T. Hook, M. Vinet, R. Murphy, S. Ponoth, and L. Grenouillet, Transistor matching and silicon thickness variation in ETSOI technology, 2011 International Electron Devices Meeting, pp.571-574, 2011.
DOI : 10.1109/IEDM.2011.6131497

S. J. Fang, S. Haplepete, W. Chen, C. R. Helms, and H. Edwards, Analyzing atomic force microscopy images using spectral methods, Journal of Applied Physics, vol.82, issue.12, 1997.
DOI : 10.1063/1.366489

J. M. Elson and J. M. Bennett, Calculation of the power spectral density from surface profile data, Applied Optics, vol.34, issue.1, pp.201-208, 1995.
DOI : 10.1364/AO.34.000201

S. G. Alcock, G. D. Ludbrook, T. Owen, and R. Dockree, Using the power spectral density method to characterise the surface topography of optical surfaces, Advances in Metrology for X-Ray and EUV Optics III, 2010.
DOI : 10.1117/12.861539

R. Gravila, A. Dinescu, and D. Mardare, A power spectral density study of thin films morphology based on AFM profiling Romanian journal of information science and technology, pp.291-300, 2007.

P. Samyn, J. V. Erps, H. Thienpont, and G. Schoukens, Paper coatings with multi-scale roughness evaluated at different sampling sizes, Applied Surface Science, vol.257, issue.13, pp.5613-5625, 2011.
DOI : 10.1016/j.apsusc.2011.01.059

T. Yoshinobu, A. Iwamoto, K. Sudoh, and H. Iwasaki, Scaling of Si/SiO2 interface roughness, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.4, pp.1630-1634, 1995.
DOI : 10.1116/1.587869

K. Kaznatcheev and P. Z. Takacs, Optical metrology at the NSLS-II, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.649, issue.1, pp.144-146, 2011.
DOI : 10.1016/j.nima.2010.11.140

J. D. Briers, Surface Roughness Evaluation, 1993.

T. V. Vorburger and E. Marx, Direct and inverse problems for light scattered by rough surfaces, Applied Optics, 1990.

B. Mandelbrot, Fractals : form, change and dimension, 1977.

B. B. Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, vol.156, issue.3775, pp.636-638, 1967.
DOI : 10.1126/science.156.3775.636

R. Lopes and N. Betrouni, Fractal and multifractal analysis: A review, Medical Image Analysis, vol.13, issue.4, pp.634-649, 2009.
DOI : 10.1016/j.media.2009.05.003

F. Gentile, E. Battista, A. Accardo, and M. Coluccio, Fractal structure can explain the increased hydrophobicity of nanoporous silicon films, Microelectronic Engineering, vol.88, issue.8, pp.2537-2540
DOI : 10.1016/j.mee.2011.01.046

B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Fractal character of fracture surfaces of metals, Nature, vol.28, issue.5961, pp.721-722, 1984.
DOI : 10.1038/308721a0

S. Erdem and M. A. Blankson, Fractal???fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery, Construction and Building Materials, vol.40, p.2013
DOI : 10.1016/j.conbuildmat.2012.11.013

T. A. Witten and L. M. Sander, Diffusion-limited aggregation, Physical Review B, vol.27, issue.9, pp.5686-5697, 1983.
DOI : 10.1103/PhysRevB.27.5686

A. Majumdar and C. Tien, Fractal characterization and simulation of rough surfaces, Wear, vol.136, issue.2, pp.313-327, 1990.
DOI : 10.1016/0043-1648(90)90154-3

A. L. Barabasi and H. E. Stanley, Fractal Concepts In Surface Growth, pp.89-117, 1995.

F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General, vol.18, issue.2, pp.75-87, 1985.
DOI : 10.1088/0305-4470/18/2/005

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

B. Cappella and G. Dietler, Force-distance curves by atomic force microscopy, Surface Science Reports, vol.34, issue.1-3, pp.1-104, 1999.
DOI : 10.1016/S0167-5729(99)00003-5

S. Morita, E. Meyer, and R. Wiesendanger, Non-Contact Atomic Force Microscopy, 2002.

C. Shannon, Communication In The Presence Of Noise, Proceedings of the IEEE, vol.86, issue.2, pp.447-457, 1998.
DOI : 10.1109/JPROC.1998.659497

B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, Measurement of surface topography of magnetic tapes by Mirau interferometry, Applied Optics, vol.24, issue.10, pp.1489-1497, 1985.
DOI : 10.1364/AO.24.001489

R. Azzam and N. Bashara, Ellipsometry and Polarized Light, 1989.

D. Aspnes, New developments in spectroellipsometry: the challenge of surfaces, Thin Solid Films, vol.233, issue.1-2, pp.1-8, 1993.
DOI : 10.1016/0040-6090(93)90050-Y

D. Aspnes, R. Bhat, C. Caneau, and E. Colas, Optically monitoring and controlling epitaxial growth, Journal of Crystal Growth, vol.120, issue.1-4, pp.71-77, 1992.
DOI : 10.1016/0022-0248(92)90366-Q

W. M. Duncan, S. A. Henck, and L. M. Loewenstein, Spectral Ellipsometry for In Situ Real-Time Measurement and Control, International Report on Wafer Level Reliability Workshop, pp.117-121, 1992.
DOI : 10.1109/IWLR.1992.657993

E. Sidick, Power spectral density specification and analysis of large optical surfaces, Modeling Aspects in Optical Metrology II, 2009.
DOI : 10.1117/12.823844

M. Gosalvez, I. Zubel, and E. Viinikka, Chapter twenty four -wet etching of silicon, Handbook of Silicon Based MEMS Materials and Technologies Micro and Nano Technologies, pp.375-407

K. Sato and M. Shikida, 1.07 -wet etching, pp.183-215, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00513888

L. A. Pettersson, L. S. Roman, and O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics, vol.86, issue.1, 1999.
DOI : 10.1063/1.370757

E. Centurioni, Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers, Applied Optics, vol.44, issue.35, 2005.
DOI : 10.1364/AO.44.007532

C. C. Katsidis and D. I. Siapkas, General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference, Applied Optics, vol.41, issue.19, pp.3978-3987, 2002.
DOI : 10.1364/AO.41.003978

D. Gabor, A New Microscopic Principle, Nature, vol.161, issue.4098, pp.777-778, 1948.
DOI : 10.1038/161777a0

R. E. Dunin-borkowski, M. R. Mccartney, and D. J. Smith, Electron Holography of nanostructured materials, pp.31-34, 2003.

L. Reimer, Transmission Electron Microscopy, 1991.

K. Harada, A. Tonomura, Y. Togawa, T. Akashi, and T. Matsuda, Double-biprism electron interferometry, Applied Physics Letters, vol.84, issue.17, 2004.
DOI : 10.1063/1.1715155

H. Lichte, Electron holography: optimum position of the biprism in the electron microscope, Ultramicroscopy, vol.64, issue.1-4, pp.79-86, 1996.
DOI : 10.1016/0304-3991(96)00017-4

H. Lichte, D. Geiger, A. Harscher, E. Heindl, M. Lehmann et al., Artefacts in electron holography, Ultramicroscopy, vol.64, issue.1-4, pp.67-77, 1996.
DOI : 10.1016/0304-3991(96)00018-6

C. Lu, D. Vere-jones, and H. Takayasu, Avalanche Behavior and Statistical Properties in a Microcrack Coalescence Process, Physical Review Letters, vol.82, issue.2, pp.347-350, 1999.
DOI : 10.1103/PhysRevLett.82.347

J. Schmittbuhl and K. J. Måløy, Direct Observation of a Self-Affine Crack Propagation, Physical Review Letters, vol.78, issue.20, pp.3888-3891, 1997.
DOI : 10.1103/PhysRevLett.78.3888

S. Personnic, K. K. Bourdelle, F. Letertre, and A. Tauzin, Impact of the transient formation of molecular hydrogen on the microcrack nucleation and evolution in himplanted si (001), Journal of Applied Physics, vol.103, issue.50, pp.37-51, 2008.

E. Darvish and A. A. Masoudi, Kinetic surface roughening for the Mullins???Herring equation, Journal of Mathematical Physics, vol.50, issue.1, pp.37-85, 2009.
DOI : 10.1063/1.3072915

H. Omi, H. Kageshima, and M. Uematsu, Scaling and Universality of Roughening in Thermal Oxidation of Si(001), Physical Review Letters, vol.97, issue.1, p.16102, 2006.
DOI : 10.1103/PhysRevLett.97.016102

J. T. Drotar, Y. Zhao, T. Lu, and G. Wang, Surface roughening in low-pressure chemical vapor deposition, Physical Review B, vol.64, issue.12, p.125411, 2001.
DOI : 10.1103/PhysRevB.64.125411

J. Farjas and P. Roura, Oxidation of silicon: Further tests for the interfacial silicon emission model, Journal of Applied Physics, vol.102, issue.5, 2007.
DOI : 10.1063/1.2773693

]. S. Reboh, A. A. De-mattos, J. F. Barbot, and A. Declemy, Localized exfoliation versus delamination in H and He coimplanted (001) Si, Journal of Applied Physics, vol.105, issue.9, pp.43-44, 2009.
DOI : 10.1063/1.3116738

M. K. Weldon, V. E. Marsico, Y. J. Chabal, and A. Agarwal, On the mechanism of the hydrogen-induced exfoliation of silicon, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.4, pp.1065-1073, 1997.
DOI : 10.1116/1.589416

J. Grisolia, G. B. Assayag, A. Claverie, and B. Aspar, A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si, Applied Physics Letters, vol.76, issue.7, pp.852-854, 2000.
DOI : 10.1063/1.125606

T. Höchbauer, A. Misra, M. Nastasi, and J. W. Mayer, Investigation of the cut location in hydrogen implantation induced silicon surface layer exfoliation, Journal of Applied Physics, vol.89, issue.11, pp.5980-5990, 2001.
DOI : 10.1063/1.1353561

N. Cherkashin, S. Reboh, A. Lubk, M. J. Hÿtch, and A. Claverie, Strain in Hydrogen-Implanted Si Investigated Using Dark-Field Electron Holography, Applied Physics Express, vol.6, issue.9, pp.91301-91344, 2013.
DOI : 10.7567/APEX.6.091301

F. Rieutord, F. Mazen, S. Reboh, and J. D. Penot, simulations, Journal of Applied Physics, vol.113, issue.15, pp.153511-2013
DOI : 10.1063/1.4800538

S. Reboh, J. F. Barbot, M. F. Beaufort, and P. F. Fichtner, H-induced subcritical crack propagation and interaction phenomena in (001) Si using He-cracks templates, Applied Physics Letters, vol.96, issue.3, pp.43-45, 2010.
DOI : 10.1063/1.3290249

L. Huang, Q. Tong, Y. Chao, T. Lee, T. Martini et al., Onset of blistering in hydrogen-implanted silicon, Applied Physics Letters, vol.74, issue.7, 1999.
DOI : 10.1063/1.123430

B. Terreault, Hydrogen blistering of silicon: Progress in fundamental understanding, physica status solidi (a), vol.249, issue.377, pp.2129-2184, 2007.
DOI : 10.1002/pssa.200622520

M. Bruel, Silicon on insulator material technology, Electronics Letters, vol.31, issue.14, pp.1201-1202, 1995.
DOI : 10.1049/el:19950805

S. Reboh, Defect engineering in H and He implanted Si, pp.44-49, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00459734

N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Defects in single-crystal silicon induced by hydrogenation, Physical Review B, vol.35, issue.8, pp.4166-4169, 1987.
DOI : 10.1103/PhysRevB.35.4166

L. Capello, F. Rieutord, A. Tauzin, and F. Mazen, Quantitative study of hydrogen-implantation-induced cavities in silicon by grazing incidence small angle x-ray scattering, Journal of Applied Physics, vol.102, issue.2, pp.26106-26151, 2007.
DOI : 10.1063/1.2761821

S. Personnic, A. Tauzin, K. K. Bourdelle, and F. Letertre, Time Dependence Study Of Hydrogen-Induced Defects In Silicon During Thermal Anneals, AIP Conference Proceedings, pp.65-68, 2006.
DOI : 10.1063/1.2401463

N. Daix, Mécanismes de base dans la co-implantation hélium / hydrogène du silicium, pp.45-57, 2009.

S. Personnic, Etude des mécanismes de rupture du silicium induits par l'implantation ionique d'hydrogène dans le cadre de la technologie Smart Cut TM, 2007.

N. Sousbie, L. Capello, J. Eymery, F. Rieutord, and C. Lagahe, X-ray scattering study of hydrogen implantation in silicon, Journal of Applied Physics, vol.99, issue.10, pp.103509-103555, 2006.
DOI : 10.1063/1.2198928

M. Hytch, F. Houdellier, F. Hue, and E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices, Nature, vol.64, issue.7198, pp.1086-1089, 2008.
DOI : 10.1038/nature07049

M. Hytch, N. Cherkashin, S. Reboh, F. Houdellier, and A. Claverie, Strain mapping in layers and devices by electron holography, physica status solidi (a), vol.95, issue.3, pp.580-583
DOI : 10.1002/pssa.201000281

J. Biersack and J. Ziegler, The Stopping and Range of Ions in Solids, pp.122-156, 1982.
DOI : 10.1007/978-3-642-68779-2_5

B. Aspar, M. Bruel, H. Moriceau, and C. Maleville, Basic mechanisms involved in the Smart-Cut?? process, Proceedings of the biennial conference on Insulating Films on Semiconductors, pp.233-240, 1997.
DOI : 10.1016/S0167-9317(97)00055-5

B. Aspar, H. Moriceau, E. Jalaguier, and C. Lagahe, The generic nature of the Smart-Cut?? process for thin film transfer, Journal of Electronic Materials, vol.2, issue.268, pp.834-840, 2001.
DOI : 10.1007/s11664-001-0067-2

S. Personnic, K. K. Bourdelle, F. Letertre, and A. Tauzin, Impact of the transient formation of molecular hydrogen on the microcrack nucleation and evolution in H-implanted Si (001), Journal of Applied Physics, vol.103, issue.2, pp.23508-23545, 2008.
DOI : 10.1063/1.2829807

A. Claverie, N. Daix, F. Darras, S. Reboh, and N. Cherkashin, Understanding the smart cut process: Evolution of defects during annealing of H + implanted silicon, Surface Modification of Materials by Ion Beams, pp.49-55, 2013.

K. K. Bourdelle, Determining the mechanisms of fracture in group-IV materials, " in Silicon-on-Insulator Technology and Devices XII, Proceedings Of The International Symposium, p.167, 2005.

F. A. Reboredo, M. Ferconi, and S. T. Pantelides, Theory of the Nucleation, Growth, and Structure of Hydrogen-Induced Extended Defects in Silicon, Physical Review Letters, vol.82, issue.24, pp.4870-4873, 1999.
DOI : 10.1103/PhysRevLett.82.4870

J. G. Swadener, M. I. Baskes, and M. Nastasi, Stress-induced platelet formation in silicon: A molecular dynamics study, Physical Review B, vol.72, issue.20, pp.201202-50, 2005.
DOI : 10.1103/PhysRevB.72.201202

M. Nastasi, T. Höchbauer, J. Lee, and A. Misra, Nucleation and growth of platelets in hydrogen-ion-implanted silicon, Applied Physics Letters, vol.86, issue.15, p.154102, 2005.
DOI : 10.1063/1.1900309

A. Claverie, Transmission Electron Microscopy in Micro-nanoelectronics, p.2013
DOI : 10.1002/9781118579022

K. Bourdelle, T. Akatsu, N. Sousbie, and F. Letertre, Smart Cut TM ; transfer of 300 mm (110) and (100) Si layers for hybrid orientation technology, SOI Conference Proceedings. 2004 IEEE International, pp.98-99, 2004.

X. Hebras, P. Nguyen, K. Bourdelle, F. Letertre, N. Cherkashin et al., Comparison of platelet formation in hydrogen and helium-implanted silicon, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.24-28
DOI : 10.1016/j.nimb.2007.04.158

N. Martsinovich, I. S. Martínez, and M. I. Heggie, First principles modelling of (100) H-induced platelets in silicon, physica status solidi (c), vol.2, issue.6, pp.1771-1780, 2005.
DOI : 10.1002/pssc.200460502

N. Martsinovich, M. Heggie, and C. Ewels, First-principles calculations on the structure of hydrogen aggregates in silicon and diamond, Journal of Physics: Condensed Matter, vol.15, issue.39, p.2815, 2003.
DOI : 10.1088/0953-8984/15/39/006

Y. Chabal, M. Weldon, Y. Caudano, B. Stefanov, and K. Raghavachari, Spectroscopic studies of H-decorated interstitials and vacancies in thin-film silicon exfoliation, Physica B: Condensed Matter, vol.273, issue.274, pp.152-163, 1999.
DOI : 10.1016/S0921-4526(99)00435-4

A. J. Pitera and E. A. Fitzgerald, Hydrogen gettering and strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge for layer exfoliation applications, Journal of Applied Physics, vol.97, issue.10, pp.104511-53, 2005.
DOI : 10.1063/1.1900928

G. Moras, L. C. Ciacchi, C. Elsässer, P. Gumbsch, and A. Vita, Atomically Smooth Stress-Corrosion Cleavage of a Hydrogen-Implanted Crystal, Physical Review Letters, vol.105, issue.7, p.75502, 2010.
DOI : 10.1103/PhysRevLett.105.075502

G. Csányi, T. Albaret, M. C. Payne, and A. Vita, ???Learn on the Fly???: A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation, Physical Review Letters, vol.93, issue.17, p.175503, 2004.
DOI : 10.1103/PhysRevLett.93.175503

N. A. Cherkashin, A. Claverie, C. Bonafos, and V. V. Chaldyshev, Influence of the initial supersaturation of solute atoms on the size of nanoparticles grown by an Ostwald ripening mechanism, Journal of Applied Physics, vol.102, issue.2, pp.23520-55, 2007.
DOI : 10.1063/1.2749303

R. Gers, Fragilisation et rupture du silicium implanté dans le procédé Smart Cut TM : Modélisation et simulation par ééments finis

S. Reboh, A. De-mattos, F. Schaurich, P. Fichtner, M. Beaufort et al., The mechanisms of surface exfoliation in H and He implanted Si crystals, Scripta Materialia, vol.65, issue.12, pp.1045-1048, 2011.
DOI : 10.1016/j.scriptamat.2011.09.012

J. Penot, D. Massy, F. Rieutord, and F. Mazen, Development of microcracks in hydrogen-implanted silicon substrates, Journal of Applied Physics, vol.114, issue.12, pp.123513-2013
DOI : 10.1063/1.4821239

N. Cherkashin and A. Claverie, Characterization of Process-Induced Defects, in Transmission Electron Microscopy in Micro-Nanoelectronics, pp.165-198

J. Penot, Fragilisation et dynamique de la rupture du silicium implanté, 2010.

A. Agarwal, T. E. Haynes, V. C. Venezia, O. W. Holland, and D. J. Eaglesham, Efficient production of silicon-on-insulator films by co-implantation of He + with H +, Applied Physics Letters, vol.72, issue.9, pp.60-61, 1998.

X. Duo, W. Liu, M. Zhang, and L. Wang, Evolution of hydrogen and helium coimplanted single-crystal silicon during annealing, Journal of Applied Physics, vol.90, issue.8, pp.60-68, 2001.

F. Corni and R. Tonini, Some aspects of blistering and exfoliation of helium???hydrogen coimplanted (100) silicon, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.186, issue.1-4, pp.349-354, 2002.
DOI : 10.1016/S0168-583X(01)00901-6

Q. Tong, R. Scholz, U. Gösele, and T. Lee, A ???smarter-cut??? approach to low temperature silicon layer transfer, Applied Physics Letters, vol.72, issue.1, pp.61-62, 1998.
DOI : 10.1063/1.120601

B. Zhang, P. Zhang, J. Wang, and F. Zhu, Thermal evolution of defects in crystalline silicon by sequential implantation of B and H ions, Nuclear Physics Review, vol.30, issue.4, p.2013

X. Ma, W. Liu, C. Chen, and D. Zhan, co-implantation and plasma bonding, Semiconductor Science and Technology, vol.21, issue.7, p.959, 2006.
DOI : 10.1088/0268-1242/21/7/022

D. Kilanov, V. Popov, L. Safronov, A. Nikiforov, and R. Sholz, Hydrogen-induced splitting in silicon over a buried layer heavily doped with boron, Semiconductors, vol.37, issue.6, pp.620-624, 2003.
DOI : 10.1134/1.1582524

J. Schmittbuhl, F. Schmitt, and C. Scholz, Scaling invariance of crack surfaces, Journal of Geophysical Research: Solid Earth, vol.94, issue.3, pp.5953-5973, 1995.
DOI : 10.1029/94JB02885

S. Santucci, K. J. Måløy, A. Delaplace, J. Mathiesen, A. Hansen et al., Statistics of fracture surfaces, Physical Review E, vol.75, issue.1, p.16104, 2007.
DOI : 10.1103/PhysRevE.75.016104

URL : https://hal.archives-ouvertes.fr/ensl-00156943

F. Plouraboué, P. Kurowski, J. Hulin, S. Roux, and J. Schmittbuhl, Aperture of rough cracks, Physical Review E, vol.51, issue.3, pp.1675-1685, 1995.
DOI : 10.1103/PhysRevE.51.1675

J. Schmittbuhl and K. J. Måløy, Direct Observation of a Self-Affine Crack Propagation, Physical Review Letters, vol.78, issue.20, pp.3888-3891, 1997.
DOI : 10.1103/PhysRevLett.78.3888

C. Lu, D. Vere-jones, and H. Takayasu, Avalanche Behavior and Statistical Properties in a Microcrack Coalescence Process, Physical Review Letters, vol.82, issue.2, pp.347-350, 1999.
DOI : 10.1103/PhysRevLett.82.347

J. Grisolia, Evolution thermique des défauts introduits par implantation ionique d'hydrogène ou d'hélium dans le silicium et le carbure de silicium, 2000.

C. Bonafos, D. Mathiot, and A. Claverie, Ostwald ripening of end-of-range defects in silicon, Journal of Applied Physics, vol.83, issue.6, 1998.
DOI : 10.1063/1.367056

.. Simulation, 96 3.3.1 Simulation code, p.97

C. Herring, Structure and Properties of Solid Surfaces, ch. The use of Classical Macroscopic Concepts in Eurface-Energy problems, 1953.

C. Herring, Effect of Change of Scale on Sintering Phenomena, Journal of Applied Physics, vol.21, issue.4, 1950.
DOI : 10.1063/1.1699658

W. W. Mullins, Flattening of a Nearly Plane Solid Surface due to Capillarity, Journal of Applied Physics, vol.30, issue.1, 1959.
DOI : 10.1063/1.1734979

A. L. Barabasi and H. E. Stanley, Fractal Concepts In Surface Growth, pp.89-117, 1995.

L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi et al., Evidence of spontaneous formation of steps on silicon (100), Physical Review B, vol.54, issue.4, pp.2304-2307, 1996.
DOI : 10.1103/PhysRevB.54.R2304

R. Hiruta, H. Kuribayashi, S. Shimizu, K. Sudoh, and H. Iwasaki, Evolution of surface morphology of Si-trench sidewalls during hydrogen annealing, Proceedings of the Seventh International Symposium on Atomically Controlled Surfaces, Interfaces and Nanostructures, pp.63-67, 2004.
DOI : 10.1016/S0169-4332(04)01004-9

H. Kuribayashi, M. Gotoh, R. Hiruta, R. Shimizu, K. Sudoh et al., Observation of Si(100) surfaces annealed in hydrogen gas ambient by scanning tunneling microscopy, Applied Surface Science, vol.252, issue.15, pp.5275-5278, 2006.
DOI : 10.1016/j.apsusc.2005.12.043

W. W. Mullins, Theory of Thermal Grooving, Journal of Applied Physics, vol.28, issue.3, pp.78-79, 1957.
DOI : 10.1063/1.1722742

C. Herring, Effect of Change of Scale on Sintering Phenomena, Journal of Applied Physics, vol.21, issue.4, pp.79-84, 1950.
DOI : 10.1063/1.1699658

J. Cahn and J. Taylor, Overview no. 113 surface motion by surface diffusion, Acta Metallurgica et Materialia, vol.42, issue.4, pp.1045-1063, 1994.
DOI : 10.1016/0956-7151(94)90123-6

M. E. Keeffe, C. Umbach, and J. M. Blakely, Surface self-diffusion on Si from the evolution of periodic atomic step arrays, Journal of Physics and Chemistry of Solids, vol.55, issue.10, pp.965-973, 1994.
DOI : 10.1016/0022-3697(94)90116-3

K. Sudoh, H. Iwasaki, H. Kuribayashi, R. Hiruta, and R. Shimizu, Numerical Study on Shape Transformation of Silicon Trenches by High-Temperature Hydrogen Annealing, Japanese Journal of Applied Physics, vol.43, issue.9A, pp.5937-5941, 2004.
DOI : 10.1143/JJAP.43.5937

H. Liu, W. Zhou, Q. Nie, and Q. Chen, Depinning transition of the quenched Mullins???Herring equation: A short-time dynamic method, Physics Letters A, vol.372, issue.47, pp.7077-7080, 2008.
DOI : 10.1016/j.physleta.2008.10.030

J. Blakely and H. Mykura, Surface self diffusion and surface energy measurements on platinum by the multiple scratch method, Acta Metallurgica, vol.10, issue.5, pp.565-572, 1962.
DOI : 10.1016/0001-6160(62)90203-1

H. Kuribayashi, R. Hiruta, R. Shimizu, K. Sudoh, and H. Iwasaki, Shape transformation of silicon trenches during hydrogen annealing, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.4, pp.80-90, 2003.
DOI : 10.1116/1.1586278

M. M. Lee and M. Wu, Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-Insulator and Sidewall Roughness Reduction, Microelectromechanical Systems, pp.338-343, 2006.
DOI : 10.1109/JMEMS.2005.859092

M. F. Castez, Surface-diffusion-driven decay of patterns: beyond the small slopes approximation, Journal of Physics: Condensed Matter, vol.22, issue.34, pp.345007-80, 2010.
DOI : 10.1088/0953-8984/22/34/345007

W. K. Burton, N. Cabrera, and F. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.866, pp.299-358, 1951.
DOI : 10.1098/rsta.1951.0006

J. Heyraud, J. Métois, and J. Bermond, The roughening transition of the Si{113} and Si{110} surfaces ??? an in situ, real time observation, Surface Science, vol.425, issue.1, pp.48-56, 1999.
DOI : 10.1016/S0039-6028(99)00183-1

E. Van-vroonhoven, H. J. Zandvliet, and B. Poelsema, A quantitative evaluation of the dimer concentration during the (2??1)-(1??1) phase transition on Ge(001), Surface Science, vol.574, issue.2-3, pp.23-28, 2005.
DOI : 10.1016/j.susc.2004.11.009

V. Ignatescu, Engineering surface morphology at the atomic level with applications in electronic materials, 2007.

T. Doi, M. Ichikawa, and S. Hosoki, Observation of Si(001) surface topography at temperatures below 1140t??C using a reflection electron microscope, Physical Review B, vol.55, issue.3, pp.1864-1870, 1997.
DOI : 10.1103/PhysRevB.55.1864

Y. L. Gavrilyuk, Y. S. Kaganovjkii, and V. G. Lifshits, Diffusive mass transfer on the (111) and (100) surfaces of silicon single crystals, Sov. Phys. Crystallogr, vol.26, issue.3, pp.81-90, 1981.

S. Personnic, K. K. Bourdelle, F. Letertre, and A. Tauzin, Impact of the transient formation of molecular hydrogen on the microcrack nucleation and evolution in Himplanted Si (001), Journal of Applied Physics, vol.103, issue.2, 2008.

E. Darvish and A. A. Masoudi, Kinetic surface roughening for the Mullins???Herring equation, Journal of Mathematical Physics, vol.50, issue.1, pp.13304-13341, 2009.
DOI : 10.1063/1.3072915

J. M. López, M. A. Rodríguez, and R. Cuerno, Power spectrum scaling in anomalous kinetic roughening of surfaces, Physica A: Statistical Mechanics and its Applications, pp.329-347, 1997.
DOI : 10.1016/S0378-4371(97)00375-0

A. Röthlein, F. Baumann, and M. Pleimling, Symmetry-based determination of space-time functions in nonequilibrium growth processes, Physical Review E, vol.74, issue.6, p.61604, 2006.
DOI : 10.1103/PhysRevE.74.061604

K. A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn, Growing interfaces uncover universal fluctuations behind scale invariance, Scientific Reports, vol.129, issue.1, p.2011
DOI : 10.1007/s10955-007-9383-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216521

J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, Journal de Physique I, vol.1, issue.1, pp.19-42, 1991.
DOI : 10.1051/jp1:1991114

URL : https://hal.archives-ouvertes.fr/jpa-00246302

P. Politi, G. Grenet, A. Marty, A. Ponchet, and J. Villain, Instabilities in crystal growth by atomic or molecular beams, Physics Reports, vol.324, issue.5-6, pp.5-6, 2000.
DOI : 10.1016/S0370-1573(99)00046-0

O. Kononchuk, D. Landru, and C. Veytizou, Novel Trends in SOI Technology for CMOS Applications, Solid State Phenomena, vol.156, issue.158, pp.69-76
DOI : 10.4028/www.scientific.net/SSP.156-158.69

B. Mohadjeri, M. R. Baklanov, E. Kondoh, and K. Maex, Oxidation and roughening of silicon during annealing in a rapid thermal processing chamber, Journal of Applied Physics, vol.83, issue.7, 1998.
DOI : 10.1063/1.366629

R. Kuroda, T. Suwa, A. Teramoto, R. Hasebe, S. Sugawa et al., Atomically Flat Silicon Surface and Silicon/Insulator Interface Formation Technologies for (100) Surface Orientation Large-Diameter Wafers Introducing High Performance and Low-Noise Metal–Insulator–Silicon FETs, IEEE Transactions on Electron Devices, vol.56, issue.2, pp.291-298, 2009.
DOI : 10.1109/TED.2008.2010591

B. E. Deal and A. S. Grove, General Relationship for the Thermal Oxidation of Silicon, Journal of Applied Physics, vol.36, issue.12, pp.3770-3778, 1965.
DOI : 10.1063/1.1713945

H. Z. Massoud, J. D. Plummer, and E. A. Irene, Thermal Oxidation of Silicon in Dry Oxygen Growth-Rate Enhancement in the Thin Regime, Journal of The Electrochemical Society, vol.132, issue.11, pp.2685-2693, 1985.
DOI : 10.1149/1.2113648

S. Ogawa, A. Yoshigoe, S. Ishidzuka, Y. Teraoka, and Y. Takakuwa, Consumption kinetics of Si atoms during growth and decomposition of very thin oxide on Si(001) surfaces, Thin Solid Films, vol.508, issue.1-2, pp.169-174, 2006.
DOI : 10.1016/j.tsf.2005.07.321

M. Uematsu, H. Kageshima, and K. Shiraishi, Unified Simulation of Silicon Oxidation Based on the Interfacial Silicon Emission Model, Japanese Journal of Applied Physics, vol.39, issue.Part 2, No. 7B, pp.699-702, 2000.
DOI : 10.1143/JJAP.39.L699

M. Uematsu, H. Kageshima, and K. Shiraishi, Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation, Journal of Applied Physics, vol.89, issue.3, 2001.
DOI : 10.1063/1.1335828

T. Yoshinobu, A. Iwamoto, K. Sudoh, and H. Iwasaki, Scaling of Si/SiO2 interface roughness, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.4, pp.1630-1634, 1995.
DOI : 10.1116/1.587869

L. Lai and E. A. Irene, Limiting Si/SiO2 interface roughness resulting from thermal oxidation, Journal of Applied Physics, vol.86, issue.3, pp.1729-1735, 1999.
DOI : 10.1063/1.370954

H. Omi, H. Kageshima, and M. Uematsu, Scaling and Universality of Roughening in Thermal Oxidation of Si(001), Physical Review Letters, vol.97, issue.1, p.16102, 2006.
DOI : 10.1103/PhysRevLett.97.016102

H. Omi, H. Kageshima, T. Kawamura, M. Uematsu, Y. Kobayashi et al., Stability-instability transition of reaction fronts in thermal oxidation of silicon, Physical Review B, vol.79, issue.24, p.245319, 2009.
DOI : 10.1103/PhysRevB.79.245319

G. Grinstein, Y. Tu, and J. Tersoff, Stability of Solid State Reaction Fronts, Physical Review Letters, vol.81, issue.12, pp.2490-2493, 1998.
DOI : 10.1103/PhysRevLett.81.2490

A. L. Barabasi and H. E. Stanley, Fractal Concepts In Surface Growth, pp.89-117, 1995.

F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, Journal of Physics A: Mathematical and General, vol.18, issue.2, pp.75-87, 1985.
DOI : 10.1088/0305-4470/18/2/005

J. Krug and H. Spoh, Solids far from Equilibrium, ch. Growth and morphology and defects, p.479, 1991.

S. Fang, W. Chen, T. Yamanaka, and C. Helms, The Evolution of (001) Si???SiO[sub 2] Interface Roughness during Thermal Oxidation, Journal of The Electrochemical Society, vol.144, issue.8, pp.2886-2893, 1997.
DOI : 10.1149/1.1837912

A. Carim and R. Sinclair, The Evolution of Si???SiO[sub 2] Interface Roughness, Journal of The Electrochemical Society, vol.134, issue.3, pp.741-746, 1987.
DOI : 10.1149/1.2100544

K. Ohsawa, Y. Hayashi, R. Hasunuma, and K. Yamabe, Roughness increase on surface and interface of SiO 2 grown on atomically flat Si (111) terrace, Journal of Physics: Conference Series, pp.12031-109, 2009.

K. Yamabe, K. Ohsawa, Y. Hayashi, and R. Hasunuma, 2-D roughening of SiO 2 thermally grown on atomically flat Si surface, ECS Transactions, vol.19, issue.2, pp.427-442, 2009.

F. Iacona, V. Raineri, F. L. Via, and E. Rimini, Roughness of thermal oxide layers grown on ion implanted silicon wafers, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.2, pp.619-627, 1998.
DOI : 10.1116/1.590298

R. M. De-almeida, S. Goncalves, I. J. Baumvol, and F. C. Stedile, Dynamics of thermal growth of silicon oxide films on Si, Physical Review B, vol.61, issue.19, pp.12992-12999, 2000.
DOI : 10.1103/PhysRevB.61.12992

J. T. Drotar, Y. Zhao, T. Lu, and G. Wang, Surface roughening in low-pressure chemical vapor deposition, Physical Review B, vol.64, issue.12, p.125411, 2001.
DOI : 10.1103/PhysRevB.64.125411

W. H. Juan and S. W. Pang, Controlling sidewall smoothness for micromachined Si mirrors and lenses, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, 1996.
DOI : 10.1116/1.588595

]. J. Luo and D. A. Dornfeld, Material removal mechanism in chemical mechanical polishing: theory and modeling Semiconductor Manufacturing, Bibliography IEEE Transactions on, vol.14, issue.124, pp.112-133, 2001.

D. Dornfeld and D. Lee, Machine design for precision manufacturing, 2008.
DOI : 10.1007/978-0-387-68208-2_2

F. Preston, The theory and design of plate glass polishing machines, J. Soc. Glass Tech, vol.11, p.214, 1927.

F. Zhang, A. A. Busnaina, and G. Ahmadi, Particle Adhesion and Removal in Chemical Mechanical Polishing and Post-CMP Cleaning, Journal of The Electrochemical Society, vol.146, issue.7, pp.2665-2669, 1999.
DOI : 10.1149/1.1391989

B. Zhao and F. G. Shi, Chemical mechanical polishing in IC processes: new fundamental insights, Proc. Fourth Int. Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conf, pp.13-22, 1999.

C. W. Liu, T. Dai, W. T. Tseng, and C. F. Yeh, Modeling of the Wear Mechanism during Chemical-Mechanical Polishing, Journal of The Electrochemical Society, vol.143, issue.2, pp.716-721, 1999.
DOI : 10.1149/1.1836507

L. M. Cook, Chemical processes in glass polishing, Journal of Non-Crystalline Solids, vol.120, issue.1-3, pp.152-171, 1990.
DOI : 10.1016/0022-3093(90)90200-6

F. Kaufman, D. Thompson, R. Broadie, M. Jaso, W. Guthrie et al., Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects, Journal of The Electrochemical Society, vol.138, issue.11, pp.3460-3465, 1991.
DOI : 10.1149/1.2085434

H. Liang, F. Kaufman, R. Sevilla, and S. Anjur, Wear phenomena in chemical mechanical polishing, Wear, vol.211, issue.2, pp.271-279, 1997.
DOI : 10.1016/S0043-1648(97)00124-5

A. Tesar, B. Fuchs, and P. P. Hed, Examination of the polished surface character of fused silica, Applied Optics, vol.31, issue.34, pp.7164-7172, 1992.
DOI : 10.1364/AO.31.007164

V. H. Nguyen, A. Hof, H. Van-kranenburg, P. Woerlee, and F. Weimar, Copper chemical mechanical polishing using a slurry-free technique, Microelectronic Engineering, vol.55, issue.1-4, pp.305-312, 2001.
DOI : 10.1016/S0167-9317(00)00461-5

S. B. Yeruva, Particle scale modeling of material removal and surface roughness in Chemical Mechanical Ploshing, 2005.

B. Stine, D. Ouma, R. Divecha, D. Boning, J. Chung et al., Rapid characterization and modeling of pattern-dependent variation in chemical-mechanical polishing, IEEE Transactions on Semiconductor Manufacturing, vol.11, issue.1, pp.129-140, 1998.
DOI : 10.1109/66.661292

T. Tugbawa, T. Park, D. Boning, T. Pan, P. Li et al., A mathematical model of pattern dependencies in Cu CMP processes, CMP Symposium, pp.605-615, 1999.

C. Ouyang, K. Ryu, L. Milor, W. Maly, G. Hill et al., An analytical model of multiple ILD thickness variation induced by interaction of layout pattern and CMP process, IEEE Transactions on Semiconductor Manufacturing, vol.13, issue.3, pp.286-292, 2000.
DOI : 10.1109/66.857937

O. Chekina, L. Keer, and H. Liang, Wear-Contact Problems and Modeling of Chemical Mechanical Polishing, Journal of The Electrochemical Society, vol.145, issue.6, pp.2100-2106, 1998.
DOI : 10.1149/1.1838603

D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin et al., Von Mises Stress in Chemical-Mechanical Polishing Processes, Journal of The Electrochemical Society, vol.144, issue.3, pp.1121-1127, 1997.
DOI : 10.1149/1.1837542

W. Tseng, Y. Wang, and J. Chin, Effects of Film Stress on the Chemical Mechanical Polishing Process, Journal of The Electrochemical Society, vol.146, issue.11, pp.4273-4280, 1999.
DOI : 10.1149/1.1392627

G. Fu and A. Chandra, A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelastic pad deformation, Journal of Electronic Materials, vol.69, issue.309, pp.1066-1073, 2002.
DOI : 10.1007/s11664-002-0044-4

J. Seok, C. P. Sukam, A. T. Kim, J. A. Tichy, and T. S. Cale, Multiscale material removal modeling of chemical mechanical polishing, Wear, vol.254, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0043-1648(03)00022-X

J. Luo, Integrated Modeling Of Chemical Mechanical Planarization/Polishing (CMP) for Integrated Circuit Fabrication: From Particle to Die and Wafer Scales, 2003.

X. Xie and D. Boning, CMP at the Wafer Edge ??? Modeling the Interaction between Wafer Edge Geometry and Polish Performance, MRS Proceedings, pp.5-6, 2005.
DOI : 10.1557/PROC-867-W5.1