A Theoretical and Numerical Study of Certain Dynamical Models of Synaptic Plasticity

David Higgins 1
1 Cervellet
IBENS - Institut de biologie de l'Ecole Normale Supérieure
Résumé : L'efficacité synaptique quantifie la capacité d'un neurone présynaptique à influer sur le potentiel de membrane d'un neurone postsynaptique. La plasticité synap- tique, regroupant tous les processus d'altération de l'efficacité synaptique, est con- sidérée comme le mécanisme fondamental de mémorisation et d'apprentissage dans le cerveau. Dans ce travail nous examinons des règles d'apprentissage formelles aux synapses chimiques et leurs conséquences sur la mémorisation de patrons appris. La plasticité de la synapse entre les fibres parallèles du cervelet et la cellule de Purkinje n'est pas de type Hebbien et dépend de la fréquence et de la durée de l'activité présynaptique. Nous avons développé un modèle qui prenne en compte les caractéristiques de cette règle d'apprentissage spécifique. Ce modèle, basé sur l'interaction entre des variables de signalisation par le calcium et l'oxyde nitrique (NO) reproduit un large corpus de données expérimentales publiées. La relative simplicité de ce modèle permettra son utilisation dans des simulations numériques faisant intervenir un grand nombre de synapses dans une architecture de réseau. En parallèle nous avons étudié une règle de plasticité plus typique, telle qu'observée aux synapses corticales, et avons développé des outils analytiques prédisant le com- portement de cette synapses modèle dans le contexte de régimes d'activité présy- naptique et postsynaptique poissonniens. Nous étendons cette analyse formelle à un réseau de neurones " leaky integrate and fire " (LIF) et développons des out- ils théoriques qui décrivent la réponse du réseau à des entrées externes bruitées d'amplitude constante ou transitoirement augmentée. Nous utilisons ces outils pour mesurer la durée de rétention de mémoires synaptiques dans un régime de décharge de fond à 1/sec soit dans des neurones indépendants soit dans un réseau récurrent. Nous trouvons que l'abaissement de la concentration de calcium extracellulaire augmente les constantes de temps de rétention de la mémoire. L'introduction d'une bistabil- ité dans la règle d'apprentissage synaptique rallonge le temps de mémorisation de plusieurs ordres de grandeur. Dans tous les cas nous fournissons des prédictions théoriques sur les échelles de temps de rétention de mémoire qui s'accordent aux résultats de simulations numériques. Les deux parties de cette étude traitent des processus régissant l'apprentissage et sa rétention dans les circuits cérébraux. Les deux modèles montrent l'importance de la fréquence de décharge et des corrélations temporelles entre potentiels d'action dans l'induction d'apprentissage au niveau synaptique. L'ajustement des variables du modèle pour mimer les conditions physiologiques in vivo permet d'allonger la ré- tention d'apprentissage, dans un réseau soumis à une décharge moyenne continue, sur des échelles de temps biologiquement significative. Notre travail présente une tenta- tive d'unification entre les règles biophysiques détaillées régissant l'apprentissage et une approche analytique en champ moyen.
Type de document :
Thèse
Neurobiology. Ecole Normale Supérieure de Paris - ENS Paris, 2014. English. <NNT : 158>
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-01052580
Contributeur : David Higgins <>
Soumis le : lundi 28 juillet 2014 - 11:20:13
Dernière modification le : jeudi 29 septembre 2016 - 01:13:12
Document(s) archivé(s) le : mardi 25 novembre 2014 - 19:15:26

Identifiants

  • HAL Id : tel-01052580, version 1

Collections

PSL

Citation

David Higgins. A Theoretical and Numerical Study of Certain Dynamical Models of Synaptic Plasticity. Neurobiology. Ecole Normale Supérieure de Paris - ENS Paris, 2014. English. <NNT : 158>. <tel-01052580>

Partager

Métriques

Consultations de
la notice

353

Téléchargements du document

596