T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, p.493
DOI : 10.1103/PhysRevLett.4.564

. Gainasp, InP surface emitting injection lasers, Japanese Journal of Applied Physics, vol.18, issue.12, p.23292330, 1979.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm, Electron. Lett, vol.45, issue.5 2, p.265267, 2009.
DOI : 10.1049/el:20090134

URL : https://hal.archives-ouvertes.fr/hal-00380609

C. J. Chang-hasnain and W. Yang, High-contrast gratings for integrated optoelectronics, Adv. Opt. Photon, vol.4, issue.3, p.379440, 2012.

R. Michalzik, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, chapter VCSELs : A Research Review, 2012.

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Coherent light emission from GaAs junctions, Phys. Rev. Lett, vol.9, p.366368, 1962.

W. Weng, K. D. Chow, M. H. Choquette, K. L. Crawford, G. Lear et al., Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers, IEEE Journal of Quantum Electronics, vol.33, issue.10, p.18101824, 1997.

I. Melngailis, LONGITUDINAL INJECTION???PLASMA LASER OF InSb, Applied Physics Letters, vol.6, issue.3, p.5960, 1965.
DOI : 10.1063/1.1754164

K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, Room???temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser, Applied Physics Letters, vol.45, issue.4, p.348350, 1984.
DOI : 10.1063/1.95265

R. Michalzik, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, chapter Fundamentals, p.2012

F. Genty, A. Garnache, and L. Cerutti, Mid-infrared Semiconductor Optoelectronics , chapter VCSELs Emitting in the 23 µm Wavelength Range, 2006.

K. Iga, Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution, Japanese Journal of Applied Physics, vol.47, issue.1, p.110, 2008.
DOI : 10.1143/JJAP.47.1

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks et al., A 55 Gb/s directly modulated 850 nm VCSEL-based optical link, Photonics Conference (IPC), pp.2012-2012

P. Jean-francois and . Seurin, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, chapter High-Power VCSEL Arrays, pp.2012-2021

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa-kawamata, Y. Higuchi et al., Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature, Applied Physics Express, vol.4, issue.7, pp.72103-2011
DOI : 10.1143/APEX.4.072103

K. Johnson, M. Hibbs-brenner, W. Hogan, and M. Dummer, Advances in red VCSEL technology Advances in Optical Technologies, p.2012

Y. Chang and L. A. Coldren, VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, chapter Design and Performance of High-Speed VCSELs, p.2012

G. Springholz, T. Schwarzl, and W. Heiss, Mid-infrared Vertical Cavity Surface Emitting Lasers based on the Lead Salt Compounds, Series in Optical Sciences, p.265301, 2006.
DOI : 10.1007/1-84628-209-8_8

J. Chen, A. Hangauer, R. Strzoda, and M. Amann, VCSEL-based calibration-free carbon monoxide sensor at 2.3 µm with in-line reference cell

I. K. Ilev and R. W. Waynant, Mid-infrared Biomedical Applications, of Springer Series in Optical Sciences, p.615634, 2006.
DOI : 10.1007/1-84628-209-8_19

S. Andreev, E. Mironchuk, I. Nikolaev, V. Ochkin, M. Spiridonov et al., High precision measurements of the 13 CO 2 / 12 CO 2 isotope ratio at atmospheric pressure in human breath using a 2 µm diode laser, Applied Physics B : Lasers and Optics, pp.10-1007, 2011.

R. Kaufmann, R. Hartmann, and . Hibst, Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. The Journal of dermatologic surgery and oncology, 1994.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, and M. Ortsiefer, Optical absorption glucose measurements using 2.3 µm vertical cavity semiconductor lasers, IEEE Photonics Technology Letters, vol.1, issue.11, p.2007

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M. Amann, Wavelength modulation spectroscopy with a widely tunable inp-based 2.3 µm vertical-cavity surface-emitting laser, Opt. Lett, vol.33, issue.14, p.15661568, 2008.

E. Tournié and A. N. Baranov, Advances in Semiconductor Lasers chapter Mid-infrared semiconductor lasers : A review, p.2012

C. Sheppard, Approximate calculation of the reflection coefficient from a stratified medium, Pure and Applied Optics: Journal of the European Optical Society Part A, vol.4, issue.5, p.665, 1995.
DOI : 10.1088/0963-9659/4/5/018

S. Aran, A. Bachmann, K. Kashani-shirazi, and M. Amann, Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm, Applied Physics Letters, vol.95, issue.13, pp.131120-131133, 2009.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou et al., AlAsSb/GaSb doped distributed Bragg reectors for electrically pumped VCSELs emitting around 2.3 µm, Semiconductor Science and Technology, vol.22, issue.10, pp.11401144-11401157, 2007.

O. Dier, C. Lauer, and M. Amann, n-InAsSb???p-GaSb tunnel junctions with extremely low resistivity, Electronics Letters, vol.42, issue.7, 2006.
DOI : 10.1049/el:20060341

L. Cerutti, A. Ducanchez, P. Grech, A. Garnache, and F. Genty, Roomtemperature , monolithic, electrically-pumped type-l quantum-well Sb-based VCSELs emitting at 2.3 µm, Electron. Lett, vol.44, issue.3, p.203205, 2008.

T. E. Sale and T. E. Sale, Vertical cavity surface emitting lasers. Electronic & electrical engineering research studies : Optoelectronics series, 1995.

F. Brillouet, J. Jacquet, P. Salet, L. Goldstein, P. Garabedian et al., Surface emitting semiconductor laser, US Patent, vol.6, pp.52398-52413, 2000.

A. Bachmann, S. Aran, and K. Kashani-shirazi, Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 ??m, New Journal of Physics, vol.11, issue.12, p.125014, 2009.
DOI : 10.1088/1367-2630/11/12/125014

S. Aran, A. Bachmann, and M. Amann, Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions. Selected Topics in Quantum Electronics, IEEE Journal, vol.17, issue.6, pp.1576-1583

A. Bachmann, S. Aran, K. Kashani-shirazi, and M. Amann, Long wavelength electrically pumped GaSb-based buried tunnel junction VCSELs, Physics Procedia, vol.3, issue.2, pp.1155-1159, 2010.
DOI : 10.1016/j.phpro.2010.01.155

URL : http://doi.org/10.1016/j.phpro.2010.01.155

G. Almuneau, . Bossuyt, . Collière, . Bouscayrol, . Condé et al., monitoring of wet thermal oxidation for precise confinement in VCSELs, Semiconductor Science and Technology, vol.23, issue.10, pp.105021-105037, 2008.
DOI : 10.1088/0268-1242/23/10/105021

T. Langenfelder and H. Grothe, Optimisation of ? = 850 nm hybrid-mirror vertical-cavity surface-emitting laser with 37 µa threshold current. Optoelectronics, IEE Proceedings, vol.147, issue.1, pp.56-60, 2000.

Y. Laaroussi, Nouvelles approches technologiques pour la fabrication de Lasers à émission verticale dans le moyen infrarouge, pp.16-113, 2012.

Y. Laaroussi, D. Sanchez, L. Cerutti, C. Levallois, C. Paranthoen et al., Oxide-confined mid-infrared VCSELs, Electronics Letters, vol.48, issue.25, pp.1616-1618
DOI : 10.1049/el.2012.3572

URL : https://hal.archives-ouvertes.fr/hal-00788447

D. Feezell, D. A. Buell, and L. A. Coldren, InP-based 1.3-1.6 µm VCSELs with selectively etched tunnel-junction apertures on a wavelength exible platform

D. Sanchez, L. Cerutti, and E. Tournié, Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser, Optics Express, vol.20, issue.14
DOI : 10.1364/OE.20.015540

J. Michael-ostermann and R. Michalzik, VCSELs Fundamentals , Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, chapter Polarization Control of VCSELs, pp.2012-2029

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, Reliable polarization control of vcsels through monolithically integrated surface gratings : a comparative theoretical and experimental study. Selected Topics in Quantum Electronics, IEEE Journal, vol.11, issue.1, pp.107-116, 2005.

G. Boehm, A. Bachmann, J. Rosskopf, M. Ortsiefer, J. Chen et al., Comparison of InP- and GaSb-based VCSELs emitting at 2.3??m suitable for carbon monoxide detection, Journal of Crystal Growth, vol.323, issue.1, pp.442-445, 2011.
DOI : 10.1016/j.jcrysgro.2010.11.174

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard et al., Sb-based monolithic VCSEL operating near 2.2 [micro sign]m at room temperature, Electronics Letters, vol.34, issue.3, pp.281-282, 1998.
DOI : 10.1049/el:19980142

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, L. J. Olafsen et al., Midinfrared vertical-cavity surface-emitting lasers for chemical sensing, Appl. Opt, vol.38, issue.9, p.15021505, 1999.
DOI : 10.1364/ao.38.001502

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer et al., InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0µm, Journal of Crystal Growth, issue.14, pp.251748-753, 2003.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, Singlefrequency tunable Sb-based VCSELs emitting at 2.3 µm, IEEE Photonics Technology Letters, vol.17, issue.10, p.20202022, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00330815

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg et al., Electrically pumped room temperature CW VCSELs with 2.3 µm emission wavelength, Electron. Lett, vol.42, issue.11, 2006.

. Amann, Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 µm, Electron. Lett, vol.44, issue.3, p.202203, 2008.

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, Room-Temperature Continuous-Wave Operation of 2.3-<formula formulatype="inline"><tex Notation="TeX">$\mu$</tex></formula>m Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers, IEEE Photonics Technology Letters, vol.20, issue.20, pp.1745-174715, 2008.
DOI : 10.1109/LPT.2008.2004997

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, GaSb-based monolithic EP-VCSEL emitting above 2.5 µm, Electron. Lett, vol.44, issue.23, p.13571359, 2008.
DOI : 10.1049/el:20082845

A. Bachmann, K. Kashani-shirazi, S. Aran, and M. Amann, GaSb-based VCSEL with buried tunnel junction for emission around 2.3 µm. Selected Topics in Quantum Electronics, IEEE Journal, vol.15, issue.940, p.933, 2009.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier et al., GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE, J. Cryst. Growth, issue.7, pp.311-331, 2009.

D. Rittenhouse, An optical problem, proposed by Mr. Hopkinson, and solved by Mr, Rittenhouse. Transactions of the American Philosophical Society, vol.2, pp.201206-1786

M. Born and E. Wolf, Principles of Optics, 1999.
DOI : 10.1017/CBO9781139644181

P. Lalanne and D. Lemercier-lalanne, On the eective medium theory of subwavelength periodic structures, Journal of Modern Optics, vol.43, issue.10, pp.20632085-20632107, 1996.

C. Panlo, G. P. Deguzman, and . Nordin, Stacked subwavelength gratings as circular polarization lters, Appl. Opt, vol.40, issue.31, p.57315737, 2001.

S. S. Wang and R. Magnusson, Theory and applications of guided-mode resonance lters, Appl. Opt, vol.32, issue.14, p.26062613, 1993.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke et al., First demonstration of highly reective and highly polarization selective diraction gratings (GIRO-gratings) for long-wavelength VCSELs

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-hasnain, Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating, IEEE Photonics Technology Letters, vol.16, issue.2, pp.518520-518543, 2004.
DOI : 10.1109/LPT.2003.821258

C. F. Mateus, M. C. Huang, L. Chen, C. J. Chang-hasnain, and Y. Suzuki, Broad-band mirror (1.12-1.62 µm) using a subwavelength grating, Photonics Technology Letters IEEE, issue.7, pp.161676-1678, 2004.

Y. C. Tzeng-tsong-wu, S. H. Syu, W. Wu, T. C. Ting-chen, S. C. Lu et al., Subwavelength gan-based membrane high contrast grating reectors, Opt. Express, vol.20, issue.18, p.2055120557, 2012.

E. Bisaillon, D. Tan, B. Faraji, A. Kirk, L. Chrowstowski et al., High reectivity air-bridge subwavelength grating reector and Fabry-Perot cavity in AlGaAs, GaAs. Opt. Express, vol.14, issue.7, pp.25732582-25732606, 2006.

I. Chung, J. Mork, P. Gilet, and A. Chelnokov, Broadband subwavelength grating mirror and its application to vertical-cavity surface-emitting laser, Transparent Optical Networks 10th Anniversary International Conference on, pp.101-104, 2008.

G. Almuneau, O. Condé, V. Gauthier-lafaye, C. Bardinal, and . Fontaine, stack, Journal of Optics, vol.13, issue.1, p.15505, 2011.
DOI : 10.1088/2040-8978/13/1/015505

M. Shokooh-saremi and R. Magnusson, Wideband leaky-mode resonance reectors : Inuence of grating prole and sublayers, Opt. Express, vol.16, issue.22, p.1824918263, 2008.

M. Juha, J. Kontio, K. Simonen, M. Leinonen, T. Kuittinen et al., Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating, Opt. Lett, vol.35, issue.15, p.25642566, 2010.

. Phillips, Broadband long-wavelength infrared Si/SiO 2 subwavelength grating reector, Opt. Lett, vol.37, issue.9, p.15231525, 2012.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, Polarization independent broadband reectors based on cross-stacked gratings, Opt. Express, vol.19, issue.10, p.90509055, 2011.

M. Shokooh-saremi and R. Magnusson, Leaky-mode resonant reectors with extreme bandwidths, Opt. Lett, vol.35, issue.8, p.11211123, 2010.

H. Wu, . Hou, . Mo, Z. Gao, and . Zhou, A multilayer-based wideband reflector utilizing a multi-subpart profile grating structure, Journal of Optics, vol.12, issue.6, pp.65704-2010
DOI : 10.1088/2040-8978/12/6/065704

M. Shokooh-saremi and R. Magnusson, Multi-level periodic leakymode resonance elements : Design and applications, Optical Interference Coatings, pp.2-2010
DOI : 10.1364/oic.2010.wb2

. Chang-hasnain, Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating, Opt. Express, vol.16, issue.22, p.1728217287, 2008.

V. Karagodsky, T. Tran, M. Wu, and C. J. Chang-hasnain, Double-Resonant Enhancement of Surface Enhanced Raman Scattering Using High Contrast Grating Resonators, CLEO:2011, Laser Applications to Photonic Applications, pp.1-2011
DOI : 10.1364/CLEO_SI.2011.CFN1

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny et al., Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors, Optics Express, vol.15, issue.19, p.1244312449, 2007.
DOI : 10.1364/OE.15.012443

L. Carletti and R. Malureanu, Jesper Mørk, and Il-Sug Chung. High-indexcontrast grating reector with beam steering ability for the transmitted beam

. Beausoleil, Flat dielectric grating reectors with focusing abilities, Nat Photon, vol.4466470, issue.07, pp.2010-2035

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-hasnain, Planar high-numerical-aperture low-loss focusing reectors and lenses using subwavelength high contrast gratings, Opt. Express, vol.18, issue.12, p.1260612614, 2010.
DOI : 10.1364/oe.18.012606

M. Mutlu, A. E. Akosman, and E. Ozbay, Broadband circular polarizer based on high-contrast gratings, Optics Letters, vol.37, issue.11, p.20942096, 2012.
DOI : 10.1364/OL.37.002094

R. Magnusson, M. Shokooh-saremi, and E. G. Johnson, Guidedmode resonant wave plates, Opt. Lett, vol.35, issue.14, p.24722474, 2010.
DOI : 10.1364/ol.35.002472

X. Wei-min-ye, C. Yuan, C. Guo, and . Zen, Unidirectional transmission in non-symmetric gratings made of isotropic material, Opt. Express, vol.18, issue.8, p.75907595, 2010.

L. Zhu, V. Karagodsky, and C. J. Chang-hasnain, Novel high eciency vertical to in-plane optical coupler, Proceedings of SPIE, pp.2012-2039

. Chang-hasnain, A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings, Opt. Express, vol.17, issue.3, p.15081517, 2009.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase et al., Low loss hollow-core waveguide on a silicon substrate, Nanophotonics, vol.1, issue.1, pp.23-2012
DOI : 10.1515/nanoph-2012-0003

T. Sun, W. Yang, V. Karagodsky, W. Zhou, and C. Chang-hasnain, Low-loss slow light inside high contrast grating waveguide, High Contrast Metastructures
DOI : 10.1117/12.909962

K. Hane, T. Kobayashi, . Fang-ren, Y. Hu, and . Kanamori, Variable optical reflectance of a self-supported Si grating, Applied Physics Letters, vol.88, issue.14, p.141109, 2006.
DOI : 10.1063/1.2193989

S. Boutami, B. Ben-bakir, J. Leclercq, X. Letartre, P. Rojo-romeo et al., Highly selective and compact tunable MOEMs photonic crystal Fabry-Perot lter, Opt. Express, issue.8, pp.1431293137-1431293165, 2006.
DOI : 10.1364/oe.14.003129

C. Y. Michael, Y. Huang, C. J. Zhou, and . Chang-hasnain, A nanoelectromechanical tunable laser, Nat. Photon, vol.2, issue.3, p.180184, 2008.

T. Ansbaek, I. Chung, E. S. Semenova, and K. Yvind, 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL, IEEE Photonics Technology Letters, vol.25, issue.4, p.365367, 2015.
DOI : 10.1109/LPT.2012.2236087

I. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, E. Kapon et al., Broadband MEMS-tunable high-indexcontrast subwavelength grating long-wavelength VCSEL, Journal of Quantum Electronics, vol.46, issue.9, pp.12451253-2010
DOI : 10.1109/jqe.2010.2047494

C. Michael, Y. Huang, C. J. Zhou, and . Chang-hasnain, Polarization mode control in high contrast subwavelength grating VCSEL, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p.5, 2008.

J. Jacquet, Vertical cavity laser technology for interconnection and access links, nal report on 1.3/1.55 µm VCSELs, 1998.

H. Hattori, X. Letartre, C. Seassal, P. Rojo-romeo, J. Leclercq et al., Analysis of hybrid photonic crystal vertical cavity surface emitting lasers, Optics Express, vol.11, issue.15, p.17991808, 2003.
DOI : 10.1364/OE.11.001799

M. C. Huang, Y. Zhou, and C. J. Chang-hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating

S. Boutami, B. Benbakir, J. Leclercq, and P. Vik-torovitch, Compact and polarization controlled 1.55??m vertical-cavity surface-emitting laser using single-layer photonic crystal mirror, Applied Physics Letters, vol.91, issue.7, p.71105, 2007.
DOI : 10.1063/1.2771085

C. Chase, Y. Zhou, and C. J. Chang-hasnain, Size eect of high contrast gratings in VCSELs, Opt. Express, vol.17, issue.116, pp.2400224007-30, 2009.

W. Hofmann, C. Chase, M. Mller, Y. Rao, C. Grasse et al., Long-wavelength high-contrast grating verticalcavity surface-emitting laser, Photonics Journal, IEEE, issue.23, pp.415-422, 2010.

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-hasnain, 1550 nm high contrast grating VCSEL, Optics Express, vol.18, issue.15, p.1546115466, 2010.
DOI : 10.1364/OE.18.015461

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier et al., CMOS-compatible ultra-compact 1.55- µm emitting VCSELs using double photonic crystal mirrors, Photonics Technology Letters IEEE, issue.6, pp.24455-457

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-hasnain, Theoretical analysis of subwavelength high contrast grating reectors, Opt. Express, vol.18, issue.38, pp.1697316988-1697317020, 2010.

G. Gomard, R. Peretti, X. Letartre, and E. Drouard, Propagation of an electromagnetic lightwave through isolated or periodically arranged openings, INL Communications : Tools for photonics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00668163

O. Tishchenko and . Parriaux, An intelligible explanation of highly-ecient diraction in deep dielectric rectangular transmission gratings, Opt. Express, vol.13, issue.26, p.1044810456, 2005.

V. Karagodsky and C. J. Chang-hasnain, Physics of near-wavelength high contrast gratings, Optics Express, vol.20, issue.10, p.1088810895, 2012.
DOI : 10.1364/OE.20.010888

F. Montiel and M. Neviere, Dierential theory of gratings : extension to deep gratings of arbitrary prole and permittivity through the R-matrix propagation algorithm, JOSA A, vol.11, issue.12, p.32413250, 1994.

J. Chandezon, . Dupuis, D. Cornet, and . Maystre, Multicoated gratings: a differential formalism applicable in the entire optical region, Journal of the Optical Society of America, vol.72, issue.7, pp.839-846, 1982.
DOI : 10.1364/JOSA.72.000839

M. G. Moharam and T. K. Gaylord, Coupled-wave analysis of reection gratings, Appl. Opt, vol.20, issue.2, p.240244, 1981.

L. Li, New formulation of the Fourier modal method for crossed surfacerelief gratings, JOSA A, vol.14, issue.10, p.27582767, 1997.

L. Li, Formulation and comparison of two recursive matrix algorithms for modeling layered diraction gratings, J. Opt. Soc. Am. A, vol.13, issue.5, p.10241035, 1996.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, Journal of the Optical Society of America A, vol.12, issue.5, pp.10771086-10771129, 1995.
DOI : 10.1364/JOSAA.12.001077

J. Paul-hugonin and P. Lalanne, Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization, Journal of the Optical Society of America A, vol.22, issue.9, pp.18441849-18441895, 2005.
DOI : 10.1364/JOSAA.22.001844

P. Lalanne and J. P. Hugonin, Reticolo software. http ://www.lcf.institutoptique.fr/Groupes-de-recherche/Nanophotoniqueet-Electromagnetisme/Themes-de-recherche/Computationalelectrodynamics/Commercial-software, Unigit a rigorous grating solverCité en page 46.) [115]

L. Zhang, Ricwaa -rigorous coupled wave analysis (rcwa)

W. A. Stein, Version 5.6) The Sage Development Team, Sage Mathematics Software, 2013.

M. Shokooh-saremi and R. Magnusson, Particle swarm optimization and its application to the design of diraction grating lters, Opt. Lett, vol.32894896, issue.8, 2007.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao et al., A high performance polarization independent reflector based on a multilayered configuration grating structure, Journal of Optics, vol.12, issue.4, pp.45703-2010
DOI : 10.1088/2040-8978/12/4/045703

E. David and . Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, pp.61-63, 1989.

L. Dmitrey and . Kroshko, OpenOpt 0.27, 2009.

D. Goodman, Galileo 1.0b. http ://sourceforge, 2003.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Optimized subwavelength grating mirror design for mid-infrared wavelength range, Appl. Phys. A-Mater, vol.103, issue.4, pp.11391144-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00557011

R. Storn and K. Price, Dierential evolution -a simple and ecient adaptive scheme for global optimization over continuous spaces, 1995.

R. Storn and K. Price, Dierential evolution -a simple and ecient heuristic for global optimization over continuous spaces, Journal of Global Optimization, vol.11, issue.10, p.3413591008202821328, 1023.

V. Feoktistov, Dierential Evolution, volume 5 of Optimization and Its Applications, 2006.

A. Colorni, M. Dorigo, and V. Maniezzo, Distributed optimization by ant colonies, Proceedings of the rst European conference on articial life, p.134142, 1991.

C. Alibert, M. Skouri, A. Joullie, M. Benouna, and S. Sadiq, in the transparent wavelength region, Journal of Applied Physics, vol.69, issue.5, p.3208, 1991.
DOI : 10.1063/1.348538

A. Richard, . Soref, J. Stephen, . Emelett, R. Walter et al., Silicon waveguided components for the long-wave infrared region, Journal of Optics A : Pure and Applied Optics, vol.8, issue.10, p.840, 2006.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Optimized Si/SiO2 high contrast grating mirror design for mid-infrared wavelength range: Robustness enhancement, Optics & Laser Technology, vol.44, issue.3, pp.626-630
DOI : 10.1016/j.optlastec.2011.09.010

URL : https://hal.archives-ouvertes.fr/hal-00628574

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application, Optical and Quantum Electronics, vol.20, issue.6, pp.76-89
DOI : 10.1007/s11082-012-9578-8

URL : https://hal.archives-ouvertes.fr/hal-00693474

A. Bek, A. Aydinli, J. G. Champlain, R. Naone, and N. Dagli, A study of wet oxidized AlGaAs for integrated optics, IEEE Photonics Technology Letters, vol.11, issue.4, p.436438, 1999.

Y. Laaroussi, Nouvelles approches technologiques pour la fabrication de Lasers à émission verticale dans le moyen infrarouge, 2012.

Y. Laaroussi, C. Chevallier, F. Genty, N. Fressengeas, L. Cerutti et al., Oxide connement and high contrast grating mirrors for mid-infrared VCSELs, Optical Materials Express, p.soumis

S. S. Murtaza and J. C. Campbell, Eects of variations in layer thicknesses on the reectivity spectra of semiconductor bragg mirrors, Journal of Applied Physics, vol.77, issue.87, p.36413644, 1995.

Y. Zhou, M. C. Huang, and C. J. Chang-hasnain, Large Fabrication Tolerance for VCSELs Using High-Contrast Grating, IEEE Photonics Technology Letters, vol.20, issue.6, pp.434-436, 2008.
DOI : 10.1109/LPT.2008.916969

P. Ramu, X. Qu, B. Dong-youn, R. T. Haftka, and K. K. Choi, Inverse reliability measures and reliability-based design optimisation, International Journal of Reliability and Safety, vol.1, issue.1/2, pp.187205-187236
DOI : 10.1504/IJRS.2006.010697

R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, p.3943, 1995.
DOI : 10.1109/MHS.1995.494215

Y. Del-valle, G. K. Venayagamoorthy, S. Mohagheghi, J. Hernandez, and R. G. Harley, Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems, IEEE Transactions on Evolutionary Computation, vol.12, issue.2, pp.171-195, 2008.
DOI : 10.1109/TEVC.2007.896686

J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George, Parallel global optimization with the particle swarm algorithm, International Journal for Numerical Methods in Engineering, vol.28, issue.13, pp.6122962315-95, 2004.
DOI : 10.1002/nme.1149

M. Lombardi and R. T. Haftka, Anti-optimization technique for structural design under load uncertainties, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.19-31, 1998.
DOI : 10.1016/S0045-7825(97)00148-5

I. Elishako, R. T. Haftka, and J. Fang, Structural design under bounded uncertainty???Optimization with anti-optimization, Computers & Structures, vol.53, issue.6, pp.1401-1405, 1994.
DOI : 10.1016/0045-7949(94)90405-7

C. Chevallier, N. Fressengeas, F. Genty, J. Jacquet, Y. Laaroussi et al., Optimized GaAs High Contrast Grating Design and Fabrication for Mid-infrared Application at 2.3 ??m, Frontiers in Optics 2011/Laser Science XXVII, pp.5-2011
DOI : 10.1364/FIO.2011.FWS5

URL : https://hal.archives-ouvertes.fr/hal-00642181

. Alox, GaAs high contrast grating mirrors for mid infrared VCSELs, Transparent Optical Networks (ICTON), 2012 14th International Conference on, 2012.

Y. Laaroussi, . Almuneau, L. Sanchez, and . Cerutti, Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source, Journal of Physics D: Applied Physics, vol.44, issue.14, pp.142001-2011
DOI : 10.1088/0022-3727/44/14/142001

URL : https://hal.archives-ouvertes.fr/hal-00608426

P. Debernardi, R. Orta, T. Grundl, and M. Amann, 3-D Vectorial Optical Model for High-Contrast Grating Vertical-Cavity Surface-Emitting Lasers, IEEE Journal of Quantum Electronics, vol.49, issue.2, pp.137145-2013
DOI : 10.1109/JQE.2012.2227953

D. W. Prather, Photonic Crystals, Theory, Applications and Fabrication, 2009.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Robust Design by Antioptimization for Parameter Tolerant GaAs/AlOx High Contrast Grating Mirror for VCSEL Application, Journal of Lightwave Technology, vol.31, issue.21
DOI : 10.1109/JLT.2013.2282871

URL : https://hal.archives-ouvertes.fr/hal-00870878

Y. Laaroussi, C. Chevallier, F. Genty, N. Fressengeas, L. Cerutti et al., Oxide confinement and high contrast grating mirrors for Mid-infrared VCSELs, Optical Materials Express, vol.3, issue.10, pp.1576-1585, 2013.
DOI : 10.1364/OME.3.001576

URL : https://hal.archives-ouvertes.fr/hal-01108786

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application, Optical and Quantum Electronics, vol.20, issue.6, pp.169-174, 2012.
DOI : 10.1007/s11082-012-9578-8

URL : https://hal.archives-ouvertes.fr/hal-00693474

C. Chevallier, F. Genty, N. Fressengeas, and J. Jacquet, Optimized Si/SiO 2 high contrast grating mirror design for mid-infrared wavelength range : robustness enhancement , Optics and Laser Technology, pp.626-630, 2012.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Mid-infrared sub-wavelength grating mirror design : tolerance and inuence of technological constraints DOI : 10, Journal of Optics, vol.131312, issue.12, pp.1255022040-8978, 1088.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, Optimized sub-wavelength grating mirror design for mid-infrared wavelength range, Applied Physics A, vol.35, issue.2, pp.1139114410-1007, 2011.
DOI : 10.1007/s00339-010-6059-4

URL : https://hal.archives-ouvertes.fr/hal-00537142