J. Anker, E. Damek, and C. , Yacoub : Spherical analysis on harmonic AN groups

J. Anker and L. Ji, Heat Kernel and Green Function Estimates on Noncompact Symmetric Spaces, Geometric And Functional Analysis, vol.9, issue.6, pp.1035-1091, 1999.
DOI : 10.1007/s000390050107

URL : https://hal.archives-ouvertes.fr/hal-00022962

J. Anker, P. Martinot, E. Pedon, and A. G. Setti, The shifted wave equation on Damek- Ricci spaces and homogeneous trees, dans Trends in harmonic analysis, pp.1-25, 2013.

J. Anker and V. Pierfelice, Nonlinear Schr??dinger equation on real hyperbolic spaces, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.5, pp.1853-1869, 2009.
DOI : 10.1016/j.anihpc.2009.01.009

J. Anker, V. Pierfelice, and M. , Schr??dinger Equations on Damek???Ricci Spaces, Communications in Partial Differential Equations, vol.17, issue.6, pp.976-997, 2011.
DOI : 10.1007/s00209-007-0279-0

V. Banica, The nonlinear Schrödinger equation on the hyperbolic space, Comm. Part

V. Banica, R. Carles, and G. Staffilani, Scattering Theory for Radial Nonlinear Schr??dinger Equations on Hyperbolic Space, Geometric and Functional Analysis, vol.18, issue.2, pp.367-399, 2008.
DOI : 10.1007/s00039-008-0663-x

´. A. Baricz and S. Ponnusamy, On Turán type inequalities for modified Bessel functions, Proc. Amer, pp.523-532, 2013.

W. Betori, J. Faraut, and M. Pagliacci, An inversion formula for the radon transform on trees, Mathematische Zeitschrift, vol.69, issue.6, pp.327-337, 1989.
DOI : 10.1007/BF01214899

W. Betori and M. Pagliacci, Harmonic analysis for groups acting on trees, Boll. Unione Mat. Ital, vol.6, pp.333-345, 1984.

W. Betori and M. Pagliacci, The Radon transform on trees, Boll. Un. Mat. Ital. B, vol.5, issue.6, pp.267-277, 1986.

J. Bourgain, Periodic nonlinear Schr??dinger equation and invariant measures, Communications in Mathematical Physics, vol.317, issue.No 3, pp.1-26, 1995.
DOI : 10.1007/BF02099299

]. T. Branson, G. Olafsson, and H. , Hyghens' principle in Riemannian symmetric spaces, Mathematische Annalen, vol.16, issue.1, pp.445-462, 1995.
DOI : 10.1007/BF01446638

N. Burq, P. Gérard, and N. , Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds, American Journal of Mathematics, vol.126, issue.3, pp.569-605, 2004.
DOI : 10.1353/ajm.2004.0016

P. Cartier, G??om??trie et analyse sur les arbres, Lect. Notes Math, vol.317, pp.123-140, 1971.
DOI : 10.1007/BFb0069280

P. Cartier, Harmonic analysis on trees, Proc. Symp. Pure Math. A.M.S, vol.26, pp.419-424, 1972.
DOI : 10.1090/pspum/026/0338272

D. I. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, Journal of Functional Analysis, vol.65, issue.2, pp.147-171, 1986.
DOI : 10.1016/0022-1236(86)90007-8

D. I. Cartwright and P. M. Soardi, Random walks on free products, quotients and amalgams, Nagoya Math, J, vol.102, pp.163-180, 1986.

E. , C. Tarabusi, and J. M. Cohen, Colonna : The horocyclic Radon transform on nonhomogeneous trees, Israel J. Math, vol.78, issue.2-3, pp.363-380, 1992.

T. Cazenave, An introduction to nonlinear Schrödinger equations, 1996.

I. Chavel and E. A. Feldman, Isoperimetric constants and large time heat diffusion in Riemannian manifolds, Proc. Sympos. Pure Math, pp.111-121, 1993.
DOI : 10.1090/pspum/054.3/1216616

F. M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits, Mémoires de la Société mathématique de France, vol.1, issue.170, p.pp, 1994.
DOI : 10.24033/msmf.372

J. M. Cohen and M. Pagliacci, Explicit Solutions for the Wave Equation on Homogeneous Trees, Advances in Applied Mathematics, vol.15, issue.4, pp.390-403, 1994.
DOI : 10.1006/aama.1994.1016

T. Coulhon, Noyau de la chaleur et discretisation d???une variete riemannienne, Israel Journal of Mathematics, vol.8, issue.3, pp.289-300, 1992.
DOI : 10.1007/BF02808072

M. G. Cowling, Herz's " principe de majoration " and the Kunze-Stein phenomenon, in Harmonic analysis and number theory, CMS Conf. Proc. 21, pp.73-88, 1996.

M. G. Cowling, S. Meda, and A. G. Setti, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Expo. Math, vol.16, pp.385-423, 1998.

M. G. Cowling, S. Meda, and A. G. Setti, Invariant operators on function spaces on homogeneous trees, Colloq. Math, vol.80, issue.1, pp.53-61, 1999.

M. G. Cowling, S. Meda, and A. G. Setti, Estimates for functions of the Laplace operator on homogeneous trees, Trans. Amer. Math. Soc, pp.352-4271, 2000.

M. G. Cowling and A. G. Setti, The range of the Helgason-Fourier transformation on homogeneous trees, Bulletin of the Australian Mathematical Society, vol.16, issue.02, pp.237-246, 1999.
DOI : 10.1007/BF01214899

J. Faraut and M. , Picardello : The Plancherel measure for symmetric graphs

A. Figà-talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, Soc. Lect. Notes Ser, vol.162, 1991.
DOI : 10.1017/CBO9780511662324

A. Figà-talamanca and M. , Spherical functions and harmonic analysis on free groups, Journal of Functional Analysis, vol.47, issue.3, pp.281-304, 1982.
DOI : 10.1016/0022-1236(82)90108-2

A. Figà-talamanca and M. Picardello, Harmonic analysis on free groups, Marcel Dekker, 1983.

A. Figà-talamanca and T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Memoirs of the American Mathematical Society, vol.110, issue.531, 1994.
DOI : 10.1090/memo/0531

P. Gérard and V. , Nonlinear Schr??dinger equation on four-dimensional compact manifolds, Bulletin de la Société mathématique de France, vol.138, issue.1, pp.119-151, 2010.
DOI : 10.24033/bsmf.2586

J. Ginibre, Introduction auxéquationsauxéquations de Schrödinger non linéaires, 1994.

J. Ginibre and G. , Velo : Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl, vol.64, pp.363-401, 1985.

W. Hebisch and W. Lotkowski, Irreducible representations of the free product of groups, Indiana University Mathematics Journal, vol.59, issue.1, pp.131-182, 2010.
DOI : 10.1512/iumj.2010.59.3739

A. Ionescu and G. Staffilani, Semilinear Schr??dinger flows on hyperbolic spaces: scattering in H 1, Mathematische Annalen, vol.138, issue.2, pp.133-158, 2009.
DOI : 10.1007/s00208-009-0344-6

A. Iozzi and M. , Picardello : Graphs and convolution operators, Topics in modern harmonic analysis, pp.187-208, 1982.

A. Iozzi and M. , Spherical functions on symmetric graphs, Lecture Notes in Math, vol.326, pp.344-386, 1982.
DOI : 10.1007/978-3-642-51640-5

A. and J. Eddine, Schrödinger equation on homogeneous trees, J. Lie Theory, vol.23, issue.3, pp.779-794, 2013.

S. Karlin and J. Mcgregor, Random walks, Illinois J. Malh, vol.3, pp.66-81, 1959.

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré (A) Phys, Theor, vol.46, issue.1, pp.113-129, 1987.

M. Keel and T. , Endpoint Strichartz estimates, American Journal of Mathematics, vol.120, issue.5, pp.955-980, 1998.
DOI : 10.1353/ajm.1998.0039

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Kinai, Rough isometries, and combinatorial approximations of geometries of non ??? compact riemannian manifolds, Journal of the Mathematical Society of Japan, vol.37, issue.3, pp.391-413, 1985.
DOI : 10.2969/jmsj/03730391

M. Kinai, Rough isometries and the parabolicity of riemannian manifolds, Journal of the Mathematical Society of Japan, vol.38, issue.2, pp.227-238, 1986.
DOI : 10.2969/jmsj/03820227

G. Kuhn, Random walks on free products, Annales de l???institut Fourier, vol.41, issue.2, pp.467-491, 1991.
DOI : 10.5802/aif.1261

G. Kuhn, Anisotropic random walks on free products of cyclic groups, irreducible representations and idempotents of C * reg (G), Nagoya Math, J, vol.128, pp.95-120, 1992.

G. Kuhn and P. M. Soardi, The Plancherel measure for polygonal graphs, Annali di Matematica Pura ed Applicata, vol.12, issue.1, pp.393-401, 1983.
DOI : 10.1007/BF01773513

R. A. Kunze and E. M. Stein, Uniformly Bounded Representations and Harmonic Analysis of the 2 x 2 Real Unimodular Group, American Journal of Mathematics, vol.82, issue.1, pp.1-62, 1960.
DOI : 10.2307/2372876

G. Medolla, Asymptotic Energy Equipartition for the Wave Equation on Homogeneous Trees, Monatshefte f???r Mathematik, vol.127, issue.1, pp.43-53, 1999.
DOI : 10.1007/s006050050021

G. Medolla and A. G. Setti, The wave equation on homogeneous trees, Annali di Matematica Pura ed Applicata, vol.64, issue.6, pp.1-27, 1999.
DOI : 10.1007/BF02505986

G. Medolla and A. G. Setti, Long time heat diffusion on homogeneous trees, Proc. Amer, pp.1733-1742, 2000.

C. Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon, Pacific Journal of Mathematics, vol.133, issue.1, pp.141-149, 1988.
DOI : 10.2140/pjm.1988.133.141

F. W. Olver, Asymptotics and special functions, 1974.

M. Pagliacci, Heat and wave equations on homogeneous trees, Boll. Un. Mat. Ital. A, vol.7, issue.7 1, pp.37-45, 1993.

M. Picardello, Spherical functions and local limit theorems on free groups, Annali di Matematica Pura ed Applicata, vol.42, issue.1, pp.177-191, 1983.
DOI : 10.1007/BF01766017

V. Pierfelice, Weighted Strichartz estimates for the Schr??dinger and wave equations on Damek???Ricci spaces, Mathematische Zeitschrift, vol.110, issue.3, pp.377-392, 2008.
DOI : 10.1007/s00209-007-0279-0

S. Sawyer, Isotropic random walks in a tree, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.No. 2, pp.279-292, 1978.
DOI : 10.1007/BF00533464

E. M. Stein, Harmonic analysis (real?variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, 1993.

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conf. Ser. Math. 106, Amer, Math. Soc. Providence, RI, 2006.

J. Tits, Sur le groupe des automorphismes d'un arbre Mémoires dédiésdédiésà Georges de Rham, pp.188-211, 1970.

N. Th, Varopoulos : Long range estimates for Markov chains, Bull. Sci. Math, vol.109, issue.2, pp.225-252, 1985.

W. Woess, Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B, vol.5, issue.6 3, pp.961-982, 1986.

W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol.138
DOI : 10.1017/CBO9780511470967