K. Abiraj, H. S. Prasad, A. S. Gowda, and D. C. Gowda, Design, Synthesis and Antibacterial Activity Studies of Model Peptides of Proline / Arginine-Rich Region in Bactenecin7, Protein & Peptide Letters, vol.11, issue.4, pp.291-300, 2004.
DOI : 10.2174/0929866043407048

T. L. Aboye, R. J. Clark, R. Burman, M. B. Roig, D. J. Craik et al., Interlocking Disulfides in Circular Proteins: Toward Efficient Oxidative Folding of Cyclotides, Antioxidants & Redox Signaling, vol.14, issue.1, pp.77-86, 2011.
DOI : 10.1089/ars.2010.3112

A. M. Aerts, I. E. François, B. P. Cammue, and K. Thevissen, The mode of antifungal action of plant, insect and human defensins, Cellular and Molecular Life Sciences, vol.65, issue.13, pp.2069-2079, 2008.
DOI : 10.1007/s00018-008-8035-0

A. M. Aerts, L. Bammens, G. Govaert, D. Carmona-gutierrez, F. Madeo et al., The Antifungal Plant Defensin HsAFP1 from Heuchera Sanguinea Induces Apoptosis in Candida Albicans, Frontiers in Microbiology, vol.2, p.47, 2011.
DOI : 10.3389/fmicb.2011.00047

N. J. Afacan, A. T. Yeung, O. M. Pena, and R. E. Hancock, Therapeutic Potential of Host Defense Peptides in Antibiotic-resistant Infections, Current Pharmaceutical Design, vol.18, issue.6, pp.807-819, 2012.
DOI : 10.2174/138161212799277617

A. Alba, C. López-abarrategui, and A. J. Otero-gonzález, Host defense peptides: An alternative as antiinfective and immunomodulatory therapeutics, Biopolymers, vol.2, issue.4, pp.251-267, 2012.
DOI : 10.1002/bip.22076

M. S. Almeida, K. M. Cabral, R. B. Zingali, and E. Kurtenbach, Characterization of Two Novel Defense Peptides from Pea (Pisum sativum) Seeds, Archives of Biochemistry and Biophysics, vol.378, issue.2, pp.278-286, 2000.
DOI : 10.1006/abbi.2000.1824

M. S. Almeida, K. M. Cabral, E. Kurtenbach, F. C. Almeida, and A. P. Valente, Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action, Journal of Molecular Biology, vol.315, issue.4, pp.749-757, 2002.
DOI : 10.1006/jmbi.2001.5252

M. Amiche and C. Galanth, Dermaseptins as Models for the Elucidation of Membrane-Acting Helical Amphipathic Antimicrobial Peptides, Current Pharmaceutical Biotechnology, vol.12, issue.8, pp.1184-1193, 2011.
DOI : 10.2174/138920111796117319

N. H. Andersen, B. Cao, A. Rodríguez-romero, and B. Arreguin, Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif, Biochemistry, vol.32, issue.6, pp.1407-1422, 1993.
DOI : 10.1021/bi00057a004

M. Andersson, A. Boman, and H. G. Boman, Ascaris nematodes from pig and human make three anti-bacterial peptides: isolation of cecropin P1 and two ASABF peptides, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.3, pp.599-606, 2003.
DOI : 10.1007/s000180300051

Y. A. Andreev, S. A. Kozlov, A. A. Vassilevski, and E. V. Grishin, Cyanogen bromide cleavage of proteins in salt and buffer solutions, Analytical Biochemistry, vol.407, issue.1, pp.144-146, 2010.
DOI : 10.1016/j.ab.2010.07.023

E. Arnett and S. Seveau, The Multifaceted Activities of Mammalian Defensins, Current Pharmaceutical Design, vol.17, issue.38, pp.4254-4269, 2011.
DOI : 10.2174/138161211798999348

J. L. Arolas, F. X. Aviles, J. Chang, and S. Ventura, Folding of small disulfide-rich proteins: clarifying the puzzle, Trends in Biochemical Sciences, vol.31, issue.5, pp.292-301, 2006.
DOI : 10.1016/j.tibs.2006.03.005

D. S. Auld, Zinc coordination sphere in biochemical zinc sites, Biometals Int. J. Role Met. Ions Biol. Biochem. Med, vol.14, pp.271-313, 2001.
DOI : 10.1007/978-94-017-3728-9_6

G. Bánhegyi, M. Csala, A. Szarka, M. Varsányi, A. Benedetti et al., Role of ascorbate in oxidative protein folding, BioFactors, vol.388, issue.1-4, pp.37-46, 2003.
DOI : 10.1002/biof.5520170105

J. Betton and A. Chaffotte, Repliement et production de prot??ines recombinantes, m??decine/sciences, vol.21, issue.6-7, pp.613-617, 2005.
DOI : 10.1051/medsci/2005216-7613

E. Blanc, V. Fremont, P. Sizun, S. Meunier, J. Van-rietschoten et al., Solution structure of P01, a natural scorpion peptide structurally analogous to scorpion toxins specific for apamin-sensitive potassium channel, Proteins: Structure, Function, and Genetics, vol.33, issue.3, pp.359-369, 1996.
DOI : 10.1002/(SICI)1097-0134(199603)24:3<359::AID-PROT9>3.0.CO;2-B

URL : https://hal.archives-ouvertes.fr/hal-00542723

M. Blankemeyer, An efficient method for anchoring Fmoc-amino acids to hydroxyl-functionalised solid supports, Tetrahedron Lett, pp.1701-174, 1990.
DOI : 10.1007/978-94-011-3034-9_56

H. G. Boman, Peptide Antibiotics and their Role in Innate Immunity, Annual Review of Immunology, vol.13, issue.1, pp.61-92, 1995.
DOI : 10.1146/annurev.iy.13.040195.000425

F. Bontems, B. Gilquin, C. Roumestand, A. Ménez, T. et al., Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications, Biochemistry, vol.31, issue.34, pp.7756-7764, 1992.
DOI : 10.1021/bi00149a003

W. F. Broekaert, F. R. Terras, B. P. Cammue, and R. W. Osborn, Plant Defensins: Novel Antimicrobial Peptides as Components of the Host Defense System, Plant Physiology, vol.108, issue.4, pp.1353-1358, 1995.
DOI : 10.1104/pp.108.4.1353

W. F. Broekaert, F. R. Terras, B. P. Cammue, and R. W. Osborn, Plant Defensins: Novel Antimicrobial Peptides as Components of the Host Defense System, Plant Physiology, vol.108, issue.4, pp.1353-1358, 1995.
DOI : 10.1104/pp.108.4.1353

K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.92, issue.3, pp.238-250, 2005.
DOI : 10.1038/nrmicro1098

M. Bruix, M. A. Jiménez, J. Santoro, C. González, F. J. Colilla et al., Solution structure of .gamma.1-H and .gamma.1-P thionins from barley and wheat endosperm determined by proton NMR: a structural motif common to toxic arthropod proteins, Biochemistry, vol.32, issue.2, pp.715-724, 1993.
DOI : 10.1021/bi00053a041

URL : https://hal.archives-ouvertes.fr/hal-00658161

M. Bruix, M. A. Jiménez, J. Santoro, C. González, F. J. Colilla et al., Solution structure of .gamma.1-H and .gamma.1-P thionins from barley and wheat endosperm determined by proton NMR: a structural motif common to toxic arthropod proteins, Biochemistry, vol.32, issue.2, pp.715-724, 1993.
DOI : 10.1021/bi00053a041

URL : https://hal.archives-ouvertes.fr/hal-00658161

K. M. Cabral, M. S. Almeida, A. P. Valente, F. C. Almeida, and E. Kurtenbach, Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease, Protein Expression and Purification, vol.31, issue.1, pp.115-122, 2003.
DOI : 10.1016/S1046-5928(03)00136-0

M. Cadene, C. , and B. T. , A Robust, Detergent-Friendly Method for Mass Spectrometric Analysis of Integral Membrane Proteins, Analytical Chemistry, vol.72, issue.22, pp.5655-5658, 2000.
DOI : 10.1021/ac000811l

L. Carrega, A. Mosbah, G. Ferrat, C. Beeton, N. Andreotti et al., The impact of the fourth disulfide bridge in scorpion toxins of the ??-KTx6 subfamily, Proteins: Structure, Function, and Bioinformatics, vol.278, issue.4, pp.1010-1023, 2005.
DOI : 10.1002/prot.20681

URL : https://hal.archives-ouvertes.fr/inserm-00394177

A. Carvalho, O. De, and V. M. Gomes, Plant defensins???Prospects for the biological functions and biotechnological properties, Peptides, vol.30, issue.5, pp.1007-1020, 2009.
DOI : 10.1016/j.peptides.2009.01.018

E. Çelik and P. Çal?k, Production of recombinant proteins by yeast cells, Biotechnology Advances, vol.30, issue.5, pp.1108-1118, 2012.
DOI : 10.1016/j.biotechadv.2011.09.011

A. C. Conibear, K. J. Rosengren, P. J. Harvey, C. , and D. J. , Structural Characterization of the Cyclic Cystine Ladder Motif of ??-Defensins, Biochemistry, vol.51, issue.48, pp.9718-9726, 2012.
DOI : 10.1021/bi301363a

J. M. Conlon, L. K. Reinert, M. Mechkarska, M. Prajeep, M. A. Meetani et al., Evaluation of the Skin Peptide Defenses of the Oregon Spotted Frog Rana pretiosa Against Infection by the Chytrid Fungus Batrachochytrium dendrobatidis, Journal of Chemical Ecology, vol.7, issue.6, pp.797-805, 2013.
DOI : 10.1007/s10886-013-0294-z

W. J. Cook, A. Zell, D. D. Watt, and S. E. Ealick, Structure of variant 2 scorpion toxin from Centruroides sculpturatus Ewing, Protein Science, vol.227, issue.3, pp.479-486, 2002.
DOI : 10.1110/ps.39202

B. Cornet, J. M. Bonmatin, C. Hetru, J. A. Hoffmann, M. Ptak et al., Refined three-dimensional solution structure of insect defensin A, Structure, vol.3, issue.5, pp.435-448, 1993.
DOI : 10.1016/S0969-2126(01)00177-0

D. J. Craik, M. Cemazar, C. K. Wang, and N. L. Daly, The cyclotide family of circular miniproteins: Nature's combinatorial peptide template, Biopolymers, vol.67, issue.3, pp.250-266, 2006.
DOI : 10.1002/bip.20451

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer et al., NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995.
DOI : 10.1007/BF00197809

V. Dhople, A. Krukemeyer, and A. Ramamoorthy, The human beta-defensin-3, an antibacterial peptide with multiple biological functions, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1499-1512, 2006.
DOI : 10.1016/j.bbamem.2006.07.007

L. W. Dick, . Jr, C. Kim, D. Qiu, and K. Cheng, Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides, Biotechnology and Bioengineering, vol.342, issue.3, pp.544-553, 2007.
DOI : 10.1002/bit.21260

K. A. Dill and J. L. Maccallum, The Protein-Folding Problem, 50 Years On, Science, vol.338, issue.6110, pp.1042-1046, 2012.
DOI : 10.1126/science.1219021

D. M. Easton, A. Nijnik, M. L. Mayer, and R. E. Hancock, Potential of immunomodulatory host defense peptides as novel anti-infectives, Trends in Biotechnology, vol.27, issue.10, pp.582-590, 2009.
DOI : 10.1016/j.tibtech.2009.07.004

N. Eswar, B. Webb, M. A. Marti-renom, M. S. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using Modeller, Curr. Protoc. Bioinforma. Ed, 2006.

V. Fadel, P. Bettendorff, T. Herrmann, W. F. De-azevedo, . Jr et al., Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus, Toxicon, vol.46, issue.7, pp.759-767, 2005.
DOI : 10.1016/j.toxicon.2005.07.018

F. Fant, W. Vranken, W. Broekaert, and F. Borremans, Determination of the three-dimensional solution structure of Raphanus sativus Antifungal Protein 1 by 1H NMR, Journal of Molecular Biology, vol.279, issue.1, pp.257-270, 1998.
DOI : 10.1006/jmbi.1998.1767

F. Fant, W. F. Vranken, and F. A. Borremans, The three???dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance, Proteins: Structure, Function, and Genetics, vol.37, issue.3, pp.388-403, 1999.
DOI : 10.1002/(SICI)1097-0134(19991115)37:3<388::AID-PROT7>3.3.CO;2-6

N. Fujitani, S. Kawabata, T. Osaki, Y. Kumaki, M. Demura et al., Structure of the Antimicrobial Peptide Tachystatin A, Journal of Biological Chemistry, vol.277, issue.26, pp.23651-23657, 2002.
DOI : 10.1074/jbc.M111120200

G. Gabant, C. , and M. , Mass spectrometry of full-length integral membrane proteins to define functionally relevant structural features, Methods, vol.46, issue.2, pp.54-61, 2008.
DOI : 10.1016/j.ymeth.2008.10.021

URL : https://hal.archives-ouvertes.fr/hal-00512469

R. Gennaro and M. Zanetti, Structural features and biological activities of the cathelicidin-derived antimicrobial peptides, Biopolymers, vol.4, issue.1, pp.31-49, 2000.
DOI : 10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9

R. E. Hancock, A. Nijnik, and D. J. Philpott, Modulating immunity as a therapy for bacterial infections, Nature Reviews Microbiology, vol.22, issue.4, pp.243-254, 2012.
DOI : 10.1038/nrmicro2745

E. F. Haney and R. B. Hancock, Peptide design for antimicrobial and immunomodulatory applications, Biopolymers, vol.59, issue.Suppl 1, 2013.
DOI : 10.1002/bip.22250

H. Hanzawa, I. Shimada, T. Kuzuhara, H. Komano, D. Kohda et al., H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin, FEBS Letters, vol.169, issue.2, pp.413-420, 1990.
DOI : 10.1016/0014-5793(90)81206-4

G. Hao, G. Le, Y. Shi, M. , and D. , [Molecular design, structural analysis and bactericidal activity of derivatives of antimicrobial peptide buforin II], pp.366-371, 2013.

X. L. He, H. M. Li, Z. H. Zeng, X. Q. Liu, M. Wang et al., Crystal structures of two ??-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel, Journal of Molecular Biology, vol.292, issue.1, pp.125-135, 1999.
DOI : 10.1006/jmbi.1999.3036

X. L. He, J. P. Deng, M. Wang, Y. Zhang, W. et al., Karsch at 1.76?????, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.1, pp.25-33, 2000.
DOI : 10.1107/S0907444999014614/vj0023sup1.pdf

C. P. Hill, J. Yee, M. E. Selsted, and D. Eisenberg, Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization, Science, vol.251, issue.5000, pp.1481-1485, 1991.
DOI : 10.1126/science.2006422

D. M. Hoover, K. R. Rajashankar, R. Blumenthal, A. Puri, J. J. Oppenheim et al., The Structure of Human ??-Defensin-2 Shows Evidence of Higher Order Oligomerization, Journal of Biological Chemistry, vol.275, issue.42, pp.32911-32918, 2000.
DOI : 10.1074/jbc.M006098200

D. M. Hoover, O. Chertov, and J. Lubkowski, The Structure of Human ??-Defensin-1: NEW INSIGHTS INTO STRUCTURAL PROPERTIES OF ??-DEFENSINS, Journal of Biological Chemistry, vol.276, issue.42, pp.39021-39026, 2001.
DOI : 10.1074/jbc.M103830200

D. Housset, C. Habersetzer-rochat, J. P. Astier, and J. C. Fontecilla-camps, Crystal Structure of Toxin II from the Scorpion Androctonus australis Hector Refined at 1??3 ?? Resolution, Journal of Molecular Biology, vol.238, issue.1, pp.88-103, 1994.
DOI : 10.1006/jmbi.1994.1270

M. Ilbert, P. C. Graf, J. , and U. , Zinc Center as Redox Switch???New Function for an Old Motif, Antioxidants & Redox Signaling, vol.8, issue.5-6, pp.835-846, 2006.
DOI : 10.1089/ars.2006.8.835

E. Ivanova, M. Ball, L. , and H. , Zinc binding of Tim10: Evidence for existence of an unstructured binding intermediate for a zinc finger protein, Proteins: Structure, Function, and Bioinformatics, vol.41, issue.1, pp.467-475, 2008.
DOI : 10.1002/prot.21713

M. J. Jablonsky, P. L. Jackson, J. O. Trent, D. D. Watt, K. et al., Solution Structure of a ??-Neurotoxin from the New World ScorpionCentruroides sculpturatusEwing, Biochemical and Biophysical Research Communications, vol.254, issue.2, pp.406-412, 1999.
DOI : 10.1006/bbrc.1998.9904

P. C. Jocelyn, The Standard Redox Potential of Cysteine-Cystine from the Thiol-Disulphide Exchange Reaction with Glutathione and Lipoic Acid, European Journal of Biochemistry, vol.76, issue.3, pp.327-331, 1967.
DOI : 10.1111/j.1432-1033.1967.tb00142.x

K. A. Johnson, E. Kim, M. M. Teeter, S. W. Suh, and B. Stec, Crystal structure of ??-hordothionin at 1.9 ?? resolution, FEBS Letters, vol.116, issue.11, pp.2301-2306, 2005.
DOI : 10.1016/j.febslet.2004.12.100

N. G. Kandias, C. T. Chasapis, D. Bentrop, V. Episkopou, and G. A. Spyroulias, High yield expression and NMR characterization of Arkadia E3 ubiquitin ligase RING-H2 finger domain, Biochemical and Biophysical Research Communications, vol.378, issue.3, pp.498-502, 2009.
DOI : 10.1016/j.bbrc.2008.11.055

P. Kant, W. Liu, and K. P. Pauls, PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum, Peptides, vol.30, issue.9, pp.1593-1599, 2009.
DOI : 10.1016/j.peptides.2009.05.024

I. Karbat, F. Frolow, O. Froy, N. Gilles, L. Cohen et al., Molecular Basis of the High Insecticidal Potency of Scorpion ??-Toxins, Journal of Biological Chemistry, vol.279, issue.30, pp.31679-31686, 2004.
DOI : 10.1074/jbc.M402048200

K. Kavanagh and S. Dowd, Histatins: antimicrobial peptides with therapeutic potential, Journal of Pharmacy and Pharmacology, vol.11, issue.3, pp.285-289, 2004.
DOI : 10.1211/0022357022971

K. Kawano, T. Yoneya, T. Miyata, K. Yoshikawa, F. Tokunaga et al., Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure, J. Biol. Chem, vol.265, pp.15365-15367, 1990.

K. C. Klenk, T. C. Tenenholz, D. R. Matteson, R. S. Rogowski, M. P. Blaustein et al., Structural and functional differences of two toxins from the scorpionPandinus imperator, Proteins: Structure, Function, and Genetics, vol.240, issue.4, pp.441-449, 2000.
DOI : 10.1002/(SICI)1097-0134(20000301)38:4<441::AID-PROT9>3.0.CO;2-L

M. Koike, T. Okamoto, S. Tsuda, and R. Imai, A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation, Biochemical and Biophysical Research Communications, vol.298, issue.1, pp.46-53, 2002.
DOI : 10.1016/S0006-291X(02)02391-4

V. N. Kokryakov, S. S. Harwig, E. A. Panyutich, A. A. Shevchenko, G. M. Aleshina et al., Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins, FEBS Letters, vol.209, issue.2, pp.231-236, 1993.
DOI : 10.1016/0014-5793(93)80175-T

T. Kouno, M. Mizuguchi, T. Aizawa, H. Shinoda, M. Demura et al., A Novel ??-Defensin Structure: Big Defensin Changes Its N-Terminal Structure To Associate with the Target Membrane, Biochemistry, vol.48, issue.32, pp.7629-7635, 2009.
DOI : 10.1021/bi900756y

V. Kovaleva, H. Krynytskyy, I. Gout, and R. Gout, Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1, Applied Microbiology and Biotechnology, vol.226, issue.4, pp.1093-1101, 2011.
DOI : 10.1007/s00253-010-2935-2

N. Kovalskaya and R. W. Hammond, Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins, Protein Expression and Purification, vol.63, issue.1, pp.12-17, 2009.
DOI : 10.1016/j.pep.2008.08.013

I. Krimm, N. Gilles, P. Sautière, M. Stankiewicz, M. Pelhate et al., NMR structures and activity of a novel ??-like toxin from the scorpion Leiurus quinquestriatus hebraeus, Journal of Molecular Biology, vol.285, issue.4, pp.1749-1763, 1999.
DOI : 10.1006/jmbi.1998.2418

S. S. Krishna, I. Majumdar, and N. V. Grishin, Structural classification of zinc fingers: SURVEY AND SUMMARY, Nucleic Acids Research, vol.31, issue.2, pp.532-550, 2003.
DOI : 10.1093/nar/gkg161

A. K. Kristensen, J. Brunstedt, J. E. Nielsen, J. D. Mikkelsen, P. Roepstorff et al., Processing, Disulfide Pattern, and Biological Activity of a Sugar Beet Defensin, AX2, Expressed in Pichia pastoris, Protein Expression and Purification, vol.16, issue.3, pp.377-387, 1999.
DOI : 10.1006/prep.1999.1085

K. Kröncke and L. Klotz, Zinc Fingers as Biologic Redox Switches?, Antioxidants & Redox Signaling, vol.11, issue.5, pp.1015-1027, 2009.
DOI : 10.1089/ars.2008.2269

S. Kubo, N. Chino, T. Kimura, and S. Sakakibara, Oxidative folding of ??-conotoxin MVIIC: Effects of temperature and salt, Biopolymers, vol.207, issue.6, pp.733-744, 1996.
DOI : 10.1002/(SICI)1097-0282(199606)38:6<733::AID-BIP5>3.0.CO;2-S

Y. Lai and R. L. Gallo, AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense, Trends in Immunology, vol.30, issue.3, pp.131-141, 2009.
DOI : 10.1016/j.it.2008.12.003

R. Lakshminarayanan, S. Vivekanandan, R. P. Samy, Y. Banerjee, E. O. Chi-jin et al., Structure, Self-Assembly, and Dual Role of a ??-Defensin-like Peptide from the Chinese Soft-Shelled Turtle Eggshell Matrix, Journal of the American Chemical Society, vol.130, issue.14, pp.4660-4668, 2008.
DOI : 10.1021/ja075659k

F. De-lamotte, H. Boze, C. Blanchard, C. Klein, G. Moulin et al., NMR Monitoring of Accumulation and Folding of 15N-Labeled Protein Overexpressed in Pichia pastoris, Protein Expression and Purification, vol.22, issue.2, pp.318-324, 2001.
DOI : 10.1006/prep.2001.1435

C. Landon, P. Sodano, C. Hetru, J. Hoffmann, and M. Ptak, Solution structure of drosomycin, the first inducible antifungal protein from insects, Protein Science, vol.92, issue.9, pp.1878-1884, 1997.
DOI : 10.1002/pro.5560060908

C. Landon, F. Barbault, M. Legrain, L. Menin, M. Guenneugues et al., Lead optimization of antifungal peptides with 3D NMR structures analysis, Protein Science, vol.13, issue.3, pp.703-713, 2004.
DOI : 10.1110/ps.03404404

URL : https://hal.archives-ouvertes.fr/hal-00113063

R. A. Laskowski, J. A. Rullmannn, M. W. Macarthur, R. Kaptein, T. et al., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecular NMR, vol.8, issue.4, pp.477-486, 1996.
DOI : 10.1007/BF00228148

F. T. Lay, H. J. Schirra, M. J. Scanlon, M. A. Anderson, C. et al., The Three-dimensional Solution Structure of NaD1, a New Floral Defensin from Nicotiana alata and its Application to a Homology Model of the Crop Defense Protein alfAFP, Journal of Molecular Biology, vol.325, issue.1, pp.175-188, 2003.
DOI : 10.1016/S0022-2836(02)01103-8

F. T. Lay, F. Brugliera, A. , and M. A. , Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia, PLANT PHYSIOLOGY, vol.131, issue.3, pp.1283-1293, 2003.
DOI : 10.1104/pp.102.016626

F. T. Lay, P. K. Veneer, M. D. Hulett, and M. Kvansakul, Recombinant expression and purification of the tomato defensin TPP3 and its preliminary X-ray crystallographic analysis, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.115, issue.3, pp.314-316, 2012.
DOI : 10.1107/S1744309112001510

J. Lee and J. D. Helmann, Biochemical Characterization of the Structural Zn2+ Site in the Bacillus subtilis Peroxide Sensor PerR, Journal of Biological Chemistry, vol.281, issue.33, pp.23567-23578, 2006.
DOI : 10.1074/jbc.M603968200

Y. Lee and C. Lim, Physical Basis of Structural and Catalytic Zn-Binding Sites in Proteins, Journal of Molecular Biology, vol.379, issue.3, pp.545-553, 2008.
DOI : 10.1016/j.jmb.2008.04.004

R. I. Lehrer, A. K. Lichtenstein, and T. Ganz, Defensins: Antimicrobial and Cytotoxic Peptides of Mammalian Cells, Annual Review of Immunology, vol.11, issue.1, pp.105-128, 1993.
DOI : 10.1146/annurev.iy.11.040193.000541

C. Li, R. J. Guan, Y. Xiang, Y. Zhang, W. et al., Structure of an excitatory insectspecific toxin with an analgesic effect on mammals from the scorpion Buthus martensii Karsch, 2005.

K. Lin, T. Lee, P. Tsai, M. Hsu, C. Chen et al., Structure-based protein engineering for ??-amylase inhibitory activity of plant defensin, Proteins: Structure, Function, and Bioinformatics, vol.18, issue.2, pp.530-540, 2007.
DOI : 10.1002/prot.21378

Y. Liu, C. Cheng, S. Lai, M. Hsu, C. Chen et al., Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids, Proteins: Structure, Function, and Bioinformatics, vol.14, issue.1, pp.777-786, 2006.
DOI : 10.1002/prot.20962

D. S. Lobo, I. B. Pereira, L. Fragel-madeira, L. N. Medeiros, L. M. Cabral et al., Antifungal Pisum sativum Defensin 1, 2007.

H. Lu and J. And-woodburn, Zinc Binding Stabilizes Mitochondrial Tim10 in a Reduced and Import-competent State Kinetically, Journal of Molecular Biology, vol.353, issue.4, pp.897-910, 2005.
DOI : 10.1016/j.jmb.2005.09.002

W. Maksymiec, D. Wianowska, A. L. Dawidowicz, S. Radkiewicz, M. Mardarowicz et al., The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress, Journal of Plant Physiology, vol.162, issue.12, pp.1338-1346, 2005.
DOI : 10.1016/j.jplph.2005.01.013

K. Mandal, B. L. Pentelute, V. Tereshko, V. Thammavongsa, O. Schneewind et al., Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods, Protein Science, vol.276, issue.6, pp.1146-1154, 2009.
DOI : 10.1002/pro.127

N. Mandard, P. Sodano, H. Labbe, J. M. Bonmatin, P. Bulet et al., Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data, European Journal of Biochemistry, vol.256, issue.2, pp.404-410, 1998.
DOI : 10.1046/j.1432-1327.1998.2560404.x

N. Mandard, P. Bulet, A. Caille, S. Daffre, and F. Vovelle, The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider, European Journal of Biochemistry, vol.55, issue.4, pp.1190-1198, 2002.
DOI : 10.1046/j.0014-2956.2002.02760.x

URL : https://hal.archives-ouvertes.fr/hal-00286194

W. Maret, Zinc coordination environments in proteins determine zinc functions, Journal of Trace Elements in Medicine and Biology, vol.19, issue.1, pp.7-12, 2005.
DOI : 10.1016/j.jtemb.2005.02.003

D. Medeiros, L. N. Angeli, R. Sarzedas, C. G. Barreto-bergter, E. Valente et al., Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.2, pp.105-113, 2010.
DOI : 10.1016/j.bbamem.2009.07.013

M. Mirouze, J. Sels, O. Richard, P. Czernic, S. Loubet et al., , confers zinc tolerance, The Plant Journal, vol.62, issue.3, pp.329-342, 2006.
DOI : 10.1111/j.1365-313X.2006.02788.x

W. W. Mok, L. , and Y. , Therapeutic Peptides: New Arsenal Against Drug Resistant Pathogens, Current Pharmaceutical Design, vol.20, issue.5, 2013.
DOI : 10.2174/13816128113199990011

URL : http://doi.org/10.2174/13816128113199990011

J. E. Mortel, . Van-de, L. A. Villanueva, H. Schat, J. Kwekkeboom et al., Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens, PLANT PHYSIOLOGY, vol.142, issue.3, pp.1127-1147, 2006.
DOI : 10.1104/pp.106.082073

P. H. Mygind, R. L. Fischer, K. M. Schnorr, M. T. Hansen, C. P. Sönksen et al., Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus, Nature, vol.437, issue.7061, pp.975-980, 2005.
DOI : 10.1038/nature04051

M. Narayan, E. Welker, W. J. Wedemeyer, and H. A. Scheraga, Oxidative Folding of Proteins, Accounts of Chemical Research, vol.33, issue.11, pp.805-812, 2000.
DOI : 10.1021/ar000063m

L. T. Nguyen, E. F. Haney, and H. J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends in Biotechnology, vol.29, issue.9, pp.464-472, 2011.
DOI : 10.1016/j.tibtech.2011.05.001

L. T. Nguyen, L. De-boer, S. A. Zaat, and H. J. Vogel, Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.9, pp.2297-2303, 2011.
DOI : 10.1016/j.bbamem.2011.05.015

J. S. Oeemig, C. Lynggaard, D. H. Knudsen, F. T. Hansen, K. D. Nørgaard et al., Eurocin, a New Fungal Defensin: STRUCTURE, LIPID BINDING, AND ITS MODE OF ACTION, Journal of Biological Chemistry, vol.287, issue.50, pp.42361-42372, 2012.
DOI : 10.1074/jbc.M112.382028

S. Olli and P. B. Kirti, Cloning, Characterization and Antifungal Activity of Defensin Tfgd1 from Trigonella foenum-graecum L., BMB Reports, vol.39, issue.3, pp.278-283, 2006.
DOI : 10.5483/BMBRep.2006.39.3.278

R. J. Oomen, E. Séveno-carpentier, N. Ricodeau, C. Bournaud, G. Conéjéro et al., Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments, New Phytologist, vol.226, issue.1, pp.140-150, 2011.
DOI : 10.1111/j.1469-8137.2011.03792.x

URL : https://hal.archives-ouvertes.fr/hal-00622986

R. W. Osborn, G. W. De-samblanx, K. Thevissen, I. Goderis, S. Torrekens et al., Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Letters, vol.87, issue.2, pp.257-262, 1995.
DOI : 10.1016/0014-5793(95)00666-W

A. Pardi, X. L. Zhang, M. E. Selsted, J. J. Skalicky, Y. et al., NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1, Biochemistry, vol.31, issue.46, pp.11357-11364, 1992.
DOI : 10.1021/bi00161a013

C. B. Park, K. S. Yi, K. Matsuzaki, M. S. Kim, K. et al., Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II, Proceedings of the National Academy of Sciences, vol.97, issue.15, pp.8245-8250, 2000.
DOI : 10.1073/pnas.150518097

H. C. Park, Y. H. Kang, H. J. Chun, J. C. Koo, Y. H. Cheong et al., Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage, Plant Mol. Biol, vol.50, pp.59-69, 2002.

K. Patel, A. Kumar, and S. Durani, Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1774, issue.10, pp.1247-1253, 2007.
DOI : 10.1016/j.bbapap.2007.07.010

D. Paula, V. S. Razzera, G. Barreto-bergter, E. Almeida, F. C. Valente et al., Portrayal of Complex Dynamic Properties of Sugarcane Defensin 5 by NMR: Multiple Motions Associated with Membrane Interaction, Structure, vol.19, issue.1, pp.26-36, 2011.
DOI : 10.1016/j.str.2010.11.011

P. B. Pelegrini and O. L. Franco, Plant ??-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins, The International Journal of Biochemistry & Cell Biology, vol.37, issue.11, pp.2239-2253, 2005.
DOI : 10.1016/j.biocel.2005.06.011

C. M. Pieterse, A. Leon-reyes, S. Van-der-ent, V. Wees, and S. C. , Networking by small-molecule hormones in plant immunity, Nature Chemical Biology, vol.24, issue.5, pp.308-316, 2009.
DOI : 10.1038/nchembio.164

C. Pimentel, S. Barek, V. Visan, S. Grissmer, F. Sampieri et al., Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins, Protein Science, vol.17, issue.1, pp.107-118, 2008.
DOI : 10.1110/ps.073122908

C. B. Pinheiro, S. Marangoni, M. H. Toyama, and I. Polikarpov, channels, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.3, pp.405-415, 2003.
DOI : 10.1107/S090744490202111X

F. Pinheiro-da-silva and M. C. Machado, Antimicrobial peptides: Clinical relevance and therapeutic implications, Peptides, vol.36, issue.2, pp.308-314, 2012.
DOI : 10.1016/j.peptides.2012.05.014

A. Pintar, L. D. Possani, and M. Delepierre, Solution structure of toxin 2 from Centruroides noxius Hoffmann, a ??-scorpion neurotoxin acting on sodium channels11Edited by P. E. Wright, Journal of Molecular Biology, vol.287, issue.2, pp.359-367, 1999.
DOI : 10.1006/jmbi.1999.2611

I. Polikarpov, M. S. Junior, S. Marangoni, M. H. Toyama, and A. Teplyakov, Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins, Journal of Molecular Biology, vol.290, issue.1, pp.175-184, 1999.
DOI : 10.1006/jmbi.1999.2868

W. Rieping, M. Habeck, B. Bardiaux, A. Bernard, T. E. Malliavin et al., ARIA2: Automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, issue.3, pp.381-382, 2007.
DOI : 10.1093/bioinformatics/btl589

D. Río-portilla, F. Hernández-marín, E. Pimienta, G. Coronas, F. V. Zamudio et al., NMR solution structure of Cn12, a novel peptide from the Mexican scorpion Centruroides noxius with a typical beta-toxin sequence but with alpha-like physiological activity, European Journal of Biochemistry, vol.48, issue.12, pp.2504-2516, 2004.
DOI : 10.1016/0263-7855(96)00009-4

E. Rodriguez, K. , and N. R. , An Economical Method for 15N/13C Isotopic Labeling of Proteins Expressed in Pichia pastoris, Journal of Biochemistry, vol.130, issue.1, pp.19-22, 2001.
DOI : 10.1093/oxfordjournals.jbchem.a002957

URL : https://hal.archives-ouvertes.fr/hal-00294353

N. H. Roosens, G. Willems, and P. Saumitou-laprade, Using Arabidopsis to explore zinc tolerance and hyperaccumulation, Trends in Plant Science, vol.13, issue.5, pp.208-215, 2008.
DOI : 10.1016/j.tplants.2008.02.006

URL : https://hal.archives-ouvertes.fr/hal-00258858

K. J. Rosengren, N. L. Daly, M. R. Plan, C. Waine, C. et al., Twists, Knots, and Rings in Proteins. STRUCTURAL DEFINITION OF THE CYCLOTIDE FRAMEWORK, Journal of Biological Chemistry, vol.278, issue.10, pp.8606-8616, 2003.
DOI : 10.1074/jbc.M211147200

U. S. Sagaram, R. Pandurangi, J. Kaur, T. J. Smith, and D. M. Shah, Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4 with Different Modes of Action against Fusarium graminearum, PLoS ONE, vol.69, issue.4, 2011.
DOI : 10.1371/journal.pone.0018550.s004

U. S. Sagaram, K. El-mounadi, G. W. Buchko, H. R. Berg, J. Kaur et al., Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry, PLoS ONE, vol.286, issue.12, 2013.
DOI : 10.1371/journal.pone.0082485.s010

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

G. W. Samblanx, I. J. Goderis, K. Thevissen, R. Raemaekers, F. Fant et al., Mutational Analysis of a Plant Defensin from Radish (Raphanus sativus L.) Reveals Two Adjacent Sites Important for Antifungal Activity, Journal of Biological Chemistry, vol.272, issue.2, pp.1171-1179, 1997.
DOI : 10.1074/jbc.272.2.1171

T. Y. Samgina, E. A. Vorontsov, V. A. Gorshkov, E. Hakalehto, O. Hanninen et al., Composition and antimicrobial activity of the skin peptidome of Russian brown frog Rana temporaria, J. Proteome Res, vol.11, pp.6213-6222, 2012.

D. Santos, I. S. Carvalho, A. De, O. De-souza-filho, G. A. Do-nascimento et al., Purification of a defensin isolated from Vigna unguiculata seeds, its functional expression in Escherichia coli, and assessment of its insect ??-amylase inhibitory activity, Protein Expression and Purification, vol.71, issue.1, pp.8-15, 2010.
DOI : 10.1016/j.pep.2009.11.008

P. Savarin, R. Romi-lebrun, S. Zinn-justin, B. Lebrun, T. Nakajima et al., Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: Solution structure of the potassium channel inhibitor HsTX1, Protein Science, vol.320, issue.12, pp.2672-2685, 1999.
DOI : 10.1110/ps.8.12.2672

M. G. Scott and R. E. Hancock, Cationic Antimicrobial Peptides and Their Multifunctional Role in the Immune System, Critical Reviews??? in Immunology, vol.20, issue.5, pp.407-431, 2000.
DOI : 10.1615/CritRevImmunol.v20.i5.40

A. Segura, M. Moreno, A. Molina, and F. García-olmedo, ), FEBS Letters, vol.189, issue.2-3, pp.159-162, 1998.
DOI : 10.1016/S0014-5793(98)01060-6

A. Segura, M. Moreno, F. Madueño, A. Molina, and F. García-olmedo, Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens, Molecular Plant-Microbe Interactions, vol.12, issue.1, pp.16-23, 1999.
DOI : 10.1094/MPMI.1999.12.1.16

O. Sénèque and J. Latour, Coordination Properties of Zinc Finger Peptides Revisited: Ligand Competition Studies Reveal Higher Affinities for Zinc and Cobalt, Journal of the American Chemical Society, vol.132, issue.50, pp.17760-17774, 2010.
DOI : 10.1021/ja104992h

M. Sharma, A. S. Ethayathulla, T. Jabeen, N. Singh, K. Sarvanan et al., Crystal structure of a highly acidic neurotoxin from scorpion Buthus tamulus at 2.2?? resolution reveals novel structural features, Journal of Structural Biology, vol.155, issue.1, pp.52-62, 2006.
DOI : 10.1016/j.jsb.2005.12.005

A. A. Sibirny, V. I. Titorenko, M. V. Gonchar, V. M. Ubiyvovk, G. P. Ksheminskaya et al., Genetic control of methanol utilization in yeasts, Journal of Basic Microbiology, vol.134, issue.5, pp.293-319, 1988.
DOI : 10.1002/jobm.3620280503

D. Silva, P. Jouvensal, L. Lamberty, M. Bulet, P. Caille et al., Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger, Protein Science, vol.12, issue.3, pp.438-446, 2003.
DOI : 10.1110/ps.0228303

D. Silva, P. Strzepa, A. Jouvensal, L. Rahioui, I. Gressent et al., A folded and functional synthetic PA1b: An interlocked entomotoxic miniprotein, Biopolymers, vol.358, issue.5, pp.436-444, 2009.
DOI : 10.1002/bip.21217

URL : https://hal.archives-ouvertes.fr/hal-00391296

X. Song, J. Wang, F. Wu, X. Li, M. Teng et al., cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds, Plant Molecular Biology, vol.23, issue.1, pp.13-20, 2005.
DOI : 10.1007/s11103-004-6637-y

T. Taji, M. Seki, M. Satou, T. Sakurai, M. Kobayashi et al., Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray, PLANT PHYSIOLOGY, vol.135, issue.3, pp.1697-1709, 2004.
DOI : 10.1104/pp.104.039909

F. R. Terras, H. M. Schoofs, M. F. De-bolle, F. Van-leuven, S. B. Rees et al., Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds, J. Biol. Chem, vol.267, pp.15301-15309, 1992.

F. R. Terras, S. Torrekens, F. Van-leuven, R. W. Osborn, J. Vanderleyden et al., A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species, FEBS Letters, vol.93, issue.3, pp.233-240, 1993.
DOI : 10.1016/0014-5793(93)81299-F

S. Thennarasu, A. Tan, R. Penumatchu, C. E. Shelburne, D. L. Heyl et al., Antimicrobial and Membrane Disrupting Activities of a Peptide Derived from the Human Cathelicidin Antimicrobial Peptide LL37, Biophysical Journal, vol.98, issue.2, pp.248-257, 2010.
DOI : 10.1016/j.bpj.2009.09.060

K. Thevissen, F. R. Terras, and W. F. Broekaert, Permeabilization of Fungal Membranes by Plant Defensins Inhibits Fungal Growth, Appl. Environ. Microbiol, vol.65, pp.5451-5458, 1999.

K. Thevissen, R. W. Osborn, D. P. Acland, and W. F. Broekaert, ) on Fungal Cells Are Required for Antifungal Activity, Molecular Plant-Microbe Interactions, vol.13, issue.1, pp.54-61, 2000.
DOI : 10.1094/MPMI.2000.13.1.54

K. Thevissen, D. C. Warnecke, I. E. François, M. Leipelt, E. Heinz et al., Defensins from Insects and Plants Interact with Fungal Glucosylceramides, Journal of Biological Chemistry, vol.279, issue.6, pp.3900-3905, 2004.
DOI : 10.1074/jbc.M311165200

K. Thevissen, H. Kristensen, B. P. Thomma, B. P. Cammue, and I. E. François, Therapeutic potential of antifungal plant and insect defensins, Drug Discovery Today, vol.12, issue.21-22, pp.966-971, 2007.
DOI : 10.1016/j.drudis.2007.07.016

B. P. Thomma, B. P. Cammue, and K. Thevissen, Plant defensins, Planta, vol.216, issue.2, pp.193-202, 2002.
DOI : 10.1007/s00425-002-0902-6

A. M. Torres, X. Wang, J. I. Fletcher, D. Alewood, P. F. Alewood et al., Solution structure of a defensinlike peptide from platypus venom, Biochem. J, pp.341-785, 1999.

S. Vasudevan, J. Yuan, G. Osapay, P. Tran, K. Tai et al., Synthesis, Structure, and Activities of an Oral Mucosal ??-Defensin from Rhesus Macaque, Journal of Biological Chemistry, vol.283, issue.51, pp.35869-35877, 2008.
DOI : 10.1074/jbc.M806915200

S. Vijayan, L. Guruprasad, and P. B. Kirti, Prokaryotic expression of a constitutively expressed Tephrosia villosa defensin and its potent antifungal activity, Applied Microbiology and Biotechnology, vol.7, issue.6, pp.1023-1032, 2008.
DOI : 10.1007/s00253-008-1648-2

W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: Development of a software pipeline, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.687-696, 2005.
DOI : 10.1002/prot.20449

N. L. Weerden, . Van-der, F. T. Lay, A. , and M. A. , The Plant Defensin, NaD1, Enters the Cytoplasm of Fusarium Oxysporum Hyphae, Journal of Biological Chemistry, vol.283, issue.21, pp.14445-14452, 2008.
DOI : 10.1074/jbc.M709867200

N. L. Van-der-weerden, R. E. Hancock, A. , and M. A. , Permeabilization of Fungal Hyphae by the Plant Defensin NaD1 Occurs through a Cell Wall-dependent Process, Journal of Biological Chemistry, vol.285, issue.48, pp.37513-37520, 2010.
DOI : 10.1074/jbc.M110.134882

N. L. Van-der-weerden, M. R. Bleackley, A. , and M. A. , Properties and mechanisms of action of naturally occurring antifungal peptides, Cellular and Molecular Life Sciences, vol.37, issue.1, pp.3545-3570, 2013.
DOI : 10.1007/s00018-013-1260-1

J. Winter, K. Linke, A. Jatzek, J. , and U. , Severe Oxidative Stress Causes Inactivation of DnaK and Activation of the Redox-Regulated Chaperone Hsp33, Molecular Cell, vol.17, issue.3, pp.381-392, 2005.
DOI : 10.1016/j.molcel.2004.12.027

J. Winter, M. Ilbert, P. C. Graf, D. Ozcelik, J. et al., Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding, Cell, vol.135, issue.4, pp.691-701, 2008.
DOI : 10.1016/j.cell.2008.09.024

H. Won, L. Y. Low, R. D. Guzman, M. Martinez-yamout, U. Jakob et al., The Zinc-dependent Redox Switch Domain of the Chaperone Hsp33 has a Novel Fold, Journal of Molecular Biology, vol.341, issue.4, pp.893-899, 2004.
DOI : 10.1016/j.jmb.2004.06.046

M. A. Wouters, S. W. Fan, and N. L. Haworth, Disulfides as Redox Switches: From Molecular Mechanisms to Functional Significance, Antioxidants & Redox Signaling, vol.12, issue.1, pp.53-91, 2010.
DOI : 10.1089/ars.2009.2510

X. Wu, Y. Wu, F. Zhu, Q. Yang, Q. Wu et al., Optimal Cleavage and Oxidative Folding of ??-Conotoxin TxIB as a Therapeutic Candidate Peptide, Marine Drugs, vol.11, issue.9, pp.3537-3553, 2013.
DOI : 10.3390/md11093537

Y. S. Yang, G. Mitta, A. Chavanieu, B. Calas, J. F. Sanchez et al., Solution Structure and Activity of the Synthetic Four-Disulfide Bond Mediterranean Mussel Defensin (MGD-1), Biochemistry, vol.39, issue.47, pp.14436-14447, 2000.
DOI : 10.1021/bi0011835

A. T. Yeung, S. L. Gellatly, and R. E. Hancock, Multifunctional cationic host defence peptides and their clinical applications, Cellular and Molecular Life Sciences, vol.1798, issue.13, pp.2161-2176, 2011.
DOI : 10.1007/s00018-011-0710-x

N. Y. Yount and M. R. Yeaman, Peptide antimicrobials: cell wall as a bacterial target, Annals of the New York Academy of Sciences, vol.12, issue.1, pp.127-138, 2013.
DOI : 10.1111/nyas.12005

D. Zélicourt, A. Letousey, P. Thoiron, S. Campion, C. Simoneau et al., Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants, Planta, vol.93, issue.3, pp.591-600, 2007.
DOI : 10.1007/s00425-007-0507-1

W. Zhang, M. A. Bevins, B. A. Plantz, L. A. Smith, and M. M. Meagher, ModelingPichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A, Biotechnology and Bioengineering, vol.60, issue.1, pp.1-8, 2000.
DOI : 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y

Y. Zhang, F. B. Cougnon, Y. A. Wanniarachchi, J. A. Hayden, N. et al., Reduction of Human Defensin 5 Affords a High-Affinity Zinc-Chelating Peptide, ACS Chemical Biology, vol.8, issue.9, pp.1907-1911, 2013.
DOI : 10.1021/cb400340k

F. Zhao and S. P. Mcgrath, Biofortification and phytoremediation, Current Opinion in Plant Biology, vol.12, issue.3, pp.373-380, 2009.
DOI : 10.1016/j.pbi.2009.04.005

S. Zhu, S. Peigneur, B. Gao, X. Lu, C. Cao et al., Evolutionary diversification of Mesobuthus {alpha}-scorpion toxins affecting sodium channels, Mol. Cell. Proteomics, vol.11, pp.111-012054, 2011.

S. Zhu, B. Gao, P. J. Harvey, C. , and D. J. , Dermatophytic defensin with antiinfective potential, Proceedings of the National Academy of Sciences, vol.109, issue.22, pp.8495-8500, 2012.
DOI : 10.1073/pnas.1201263109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365176