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Abstract

The topological string presents an arena in which many features of string theory proper,
such as the interplay between worldsheet and target space descriptions or open-closed dual-
ity, can be distilled into computational techniques which yield results beyond perturbation
theory. In this thesis, I will summarize my research activity in this area. The presentation
is organized around computations of the topological string partition function Ztop based on
various perspectives on the topological string.

Résumé

La corde topologique établit un contexte dans lequel beaucoup de caractéristiques de la
théorie des cordes complète, comme les aspects complémentaires de la description par la
surface d’univers et l’espace cible, ou la dualité entre corde ouverte et corde fermée, mènent
à des techniques de calcul qui vont au-delà de la théorie perturbative. Ce mémoire résume
mes activités de recherche dans ce domaine. La présentation est organisée autour des calculs
de la fonction de partition de la corde topologique Ztop basés sur des perspectives diverses
sur la corde topologique.
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1 Introduction: What is Ztop?

In the course of the last century, all fundamental forces underlying the dynamics of nature
were quantized, and the resulting theories convincingly tested experimentally, save one: the
force of gravity. That quantizing gravity requires new ideas comes as no surprise, given
the necessity, as demonstrated by Einstein’s theory of general relativity, of elevating space-
time, in the process, from the spectator role it plays for the other fundamental forces to a
dynamical participant. String theory is work in progress towards such a quantum theory
of gravity. It indeed introduces a plethora of new ideas to the task. Unifying these into a
concise theoretical framework is an important goal of research in the field.

The original formulation of string theory, perturbative string theory, nudges space-time out
of its spectator role by elevating space-time coordinates to dynamical fields. In contradis-
tinction to conventional field theories, in which the dynamical quantities are functions of
space-time coordinates, perturbative string theory takes its fundamental dynamical object,
the eponymous string, as a starting point. Its worldsheet, the two dimensional surface the
one dimensional string traces out while propagating in time, is the domain of the field theory
underlying perturbative string theory. The fields encode how this worldsheet is mapped into
space-time. Quantization of these maps gives rise to the excitations which we observe as
matter particles and force carriers, including the graviton, the carrier of the gravitational
force. Space-time is the target of these maps, and the conventional field theory approach is
therefore referred to as a target space description from this perspective.

A fundamental challenge of the perturbative string is indicated by the qualifier perturbative.
Scattering amplitudes of the excitations of the theory are obtained in a perturbation series in
the gravitational coupling, which is encoded in the string coupling constant gs. The power
of gs is a measure of how many times a string splits and joins as it propagates through
space-time while realizing a certain scattering process. As the worldsheet theory is in fact
conformal, the worldsheet can be mapped to Riemann surfaces with punctures, such that the
splitting and joining frequency is measured by the genus of the Riemann surface. Successive
terms in the perturbation series in gs are thus obtained by repeating the scattering calculation
for worldsheets of higher and higher genera. The scattering amplitude thus obtained should
be the perturbative, probably only asymptotic, approximation to an underlying exact result.
Finding a formulation of string theory in which this exact result can be formulated as an
observable, and which reduces to the perturbative string in a perturbative approximation,
is a fundamental problem of the field, dubbed the search for a non-perturbative completion

of string theory.

Topological string theory describes a sub-sector of the full physical string theory, in essence
by only retaining the zero-modes in the physical spectrum. The resulting simplification
enhances our mathematical and computational control of the theory. The interest in the
topological string is fed from various sources. Most immediately, the topological string is
directly related to the physical string on space-times of the form R

3,1×X, with the first factor
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the four dimensional space-time of our quotidian experience, and X a six dimensional Calabi-
Yau manifold. It computes contributions to the effective space-time action of this theory and
is used as a tool to explore the low energy manifestations of string theory. Mathematicians
are interested in the topological string as a technique for studying families of Calabi-Yau
manifolds, and associated structures, extending to integrability, number theory, and beyond.
Finally, the study of topological string theory is fuelled by the ambition to extract structural
lessons applicable to the full physical string, in particular concerning the question of its
non-perturbative completion.

Just as perturbative string theory, the topological string in its original formulation is defined
genus by genus, and gives rise to functions Fg of geometric parameters t characterizing its
target space X, a Calabi-Yau manifold. From the A-model point of view, these take the
schematic form

Fg =
∑

β∈H2(X)

Ng,β e
−β·t . (1.1)

The Ng,β are rational numbers called Gromov-Witten invariants. Integers can be extracted
from these that count, in an appropriate sense, the number of holomorphic maps from a
genus g Riemann surface to the target space X, such that the image has homology class
β. These maps are the zero modes of the worldsheet fields alluded to above that embed
the physical string into space-time. Assembling the topological string amplitudes Fg into a
formal generating function gives rise to the topological string partition function

Ztop = exp
∞∑

g=0

Fg g
2g−2
s . (1.2)

The name partition function indicates that, just as in the physical string, we expect an
underlying theory within which Ztop is elevated beyond its perturbative definition. Unlike
the situation in the physical string, the quantity Ztop is understood sufficiently well in a
variety of circumstances to permit its study beyond perturbation theory. This is the topic
of this thesis.

We will be focussing throughout on non-compact manifoldsX (though the methods of section
3 apply equally well to compact Calabi-Yau manifolds). In this decompactification limit,
gravity becomes arbitrarily weak, which is why gauge theories will feature prominently in
our discussion. It is perhaps disappointing to begin the journey at such a distance from
the proclaimed goal, a quantum theory of gravity. As re-assurance, we can offer that the
fundamental problem of finding a non-perturbative completion to a perturbative worldsheet
theory persists to this level of simplification – as consolation, that we will encounter much
beautiful and intricate structure along the way.

2



2 Ztop via geometric transitions

In this section, we will discuss how a target space description of the open topological string
gives rise to an algorithm for computing Ztop non-perturbatively in gs on any toric Calabi-Yau
manifold X. The expressions obtained in this formalism are closely related to the partition
function in Gopakumar-Vafa form,

Ztop = exp




∞∑

g=0

∑

β∈H2(X)

∞∑

n=1

ng
β

n

(
2 sin

ngs
2

)2g−2

e−nβ·t


 , (2.1)

which is derived in [1, 2] by identifying Ztop with a space-time index on the spectrum of
the physical theory. At a given β, only finitely many of the Gopakumar-Vafa invariants ng

β

are non-vanishing. Hence, presented in this form, the coefficients of Ztop in an expansion
in Kähler parameters nβ · t are analytic functions in gs. In contrast, much of the structure
of Ztop as a function of the Kähler parameters is hidden in the series expansion over β. A
central focus in this section will be the partial resummation of this series. In particular,
this will allow the proof of the equality of Ztop on certain geometries with the Nekrasov
partition function of N = 2 gauge theories, which will play a pivotal role in furthering our
understanding of Ztop in section 4.

2.1 Chern-Simons theory as the target space description of the

open topological string

In [3], Witten identified U(N) Chern-Simons theory on a compact 3-manifold M as the
target space description of the open topological string A-model on T ∗M , the cotangent
space of M , with N A-branes wrapping the Lagrangian submanifold M of T ∗M . A simple
argument [3] proves that no holomorphic maps φ : Σ → T ∗M exist mapping the boundary
of the worldsheet Riemann surface Σ to M . Nevertheless, the A-model on this geometry is
not trivial, as the partition function receives contributions from the boundary of the moduli
space of Riemann surfaces, where these degenerate to graphs. Witten argues, using open
string field theory, that this contribution is captured by the partition function of Chern-
Simons theory on M . The Chern-Simons theory depends on the level k and the rank N of
the gauge group. In the open string description, N maps to the number of branes wrapping
M , and the string coupling constant is given by

gs =
2π

k +N
. (2.2)

The combination on the right-hand side of the above equation of level and rank is the familiar
quantum correction to the naive coupling constant 1

k
of Chern-Simons theory.

A general Calabi-Yau manifold with Lagrangian submanifoldM will generically exhibit holo-
morphic curves ending on M . Witten instructs us to add a Wilson loop contribution

TrP exp

∫

C

A (2.3)
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to the Chern-Simons action for each such holomorphic curve, with C the knot, i.e. a one
real dimensional closed curve in the 3-manifold M , formed by the intersection of the curve
with M . Unless noted otherwise, all traces are to be understood in the fundamental rep-
resentation. Determining the set of such holomorphic curves is a difficult problem. They
will generically occur in families, requiring us to make sense of a contribution to the Chern-
Simons action involving an integral over a family of knots Cα with integrand (2.3). This
prescription is hence calculationally not feasible for an arbitrary geometry. With an assid-
uous choice of geometry, however, it represents the starting point for computing Ztop on
arbitrary toric Calabi-Yau manifolds.

2.2 Determining all holomorphic curves in T 2 fibrations

The class of geometries we will consider [4] permit a T 2 torus action. The locus at which this
action degenerates encodes the essential features of the geometry. The basic local building
block of these geometries is the cotangent space of the 3-sphere, T ∗S3. This space carries a
complex structure, inherited from C

4 via the embedding

xy = z , uv = z + µ , (2.4)

with (x, y, u, v) ∈ C
4, and µ ∈ C the complex structure modulus of the geometry. For µ

real, the base S3 of the cotangent space is situated at x = ȳ, u = −v̄. The T 2 = S1 × S1

action on the geometry is given by x → eiα, y → e−iα and u → eiβ, v → e−iβ. This action
can be intuitively thought of as translation around the circle directions of the two cylinders
defined by each of the two equations (2.4) individually at fixed z. One or the other S1 action
degenerates at x = y = 0, u = v = 0 respectively. Diagrammatically, the geometry can be
depicted as in the left diagram in figure 1, in which the degeneration loci are represented
in a real three dimensional slice of the geometry spanned by the axes direction of the two
cylinders and |z|. The S3 can be located along the dashed line (one quickly convinces oneself
that a T 2 fibered over an interval such that one cycle degenerates at one end, a different
cycle at the other end, is topologically an S3).

To obtain a geometry containing a holomorphic curve, we can modify these equations such
that one of the torus cycles degenerates at two point of the z-plane:

xy = z , uv = (z + µ1)(z − µ2) . (2.5)

The corresponding diagram is given on the right in figure 1 for µ1, µ2 > 0. The geometry
now contains an isolated holomorphic cylinder, given by uv = −µ1µ2, which intersects each
of the two 3-spheres indicated by dashed lines in an unknot. Following Witten’s prescription,
the target space description of open topological string theory on this geometry is given by a
Chern-Simons theory living on each S3, with the holomorphic cylinder and its multicovers
extending between the two 3-spheres giving rise to a Wilson loop insertion

O(U, V ; r) = exp
∞∑

n=1

e−nr

n
TrUnTrV −n , U = Pexp

∮

γ1

A1 , V = Pexp

∮

γ2

A2 , (2.6)

4



|z|
cyl1

cyl2

µ1 µ2µ

Figure 1: Discriminant loci of T 2 fibrations.

in the Chern-Simons path integral. The integration contours γi are the unknots along which
the cylinder intersects the two 3-spheres, and the coordinate r is an open string modulus
indicating the length of the cylinder, complexified by the classical vacuum expectation value
of the Wilson loops. The two Chern-Simons theories can be essentially decoupled by an
application of the Frobenius formula [5, 4], which yields the identity

O(U, V ; r) =
∑

R

e−lRrTrRU TrRV
−1 . (2.7)

The sum here is taken over all irreducible representations R of U(N), or equivalently over all
possible Young diagrams with at most N rows. We will drop the constraint on the number
of rows by considering the large N limit. lR indicates the first Casimir of the representation
R, or equivalently the number of boxes of the corresponding Young diagram. Witten’s
prescription thus gives rise to the following partition function for the open string on the
geometry on the right in figure 1:

Zopen =
∑

R

e−lRr〈TrRU〉1〈TrRV −1〉2 . (2.8)

Computations on more intricate T 2 fibrations follow the same pattern. They will generically
involve multiple cylinders ending on the same Lagrangian S3 manifold. Each cylinder will
intersect the S3 in an unknot. Computing the corresponding Wilson loop factor requires
determining the linking number of all unknots on a given S3. In the following, we will only
need the result for a Hopf link, the link of two unknots with linking number one. This was
computed in [6], as a function of the Chern-Simons coupling log q = 2πi

k+N
and the ’t Hooft

coupling λ = qN . For reasons we will explain below, we will here be interested only in the
leading λ limit of this result, which we denote as WR1R2(q) for the case in which the two
linked unknots carry representations R1, R2 respectively. Explicit expressions can be found
in [6, 4]. Organizing the calculation in terms of the size of representations lR, one can thus
compute Zopen to arbitrary order in the open string modulus e−r.
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2.3 From open to closed via geometric transitions

2.3.1 The conifold transition

In [7], Gopakumar and Vafa proposed an open-closed duality for the topological string,
similar in spirit to the AdS/CFT correspondence of the full physical string theory: the
theory in the presence of branes is dual to a theory without branes on a modified geometry.
The simplest example of this duality relates the open topological A-model on T ∗S3 with
N branes wrapping the Lagrangian S3 at the base of the fibration, which we encountered
above, to the closed topological A-model on the sum of two line bundles over the projective
line, O(−1) ⊕ O(−1) → P

1. The complexified Kähler parameter t of the P
1 base of this

geometry is related to the number of branes wrapping the submanifold S3 of T ∗S3 via

t = i gsN . (2.9)

The geometries on the two sides of the duality are related to each other as follows. Deforming
the complex structure of T ∗S3 all the way to µ = 0 gives rise to a singular manifold, called
the conifold, defined by the equation

xy − uv = 0 (2.10)

in C
4. This space is a local model for a common singularity in Calabi-Yau manifolds. To

smoothen the singularity, one can deform the space by introducing the complex parameter µ
as in (2.4), to re-obtain T ∗S3. The cotangent space of S3 is therefore also referred to as the
deformed conifold. A second possibility is to resolve the singularity via a general procedure
in algebraic geometry referred to as a blow-up, in which a point is replaced by a projective
space. This yields the space O(−1)⊕O(−1) → P

1, which is therefore also called the resolved
conifold. The size of the P

1 is measured by the Kähler parameter t, and the singular limit
is reached at t → 0. The passage from the deformed to the resolved conifold is termed the
conifold transition. Diagrammatically, it can be represented as in figure 2.

deformed conifold

singular conifold

resolved conifold

Figure 2: The conifold transition diagrammatically.
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2.3.2 Toric geometry and web diagrams

Note that at the point µ = 0 of (2.4), a third S1 action can be defined on the geometry:
multiplication of x and u by a common phase. A T 3 action in three complex dimensions is
the hallmark of a three complex dimensional toric manifold. The toric property is preserved
by the blow-up which resolves the singularity. The diagram in figure 2 representing the
resolved conifold is called a web diagram. Its distinguishing features are the trivalent vertex,
rational edges, and the fact that the sum of the primitive vectors emanating from each
vertex vanishes. Any such diagram encodes a toric Calabi-Yau geometry. These diagrams
will play a central role in the formulation of the topological vertex, to which we shall turn
in subsection 2.6.

A more general formalism for describing toric geometry, valid beyond the context of local
Calabi-Yau manifolds, proceeds by encoding the geometry in terms of toric fans (see e.g. the
classic exposition in [8]). In the case of local Calabi-Yau manifolds, these diagrams are dual
to web diagrams, in the sense depicted in figure 3.

O(−1)⊕O(−1) ! P
1 O(−2)⊕O(0) ! P

1

Figure 3: Toric fans and their dual web diagrams.

2.3.3 Generalized conifold transitions

The authors of [9, 4] proposed extending the conifold transition to the T 2 fibrations encoun-
tered in subsection 2.2, by performing such transitions locally on each S3. Conversely, given a
toric Calabi-Yau manifold, one can introduce additional P1 cycles, called exceptional cycles,
via the blow-up procedure alluded to above. Provided that the resulting manifold retains
the Calabi-Yau property, the local geometry of the blow-up cycle will be that of a resolved
conifold. Performing the conifold transition on a sufficient number of such cycles should give
rise to the class of geometries discussed above. Naturally, care must be exercised that these
local manipulations be consistent with the global constraints of the geometry. Under these
manipulations, holomorphic curves intersecting two exceptional cycles map to holomorphic
cylinders intersecting the 3-spheres the cycles transition into. The corresponding Kähler
parameters map to open string moduli.

We have sketched these manipulations for the case of local P1 × P
1,1 which will serve as a

1Given a complex surface M , the total space of its canonical line bundle is a non-compact Calabi-Yau
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principal example in the next subsection, in figure 4. The diagram (1) is the web digram

(1) (2) (3)

Figure 4: Manipulations leading from local P1 × P
1 to an open geometry.

representing local P1 × P
1. Blowing up the four toric fixed points, we obtain diagram (2).

Performing local conifold transitions on the four exceptional cycles then yields diagram (3).
The partition function of the open A-model on this latter geometry can be computed via
Chern-Simons theory as described above. This coincides with the closed topological string
partition function of geometry (2) upon the correct mapping of open to closed variables.
To recover the original geometry, we can take the t → ∞ limit of all Kähler parameters
associated to exceptional curves. As is evident from the general form of the partition function
(2.1), all contributions involving exceptional curves are thus set to 0. By the map (2.9)
between closed and open variables, the limit in terms of open variables is given by λ → ∞.2

This is the rationale behind the introduction above of WR1R2(q) as the λ → ∞ limit of the
Hopf link expectation value.

2.4 Computing: local P1 × P
1

2.4.1 Performing sums over representations

We have reduced the computation of the partition function of the closed topological string
on local P1 × P

1 to the evaluation of the following expression:

Ztop =
∑

R1,2,3,4

Q
−(l1+l3)
B Q

−(l2+l4)
F WR1R4(q)WR4R3(q)WR3R2(q)WR2R1(q) , (2.11)

where the Hopf link expectation values WRiRj
were defined at the end of subsection 2.2, and

QB,F = e−tB,F denote the exponentiated Kähler parameters associated to the two P
1-cycles.

By the results of [6] for the computation of Wilson loop expectation values involving the Hopf
link, we can evaluate this expression to arbitrary order in QB and QF . These calculations

manifold, referred to as ‘local M ’. Non-compact Calabi-Yau manifolds are also referred to as local Calabi-
Yau, the nomenclature indicating that they should be thought of as the local description of a larger, compact
geometry.

2In fact, as first observed in [9], an additive correction term is required to the naive identification between
open and closed moduli when geometric transitions beyond the simple case of the conifold are considered.
A first principles derivation of this shift in the context of a proof of the open/closed duality of geometric
transitions, e.g. along the lines of [10], is still outstanding.
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rapidly become cumbersome. In [11], Iqbal and I demonstrated how to sum the series over
QF exactly, with implications involving an important conjecture by Nekrasov, as we discuss
in subsection 2.5. We will indicate the scope of these summation techniques in subsection
2.6, based on [12]. For now, continuing with the example at hand, let us introduce

KR1R2(Q) =
∑

R

QlRWR1R(q)WRR2(q) (2.12)

as a building block of the partition function. The crucial step in the summation is writ-
ing

KR1R2(Q) = K··(Q)WR1(q)WR2(q) exp

[
∞∑

n=1

fn
R1R2

(q)Qn

]
, (2.13)

where

K··(Q) = exp

[
∞∑

n=1

fn
0 (q)

]
, fn

0 (q) =
f 1
0 (q

n)

n
, f 1

0 (q) =
q

(q − 1)
(2.14)

is the partition function for a (-2,0)-curve [4], and making the ansatz

fn
R1R2

(q) =
fR1R2(q

n)

n
. (2.15)

This ansatz, mirroring (2.14), reflects the fact that the contributions to KR1R2 stem from a
single isolated curve and its multicovers. It was proved rigorously in [13]. We can determine
fR1R2(q) by computing (2.12) to first order in Q. We obtain

fR1R2(q) =
WR1

WR1

W R2

WR2

−W2 (2.16)

=
q

(q − 1)2

[(
1 + (q − 1)

d1∑

j=1

(qµ
1
j−j − q−j)

)(
1 + (q − 1)

d2∑

j=1

(qµ
2
j−j − q−j)

)
− 1

]
.

We have here denoted the Young diagram corresponding to representation Ri as µ
i, with di

indicating the number of rows and µi
j the number of boxes in its j-th row. This expression

can be further simplified to

fR1R2(q) = (q − 2 + q−1)fR1(q)fR2(q) + fR1(q) + fR2(q)

=:
∑

k

Ck(R1, R2)q
k , (2.17)

with

fR(q) := fR, .(q) =
d∑

j=1

µj∑

v=1

qv−j . (2.18)

The partition function (2.11) thus takes the form

Ztop = K2
··(QF )

∑

R1,R2

Q
lR1

+lR2
B

W2
R1
(q)W2

R2
(q)∏

k(1− qkQF )2Ck(R1,R2)
. (2.19)
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2.4.2 Computing Gopakumar-Vafa invariants

Extracting Gopakumar-Vafa invariants from (2.19) is an easy exercise. Since we have
summed the series over QF , we introduce the following parametrization of the general
Gopakumar-Vafa form (2.1) of the partition function:

ZGV
top = K· ·(QF )

−n0
(0,1) exp{

∞∑

n=1

1

n

∞∑

k=1

Qkn
B Gk(q

n, Qn
F )} , (2.20)

where

Gk(q,QF ) =
∞∑

m=0

∞∑

g=0

ng
(k,m) (−q)1−g

(q − 1)2−2g
Qm

F =
∞∑

g=0

1

(q1/2 − q−1/2)2−2g
f (k)
g (QF ) . (2.21)

To extract the factor K· ·(QF ), we have invoked the fact that ng
(0,m) ∼ δg,0δm,1 [14]. We

further parametrize the partition function (2.19) as

Ztop = K2
· ·(QF )

∞∑

k=0

Qk
BZk(QF , q) , (2.22)

with

Zk(q,QF ) =
∑

{R1,R2|lR1
+lR2

=k}

W2
R1

W2
R2∏

m(1− qmQF )2Cm(R1,R2)
. (2.23)

Equating ZGV
top = Ztop, we deduce n0

(0,1) = −2 (a result obtained in [14]) and

G1(q,QF ) = Z1(q,QF ) , (2.24)

G2(q,QF ) = Z2(q,QF )−
1

2
Z1(q,QF )

2 − 1

2
Z1(q

2, Q2
F ) ,

etc.

Evaluating (2.19) explicitly, we find for k = 1, . . . , 4

f (k)
g (x) =

P
(k)
g (x)

(1− x)2g+4k−2
, (2.25)

where the functions P
(k)
g (x) are finite at x = 1. To give an impression of the expressions

involved, we cite the first few results from [11]:

f
(1)
0 (x) = − 2

(1− x)2
, f

(1)
g>0(x) = 0 , (2.26)

f (2)
g (x) =

(3g + 6)xg+1 + (6g + 8)xg+2 + (3g + 6)xg+3

(1− x)2g+6(1 + x)2
. (2.27)
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2.5 Reproducing Nekrasov’s partition function via geometric en-

gineering

2.5.1 Nekrasov’s partition function

In [15], Nekrasov computed the prepotential of N = 2 gauge theories, previously obtained
by Seiberg and Witten by what is now known as Seiberg-Witten theory (we will have much
to say about this in section 3), directly by computing integrals on instanton moduli space via
localization methods. The idea of applying localization to compute integrals over instanton
moduli space was already presented in [16, 17, 18, 19, 20]. Nekrasov demonstrated that en-
larging the equivariant action on moduli space by the two commuting (Euclidean) spacetime
rotations of orthogonal planes leads to isolated fixed points, and computed their contribution
to the relevant integrals as a function of the two additional equivariant parameters, ǫ1 and
ǫ2. Assembling these results in a generating function weighted by instanton number gives
rise to the Nekrasov partition function

Znek(ǫ1, ǫ2) =
∑

n

q
n

∫

M̃n

ω , (2.28)

where we have denoted the relevant n-instanton moduli space as M̃n and ω stands for an
appropriate equivariant form depending on the details of the gauge theory under considera-
tion. The instanton counting parameter q is related to the ultraviolet gauge coupling. Znek

contains much information beyond the prepotential of the four dimensional gauge theory,
the computation of which was the primary motivation underlying [15]. Nekrasov conjectured
that it coincides with a counting function capturing BPS states in the spectrum of the gauge
theory embedded within string theory. At ǫ1 = −ǫ2, the counting function specializes to
the index underlying (2.1), Znek hence, according to this conjecture, to Ztop. Proving this
conjecture was part of the motivation behind the works [12, 21, 11].

For the case of pure SU(2) gauge theory, the Nekrasov partition function at ǫ = ǫ1 = −ǫ2
takes the form

Znek =
∑

µ1,µ2

q
|µ1|+|µ2|

∏

l,n=1,2

∞∏

i,j=1

sinh β
2
(aln + ǫ(µl

i − µn
j + j − i))

sinh β
2
(aln + ǫ(j − i))

. (2.29)

The sum is over all fixed points of the equivariant action, which are in one-to-one corre-
spondence with Young diagrams µ1, µ2. The number of boxes of a Young diagram µ is
indicated by |µ|. a12 = −a21 = 2a is the vacuum expectation value of the adjoint scalar
(see section 3.3.1), a11 = a22 = 0. Factors with (l, i) = (n, j) are understood to be equal to
1. The parameter β is best thought of as the radius of an additional circle which lifts the
four dimensional gauge theory to a five dimensional one [22]. The four dimensional result is
obtained in the β → 0 limit.
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2.5.2 Znek from topological string theory

Local P1 × P
1, the geometry studied in subsection 2.4, is the simplest example of a Calabi-

Yau geometry whose effective field theory description exhibits enhanced gauge symmetry.
Using e.g. toric methods, it is not difficult to see that this geometry coincides with the
resolution of an A1 singularity fibered over P1. The singular geometry yields enhanced gauge
symmetry, as D2 branes, which give rise to W-bosons in the gauge theory, become massless
here. Embedding a gauge theory into string theory by an appropriate choice of geometry
is referred to as geometric engineering. The mapping of parameters between geometry and
gauge theory in the case of local P1×P

1 and pure SU(2) gauge theory is the following:

QBQF

24
= q , QF = exp 2βa , g2s = β2ǫ1ǫ2 . (2.30)

QF here encodes the size of the cycle resolving the A1 singularity. It consequently maps to
the vacuum expectation value a of the adjoint scalar of the gauge theory, which induces the
breaking of the gauge symmetry. The ultraviolet gauge coupling is inversely proportional to
the size of the compactification manifold.

To relate (2.19) to (2.29), we note the equality [11]

W2
R(q) = 2−2lR qκR/2

∞∏

i,j=1

sinh β
2
ǫ(µi − µj + j − i)

sinh β
2
ǫ(j − i)

. (2.31)

Hence, the WR terms in (2.19) account for the factors in the product (2.29) with l = n. The
remaining terms follow from the identity

∏

k

(1− qkQF )
−2Ck(R1,RT

2 ) = Q
−lR1

−lR2
F 2−2(lR1

+lR2
)q−

1
2
(κR1

−κR2
) (2.32)

∏

l 6=n,i,j

sinh β
2
(aln + ǫ(µl

i − µn
j + j − i))

sinh β
2
(aln + ǫ(j − i))

.

This identity was proposed and checked experimentally in [11], and proved in [13].

It is possible to use a generalization of the methods described above to perform computations
on local Calabi-Yau manifolds resolving higher An singularities, related to gauge theories of
higher rank [21]. These computations however become cumbersome, and are best performed
within the framework of the topological vertex [23].

2.5.3 Beyond ǫ1 = −ǫ2

The physical meaning of Znek beyond the ǫ1 = −ǫ2 locus has been elucidated from several
perspectives in the decade since the publication of [15]. In [24], generalizing the computation
that led to (2.1), Znek at general (ǫ1, ǫ2) was reformulated as a counting function of BPS
states, thus extending its definition beyond the gauge theory context. The same reference
also introduces a refinement of the topological vertex (we will introduce the unrefined vertex
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below) to compute this counting function, christened the refined topological string partition
function, for arbitrary toric geometries. Refined topological string amplitudes F (n,g) are
formally defined as the expansion coefficients of this partition function in g2s = ǫ1ǫ2 and
s = (ǫ1 + ǫ2)

2,

Ztop(gs, s) = exp
∑

g,n

F (n,g)g2g−2
s sn . (2.33)

In [25], a Lagrangian was formulated for a gauge theory with partition function Znek(ǫ1, ǫ2),
referred to as the Ω-deformation of the initial gauge theory, and a relation to two dimen-
sional integrable systems established. The worldsheet definition of this refinement is still
not completely settled. Steps in this direction have been taken e.g. in [26], where the role
of the refined amplitudes in N = 2 supergravity is investigated. Mathematically, refinement
has been interpreted in terms of motivic invariants [27, 28]. A remarkable correspondence
between Ω-deformed gauge theory and two dimensional conformal field theory was proposed
in [29]. This will play a central role in section 4.

2.6 The topological vertex on the strip

2.6.1 The general formalism

The above calculation already suggests the emergence of diagrammatic rules for the com-
putation of Ztop for local toric Calabi-Yau geometries. The principal complication in the
direct computation of the partition function with the methods described is that the web
diagrams underlying toric Calabi-Yau manifolds, introduced in subsection 2.3.2, exhibit a
trivalent vertex, while the manipulations exemplified in figure 4 give rise to a tetravalent
vertex as building block, and require taking limits to access general toric geometries. In [23],
an expression for a trivalent vertex was extrapolated from the circle of ideas presented here.
In the form presented in [30], it is given by

Cλµν = q
κ(λ)
2 sν(q

ρ)
∑

η

sλt/η(q
ν+ρ)sµ/η(q

νt+ρ) . (2.34)

The indices λ, µ, ν symbolize Young diagrams. A sum over such an index indicates a sum
over all possible Young diagrams. sµ denotes the Schur function associated to the diagram
µ. Schur functions form a particular basis for symmetric polynomials, with the number of
variables here taken to infinity. The notation is s(qν+ρ) = s({qνi−i+ 1

2}), with νi indicating
the number of boxes in the i-th row of the diagram ν. The sµ/η are skew Schur functions,
defined by

sµ/η =
∑

ν

cµηνsν , (2.35)

where the cµην are tensor product coefficients, and κ(λ) =
∑

λi(λi − 2i + 1). Though not
manifest, the expression (2.34) enjoys cyclic symmetry with regard to the Young diagrams
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λ, µ, ν. Two vertices are glued, up to a subtlety to which we shall return momentarily, by
performing a sum over Young diagrams as follows,

∑

λ

CλµνCλtρσQ
|λ| . (2.36)

Here, λt is the transposed Young diagram, obtained by exchanging rows and columns, and |λ|,
as above, indicates the total number of boxes of the Young diagram λ. Q is the exponentiated
Kähler parameter corresponding to the cycle obtained by gluing the vertices. The subtlety in
gluing vertices is related to the necessity of specifying a framing when computing Wilson loop
vacuum expectation values in Chern-Simons theory (we glossed over the framing question
in the discussion above, it is of course addressed in [11, 21]). In the vertex formalism, the
framing information translates into an integral vector associated to each leg of the vertex.
Changes of framing with regard to the canonical framing fi chosen in (2.34) are encoded in
a triplet of integers ni [23],

Cf1−n1v1,f2−n2v2,f3−n3v3
α1α2α3

= (−1)
∑

i ni|αi|q
∑

i ni
καi
2 Cf1,f2,f3

α1α2α3
. (2.37)

The gluing rules require gluing vertices with opposite framing vectors. One can easily check
that the particular choice of framing vectors, as long as the choices on the two glued legs are
correlated and opposite, is irrelevant upon performing the sum over Young diagrams.

2.6.2 Computing the partition function on the strip

In [12], Iqbal and I set out to study methods for performing the sums over Young diagrams
explicitly in the context of the topological vertex. Based on the two identities [31]

∑

α

sα/η1(x)sα/η2(y) =
∏

i,j

(1− xiyj)
−1
∑

κ

sη2/κ(x)sη1/κ(y) , (2.38)

∑

α

sαt/η1(x)sα/η2(y) =
∏

i,j

(1 + xiyj)
∑

κ

sηt2/κt(x)sηt1/κ(y) ,

we demonstrated that the sums occurring in the evaluation of the partition function on any
triangulation of the strip, in the sense exemplified in figure 5, can be performed.

Figure 5: A fan obtained by triangulating a strip, and the corresponding web diagram.

These strips in turn can be used as building blocks for more intricate geometries, as we will
discuss below. The geometry encoded by a strip diagram consists of two types of curves
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strung together: O(−1)⊕O(−1) → P
1, referred to as a (-1,-1) curve, and O(−2)⊕O → P

1,
referred to as a (-2,0) curve. The corresponding fans and web diagrams are depicted in figure
3. The contribution from such curves to Ztop can be easily computed, using the vertex and
the summation identities (2.38). For a (−1,−1) curve, it is

{αβ}Q :=
∏

k

(1−Qqk)Ck(α,β) exp

[
∞∑

n=1

Qn

n(2 sin(ngs
2
))2

]
, (2.39)

and for a (−2, 0) curve,

[αβ]Q :=
1

{αβ}Q
. (2.40)

The exponential factor yields Ztop of these curves by themselves, i.e. not as building blocks of
a larger geometry, as its (α, β)-dependent coefficient is set to one by choosing these diagrams
trivial, α = β = ·. The Gopakumar-Vafa invariants of these simple geometries can be read
off from these expressions as ng

m = ±δg,0δm,1.

Using this notation, the link invariant Wαβ, which is the tetravalent vertex on which our
calculation in the previous subsections was based (with Wαβ as its λ → ∞ limit), is related
to the topological vertex as follows [12]:

Wαβ = λ
|α|+|β|

2

∑

γ

CβtγαC••γt(−1)|γ|Q|γ|

{••}Q
, (2.41)

where Q = λ−1.

The partition function on a triangulated strip consists of a product of contributions (2.39)
and (2.40), one for each pairing of vertices, with the corresponding Kähler parameter log Q
being the sum of all intermediate Kähler parameters [12]. E.g., the diagram depicted in
figure 6 yields the partition function

Ztop = sβ1sβ2sβ3sβ4

{β1β3}Q1Q2{β1β4}Q1Q2Q3{β2β3}Q2{β2β4}Q2Q3

{β1βt
2}Q1{βt

3β4}Q3

. (2.42)

Fixing the occurrence of transpositions requires a slightly more detailed analysis which is
outlined in [12].

The results for Ztop on the strip were used in [12] to study the behavior of the topological
string partition function under flop transitions, and to prove the equality of Nekrasov’s
partition function and the corresponding topological string partition function for arbitrary
rank U(N) gauge group and matter content. In the next subsection, we wish to touch upon
a more elaborate application, which was the subject of two papers [32, 33].
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α1

α2 α3

β1

β2

β3

β4

Figure 6: Labelled web diagram corresponding to (2.42).

2.6.3 Application: Ztop via matrix models

The point of departure is the so-called BKMP conjecture, named after its authors [34],
which proposes an alternative method for computing the topological string amplitudes Fg

on a toric local Calabi-Yau geometry X, based on the topological recursion [35]. The latter
is an algorithm, inspired by matrix model computations, which assigns to any affine curve C
functions Fg of the curve data. If C coincides with the spectral curve of a matrix model, then
the Fg yield the coefficients of the logarithm of the partition function of the matrix model in a
largeN expansion. These functions share many properties with topological string amplitudes
Fg [36, 37]. This prompted the authors of [34] to conjecture that an adaptation of the
topological recursion algorithm applied to the mirror curve of a local Calabi-Yau geometry
X should yield functions Fg which equal the topological string amplitudes Fg(X). To study
this conjecture, Eynard and I set out to construct a matrix model whose partition function
reproduces that of the topological string on an auspiciously chosen fiducial geometry Xfid

[32, 33]. The proof of the BKMP conjecture for this geometry then reduces to demonstrating
that the spectral curve of this matrix model coincides with the mirror curve of Xfid. It is
easy to show [33] that any toric Calabi-Yau manifold can be related to a sufficiently large
triangulated rectangle as depicted in figure 7 upon blowing up vertices and flopping a number
of curves. As the effect of these two operations on the topological string amplitudes Fg is
well understood, proving the conjecture for such a fiducial geometry Xfid will thus quickly
imply the general result.

Figure 7: A fiducially triangulated rectangle.

In this subsection, we will sketch how to construct a matrix model that computes the topo-
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logical string partition function on Xfid. This is the content of [32]. Computing the spectral
curve of this matrix model, the subject of the follow-up work [33], requires elaborate ma-
trix model technology which would lead us too far afield. To summarize the conclusion of
[33], the potential of the matrix model we will propose lies outside of the validity of sev-
eral theorems we require to compute the spectral curve. Upon proposing certain natural
generalizations of these theorems, the mirror curve indeed emerges in a highly non-trivial
fashion as the spectral curve of our matrix model. Elevating our arguments to a proof of
the BKMP conjecture will require extending the necessary theorems, a task of independent
interest. Since the publication of [33], a proof of the conjecture using different means has
been proposed in [38].

We turn now to the derivation of the matrix model. We wish to convey a flavor of why a
chain of matrices matrix model arises, and how matrix integrals can give rise to sums over
partitions.

The chain of matrices matrix model: The topological string partition function Zfid on
Xfid can be computed by gluing together the building blocks Zstrip depicted in figure 8 by
summing over the Young diagrams αi and βi. The basic challenge is to rewrite these sums

Figure 8: A fiducial triangulation of the strip.

as matrix integrals. Following the rules developed in [12] and reviewed above, Zstrip on a
strip of n+ 1 boxes is given by

Zstrip(α0, . . . , αn; β
T
0 , . . . , β

T
n ) =

n∏

i=0

sαi
sβT

i

[βi, αT
i ]Qβi,αi

∏
i<j[αi, α

T
j ]Qαi,αj

∏
i<j[βi, β

T
j ]Qβi,βj∏

i<j[αi, βT
j ]Qαi,βj

[βi, αT
j ]Qβi,αj

,

(2.43)
where Qγ,δ signifies the appropriate exponentiated Kähler parameter for the curve spanning
between the vertices labeled by γ and by δ. As a first step towards the matrix model, we
re-express Zstrip in terms of the diagonal matrices

X(γ) = diag(qh1 , . . . , qhd) , hk(γ) = γk − k + d+ aγ , (2.44)

with the parameters aγ encoding the Kähler parameters of the geometry [32]. We have
introduced an upper bound d on the number of rows of the Young diagrams we consider. It
can be taken to be arbitrarily large.3 In terms of the Vandermonde determinant

∆(X) =
∏

1≤i<j≤d

(Xj −Xi) , (2.45)

3The spectral curve will depend only non-perturbatively on d [33].
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and its generalization

∆(X(γ), X(δ)) =
∏

i,j

(Xi(δ)−Xj(γ)) , (2.46)

Zstrip can be written as

Zstrip(α0, . . . , αn; β
T
0 , . . . , β

T
n ) =

(2.47)

=

∏
i ∆(X(αi))

∏
i<j ∆(X(αi), X(αj))

∏
i ∆(X(βi))

∏
i<j ∆(X(βi), X(βj))∏

i,j ∆(X(αi), X(βj))

× exp

[
− 1

gs
TrV (X(αi), X(βi))

]
. (2.48)

Here, V is a complicated potential, the details of which can be found in [32]. By introducing
larger matrices still [39],

X1 = diag(X(α0), . . . , X(αn)) , X2 = diag(X(β0), . . . , X(βn)) , (2.49)

we can rewrite
∏

i ∆(X(αi))
∏

i<j ∆(X(αi), X(αj))
∏

i ∆(X(βi))
∏

i<j ∆(X(βi), X(βj))∏
i,j ∆(X(αi), X(βj))

=
∆(X1)∆(X2)

∆(X1, X2)
.

(2.50)
We next want to re-express (2.50) in terms of a certain set of normal matrices which we
shall define below, rather than diagonal matrices. To this end, we introduce N = (n + 1)d
additional integrals and write

(−1)(
N
2 )N ! gNs

∆(X1)∆(X2)

∆(X1, X2)
=

∫

RN
+

dY det
p,q

(e
−1
gs

(X1)p (Y )q) det
p,q

(e
1
gs

(X2)p (Y )q) , (2.51)

with (X)p indicating the p-th diagonal entry of the matrix X. We have here used Cauchy’s
determinant formula

det

(
1

xi + yj

)

1≤i<j≤n

=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)
. (2.52)

Each determinant factor in (2.51) can be written as an Itzykson-Zuber integral [40],

det
p,q

(exp yq) = ∆(X)∆(Y )

∫
dU eTrXUY U†

, (2.53)

where X and Y are now arbitrary normal matrices with eigenvalues xp, yq respectively.

Substituting U = U †
X1
UY and U = U †

X2
UY respectively for the two determinants on the

right-hand side of (2.51), and introducing

Mi = UXi
XiU

†
Xi

, R = UY Y U †
Y , (2.54)

we arrive at a contribution

∝ ∆(M1)∆(M2)∆(R)2e
1
gs

Tr (M2−M1)R (2.55)
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per strip.

We thus see the general structure for the matrix model computing Zfid emerging: the Young
diagrams above and below a strip, denoted by αi, βi in figure 5, are encoded in matrices
M1, M2. Strips are glued by integrating over the corresponding Mi. Each strip also involves
a matrix R, which only appears linearly in a contribution to the potential of the form
Tr (M2−M1)R. No other contributions to the potential involve products of different matrices.
This is the general structure of a class of matrix models called chain of matrices.

From matrix integrals to sums over Young diagram: Next, we need to constrain the
eigenvalues of the matrices Mi to be of the form (2.44). This is accomplished by choosing
their integration domain as

HN(Γi) = {M = U ΛU † , U ∈ U(N) , Λ = diag(λ1, . . . , λN) ∈ Γi} , (2.56)

with Γi the product of contours

Γi =
n∏

j=0

(γj,i)
d (2.57)

passing through the desired eigenvalues of the form (2.44). We then multiply the integrand
of the matrix model with functions fi, the explicit form of which can be found in [32], that
exhibit simple poles at these eigenvalues, and constant residue. The integral over eigenvalues
is thus replaced by a sum over terms of the form (2.44) for arbitrary positive integers γk.
Due to the symmetry of the integrand in the eigenvalues, we can, upon multiplying by the
number of permutations, order them, such that the γk once again reflect the number of boxes
in the k-th row of a Young diagram γ.
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3 Ztop via holomorphic anomaly

The previous section unfolded mainly within the A-model version of the topological string,
and built on target space considerations. We now turn to a computation method using
B-model techniques which is firmly rooted in worldsheet considerations. We will hence be
computing order by order in the string coupling. This appears to be taking a step backwards
compared to the results of the topological vertex, which are non-perturbative in the string
coupling. What we gain, however, is the ability to compute all order results in the Kähler
parameters. As a consequence, modularity properties will become manifest that are not
visible at finite order.

3.1 The BCOV holomorphic anomaly equations

The topological string amplitudes Fg are naively, by BRST symmetry, holomorphic functions
on the appropriate moduli space of a Calabi-Yau manifold X: they are defined as correlators
of a two-dimensional twisted worldsheet theory integrated over the compactified moduli space
of genus g Riemann surfaces Mg. Derivatives with regard to anti-holomorphic variables
lead to additional insertions in the correlator. As these are BRST exact, they give rise to
contributions only from the boundary of the integration domain. In the case at hand, the
boundary of Mg describes degenerating Riemann surfaces. Pictorially, degenerations arise
upon the pinching of cycles of the Riemann surface, giving rise to lower genus Riemann
surfaces. A careful study of this phenomenon [41] gives rise to the holomorphic anomaly
equations,

∂̄ı̄F
g =

1

2
C̄jk

ı̄

(
DjDkF

g−1 +

g−1∑

h=0

DjF
hDkF

g−h
)
, g > 1 . (3.1)

Here, C̄ ij
ı̄ = e2KGj̄Gkk̄Cı̄̄k̄, where the Kähler potential K and the metric Gj̄ on moduli space

as well as the three-point function Cijk are special geometry data encoded in the genus 0
amplitude F 0 of the theory. The derivatives Di are covariant with regard to the appropriate
bundles. The contributions on the right-hand side of this equation can easily be traced to
the two possible ways in which a Riemann surface can degenerate in Mg: if the pinched
cycle does not sever the Riemann surface in two, the resulting surface has genus reduced by
one, giving rise to the first term on the right-hand side of (3.1). If on the other hand the
surface becomes disconnected upon pinching, the resulting two components of genus h and
g − h give rise to the second contribution to the anti-holomorphic derivative.

As the genera appearing on the right-hand side of the holomorphic anomaly equation are
strictly smaller than the genus on the left-hand side, the equation gives rise to a recursion
relating topological string amplitudes at different genera. The starting point of the recur-
sion is the topological string amplitude F 1 at genus one, which satisfies its own holomorphic
anomaly equation expressed purely in terms of special geometry data. Clearly, the recur-
sion is not sufficient to fix the topological string amplitudes, as it contains no information
about the purely holomorphic dependence of the genus g amplitude. We will see below how
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this so-called holomorphic ambiguity can be addressed by providing appropriate boundary
conditions.

3.2 The generalized holomorphic anomaly equations

We will here be interested in the refined topological string briefly introduced in subsection
2.5.3, in particular with an eye towards the applications in section 4. As a worldsheet
definition of the Ω-deformation is still lacking, a derivation of recursion relations for the
refined amplitudes following the reasoning of [41] presented above is currently not available.
In its place, a simple generalization of the equations (3.1) was conjectured in [42]. These
equations have by now passed numerous checks [42, 43, 44]. They are given by

∂̄īF
(n,g) =

1

2
C̄jk

ī

(
DjDkF

(n,g−1) +
∑

m,h

′
DjF

(m,h)DkF
(n−m,g−h)

)
, n+ g > 1 . (3.2)

The prime on the sum indicates omission of the summands (m,h) = (0, 0) and (m,h) =
(n, g). The first term on the right-hand side is absent at g = 0.

Note that these equations are reminiscent of the holomorphic anomaly equations for the
topological string with insertions [41], suggesting that the Ω-deformation may correspond
to an appropriate operator insertion in the correlator defining the generalized amplitudes.
In [44], we briefly discuss the dilaton as a possible candidate for such an insertion. This
proposal deserves further study.

3.3 The holomorphic anomaly equations in the rigid limit

We will here be interested in applying the holomorphic anomaly equations to rigid N =
2 theories which arise upon Ω-deformation of string theory on non-compact Calabi-Yau
manifolds [44]. We will furthermore specialize to gauge theories, though the formalism
applies equally well to arbitrary local geometries and without taking a field theory limit.
We will see that with minimal assumptions regarding the modularity of the result, we can
integrate the holomorphic anomaly equations exactly to any desired order in gs and s.

Before we specialize to the special geometry of a genus one curve (this is the target space
in question, not to be confused with genus one worldsheets), most of the discussion in this
subsection can easily be presented in greater generality, simply by increasing the number
of variables and indices. The main technical simplification that occurs when restricting to
genus one is that the solutions of the Picard-Fuchs equations yielding the relevant periods
required to specify the special geometry can be written down explicitly.
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3.3.1 The special geometry of Seiberg-Witten theory

Seiberg-Witten theories [45, 46] are four-dimensional gauge theories exhibiting N = 2 su-
persymmetry. Here, we will focus on the gauge group SU(2). The fields are organized in
vector and hypermultiplets. The N = 2 vector multiplet consists of an N = 1 chiral and an
N = 1 vector multiplet. Much of the physics is determined by the complex scalar φ in the
chiral multiplet. The potential for φ exhibits a flat direction. The corresponding vacuum
expectation value u = 1

2
Tr(φ2) hence parametrizes a moduli space, which coincides with the

moduli space of the topological string (in the field theory limit). This vacuum expectation
value breaks the gauge symmetry from SU(2) to U(1). The low-energy two derivative effec-
tive action of the theory (before coupling to a gravitational background) is entirely encoded
in terms of a holomorphic quantity in φ called the prepotential F (0,0). Much of the power of
the Seiberg-Witten approach to solving these theories stems from identifying contributions
to the action with geometric quantities on moduli space. Due to the presence of N = 2
supersymmetry, the moduli space is governed by special geometry. We will describe the
implications of this structure in the following.

Let us first determine the geometric data that enter into the holomorphic anomaly equations
(3.1). In terms of distinguished flat coordinates t which can always be defined locally, the
metric on moduli space is given by

Gtt̄ = 2∂t∂t̄Re(t̄∂tF
(0,0)) . (3.3)

This metric is visibly Kähler, with the corresponding Kähler potential K = Re(t̄∂tF
(0,0)).

The three-point functions Cijk occurring in (3.1) are determined by triple derivatives of the
prepotential. In the one-dimensional case that we are considering here,

Cttt =
∂3F (0,0)

∂t3
. (3.4)

The geometry on moduli space is hence entirely determined by the prepotential F (0,0) and
the appropriate choice of flat coordinates. This data can be encoded [45, 46] in terms of a
family of Riemann surfaces C1(u) of genus one (higher rank groups require curves of higher
genera) parametrized by the modulus u of the theory, as well as a meromorphic (1,0)-form
λ, the so-called Seiberg-Witten differential. This one-form is constrained to satisfy dλ

du
= ω,

with ω the unique (up to scaling) holomorphic one-form on C1. The periods of λ along
one-cycles (ΣA,ΣB) furnishing a symplectic basis of H1(C1,Z) determine the flat coordinate
a and its dual aD,

4

a =

∮

ΣA

λ, aD =

∮

ΣB

λ . (3.5)

This definition fixes a uniquely as a flat coordinate in the vicinity of u → ∞, the weak
coupling point of the gauge theory, upon fixing boundary conditions

a ∼ c0

√
u

2
at u → ∞ . (3.6)

4In massive theories, the Seiberg-Witten differential exhibits residues proportional to the masses, and the
integration contour must be specified.
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The constant c0 is equal to one or two, depending on whether the gauge theory contains
fundamental matter or not. Away from this point, the periods are multi-valued functions of
u. We will refer to their values on any given branch as (t, tD). Locally, the function t(u) can
be inverted, and tD thereupon expressed as a function of t.

The physical interpretation of flat coordinates is most evident by considering the expression
for the central charge and the complex gauge coupling of the theory. The central charge
associated to a BPS particle of electric, magnetic, and U(1) flavor charge (ne, nm, Si) is
given by

Z = nea+ nmaD +
∑

i

Si
mi√
2
. (3.7)

By N = 2 supersymmetry, the mass of a BPS particle carrying these charges is determined
by the central charge via m = |Z|.
A hallmark of N = 2 theories is that the gauge coupling and theta angle can be combined
into a complex gauge parameter τ ,

τ =
1

c0

(
θ

π
+

8πi

g2

)
. (3.8)

The effective infrared gauge coupling of the effective low energy theory is determined in
terms of (t, tD) via

τ =
dtD
dt

. (3.9)

Note that via the relation of λ to the holomorphic one-form on C1,

τ =
dtD
du

/
dt

du
=

∫
ΣB

ω∫
ΣA

ω
. (3.10)

As the ratio of two symplectically dual periods of ω takes values in the upper half-plane, the
positivity of the effective gauge coupling is thus manifest in this formalism.

The structure (3.5) permits the computation of the prepotential due to the special geometry
relation

tD = − c0
2πi

∂F (0,0)

∂t
. (3.11)

Computing the prepotential hence requires determining the periods of the meromorphic
differential λ, expressing tD as a function of t, and integrating once, or determining τ as a
function of t, and integrating twice.

3.3.2 Computing periods of λ

The general path towards computing the periods of the Seiberg-Witten differential λ (as
well as the corresponding problem of finding the periods of the holomorphic (3,0) form Ω)
proceeds via solving the Picard-Fuchs differential equations that these periods satisfy. In the
case at hand, for which the relevant curve is elliptic, a general formula is available to express
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the relevant period of the holomorphic one-form ω. The corresponding period of λ can then
be obtained via integration. Before introducing this formula, we will rapidly review some
basic facts about elliptic curves.

Upon suitable variable definition, the elliptic curve C1 can generically be put in Weierstrass
form

y2 = 4x3 − g2(u)x− g3(u) . (3.12)

The complex structure of this curve is specified by the ratio of the periods of the holomorphic
one-form. Not coincidently, this ratio is denoted as τ . The symplectic basis (ΣA,ΣB) with
regard to which the periods are computed is only defined up to an action of the group
SL(2,Z), and two τ parameters related by the induced SL(2,Z) transformation determine
the same complex structure. Due to this degeneracy, a more convenient parametrization of
the complex structure is given by the J-invariant of the curve,

J =
g2(u)

3

∆(u)
. (3.13)

∆ here denotes the discriminant of the curve,

∆(u) = g2(u)
3 − 27g3(u)

2 . (3.14)

The relation between J and τ is established by the formula

J(τ) =
E4(τ)

3

E4(τ)3 − E6(τ)2
, (3.15)

where E4 and E6 are Eisenstein series, modular forms of SL(2,Z) of weight 4 and 6 respec-
tively. The modular invariance of J is manifest in this formula.

The curve is singular over points on moduli space at which the J-invariant is infinite. Aside
from the weak coupling point at u → ∞, this occurs at zeros of the discriminant. Physi-
cally, singularities in the interior of moduli space correspond to points at which particles are
becoming massless [45, 46]. Generically, periods undergo monodromy upon circling singular-
ities. According to the theory of Picard-Fuchs equations applied to elliptic curves, a unique
period (corresponding to a choice of cycle in H1(C1,Z)) exists at each such singularity that
does not undergo monodromy, the so-called constant period. This is the period we call t in
general, and a in the particular case of the singular point at u → ∞. Up to normalization,
this period is uniquely determined to be

dt

du
= c1

√
g2(u)

g3(u)

E6(τ)

E4(τ)
= 3

1
4 c1

4

√
E4(τ)

g2(u)
. (3.16)

To obtain the period a, the physical boundary condition (3.6) must be imposed.

Given these formulae, we can hence compute the prepotential F (0,0) following the second
method outlined at the end of subsection 3.3.1: we first use (3.13) and (3.15) to express τ
(i.e. an appropriate representative of the SL(2,Z) orbit of the complex structure parameter)
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in terms of the variables parametrizing the Seiberg-Witten curve of the theory. Generically,
this will yield τ in a power series expansion in these variables. Substituting τ(u) into (3.16)
allows us to determine t(u). Inverting this relation and substituting yields τ(t), from which
we can finally compute the prepotential by integrating twice,

F (0,0) ∼
∫ t

dt

∫ t

dt τ . (3.17)

3.3.3 Modularity

The direct integration of the holomorphic anomaly equations [47] relies on the following
two observations. Firstly, the equations are formulated with regard to local variables on
moduli space. The effective coupling parameter τ is such a variable. We have seen that as
a function of the global coordinate u, τ is multivalued; it transforms under the monodromy
group Γ ⊂ SL(2,Z) upon circling singularities in the moduli space. As physical quantities
such as the refined topological amplitudes F (n,g) for n+g > 1 (for the three remaining cases,
only the derivatives have physical significance) should be unique functions of u (otherwise
the true moduli space of the theory would be a cover of the u-plane), we can conclude that
such quantities expressed as functions of τ must be invariant under the monodromy group
Γ. Secondly, the point of departure for formulating the holomorphic anomaly equations is
the non-holomorphicity of the F (n,g). Using the propagator method introduced in [41], one
can argue that the non-holomorphicity of these quantities can be captured by expressing
them as polynomials in 1

τ2
, τ2 = Im τ , with holomorphic functions as coefficients. Combining

these two observations, it is natural to attempt to express the F (n,g) in terms of almost
holomorphic modular forms [48] for the monodromy group Γ. These are modular forms under
Γ ⊂ SL(2,Z) that are polynomials in 1

τ2
with coefficients that are holomorphic functions of

τ . They form the ring M̂(Γ). The simplest representative of this class of functions is the
modular completion Ê2 of the second Eisenstein series E2,

Ê2(τ, τ̄) = E2(τ)−
3

πτ2
. (3.18)

In fact, this function can be used to provide a second definition of almost holomorphic
modular forms: they are polynomials in Ê2 with coefficients that are holomorphic modular
forms (the equivalence of these two definitions is the content of Prop. 20 in [48]). A closely

related class of functions is obtained by mapping Ê2 to E2, giving rise to the ring M̃(Γ) of
quasi-modular forms. They exhibit holomorphic dependence on the modular parameter, yet
transform in a complicated fashion due to the modular anomaly of E2. As the rings M̂(Γ) and

M̃(Γ) are isomorphic, we will use the two notions interchangeably in the following without
further comment.

Taking the anti-holomorphic derivative in (3.2) with regard to the coordinate τ̄ and invoking
(3.18), and taking the derivatives on the right-hand side of the equation with regard to the
flat coordinate a, yields the equation [49]

24
∂F (n,g)

∂Ê2

= c0
(∂2F (n,g−1)

∂a2
+
∑

m,h

′∂F (m,h)

∂a

∂F (n−m,g−h)

∂a

)
. (3.19)

25



To obtain expressions valid globally on moduli space, we replace the a with u derivatives
and arrive at

24
∂F (n,g)

∂X
= c0

g2(u)

g3(u)

E6

E4

[(du

da

)2
∂2F (n,g−1)

∂u2
+

d2u

da2
∂F (n,g−1)

∂u

+

(
du

da

)2∑

m,h

′∂F (m,h)

∂u

∂F (n−m,g−h)

∂u

]
. (3.20)

We have here introduced the variable

X =
g3(u)

g2(u)

E2(τ)E4(τ)

E6(τ)
. (3.21)

This proves computationally convenient, as the derivatives occurring in (3.20), with recourse
to (3.16) and upon invoking the Ramanujan identities, have handy expressions in terms of
low order polynomials in X. Taking the n+ g = 1 amplitudes,

F (0,1) = −1

2
log(Guū|∆| 13 ) , (3.22)

F (1,0) =
1

24
log(∆) , (3.23)

as point of departure, it is easy to derive the general form of the amplitudes F (n,g) via
induction to be

F (n,g) =
1

∆2(g+n)−2(u)

3g+2n−3∑

k=0

Xkp
(n,g)
k (u) . (3.24)

Here, p
(n,g)
k (u) are polynomials in derivatives of g2(u) and g3(u). The holomorphic anomaly

equations fix all of these, with the exception of p
(n,g)
0 , the holomorphic ambiguity alluded

to above. Requiring the finiteness of F (n,g) as u → ∞ constrains the degree of p
(n,g)
0 (u) as

polynomials in u, resulting in a finite number of coefficients that need to be fixed at each
(n, g).

3.3.4 BPS states and fixing the holomorphic ambiguity

The holomorphic anomaly equations manifestly do not contain sufficient information to fix
the purely holomorphic part of the amplitudes F (n,g). We fix these with recourse to the inter-
pretation of Ztop as a counting function of BPS particles, on which the parametrization (2.1)
and its refinement relies [50, 51, 44]. Note that unlike the holomorphic anomaly equations,
this input follows from target space, not worldsheet considerations.

The argument relies on the fact that, for generic masses of the matter fields in the theory,
a single BPS particle is becoming massless at a singularity of the curve C1 at which its
discriminant vanishes. The constant period (3.16) vanishes at such points. Expanding the
contribution to the BPS counting function stemming from a single particle around t = 0
yields the result

F (n,g) =
N (n,g)

t2(g+n)−2
+O(t0) , (3.25)
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where the N (n,g)’s are fixed fractions. We emphasize that this result does not require further
knowledge of the BPS spectrum (this would be akin to knowing Ztop), as each singularity, for
a generic choice of mass parameters, is due to a single particle. The absence of subleading
poles in t is referred to as the gap condition [52, 53]. A counting argument demonstrates
that the constraints imposed by this condition at all singularities are sufficient to fix the
holomorphic ambiguity [50, 44].

3.4 The SU(2) N = 4 theory and its deformation to N = 2∗

Coupling N = 2 SU(2) gauge theory to a massless adjoint matter multiplet enhances the
supersymmetry of the theory to N = 4. The resulting gauge theory is superconformal.
This modifies the nature of the parametrization of the Seiberg-Witten curve, compared to
asymptotically free cases. For the latter, the ultraviolet gauge coupling can be replaced, via
dimensional transmutation, by a scale Λ. Demanding that the Seiberg-Witten curve remain
finite both in the massless and the Λ → 0 limit constrains its dependence on Λ to be poly-
nomial, for dimensional reasons. By contrast, an arbitrary holomorphic dependence of the
curve on the ultraviolet gauge coupling τUV is a priori allowed in the case of superconformal
theories. The theory even upon mass deformation (now referred to as N = 2∗) exhibits
S-duality with regard to this parameter, as we will demonstrate. A further particularity of
the superconformal case is that the maximal none-vanishing power of X in F (n,g) is g+n−1
rather than 2g + 2n − 3 as in (3.24). In this sense, the holomorphic anomaly is weaker for
such theories.

3.4.1 The Seiberg-Witten curve and the UV gauge coupling

The Seiberg-Witten curve of N = 2∗ was obtained in [45]. It is given by

y2 = (x− e1u− 1

4
e21 m

2)(x− e2u− 1

4
e22 m

2)(x− e3u− 1

4
e23 m

2) . (3.26)

The ei(τ) are the so-called half-periods of the Weierstrass ℘-function. Their occurrence in
the Seiberg-Witten curve is natural when one considers the massless limit of the theory.
The enhanced N = 4 supersymmetry in this limit excludes quantum corrections to the
prepotential. The ultraviolet and infrared gauge coupling hence coincide. Consequently, the
complex structure of the curve (which, as we reviewed above, is identified with the SL(2,Z)
class of the infrared coupling) cannot depend on u. The Seiberg-Witten curve for this theory
can therefore be identified with the generic elliptic curve of complex structure τ obtained
from the relation

℘′2 = 4℘3 − g2℘− g3 (3.27)

by setting y = ℘′, x = ℘. The roots in x of the right-hand side coincide with ℘ evaluated
at the zeros ωi of ℘′, the two-torsion points of the torus. This is the definition of the
half-periods, ei = ℘(ωi).

At finite mass, the prepotential does receive instanton corrections. The argument of the
half-periods in (3.26) is now identified as the ultraviolet gauge coupling τuv of the theory,

27



and no longer coincides with the complex structure of the curve, which exhibits u and m
dependence.

3.4.2 Calculating the amplitudes from the curve

As we mentioned above, the N = 4 supersymmetry that the N = 2∗ theory exhibits in the
massless limit rules out instanton corrections, such that that the prepotential is uncorrected
and given by

F (0,0) ∼
∫ a

da

∫ a

da τ =
1

2
a2 τ . (3.28)

Following the steps outlined in section 3.3.2, the infrared coupling in the massive theory can
be computed to be

2πi τ = log q + 2 log
m2 + 2a2

2a2
+ 6

m4

a4
q +

3m4(24a4 + 80a2m2 + 35m4)

4a8
q2 +O(q3) , (3.29)

with q = e2πiτuv . The prepotential (3.17) is again obtained by integrating twice with regard
to a.

The amplitudes at n + g > 1 are obtained by following the strategy outlined above, with a
slight modification required [44] as the discriminant of the curve (3.26) is a perfect square: as
a consequence, the discriminant vanishes to order two at all singularities of the curve, even
though a single particle is becoming massless at these points. It is natural to identify this
property as the physical manifestation of the presence of adjoint, rather than fundamental,
matter in this theory. We obtain

F (n,g) =
1

∆̃2(g+n)−2(u)

3g+2n−3∑

k=0

Y kp
(n,g)
k (u) , (3.30)

where
Y = (e2 − e1)X (3.31)

and ∆̃ is essentially the square root of the discriminant,

∆̃ = (4u− e1m
2)(4u− e2m

2)(4u− e3m
2) . (3.32)

To convey an impression of the form of these results, we here quote the amplitudes for
n+ g = 2:

p
(2,0)
0 =

37E4
3m10 − 11232E4

2m6u2 − 96E4 (7E6m
8u+ 2376m2u4)− 4E6m

4 (13E6m
6 + 20736u3)

116640
,

p
(2,0)
1 = −(E4m

4 − 144u2)
2

432
,

p
(1,1)
0 =

m2
(
−E4

3m8 + 216E4
2m4u2 + 6E4 (E6m

6u+ 1728u4) + E6m
2 (E6m

6 + 2592u3)
)

2430
,

p
(1,1)
1 =

1

108

(
5E4

2m8 + 288E4m
4u2 + 96E6m

6u+ 20736u4
)
,

p
(1,1)
2 =

1

2

(
144m2u2 − E4m

6
)
,
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p
(0,2)
0 =

m2
(
4E4

3m8 + 216E4
2m4u2 + 18E4 (7E6m

6u− 5184u4) + E6m
2 (E6m

6 − 14688u3)
)

43740
,

p
(0,2)
1 = − 1

54

(
E4

2m8 + 144E4m
4u2 + 24E6m

6u
)
,

p
(0,2)
2 =

3

2
m2
(
E4m

4 − 144u2
)
,

p
(0,2)
3 = −45m4 . (3.33)

Note that the half-periods ei assemble to the Eisenstein series E4 and E6 in these polynomials.
They are functions of the ultraviolet coupling τuv. In contrast, the Eisenstein series entering
in the definition of the variable X are functions of the tau parameter of the Seiberg-Witten
curve, the infrared coupling of the gauge theory.

3.4.3 S-duality

The results we have obtained are invariant under the monodromy group Γ, which acts on the
infrared coupling τ . In addition, the N = 2∗ theory has an S-duality symmetry under the
action of SL(2,Z) on τuv, which induces the same action on τ . Expressing u as a function
of τ and τuv [44],

u =
m2

4

e1(τuv)
2(e2(τ)− e3(τ)) + e2(τuv)

2(e3(τ)− e1(τ)) + e3(τuv)
2(e1(τ)− e2(τ))

e1(τuv)(e2(τ)− e3(τ)) + e2(τuv)(e3(τ)− e1(τ)) + e3(τuv)(e1(τ)− e2(τ))
, (3.34)

we read of the modular weight of u under S-duality to be 2. The half-periods ei transform
as weight 2 modular forms under the subgroup Γ(2) of SL(2,Z) consisting of elements of
SL(2,Z) which are equal to the identity element modulo 2.5 Under the action of the full
modular group, they are in addition permuted amongst themselves.

Assembling all of these transformation properties, we can check the explicit S-duality invari-
ance of our results.

3.4.4 Expressing the N = 2∗ theory in terms of infrared variables

The exact results we obtain for the refined amplitudes F (n,g) for n+ g > 1 are expressed as
functions of a redundant set of variables (u, τuv, τ). We can invert (3.29) to obtain τuv(τ, a)
and then invoke (3.34) to express F (n,g) purely in terms of the infrared variables τ and a.
This is the form in which we will reproduce the amplitudes in section 4.2.3, as a power series
in m

a
. In the massless limit, this procedure can be performed exactly (as τ = τIR) and yields

e.g.

F (2,0) =
E2

3 · 26a2 , F (1,1) = − E2

3 · 24a2 , F (0,2) = 0 , (3.35)

5More on this subgroup in section 4.2.4.
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F (3,0) = − 1

29325a4
(
5E2

2 + 13E4

)
, F (2,1) =

1

28325a4
(
25E2

2 + 29E4

)
,

F (1,2) = − 1

263 · 5a4
(
5E2

2 + E4

)
, F (0,3) = 0 .

3.5 The SU(2) Nf = 4 theory

The discussion of SU(2) gauge theory with the Nf = 4 fundamental flavors is in many
regards similar to that of N = 2∗. The full details can be found in [44]. Here, we only wish
to highlight some differences. While both theories are superconformal and exhibit the same
Seiberg-Witten curve in the massless limit, they are nevertheless not identical even at this
level. This has two causes. The first is physical: the degenerate roots of the discriminant
in the Nf = 4 theory are indeed due to multiple particles becoming massless at these
singularities. Upon generic mass deformation, all zeros become first order. The second is
related to the choice of the ultraviolet coupling. As emphasized in [54], this reflects a choice
of coordinates on the moduli space of marginal couplings of the theory, and is not canonical.
To match the instanton results of Nekrasov, a different choice of ultraviolet coupling must
be made in the Nf = 4 and the N = 2∗ theory: in the case of N = 2∗, the argument of the
half-periods ei appearing in the Seiberg-Witten curve is identified with τuv; the appropriate
choice in the Nf = 4 theory is [47]

e2πiτuv =
e3 − e2
e1 − e2

. (3.36)

While there is a systematics underlying this choice which we shall touch upon in section
4.2.4, a first principles justification is still lacking.

30



4 AGT and Ztop

In [29], a remarkable conjecture was put forward relating four dimensional superconformal
N = 2 SU(2) quiver gauge theories to two dimensional Liouville conformal field theory.
This conjecture goes by the name of the AGT correspondence, the initials of the authors
of [29]. The underlying intuition stems from considering an M5 brane on a six dimensional
manifold which is the cross product of the four dimensional spacetime of the gauge theory and
the two dimensional Riemann surface on which the conformal field theory is defined. Four
dimensional gauge theories that can be obtained in this fashion are referred to as theories
of class S [55]. By taking the volume of one or the other factor to be small, distinguished
quantities in the effective M5 brane theory can be calculated in either a four dimensional or a
two dimensional effective theory, and the corresponding observables of the four dimensional
and two dimensional theory must hence coincide. As the M5 brane theory is only poorly
understood, this reasoning furnishes useful intuition (also for analogous conjectures based
on other partitions of six), but does not provide a detailed dictionary, or qualify as a proof
of the correspondence. In [56], a proof has been proposed based on the argument that the
respective objects in two and in four dimensions are solutions to the same Riemann-Hilbert
problem.

The bridge between the AGT correspondence and the topological string in the field the-
ory limit is established via geometric engineering, which we already encountered in section
2.5.2, as the instanton partition functions of the superconformal field theories in question can
be computed via the field theory limit of the topological string on appropriate geometries.
Studying the topological string from the vantage point of this correspondence promises to be
fruitful for at least two reasons. For one, Ztop on different geometries maps to different ob-
servables in the same conformal field theory, a unifying perspective. And secondly, whether
via the original definition (1.2) or the index definition leading to (2.1), Ztop is defined as a
formal power series, either in the string coupling or Kähler parameters. In contrast, confor-
mal blocks, the AGT dual to Ztop, are analytic functions, away from poles and branchcuts,
in all of their parameters. In studying how to recover the topological string expansions
from conformal field theory, we can thus hope to learn how to move beyond these formal
expansions.

To drop the caveat in the field theory limit, the correspondence needs to be extended to a
q-deformed version of conformal field theory, based on a deformed Virasoro algebra [57], as
initiated in [58, 59, 60].

In the papers [61, 62], Troost and I studied two instances of the AGT correspondence in
detail, corresponding to N = 2∗ and Nf = 4 Seiberg-Witten theory. The dual conformal
field theory quantities are the one-point block on the torus and the four-point block on the
sphere. Our principal goals were to recover the genus expansion of the topological string
partition function from the conformal field theory perspective, and to uncover how quasi-
modularity arises in the conformal field theory approach.
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4.1 Relevant notions in conformal field theory

4.1.1 Conformal blocks

Conformal blocks are universal chiral building blocks of conformal field theory n-point func-
tions. They are completely determined by the Virasoro algebra. Thus, on the torus, the
one-point function

〈Vhm
〉τ = TrVhm

qL0−
c
24 q̄L̄0−

c
24 (4.1)

can be expressed as a sum over holomorphically factorized contributions

〈Vhm
〉τ =

∑

h

Ch
hm,h(qq̄)

h− c
24 |Fh

hm
(q)|2 . (4.2)

The conformal blocks Fh
hm

(q) are meromorphic functions of the Teichmüller parameter τ of
the one-punctured torus (by translation invariance, the position of the insertion is irrelevant),
as well as of the weight hm of the insertion, and the summation parameter h, the so-called
intermediate weight. This sum extends over all primary weights occurring in the trace (4.1).
The sum over all descendants is incorporated in the respective conformal blocks.6 Note
that the dynamical information of the conformal field theory is encoded purely in the three-
point function Ch

hm,h, which in particular determines the range of the sum over intermediate
weights.

To obtain the corresponding expression for the four-point function on the sphere,

C4 = 〈Vh1(z1)Vh2(z2)Vh3(z3)Vh4(z4)〉 , (4.3)

we first use conformal invariance to map three of the four insertion points to 0, 1, and ∞
respectively. The final point is then mapped to the so-called cross-ratio

x =
(z3 − z4)(z2 − z1)

(z3 − z1)(z2 − z4)
, (4.4)

which can serve as a coordinate on the Teichmüller space of the four-punctured sphere. By
performing this transformation, we can express C4 as

C4 =

∣∣∣∣
(z4 − z1)(z2 − z1)

z2 − z4

∣∣∣∣
2
∑

hi∏

i 6=1

|zi − z1|−4hi lim
z→z1

|z − z1|−4h1〈Vh1(z
′(z))Vh2(1)Vh3(x)Vh4(0)〉

=

∣∣∣∣
(z4 − z1)(z2 − z1)

z2 − z4

∣∣∣∣
2
∑

hi−4h1∏

i 6=1

|zi − z1|−4hi G1234(x) . (4.5)

The quantity G, defined as

G1234(x) = lim
z→z1

|(z′(z)|4h1〈Vh1(z
′(z))Vh2(1)Vh3(x)Vh4(0)〉 = 〈h1|Vh2(1)Vh3(x)|h4〉 , (4.6)

6We will recall the notion of primary and descendant states in the next subsection.
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is then decomposed analogously to (4.2) as

G1234(x) =
∑

h

C12hC
h
34F23

14 (h|x)F̄23
14 (h|x̄) . (4.7)

The conformal blocks F23
14 (h|x) again depend meromorphically on the Teichmüller parameter,

the weights of all insertions h1, . . . , h4, and the intermediate weight h. The sum over h here
arises upon considering the operator product expansion of Vh3(x) and Vh4(0). It hence
extends over all primary states occurring in this OPE.

From the derivation of the holomorphic factorization of n-point functions [63], the com-
putation of conformal blocks order by order in power of the Teichmüller parameter is a
straightforward but tedious algorithmic exercise. This computation can be simplified by re-
lying on recursion relations [64, 65] satisfied by the blocks. In the current context of relating
to the genus expansion of the instanton partition function, such recursions were studied in
[61]. Here, we wish to discuss a method which permits the computation of all order results
in the Teichmüller parameter, and thus permits reproducing the quasi-modular results of
section 3.4.4. This method relies on imposing null vector decoupling on the conformal field
theory correlators.

4.1.2 Null vector decoupling

The sums that appear in the equations (4.2) and (4.7) are over the weights of primary states
in the spectrum of the conformal field theory in question. A primary state |h〉 is an eigenstate
of the Virasoro generator L0, L0|h〉 = h|h〉, that is annihilated by all positive mode Virasoro
generators, Ln|h〉 = 0 for n > 0. Descendant states are obtained by acting with an arbitrary
number of negative mode Virasoro generators Ln, n < 0, on the primary state,

∏
L−ki |h〉.

The sum l =
∑

i ki is the level of the descendant, its weight is easily seen to be h + l. The
vector space spanned by a primary state together with all of its descendants is referred to as
a Verma module. It furnishes a representation space of the Virasoro algebra. If a descendant
of the primary is itself primary, i.e. is annihilated by all positive mode Virasoro generators,
then this representation is reducible. Such descendant states are referred to as null vectors.
Primary states that exhibit null vectors in their Verma modules are called degenerate. They
have been classified. They occur in a family parametrized by two positive integers m and n,
and their weights are given by

hmn =
Q2

4
− 1

4
(mb+ n

1

b
)2 . (4.8)

The parameter Q = b + 1
b
is related to the central charge c of the Virasoro algebra via

c = 1 + 6Q2. Correlators involving null vectors can consistently be set to zero. This
is referred to as null vector decoupling. Setting these correlators to zero will not modify
correlators with states of smaller level, as any attempt to lower the level of the null vector
by acting on it with a positive mode Virasoro generator will annihilate it.

As the Virasoro generators act within correlators as differential operators, correlators with
degenerate insertions satisfy differential equations, called null vector decoupling equations.

33



The order of the differential equation coincides with the level of the null vector. The null
vector decoupling equation of the four-point function with an additional degenerate insertion
V(2,1) at level 2 is immediate to write down,

[
∂2
z + b2

(
3∑

k=0

hk

(z − zk)2
+

∂k
z − zk

)]
〈V(2,1)(z)Vh0(z0) . . . Vh3(z3)〉 = 0 . (4.9)

The analogous equation for the one-point function requires invoking the conformal Ward
identity on the torus [66]. It is given by

[ 1
b2
∂2
z + (2η1z − ζ(z))∂z + 2πi∂τ + 2h21η1 + hm(℘(z) + 2η1)

]
Z〈V(2,1)(z)Vhm

(0)〉 = 0 . (4.10)

Here, Z is the partition function on the torus, ℘ is the Weierstrass ℘-function, ζ is its
primitive, ζ ′(z) = −℘(z), and η1 =

π2

6
E2.

These differential equations are satisfied by the full correlator. To isolate the contribution
from a conformal block of a given intermediate weight, we need to impose the appropriate
boundary conditions on the solution: the monodromy of the solution as the insertion point
of the degenerate operator circles the origin, or the origin and x, in the case of the torus
and the spherical block respectively. This is determined by considering the operator product
expansion of the degenerate operator with the operator Vh, which, as described above, occurs
either directly in the trace (4.1), or in the OPE of Vh3 and Vh4 when evaluating (4.3):

V(2,1)(z)Vh(x) = C
h+

h21,h
(z − x)h+−h21−h

(
Vh+(x) + . . .

)
(4.11)

+C
h−

h21,h
(z − x)h−−h21−h (V−(x) + . . .) .

Note that the OPE of the degenerate operator V(2,1) with any other operator involves only
two primaries. Using the standard parametrization of weights in terms of Liouville momenta
α,

h = α(Q− α) , (4.12)

the Liouville momenta of these primaries are given by α± = α± b
2
. The . . . in the parentheses

above indicate a power series in z. The monodromy in z is hence determined entirely by the
exponent h± − h21 − h.

The presentation up to this point is exact. What we have arrived at is a differential equation
and boundary conditions to determine the two-point block on the torus and the five-point
block on the sphere respectively. To extract from these results the conformal blocks of inter-
est, the contribution of the degenerate operator needs to be identified. This is only possible
in a limit of parameter space where the ratio of the weights of the original insertions to that
of the degenerate operator goes to infinity, as we discuss below in subsection 4.2.2.
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4.2 The genus expansion and modularity

4.2.1 The AGT dictionary

Having reviewed the necessary notions of conformal field theory, we are now ready to present
the AGT dictionary: the weights of the insertions of the conformal blocks correspond to the
masses of the flavors of the gauge theory, and the intermediate weights to the vacuum
expectation values of the vector multiplet scalars. The Teichmüller parameters on which the
conformal blocks depend map to coordinates on the space of marginal couplings of the gauge
theory (i.e. ultraviolet couplings). Finally, the central charge of the conformal field theory
can be expressed in terms of the ǫ-parameters of the gauge theory, which we package into
the two couplings g2s = ǫ1ǫ2 and s = (ǫ1 + ǫ2)

2. In formulae,

b2 =
ǫ2
ǫ1

, hm =
Q2

4
− m2

ǫ1ǫ2
, h =

Q2

4
− a2

ǫ1ǫ2
. (4.13)

As the ǫ-parameters also enter in the dictionary relating weights on the one side of the
correspondence to masses and vacuum expectation values on the other, the small ǫ limit,
which we will refer to as the genus expansion limit, implies taking all weights to be large.
Note that this does not yet imply a particular limit for b, hence for the central charge c.

4.2.2 The factorization limit

For the null vector decoupling equations to be useful for our purposes, we need to be able to
extract the blocks of interest from the solutions of these equations, which yield these blocks
with the additional insertion of a degenerate field. This can be achieved, but at the price
of taking the semi-classical limit b → 0, equivalent via (4.13) to ǫ2 ≪ ǫ1. In this limit,
one can argue using the tools of Liouville theory (though the result must be general, as
conformal blocks are universal objects) that conformal blocks factorize when one considers
heavy (α −−→

b→0
∞) and light (α −−→

b→0
0) insertions simultaneously (see e.g. [67] for a lucid

exposition). The intuition behind this factorization is that in the semi-classical limit, heavy
insertions backreact on the classical Liouville metric, while the contribution of light insertions
can be approximated by multiplicative factors.

The parametrization (4.13) of the weights of the insertions implies that at finite m, these
scale towards infinity in the semi-classical limit. By contrast, the Liouville momentum
α(2,1) = −b/2 of the degenerate operator V(2,1) identifies it as a light insertion. We will thus
be able to factor out its contribution to the block semi-classically.
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4.2.3 The torus one-point block

Let us now apply the computational strategy outlined above to the torus one-point block.
With the ansatz

Z〈V(2,1)(z)Vhm
(0)〉τ = θ1(z|τ)

b2

2 η(τ)2(hm−b2−1)Ψ(z|τ) , (4.14)

the null vector decoupling equation (4.10) takes the form of a holomorphic Schrödinger
equation: [

−∂2
z −

(1
4
− 1

ǫ21
m2
)
℘(z)

]
Ψ(z|τ) = ǫ2

ǫ1
2πi∂τΨ(z|τ) . (4.15)

In accord with the factorization property in the semi-classical limit,

〈V(2,1)(z, z̄)Vhm
(0)〉 ≈ e−

1
2
φcl(z,z̄)〈Vhm

(0)〉 , (4.16)

we make the following ansatz for Ψ:

Ψ(z|τ) = exp

[
1

ǫ1ǫ2
F(τ) +

1

ǫ1
W(z|τ)

]
. (4.17)

The boundary condition which follows from the discussion around (4.11) now translates
into

W(z + 1)−W(z) = ±2πia , (4.18)

and the solution of the differential equation with the boundary condition imposed will yield
the sought after conformal block exp 1

ǫ1ǫ2
F(τ).

To solve the equation, we make the formal ansatz

F(τ) =
∞∑

n=0

Fn(τ)ǫ
n
1 , W(z|τ) =

∞∑

n=0

Wn(z|τ)ǫn1 . (4.19)

The AGT correspondence predicts F (n,0) = F2n. Note that introducing a second expansion
in ǫ2 would not longer permit the distinction between F and W based on the leading ǫ2
behavior exhibited in (4.17). Until we find an alternative criterium for separating the two,
we must hence work in the gs = 0 limit.

We arrive at the following system of equations to determine Fn and Wn:

−W ′
0
2
+m2℘ = (2πi)2q∂qF0 , (4.20)

−W ′′
0 − 2W ′

0W ′
1 = (2πi)2q∂qF1 ,

−W ′′
1 −W ′

1
2 − 2W ′

0W ′
2 −

1

4
℘(z) = (2πi)2q∂qF2 ,

−W ′′
n −

n+1∑

i=0

W ′
iW ′

n+1−i = (2πi)2q∂qFn+1 for n ≥ 2 ,

together with the boundary condition
∮

A

W ′
0 = ±2πia ,

∮

A

W ′
i = 0 for i > 0 , (4.21)
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where the subscript A indicates the integral over the A-cycle of the torus defined by the
lattice spanned by the lattice vectors (0, 1) and (0, τ).

The recursive solution of these equations in a m
a
expansion is straightforward. It requires

evaluating integrals of the form
∮
A
℘n. These can be evaluated recursively [68, 69]. They

take values in the ring M̃(SL(2,Z)) of quasi-modular forms encountered in subsection 3.3.3.

The computation thus naturally leads to modular expressions for ∂τFn. M̃(SL(2,Z)) is not
closed under integration however. For its elements to integrate to quasi-modular forms, the
coefficients must satisfy algebraic constraints which follow from the Ramanujan identities.
In [61], we verified experimentally that these constraints are met up to a given order of
computation. The proof of this property [70] follows upon uncovering the special geometry
underlying the equation (4.15), as we outline in section 4.2.5 below. To give a flavor of the
results one encounters, let us reproduce the following few amplitudes here:

F2 = − log η

2
− E2

253

m2

a2
+O((

m2

a2
)2) , (4.22)

F4 =
E2

283a2
+

(5E2
2 + 9E4)

293 · 5a2
m2

a2
+O((

m2

a2
)2) ,

F6 = −5E2
2 + 13E4

213325a4
− (35E3

2 + 168E2E4 + 355E6)

214347a4
m2

a2
+O((

m2

a2
)2) .

Up to a rescaling of a, these coincide with the results (3.35) obtained via the holomorphic
anomaly equations.

4.2.4 The spherical four-point block

The occurrence of modularity in the computation of the one-point toric block is perhaps
ultimately not surprising (though it had not been observed prior to [61]), given the torus
underlying the problem. Indeed, as we witnessed above, quasi-modular forms arise upon
integration of the Weierstrass ℘-function, in terms of which the Ward identities on a torus
are naturally formulated. The occurrence of modularity in the spherical four-point block
might naively appear less obvious. However, when formulated in the correct variables, the
computation of the four-point block is in fact very similar to the toric case.

We can motivate the appropriate choice of variables as follows. Above, we introduced the
cross ratio x as a representative of the class of four insertion points (z1, z2, z3, z4) acted upon
by global conformal transformations, and expressed the spherical block as a function of x.
This variable takes values on the three punctured sphere. To move the punctures to a more
convenient location, we can instead consider the parametrization

x =
e3 − e2
e3 − e1

(τ) , (4.23)

with the ei the half-periods of the Weierstrass ℘-function already encountered above. The
right-hand side is invariant under the action of Γ(2) ⊂ SL(2,Z) introduced in subsection
3.4.3. We have hence mapped the moduli space to τ ∈ H/Γ(2), and the punctures to the
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cusps of this domain. The permutations of the insertion points zi, which act as rational
transformations on x, are realized by the action of S3

∼= SL(2,Z)/Γ(2) on τ . From these
considerations, it is natural to expect modular behavior of the spherical conformal block
under Γ(2) when it is expressed as a function of τ .

Motivated by (4.23), we introduce a 2:1 map from the torus to the sphere via [71]

z =
℘(u)− e3
e1 − e3

. (4.24)

In terms of this coordinate, the null vector decoupling equation (4.9) takes the form [72]
(
∂2
u + 4b2

3∑

i=0

ĥi℘(u+ ωi)

)
Ψ(u|τ) = −4πib2∂τΨ(u|τ) , (4.25)

with ωi the two-torsion points of the torus introduced in subsection 3.4.1, and

ĥi = hi −
b2

4
− 3

16b2
− 1

2
. (4.26)

Ψ(u|τ) is related to the five-point correlator via a somewhat complicated prefactor [62],
which however modifies the semi-classical expansion of the conformal block only at leading
and subleading order in ǫ1. Comparing to (4.15), the similarity of this problem to the
computation of the one-point block is manifest. Computationally, a slight generalization of
the period integrals of powers of the Weierstrass ℘-function is required [62]. This again leads
to expressions for Fn in terms of quasi-modular forms that coincide with the computations
presented in the previous section based on the holomorphic anomaly.

4.2.5 Seiberg-Witten and quantum geometry from null vector decoupling

The results we obtained above are modular in the Teichmüller parameter of the punctured
Riemann surface associated to the conformal block in question. By the AGT dictionary, this
parameter corresponds to the ultraviolet coupling of the dual gauge theory. This modularity
is thus a reflection of the S-duality of the gauge theory as described in subsection 3.4.3
above. The modularity underlying the exact results of section 3.4 in contrast is based on
the monodromy group of the gauge theory, and the corresponding modular parameter is the
infrared coupling of the gauge theory. In this section, we want to identify this parameter in
conformal field theory [70]. We will argue within the context of N = 2∗ theory.

The entry point once again is the system of equations (4.20) derived from null vector de-
coupling. Reassembling the expansion coefficients, the boundary condition (4.21) can be
expressed as ∫ 1

0

√
m2℘− (2πi)2q∂qF − ǫ1W ′′ − ǫ21

℘

4
dz = ±2πia . (4.27)

This and all following equalities involving F and W are to be interpreted in the sense of
equalities of formal power series. We show that the integrand

λ =

√
m2℘− (2πi)2q∂qF − ǫ1W ′′ − ǫ21

℘

4
dz (4.28)
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can be interpreted as a deformed Seiberg-Witten differential, in that it satisfies the ǫ-
deformed special geometry relation

∮

B

λ = −1

2

∂F
∂a

. (4.29)

The proof of this relation follows along the lines of the proof of the Riemann bilinear identity,
upon the correct choice of formal differential form. ǫ-deformed special geometry is sometimes
referred to as quantum geometry.

The Riemann surface on which the integrals are to be performed follows by considering the
leading ǫ1 contribution

λ0 =
√

m2℘− u dz , u := 2πi ∂τF0 (4.30)

to λ. The square root is single-valued on the genus 2 surface defined by

t2 = m2℘− u , (4.31)

the double cover of the definition domain of ℘. Two holomorphic one-forms exist on this
surface. One yields the ultraviolet coupling of the gauge theory as the ratio of its B to its
A period (relative to one sheet, the periods on the second sheet merely differ in sign), the
other the infrared coupling. The relation of the curve (4.31) to N = 2∗ theory was already
pointed out in [73]. We thus reproduce all of the Seiberg-Witten data from within conformal
field theory.

Finally, notice that the relation (4.29) provides the missing argument proving the quasi-
modularity of F , as the period integrals of λ are manifestly quasi-modular.
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5 Perspectives

As promised in the introduction, we have seen that the passage from the physical to the
topological string enhances our command of the theory dramatically, giving rise to a variety
of computational techniques leading to all order results in gs or the Kähler parameters for
Ztop. The AGT correspondence presents a promising avenue towards studying the nature of
the remaining series expansions, and the analytic properties of Ztop. Much work remains to
be done: to elevate the results of the previous section past g = 0, to move away from the field
theory limit, to generalize away from geometric engineering geometries. At the end of this
path, a q-deformed version of conformal field theory beckons that has Ztop on arbitrary toric
geometries as its observables. Whether this will shed light on the ultimate goal of finding
a non-perturbative completion of perturbative string theory remains to be seen, but we are
guaranteed to encounter much intricate and beautiful structure along the way.

Acknowledgments

I would like to thank all of my colleagues with whom I have had the good fortune to col-
laborate and discuss physics over the last fifteen years, the members of my thesis committee
for agreeing to the task, and, as always, my family for their love and support.

40



Bibliography

[1] R. Gopakumar and C. Vafa, “M theory and topological strings. 1.,”
arXiv:hep-th/9809187 [hep-th].

[2] R. Gopakumar and C. Vafa, “M theory and topological strings. 2.,”
arXiv:hep-th/9812127 [hep-th].

[3] E. Witten, “Chern-Simons gauge theory as a string theory,” Prog.Math. 133 (1995)
637–678, arXiv:hep-th/9207094 [hep-th].

[4] M. Aganagic, M. Marino, and C. Vafa, “All loop topological string amplitudes from
Chern-Simons theory,” Commun.Math.Phys. 247 (2004) 467–512,
arXiv:hep-th/0206164 [hep-th].

[5] J. Labastida and M. Marino, “Polynomial invariants for torus knots and topological
strings,” Commun.Math.Phys. 217 (2001) 423–449, arXiv:hep-th/0004196
[hep-th].

[6] H. R. Morton and S. G. Lukac, “The Homfly polynomial of the decorated Hopf link,”
J. Knot Theory Ramifications 12 (2003) no. 3, 395–416.
http://dx.doi.org/10.1142/S0218216503002536.

[7] R. Gopakumar and C. Vafa, “Topological gravity as large N topological gauge
theory,” Adv.Theor.Math.Phys. 2 (1998) 413–442, arXiv:hep-th/9802016 [hep-th].

[8] W. Fulton, Introduction to toric varieties, vol. 131 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in
Geometry.

[9] D.-E. Diaconescu, B. Florea, and A. Grassi, “Geometric transitions and open string
instantons,” Adv.Theor.Math.Phys. 6 (2003) 619–642, arXiv:hep-th/0205234
[hep-th].

[10] H. Ooguri and C. Vafa, “World sheet derivation of a large N duality,” Nucl.Phys.

B641 (2002) 3–34, arXiv:hep-th/0205297 [hep-th].

[11] A. Iqbal and A.-K. Kashani-Poor, “Instanton counting and Chern-Simons theory,”
Adv.Theor.Math.Phys. 7 (2004) 457–497, arXiv:hep-th/0212279 [hep-th].

[12] A. Iqbal and A.-K. Kashani-Poor, “The Vertex on a strip,” Adv.Theor.Math.Phys. 10

(2006) 317–343, arXiv:hep-th/0410174 [hep-th].

[13] T. Eguchi and H. Kanno, “Topological strings and Nekrasov’s formulas,” JHEP 0312

(2003) 006, arXiv:hep-th/0310235 [hep-th].

[14] S. H. Katz, A. Klemm, and C. Vafa, “Geometric engineering of quantum field
theories,” Nucl. Phys. B497 (1997) 173–195, arXiv:hep-th/9609239.

[15] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,”
Adv.Theor.Math.Phys. 7 (2004) 831–864, arXiv:hep-th/0206161 [hep-th].

41

http://arxiv.org/abs/hep-th/9809187
http://arxiv.org/abs/hep-th/9812127
http://arxiv.org/abs/hep-th/9207094
http://dx.doi.org/10.1007/s00220-004-1067-x
http://arxiv.org/abs/hep-th/0206164
http://dx.doi.org/10.1007/s002200100374
http://arxiv.org/abs/hep-th/0004196
http://arxiv.org/abs/hep-th/0004196
http://dx.doi.org/10.1142/S0218216503002536
http://dx.doi.org/10.1142/S0218216503002536
http://arxiv.org/abs/hep-th/9802016
http://arxiv.org/abs/hep-th/0205234
http://arxiv.org/abs/hep-th/0205234
http://dx.doi.org/10.1016/S0550-3213(02)00620-X
http://dx.doi.org/10.1016/S0550-3213(02)00620-X
http://arxiv.org/abs/hep-th/0205297
http://dx.doi.org/10.4310/ATMP.2003.v7.n3.a4
http://arxiv.org/abs/hep-th/0212279
http://dx.doi.org/10.4310/ATMP.2006.v10.n3.a2
http://dx.doi.org/10.4310/ATMP.2006.v10.n3.a2
http://arxiv.org/abs/hep-th/0410174
http://dx.doi.org/10.1088/1126-6708/2003/12/006
http://dx.doi.org/10.1088/1126-6708/2003/12/006
http://arxiv.org/abs/hep-th/0310235
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://arxiv.org/abs/hep-th/9609239
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161


[16] A. Losev, N. Nekrasov, and S. L. Shatashvili, “Issues in topological gauge theory,”
Nucl.Phys. B534 (1998) 549–611, arXiv:hep-th/9711108 [hep-th].

[17] A. Losev, N. Nekrasov, and S. L. Shatashvili, “Testing Seiberg-Witten solution,”.

[18] F. Fucito, J. F. Morales, and A. Tanzini, “D instanton probes of non conformal
geometries,” JHEP 0107 (2001) 012, arXiv:hep-th/0106061 [hep-th].

[19] N. Dorey, T. J. Hollowood, and V. V. Khoze, “The D instanton partition function,”
JHEP 0103 (2001) 040, arXiv:hep-th/0011247 [hep-th].

[20] T. J. Hollowood, “Calculating the prepotential by localization on the moduli space of
instantons,” JHEP 0203 (2002) 038, arXiv:hep-th/0201075 [hep-th].

[21] A. Iqbal and A.-K. Kashani-Poor, “SU(N) geometries and topological string
amplitudes,” Adv.Theor.Math.Phys. 10 (2006) 1–32, arXiv:hep-th/0306032
[hep-th].

[22] A. E. Lawrence and N. Nekrasov, “Instanton sums and five-dimensional gauge
theories,” Nucl.Phys. B513 (1998) 239–265, arXiv:hep-th/9706025 [hep-th].

[23] M. Aganagic, A. Klemm, M. Marino, and C. Vafa, “The Topological vertex,”
Commun.Math.Phys. 254 (2005) 425–478, arXiv:hep-th/0305132 [hep-th].

[24] A. Iqbal, C. Kozcaz, and C. Vafa, “The Refined topological vertex,” JHEP 0910

(2009) 069, arXiv:hep-th/0701156 [hep-th].

[25] N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four
Dimensional Gauge Theories,” arXiv:0908.4052 [hep-th].

[26] I. Antoniadis, I. Florakis, S. Hohenegger, K. Narain, and A. Zein Assi, “Worldsheet
Realization of the Refined Topological String,” Nucl.Phys. B875 (2013) 101–133,
arXiv:1302.6993 [hep-th].

[27] T. Dimofte and S. Gukov, “Refined, Motivic, and Quantum,” Lett.Math.Phys. 91

(2010) 1, arXiv:0904.1420 [hep-th].

[28] J. Choi, S. Katz, and A. Klemm, “The refined BPS index from stable pair invariants,”
arXiv:1210.4403 [hep-th].

[29] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from
Four-dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197,
arXiv:0906.3219 [hep-th].

[30] A. Okounkov, N. Reshetikhin, and C. Vafa, “Quantum Calabi-Yau and classical
crystals,” Progr.Math. 244 (2006) 597, arXiv:hep-th/0309208 [hep-th].

[31] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New York, second ed.,
1995. With contributions by A. Zelevinsky, Oxford Science Publications.

[32] B. Eynard, A.-K. Kashani-Poor, and O. Marchal, “A Matrix Model for the
Topological String I: Deriving the Matrix model,” arXiv:1003.1737 [hep-th].

42

http://dx.doi.org/10.1016/S0550-3213(98)00628-2
http://arxiv.org/abs/hep-th/9711108
http://dx.doi.org/10.1088/1126-6708/2001/07/012
http://arxiv.org/abs/hep-th/0106061
http://dx.doi.org/10.1088/1126-6708/2001/03/040
http://arxiv.org/abs/hep-th/0011247
http://dx.doi.org/10.1088/1126-6708/2002/03/038
http://arxiv.org/abs/hep-th/0201075
http://dx.doi.org/10.4310/ATMP.2006.v10.n1.a1
http://arxiv.org/abs/hep-th/0306032
http://arxiv.org/abs/hep-th/0306032
http://dx.doi.org/10.1016/S0550-3213(97)00694-9
http://arxiv.org/abs/hep-th/9706025
http://dx.doi.org/10.1007/s00220-004-1162-z
http://arxiv.org/abs/hep-th/0305132
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://arxiv.org/abs/hep-th/0701156
http://arxiv.org/abs/0908.4052
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.004
http://arxiv.org/abs/1302.6993
http://dx.doi.org/10.1007/s11005-009-0357-9
http://dx.doi.org/10.1007/s11005-009-0357-9
http://arxiv.org/abs/0904.1420
http://arxiv.org/abs/1210.4403
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/hep-th/0309208
http://arxiv.org/abs/1003.1737


[33] B. Eynard, A.-K. Kashani-Poor, and O. Marchal, “A Matrix model for the topological
string II. The spectral curve and mirror geometry,” Annales Henri Poincare 14 (2013)
119–158, arXiv:1007.2194 [hep-th].

[34] V. Bouchard, A. Klemm, M. Marino, and S. Pasquetti, “Remodeling the B-model,”
Commun.Math.Phys. 287 (2009) 117–178, arXiv:0709.1453 [hep-th].

[35] B. Eynard and N. Orantin, “Invariants of algebraic curves and topological expansion,”
Commun.Num.Theor.Phys. 1 (2007) 347–452, arXiv:math-ph/0702045 [math-ph].

[36] L. Chekhov, A. Marshakov, A. Mironov, and D. Vasiliev, “DV and WDVV,”
Phys.Lett. B562 (2003) 323–338, arXiv:hep-th/0301071 [hep-th].

[37] B. Eynard, M. Marino, and N. Orantin, “Holomorphic anomaly and matrix models,”
JHEP 0706 (2007) 058, arXiv:hep-th/0702110 [HEP-TH].

[38] B. Eynard and N. Orantin, “Computation of open Gromov-Witten invariants for toric
Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture,”
arXiv:1205.1103 [math-ph].

[39] A. Klemm and P. Sulkowski, “Seiberg-Witten theory and matrix models,” Nucl.Phys.

B819 (2009) 400–430, arXiv:0810.4944 [hep-th].

[40] C. Itzykson and J. B. Zuber, “The Planar Approximation. 2,” J. Math. Phys. 21

(1980) 411.

[41] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Kodaira-Spencer theory of
gravity and exact results for quantum string amplitudes,” Commun. Math. Phys. 165

(1994) 311–428, arXiv:hep-th/9309140.

[42] M.-x. Huang and A. Klemm, “Direct integration for general Omega backgrounds,”
arXiv:1009.1126 [hep-th].

[43] D. Krefl and J. Walcher, “Extended Holomorphic Anomaly in Gauge Theory,” Lett.

Math. Phys. 95 (2011) 67–88, arXiv:1007.0263 [hep-th].

[44] M.-x. Huang, A.-K. Kashani-Poor, and A. Klemm, “The Ω deformed B-model for rigid
N = 2 theories,” Annales Henri Poincare 14 (2013) 425–497, arXiv:1109.5728
[hep-th].

[45] N. Seiberg and E. Witten, “Monopole Condensation, And Confinement In N=2
Supersymmetric Yang-Mills Theory,” Nucl. Phys. B426 (1994) 19–52,
arXiv:hep-th/9407087.

[46] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2
supersymmetric QCD,” Nucl. Phys. B431 (1994) 484–550, arXiv:hep-th/9408099.

[47] T. W. Grimm, A. Klemm, M. Marino, and M. Weiss, “Direct integration of the
topological string,” JHEP 08 (2007) 058, arXiv:hep-th/0702187.

[48] J. H. Bruinier, G. van der Geer, G. Harder, and D. Zagier, The 1-2-3 of modular

forms. Universitext. Springer-Verlag, Berlin, 2008. Lectures from the Summer School

43

http://dx.doi.org/10.1007/s00023-012-0184-x
http://dx.doi.org/10.1007/s00023-012-0184-x
http://arxiv.org/abs/1007.2194
http://dx.doi.org/10.1007/s00220-008-0620-4
http://arxiv.org/abs/0709.1453
http://dx.doi.org/10.4310/CNTP.2007.v1.n2.a4
http://arxiv.org/abs/math-ph/0702045
http://dx.doi.org/10.1016/S0370-2693(03)00543-4
http://arxiv.org/abs/hep-th/0301071
http://dx.doi.org/10.1088/1126-6708/2007/06/058
http://arxiv.org/abs/hep-th/0702110
http://arxiv.org/abs/1205.1103
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.004
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.004
http://arxiv.org/abs/0810.4944
http://dx.doi.org/10.1063/1.524438
http://dx.doi.org/10.1063/1.524438
http://dx.doi.org/10.1007/BF02099774
http://dx.doi.org/10.1007/BF02099774
http://arxiv.org/abs/hep-th/9309140
http://arxiv.org/abs/1009.1126
http://dx.doi.org/10.1007/s11005-010-0432-2
http://dx.doi.org/10.1007/s11005-010-0432-2
http://arxiv.org/abs/1007.0263
http://dx.doi.org/10.1007/s00023-012-0192-x
http://arxiv.org/abs/1109.5728
http://arxiv.org/abs/1109.5728
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.1088/1126-6708/2007/08/058
http://arxiv.org/abs/hep-th/0702187


on Modular Forms and their Applications held in Nordfjordeid, June 2004, Edited by
Kristian Ranestad.

[49] M.-x. Huang and A. Klemm, “Holomorphicity and Modularity in Seiberg-Witten
Theories with Matter,” JHEP 07 (2010) 083, arXiv:0902.1325 [hep-th].

[50] B. Haghighat, A. Klemm, and M. Rauch, “Integrability of the holomorphic anomaly
equations,” JHEP 0810 (2008) 097, arXiv:0809.1674 [hep-th].

[51] M.-x. Huang and A. Klemm, “Direct integration for general Ω backgrounds,”
arXiv:1009.1126 [hep-th].

[52] M.-x. Huang and A. Klemm, “Holomorphic anomaly in gauge theories and matrix
models,” JHEP 09 (2007) 054, arXiv:hep-th/0605195.

[53] M.-x. Huang, A. Klemm, and S. Quackenbush, “Topological String Theory on
Compact Calabi-Yau: Modularity and Boundary Conditions,” Lect. Notes Phys. 757

(2009) 45–102, arXiv:hep-th/0612125.

[54] P. C. Argyres and N. Seiberg, “S-duality in N=2 supersymmetric gauge theories,”
JHEP 0712 (2007) 088, arXiv:0711.0054 [hep-th].

[55] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin Systems, and the
WKB Approximation,” arXiv:0907.3987 [hep-th].

[56] G. Vartanov and J. Teschner, “Supersymmetric gauge theories, quantization of moduli
spaces of flat connections, and conformal field theory,” arXiv:1302.3778 [hep-th].

[57] J. Shiraishi, H. Kubo, H. Awata, and S. Odake, “A Quantum deformation of the
Virasoro algebra and the Macdonald symmetric functions,” Lett.Math.Phys. 38 (1996)
33–51, arXiv:q-alg/9507034 [q-alg].

[58] H. Awata and Y. Yamada, “Five-dimensional AGT Conjecture and the Deformed
Virasoro Algebra,” JHEP 1001 (2010) 125, arXiv:0910.4431 [hep-th].

[59] H. Awata and Y. Yamada, “Five-dimensional AGT Relation and the Deformed
beta-ensemble,” Prog.Theor.Phys. 124 (2010) 227–262, arXiv:1004.5122 [hep-th].

[60] M. Taki, “On AGT-W Conjecture and q-Deformed W-Algebra,” arXiv:1403.7016

[hep-th].

[61] A.-K. Kashani-Poor and J. Troost, “The toroidal block and the genus expansion,”
JHEP 1303 (2013) 133, arXiv:1212.0722 [hep-th].

[62] A.-K. Kashani-Poor and J. Troost, “Transformations of Spherical Blocks,” JHEP

1310 (2013) 009, arXiv:1305.7408 [hep-th].

[63] A. Belavin, A. M. Polyakov, and A. Zamolodchikov, “Infinite Conformal Symmetry in
Two-Dimensional Quantum Field Theory,” Nucl.Phys. B241 (1984) 333–380.

[64] A. Zamolodchikov, “Conformal symmetry in two-dimensional space : recursion
representation of the conformal block,” Theor. Math. Phys. 73 (1987) 1088.

44

http://dx.doi.org/10.1007/JHEP07(2010)083
http://arxiv.org/abs/0902.1325
http://dx.doi.org/10.1088/1126-6708/2008/10/097
http://arxiv.org/abs/0809.1674
http://arxiv.org/abs/1009.1126
http://dx.doi.org/10.1088/1126-6708/2007/09/054
http://arxiv.org/abs/hep-th/0605195
http://arxiv.org/abs/hep-th/0612125
http://dx.doi.org/10.1088/1126-6708/2007/12/088
http://arxiv.org/abs/0711.0054
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/1302.3778
http://dx.doi.org/10.1007/BF00398297
http://dx.doi.org/10.1007/BF00398297
http://arxiv.org/abs/q-alg/9507034
http://dx.doi.org/10.1007/JHEP01(2010)125
http://arxiv.org/abs/0910.4431
http://dx.doi.org/10.1143/PTP.124.227
http://arxiv.org/abs/1004.5122
http://arxiv.org/abs/1403.7016
http://arxiv.org/abs/1403.7016
http://dx.doi.org/10.1007/JHEP03(2013)133
http://arxiv.org/abs/1212.0722
http://dx.doi.org/10.1007/JHEP10(2013)009
http://dx.doi.org/10.1007/JHEP10(2013)009
http://arxiv.org/abs/1305.7408
http://dx.doi.org/10.1016/0550-3213(84)90052-X


[65] A. B. Zamolodchikov and A. B. Zamolodchikov, “Conformal field theory and 2-D
critical phenomena. 3. Conformal bootstrap and degenerate representations of
conformal algebra,” ITEP-90-31 (1990) .

[66] T. Eguchi and H. Ooguri, “Conformal and Current Algebras on General Riemann
Surface,” Nucl.Phys. B282 (1987) 308–328.

[67] D. Harlow, J. Maltz, and E. Witten, “Analytic Continuation of Liouville Theory,”
JHEP 1112 (2011) 071, arXiv:1108.4417 [hep-th].
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