R. [. Abiteboul, V. Hull, and . Vianu, Foundations of Databases, 1995.

T. [. Agrawal, A. Imielinski, and . Swani, Mining Association Rules between sets of items in large databasess, Proc. Int.Conf. on Management of Data, SIGMOD, 1993.

R. [. Agrawal and . Srikant, Fast algorithms for mining association rules in large databases

P. Aiken, O. K. Ngwenyama, and L. Broome, Reverse-engineering new systems for smooth implementation, IEEE Software, vol.16, issue.2, 1999.
DOI : 10.1109/52.754051

J. Akoka and I. Wattiau, MeRCI : An Expert System for Software Reverse Engineering

M. [. Ali and . Pazzani, Reducing the Small Disjuncts Problem by Learning Probabilistic Concept Descriptions, Computational Learning Theory and Natural Learning Systems, 1992.

M. Andersson, Extracting an Entity Relationship Schema from a Relational Database through Reverse Engineering, Proc. of the 13th Conf. on ER Approach, 1994.

M. Ankerst, B. Braunmüller, H. P. Kriegel, and T. Seidl, Improving Adaptable Similarity Query Processing by Using Approximations, Proc. of the 24th Int. Conf. on Very Large Data Bases (VLDB'98, pp.206-217, 1998.

D. L. Araujo, H. S. Lopes, and A. A. Freitas, Rule discovery with a parallel genetic algorithm, Genetic and Evolutionary Computation, pp.89-92, 2000.

H. [. Araujo, A. A. Lopes, and . Freitas, A parallel genetic algorithm for rule discovery in large databases, Proc. of the 1999 IEEE Systems, Man and Cybernetics Conf, pp.940-945, 1999.

M. Atkinson, F. Bancilhon, D. Dewitt, K. Dittrich, D. Maier et al., The Object-Oriented Database System Manifesto, First Int. Conf. on Deductive and Object-Oriented Databases, 1989.
DOI : 10.1016/B978-0-444-88433-6.50020-4

G. [. Augier, Y. Venturini, and . Kodratoff, Learning first order logic rules with a genetic algorithm, Proc. of the First Int. Conf. on Knowledge Discovery and Data mining, 1995.

. [. Barbar, Fouille de données et de texte ? Application à la rétro-conception de systèmes d'informations. Poster, Forum Jeunes Chercheurs, 2000.

]. A. Barb01a, M. Barbar, and . Collard, Attribute similarity : a data mining issue Advances in Intelligent Data Analysis (AIDA'01, Int. ICSC Congress on Computational Intelligence, pp.215-221, 2001.

]. A. Barb01b and . Barbar, A User Driven Method for Database Reverse Engineering The 8th Doctoral Consortium, Conf. on Advanced Information Systems Engineering, CAiSE'01, 2001.

. [. Barbar, Extraction de connaissances pour la retro-conception d'une base de données vers un schéma objet, Thèse de l, 2002.

C. Batini, S. Ceri, and S. Navathe, Conceptual Database Design : an Entity-Relationship Approach, 1992.

. [. Bayardo, Efficiently mining long patters from databases, 1998.

A. Sigmod-int and . Conf, on Management of Data (SIGMOD'98, pp.85-93, 1998.

R. [. Bayardo and . Agrawal, Mining the most interesting rules, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99
DOI : 10.1145/312129.312219

A. Behm, A. Geppert, and K. R. Dittrich, On migration of relational schemas and data to object-oriented database systems, Proc. of the 5th Int. Conf. on Re-Technologies in Information Systems, 1997.

U. [. Bennett, D. Fayyad, and . Geiger, Density-based Indexing for Approximate Nearestneighbor Queries, Proc. of the 5th Int. Conf. on Knowledge Discovery and Data Mining (KDD'99), pp.233-243, 1999.

J. [. Besançon, M. Chappelier, A. Rajman, and . Rozenknop, Improving text representations through probabilistic integration of synonymy relations, Proc. of the Tenth Int. Symposium on Applied Stochastic Models and Data Analysis (ASMDA'2001), pp.200-205

. [. Bhattacharyya, Direct Marketing Performance Modeling Using Genetic Algorithms, INFORMS Journal on Computing, vol.11, issue.3, 1999.
DOI : 10.1287/ijoc.11.3.248

S. Bhattacharyya, Evolutionary algorithms in data mining, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, 2000.
DOI : 10.1145/347090.347186

M. Blaha, Observed idiosyncracies of relational database designs, Proceedings of 2nd Working Conference on Reverse Engineering, 1995.
DOI : 10.1109/WCRE.1995.514700

M. Blaha, On reverse engineering of vendor databases, Proceedings Fifth Working Conference on Reverse Engineering (Cat. No.98TB100261), 1998.
DOI : 10.1109/WCRE.1998.723188

M. Blaha and W. Premerlani, Object-Oriented Modeling and Design for Database Applications, 1998.

M. Blaha, A retrospective on industrial database reverse engineering projects - part 2, Proceedings Eighth Working Conference on Reverse Engineering
DOI : 10.1109/WCRE.2001.957818

H. [. Bojarczuk, A. A. Lopes, and . Freitas, Discovering comprehensible classification rules using genetic programming: a case study in a medical domain. Genetic and Evolutionary Computation Conf, pp.953-958, 1999.

H. [. Bojarczuk, A. A. Lopes, and . Freitas, Genetic programming for knowledge discovery in chest-pain diagnosis, IEEE Engineering in Medicine and Biology Magazine, vol.19, issue.4, pp.38-44, 2000.
DOI : 10.1109/51.853480

H. [. Bojarczuk, A. A. Lopes, and . Freitas, Data Miningwith constrained-syntax genetic programming: applications in medical data sets. Intelligent Data Analysis in Medicine and Pharmacology, 2001.

A. Van-den-bosch, T. Weijters, H. J. Van-den-herik, and W. Daelemans, When Small Disjuncts Abound, Try Lazy Learning : A Case Study, Proc. of the Seventh Belgian-Dutch Conf. on Machine Learning, pp.109-118, 1997.

]. S. Brin97a, R. Brin, J. D. Motwani, S. Ullman, and . Tsur, Dynamic itemset counting and implication rules for market basket data, Proc.of the 1997 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'97, pp.255-264, 1997.

]. S. Brin97b, R. Brin, C. Motwani, and . Silverstein, Beyond market baskets : generalizing association rules to correlations, ACM SIGMOD Int. Conf. on Management of Data, pp.265-276, 1997.

P. Brown, Object-Relational Database Development, A plumber's Guide, 2001.

Y. [. Buja and . Lee, Data Miningcriteria for tree-based regression and classification, Proc. of the 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp.27-36, 2001.

C. Carpineto and G. Romano, GALOIS : An order-theoretic approach to conceptual clustering, Proc. of the 10th Int. Conf. on Machine Learning (ICML'90, pp.33-40, 1993.
DOI : 10.1016/B978-1-55860-307-3.50011-3

D. R. Carvalho, B. C. Avila, and A. A. Freitas, A hybrid genetic algorithm / decision tree approach for coping with unbalanced classes, 3rd Int. Conf. on the Practical Applications of Knowledge Discovery & Data Mining (PADD-99), pp.61-70, 1999.

]. D. Carv00a, A. A. Carvalho, and . Freitas, A genetic algorithm-based solution for the problem of small disjuncts, Principles of Data Mining and Knowledge Discovery, pp.345-352, 2000.

]. D. Carv00b, A. A. Carvalho, and . Freitas, A hybrid decision tree / genetic algorithm for coping with the problem of small disjuncts in fouille de données. Genetic and Evolutionary Computation Conf, pp.1061-1068, 2000.

M. A. Casanova and J. E. De-sa, Designing Entity-Relationship Schemes for Conventional Information Systems, Proc. of the 3td Int. Conf. on the ER Approach to Software Engineering, pp.265-277, 1983.

F. Stanienda and . Velez, The Object Data Standard : ODMG 3.0, 1999.

P. Cheeseman and J. Stutz, Bayesian classification (AutoClass) : Theory and results

M. Fayyad, G. Piatetsky-shapiro, P. Smyth, and R. Ed, Advances in knowledge Discovery and Data Mining, pp.153-180, 1996.

P. P. Chen, The entity-relationship model---toward a unified view of data, ACM Transactions on Database Systems, vol.1, issue.1, pp.9-36, 1976.
DOI : 10.1145/320434.320440

R. H. Chiang, T. Barron, and V. Storey, Reverse engineering of relational databases: Extraction of an EER model from a relational database, Data & Knowledge Engineering, vol.12, issue.2, pp.107-142, 1994.
DOI : 10.1016/0169-023X(94)90011-6

R. H. Chiang, A knowledge-based system for performing reverse engineering of relational databases. Decision Support Systems 13, pp.295-312, 1995.

J. [. Chikofsky and . Cross, Reverse engineering and design recovery: a taxonomy, IEEE Software, vol.7, issue.1, pp.13-17, 1990.
DOI : 10.1109/52.43044

. [. Choenni, On the Suitability of Genetic-Based Algorithms for Data Mining, Proc. of the Int. Workshop on Advances in Databases Technologies, 1998.
DOI : 10.1007/978-3-540-49121-7_5

E. F. Codd, A Relational Model of Data for Large Shared Data Banks, Communications ACM, issue.6, pp.377-387, 1970.

M. Collard, Un langage de requêtes déductif pour objets persistants, 1993.

M. Collard and N. L. Thanh, A Deductive Query Language for the Integration of different Programming Styles, 2nd European Joint Conf. on Engineering Systems Design and Analysis, pp.34-46, 1994.

M. Collard, Une méthode d'extraction de connaissances pour l'aide à la conception orientée objet, INFORSID, pp.88-97, 1997.

M. Collard, Mining Dependency Relationships for Object Oriented Modelling, Int. ICSC Symposium on Engineering of Intelligent Systems, pp.228-235, 1998.

M. Collard and A. Barbar, Discovery of Synonymy Rules by Mining Queries. Int. Conf. on Computational Intelligence for Modelling Control and Automation, pp.122-130, 1999.

M. Collard and A. Barbar, Semantic Extraction : a User-Driven Method. ISM'01

M. Collard and D. Francisci, Evolutionary data mining: an overview of genetic-based algorithms, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597), pp.4-10, 2001.
DOI : 10.1109/ETFA.2001.996347

]. Y. Coll02a, P. Collette, and . Siarry, Optimisation multiobjectif, Editions Eyrolles, 2002.

M. Collard and A. Barbar, Mining Legacy Databases. ISE'02, Int. Symposium on Information Systems and Engineering, pp.120-125, 2002.

M. Collard and A. Barbar, MoRE : An Object Model for Eliciting Relational Data Semantics

M. Collard, EMA : An evolutionary method for Modelling by Mining Examples. ISE'02, Int. Symposium on Information Systems and Engineering, pp.110-114, 2002.

M. Collard, Tutorial : An Overview of Database Reverse Engineering Methods, 2002.

M. Collard and A. Cavarero, Une approche basée sur le comportement utilisateur pour la

E. [. Congdon and . Greenfest, Gaphyl: A Genetic Algorithms Approach to Cladistics
DOI : 10.1007/3-540-44794-6_6

M. Craven and J. W. Shavlik, Using Sampling and Queries to Extract Rules from Trained Neural Networks, Proc. of the 11th Int. Conf. on Machine Learning, pp.37-45, 1994.
DOI : 10.1016/B978-1-55860-335-6.50013-1

I. Dagnan, L. Lee, and F. Pereira, Similarity-based models of word co-occurence probabilities, Machine Learning, pp.43-69, 1999.

F. [. Danyluk and . Provost, Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network, Proc.of the 10th Int. Conf. on Machine Learning (ICML'93), pp.81-88, 1993.
DOI : 10.1016/B978-1-55860-307-3.50017-4

H. [. Das, P. Mannila, and . Ronkainen, Similarity of Attributes by External Probed

G. Das and H. Mannila, Context-based similarity methods for categorical attributes. Principles of Data Miningand Knowledge Discovery, 4th European Conf, pp.201-211, 2000.

A. [. Davis and . Arora, Converting a Relational database Model into an Entity-Relationship Model, Proc. of the 6th Int. Conf. on ER Approach, pp.243-256, 1987.

P. [. Davis and . Aiken, Data reverse engineering: a historical survey, Proceedings Seventh Working Conference on Reverse Engineering, 2000.
DOI : 10.1109/WCRE.2000.891454

K. Deb, Multi-objective optimization using evolutionary algorithms, 2001.

V. Dhar, D. Chou, and F. Provost, Discovering interesting patterns for investment decision making with GLOWER ? a genetic learner overlaid with entropy reduction, Data Mining and Knowledge Discovery, vol.4, issue.4, pp.251-280, 2000.
DOI : 10.1023/A:1009848126475

A. [. Dittrich and . Geppert, Object-oriented DBMS and beyond, Proc. of SOFSEM'97 : Theory and Practice of Informatics, 1997.
DOI : 10.1007/3-540-63774-5_111

C. Emmanouilidis, A. Hunter, and J. Macintyre, A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), pp.309-306, 2000.
DOI : 10.1109/CEC.2000.870311

A. [. Fabris and . Freitas, Discovering surprising patterns by detecting occurrences of Simpson's paradox. Research and Development in Intelligent Systems XVI, pp.148-160

U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, Knowledge Discovery and Data Mining : Towards a Unifying Framework, proceedings of the 2nd international conference on Knowledge Discovery and Data Mining (KDD'96, pp.82-88, 1996.

U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, The KDD process for extracting useful knowledge from volumes of data, Communications of the ACM, vol.39, issue.11, 1996.
DOI : 10.1145/240455.240464

M. V. Fidelis, H. S. Lopes, and A. A. Freitas, Discovering comprehensible classification rules with a genetic algorithm, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), p.p, 2000.
DOI : 10.1109/CEC.2000.870381

L. Fleury and Y. Masson, The intensity of implication, a measurement learning machine

N. [. Flockart and . Radcliffe, GA-Miner : Parallel Data Miningwith Hierarchical genetic Algorithms, 1995.

A. Flory and F. Laforest, Les bases de données relationnelles, Editions Economica ?, 2001.

M. M. Fonkam and W. A. Gray, An approach to eliciting the semantics of relational databases, Proc. of the 4th Int. Conf. on Advanced Information Systems Engineering, CAiSE'92, pp.463-480, 1992.
DOI : 10.1007/BFb0035148

]. D. Fran03a, M. Francisci, and . Collard, Multi-Criteria Evaluation of Interesting Dependencies according to a Data Mining Approach, Congress on Evolutionary Computation, issue.03, 2003.

D. Francisci and M. Collard, Optimizing rule quality in a fouille de données context, CIRAS'03, 2nd Int. Conf. on Computational Intelligence, 2003.

]. D. Fran03c, M. Francisci, and . Collard, Towards a multi-objective rule selection in data mining : an experimental approach to compare measures Applied Mathematics, Operational Research and Optimization, SessionMetaheuristics and multi-criteria optimisation, CESA'03, 2003.

. [. Francisci, Techniques d'optimisation pour l'extraction automatique de connaissances

A. A. Freitas and S. H. Lavington, Speeding up knowledge discovery in large relational databases by means of a new discretization algorithm Advances in Databases, LNCS, vol.1094, pp.124-133, 1996.

. [. Freitas, On objective measures of rule surprisingness, Principles of Data Mining and Knowledge Discovery (PKDD'98), 1998.
DOI : 10.1007/BFb0094799

A. A. Freitas, A genetic algorithm for generalized rule induction Advances in Soft Computing -Engineering Design and Manufacturing, pp.340-353, 1999.

. [. Freitas, Understanding the crucial differences between classification and discovery of association rules, ACM SIGKDD Explorations Newsletter, vol.2, issue.1, pp.65-69, 2000.
DOI : 10.1145/360402.360423

. [. Freitas, Understanding the Crucial Role of Attribute Interaction in Data Mining, Artificial Intelligence Review, vol.16, issue.3, pp.177-199, 2001.
DOI : 10.1023/A:1011996210207

. [. Freitas, Data Mining and knowledge discovery with evolutionary algorithms. Natural computing series, 2002.

M. Garcia-solaco, M. Castellanos, and F. Saltor, Discovering interdatabase resemblance of classes for interoperable databases, Proceedings RIDE-IMS `93: Third International Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase Systems, 1993.
DOI : 10.1109/RIDE.1993.281949

S. B. Gelfand, C. S. Ravishankar, and E. J. Delp, An iterative growing and pruning algorithm for classification tree design, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991.

G. Guedj, AMC* Designor -Mise en oeuvre de Merise, 1997.

D. E. Goldberg, Genetic Algorithms in Serach, Optimization, and Machine Learning

R. M. Goodman and P. Smyth, Rule induction using information theory, G. Piatetsky ?

W. J. Shapiro and . Ed, Knowledge Discovery in Databases, 1991.

. [. Gras, L'implication statistique ? Nouvelle méthodé exploratoires de données. Editions " La pensée sauvage, 2001.

J. J. Grefenstette, Predictive Models Using Fitness Distributions of Genetic Operators, Foundations of Genetic Algorithms, 1995.
DOI : 10.1016/B978-1-55860-356-1.50012-1

F. [. Guillaume, J. Guillet, and . Philippé, Improving the discovery of association rules with intensity of implication, pp.318-327, 1998.
DOI : 10.1007/BFb0094834

. [. Guillaume, L'intensité d'inclination : une généralisation de l'intensité d'implication ordinale. Actes des 8ièmes journées de la société francophone de classification (SFC'01), 2001.

J. L. Hainaut, Database Reverse Engineering : Models, techniques and strategies, Proc. of the 10th Int. Conf. on Entity-Relationship Approach, pp.729-741, 1991.

J. L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon, Schema Transformation Techniques for Database Reverse Engineering, Proc. of the 12th Int. Conf. on ER Approach, 1993.

J. L. Hainaut, V. Engelbert, J. Henrard, J. M. Hick, and D. Roland, Requirements for information system reverse engineering support, Proceedings of 2nd Working Conference on Reverse Engineering, pp.136-145, 1995.
DOI : 10.1109/WCRE.1995.514702

D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining Clustering Algorithms, 1975.

D. Hérin and D. A. Zighed, Actes de la conférence EGC 2002: Extraction et gestion des connaissances, 2002.

J. M. Hick and J. L. Hainaut, Maintenance et évolution d

R. J. Hilderman and H. J. Hamilton, Heuristics for Ranking the Interestingness of Discovered Knowledge, Proc. of the 3rd Pacific-Asia Conf. on Methodologies for Knowledge Discovery and Data Mining (PAKDD'99), pp.204-209, 1999.
DOI : 10.1007/3-540-48912-6_28

]. R. Hild99b, H. J. Hilderman, B. Hamilton, and . Barber, Ranking the Interestingness of Summaries from Data Mining Systems, Proc. of the 12th Int. Florida Artificial Intelligence Research Symposium (FLAIRS'99), pp.100-106, 1999.

H. [. Hilderman and H. J. Hamilton, Evaluation of Interestingness Measures for Ranking Discovered Knowledge, Proc.of the 5th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD'01, pp.247-259, 2001.
DOI : 10.1007/3-540-45357-1_28

J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.

R. C. Holte, L. E. Acker, and B. W. Porter, Concept Learning and the Problem of Small Disjuncts, Proc.of the Eleventh Int. Joint Conf. on Artificial Intelligence, pp.813-818, 1989.

J. [. Huhtala, P. Kärkkänen, H. Porkka, and . Toivonen, Efficient discovery of functional and approximate dependencies using partitions, Proceedings 14th International Conference on Data Engineering
DOI : 10.1109/ICDE.1998.655802

H. [. Hussain, H. Liu, and . Lu, Relative Measure for Mining Interesting Rules, Proc. of the 4th European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'00), pp.432-439, 2000.

. Int, Business Machines, IBM intelligent Miner, User's guide, version 1, release 1, 1996.

M. [. Jain, P. J. Murty, and . Flynn, Data clustering: a review, ACM Computing Surveys, vol.31, issue.3, pp.264-323, 1999.
DOI : 10.1145/331499.331504

P. Johannesson and K. Kalman, A Method for Translating Relational schemas into Conceptual Schemas, Proc. of the 8th Int. Conf. on ER Approach, pp.279-283, 1990.

. [. Johannesson, A method for transforming relational schemas into conceptual schemas, Proceedings of 1994 IEEE 10th International Conference on Data Engineering
DOI : 10.1109/ICDE.1994.283030

S. [. Jones and . Forrest, Genetic Algorithms and Heuristic Search, 1995.

F. Bodart, M. Vandamme, and . Vanwormhoudt, Phenix : Methods and Tools For Database Reverse Engineering, Proc. of the 5th international conference of Software engineering and Applications, pp.541-551, 1992.

M. Joshi, On evaluating performance of classifiers for rare classes, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., 2002.
DOI : 10.1109/ICDM.2002.1184018

[. Jourdan, C. Dhaenens, and E. G. Talbi, A genetic algorithm to exploit genetic data, Evolutionary Computation and Bioinformatics Morgan Kaufmann, pp.297-316, 2002.

. [. Kalman, Implementation and Critic of an algorithm which maps a Relational Database to a Conceptual Model, Proc. of the 3th Int. Conf. on Advanced Information Systems Engineering ? CaiSE'91, pp.393-415, 1991.

M. Kantola, H. Mannila, K. J. Raïhä, and H. Siirtola, Discovering functional and inclusion dependencies in relational databases, International Journal of Intelligent Systems, vol.3, issue.7, pp.591-607, 1992.
DOI : 10.1002/int.4550070703

G. Karypis, E. H. Han, and V. Kumar, Chameleon: hierarchical clustering using dynamic modeling, Computer, vol.32, issue.8, pp.68-75, 1999.
DOI : 10.1109/2.781637

A. [. Kashyap and . Sheth, Semantic and schematic similarities between database objects: a context-based approach, The VLDB Journal The International Journal on Very Large Data Bases, vol.5, issue.4, pp.276-304, 1996.
DOI : 10.1007/s007780050029

L. Kaufman and P. J. Rousseuv, Finding Groups in data : An Introduction to Cluster Analysis, 1990.
DOI : 10.1002/9780470316801

Y. Kim, W. N. Street, and F. Menczer, Feature selection in unsupervised learning via evolutionary search, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.365-369, 2000.
DOI : 10.1145/347090.347169

M. Klemettinen, H. Mannila, P. Ronkainen, and H. , Toivonen et I. Verkamo. Finding interesting rules from large sets of discovered association rules, Proc. of the Third Int. Conf. on Information and Knowledge Management (CIKM'94, pp.401-407, 1994.

. [. Kononenko, Estimating attributes: Analysis and extensions of RELIEF, Proc.ECML-94, pp.171-182, 1994.
DOI : 10.1007/3-540-57868-4_57

J. R. Kosa, Genetic Programming: on the Programming of Computers by Means of Natural Selection, 1992.

D. Krishnamurthy and . Beech, Introducing Reference Types and Cleaning Up SQL3's Object Model

P. Gras, P. Kuntz, R. Coutuier, and F. Guillet, Une version entropique de l'intensité d'implication pour les corpus volumineux. Extraction des connaissances et apprentissage, pp.69-80, 2002.

W. Kwedlo and M. Kretowski, Discovery of decision rules from databases: An evolutionary approach, Principles of Data Mining and Knowledge Discovery, 1998.
DOI : 10.1007/BFb0094840

O. [. Lallich and . Teytaud, Evaluation et validation de l

. [. Lee, Similarity-Based Approaches for Natural Language Processing, 1997.

P. [. Lenca, B. Meyer, P. Vaillant, and . Picouet, Aide multicritère à la décision pour évaluer les indices de qualité des connaissances ? Modélisation des préférences de l'utilisateur. Rapport de recherche pour le groupe de travail GafoQualitée de l'action spécifique STIC, 2002.

[. Lim, W. Loh, and Y. Shih, A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms, Machine Learning, vol.40, issue.3, pp.203-228, 2000.
DOI : 10.1023/A:1007608224229

B. Liu and W. Hsu, Post-analysis of learned rule, Proc. of the 1996 National Conf. of the American Association for Artificial Intelligence (AAAI'96, 1996.

W. [. Liu, Y. Hsu, and . Ma, Integrating Classification and Association Rule Mining, Proc. of the Fourth International Conference on Knowledge Discovery and Data Minig (KDD98), 1998.

W. [. Liu, Y. Hsu, and . Ma, Pruning and summarizing the discovered associations, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, 1999.
DOI : 10.1145/312129.312216

B. Liu, Y. Ma, and C. Wong, Classification Using Association Rules : Weaknesses and Enhancements. Data Mining for scientific applications, 2001.

J. Loevinger, A systemic approach to the construction and evaluation of tests of ability, Psychological monographs, vol.61, issue.4, 1947.

M. [. Lopes, W. C. Coutinho, and . Lima, An evolutionnary approach to simulate cognitive feedback learning in medical domain Genetic Algorithms and Fuzzy Logic Systems, pp.193-207, 1997.

J. Macqueen, Some methods for classification and analysis of multivariate observations

M. [. Manderick, P. De-weger, and . Spiessens, The genetic algorithm and the structure of the fitness landscape, Proc. of the Fourth Int. Conf. on Genetic Algorithms, 1991.

H. Mannila and K. J. Räihä, The Design of Relational Databases, 1992.

V. M. Markowitz, J. A. Makowskymend01-]-r, F. B. Mendes, A. A. Voznika, J. C. Freitas et al., Identifying extended entity-relationship object structures in relational schemas, IEEE Transactions on Software Engineering, vol.16, issue.8, pp.777-790, 1990.
DOI : 10.1109/32.57618

. [. Moen, Attribute, Event Sequences and Event Type Similarity Notions for Data Mining

G. Nakhaeizadeh and A. Schnabl, Development of Multi-Criteria Metrics for Evaluation of Data Mining Algorithms, 1997.

A. [. Navathe and . Awong, Abstracting Relational and Hierarchical Data with a Semantic Data Model, Proc. of the 6th Int. Conf. on the ER Approach, pp.277-305, 1987.

R. T. Ng, V. S. Laks, J. Lakshmanan, A. Han, and . Pang, Exploratory mining and pruning optimizations of constrained association rules, Proc. ACM SIGMOD, pp.13-24, 1998.

. [. Nierstraz, A Survey of Object-Oriented Concepts, Object-Oriented Concepts, Databases, and Applications, 1989.

A. [. Noda, H. S. Freitas, and . Lopes, Discovering interesting prediction rules with a genetic algorithm, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), pp.1322-1329, 1999.
DOI : 10.1109/CEC.1999.782601

P. Pathak, M. Gordon, and W. Fan, Effective information retrieval using genetic algorithms based matching functions adaptation, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.
DOI : 10.1109/HICSS.2000.926653

J. [. Petit, J. F. Kouloumdjian, F. Boulicaut, and . Toumani, Using queries to improve database reverse engineering, Int. Conf. on the Entity-Relationship Approach (ERA), pp.369-386, 1994.
DOI : 10.1007/3-540-58786-1_91

J. M. Petit, F. Toumani, and J. Kouloumdjian, RELATIONAL DATABASE REVERSE ENGINEERING: A METHOD BASED ON QUERY ANALYSIS, International Journal of Cooperative Information Systems, vol.04, issue.02n03, pp.287-316, 1995.
DOI : 10.1142/S0218843095000123

J. M. Petit, F. Toumani, F. F. Boulicaut, and J. Kouloumdjian, Towards the Reverse Engineering of Denormalized Relational Databases, Proc. of the 12th Int. Conf. on Data Engineering, 1996.

. [. Piatetsky-shapiro, Discovery, analysis and presentation of strong rules, Knowledge Discovery in Databases, 1991.

G. Piatetsky-shapiro and C. J. Matheus, The interestingness of deviations. Knowledge Discovery in Database Workshop, 1994.

W. Premerlani and M. Blaha, An approach for reverse engineering of relational databases, Communications of the ACM, vol.37, issue.5, pp.42-49, 1994.
DOI : 10.1145/175290.175293

J. R. Quinlan, C4.5: Programs for Machine Learning, 1993.

J. R. Quinlan, Bagging, boosting, and C4.5, Proc. 13th Nat. Conf. Artificial Intelligence (AAAI'96, pp.725-730, 1996.

P. [. Radcliffe and . Surry, Co-operation through Hierarchical Competition in Genetic Data Mining, pp.94-103, 1994.

C. Ramanathan, Providing Object-Oriented Access to Existing Relational Databases

M. Robnik-sikonja and I. Kononenko, Attribute dependencies, understandability and split selection in tree based models, Int. Conf. on Machine Learning ICML-99, pp.27-29, 1999.

J. F. Roddick and S. Rice, What's interesting about cricket ? On thresholds and anticipation in discovered rules, SIGKDD Explorations, 2001.

U. Rodgers, Denormalization : Why, What, and How ?. Database Programming and Design, pp.46-53, 1989.

W. Romao, A. A. Freitas, and R. C. Pacheco, A Genetic Algorithm for Discovering Interesting Fuzzy Prediction Rules: applications to science and technology data. Genetic and Evolutionary Computation Conf, 2002.

H. Rosé, W. Ebeling, and T. Asselmeyer, The density of states -a measure of the difficulty of optimisation problems. Parallel Problem Solving from Nature, SAHA99] S. Sahar. Interestingness via what is not interesting. SIGKDD 99, pp.208-217, 1996.

J. [. Santos, A. A. Nievola, and . Freitas, Extracting comprehensible rules from neural networks via genetic algorithms, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00EX448), pp.130-139, 2000.
DOI : 10.1109/ECNN.2000.886228

I. Savnik and P. A. Flach, Bottom-up induction of functional dependencies from relations

[. Schwefel, Advantages (and disadvantages) of evolutionary eomputation over other approaches, Evolutionary Computation, 2000.

M. Sebag and M. Schoenauer, Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases, Proc. of the European Knowledge Acquisition Workshop, p.88

V. [. Sheth and . Kashyap, So Far (Schematically) yet So Near (Semantically)
DOI : 10.1016/B978-0-444-89879-1.50022-1

E. J. Hsiao, R. Neuhold, -. Sacks, and . Ed, Interoperable database systems, pp.283-312, 1993.

P. Shoval and N. Shreiber, Database reverse engineering : From the Relational to the Binary Relationship Model. Data and Knowledge engineering, pp.293-315, 1993.

O. Signore, M. Loffredo, M. Gregori, and M. Cima, Reconstruction of ER schema from database applications: a cognitive approach, Proc. of the 13th Int. Conf. Approach, pp.387-402, 1994.
DOI : 10.1007/3-540-58786-1_92

A. [. Silberschatz and . Tuzhilin, What makes patterns interesting in knowledge discovery systems, IEEE Transactions on Knowledge and Data Engineering, vol.8, issue.6
DOI : 10.1109/69.553165

A. Silberschatz and . Tuzhilin, What makes patterns interesting in knowledge discovery systems, IEEE Transactions on Knowledge and Data Engineering, vol.8, issue.6, pp.970-974, 1996.
DOI : 10.1109/69.553165

P. Smith and H. M. Goodman, Rule induction using information theory Knowledge Discovery in, 1991.

. [. Soutou, Extracting n-ary relationships through database reverse engineering, Proc. of the 15th Int. Conf. on Conceptual Modeling (ER'96), pp.392-405, 1996.
DOI : 10.1007/BFb0019936

[. Srinivas and K. Deb, Multiobjective optimization using non dominated sorting in genetic algorithms, EvolutionaryComputation, vol.2, issue.3, pp.221-248, 1995.

M. Stonebraker and D. Moore, Object-Relational DBMSs, 1996.

V. C. Storey, R. H. Chiang, D. Dey, R. C. Goldstein, and S. Sundaresan, Database design with common sense business reasoning and learning, ACM Transactions on Database Systems, vol.22, issue.4, pp.471-512, 1997.
DOI : 10.1145/278245.278246

Z. Tari, O. Bukhres, J. Stokes, and S. Hammoudi, The Reengineering of Relational Databases based on Key and Data Correlations, pp.183-214, 1996.
DOI : 10.1007/978-0-387-35300-5_9

Y. [. Teorey, J. P. Dongqing, and . Fry, A logical design methodology for relational databases using the extended entity-relationship model, ACM Computing Surveys, vol.18, issue.2, pp.197-222
DOI : 10.1145/7474.7475

G. [. Teusan, H. Nachouki, J. Briand, and . Philippe, Discovering Association Rules in Large, Dense Databases, Proc. 4th European Conf, pp.638-645
DOI : 10.1007/3-540-45372-5_78

S. R. Tilley, H. A. Muller, M. J. Withney, and K. Wong, Domain-retargetable reverse engineering, 1993 Conference on Software Maintenance, pp.142-151, 1993.
DOI : 10.1109/ICSM.1993.366948

M. Tomassini, L. Vanneschi, F. V. Fernández, and G. G. Gil, Experimental Investigation of Three Distributed Genetic Programming Models, pp.641-650, 2002.
DOI : 10.1007/3-540-45712-7_62

P. Turney, Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL, Proc. of the Twelfth European Conf. on Machine Learning (ECML-2001)
DOI : 10.1007/3-540-44795-4_42

. [. Venturini, SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts, Proc. of the European Conf. on Machine Learning, pp.280-296, 1993.
DOI : 10.1007/3-540-56602-3_142

K. Wang, S. Zhou, and S. C. Liew, Building Hierarchical classifiers using class proximity, Int. Conf. Very Large Data Bases (VLDB'99), pp.363-374, 1999.

I. Wattiau and J. Akoka, Reverse Engineering of Relational Database Physical Schemas

G. M. Weiss and H. Hirsh, The Problem with Noise and Small Disjuncts, Proc.of the Fifteenth Int. Conf. on Machine Learning, pp.574-578, 1998.

H. [. Weiss and . Hirsh, A Quantitative Study of Small Disjuncts, Proc. of the Seventeenth National Conf. on Artificial Intelligence, 2000.

F. [. Weiss and . Provost, The effect of class distribution on classifier learning, 2001.

E. [. Witten and . Frank, Data Mining? Practical machine learning tools and techniques with Java implementations, 1999.

D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for Search. Santa Fe Institute, Working Papers, 1996.

M. J. Zaki, Generating non-redundant association rules, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, 2000.
DOI : 10.1145/347090.347101

S. [. Zighed, R. Rabaseda, and . Rakotomalala, FUSINTER: A Method for Discretization of Continuous Attributes, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.06, issue.03, pp.307-326, 1998.
DOI : 10.1142/S0218488598000264

D. A. Zighed and R. Rakotomalala, Graphes d'induction ? Apprentissage et Fouille de données, Editions Hermès, 2000.