Lemma 3.1.9. Let uc ∈ H1(R3,C) with uc ∈ V (c). Since ‖∇|uc|‖2 ≤ ‖∇uc‖2 we
have that F (|uc|) ≤ F (uc) and Q(|uc|) ≤ Q(uc) = 0. In addition, by Lemma 3.2.3, there
exists t0 ∈ (0, 1] such that Q(|uc|t0) = 0. We claim that

F (|uc|t0) ≤ t0 · F (uc). (3.6.2)

Indeed, due (3.2.2) and since Q(|uc|t0) = Q(uc) = 0, we have

F (|uc|t0) = t20 · 3p− 10
6(p− 2)

A(|uc|) + t0 · 3p− 8
12(p− 2)

B(|uc|)

= t0 ·
(
t0 · 3p− 10

6(p− 2)
A(|uc|) +

3p− 8
12(p− 2)

B(uc)
)

≤ t0 ·
(

3p− 10
6(p− 2)

A(uc) +
3p− 8

12(p− 2)
B(uc)

)

= t0 · F (uc).

Thus if uc ∈ H1(R3,C) is a minimizer of F on V (c) we have

F (uc) = inf
u∈V (c)

F (u) ≤ F (|uc|t0) ≤ t0 · F (uc),

which implies t0 = 1 since t0 ∈ (0, 1]. Then Q(|uc|) = 0 and we conclude that

‖∇|uc|‖2 = ‖∇uc‖2 and F (|uc|) = F (uc). (3.6.3)

Thus point (i) follows. Now since |uc| is a minimizer of F on V (c) we know by Theorem
3.1.8 that it satisfies (Eλ) for some λc ≤ 0. By elliptic regularity theory and the maximum
principle it follows that |uc| ∈ C1(R3,R) and |uc| > 0. At this point, using that ‖∇|uc|‖2 =
‖∇uc‖2 the rest of the proof of point (ii) is exactly the same as in the proof of [56, Theorem
4.1].

3.7 Proof of Theorems 3.1.4 and 3.1.6

In [63] the authors consider the functional F as a free functional defined in the real space

E :=
{
u ∈ D1,2(R3) :

∫

R3

∫

R3

u2(x)u2(y)
|x− y| dxdy < ∞

}

equipped with the norm

||u||E :=
( ∫

R3
|∇u(x)|2dx+

( ∫

R3

∫

R3

u2(x)u2(y)
|x− y| dxdy

) 1
2
) 1

2
.

Clearly H1(R3,R) ⊂ E. They show, see Theorem 1.1 and [63, Proposition 3.4], that F
has in E a least energy solution whose energy is given by the mountain pass level

m := inf
γ∈Γ

max
t∈[0,1]

F (γ(t)) > 0 (3.7.1)

where
Γ :=

{
γ ∈ C([0, 1], E), γ(0) = 0, F (γ(1)) < 0

}
.

Lemma 3.7.1. For any c > 0 we have γ(c) ≥ m where m > 0 is given in (3.7.1).



3.7. Proof of Theorems 3.1.4 and 3.1.6 69

Proof. We fix an arbitrary c > 0. From Lemma 3.1.9 we know that the infimum of F
on V (c) is reached by real functions. As a consequence in the definition of γ(c), see in
particular (3.5.1), we can restrict ourself to paths in H1(RN ,R) instead of H1(RN ,C). To
prove the lemma it suffices to show that for any g ∈ Γc there exists a γ ∈ Γ such that

max
t∈[0,1]

F (g(t)) ≥ max
t∈[0,1]

F (γ(t)). (3.7.2)

Let v ∈ S(c) be arbitrary but fixed. Letting vθ(x) = θ
3
2 v(θx) we have vθ ∈ S(c) for any

θ > 0. Also taking θ > 0 sufficiently small, vθ ∈ AKc . Now for g ∈ Γc arbitrary but fixed,
let γθ(t) ∈ C([1

4 ,
1
2 ], AKc) satisfies γθ(1

4) = vθ, γθ(1
2) = g(0), and consider γ(t) given by

γ(t) :=





4tvθ, 0 ≤ t ≤ 1/4,
γθ(t), 1/4 ≤ t ≤ 1/2,
g(2t− 1), 1/2 ≤ t ≤ 1.

Since S(c) ⊂ H1(R3) ⊂ E by construction γ ∈ Γ. Now direct calculations show that,
taking θ > 0 small enough, F (4tvθ) ≤ F (vθ) for any t ∈ [0, 1

4 ]. Thus

max
t∈[0,1]

F (γ(t)) = max
t∈[ 1

4
,1]
F (γ(t)).

Recalling that γθ(t) ∈ AKc for any t ∈ [1
4 ,

1
2 ], we conclude from Theorem 3.2.1 that

max
t∈[0,1]

F (γ(t)) = max
t∈[ 1

2
,1]
F (γ(t)) = max

t∈[0,1]
F (g(t)),

and (3.7.2) holds. This proves the lemma.

Lemma 3.7.2. There exists γ(∞) > 0 such that γ(c) → γ(∞) as c → ∞.

Proof. The existence of a limit follows directly from the fact that c → γ(c) is non-
increasing. Now because of Lemma 3.7.1 the limit is strictly positive.

Proof of Theorem 3.1.6. As we already mentioned this proof is largely due to L. Dupaigne.
It also uses arguments from [37] and [51]. We divide the proof into two steps.

Step 1 : Regularity and vanishing: let (u, λ) with u ∈ E and λ ≤ 0 solves (Eλ), then
u ∈ L∞(R3) ∩ C1(R3) and u(x) → 0, as |x| → ∞.

We set φu(x) := 1
4π|x| ∗ u2. Clearly since u ∈ E then φu ∈ D1,2(R3). We denote

H = −∆ + (1 −λ). Since λ ≤ 0, H−1 exists in Lη(R3) for all η ∈ (1,∞). The operators H
and −∆ being closed in Lη(R3) with domain D(H) ⊂ D(−∆), it follows from the Closed
Graph Theorem that there exists a constant C̃ > 0 such that

‖∆u‖η ≤ C̃‖Hu‖η, (3.7.3)

for any u ∈ D(H). Now we write (Eλ) as

u = H−1u−H−1(φuu) +H−1(|u|p−2u) (3.7.4)

and we claim that

H−1u ∈ L3 ∩ L∞(R3) and H−1(φuu) ∈ L2 ∩ L∞(R3). (3.7.5)
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Indeed, u ∈ Lq(R3) for all q ∈ [3, 6], see [100], and from (3.7.3) and the Sobolev embedding
theorem, we obtain

H−1u ∈ W 2,q(R3) →֒ L∞(R3), ∀ q ∈ [3, 6]. (3.7.6)

Now since φu ∈ D1,2(R3) →֒ L6(R3), by Hölder inequality, φuu ∈ Lt(R3) holds for any
t ∈ [2, 3] and we have

H−1(φuu) ∈ W 2,t(R3) →֒ L∞(R3), ∀ t ∈ [2, 3]. (3.7.7)

At this point the claim is proved. Next we denote

v := u+H−1(φuu) −H−1u. (3.7.8)

By interpolation, and using (3.7.5), we see that v ∈ Lq(R3) for all q ∈ [3, 6]. Now since
u ∈ Lq(R3), for all q ∈ [3, 6], (3.7.4) implies that

Hv = |u|p−2u ∈ L
q

p−1 (R3). (3.7.9)

By (3.7.3) and Sobolev’s embedding theorem, we conclude from (3.7.9) that

v ∈ Lr(R3), for all r ≥ q

p− 1
such that

1
r

≥ p− 1
q

− 2
3
. (3.7.10)

Next we follow the arguments of T. Cazenave [37] to increase the index r.
For j ≥ 0, we define rj as:

1
rj

= −δ(p− 1)j +
2

3(p− 2)
, with δ =

2
3(p− 2)

− 1
p
.

Since p ∈ [3, 6), then δ > 0 and 1
rj

is decreasing with 1
rj

→ −∞ as j → ∞. Thus there
exists some k > 0 such that

1
ri
> 0 for 0 ≤ i ≤ k;

1
rk+1

≤ 0.

Now we claim that v ∈ Lrk(R3). Indeed, r0 = p as j = 0 and it is trivial that v ∈ Lr0(R3).
If we assume that v ∈ Lri(R3) for 0 ≤ i < k, then by (3.7.8) and (3.7.5), we have
u ∈ Lri(R3). Thus following (3.7.10) we obtain

v ∈ Lr(R3), for all r ≥ ri

p− 1
such that

1
r

≥ p− 1
ri

− 2
3

=
1
ri+1

.

In particular, v ∈ Lri+1(R3) and we conclude this claim by induction. Now since v ∈
Lrk(R3) it follows from (3.7.8) and (3.7.5) that u ∈ Lrk(R3) and we get that

v ∈ Lr(R3), for all r ≥ rk

p− 1
such that

1
r

≥ p− 1
rk

− 2
3

=
1

rk+1
.

Since 1/rk+1 < 0 we obtain that v ∈ ∩3≤α≤∞Lα(R3) and thus also u ∈ ∩3≤α≤+∞Lα(R3).

At this point we have shown that

Hu = u− φuu+ |u|p−2u
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with for all α ∈ [3,∞],

u ∈ Lα ∩ L∞(R3), φuu ∈ L
6α

6+α (R3) and |u|p−2u ∈ L
α

p−1 ∩ L∞(R3).

Since 6α
6+α ∈ [3, 6] for α ∈ [6,∞], by interpolation and (3.7.3) we obtain that

u ∈ W 2, 6α
6+α (R3) for any α ∈ [6,+∞]. (3.7.11)

Thus by Sobolev’s embedding, u ∈ L∞(R3) ∩ C1(R3). Also there exists a sequence

{un} ⊂ C1
c (R3) such that un → u in W 2, 6α

6+α (R3). When α > 6, W 2, 6α
6+α (R3) →֒ L∞(R3).

Thus un → u uniformly in R
3 and we conclude that u(x) → 0 as |x| → ∞.

Step 2: Exponential decay estimate.

First we show that φu ∈ C0,γ(R3), ∀γ ∈ (0, 1) and that there exists a constant C0 > 0
such that

φu ≥ C0

|x| , for all |x| ≥ 1. (3.7.12)

Since φu ∈ D1,2(R3) solves the equation −∆Φ = 4π|u|2 and u ∈ L6(R3) by elliptic reg-
ularity φu ∈ W 2,3

loc (R3). Thus by Sobolev’s embedding, φu ∈ C0,γ(R3), ∀γ ∈ (0, 1). In
particular

C0 = min
∂B1

φu(x) > 0

where BR := {x ∈ R
3 : |x| ≤ R}. Indeed, if φu(x0) = 0 at some point x0 ∈ R

3 with
|x0| = 1, then u(x) = 0 a.e. in R

3.
Now for an arbitrary R0 > 0, let w1 := φu − C0

|x| . Then





−∆w1 = 4πu2 ≥ 0, in BR0 \B1,
w1 ≥ 0, on ∂B1,

w1 ≥ −C0
R , on ∂BR0 ,

and the maximum principle yields that

w1 ≥ −C0

R0
, in BR0 \B1.

Letting R0 → ∞, it follows that w1 ≥ 0 in R
3 \B1 and thus (3.7.12) holds.

By Kato’s inequality, we know that ∆u+ ≥ χ[u ≥ 0]∆u, see [25]. Thus

−∆u+ − λu+ + φu · u+ ≤ (u+)p−1 in R
3. (3.7.13)

Let us show that there exist constants C̃ > 0 and R1 > 0 such that

u+(x) ≤ C̃φu(x) for |x| > R1. (3.7.14)

To prove this, we consider w2 := u+ − φu − d
|x| , for a constant d > 0. Then (3.7.13) and

λ ≤ 0 imply that
−∆w2 ≤ (u+)p−1 − 4πu2, in |x| ≥ 1.
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Since lim|x|→∞ u(x) → 0 and p > 3, then (u+)p−1 − 4πu2 ≤ 0 holds in |x| ≥ R1 for
some R1 > 0 large enough. Thus for any R ≥ R1 and taking d > 0 large enough we have





−∆w2 ≤ 0, in BR \BR1 ;
w2 ≤ 0, on ∂BR1 ;
w2 ≤ max

∂BR

u+ − d
R , on ∂BR.

Then by the maximum principle, we have w2 ≤ max∂BR
u+ − d

R in BR \BR1 . Letting
R → ∞ we conclude that w2 ≤ 0 in R

3\BR1 . This, together with (3.7.12), implies (3.7.14).
From (3.7.13) we have for any σ > 0 and since λ ≤ 0,

−∆u+ +
σ

|x|u
+ ≤ σ

|x|u
+ − φuu

+ + λu+ + (u+)p−1

≤
(
σ

|x| − φu + (u+)p−2
)
u+. (3.7.15)

Using (3.7.12) and (3.7.14), for |x| ≥ R1 > 1, by choosing 0 < σ < C0, we have
σ

|x| − φu + (u+)p−2 ≤ σ

C0
· φu − φu + (u+)p−2

≤ −(1 − σ

C0
)C̃−1u+ + (u+)p−2

=
(

−(1 − σ

C0
)C̃−1 + (u+)p−3

)
· u+,

where (1 − σ
C0

)C̃−1 > 0. Since p ≥ 3 and u(x) → 0 as |x| → ∞, for R1 > 1 sufficiently

large, we obtain that −(1 − σ
C0

)C̃−1 + (u+)p−3 ≤ 0 in |x| ≥ R1. Thus it follows from
(3.7.15) that

−∆u+ +
σ

|x|u
+ ≤ 0, in R

3 \BR1 . (3.7.16)

If we denote C̄1 := max∂BR1
u+, applying the maximum principle, we thus obtain

u+ ≤ C̄1 · w̄, in R
3 \BR1 (3.7.17)

where w̄ is the radial solution of




−∆w̄ + σ
|x| = 0, if |x| > R1;

w̄(x) = 1, if |x| = R1;
w̄(x) → 0, if |x| → ∞.

Now w̄ satisfies (see [3, Section 4]),

w̄(x) ≤ C · |x|−3/4e−2C′
√

|x|, ∀ |x| > R′, (3.7.18)

for some C > 0, C ′ > 0 and R′ > 0.

Finally we observe that if u is a solution of (Eλ), then −u is also a solution. Thus
since u− = (−u)+, following the same arguments, we obtain that there exists a constant
C̄2 > 0 such that

u− ≤ C̄2 · w̄, in R
3 \BR1 . (3.7.19)

Hence |u| = u+ + u− ≤ (C̄1 + C̄2)w̄, in R
3 \BR1 for R1 > 0 sufficiently large. At this

point we see from (3.7.18) that u ∈ E satisfies the exponential decay (3.1.6). In particular
u ∈ L2(R3) and then also u ∈ H1(R3).
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Lemma 3.7.3. There exists c∞ > 0 such that for all c ≥ c∞ the function c → γ(c) is
constant. Also if for a c ≥ c∞ there exists a couple (uc, λc) ∈ H1(R3)×R solution of (Eλ)
with ||uc||22 = c and F (uc) = γ(c), then necessarily λc = 0.

Proof. From Lemma 3.1.9 and [63] we know that there exist grounds states of the free
functional F which are real. Also Theorem 3.1.6 implies that any ground state belongs to
H1(R3). Let u0 ∈ H1(R3) be one of these ground states and set c0 := ||u0||22. Then, by
Lemma 3.4.3, u0 ∈ V (c0) and using Lemma 3.7.1 we get

F (u0) ≥ γ(c0) ≥ m = F (u0).

Thus necessarily γ(c0) = m. Now since c → γ(c) is non increasing, still by Lemma 3.7.1,
we deduce that γ(c) = γ(c0) for all c ≥ c0. Now let (uc, λc) ∈ H1(R3) × R be a solution
of (Eλ) with ||uc||22 = c and F (uc) = γ(c). Thus by Lemma 3.5.5, λc ≤ 0. But we
note that λc < 0 will not happen since by Lemma 3.5.5 it would imply that c → γ(c) is
strictly decreasing around c > 0 in contradiction with the fact that γ(c) is constant. Then
necessarily λc = 0.

Remark 3.7.4. We see, from Theorem 3.1.8 and Lemma 3.7.3, that if γ(c) is reached, say
by a uc ∈ H1(R3) with c > 0 large enough, then uc is a ground state of F defined on E. It
is unlikely that ground states exist for an infinity of value of c > 0. So we conjecture that
there exists a clim > 0 such that for c ≥ clim there are no critical points for F constrained
to S(c) at the ground state level γ(c).

Proof of Theorem 3.1.4. Obviously, points (i), (ii), (iv), (v) of Theorem 3.1.4 follow di-
rectly from Lemmas 3.5.3, 3.5.4, 3.5.6, 3.7.2, 3.7.3 and Lemmas 3.4.3, 3.5.5 derive point
(iii).

3.8 Global existence and strong instability

We introduce the following result about the local well-posedness of the Cauchy problem
of (3.1.1) (see T. Cazenave [37, Theorem 4.4.6 and Proposition 6.5.1], or H. Kikuchi [72,
Chapter 3]).

Proposition 3.8.1. Let p ∈ (2, 6), for any u0 ∈ H1(R3,C), there exist a T = T (‖u0‖) > 0
and a unique solution u(t) ∈ C([0, T ), H1(R3,C)) of the equation (3.1.1) with initial datum
u(0) = u0 satisfying

F (u(t)) = F (u0), ‖u(t)‖2 = ‖u0‖2 , ∀ t ∈ [0, T ).

In addition, if u0 ∈ H1(R3,C) satisfies |x|u0 ∈ L2(R3,C), then the virial identity

d2

dt2
‖xu(t)‖2

2 = 8Q(u),

holds for any t ∈ [0, T ).

Proof of Theorem 3.1.11. Let u(x, t) be the solution of (3.1.1) with u(x, 0) = u0 and
Tmax ∈ (0,∞] its maximal time of existence. Then classically we have either

Tmax = +∞

or
Tmax < +∞ and lim

t→Tmax

||∇u(x, t)||22 = ∞. (3.8.1)
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Since

F (u(x, t)) − 2
3(p− 2)

Q(u(x, t)) =
3p− 10
6(p− 2)

A(u(x, t)) +
3p− 8

12(p− 2)
B(u(x, t))

and F (u(x, t)) = F (u0) for all t < Tmax, if (3.8.1) happens then, we get

lim
t→Tmax

Q(u(x, t)) = −∞.

By continuity it exists t0 ∈ (0, Tmax) such that Q(u(x, t0)) = 0 with F (u(x, t0)) = F (u0) <
γ(c). This contradicts the definition γ(c) = infu∈V (c) F (u).

Remark 3.8.2. For p ∈ (10
3 , 6) and any c > 0 the set O is not empty. Indeed for an

arbitrary but fixed u ∈ S(c), let ut(x) = t
3
2u(tx). Then ut ∈ S(c) for all t > 0 and

Q(ut) = t2A(u) +
t

4
B(u) − 3(p− 2)

2p
t

3(p−2)
2 C(u),

F (ut) =
t2

2
A(u) +

t

4
B(u) − t

3(p−2)
2

p
C(u).

We observe that F (ut) → 0 as t → 0. Also, since 3(p−2)
2 > 1, we have Q(ut) > 0 when

t > 0 is sufficiently small. This proves that O is not empty.

Proof of the Theorem 3.1.12. For any c > 0, let uc ∈ Mc and define the set

Θ :=
{
v ∈ H1(R3) \ {0} : F (v) < F (uc), ‖v‖2

2 = ‖uc‖2
2 , Q(v) < 0

}
.

The set Θ contains elements arbitrary close to uc in H1(R3). Indeed, letting v0(x) = uλ
c =

λ
3
2uc(λx), with λ < 1, we see from Lemma 3.2.3 that v0 ∈ Θ and that v0 → uc in H1(R3)

as λ → 1.

Let v(t) be the maximal solution of (3.1.1) with initial datum v(0) = v0 and T ∈ (0,∞]
the maximal time of existence. Let us show that v(t) ∈ Θ for all t ∈ [0, T ). From the
conservation laws, we have that

‖v(t)‖2
2 = ‖v0‖2

2 = ‖uc‖2
2 , and F (v(t)) = F (v0) < F (uc).

Thus it is enough to verify Q(v(t)) < 0. But Q(v(t)) 6= 0 for any t ∈ (0, T ). Otherwise, by
the definition of γ(c), we would get for a t0 ∈ (0, T ) that F (v(t0)) ≥ F (uc) in contradiction
with F (v(t)) < F (uc). Now by continuity of Q we get that Q(v(t)) < 0 and thus that
v(t) ∈ Θ for all t ∈ [0, T ). Now we claim that there exists δ > 0, such that

Q(v(t)) ≤ −δ, ∀t ∈ [0, T ). (3.8.2)

Let t ∈ [0, T ) be arbitrary but fixed and set v = v(t). Since Q(v) < 0 we know by Lemma
3.2.3 that λ⋆(v) < 1 and that λ 7→ F (vλ) is concave on [λ⋆, 1). Hence

F (vλ⋆

) − F (v) ≤ (λ⋆ − 1)
∂

∂λ
F (vλ) |λ=1

= (λ⋆ − 1)Q(v).

Thus, since Q(v(t)) < 0, we have

F (v) − F (vλ⋆

) ≥ (1 − λ⋆)Q(v) ≥ Q(v).
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It follows from F (v) = F (v0) and vλ⋆ ∈ V (c) that

Q(v) ≤ F (v) − F (vλ⋆

) ≤ F (v0) − F (uc).

Then letting δ = F (u0) − F (v0) > 0 the claim is established. To end the proof of the
theorem we next use Proposition 3.8.1. Since v0(x) = uλ

c we have that
∫

R3
|x|2|v0|2dx =

∫

R3
|x|2|uλ

c |2dx = λ2
∫

R3
|y|2|uc(y)|2dy.

Thus, from Lemma 3.6.1 and Theorem 3.1.6, we obtain that
∫

R3
|x|2|v0|2dx < ∞. (3.8.3)

Applying Proposition 3.8.1 it follows that

d2

dt2
‖xv(t)‖2

2 = 8Q(v).

Now by (3.8.2) we deduce that v(t) must blow-up in finite time, namely that (3.8.1)
hold. Recording that v0 has been taken arbitrarily close to uc, this ends the proof of the
theorem.

Proof of Theorem 3.1.15. For p ∈ (10
3 , 6), let u0 be a ground state of equation (3.1.4).

From Theorem 3.1.6 we know that u0 ∈ H1(R3), thus we can set

c0 := ‖u0‖2
2.

From Lemma 3.4.3, we have Q(u0) = 0. Thus u0 ∈ V (c0) and it follows from (3.1.3) and
Lemma 3.7.1 that

F (u0) ≥ γ(c0) ≥ m = F (u0).

Hence F (u0) = infu∈V (c0) F (u), which means that u0 minimizes F on V (c0). Thus applying
Theorem 3.1.12, we are done with the proof.

3.9 Comparison with the nonlinear Schrödinger case

In [64] the existence of critical points of

F̃ (u) :=
1
2

‖▽u‖2
2 − 1

p
‖u‖p

p, u ∈ H1(RN ). (3.9.1)

constrained to S(c) was considered under the condition:

(C) :
2N + 4
N

< p <
2N
N − 2

, if N ≥ 3 and
2N + 4
N

< p if N = 1, 2.

In our notation it is proved in [64] that F̃ has a mountain pass geometry on S(c) in the
sense that

γ̃(c) = inf
g∈Γ̃c

max
t∈[0,1]

F̃ (g(t)) > max{F̃ (g(0)), F̃ (g(1))} > 0,

where
Γ̃c =

{
g ∈ C([0, 1], S(c)), g(0) ∈ AKc , F̃ (g(1)) < 0

}
,

and AKc = {u ∈ S(c) : ‖▽u‖2
2 ≤ Kc}. Also we have
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Lemma 3.9.1. ([64, Theorem 2]) For N ≥ 1 and any c > 0, under the condition (C), the
functional F̃ admits a critical point uc at the level γ̃(c) with ‖uc‖2

2 = c, and there exists
λc < 0 such that (uc, λc) solves weakly the following Euler-Lagrange equation associated
with F̃ :

−∆u− λu = |u|p−2u. (3.9.2)

Lemma 3.9.2. ([64, Corollary 3.1 and Theorem 3.2]) For N ≥ 1,
{

‖∇uc‖2
2 → ∞,

λc → −∞,
as c → 0,

and {
‖∇uc‖2

2 → 0,
λc → 0,

as c → ∞.

Using the above two results we now prove

Lemma 3.9.3. For N ≥ 1, under the condition (C), the function c 7→ γ̃(c) is strictly
decreasing. In addition, we have

{
γ̃(c) → +∞, as c → 0,
γ̃(c) → 0, as c → ∞.

(3.9.3)

Proof. Arguing as in the proof of Lemma 3.5.1 we can deduce that

γ̃(c) = inf
u∈S(c)

max
t>0

F̃ (ut) = inf
u∈Ṽ (c)

F̃ (u). (3.9.4)

Here Ṽ (c) := {u ∈ H1(RN ) : Q̃(u) = 0} with

Q̃(u) = ‖▽u‖2
2 − N(p− 2)

2p
‖u‖p

p,

and ut(x) := t
N
2 u(tx) for t > 0. To show that c → γ̃(c) is strictly decreasing we just need

to prove that: for any c1 < c2, there holds γ̃(c2) < γ̃(c1). By (3.9.4) we have

γ̃(c1) = inf
u∈S(c1)

max
t>0

F̃ (ut) and γ̃(c2) = inf
u∈S(c2)

max
t>0

F̃ (ut)

where

F̃ (ut) =
t2

2
‖▽u‖2

2 − t
N
2

(p−2)

p
‖u‖p

p.

After a simple calculation, we get

max
t>0

F̃ (ut) = c̃(p) ·
(

1
2

‖∇u‖2
2

) N(p−2)
N(p−2)−4 ·

(
1
p

‖∇u‖p
p

)− 4
N(p−2)−4

(3.9.5)

with

c̃(p) =
(

4
N(p− 2)

) 4
N(p−2)−4 · N(p− 2) − 4

N(p− 2)
> 0.

By Lemma 3.9.1, we know that γ(c1) is attained, namely that there exists u1 ∈ S(c1),
such that γ̃(c1) = F̃ (u1) = maxt>0 F̃ (ut

1). Then using the scaling uθ(x) = θ1− N
2 u1(x

θ ), we
have

‖uθ‖2
2 = θ2‖u1‖2

2, ‖∇uθ‖2
2 = ‖∇u1‖2

2 and ‖uθ‖p
p = θ(1− N

2
)p+N ‖u1‖p

p.
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Thus we can choose θ > 1 such that uθ ∈ S(c2). Under the condition (C), we have
(1 − N

2 )p+N > 0 for N ≥ 1 and thus ‖uθ‖p
p > ‖u1‖p

p. Now we have

max
t>0

F̃ (ut
θ) = c̃(p) ·

(
1
2

‖∇uθ‖2
2

) N(p−2)
N(p−2)−4 ·

(
1
p

‖uθ‖p
p

)− 4
N(p−2)−4

< c̃(p) ·
(

1
2

‖∇u1‖2
2

) N(p−2)
N(p−2)−4 ·

(
1
p

‖u1‖p
p

)− 4
N(p−2)−4

= max
t>0

F̃ (ut
1),

which implies that

γ̃(c1) = max
t>0

F̃ (ut
1) > max

t>0
F̃ (ut

θ) ≥ γ̃(c2). (3.9.6)

Finally, from [64, Lemma 2.7] we know that, for any c > 0, Q̃(uc) = 0. Thus we can write

γ̃(c) =
N(p− 2) − 4

2N(p− 2)
‖▽uc‖2

2

and then (3.9.3) directly follows from Lemma 3.9.2.

Finally in analogy to Theorems 3.1.8 and 3.1.12 we have

Remark 3.9.4. Let

M̃c := {uc ∈ Ṽ (c) : F̃ (uc) = inf
u∈Ṽ (c)

F̃ (u)}. (3.9.7)

Then for any uc ∈ M̃c there exists a λc < 0 such that (uc, λc) ∈ H1(RN )×R solves (3.9.2)
and the standing wave solution e−iλctuc of (3.1.8) is strongly unstable.

The proof of these statements is actually simpler than the ones for (3.1.1) and thus we
just indicate the main lines. We proceed as in Lemma 3.6.1 to show that for any uc ∈ M̃c

there exists a λc ∈ R such that (uc, λc) ∈ H1(RN ) × R solves (3.9.2). Indeed a version of
Lemma 3.2.3 (and thus of Lemma 3.2.6) holds when F̃ replaces F and this is precisely [37,
Lemma 8.2.5]. Now if for a λ ∈ R, u ∈ S(c) solves

−∆u− |u|p−2u = λu, (3.9.8)

on one hand, multiplying (3.9.8) by u ∈ S(c) and integrating we obtain

||∇u||22 − ||u||pp = λc. (3.9.9)

On the other hand, since solutions of (3.9.8) satisfy Q̃(u) = 0, we have

||∇u||22 − N(p− 2)
2p

||u||pp = 0. (3.9.10)

Thus, under the condition (C), since N(p− 2)/2p < 1, we deduce that necessarily λ < 0.
To conclude the proof we just have to show that the standing wave e−iλctuc is strongly
unstable. This can be done by following the same lines as in the proof of Theorem 3.1.12.
Here the fact that λc < 0 insures the exponential decay at infinity of uc ∈ S(c) which
permits to use the virial identity in the blow-up argument (see also [18]).





Chapter 4

Multiplicity of normalized
solutions for a class of nonlinear
Schrödinger-Poisson-Slater
equations

4.1 Introduction

In this chapter, we establish a multiplicity result for the stationary Schrödinger-Poisson-
Slater equations

−∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0 in R
3. (Eλ)

Our result is the following.

Theorem 4.1.1. Assume that p ∈ (10
3 , 6). There exists a c0 > 0 such that for any

c ∈ (0, c0), the equation (Eλ) admits an unbounded sequence of distinct pairs of solutions
(±un, λn) with ‖un‖2

2 = c and λn < 0 for each n ∈ N.

Clearly the sequence of solutions (±un, λn) ∈ H1(R3) × R will be obtained as critical
points and associated Lagrange multipliers of the functional

F (u) :=
1
2

‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|pdx, (4.1.1)

on the constraint

S(c) :=
{
u ∈ H1(R3) : ‖u‖2

2 = c, c > 0
}
. (4.1.2)

In view that F is unbounded from below on S(c) when p ∈ (10
3 , 6), the genus of the

sublevel set Fα := {u ∈ S(c) : F (u) ≤ α} is always infinite. Thus to obtain the existence
of infinitely many solutions, classical arguments based on the Kranoselski genus, see [107],
do not apply.

Since we are not concerned here, as it was the case in Chapters 2 and 3, by the search of
least energy solutions, we can work in the subspaceH1

r (R3) of radially symmetric functions.
It is classical that a critical point of F restricted to H1

r (R3) ∩ S(c) is a critical point of F
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restricted to H1(R3)∩S(c). The advantage of working in H1
r (R3) is that the embedding of

H1
r (R3) into Lq(R3) is compact for q ∈ (2, 6). However, as it can easily be checked, despite

this property, F restricted to S(c) does not satisfy the Palais-Smale condition.

To overcome these difficulties we rely on a recent work of T. Bartsch and S. De Valeriola
[12]. In [12] the authors consider the problem of finding infinitely many critical points for

E(u) :=
1
2

‖∇u‖2
2 − 1

p

∫

R3
|u|pdx, (4.1.3)

on the constraint

Sr(c) :=
{
u ∈ H1

r (R3) : ‖u‖2
2 = c, c > 0

}
, (4.1.4)

when p ∈ (10
3 , 6). Actually in [12] more general nonlinearities can be handled and in any

dimension N ≥ 2.

In the problem treated in [12] the difficulties presented above already exist. To over-
come these difficulties the authors present a new type of linking geometry for the functional
E on Sr(c). This geometry is, according to the authors of [12], motivated by the fountain
theorem (see [11]). In [12] to set up a min-max scheme and identify a sequence {ln} ⊂ R,
ln → ∞ of suspected critical levels, the cohomological index for spaces with an action on
the group G = {−1, 1} is used. Indeed observe that the functional E is even, this is also
the case of F . This index which was introduced in [31] permits to establish the key inter-
section property, see [12, Lemma 2.3] or our Lemma 4.2.3. The fact that the suspected
critical levels ln do correspond to critical levels is then obtained using ideas from [64]. The
key point is the construction, for each fixed n ∈ N, of a bounded Palais-Smale sequence
associated with ln. In that aim one introduces an auxiliary functional which permits to
incorporate into the variational procedure the information that any critical point of E on
Sr(c) must satisfy a version of Pohozaev identity. Having obtained the boundedness of
a Palais-Smale sequence it remains to show that it converges. The information that the
associated Lagrange multiplier is strictly negative is here crucially used.

In our proof of Theorem 4.1.1 we follow closely the strategy of [12]. The restriction
that c ∈ (0, c0) originates in the need to show that the suspected associated Lagrange
multipliers are strictly negative. This property is used to show that the weak limit of our
Palais-Smale sequences does belong to Sr(c). A similar limitation on c > 0 was already
necessary in the last chapter for the existence of just one critical point. More generally
the present chapter makes a strong use of results derived in Chapter 3.

Up to our knowledge, Theorem 4.1.1 is the first result in the literature on the existence
of infinitely many L2-normalized solutions for equation (Eλ). Previous results had already
been obtained when λ ∈ R is a fixed parameter. We refer to [4, 8, 42, 104] and their
references in that direction.

4.2 Proofs of the main results

We first establish some preliminary results. Let {Vn} ⊂ H1
r (R3) be a strictly increasing

sequence of finite-dimensional linear subspaces in H1
r (R3), such that

⋃
n Vn is dense in

H1
r (R3). We denote by V ⊥

n the orthogonal space of Vn in H1
r (R3). Then

Lemma 4.2.1. [12, Lemma 2.1] Assume that p ∈ (2, 6). Then there holds

µn := inf
u∈V ⊥

n−1

∫
R3(|∇u|2 + |u|2)dx

(
∫
R3 |u|pdx)2/p

= inf
u∈V ⊥

n−1

‖u‖2

‖u‖2
p

→ ∞, as n → ∞.
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Now for c > 0 fixed and for each n ∈ N, we define

ρn := L
− 2

p−2 · µ
2

p−2
n , with L = max

x>0

(x2 + c)p/2

xp + cp/2
,

and

Bn := {u ∈ V ⊥
n−1 ∩ Sr(c) : ‖∇u‖2

2 = ρn}. (4.2.1)

We also define

bn := inf
u∈Bn

F (u). (4.2.2)

Then we have

Lemma 4.2.2. For any p ∈ (2, 6), bn → +∞ as n → ∞. In particular we can assume
without restriction that bn ≥ 1 for all n ∈ N.

Proof. For any u ∈ Bn, we have that

F (u) =
1
2

‖∇u‖2
2 +

1
4

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy − 1

p

∫

R3
|u|pdx

≥ 1
2

‖∇u‖2
2 − 1

pµn

(
‖∇u‖2

2 + c
) p

2

≥ 1
2

‖∇u‖2
2 − L

pµn

(
‖∇u‖p

2 + c
p
2

)

≥ (
1
2

− 1
p

)ρn − L

pµn
c

p
2 .

From this estimate and Lemma 4.2.1, it follows since p > 2, that bn → +∞ as n → ∞.
Now, considering the sequence {Vn} ⊂ H1

r (R3) only from a n0 ∈ N such that bn ≥ 1 for
any n ≥ n0 it concludes the proof of the lemma.

Next we start to set up our min-max scheme. First we introduce the map

κ : H1
r (R3) × R −→ H1

r (R3)

(u, θ) 7−→ κ(u, θ)(x) := e
3
2

θu(eθx). (4.2.3)

Observe that for any given u ∈ Sr(c), we have κ(u, θ) ∈ Sr(c) for all θ ∈ R. Also from
Lemma 3.2.2, we know that

{
A(κ(u, θ)) → 0, F (κ(u, θ)) → 0, as θ → −∞,
A(κ(u, θ)) → +∞, F (κ(u, θ)) → −∞, as θ → +∞.

(4.2.4)

Thus, using the fact that Vn is finite dimensional, we deduce that, for each n ∈ N, there
exists a θn > 0, such that

ḡn : [0, 1] × (Sr(c) ∩ Vn) → Sr(c), ḡn(t, u) = κ(u, (2t− 1)θn) (4.2.5)

satisfies {
A(ḡn(0, u)) < ρn, A(ḡn(1, u)) > ρn,
F (ḡn(0, u)) < bn, F (ḡn(1, u)) < bn.

(4.2.6)
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Now we define

Γn :=
{
g : [0, 1] × (Sr(c) ∩ Vn) → Sr(c) | g is continuous, odd in u (4.2.7)

and such that ∀u : g(0, u) = ḡn(0, u), g(1, u) = ḡn(1, u)
}
. (4.2.8)

Clearly ḡn ∈ Γn. Now we give the key intersection result, due to [12].

Lemma 4.2.3. For each n ∈ N,

γn(c) := inf
g∈Γn

max
0≤t≤1

u∈Sr(c)∩Vn

F (g(t, u)) ≥ bn. (4.2.9)

Proof. The point to show that for each g ∈ Γn there exists a pair (t, u) ∈ [0, 1]×(Sr(c)∩Vn),
such that g(t, u) ∈ Bn with Bn defined in (4.2.1). But this result can be proved exactly
as the corresponding result for J in [12], see [12, Lemma 2.3].

Remark 4.2.4. Note that by Lemma 4.2.3 and (4.2.6) we have that for any g ∈ Γn

γn(c) ≥ bn > max
{

max
u∈Sr(c)∩Vn

F (g(0, u)), max
u∈Sr(c)∩Vn

F (g(1, u))
}
.

Next, we shall prove that the sequence {γn(c)} is indeed a sequence of critical values for
F restricted to Sr(c). In this aim, we first show that there exists a bounded Palais-Smale
sequence at each level γn(c). From now on, we fix an arbitrary n ∈ N.

Lemma 4.2.5. For any fixed c > 0, there exists a sequence {uk} ⊂ Sr(c) satisfying




F (uk) → γn(c),
F ′|Sr(c)(uk) → 0, as k → ∞,

Q(uk) → 0,
(4.2.10)

where

Q(u) := A(u) +
1
4
B(u) − 3(p− 2)

2p
C(u). (4.2.11)

In particular {uk} ⊂ Sr(c) is bounded.

To find such a Palais-Smale sequence, we apply the approach developed by L. Jeanjean
[64], already applied in [12]. First, we introduce the auxiliary functional

F̃ : Sr(c) × R → R, (u, θ) 7→ F (κ(u, θ)),

where κ(u, θ) is given in (4.2.3), and the set

Γ̃n :=
{
g̃ : [0, 1] × (Sr(c) ∩ Vn) → Sr(c) × R | g̃ is continuous, odd in u,

and such that κ ◦ g̃ ∈ Γn

}
.

Clearly, for any g ∈ Γn, g̃ := (g, 0) ∈ Γ̃n.

Observe that defining

γ̃n(c) := inf
g̃∈Γ̃n

max
0≤t≤1

u∈Sr(c)∩Vn

F̃ (g̃(t, u)),
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we have that γ̃n(c) = γn(c). Indeed, by the definitions of γ̃n(c) and γn(c), this identity
follows immediately from the fact that the maps

ϕ : Γn −→ Γ̃n, g 7−→ ϕ(g) := (g, 0),

and
ψ : Γ̃n −→ Γn, g̃ 7−→ ψ(g̃) := κ ◦ g̃,

satisfy
F̃ (ϕ(g)) = F (g) and F (κ ◦ g̃) = F̃ (g̃).

To prove Lemma 4.2.5 we also need the following result, which was established by
Ekeland’s variational principle in [64, Lemma 2.3]. We denote by E the set H1

r (R3) × R

equipped with ‖ · ‖2
E = ‖ · ‖2 + | · |2

R
, and by E∗ its dual space.

Lemma 4.2.6. Let ε > 0. Suppose that g̃0 ∈ Γ̃n satisfies

max
0≤t≤1

u∈Sr(c)∩Vn

F̃ (g̃0(t, u)) ≤ γ̃n(c) + ε.

Then there exists a pair of (u0, θ0) ∈ Sr(c) × R such that:

(1) F̃ (u0, θ0) ∈ [γ̃n(c) − ε, γ̃n(c) + ε];

(2) min
0≤t≤1

u∈Sr(c)∩Vn

‖(u0, θ0) − g̃k(t, u)‖E ≤ √
ε;

(3) ‖F̃ ′|Sr(c)×R(u0, θ0)‖E∗ ≤ 2
√
ε, i.e.

|〈F̃ ′(u0, θ0), z〉E∗×E | ≤ 2
√
ε ‖z‖E ,

holds for all z ∈ T̃(u0,θ0) := {(z1, z2) ∈ E, 〈u0, z1〉L2 = 0}.

Now we can give

Proof of Lemma 4.2.5. From the definition of γn(c), we know that for each k ∈ N, there
exists a gk ∈ Γn such that

max
0≤t≤1

u∈Sr(c)∩Vn

F (gk(t, u)) ≤ γn(c) +
1
k
.

Since γ̃n(c) = γn(c), g̃k = (gk, 0) ∈ Γ̃n satisfies

max
0≤t≤1

u∈Sr(c)∩Vn

F̃ (g̃k(t, u)) ≤ γ̃n(c) +
1
k
.

Thus applying Lemma 4.2.6, we obtain a sequence {(uk, θk)} ⊂ Sr(c) × R such that:

(i) F̃ (uk, θk) ∈ [γn(c) − 1
k , γn(c) + 1

k ];

(ii) min
0≤t≤1

u∈Sr(c)∩Vn

‖(uk, θk) − (gk(t, u), 0)‖E ≤ 1√
k
;
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(iii) ‖F̃ ′|Sr(c)×R(uk, θk)‖E∗ ≤ 2√
k
, i.e.

|〈F̃ ′(uk, θk), z〉E∗×E | ≤ 2√
k

‖z‖E ,

holds for all z ∈ T̃(uk,θk) := {(z1, z2) ∈ E, 〈uk, z1〉L2 = 0}.

For each k ∈ N, let vk = κ(uk, θk). We shall prove that vk ∈ Sr(c) satisfies (4.2.10).
Indeed, first, from (i) we have that F (vk) →

k
γn(c), since F (vk) = F (κ(uk, θk)) = F̃ (uk, θk).

Secondly, note that

Q(vk) = A(vk) +
1
4
B(vk) − 3(p− 2)

2p
C(vk) = 〈F̃ ′(uk, θk), (0, 1)〉E∗×E ,

and (0, 1) ∈ T̃(uk,θk). Thus (iii) yields Q(vk) →
k

0. Finally, to verify that F ′|Sr(c)(vk) →
k

0,

it suffices to prove for k ∈ N sufficiently large, that

|〈F ′(vk), w〉(H1
r )∗×H1

r
| ≤ 4√

k
‖w‖2 , for all w ∈ Tvk

, (4.2.12)

where Tvk
:= {w ∈ H1

r (R3), 〈vk, w〉L2 = 0}. To this end, we note that, for w ∈ Tvk
, setting

w̃ = κ(w,−θk), one has

〈F ′(vk), w〉(H1
r )∗×H1

r
=
∫

R3
∇vk∇wdx+

∫

R3

∫

R3

|vk(x)|2vk(y)w(y)
|x− y| dxdy −

∫

R3
|vk|p−2vkwdx

= e2θk

∫

R3
∇uk∇w̃dx+ eθk

∫

R3

∫

R3

|uk(x)|2uk(y)w̃(y)
|x− y| dxdy − e

3(p−2)
2

θk

∫

R3
|uk|p−2ukw̃dx

= 〈F̃ ′(uk, θk), (w̃, 0)〉E∗×E .

If (w̃, 0) ∈ T̃(uk,θk) and ‖(w̃, 0)‖2
E ≤ 2‖w‖2 when k ∈ N is sufficiently large, then (iii)

implies (4.2.12). To verify these conditions, observes that (w̃, 0) ∈ T̃(uk,θk)) ⇔ w ∈ Tvk
.

Also from (ii) it follows that

|θk| = |θk − 0| ≤ min
0≤t≤1

u∈Sr(c)∩Vn

‖(vk, θk) − (gk(t, u), 0)‖E ≤ 1√
k
,

by which we deduce that

‖(w̃, 0)‖2
E = ‖w̃‖2 =

∫

R3
|w(x)|2dx+ e−2θk

∫

R3
|∇w(x)|2dx ≤ 2‖w‖2,

holds for k ∈ N large enough. At this point, (4.2.12) has been verified. To end the proof
of the lemma it remains to show that {vk} ⊂ Sr(c) is bounded. But since p ∈ (10

3 , 6) this
follows immediately from the following relationship between F (u) and Q(u),

F (u) − 2
3(p− 2)

Q(u) =
3p− 10
6(p− 2)

A(u) +
3p− 8

12(p− 2)
B(u). (4.2.13)

Remark 4.2.7. Note that in Lemma 2.2.1, it is proved that any critical point u0 ∈ Sr(c)
of F on Sr(c) must satisfy Q(u0) = 0. So far this information has been used in Lemma
4.2.5 to construct a bounded Palais-Smale sequence. As we shall see in our next result it
is also useful to insure that our Palais-Smale sequences do not vanish.
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Proposition 4.2.8. Let {uk} ⊂ Sr(c) be the Palais-Smale sequence obtained in Lemma
4.2.5. Then there exist λn ∈ R and un ∈ H1

r (R3), such that, up to a subsequence,

i) uk ⇀ un 6= 0, in H1
r (R3),

ii) −∆uk − λnuk + (|x|−1 ∗ |uk|2)uk − |uk|p−2uk → 0, in H−1
r (R3),

iii) −∆un − λnun + (|x|−1 ∗ |un|2)un − |un|p−2un = 0, in H−1
r (R3).

Moreover, if λn < 0, then we have

uk → un, in H1
r (R3), as k → ∞.

In particular, ||un||22 = c, F (un) = γn(c) and F ′(un) − λnun = 0 in H−1
r (R3).

Proof. Since {uk} ⊂ Sr(c) is bounded, up to a subsequence, there exists a un ∈ H1
r (R3),

such that
uk ⇀

k
un, in H1

r (R3),

uk →
k
un, in Lp(R3).

We have un 6= 0. Indeed suppose by contradiction that un = 0. Then by the strong
convergence in Lp(R3) it follows that C(uk) → 0. Taking into account that Q(uk) → 0 it
then implies that A(uk) → 0 and B(uk) → 0. Thus F (uk) → 0 and this contradicts the
fact that γn(c) ≥ bn ≥ 1. Thus Point i) holds.

The proofs of Points ii) and iii) can be found in Proposition 3.4.1. Now using Points
ii), iii), and the convergence C(uk) →

k
C(un), it follows that

A(uk) − λnD(uk) +B(uk) →
k
A(un) − λnD(un) +B(un).

If λn < 0, then we conclude from the weak convergence of uk ⇀
k
un in H1

r (R3), that

A(uk) →
k
A(un), B(uk) →

k
B(un), C(uk) →

k
C(un).

Thus uk →
k
un inH1

r (R3), and in particular, ||un||22 = c, F (un) = γn(c) and F ′(un)−λnun =

0 in H−1
r (R3).

At this point we can prove our main result.

Proof of Theorem 4.1.1. By Lemma 4.2.5 and Proposition 4.2.8, to prove Theorem 4.1.1,
it is enough to verify that if (un, λn) ∈ Sr(c) × R solves

−∆u− λu+ (|x|−1 ∗ |u|2)u = |u|p−2u, in R
3,

then necessarily λn < 0 provided c > 0 is sufficiently small. However, this point has been
proved in Lemma 3.4.3 of Chapter 3. Thus the proof of the theorem is completed.





Chapter 5

Sharp non-existence results of
normalized solutions for a
quasi-linear Schrödinger equation

5.1 Introduction

The aim of this chapter is to clarify and extend some results contained in [41] where a con-
strained minimization problem associated with a quasi-linear equation is considered. We
recall that in [41], the authors study the existence of solutions for the following stationary
quasi-linear Schrödinger equation

−∆u− λu− u∆(u2) − |u|p−1u = 0, in R
N , (Pλ)

where λ ∈ R, p ∈ (1, 3N+2
N−2 ) if N ≥ 3 and p ∈ (1,∞) if N = 1, 2. Solutions of (Pλ) are

found by considering the following minimization problem

m̄(c) := inf
u∈S̄(c)

J(u), c > 0, (5.1.1)

where

J(u) :=
1
2

∫

RN
|∇u|2dx+

∫

RN
|u|2|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx, (5.1.2)

and

S̄(c) :=
{
u ∈ X : ‖u‖2

2 = c
}

with X = {u ∈ H1(RN ) :
∫

RN
|u|2|∇u|2dx < ∞}.

It is standard that if a uc ∈ S̄(c) minimizes globally J on S̄(c), then there exists a λc ∈ R

such that the couple (uc, λc) solves (Pλ).
By means of (1.2.7), it is not difficult to conclude that for any c > 0, m̄(c) > −∞ if

p < 3 + 4
N , and m̄(c) = −∞ when p > 3 + 4

N . Hence the minimization problem (5.1.1)
is only studied as p ∈ (1, 3 + N

4 ]. In [41], it is proved that when p ∈ (1, 1 + N
4 ), for all

c > 0, m̄(c) admits a minimizer. When p ∈ (1 + N
4 , 3 + N

4 ], it is claimed that there exists
a c(p,N) > 0, such that minimizers of m̄(c) do not exist for c < c(p,N), but do exist for
c > c(p,N). However, there are some gaps in the proofs of [41].

In this chapter, we focus on the range p ∈ [1 + 4
N , 3 + 4

N ], and try to clarify and extend
some results in [41]. In particular, we settle the question of existence for the threshold
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value c(p,N). Before presenting our main results, we first give a detailed study of the
property of the function c → m̄(c). This study is of interest for itself, but also essential
for the establishment of our sharp non-existence results. Let

c(p,N) := inf{c > 0 : m̄(c) < 0}.

Theorem 5.1.1. (i) If p ∈ [1 + 4
N , 3 + 4

N ), we have

a) c(p,N) ∈ (0,∞);

b) m̄(c) = 0 if c ∈ (0, c(p,N)];

c) m̄(c) < 0 if c ∈ (c(p,N),∞) and is strictly decreasing about c, as c ∈ (c(p,N),∞).

(ii) If p ∈ [1 + 4
N , 3 + 4

N ), the mapping c 7→ m̄(c) is continuous at each c > 0.

(iii) If p = 3 + 4
N , we denote

cN := inf{c > 0 : ∃ u ∈ S̄(c) such that J(u) ≤ 0}, (5.1.3)

then cN ∈ (0,∞) and

{
m̄(c) = 0, as c ∈ (0, cN );
m̄(c) = −∞, as c ∈ (cN ,∞).

(5.1.4)

Concerning the existence or non-existence of minimizers we have

Theorem 5.1.2. (i) If p ∈ (1 + 4
N , 3 + 4

N ), then m̄(c) admits a minimizer if and only
if c ∈ [c(p,N),∞).

(ii) If p = 3 + 4
N , m̄(c) has no minimizer for all c ∈ (0,∞).

Remark 5.1.3. We note that in [41] it was proved that when p ∈ (1, 1 + 4
N ), for all

c > 0, m̄(c) < 0 and m̄(c) admits a minimizer. When p = 1 + 4
N , we conjecture that the

conclusion of Theorem 5.1.2 (i) also holds.

Remark 5.1.4. We point out that parts of Theorems 5.1.1 and 5.1.2 are already contained
in [41, Theorem 1.12]. However, on one hand we provide here additional information. In
particular we settle the question of existence for the threshold value c(p,N) which requires
a special treatment. On the other hand some statements of [41, Theorem 1.12] are wrong,
in particular concerning the case p = 3+ 4

N . There are also some gaps in the proofs of [41].
In particular it is not proved completely that there are no minimizer when c ∈ (0, c(p,N)).

Remark 5.1.5. In [32], the minimization problem (5.1.1) is studied and the question of
finding explicit bounds on c(p,N) and cN is addressed by a combination of analytical and
numerical arguments in dimension N = 3. In particular, when p = 3 + 4

N a cb > 0 such
that m̄(c) = 0 if 0 < c ≤ cb and a cb > 0 such that m̄(c) = −∞ if c > cb are explicitly given
(see [32, Proposition 2.1, points (4) and (5)]). Their values are cb ≈ 19.73 and cb ≈ 85.09.
Theorem 5.1.1 (iii) complements these results showing that the change from m̄(c) = 0 to
m̄(c) = −∞ occurs abruptly at the value cN . We also point out that our results hold for
any dimension N ∈ N.

Finally, similarly to Theorem 2.1.6 we prove

Theorem 5.1.6. Assume that p ∈ [1 + 4
N , 3 + 4

N ] holds, then there exists a ĉ > 0 such
that for all c ∈ (0, ĉ), the functional J , restricted to S̄(c), has no critical points.
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5.2 Preliminary Results

First we observe

Lemma 5.2.1. Assume that p ∈ [1+ 4
N , 3+ 4

N ). If there exists a c > 0 such that m̄(c) = 0
is achieved, then

m̄(c) < 0, for all c > c. (5.2.1)

Proof. Let ū ∈ S̄(c) be a minimizer of m̄(c). Setting (ū)t(x) = ū(t−
1
N x) for t > 1, we have

‖(ū)t‖2
2 = t‖ū‖2

2 = tc, and

m̄(tc) ≤ J((ū)t) = t1− 2
N

(∫

RN

1
2

|∇ū|2 + |ū|2|∇ū|2dx
)

− t

p+ 1

∫

RN
|ū|p+1dx

= t

[
t−

2
N

∫

RN

(
1
2

|∇ū|2 + |ū|2|∇ū|2
)
dx− 1

p+ 1

∫

RN
|ū|p+1dx

]

< tJ(ū) = tm̄(c). (5.2.2)

Thus (5.2.1) follows immediately from (5.2.2) since m̄(c) = 0.

Let cN be given by (5.1.3), then we have

Lemma 5.2.2. Assume that p = 3 + 4
N . Then cN ∈ (0,∞).

Proof. We know from (1.2.7) that when p ∈ [1+ 4
N , 3+ 4

N ] there exists a C > 0, depending
only on p and N , such that

‖u‖p+1
p+1 ≤ C · ‖u‖2(1−θ)

2 ·
(∫

RN
|u|2|∇u|2dx

) θN
N−2

, ∀ ∈ X , (5.2.3)

where θ = (p−1)(N−2)
2(N+2) . Letting p = 3 + 4

N in (5.2.3), we obtain that

‖u‖4+4/N
4+4/N ≤ C · ‖u‖

4
N
2 ·

(∫

RN
|u|2|∇u|2dx

)
, for all u ∈ X . (5.2.4)

Thus, for any u ∈ S̄(c), there holds

J(u) ≥ 1
2

‖∇u‖2
2 +

∫

RN
|u|2|∇u|2dx− C · c 2

N ·
∫

RN
|u|2|∇u|2dx

≥
(
1 − C · c 2

N

)
·
∫

RN
|u|2|∇u|2dx

and J(u) > 0 for all u ∈ S̄(c) if c > 0 is sufficiently small. This proves that cN > 0.
Now take u1 ∈ S̄(1) arbitrary and consider the scaling

ut(x) := u1(t−
1
N

x), for all t > 0. (5.2.5)

We have ut ∈ S̄(t) and

J(ut) = t1− 2
N

(
1
2

‖∇u1‖2
2 +

∫

RN
|u1|2|∇u1|2dx

)
− t · N

4(N + 1)
‖u1‖4+4/N

4+4/N

= t

[
t−

2
N

(
1
2

‖∇u1‖2
2 +

∫

RN
|u1|2|∇u1|2dx

)
− N

4(N + 1)
‖u1‖4+4/N

4+4/N

]
. (5.2.6)

This shows that J(ut) < 0 for t > 0 large and proves that cN < ∞.
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5.3 Special treatments for the limit case c = c(p, N)

Now we treat particularly the limit case c = c(p,N).

Lemma 5.3.1. Assume that p ∈ (1 + 4
N , 3 + 4

N ). Then m̄(c(p,N)) admits a minimizer.

Proof. Let cn := c(p,N)+1/n, for all n ∈ N. Since m̄(cn) < 0 we know by [41, Lemma 4.4]
that m̄(cn) admits, for all n ∈ N a minimizer that is Schwarz symmetric. We claim that
{un} is bounded in X , namely that {un} is bounded in H1(RN ) and {∫

RN |un|2|∇un|2dx}
is bounded. Indeed using (5.2.3) we have since J(un) ≤ 0, for all n ∈ N

+,

1
2

‖∇un‖2
2 +

∫

RN
|un|2|∇un|2dx ≤ 1

p+ 1

∫

RN
|un|p+1dx

≤ C

p+ 1
c1−θ

n ·
(∫

RN
|un|2|∇un|2dx

) θN
N−2

. (5.3.1)

Since p ∈ [1+ 4
N , 3+ 4

N ) we have θN
N−2 < 1 and thus (5.3.1) implies that both {∫

RN |un|2|∇un|2dx}
and {||∇un||22} are bounded.

Passing to a subsequence we can assume that un ⇀ u0 in X . Now from [41, Lemma
4.3] we have that

Z(u0) ≤ lim inf
n→∞

Z(un) where Z(u) :=
1
2

‖∇u‖2
2 +

∫

RN
|u|2|∇u|2dx.

Also the fact that {un} is a sequence of Schwarz symmetric functions readily implies that
un → u0 in Lp+1(RN ). Thus, since by Theorem 5.1.1 (ii), limn→∞ J(un) = limn→∞ m̄(cn) =
0 we obtain that J(u0) ≤ 0. Also since ||u0||22 ≤ c(p,N) necessarily J(u0) = 0.

In order to show that ||u0||22 = c(p,N) and thus that u0 is a minimizer of c(p,N) we
first show that u0 6= 0. By contradiction let us assume that u0 = 0. Then using the fact
that un → 0 in Lp(RN ) we get from J(un) → 0 that

‖∇un‖2
2 → 0 and

∫

RN
|un|2|∇un|2dx → 0, as n → ∞. (5.3.2)

Next we shall prove that J(un) ≥ 0 for n ∈ N
+ sufficiently large and this will contradict

the fact that J(un) = m̄(cn) < 0 for n ∈ N
+. For p ∈ (1 + 4

N ,
N+2
N−2 ] if N ≥ 3 and

p ∈ (1 + 4
N ,+∞) if N = 1, 2, by Gagliardo-Nirenberg’s inequality, for some constant

C > 0 we have
∫

RN
|un|p+1dx ≤ C · ‖∇un‖

N(p−1)
2

2 · c
(N+2)−(N−2)p

4
n ≤ C · ‖∇un‖

N(p−1)
2

2 . (5.3.3)

Thus it follows that

J(un) ≥ 1
2

‖∇un‖2
2 − C · ‖∇un‖

N(p−1)
2

2

= ‖∇un‖2
2

(
1
2

− C · ‖∇un‖
Np−(N+4)

2
2

)
.

This, together with (5.3.2), proves that J(un) ≥ 0 as n ∈ N
+ is sufficiently large. For

p ∈ (N+2
N−2 , 3 + 4

N ), N ≥ 3, we know from the proof of [41, Theorem 1.12] that {un} it is
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bounded in Lq(RN ) for all q ≥ 4N
N−2 . Thus by Hölder and Sobolev’s inequalities we can

write
∫

RN
|un|p+1dx ≤ C · ‖∇un‖α

2 · ‖un‖β
(p−1)N , (5.3.4)

where

α =
2N(p− 1) − 2(p+ 1)
(p− 1)(N − 2) − 2

and β = (p− 1)
(N − 2)(p+ 1) − 2N
(p− 1)(N − 2) − 2

.

For more details see, in particular, [41, (4.16)]. Now since ‖un‖β
(p−1)N is bounded we have

J(un) ≥ 1
2

‖∇un‖2
2 − C · ‖∇un‖α

2

= ‖∇un‖2
2

(
1
2

− C · ‖∇un‖α−2
2

)
.

Since α − 2 > 0 as p > 1, we then deduce using (5.3.2) that J(un) ≥ 0 for all n ∈ N
+

sufficiently large. This proves that u0 6= 0. Finally if we assume that ‖u0‖2
2 < c(p,N) we

directly get a contradiction from Lemma 5.2.1 since m̄(c) = 0 for all c ∈ (0, c(p,N)]. Thus
‖u0‖2

2 = c(p,N) and u0 is a minimizer of m̄(c(p,N)).

5.4 Proofs of the main results

Before the proofs of the main results, we should point out that, in the proofs of Theorems
5.1.1 and 5.1.2 we only provide the parts which were not established or whose proofs in
[41] contains a gap.

Proof of Theorem 5.1.1. In [41, Theorem 1.12], Point (i) was already proved except for
the statement that m̄(c(p,N)) = 0. But it is a direct consequence of Point (ii) that we
shall now prove. Let c > 0 be arbitrary but fixed and let {cn} be a sequence such that
cn → c. We need to show that m̄(cn) → m̄(c). By the definition of m̄(cn), for each n ∈ N,
there exists a un ∈ S̄(cn) such that

J(un) ≤ m̄(cn) +
1
n
. (5.4.1)

It is shown in [41] that m̄(c) ≤ 0 for any c > 0. Thus in particular

J(un) ≤ 1
n
. (5.4.2)

Now we claim that the sequences {‖∇un‖2
2}, {∫

RN |un|2|∇un|2dx}, {‖un‖p+1
p+1} are bounded.

Indeed using (5.2.3) and (5.4.2), we have

1
n

≥ J(un) ≥
∫

RN
|un|2|∇un|2dx− C

p+ 1
c1−θ

n

(∫

RN
|un|2|∇un|2dx

) θN
N−2

. (5.4.3)

Since θN
N−2 < 1 as p ∈ [1 + 4

N , 3 + 4
N ), we conclude from (5.4.3) that {∫

RN |un|2|∇un|2dx}
is bounded and then from (5.2.3) that {‖un‖p+1

p+1} is also bounded. At this point the fact
that {‖∇un‖2

2} is bounded follows from the boundedness of J(un). Now we see that

m̄(c) ≤ J

(√
c

cn
un

)
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=
1
2

(
c

cn

)
‖∇un‖2

2 +
(
c

cn

)2 ∫

RN
|un|2|∇un|2dx− 1

p+ 1

(
c

cn

) p+1
2 ‖un‖p+1

p+1

= J(un) + o(1) ≤ m̄(cn) + o(1).

On the other hand, for a minimizing sequence {vm} of m̄(c), we have

m̄(cn) ≤ J

(√
cn

c
vm

)
= J(vm) + o(1) = m̄(c) + o(1).

From these two estimates we deduce that limn→∞ m̄(cn) = m̄(c).

We now prove Point (iii). Note that the statement in [41, Theorem 1.12] concerning
p = 3 + 4

N was incorrect. We already know, from Lemma 5.2.2, that cN ∈ (0,∞). Using
the definition of cN , it follows directly that m̄(c) = 0 for any c ∈ (0, cN ), since one always
has m̄(c) ≤ 0 for any c ∈ (0,∞). Now if c > cN , we proceed as in the proof of Theorem
2.1.1 (v), namely we observe that there exists a v ∈ S̄(c) such that J(v) ≤ 0. Indeed if we
assume that J(u) > 0 for all u ∈ S̄(c) we reach a contradiction as follows. For an arbitrary
ĉ ∈ [cN , c) taking any u ∈ S̄(ĉ) we scale it as in (5.2.5) where t = c/ĉ. Then ut ∈ S̄(c) and
it follows from (5.2.6) that J(ut) ≤ tJ(u). This implies that J(u) > 0 for all u ∈ S̄(ĉ) and
since ĉ ∈ [cN , c) is arbitrary this contradicts the definition of cN > 0.

Hence, for any c ∈ (cN ,∞), there exists a u0 ∈ S̄(c) such that J(u0) ≤ 0 and we
consider the scaling

uδ(x) = δ
N
2 u0(δx), for all δ > 0. (5.4.4)

Then uδ ∈ S̄(c), for all δ > 0 and

J(uδ) =
δ2

2
‖∇u0‖2

2 + δN+2
∫

RN
|u0|2|∇u0|2dx− N

4(N + 1)
δN+2‖u0‖4+4/N

4+4/N

=
δ2

2
‖∇u0‖2

2 − δN+2
(

N

4(N + 1)
‖u0‖4+4/N

4+4/N −
∫

RN
|u0|2|∇u0|2dx

)
. (5.4.5)

Since J(u0) ≤ 0, necessarily

N

4(N + 1)
‖u0‖4+4/N

4+4/N −
∫

RN
|u0|2|∇u0|2dx > 0

and thus we see from (5.4.5) that limδ→∞ J(uδ) = −∞. It proves that m̄(c) = −∞ for
any c ∈ (cN ,+∞).

Proof of Theorem 5.1.2. In [41, Theorem 1.12] it is shown that m̄(c) admits a minimizer if
c ∈ (c(p,N),∞). By Lemma 5.3.1 this is also true for c = c(p,N). To complete the proof
of Point (i) we need to show that for c ∈ (0, c(p,N)), m̄(c) does not admit a minimizer.
But since m̄(c) = 0 for c ∈ (0, c(p,N)] it results directly from Lemma 5.2.1. To prove
Point (ii) we argue by contradiction assuming that there exists a c > 0 such that m̄(c)
admits a minimizer uc. Then, by standard arguments, uc satisfies weakly

−∆uc − λcuc − uc∆|uc|2 = |uc|p−1uc, (5.4.6)

where λc ∈ R is the associated Lagrange multiplier. Multiplying (5.4.6) by uc and inte-
grating we derive that

∫

RN
|∇uc|2dx+ 4

∫

RN
|uc|2|∇uc|2dx−

∫

RN
|uc|p+1dx = λc‖uc‖2

2. (5.4.7)
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Also, from [41, Lemma 3.1] we know that uc satisfies the Pohozaev identity

N − 2
N

(
1
2

∫

RN
|∇uc|2dx+

∫

RN
|uc|2|∇uc|2dx

)
=
λc

2
‖uc‖2

2 +
1

p+ 1
‖uc‖p+1

p+1. (5.4.8)

It follows from (5.4.7) and (5.4.8) that

‖∇uc‖2
2 + (N + 2)

∫

RN
|uc|2|∇uc|2dx− N(p− 1)

2(p+ 1)
‖uc‖p+1

p+1 = 0, (5.4.9)

by which we can rewrite J(uc) as

J(uc) =
Np− (N + 4)

2N(p− 1)
‖∇uc‖2

2 +
Np− (3N + 4)

N(p− 1)

∫

RN
|uc|2|∇uc|2dx. (5.4.10)

When p = 3 + 4
N , (5.4.10) becomes

J(uc) =
N

2N + 4
‖∇uc‖2

2. (5.4.11)

This is clearly a contradiction since by assumption J(uc) = m̄(c) ≤ 0 and Point (ii) is
established.

Proof of Theorem 5.1.6. From the proof of Theorem 5.1.2, we know that any critical point
uc of J restricted to S̄(c) must satisfy (5.4.9). Denoting

Q̄(u) = ‖∇u‖2
2 + (N + 2)

∫

RN
|u|2|∇u|2dx− N(p− 1)

2(p+ 1)
‖u‖p+1

p+1,

we thus have Q̄(uc) = 0. Now we assume by contradiction that there exist sequence
{cn} ⊂ R

+ with cn → 0, and {un} ⊂ S̄(cn) such that un is a critical point of J on S̄(cn).
Then for each n ∈ N, Q̄(un) = 0 and using (5.2.3) we obtain

‖∇un‖2
2 + (N + 2)

∫

RN
|un|2|∇un|2dx ≤ C · c1−θ

n ·
(∫

RN
|un|2|∇un|2dx

) θN
N−2

, (5.4.12)

where θ = (p−1)(N−2)
2(N+2) . When p = 3 + 4

N we have θN
N−2 = 1 , 1 − θ = 4

N and thus we get

immediately a contradiction from (5.4.12). Now when p ∈ [1 + 4
N , 3 + 4

N ), θN
N−2 < 1 and

we derive from (5.4.12) that
∫

RN
|un|2|∇un|2dx → 0 and ‖∇un‖2

2 → 0 as n → ∞. (5.4.13)

Also when p ∈ [1 + 4
N ,

N+2
N−2 ] if N ≥ 3 and p ∈ [1 + 4

N ,+∞) if N = 1, 2, we obtain from
(5.3.3) that

Q̄(un) ≥ ‖∇un‖2
2 − C · ‖∇un‖

N(p−1)
2

2 · c
(N+2)−(N−2)p

4
n

= ‖∇un‖2
2

(
1 − C · ‖∇un‖

Np−(N+4)
2

2 · c
(N+2)−(N−2)p

4
n

)
. (5.4.14)

Taking (5.4.13) into account (5.4.14) implies that Q̄(un) > 0 for n ∈ N large enough and
provides a contradiction.

When p ∈ (N+2
N−2 , 3+ 4

N ), N ≥ 3, using (5.3.4) and the fact that {‖un‖β
(p−1)N } is bounded,

we have

Q̄(un) ≥ ‖∇un‖2
2 − C · ‖∇un‖α

2 .

Since α − 2 as p > 1, using (5.4.13) we conclude that Q̄(un) > 0 for n ∈ N sufficiently
large. Here also we have obtained a contradiction and this ends the proof.





Chapter 6

Multiple normalized solutions for
quasi-linear Schrödinger equations

6.1 Introduction

In this chapter, we are concerned with quasi-linear Schrödinger equations of the form
{
i∂tϕ+ ∆ϕ+ ϕ∆|ϕ|2 + |ϕ|p−1ϕ = 0, in R

+ × R
N ,

ϕ(0, x) = ϕ0(x), in R
N ,

(6.1.1)

where p ∈ (1, 3N+2
N−2 ) if N ≥ 3 and p ∈ (1,∞) if N = 1, 2, and the function ϕ : R+×R

N → C

is complex valued. Such types of equations are used in various physical fields. For exam-
ple, in dissipative quantum mechanics, in plasma physics, in fluid mechanics. We refer to
the Introduction chapter or [41] and its references for more information about the physical
backgrounds.

From the mathematical point of view, a strong focus is made on the existence and
dynamics of standing waves of (6.1.1). By standing waves, we mean solutions of the form
ϕ(t, x) = e−iλtu(x), where λ ∈ R is a parameter. Observe that e−iλtu(x) solves (6.1.1) if
and only if u(x) satisfies the following stationary equation

−∆u− u∆(u2) − λu− |u|p−1u = 0, in R
N . (Pλ)

In (Pλ), when λ ∈ R is a fixed parameter, the existence and multiplicity of solutions
of (Pλ) have been intensively studied during the last decade. See [5, 40, 41, 50, 86, 87,
88, 89, 97, 101] and their references therein. We also refer to the works [1, 5, 54, 103] for
the uniqueness of ground states of (Pλ). Ground states here mean solutions of (Pλ) which
minimize among all nontrivial solutions of (Pλ) the associated energy functional

Iλ(u) :=
1
2

∫

RN
|∇u|2dx− λ

2

∫

RN
|u|2dx+

∫

RN
|u|2|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx,

defined on the natural space

X :=
{
u ∈ W 1,2(RN ) :

∫

RN
|u|2|∇u|2dx < ∞

}
.

It is known from [89] or [101] that when N ≥ 3 the exponent 3N+2
N−2 acts as a critical

exponent of (Pλ). See [89] or [101], and also Remark 1.2.1, for more details.
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In the present chapter motivated by the fact that physicists are often interested in
“normalized solutions” we look for solutions to (Pλ) having a prescribed L2-norm. In this
aim, for given c > 0, one can look to minimizers of

m̄(c) := inf
u∈S̄(c)

J(u), (6.1.2)

where

S̄(c) :=
{
u ∈ X :

∫

RN
|u|2dx = c

}
. (6.1.3)

Here the functional J : S̄(c) → R, is defined as

J(u) :=
1
2

∫

RN
|∇u|2dx+

∫

RN
|u|2|∇u|2dx− 1

p+ 1

∫

RN
|u|p+1dx. (6.1.4)

It is known from [41, Theorem 4.6] that for each minimizer u ∈ S̄(c) of (6.1.2), there exists
a Lagrange parameter λ < 0 such that the couple (u, λ) solves (Pλ).

We collect below the known results concerning minimizers of m̄(c).

Lemma 6.1.1. ([41, Theorems 1.9, 1.12], [65, Theorems 1.4, 1.5]) Assume that p ∈
(1, 3N+2

N−2 ) if N ≥ 3 and p ∈ (1,∞) if N = 1, 2. Then

(1) Concerning the properties of the function c → m̄(c), we have

i) For all c > 0, m̄(c) ∈ (−∞, 0] as p ∈ (1, 3 + 4
N );

ii) For all c > 0, m̄(c) = −∞ as p ∈ (3 + 4
N ,

3N+2
N−2 ) if N ≥ 3 and p ∈ (3 + 4

N ,∞)
if N = 1, 2;

iii) For p = 3 + 4
N , there exists a cN > 0, given by

cN := inf{c > 0 : ∃ u ∈ S̄(c) such that J(u) ≤ 0},

such that {
m̄(c) = 0, as c ∈ (0, cN );
m̄(c) = −∞, as c ∈ (cN ,∞).

(2) When p ∈ (1, 1 + 4
N ), for all c > 0, m̄(c) < 0 and m̄(c) has a minimizer.

(3) When p ∈ (1 + 4
N , 3 + 4

N ), there exists a c(p,N) > 0, given by

c(p,N) := inf{c > 0 : m̄(c) < 0}, (6.1.5)

such that

i) If c ∈ (0, c(p,N)), m̄(c) = 0 and m̄(c) has no minimizer;

ii) If c = c(p,N), m̄(c) = 0 and m̄(c) admits a minimizer;

iii) If c ∈ (c(p,N),∞), m̄(c) < 0 and m̄(c) admits a minimizer.

(4) When p = 3 + 4
N , for all c > 0, m̄(c) admits no minimizers.

(5) The standing waves obtained as minimizers of m̄(c) are orbitally stable.
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In this chapter, we are interested in the range p ∈ (1+ 4
N , 3+ 4

N ), N ≥ 1. From Lemma
6.1.1 (3), we know that in this range the functional J has, for c ≥ c(p,N), a critical point
on S̄(c), which is a global minimizer. Here we extend this result in two directions. First we
prove that there exists a c0 ∈ (0, c(p,N)) such that, for each c ∈ (c0, c(p,N)) the functional
J admits on S̄(c) a local minimizer. By Lemma 6.1.1 (3) i), this local minimizer can not
be a global one. Secondly we show that when c ∈ (c0,∞) the functional J admits on S̄(c)
a second critical point of mountain pass type. Note that since J is not differentiable we
must give a meaning to what we call a critical point of J on S̄(c). By definition it will be
a solution of (Pλ) belonging to S̄(c).

The main result of this chapter is the following theorem.

Theorem 6.1.2. Assume that p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2 ] if

N ≥ 4. Then there exists a c0 ∈ (0, c(p,N)) such that for any c ∈ (c0,∞) the functional
J admits two critical points uc and vc on S̄(c). In addition

(1) J(uc) > J(vc) for any c ∈ (c0,∞).

(2) J(uc) > 0 for all c ∈ (c0,∞) and J(uc) is a mountain pass level.

(3) J(vc)





> 0, if c ∈ (c0, c(p,N));
= 0, if c = c(p,N);
< 0, if c ∈ (c(p,N),∞).

Also vc is a local minimum of J when c ∈ (c0, c(p,N)) and a global minimum of J
when c ∈ [c(p,N),∞).

(4) uc and vc are Schwarz symmetric functions.

(5) There exists Lagrange multipliers λc < 0 and βc < 0 such that (uc, λc) and (vc, βc)
solve (Pλ).

Remark 6.1.3. In Theorem 5.1.6 it is proved that there exists a ĉ > 0 such that for all
c ∈ (0, ĉ) the functional J restricted to S̄(c) has no critical point. It is an open question
whether or not we can take c0 = ĉ in Theorem 6.1.2. Already it would be interesting to
know if the set of c ∈ (0, c(p,N)] for which one can find the two critical points uc and vc

of Theorem 6.1.2 is an interval.
In addition, in the case c ∈ [c(p,N),∞) the critical point vc is just a global minimizer

already obtained in [41, 65] whose existence is recalled in Lemma 6.1.1.

As we mentioned in the Introduction chapter the functional J is not differentiable
except when N = 1. To overcome the lack of differentiability of J we apply a perturbation
method recently developed in [86]. That is, we consider first the perturbed functional

Jµ(u) :=
µ

4

∫

RN
|∇u|4dx+ J(u), (6.1.6)

where µ ∈ (0, 1] is a parameter. For any given c > 0, we denote

Σc :=
{
u ∈ W 1,4 ∩W 1,2(RN ) :

∫

RN
|u|2dx = c

}
.

One may observe that Jµ(u) is well-defined and C1 in Σc (see [86]).

The idea is to look to critical points of Jµ, for each µ > 0 small and then, having
obtained these critical points, to show that they converge to suitable critical points of J .
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A first critical point uc
µ of Jµ is obtained at a critical value γµ(c) > 0 which corresponds

to a mountain pass level. When c ∈ (c0, c(p,N)) a second critical point vc
µ is obtained

as a local minimizer of Jµ. The corresponding energy level m̃µ(c) is strictly positive. To
derive these results we first check the geometric properties of Jµ allowing to search for such
critical points. To show that these critical levels are actually reached, several difficulties
have to be overcome. Since Jµ is coercive on Σc any Palais-Smale sequence {un} ⊂ Σc is
bounded and thus we can assume that un ⇀ uc. It is also standard to show that there
exists a λc ∈ R such that J ′

µ(uc) − λcuc = 0. Finally we mention that, by constructing
Palais-Smale sequences which consist of almost Schwarz symmetric functions we can avoid
any problems related to possible dichotomy of our sequences, in the sense of P. L. Lions
[83]. The first main difficulty is to show that uc 6= 0. To overcome it we need, for both
γµ(c) and m̃µ(c), to establish the existence of Palais-Smale sequences having the additional
property that Qµ(un) → 0. See Lemmas 6.2.6 and 6.2.9.

In the case of γµ(c) the existence of such Palais-Smale sequence is proved using the
trick, first introduced in [64], to construct an auxiliary functional on Σc × R. This trick,
which has been used recently on various problems [8, 59, 95] permits to incorporate in the
variational procedure the information that any critical point of Jµ on Σ(c) must satisfy
Qµ(u) = 0. For m̃µ(c) we can directly construct a minimizing sequence {un} ⊂ Σ(c)
satisfying Qµ(un) = 0,∀n ∈ N. It readily leads to the fact that the weak limit of the
associated Palais-Smale sequence is non trivial.

Another main difficulty is to show that the weak limit uc does belong to Σc, namely
that ||uc||22 = c. For this we need to require that λc ∈ R satisfies λc < 0. Here, and only
here, comes the need to restrict our result from the natural range (1 + 4

N , 3 + 4
N ) for any

N ≥ 1 to the range (1 + 4
N , 3 + 4

N ) when N = 1, 2, 3 and (1 + 4
N ,

N+2
N−2) when N ≥ 4.

It is not clear to us if it is possible to prove that λc < 0 for our critical points in all
the range (1 + 4

N , 3 + 4
N ). Also we do not know if λc < 0 is necessary to get a critical

point on Σc. However let us mention that in [16] we faced a similar issue but there strong
indications incline to think it is necessary for the suspected Lagrange multipliers to be
strictly negative.

Having proved the existence of the critical points uc
µ and vc

µ at the levels γµ(c) and
m̃µ(c) respectively we pass to the limit µ → 0 and we show that uc

µ → uc and vµ(c) → vc

where uc and vc are as presented in Theorem 6.1.2. In this part we strongly rely on the
machinery developed in [86].

In this chapter we also discuss the behavior of the Lagrange multipliers corresponding
to the global minimizers of J .

Lemma 6.1.4. Assume that p ∈ (1, 3+ 4
N ) and for c > 0 large, let vc be a global minimizer

of J on S(c) and βc < 0 be its Lagrange multiplier. Then

βc → −∞ as c → ∞.

Finally, we present a relationship between the ground states of (Pλ) and the global
minimizers of m̄(c).

Theorem 6.1.5. Assume that p ∈ (1, 3 + 4
N ) and for some c > 0 let uc ∈ S̄(c) be a

global minimizer of m(c) and βc < 0 be its Lagrange multiplier. Then uc is a ground state
solution of (Pλ) with λ = βc.

Note however that the converse of Theorem 6.1.5 does not hold in general. Indeed
on one hand our mountain pass solution is non negative. On the other hand we know
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in several cases that (Pλ) has a unique non negative solution when λ > 0 is fixed. This
is the case in particular when N = 1, see [41, Theorem 1.3] or [5]. Thus when this
uniqueness property holds our mountain pass solution must necessarily be a ground state.
This observation shows that not all ground states of (Pλ) for p ∈ (1 + 4

N , 3 + 4
N ) can be

obtained as minimizers of J on the corresponding constraint.

Remark 6.1.6. From Theorem 6.1.5 we deduce that any global minimizer uc has a given
sign and that |uc| is a radially symmetric, decreasing function with respect to one point.
This follows directly from [41, Theorem 1.3].

6.2 Perturbation of the functional

In this section to overcome the non-differentiability of the functional J , we apply the per-
turbation method introduced in [86]. First, we show that there exists a c0 ∈ (0, c(p,N))
such that, for each c ∈ (c0,∞) the functional Jµ has a mountain pass geometry on Σc when
µ > 0 is sufficiently small. For simplicity, we denote in this section X := W 1,4 ∩W 1,2(RN ).

Lemma 6.2.1. [Mountain Pass geometry] Assume that p ∈ (1 + 4
N , 3 + 4

N ), N ≥ 1. Then
there exists a c0 ∈ (0, c(p,N)) such that for any fixed c ∈ [c0,∞) taking µ0 > 0 small
enough the functional Jµ has, for µ ∈ (0, µ0) a Mountain Pass geometry on the constraint
Σc. Precisely there exist (u0, u1) ∈ Σc × Σc both Schwarz symmetric, such that

γµ(c) = inf
g∈Γc

max
t∈[0,1]

Jµ(g(t)) > max{Jµ(u0), Jµ(u1)} > 0 (6.2.1)

where
Γc = {g ∈ C([0, 1],Σc) : g(0) = u0, g(1) = u1}.

The proof of Lemma 6.2.1 relies on the following estimates.

Lemma 6.2.2. Assume that p ∈ (1 + 4
N , 3 + 4

N ), N ≥ 1. Then setting for k > 0,

Ck := {u ∈ Σc :
∫

RN
(1 + |u|2)|∇u|2dx = k}

there exists a k0 > 0 sufficiently small such that for all k ∈ (0, k0] and all µ > 0

Jµ(u) ≥ 1
4
k > 0, for all u ∈ Ck. (6.2.2)

Qµ(u) ≥ 1
4
k > 0, for all u ∈ Ck. (6.2.3)

Here we have set, for any given µ > 0,

Qµ(u) =
µ(N + 4)

4
||∇u||44 + ||∇u||22 + (N + 2)

∫

RN
|u|2|∇u|2dx− N(p− 1)

2(p+ 1)
||u||p+1

p+1. (6.2.4)

Moreover when c ∈ (0, c(p,N)], the constant k0 > 0 can be chosen independently of c > 0.

Proof. When p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2) if N ≥ 4, by

Gagliardo-Nirenberg’s inequality, there exists a C = C(p,N) > 0, such that for all u ∈ X,

∫

RN
|u|p+1dx ≤ C

(∫

RN
|∇u|2dx

)N(p−1)
4

(∫

RN
|u|2dx

) (N+2)−(N−2)p

4
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≤ C

(∫

RN
(1 + |u|2)|∇u|2dx

)N(p−1)
4

(∫

RN
|u|2dx

) (N+2)−(N−2)p

4

.(6.2.5)

Thus, for a constant C = C(p,N) > 0, independent of c > 0 when c ∈ (0, c(p,N)), we
have for all u ∈ Σc

Jµ(u) ≥ 1
2

∫

RN
(1 + |u|2)|∇u|2dx− C

(∫

RN
(1 + |u|2)|∇u|2dx

)N(p−1)
4

. (6.2.6)

when p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2) if N ≥ 4.

When p ∈ [N+2
N−2 , 3 + 4

N ), N ≥ 4, we claim that there exists a C = C(p,N) > 0, such
that for all u ∈ X,

∫

RN
|u|p+1dx ≤ C

(∫

RN
(1 + |u|2)|∇u|2dx

) N
N−2

. (6.2.7)

To show (6.2.7), let α ∈ R be such that

p+ 1
α+ 1

=
2N
N − 2

.

Clearly, α ∈ [0, 1] if p ∈ [N+2
N−2 , 3 + 4

N ), N ≥ 4. Then by Sobolev-Gagliardo-Nirenberg’s
inequality [23, Theorem IX.9], there exists a C = C(p,N) > 0 such that for all u ∈ X,

∫

RN
|u|p+1dx =

∫

RN
(|u|α+1)

2N
N−2dx ≤ C

(∫

RN
|∇(|u|α+1)|2dx

) N
N−2

= C

(∫

RN
|u|2α|∇u|2dx

) N
N−2

.

Since α ∈ [0, 1], from the last inequality we conclude that (6.2.7) holds. Then

Jµ(u) ≥ 1
2

∫

RN
(1 + |u|2)|∇u|2dx− C

(∫

RN
(1 + |u|2)|∇u|2dx

) N
N−2

, (6.2.8)

when p ∈ [N+2
N−2 , 3 + 4

N ), N ≥ 4.

We note that N(p−1)
4 > 1 as p > 1 + 4

N and N
N−2 > 1 as N ≥ 4. Thus when p ∈

(1 + 4
N , 3 + 4

N ), N ≥ 1, by (6.2.6)-(6.2.8), there exists a k0 > 0 small, such that for all
k ∈ (0, k0),

Jµ(u) ≥ 1
4
k > 0, for all u ∈ Ck.

Note that when c ∈ (0, c(p,N)] the constant k0 > 0 can be chosen independently of c > 0.
This proves that (6.2.2) holds. Now by the estimates (6.2.6) and (6.2.8), one obtain the
existence of a constant C = C(p,N) > 0, independent of u ∈ X, such that for all u ∈ Σc,

Qµ(u) ≥
∫

RN
(1 + |u|2)|∇u|2dx− C

{∫

RN
(1 + |u|2)|∇u|2dx

}N(p−1)
4

, (6.2.9)

where p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2) if N ≥ 4, and

Qµ(u) ≥
∫

RN
(1 + |u|2)|∇u|2dx− C

{∫

RN
(1 + |u|2)|∇u|2dx

} N
N−2

, (6.2.10)

where p ∈ [N+2
N−2 , 3 + 4

N ) as N ≥ 4. From (6.2.9) and (6.2.10) we also readily derive that
(6.2.3) holds.
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Proof of Lemma 6.2.1. We know from Lemma 6.1.1 (3) b) that J has, when c ≥ c(p,N),
a global minimizer uc ∈ W 1,2(RN ). By density we can replace uc by ũc ∈ X with J(ũc)
arbitrarily close to J(uc) = m(c). When c > c(p,N) we have m(c) < 0 and thus taking
µ0 > 0 small enough we have that Jµ(ũc) < 0 for all µ ∈ (0, µ0). We set u1 = ũ∗

c , where ũ∗
c

denotes the Schwarz symmetrization of ũc. One notes that by the Polya-Szegö inequality
‖∇u∗‖q

q ≤ ‖∇u‖q
q, ∀q ∈ [1,∞), and using [41, Lemma 4.3], we have Jµ(ũ∗

c) ≤ Jµ(ũc). Also
clearly taking k0 > 0 smaller if necessary we have that

∫
RN (1 + |u1|2)|∇u1|2dx > k0.

Now let t < 1 be close to 1 and set c0 = tc(p,N). By the continuity of Jµ, taking t < 1
sufficiently close to 1 we have that

Jµ(
√
tũc) <

1
4
k0.

We fix such a t < 1 and we set u1 =
√
tũ∗

c . Without restriction we can also assume that∫
RN (1 + |u1|2)|∇u1|2dx > k0.

To choose u0 ∈ Σc, we consider the scaling

uθ
1(x) := θN/2u1(θx), ∀ θ > 0.

By direct calculations we observe that

1) uθ
1 ∈ Σc, ∀ θ > 0;

2) limθ→0 Jµ(uθ
1) = 0;

3) limθ→0

∫
RN (1 + |uθ

1|2)|∇uθ
1|2dx = 0.

Thus there exists θ0 > 0 sufficiently small such that

Jµ(uθ0
1 ) ≤ 1

8
k0, and

∫

RN
(1 + |uθ0

1 |2)|∇uθ0
1 |2dx < k0.

Letting u0 = uθ0
1 , this and Lemma 6.2.2 complete the proof.

Remark 6.2.3. By choosing u0, u1 ∈ Σc both being Schwarz symmetric, one has that g∗

is still a path in Γc if g ∈ Γc, which will be used in the following Lemma.
Also one observes that the inequality (6.2.7) holds for any p ∈ [N+2

N−2 ,
3N+2
N−2 ] if N ≥ 3.

Accordingly the mountain pass geometry of Lemma 6.2.1 still holds in that range.

We now show that the geometry of J presents a local minimum when c ∈ (c0, c(p,N)).
Actually we shall get a local minimizer of Jµ on Σc by considering the minimization
problem

m̃µ(c) := inf
u∈Σc\B

Jµ(u), (6.2.11)

where B :=
⋃

0<k≤k0
Ck and k0 > 0 is given in Lemma 6.2.2.

Lemma 6.2.4 (Geometry of local minima). For any given c ∈ (c0, c(p,N)) we have

0 ≤ m̃µ(c) = inf
u∈Σc\B

Jµ(u) < inf
u∈Ck0

Jµ(u). (6.2.12)
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Proof. From the proof of Lemma 6.2.1, we know that there exists a v0 ∈ Σc \B such that
Jµ(v0) < inf

u∈Ck0

Jµ(u). Thus

inf
u∈Σc\B

Jµ(u) ≤ Jµ(v0) < inf
u∈Ck0

Jµ(u).

In addition, by Lemma 6.1.1, we know that m̃µ(c) = inf
u∈Σc\B

Jµ(u) ≥ 0. This completes

the proof.

In view of Lemmas 6.2.1 and 6.2.4 we shall search for critical points of Jµ at the levels
γµ(c) and m̃µ(c). For this we establish the existence of special Palais-Smale sequences
associated with γµ(c) and m̃µ(c) and show their convergence. In that direction we first
observe

Lemma 6.2.5. For any fixed c ∈ (0,∞) and any fixed µ > 0, if a sequence {un} ⊂ Σc is
such that {Jµ(un)} ⊂ R is bounded then it is bounded in X.

Proof. From (1.2.7), we know that there holds for any u ∈ X that,

∫

RN
|u|q+1dx ≤ C · ‖u‖

3N+2−(N−2)q

N+2

2 ·
(∫

RN
|u|2|∇u|2dx

)N(q−1)
2(N+2)

, (6.2.13)

for q ∈ (1, 3N+2
N−2 ) if N ≥ 3 and q ∈ (1,∞) if N = 1, 2. Thus we have

Jµ(un) ≥ µ

4
‖∇un‖4

4 +
1
2

∫

RN
(1 + |un|2)|∇un|2dx− C ·

(∫

RN
(1 + |un|2)|∇un|2dx

)N(p−1)
2(N+2)

.

Since N(p−1)
2(N+2) < 1 as p < 3 + 4

N , the last inequality implies from the boundedness of

{Jµ(un)} that {∫
RN (1 + |un|2)|∇un|2dx} is bounded, and also for fixed µ > 0, {‖∇un‖4

4}
is bounded. In addition, because of (6.2.13), {‖un‖4

4} is bounded. Thus {un} is bounded
in X.

From Lemma 6.2.5 we know, in particular, that any Palais-Smale sequences for Jµ

are bounded. The need to use special Palais-Smale sequences comes from the difficulty
to pass from weak convergence to strong convergence. A problem linked to possible loss
of compactness, due to the fact that our equation is set on all R

N . In order to regain
some compactness we could proceed as in [86, Lemma 2.1] by working in the subspace
of radially symmetry functions W 1,4

r ∩ W 1,2
r (RN ), N ≥ 2. However, when N = 1, the

inclusion H1
r (R) ⊂ Lq(R) for q > 2 is not compact and another proof is needed. Here we

choose to construct special Palais-Smale sequences for Jµ which consist of almost Schwarz
symmetric functions. This allows us to give a proof in any dimension. By working with
such Palais-Smale sequences we avoid any problem related to possible dichotomy, in the
sense of P. L. Lions [83], of our sequences.

Even if we work with sequences of almost symmetric functions it is not automatic that
they converge to a non trivial weak limit. To avoid this possibility we construct Palais-
Smale sequences {un} ⊂ Σc which satisfy in addition the property that Qµ(un) → 0. For
the mountain pass level γµ(c) this is done using the trick introduced in [64] and already
used in Chapter 4. For m̃µ(c) a direct argument will provide the result.
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Lemma 6.2.6. [A special Palais-Smale sequence for γµ(c)] Assume that p ∈ (1 + 4
N , 3 +

4
N ), N ≥ 1. Then, for any given c ≥ c0 where c0 > 0 is given in Lemma 6.2.1, there exist
a sequence {un} ⊂ Σc and a sequence {vn} ⊂ X of Schwarz symmetric functions, such
that 




Jµ(un) → γµ(c) > 0,
‖J ′

µ|Σc(un)‖X∗ → 0,
Qµ(un) → 0,
‖un − vn‖X → 0,

(6.2.14)

as n → ∞. Here X∗ denotes the dual space of X.

Before proving Lemma 6.2.6 we need to introduce some notations and to prove some
preliminary results.

For any fixed µ > 0, we introduce the following auxiliary functional

J̃µ : Σc × R → R, (u, s) 7→ Jµ(H(u, s)),

where H(u(x), s) := e
N
2

su(esx), and the set of paths

Γ̃c :=
{
g̃ ∈ C([0, 1],Σc × R) : g̃(0) = (u0, 0), g̃(1) = (u1, 0)

}
,

where u0, u1 ∈ Σc are given in Lemma 6.2.1.

Observe that defining
γ̃µ(c) := inf

g̃∈Γ̃c

max
t∈[0,1]

J̃µ(g̃(t)),

we have that

γ̃µ(c) = γµ(c). (6.2.15)

Indeed, by the definitions of γ̃µ(c) and γµ(c), (6.2.15) follows immediately from the fact
that the maps

ϕ : Γc −→ Γ̃c, g 7−→ ϕ(g) := (g, 0),

and
ψ : Γ̃c −→ Γc, g̃ 7−→ ψ(g̃) := H ◦ g̃,

satisfy
J̃µ(ϕ(g)) = Jµ(g) and Jµ(ψ(g̃)) = J̃µ(g̃).

In the proof of Lemma 6.2.6, the lemma below which has been established by Ekeland’s
variational principle in [64, Lemma 2.3] is used. Hereinafter we denote by E the set X×R

equipped with the norm ‖ · ‖2
E = ‖ · ‖2

X + | · |2
R

and denote by E∗ its dual space.

Lemma 6.2.7. Let ε > 0. Suppose that g̃0 ∈ Γ̃c satisfies

max
t∈[0,1]

J̃µ(g̃0(t)) ≤ γ̃µ(c) + ε.

Then there exists a pair of (u0, s0) ∈ Σc × R such that:

(1) J̃µ(u0, s0) ∈ [γ̃µ(c) − ε, γ̃µ(c) + ε];

(2) min
t∈[0,1]

‖(u0, s0) − g̃0(t)‖E ≤ √
ε;
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(3) ‖J̃ ′
µ|Σc×R(u0, s0)‖E∗ ≤ 2

√
ε, i.e.

|〈J̃ ′
µ(u0, s0), z〉E∗×E | ≤ 2

√
ε ‖z‖E ,

holds for all z ∈ T̃(u0,s0) := {(z1, z2) ∈ E, 〈u0, z1〉L2 = 0}.

Proof of Lemma 6.2.6. For each n ∈ N
+, by the definition of γµ(c), there exists a gn ∈ Γc

such that
max
t∈[0,1]

Jµ(gn(t)) ≤ γµ(c) +
1
n
.

Denote by g∗
n the Schwarz symmetrization of gn ∈ Γc. Then by the Polya-Szegö inequality

‖∇u∗‖q
q ≤ ‖∇u‖q

q, ∀q ∈ [1,∞), and using [41, Lemma 4.3], we have that

max
t∈[0,1]

Jµ(g∗
n(t)) ≤ max

t∈[0,1]
Jµ(gn(t)).

Since γ̃µ(c) = γµ(c), then for each n ∈ N
+, g̃n := (g∗

n, 0) ∈ Γ̃c and satisfies

max
t∈[0,1]

J̃µ(g̃n(t)) ≤ γ̃µ(c) +
1
n
.

Thus applying Lemma 6.2.7, we obtain a sequence {(wn, sn)} ⊂ Σc × R such that:

(i) J̃µ(wn, sn) ∈ [γµ(c) − 1
n , γµ(c) + 1

n ];

(ii) min
t∈[0,1]

‖(wn, sn) − (g∗
n(t), 0)‖E ≤ 1√

n
;

(iii) ‖J̃ ′
µ|Σc×R(wn, sn)‖E∗ ≤ 2√

n
, i.e.

|〈J̃ ′
µ(wn, sn), z〉E∗×E | ≤ 2√

n
‖z‖E ,

holds for all z ∈ T̃(wn,sn) := {(z1, z2) ∈ E, 〈wn, z1〉L2 = 0}.

Now we claim that for each n ∈ N
+, there exists a tn ∈ [0, 1] such that un := H(wn, sn)

and vn := g∗
n(tn) satisfy (6.2.14). Indeed, first, from (i) we have that Jµ(un) → γµ(c),

since Jµ(un) = Jµ(H(wn, sn)) = J̃µ(wn, sn). Secondly, by simple calculations, we have

Qµ(un) = 〈J̃ ′
µ(wn, sn), (0, 1)〉E∗×E ,

and (0, 1) ∈ T̃(wn,sn). Thus (iii) yields that Qµ(un) → 0. To verify that ‖J ′
µ|Σc(un)‖X∗ →

0, it suffices to prove for n ∈ N
+ sufficiently large, that

|〈J ′
µ(un), φ〉X∗×X | ≤ 4√

n
‖φ‖2

X , for all φ ∈ Tun , (6.2.16)

where Tun := {φ ∈ X, 〈un, φ〉L2 = 0}. To this end, we note that, for φ ∈ Tun , by denoting
φ̃ = H(φ,−sn), one has

〈J ′
µ(un), φ〉 = µ

∫

RN
|∇un|2∇un∇φdx+

∫

RN
∇un∇φdx

+ 2
∫

RN
(unφ|∇un|2 + |un|2∇un∇φ)dx−

∫

RN
|un|p−1unφdx.

= e(N+4)sn · µ
∫

RN
|∇wn|2∇wn∇φdx+ e2sn

∫

RN
∇wn∇φdx
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+ e(N+2)sn · 2
∫

RN
(wnφ|∇wn|2 + |wn|2∇wn∇φ)dx

− e
N(p−1)

2
sn

∫

RN
|wn|p−1wnφdx = 〈J̃ ′

µ(wn, sn), (φ̃, 0)〉E∗×E .

If (φ̃, 0) ∈ T̃(wn,sn) and ‖(φ̃, 0)‖2
E ≤ 2‖φ‖2

X as n ∈ N
+ sufficiently large, then from (iii) we

conclude (6.2.16). To verify this condition, one observes that (φ̃, 0) ∈ T̃(wn,sn) ⇔ φ ∈ Tun ,
also from (ii) it follows that

|sn| = |sn − 0| ≤ min
t∈[0,1]

‖(wn, sn) − (g∗
n(t), 0)‖E ≤ 1√

n
, (6.2.17)

by which we deduce that

‖(φ̃, 0)‖2
E = ‖φ̃‖2

X =
∫

RN
|φ(x)|2dx+ e−2sn

∫

RN
|∇φ(x)|2dx

+ e−Nsn

∫

RN
|φ(x)|4dx+ e−(N+4)sn

∫

RN
|∇φ(x)|4dx ≤ 2 ‖φ‖2

X ,

holds as n ∈ N
+ large enough. Thus (6.2.16) has been proved. Finally, we know from (ii)

that for each n ∈ N
+, there exists a tn ∈ [0, 1], such that ‖(wn, sn) − (g∗

n(tn), 0)‖E → 0.
This implies in particular that

‖wn − g∗
n(tn)‖X → 0.

Thus from (6.2.17) and

‖un − vn‖X = ‖H(wn, sn) − g∗
n(tn)‖X ≤ ‖H(wn, sn) − wn‖X + ‖wn − g∗

n(tn)‖X ,

we conclude that ‖un − vn‖X → 0 as n → ∞. At this point, the proof of the lemma is
completed.

We now derive a similar Palais-Smale sequence for Jµ at the level m̃µ(c). As a first
step we prove

Lemma 6.2.8. For any given c ∈ (c0, c(p,N)), there exists a minimizing sequence {un} ⊂
Σc \B of Schwarz symmetric functions, such that

{
Jµ(un) → m̃µ(c),
Qµ(un) = 0, ∀ n ∈ N

+.
(6.2.18)

Proof. First we prove that there exists a sequence {vn} ⊂ Σc \ B satisfying (6.2.18). Let
{un} ⊂ Σc \ B be such that Jµ(un) → m̃µ(c), we claim that we may assume that {un}
satisfies Qµ(un) = 0 for all n ∈ N

+.
Indeed, if Qµ(un) = 0, for some n ∈ N, we are done. If Qµ(un) 6= 0, then we consider

the scaling

ut
n(x) := tN/2un(tx), ∀ t > 0. (6.2.19)

Note that for all t > 0, ut
n ∈ Σc and direct calculations show that Qµ(ut

n) = d
dtJµ(ut

n) and
Qµ(ut

n) → ∞ as t → ∞. Thus if Qµ(un) < 0 there exists by continuity a t0n > 1 such that

Qµ(ut0
n

n ) = 0 and

Jµ(ut0
n

n ) ≤ Jµ(un). (6.2.20)
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Also u
t0
n

n ∈ Σc \ B. If Qµ(un) > 0 we also claim that there exists a t0n ∈ (0, 1), such

that Qµ(ut0
n

n ) = 0 and Jµ(ut0
n

n ) ≤ Jµ(un). To prove the claim first observe that it is not
possible to have Qµ(ut

n) > 0, ∀ t ∈ (0, 1) since otherwise there exists a t∗n ∈ (0, 1) such
that

∫
RN (1 + |ut∗

n
n |2)|∇ut∗

n
n |2dx = k0 and this leads to

Jµ(ut∗
n

n ) ≤ Jµ(un) → m̃µ(c) (6.2.21)

and

Jµ(ut∗
n

n ) ≥ inf
u∈Ck0

Jµ(u). (6.2.22)

Clearly (6.2.21)-(6.2.22) contradict (6.2.12). We conclude that there exists a t0n ∈ (0, 1)
such that

Qµ(ut0
n

n ) = 0 and Jµ(ut0
n

n ) ≤ Jµ(un).

Since by Lemma 6.2.2, Qµ(u) > 0 for u ∈ B we also have that ut0
n

n ∈ Σc \B. At this point

we have shown that it is possible to choose, for each n ∈ N a t0n > 0 such that Qµ(ut0
n

n ) = 0,

Jµ(ut0
n

n ) → m̃µ(c) and u
t0
n

n ∈ Σc \B.

Now denote by u∗
n the Schwarz symmetrization of un and let us prove that {u∗

n} ⊂ Σc\B
and is a minimizing sequence of m̃µ(c). For each n ∈ N, by the Polya-Szegö inequality
‖∇u∗‖q

q ≤ ‖∇u‖q
q, ∀q ∈ [1,∞) and also [41, Lemma 4.3] we have

Jµ(u∗
n) ≤ Jµ(un), and Qµ(u∗

n) ≤ Qµ(un) = 0. (6.2.23)

At this point (6.2.3) implies that u∗
n ∈ Σc \B. This and (6.2.23) lead to

{
Jµ(u∗

n) → m̃µ(c),
Qµ(u∗

n) ≤ 0, ∀ n ∈ N
+.

If Qµ(u∗
n) < 0, we may use the above scaling arguments to get a v∗

n ∈ Σc \ B satisfying
(6.2.18). At this point the proof is completed.

Lemma 6.2.9 (A special Palais-Smale sequence for m̃µ(c)). Assume that p ∈ (1 + 4
N , 3 +

4
N ), N ≥ 1. Then for any given c ∈ (c0, c(p,N)), for each µ ∈ (0, µ0) there exists a
sequence {un} ∈ Σc \ B, and a sequence {vn} ⊂ Σc\B of Schwarz symmetric functions,
such that 




Jµ(un) → m̃µ(c),
‖un − vn‖X → 0,
‖J ′

µ|Σc(un)‖X∗ → 0,
Qµ(vn) = 0, ∀ n ∈ N

+,

(6.2.24)

as n → ∞.

Proof. In Lemma 6.2.8 we have obtained a sequence {vn} ⊂ Σc \B of Schwarz symmetric
functions, satisfying

Jµ(vn) → m̃µ(c) and Qµ(vn) = 0, ∀ n ∈ N
+.

It is standard to show that, for any a > 0 there exists a b > 0 such that

Jµ(u) ≥ inf
u∈Ck0

Jµ(u) − a if u ∈ ∪k∈[k0−b,k0+b]Ck.
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Thus from (6.2.12) we deduce that {vn} ⊂ Σc\
⋃

0<k≤k0+b for some b > 0 and for n ∈ N

large enough. Thus, roughly speaking, {vn} stays away from the boundary. At this point
we deduce from [53, Corollary 1.3] that there exists a sequence {un} ⊂ Σc such that





Jµ(un) ≤ Jµ(vn),
‖un − vn‖X → 0,
‖J ′

µ|Σc(un)‖X∗ → 0.
(6.2.25)

This completes the proof of the Lemma.

Next we show the compactness of the Palais-Smale sequences obtained in Lemmas 6.2.6
and 6.2.9.

Proposition 6.2.10. Assume that p ∈ (1+ 4
N , 3+ 4

N ), N ≥ 1. Let {un} ⊂ Σc be a Palais-
Smale sequence as obtained in Lemmas 6.2.6 or 6.2.9. Then there exist a uc ∈ X\{0} and
a λc ∈ R, such that, up to a subsequence,

1) un ⇀ uc > 0, in X;

2) J ′
µ(un) − λcun → 0, in X∗;

3) J ′
µ(uc) − λcuc = 0, in X∗.

Moreover, if λc < 0, we have that

lim
n→∞

‖un − uc‖X = 0. (6.2.26)

Proof of Proposition 6.2.10. From Lemma 6.2.5 we know that {un} is bounded in X. This
implies in particular the boundedness of the Schwarz symmetric sequences {vn} obtained
in Lemmas 6.2.6 or 6.2.9. Thus by [37, Proposition 1.7.1] we conclude that up to a
subsequence, there exists a uc ∈ X, which is nonnegative and Schwarz symmetric, such
that

vn ⇀ uc ≥ 0, in X;

vn → uc, in Lq(RN ), ∀ q ∈ (2, 2∗).

By interpolation, we have that

vn → uc, in Lq(RN ), ∀ q ∈ (2, 2 · 2∗).

In view of ‖un − uc‖q ≤ ‖un − vn‖q + ‖vn − uc‖q, one gets that

un → uc, in Lq(RN ), ∀ q ∈ (2, 2 · 2∗). (6.2.27)

At this point we shall use the additional information thatQµ(un) → 0 orQµ(vn) = 0, ∀ n ∈
N

+ to show that uc 6= 0. First let {un} ⊂ Σc be the Palais-Smale sequence constructed in
Lemma 6.2.6 and assume that uc = 0. Then by (6.2.27) we have that ||un||p+1 → 0 and
using that Qµ(un) → 0 we deduce that

‖∇un‖4
4 → 0 and

∫

RN
(1 + |un|2)|∇un|2dx → 0.

This leads to Jµ(un) → 0, which contradicts the fact that Jµ(un) → γµ(c) > 0. Now for
the Palais-Smale sequence constructed in Lemma 6.2.9 if we assume that uc = 0 we also
get from (6.2.27) and Qµ(vn) = 0 that

∫

RN
(1 + |vn|2)|∇vn|2dx → 0.
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This contradict the fact that {vn} ⊂ Σc\B. Having proved in both cases that uc 6= 0,
Point 1) is established.

Since {un} ⊂ X is bounded, following Berestycki and Lions [20, Lemma 3] we know
that we know that:

J ′
µ|Σc(un) −→ 0 in X∗

⇐⇒ J ′
µ(un) − 〈J ′

µ(un), un〉un −→ 0 in X∗.

Thus for any φ ∈ X,

〈J ′
µ(un) − 〈J ′

µ(un), un〉un, φ〉 = µ

∫

RN
|∇un|2∇un∇φdx+

∫

RN
∇un∇φdx

+ 2
∫

RN

(
unφ|∇un|2 + |un|2∇un∇φ

)
dx−

∫

RN
|un|p−1unφdx (6.2.28)

− λn

∫

RN
unφdx → 0,

where

λn =
1

‖un‖2
2

{
µ‖∇un‖4

4 + ‖∇un‖2
2 + 4

∫

RN
|un|2|∇un|2dx−

∫

RN
|un|p+1dx

}
. (6.2.29)

In particular J ′
µ(un)un − λn‖un‖2

2 → 0, and it follows that {λn} is bounded since

J ′
µ(un)un = µ‖∇un‖4

4 + ‖∇un‖2
2 + 4

∫

RN
|un|2|∇un|2dx−

∫

RN
|un|p+1dx

is bounded. Thus there exists a λc ∈ R, such that up to a subsequence, λn → λc. This
and (6.2.28) imply Point 2). To check Point 3), it is enough, in view of Point 2), to show
that for any φ ∈ X,

〈J ′
µ(un) − λcun, φ〉 → 〈J ′

µ(uc) − λcuc, φ〉. (6.2.30)

To prove (6.2.30), note that

〈J ′
µ(un) − λcun, φ〉 = µ

∫

RN
|∇un|2∇un∇φdx+

∫

RN
∇un∇φdx− λc

∫

RN
unφdx

+ 2
∫

RN

(
unφ|∇un|2 + |un|2∇un∇φ

)
dx−

∫

RN
|un|p−1unφdx.

Since un ⇀ uc in X, we clearly have
∫

RN
∇un∇φdx →

∫

RN
∇uc∇φdx,

∫

RN
unφdx →

∫

RN
ucφdx,

∫

RN
|un|p−1unφdx →

∫

RN
|uc|p−1ucφdx.

Thus we only need to prove that
∫

RN
|∇un|2∇un∇φdx →

∫

RN
|∇uc|2∇uc∇φdx; (6.2.31)

∫

RN
unφ|∇un|2 + |un|2∇un∇φdx →

∫

RN
ucφ|∇uc|2 + |uc|2∇uc∇φdx. (6.2.32)
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But {|∇un|2∇un} is bounded in L4/3(RN ) since {∇un} is bounded in L4(RN ). Thus
|∇un|2∇un ⇀ |∇u|2∇u in L4/3(RN ) and then we get (6.2.31), by weak convergence for
any ∇φ ∈ L4(RN ). Similarly, using Young inequality, we have that

(|un||∇un|2)4/3 ≤ 1
3

|un|4 +
2
3

|∇un|4,

(|un|2|∇un|)4/3 ≤ 2
3

|un|4 +
1
3

|∇un|4.

These yield that both {|un||∇un|2} and {|un|2|∇un|} are bounded in L4/3(RN ), since {un}
is bounded in X. Thus (6.2.32) holds by a similar argument. At this point, (6.2.30) holds
and we have proved Point 3).

Finally, we note from Points 2) and 3) that

〈J ′
µ(un) − λcun, un〉 → 〈J ′

µ(uc) − λcuc, uc〉 = 0.

Using (6.2.27) we obtain that

µ‖∇un‖4
4 + ‖∇un‖2

2 − λc‖un‖2
2 + 4

∫
|un|2|∇un|2dx →

µ‖∇uc‖4
4 + ‖∇uc‖2

2 − λc‖uc‖2
2 + 4

∫
|uc|2|∇uc|2dx.

If λc < 0, this implies that ‖un − uc‖X → 0, since un ⇀ uc in X.

In our next lemma, we discuss the sign of λc.

Lemma 6.2.11. [The sign of λ] Assume that p ∈ (1, N+2
N−2 ] if N ≥ 3 and p ∈ (1,∞) if

N = 1, 2. For any µ ∈ [0,∞), if (u, λ) ∈ X \ {0} × R solves the equation

J ′
µ(u) − λu = 0, (6.2.33)

then necessarily λ < 0.

Proof. Let the couple (u, λ) with u 6= 0 solves (6.2.33). Then following the proof of [89,
Lemma 5.10] one gets that u ∈ L∞

loc(R
N ). Thus as in [41, Lemma 3.1], we obtain the

following “Pohozaev” identity

µ(N − 4)
4N

‖∇u‖4
4+

N − 2
N

(
1
2

‖∇u‖2
2 +

∫

RN
|u|2|∇u|2dx

)
−λ

2
‖u‖2

2 =
1

p+ 1
‖u‖p+1

p+1. (6.2.34)

In addition, testing (6.2.33) by u, we have

µ‖∇u‖4
4 + ||∇u||22 + 4

∫

RN
|u|2|∇u|2dx− λ||u||22 − ||u||p+1

p+1 = 0. (6.2.35)

Thus by a simple calculation, it follows from (6.2.34) and (6.2.35) that

λ‖u‖2
2 = µ · (N − 4)p− (3N + 4)

2N(p− 1)
‖∇u‖4

4

+
(N − 2)p− (N + 2)

N(p− 1)
‖∇u‖2

2 (6.2.36)

+ 2
(N − 2)p− (3N + 2)

N(p− 1)

∫

RN
|u|2|∇u|2dx.

This proves that λ < 0 if p > 0 satisfies the assumption of the lemma.



110
Chapter 6. Multiple normalized solutions for quasi-linear Schrödinger

equations

Based on the above preliminary works, we conclude that

Theorem 6.2.12. Assume that p ∈ (1 + 4
N , 3 + 4

N ) if N = 1, 2, 3 and p ∈ (1 + 4
N ,

N+2
N−2 ] if

N ≥ 4. Then there exists a c0 ∈ (0, c(p,N)) such that

(1) For any c ∈ (c0,∞) there exists a µ0 > 0 such that for each µ ∈ (0, µ0), the functional
Jµ has a critical point uc on Σc at the level γµ(c).

(2) For any c ∈ (c0, c(p,N)) there exists a µ0 > 0 such that for each µ ∈ (0, µ0), the
functional Jµ has a critical point vc on Σc at the level m̃µ(c).

In addition, uc and vc are Schwarz symmetric and there exist a λc < 0 and a βc < 0 such
that

J ′
µ(uc) − λcuc = 0 and J ′

µ(vc) − βcvc = 0.

Proof of Theorem 6.2.12. Combining Proposition 6.2.10 and Lemma 6.2.11, the theorem
follows.

6.3 Convergence issues

In this section, letting µ → 0, we show that the sequences of critical points of Jµ obtained
in Theorem 6.2.12 converge to a critical point of J = J0 on S̄(c).

Theorem 6.3.1. [Convergence issues] Assume that µn →
n→∞ 0. For some c > 0, let

{wn} ⊂ Σc be a sequence of Schwarz symmetric functions, and {λn} ⊂ R
−, satisfying that

|Jµn(wn)| ≤ C, and J ′
µn

(wn) − λnwn = 0,

where C > 0 is independent of n ∈ N. Then there exist a wc ∈ W 1,2 ∩ L∞(RN ) and a
λc ∈ R, such that up to a subsequence, as n → ∞, we have that

λn → λc, in R,

J ′(wc) − λcwc = 0. (6.3.1)

Moreover, if λc < 0, then

wn → wc, in W 1,2(RN ),

wn∇wn → wc∇wc, in L2(RN ), (6.3.2)

µn‖∇wn‖4
4 → 0,

as n → ∞. Thus wc ∈ W 1,2 ∩ L∞(RN ) is a critical point of J on S̄(c).

Proof. To show this theorem, we borrow ideas from the proof of [86, Theorem 1.1]. First,
since |Jµn(wn)| ≤ C and J ′

µn
(wn)−λnwn = 0, we observe from the proofs of Lemma 6.2.5

and Proposition 6.2.10 that {∫
RN (1 + |wn|2)|∇wn|2dx} is bounded and {λn} is bounded.

Thus up to a subsequence, λn → λc ∈ R, and noting that {wn} ⊂ Σc is Schwarz symmetric,
by [37, Proposition 1.7.1] we obtain, up to a subsequence that

wn ⇀ wc, in W 1,2(RN ),

wn → wc, in Lq(RN ), ∀q ∈ (2, 2 · 2∗), (6.3.3)

wn∇wn ⇀ wc∇wc, in L2(RN ),

wn → wc, a.e. in R
N ,
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for some wc ∈ W 1,4 ∩W 1,2(RN ). Since {wn} satisfies J ′
µn

(wn) − λnwn = 0, thus we have

µn

∫

RN
|∇wn|2∇wn∇φdx+

∫

RN
∇wn∇φdx− λn

∫

RN
wnφdx

+2
∫

RN

(
wnφ|∇wn|2 + |wn|2∇wn∇φ

)
dx =

∫

RN
|wn|p−1wnφdx, (6.3.4)

for any φ ∈ W 1,4 ∩W 1,2(RN ). Then by the Sobolev inequality and Moser iteration we may
get

‖wn‖L∞(RN ) ≤ C, and ‖wc‖L∞(RN ) ≤ C. (6.3.5)

We now show that wc satisfies that

〈J ′(wc) − λcwc, φ〉 = 0, ∀ φ ∈ W 1,2 ∩ L∞(RN ). (6.3.6)

In (6.3.4) we choose φ = ψ exp(−wn) with ψ ∈ C∞
0 (RN ), ψ ≥ 0. Then we have that

0 = µn

∫

RN
|∇wn|2∇wn(∇ψ exp(−wn) − ψ exp(−wn)∇wn)dx

+
∫

RN
∇wn(∇ψ exp(−wn) − ψ exp(−wn)∇wn)dx

+ 2
∫

RN
|wn|2∇wn(∇ψ exp(−wn) − ψ exp(−wn)∇wn)dx

+ 2
∫

RN
wnψ exp(−wn)|∇wn|2dx− λn

∫

RN
unψ exp(−wn)dx

−
∫

RN
|wn|p−1wnψ exp(−wn)dx.

This implies that

0 ≤ µn

∫

RN
|∇wn|2∇wn∇ψ exp(−wn)dx+

∫

RN
(1 + 2w2

n)∇ψ∇wn exp(−wn)dx

−
∫

RN
(1 + 2w2

n − 2wn)ψ exp(−wn)|∇wn|2dx

− λn

∫

RN
wnψ exp(−wn)dx−

∫

RN
|wn|p−1wnψ exp(−wn)dx.

By using (6.3.3) and the fact that {µn‖∇wn‖4
4} is bounded, we deduce that

∫

RN
∇wc∇ (ψ exp(−wc)) dx+

∫

RN
2|wc|2∇wc∇ (ψ exp(−wc)) dx

+
∫

RN
2wc (ψ exp(−wc)) |∇wc|2dx− λc

∫

RN
wc (ψ exp(−wc)) dx

≥
∫

RN
|wc|p−1wc (ψ exp(−wc)) dx, (6.3.7)

in which we also used Fatou’s lemma, to get

lim inf
n

∫

RN
(1 + 2w2

n − 2wn)|∇wn|ψ exp(−wn)dx ≥
∫

RN
(1 + 2w2

c − 2wc)|∇wc|ψ exp(−wc)dx.

Let χ ≥ 0, χ ∈ C∞
0 (RN ). Choose a sequence of nonnegative functions ψn ∈ C∞

0 (RN )
such that ψn → χ exp(wc) in W 1,2(RN ), ψn → χ exp(wc) a.e. in R

N , and ψn is uniformly
bounded in L∞(RN ). Then we get from (6.3.7) that
∫

RN
∇wc∇χdx+2

∫

RN

(
|wc|2∇wc∇χ+wcχ|∇wc|2

)
dx−λc

∫

RN
wcχdx ≥

∫

RN
|wc|p−1wcχdx.
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Similarly by choosing φ = ψ exp(wn), we get an opposite inequality. Thus we obtain that
for any χ ∈ C∞

0 (RN ),
∫

RN
∇wc∇χdx+ 2

∫

RN

(
|wc|2∇wc∇χ+ wcχ|∇wc|2

)
dx

−λc

∫

RN
wcχdx =

∫

RN
|wc|p−1wcχdx. (6.3.8)

This proves (6.3.1).

Now by approximation again, we get from (6.3.8) that
∫

RN
|∇wc|2dx+ 4

∫

RN
|wc|2|∇wc|2dx− λc

∫

RN
|wc|2dx =

∫

RN
|wc|p+1dx. (6.3.9)

In (6.3.4), we use φ = wn to get that

µn

∫

RN
|∇wn|4dx+

∫

RN
|∇wn|2dx+ 4

∫

RN
|wn|2|∇wn|2dx

−λn

∫

RN
|wn|2dx =

∫

RN
|wn|p+1dx. (6.3.10)

and then

µn

∫

RN
|∇wn|4dx+

∫

RN
|∇wn|2dx+ 4

∫

RN
|wn|2|∇wn|2dx

−λc

∫

RN
|wn|2dx =

∫

RN
|wn|p+1dx+ o(1), (6.3.11)

since λn → λc and
∫
RN |wn|2dx = c > 0. Hence, if λc < 0, using

∫
RN |wn|p+1dx →∫

RN |wc|p+1dx in (6.3.3), we conclude from (6.3.3) (6.3.9) and (6.3.11) that, as n → ∞,

µn

∫

RN
|∇wn|4dx → 0,

∫

RN
|∇wn|2dx →

∫

RN
|∇wc|2dx,

∫

RN
|wn|2|∇wn|2dx →

∫

RN
|wc|2|∇wc|2dx,

∫

RN
|wn|2dx →

∫

RN
|wc|2dx.

Thus from (6.3.1) and (6.3.5) we deduce that wc ∈ W 1,2 ∩L∞(RN ) is a critical point of J
on S̄(c). At this point, the proof is completed.

Now we are able to end the proof of Theorem 6.1.2.

Proof of Theorem 6.1.2. In the case c ∈ [c(p,N),∞) the critical point vc is just the global
minimizer already obtained in [41, 65] whose existence is recalled in Lemma 6.1.1. Thus to
prove Theorem 6.1.2, thanks to Theorems 6.2.12, 6.3.1 and Lemma 6.2.11 one only needs
to show that there exists a C > 0 independent of µ > 0, such that

|Jµ(uc)| ≤ C and |Jµ(vc)| ≤ C (6.3.12)

where uc and vc are obtained in Theorem 6.2.12. To prove (6.3.12), note that by definition
of γµ(c) we have 0 < Jµ(uc) = γµ(c) ≤ γ1(c), in which γ1(c) is independent of µ > 0. Also
when c ∈ (c0, c(p,N)) we have 0 ≤ Jµ(vc) ≤ Jµ(uc) ≤ γ1(c). At this point, we have proved
the theorem.
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Proof of Lemma 6.1.4. Fix a c0 > 0 large and let v0 ∈ S̄(c0) be fixed. We consider for
t > 0 the scaling vt

0(x) := tαv0(tβx), where

α =
1

3N + 4 −Np
, β =

p− (3 + 2
N )

3N + 4 −Np
.

Then
‖vt

0‖2
2 = t‖v0‖2

2, ‖∇vt
0‖2

2 = tλ1+1‖∇v0‖2
2,∫

RN
|vt

0|2|∇vt
0|2dx = tλ2+1

∫

RN
|v0|2|∇v0|2dx,

∫

RN
|vt

0|p+1dx = tλ3+1
∫

RN
|v0|p+1dx,

where

λ1 =
2p− 6 − 4

N

3N + 4 −Np
, λ2 =

2p− 4 − 4
N

3N + 4 −Np
, λ3 =

p− 1
3N + 4 −Np

.

We observe that λ3 > 0 and λ3 > max{λ1, λ2} if p ∈ (1, 3 + 4
N ). Also vt

0 ∈ S̄(tc0) for
all t > 0, and

J(vt
0)

tc0
=

1
c0

·
(
tλ1

2
‖∇v0‖2

2 + tλ2

∫

RN
|v0|2|∇v0|2dx− tλ3

p+ 1

∫

RN
|v0|p+1dx

)
.

This implies that

lim sup
t→∞

m(tc0)
tc0

≤ lim sup
t→∞

J(vt
0)

tc0
= −∞,

from which we deduce that if vc ∈ S̄(c) is a global minimizer of J on S̄(c) then
J(vc)
c

→ −∞
as c → ∞. At this point recalling, see the proof of [41, Lemma 4.6], that

J(vc) =
1
N

(
‖∇vc‖2

2 +
∫

RN
|vc|2|∇vc|2dx

)
+
βc

2
‖vc‖2

2

we deduce that βc → −∞ as c → ∞ uniformly. At this point, the lemma is proved.

6.4 Relationship between ground states and global minimiz-
ers on the constraint

In this section, we prove Theorem 6.1.5 which gives a relationship between the ground
states of (Pλ) and the global minimizers of m̄(c).

We recall from Lemma 6.1.1 and [41, Lemma 4.6] that when (p, c,N) satisfies the
following conditions:

(i) c ∈ (0,∞), and p ∈ (1, 1 + 4
N ), N ≥ 1,

(ii) c ∈ [c(p,N),∞), and p ∈ (1 + 4
N , 3 + 4

N ), N ≥ 1,

there exist a global minimizer vc of m̄(c) and a Lagrange multiplier βc < 0, such that
(vc, βc) is a solution of (Pλ). Also we know from [41, Theorem 1.3] that for λ = βc < 0,
the equation (Pλ) has a ground state solution. We denote

Aλ :=
{
u : u is a solution of (Pλ)

}
,

Gλ :=
{
u : u is a ground state solution of (Pλ)

}
.
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Proof of Theorem 6.1.5. For λ = βc < 0, let ϕβc be a ground state of (Pλ). Namely, ϕβc

solves the minimization problem

lβc := inf{Iβc(u) : u ∈ Aβc},

Since vc ∈ Aβc , one only needs to show that

Iβc(vc) = lβc . (6.4.1)

By definition of lβc , to check (6.4.1) it is enough to show that Iβc(vc) ≤ lβc . In turn this
holds if one can find a ψ ∈ S̄(c) such that

Iβc(ψ) ≤ Iβc(ϕβc), (6.4.2)

since Iβc(vc) ≤ Iβc(ψ) ≤ Iβc(ϕβc) = lβc .

To choose ψ ∈ S̄(c) satisfying (6.4.2), we consider the scaling ut(x) := ϕβc(x/t), t > 0.
Then ‖ut‖2

2 = tN ‖ϕβc‖2
2 and by the identities (6.2.34) and (6.2.35), we have

Iβc(ut) =
(
tN−2 − N − 2

N
tN
)

·
[1
2

‖∇ϕβc‖2
2 +

∫

RN
|ϕβc |2|∇ϕβc |2dx

]
.

Thus
d

dt
Iβc(ut) = (N − 2)(1 − t2)tN−3

[
1
2

‖∇ϕβc‖2
2 +

∫

RN
|ϕβc |2|∇ϕβc |2dx

]
.

This implies that when N ≥ 2

Iβc(ut) ≤ Iβc(ϕβc), ∀t > 0.

Choosing a suitable t0 > 0 such that ut0 ∈ S̄(c) and letting ψ = ut0 we obtain (6.4.2).
When N = 1, since by [41, Theorem 1.3] the non negative solutions of (Pλ) for fixed λ > 0
are unique the conclusion holds automatically. This completes the proof.



Chapter 7

Some remarks and perspectives

7.1 Remarks

As we already mentioned, this thesis is mainly devoted to the search of constrained critical
points which are not global minimizers of the associated functional. For instance mountain
pass type solutions in Theorems 1.1.6 or 1.2.4, or local minimizers also in Theorem 1.2.4.
As we have seen throughout the thesis to prove that such critical points exist we face
difficulties which are not present when one searches for a global minimizer of the functional.
In particular the fact that our suspected critical levels are strictly positive makes delicate
the application of the concentration compactness principle of P. L. Lions [83], at least in
its classical forms. In trying to show that the weak limits of our Palais-Smale sequences
remain on the constraint, we have encountered, for the equations (Eλ) and (Pλ), the need
to show that the associated Lagrange parameters are strictly negative. A link between this
property and the fact that c → γ(c) is strictly decreasing (a condition which guarantees
there the strong convergence) was pointed out in Chapter 3. Indications are also given
there that when the Lagrange multiplier is not strictly negative the critical point may not
exist. However much remains to be understood on the relationship between the sign of
Lagrange multipliers and the fact that critical points are reached or not.

7.2 Perspectives

We end this thesis by mentioning some open problems directly related to the content of
the thesis.

7.2.1 On the Schrödinger-Poisson-Slater equations (Eλ)

Concerning the Schrödinger-Poisson-Slater equations

−∆u− λu+ (|x|−1 ∗ |u|2)u− |u|p−2u = 0, in R
3. (Eλ)

where p ∈ (2, 6), we believe the following questions are worth of interest.

(1) About the minimization problem of

m(c) := inf
u∈S(c)

F (u),

(see (1.1.7) for the precise definition), as we pointed out in Remark 2.1.5, when
p ∈ (2, 3), it is open whether a minimizer of m(c) exists or not for c > 0 large.
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In trying to develop a minimization process one faces the difficulty to remove the
possible dichotomy of the minimizing sequences. Our hope is that the techniques
developed in this thesis can be useful on that problem.

(2) From Theorem 2.1.2 we know that when p ∈ (3, 10
3 ), for each c ∈ (c1,∞), m(c) < 0

and admits a minimizer uc ∈ S(c) which is a critical point of F on S(c). Using
the estimates of Lemma 2.2.2, one can prove that, for each c ∈ (c1,∞), the energy
functional F has a mountain pass geometry on the constraint S(c), namely for any
given c > 0, there exists a point u0 ∈ S(c) such that

γ(c) := inf
g∈Γc

max
t∈[0,1]

F (g(t)) > max{F (g(0)), F (g(1))},

holds in the set

Γc :=
{
g ∈ C([0, 1], S(c)) : g(0) = u0, g(1) = uc

}
.

Since the functional F is coercive on S(c) (see [14, Lemma 3.1]), any Palais-Smale
sequence for F at the level γ(c) is bounded. Actually from the variational point of
view all these look similarly to when happen for equation (Pλ) when p ∈ (1+ 4

N , 3+ 4
N )

and one could hope to find a second critical point for F on S(c) of Mountain-
Pass type. However we are not enable so far to show that the suspected associated
Lagrange multiplier is strictly negative. Namely for this problem we fail to prove
the analogue of Lemma 6.2.11.

(3) Let us mention, as possible extension of this thesis, the study of the following sta-
tionary fractional Schrödinger equation with a Coulombic potential

(−∆)1/2u+ λu− κ(|x|−1 ∗ |u|2)u = 0, in R
3 (7.2.1)

where λ ∈ R and κ > 0. We refer to the literature [39, 82, 111] and the references
given there, for the studies of (7.2.1) or of some extended versions. In the cited ref-
erences, solutions of (7.2.1) are obtained as minimizers of the following minimization
problem

Mc := inf
{

‖|ξ|1/2F [u](ξ)‖2
2 − κ

∫

R3

∫

R3

|u(x)|2|u(y)|2
|x− y| dxdy, (7.2.2)

: u ∈ H1/2(R3),
∫

R3
|u|2 = c, c > 0

}
,

where F denotes the Fourier transform.

It is proved that for any given c > 0, Mc admits a minimizer uc ∈ H1/2(R3) with
‖uc‖2

2 = c. Thus there exists a Lagrange multiplier λc ∈ R, such that (uc, λc)
solves (7.2.1). Also the orbital stability of the standing waves e−iλtuc(x) of the
Cauchy problem associated to (7.2.1), is established. Equation (7.2.1) differs from
(Eλ) in the sense that the replacement of −∆ by −(∆)1/2 brings new technicalities.
However from the variational point of view, because of the requirement that κ > 0,
the functional associated to (7.2.1) is more simple to handle. It is an open question if
the type of results, in particular the existence of saddle point type solutions, obtained
in Chapters 2 to 4 could be also derived for (7.2.1) when κ < 0.
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7.2.2 Quasi-linear Schrödinger equations (Pλ)

About the quasi-linear Schrödinger equations

−∆u− u∆(u2) − λu− |u|p−1u = 0, in R
N , (Pλ)

the following questions are directly related to Chapter 6.

(1) The restriction p ≤ N+2
N−2 when N ≥ 4 in Theorem 6.1.2 only comes from the fact

that we need the Lagrange multiplier to be strictly negative (see Lemma 6.2.11).
Can this range be extended or a proof Theorem 6.1.2 which do not use the sign of
the Lagrange multiplier be given ?

(2) In Theorem 6.1.2 we prove that there exists an interval c ∈ (c0, c(p,N)) in which we
have a mountain pass geometry. Clearly this result is not optimal. In particular it
would be interesting to know if the set c ∈ (0, c(p,N)) for which we can find two
critical points is an interval (see Remark 6.1.3 in that direction).

(3) In Lemma 6.1.4 we prove an asymptotic result for the Lagrange multiplier associated
to minimizers. We conjecture that for the Lagrange multipliers λc associated to our
mountain pass solution one has λc → 0 as c → ∞.

(4) We manage to show on problem (Pλ) that there exists two solutions having the same
L2-norm. What are the key ingredients which lead to this result ? What kind of
other problems can we hope to treat with our approach ?

As a more remote aim we would like to address the question of the orbital stability
of the two solutions we have obtained in Theorem 6.1.2. Note first that concerning the
orbital stability or instability of the standing waves associated to the ground states of
(Pλ) the situation is still in a developing state. Up to our knowledge, it is only known
that when p ∈ (3 + 4

N ,
3N+2
N−2 ), all ground states of (Pλ) lead to standing waves which are

orbitally unstable by blowup in a suitably regular Sobolev space (see [38, 41]).

For simplicity we can first assume that N = 1. In this dimension our approximation
procedure is not necessary since the functional J is already C1. Also we know that the
ground state solutions are unique when N = 1, see [41, Theorem 1.3]. We conjecture,
see the drawing below, that the mountain pass solution is orbitally unstable and the local
minimizer is orbitally stable. Of course we already know that the global minimizers are
orbitally stable, see [41]. Note that to prove that the mountain pass solution is unstable
it seems not possible to use the classical approach of H. Berestycki and T. Cazenave [18]
applied in Theorem 1.1.16. The fact that constrained critical points exist at an energy
level less than our mountain pass value seems a major obstacle. Perhaps to handle these
questions of stability other techniques, not variational, will be necessary.
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Figure 7.1
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