K. Lee, J. J. Zhang, H. J. Wang, and D. P. Wilkinson, Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis, Journal of Applied Electrochemistry, vol.398, issue.103, pp.507-522, 2006.
DOI : 10.1007/s10800-006-9120-4

C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon et al., Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes, Nano Letters, vol.4, issue.2, pp.345-348, 2004.
DOI : 10.1021/nl034952p

F. E. Passalacqua, G. Lufrano, A. Squadrito, L. Patti, and . Giorgi, Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochimica Acta, vol.46, issue.6, pp.799-805, 2001.
DOI : 10.1016/S0013-4686(00)00679-4

S. J. Song, W. M. Cha, and . Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, Journal of Power Sources, vol.94, issue.1, pp.78-84, 2001.
DOI : 10.1016/S0378-7753(00)00629-7

P. , .. S. Lee, S. Mukerjee, J. Mcbreen, Y. W. Rho et al., Effects of Nafion impregnation on performances of PEMFC electrodes, Effects of Nafion impregnation on performances of, p.3693, 1998.
DOI : 10.1016/S0013-4686(98)00127-3

S. Mukerjee and S. Srinivasan, Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells, Journal of Electroanalytical Chemistry, vol.357, issue.1-2, p.201, 1993.
DOI : 10.1016/0022-0728(93)80380-Z

G. Tamizhmani and G. A. Capuano, Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy-Oxide in Solid-Polymer-Electrolyte Fuel Cells, Journal of The Electrochemical Society, vol.141, issue.4, p.968, 1994.
DOI : 10.1149/1.2054866

S. Guo, S. Zhang, and S. Sun, Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction, Angewandte Chemie International Edition, vol.7, issue.33, p.8526, 2013.
DOI : 10.1002/anie.201207186

T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima et al., Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catalysis Today, vol.90, issue.3-4, pp.277-281, 2004.
DOI : 10.1016/j.cattod.2004.04.038

K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions, Journal of The Electrochemical Society, vol.151, issue.4, p.125, 2004.
DOI : 10.1149/1.1649756

A. Smirnovaa, X. Dongb, H. Harab, A. Vasilievc, and N. Sammesa, Novel carbon aerogel-supported catalysts for PEM fuel cell application, International Journal of Hydrogen Energy, vol.30, issue.2, p.149, 2005.
DOI : 10.1016/j.ijhydene.2004.04.014

Z. Jiang and Z. Jiang, Carbon Nanotubes Supported Metal Nanoparticles for the Applications in Proton Exchange Membrane Fuel Cells (PEMFCs) INTECH. [En ligne] 2011. http://www.intechopen.com/books/carbon-nanotubes-growth-and-applications/carbon- nanotubes-supported-metal-nanoparticles-for-the-applications-in-proton-exchange- membrane-fuel

H. Kim, J. Lee, and J. Kim, Platinum-sputtered electrode based on blend of carbon nanotubes and carbon black for polymer electrolyte fuel cell, Journal of Power Sources, vol.180, issue.1, p.191, 2008.
DOI : 10.1016/j.jpowsour.2008.02.031

A. Caillard, C. Charles, R. Boswell, P. Brault, and C. Coutanceau, Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency, Applied Physics Letters, vol.90, issue.22, p.223119, 2007.
DOI : 10.1063/1.2745210

URL : https://hal.archives-ouvertes.fr/hal-00180176

X. Liu and . Lin, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells, Langmuir, vol.18, issue.10, p.4054, 2002.
DOI : 10.1021/la0116903

M. Carmo and V. A. Paganin, Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes, Journal of Power Sources, vol.142, issue.1-2, p.169, 2005.
DOI : 10.1016/j.jpowsour.2004.10.023

H. Mu and . Lian, Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells, The Journal of Physical Chemistry B, vol.109, issue.47, p.22212, 2005.
DOI : 10.1021/jp0555448

H. Perez, J. Pradeau, P. Albouy, and J. Perez, Synthesis and Characterization of Functionalized Platinum Nanoparticles, Chemistry of Materials, vol.11, issue.12, pp.3460-3463, 1999.
DOI : 10.1021/cm991013i

R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, vol.137, issue.4925, p.1212, 1964.
DOI : 10.1039/jr9380001761

H. Jahnke, M. Schönborn, and G. Zimmermann, Organic dyestuffs as catalysts for fuel cells, Topics in Current Chemistry, vol.61, p.133, 1976.
DOI : 10.1007/BFb0046059

S. Gupta, D. Tryk, I. Bae, W. Aldred, and E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, Journal of Applied Electrochemistry, vol.50, issue.1, p.19, 1989.
DOI : 10.1007/BF01039385

E. Proietti, M. Jaouen, N. Lefevre, J. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nature Communications, vol.25, p.416, 2011.
DOI : 10.1149/1.2733987

URL : https://hal.archives-ouvertes.fr/hal-00739597

M. Lefèvre, E. Proietti, F. Jaouen, and J. Dodelet, 42. molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in fe-based catalysts, Nature J. P. Dodelet, M. Lefèvre. Journal of Physical Chemistry B, vol.324, issue.106, pp.71-8705, 2002.

A. B. Sidik, N. P. Anderson, S. P. Subramanian, B. N. Kumaraguru, and . Popov, Reduction on Graphite and Nitrogen-Doped Graphite:?? Experiment and Theory, The Journal of Physical Chemistry B, vol.110, issue.4, p.1787, 2006.
DOI : 10.1021/jp055150g

D. Yu, Q. Zhang, and L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction, Journal of the American Chemical Society, vol.132, issue.43, p.15127, 2010.
DOI : 10.1021/ja105617z

R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, and S. I. Woo, Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media, Electrochemistry Communications, vol.12, issue.8, p.1052, 2010.
DOI : 10.1016/j.elecom.2010.05.023

L. Qu, Y. Liu, J. Baek, and L. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, ACS Nano, vol.4, issue.3, p.1321, 2010.
DOI : 10.1021/nn901850u

T. Schilling and M. Bron, Oxygen reduction at Fe???N-modified multi-walled carbon nanotubes in acidic electrolyte, Electrochimica Acta, vol.53, issue.16, p.5379, 2008.
DOI : 10.1016/j.electacta.2008.02.062

R. , D. Jr, and . Hammer, Incorporation of nitrogen in carbon nanotubes

S. Maldonado and K. J. Stevenson, Direct Preparation of Carbon Nanofiber Electrodes via Pyrolysis of Iron(II) Phthalocyanine:?? Electrocatalytic Aspects for Oxygen Reduction, The Journal of Physical Chemistry B, vol.108, issue.31, p.11375, 2004.
DOI : 10.1021/jp0496553

S. Maldonado and K. J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes, The Journal of Physical Chemistry B, vol.109, issue.10, p.4707, 2005.
DOI : 10.1021/jp044442z

S. Maldonado, S. Morin, and K. J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping, Carbon, vol.44, issue.8, pp.1429-1437, 2006.
DOI : 10.1016/j.carbon.2005.11.027

S. Ozkan, P. H. Matter, E. Wang, M. A. Arias, and E. J. Biddinger, Oxygen reduction reaction catalyst prepared from acetonitrile pyrolisis over alumina supported Metal nanoparticles, Journal of Physical Chemistry B, vol.110, p.18374, 2006.

Y. Shao, J. Sui, G. Yin, and Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell, Applied Catalysis B: Environmental, vol.79, issue.1, p.89, 2008.
DOI : 10.1016/j.apcatb.2007.09.047

E. Activity, S. Stability-of-nitrogen, T. C. Kundu, W. Nagaiah, Y. Xia et al., Containing Carbon Nanotubes in the Oxygen Reduction Reaction, Journal of Physical Chemistry C, vol.113, p.14302, 2009.

H. Liu, Y. Zhang, R. Li, X. Sun, S. De´siletsb et al., Structural and morphological control of aligned nitrogen-doped carbon nanotubes, Carbon, vol.48, issue.5, p.1498, 2010.
DOI : 10.1016/j.carbon.2009.12.045

F. J. Pels, J. A. Kapteijn, Q. Moulijn, K. M. Zhu, and . Thomas, 63. origin of the large N1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, pp.1641-8071, 1995.

D. E. Biddinger, U. S. Deak, and . Ozkan, Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts, Topics in Catalysis, vol.154, issue.11, pp.1566-1574, 2009.
DOI : 10.1007/s11244-009-9289-y

C. V. Rao, C. R. Cabrera, and Y. Ishikawa, In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction, The Journal of Physical Chemistry Letters, vol.1, issue.18, pp.2622-2627, 2010.
DOI : 10.1021/jz100971v

K. Fujisawa, T. Tojo, H. Muramatsu, L. A. Elias, and M. Terrones, Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment, Nanoscale, vol.33, issue.10, p.4359, 2011.
DOI : 10.1039/c1nr10717h

T. Sharifi, G. Hu, X. Jia, and T. Wagberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes, ACS Nano, vol.6, issue.10, p.8904, 2012.
DOI : 10.1021/nn302906r

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications 2ed, 2000.

Y. Garsany, O. A. Baturina, K. E. Swider-lyons, and S. S. Kocha, Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction, Analytical Chemistry, vol.82, issue.15, p.6321, 2010.
DOI : 10.1021/ac100306c

A. Benchmarks, . H. Requirements-for-pt, S. S. Gasteiger, B. Kocha, F. T. Sompalli et al., Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCS, p.9, 2005.

T. J. Schmidt and H. A. Gasteiger, Handbook of Fuel Cells-Fundamentals, Technology and Applications, p.316, 2003.

A. Bonakdarpour, M. Lefevre, R. Z. Yang, F. Jaouen, and T. Dahn, Impact of Loading in RRDE Experiments on Fe???N???C Catalysts: Two- or Four-Electron Oxygen Reduction?, Electrochemical and Solid-State Letters, vol.11, issue.6, p.105, 2008.
DOI : 10.1149/1.2904768

URL : https://hal.archives-ouvertes.fr/hal-00800304

S. Cavaliere, F. Raynal, M. Herlem, A. Etcheberry, and H. Perez, Direct Electrocatalytical activity of capped platinum nanoparticles toward oxygen reduction, Solid Sate and Electrochemical Letters, vol.10, p.358, 2004.

S. Cavaliere, Films de Langmuir-Blodgett à base de nanoparticules de platine à enrobage organique modifié : élaboration, caractérisation et comportement électrochimique, Thèse de l, 2006.

S. Cavaliere, J. Haccoun, A. Etcheberry, M. Herlem, and H. Perez, Oxygen reduction of pre-synthesized organically capped platinum nanoparticles assembled in mixed Langmuir???Blodgett films: Evolutions with the platinum amount and leveling after fatty acid removal, Electrochimica Acta, vol.53, issue.20, p.5992, 2008.
DOI : 10.1016/j.electacta.2008.03.043

URL : https://hal.archives-ouvertes.fr/hal-00091253

G. Carrot, F. Gal, C. Cremona, J. Vinas, and H. Perez, Polymer-Grafted-Platinum Nanoparticles: From Three-Dimensional Small-Angle Neutron Scattering Study to Tunable Two-Dimensional Array Formation, Langmuir, vol.25, issue.1, p.25, 2009.
DOI : 10.1021/la802862q

URL : https://hal.archives-ouvertes.fr/hal-00404420

V. F. Gal, H. Noel, G. Perez, and . Carrot, Water-soluble polymer-grafted platinum nanoparticles for the subsequent binding of enzymes. synthesis and SANS, Journal of Polymer Science Part A: Polymer Chemistry, vol.46, issue.2, p.289, 2012.
DOI : 10.1002/pola.25030

URL : https://hal.archives-ouvertes.fr/hal-00679772

M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud et al., Evidence of Sequential Lift in Growth of Aligned Multiwalled Carbon Nanotube Multilayers, Nano Letters, vol.5, issue.12, p.2394, 2005.
DOI : 10.1021/nl051472k

URL : https://hal.archives-ouvertes.fr/hal-00084691

F. Cheng, E. Volatron, A. Pardieu, G. Borta, C. Carrot et al., Nanocomposite electrodes based on pre-synthesized organically grafted platinum nanoparticles and carbon nanotubes. III: Determination of oxygen reduction reaction selectivity and specific area of porous electrode related to the oxygen reduction reaction ranging from 2m2gPt???1 to 310m2gPt???1, Electrochimica Acta, vol.89, pp.1-12, 2013.
DOI : 10.1016/j.electacta.2012.11.048

URL : https://hal.archives-ouvertes.fr/hal-00854423

B. Baret, Composites nanotubes de carbone-nanoparticules de platine enrobées pour électrodes de pile à combustible, Thèse de l'Université de Versailles-Saint-Quentin-en- Yvelines, 2009.

A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamental and Application 2nd ed, 2001.

A. Bonakdarpour, T. R. Dahn, R. T. Atanasosoki, M. K. Debe, and J. R. Dahn, H[sub 2]O[sub 2] Release during Oxygen Reduction Reaction on Pt Nanoparticles, Electrochemical and Solid-State Letters, vol.11, issue.11, p.208, 2008.
DOI : 10.1149/1.2978090

. Alonso-vante, Platinum and Non-Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction, ChemPhysChem, vol.113, issue.535, p.2732, 2010.
DOI : 10.1002/cphc.200900817

R. E. Bardsley and W. G. Childs, The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6- sulphonic acid) as chromogen, Biochemical Journal, vol.145, pp.93-103, 1975.

T. J. Markovic, V. Schmidt, P. N. Stamenkovic, and . Ross, Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review, Fuel Cells, vol.1, issue.2, pp.105-116, 2001.
DOI : 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9

A. The, System as an Alternative Method to RRDE for the Determination of the Selectivity of the Oxygen Reduction Reaction

F. Volatron, F. Lachaud, X. Cheng, B. Baret, M. Pinault et al., Nanocomposite electrodes based on pre-synthesized organically capped platinum nanoparticles and carbon nanotubes.PartII:Determination of diffusion area for oxygen reduction reflects platinum accessibility, Electrochimica Acta, vol.56, issue.56, pp.5151-5157, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00610906

R. T. Davies and . Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory, Journal of Electroanalytical Chemistry, vol.585, issue.1, p.63, 2005.
DOI : 10.1016/j.jelechem.2005.07.022

J. K. Aoki and . Osteryoung, Diffusion-controlled current at the stationary finite disk electrode: theory, Journal of Electroanalytical Chemistry, vol.19, p.122, 1981.

D. Shoup and A. Szabo, Chronoamperometric current at finite disk electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.140, issue.2, p.237, 1982.
DOI : 10.1016/0022-0728(82)85171-1

S. Trasatti and O. A. Petrii, Real surface area measurements in electrochemistry, Pure and Applied Chemistry, vol.63, p.771, 1991.

K. Chizari, I. Janowska, M. Houllé, I. Florea, O. Ersen et al., Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction, Applied Catalysis A: General, vol.380, issue.1-2, pp.72-80, 2010.
DOI : 10.1016/j.apcata.2010.03.031

J. Torres, C. C. Perry, and J. Stephen, Low-Temperature Oxidation of Nitrided Iron Surfaces, The Journal of Physical Chemistry B, vol.107, issue.23
DOI : 10.1021/jp027802w

S. H. Choi, J. P. Bae, C. Seo, B. Kim, and . Kim, Experimental and theoretical studies on the structure of N-doped carbon nanotubes: Possibility of intercalated molecular N2, Applied Physics Letters, vol.85, issue.23, p.5742, 2004.
DOI : 10.1063/1.1835994

M. Terrones, R. Kamalakaran, T. Seeger, and M. Rühle, Novel nanoscale gas containers: encapsulation of N2 in CNx nanotubes, Chemical Communications, vol.23, issue.23, p.2335, 2000.
DOI : 10.1039/b008253h

M. Reyes-reyes, N. Grobert, R. Kamalakaran, T. Seeger, D. Golberg et al., Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis, Chemical Physics Letters, vol.396, issue.1-3, p.167, 2004.
DOI : 10.1016/j.cplett.2004.07.125

C. Hedman, K. Nordling, and . Siegbahn, Energy splitting of core electron levels in paramagnetic molecules, Physics Letters A, vol.29, issue.4, p.178, 1969.
DOI : 10.1016/0375-9601(69)90801-9

H. Khodja, M. Pinaultb, M. Mayne-l-'hermiteb, and C. Reynaud, Carbon nanotube growth mechanism investigated by ion beam analysis Nuclear Instruments and Methods, Physics Research B, vol.249, p.523, 2006.

P. Berger and G. , Technique de l'ingénieur. [En ligne] 2013

T. I. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, and N. M. Brown, High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon, vol.43, issue.1, pp.153-161, 2005.
DOI : 10.1016/j.carbon.2004.08.033

W. Hua, B. Gao, S. Li, H. Agren, and Y. Luo, X-ray absorption spectra of graphene from first-principles simulations, Physical Review B, vol.82, issue.15, p.155433, 2010.
DOI : 10.1103/PhysRevB.82.155433

K. Shan and . Cho, Oxygen dissociation on nitrogen-doped single wall nanotube: A first-principles study, Chemical Physics Letters, vol.492, issue.1-3, p.131, 2010.
DOI : 10.1016/j.cplett.2010.04.050

D. C. Wang, R. L. Alsmeyer, and . Mccreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chemistry of Materials, vol.2, issue.5, pp.557-563, 1990.
DOI : 10.1021/cm00011a018

S. Behler, H. Osswald, S. Ye, Y. Dimovski, and . Gogotsi, Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes, Journal of Nanoparticle Research, vol.350, issue.2, p.615, 2006.
DOI : 10.1007/s11051-006-9113-6

S. Ozkan, E. J. Biddinger, and D. Deak, Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts, Topics in Catalysis, vol.52, pp.1566-1574, 2009.

E. , X. , .. M. Larsen, . Skou, and M. Eivind, thin-film RRDE characterization of nano structured carbon materials for catalyst support in PEM fuel cells, Journal of Power Sources, vol.202, pp.35-46, 2012.