L. F. Abbott and S. B. Nelson, Synaptic plasticity: taming the beast, Nature Neuroscience, vol.3, issue.Supp, pp.1178-1183, 2000.
DOI : 10.1038/81453

L. Alvado, Neurones artificiels sur Silicium : une évolution vers les réseaux, Thèse de l'Université de Bordeaux 1, N° d'ordre 2674, 2003.

J. V. Arthur and K. A. Boahen, Learning in Silicon: Timing is Everything, Proc. of NIPS, pp.75-82, 2006.

M. Badoual, Q. Zou, A. P. Davison, M. Rudolph, T. Bal et al., BIOPHYSICAL AND PHENOMENOLOGICAL MODELS OF MULTIPLE SPIKE INTERACTIONS IN SPIKE-TIMING DEPENDENT PLASTICITY, International Journal of Neural Systems, vol.16, issue.02, pp.79-98, 2006.
DOI : 10.1142/S0129065706000524

URL : https://hal.archives-ouvertes.fr/hal-00120626

M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type Boahen, Point-to-point connectivity between neuromorphic chips using address events, BOA 96] K. A. Boahen, A Retinomorphic Vision System, pp.24-10464, 1996.

L. Buhry, S. Saïghi, A. Giremus, E. Grivel, and S. Renaud, Automated tuning of analog neuromimetic integrated circuits, 2009 IEEE Biomedical Circuits and Systems Conference, pp.13-16, 2009.
DOI : 10.1109/BIOCAS.2009.5372097

URL : https://hal.archives-ouvertes.fr/hal-00438269

R. L. Calabrese, Half-Center Oscillators Underlying Rhythmic Movements dans The Handbook of Brain Theory and Neural Networks, pp.444-447, 1118.

V. Chan, S. Liu, A. Van-schaik, and A. Ear, Hausser, Integration of quanta in cerebellar granule cell during sensory processing, Matched Silicon Cochlea Pair With Address Event Representation Interface, pp.6985-856, 2004.

G. Chechik and N. Tishby, Temporally dependent plasticity: An information theoretic account, Proc. of NIPS, pp.110-116, 2000.

E. Chicca, A. M. Whatley, V. Dante, P. Lichtsteiner, T. Delbrück et al., A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity, IEEE Trans. on Circuits and Systems I, vol.5, pp.54-981, 2007.

. O. Chu-71-]-l and . Chua, Memristor-The missing circuit element, IEEE Trans. on Circuit Theory, vol.18, issue.5, pp.507-519, 1971.

. O. Chu-76-]-l, S. M. Chua, and . Kang, Memristive devices and systems, Proc. of the IEEE, pp.209-223, 1976.

J. J. Collins, C. C. Chow, T. T. Imhoff, J. Conradt, M. Cook et al., Stochastic resonance without tuning A Pencil Balancing Robot using a Pair of AER Dynamic Vision Sensors Conductance Fluctuations from the Inactivation Process of Sodium Channels in Myelinated Nerve Fibers, CSE 08] D. Csercsik, G. Szederkényi, K. M. Hangos, I. Farkas, Parameter estimation of Hodgkin-Huxley model of GnRH neurons, Proc. of the 9 th Int. Phd. workshop: Young Generation Viewpoint, pp.6537-236, 1980.

]. E. Culurciello, R. Etienne-cummings, and K. A. Boahen, A biomorphic digital image sensor, IEEE Journal of Solid-State Circuits, vol.38, issue.2, pp.281-294, 2001.
DOI : 10.1109/JSSC.2002.807412

E. D. Angelo, G. De-filippi, P. Rossi, and V. Taglietti, Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current, J. Neurophysiol, vol.80, issue.2, pp.493-503, 1998.

E. De-la-peña and E. Geijo-barrientos, Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex, Journal of Neuroscience, vol.16, pp.5301-5311, 1996.

Z. A. Destexhe, T. J. Mainen, and . Sejnowski, An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding, Neural Computation, vol.30, issue.1, pp.14-18, 1994.
DOI : 10.1162/neco.1993.5.2.200

T. A. Destexhe, D. A. Bal, T. J. Mc-cormick, and . Sejnowski, Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices, J. Neurophysiol, pp.76-2049, 1996.

A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, Kinetic Models of Synaptic Transmission, Chap. 1 dans Methods in Neuronal modeling de C. Koch et I. Segev, 2 ème édition, 1998.

C. Dioro, D. Hsu, and M. Figueroa, Adaptive CMOS: From Biological Inspiration to System, Proc. of the IEEE, pp.345-357, 2002.

]. Djo-75 and . Jong, An analysis of the behaviour of a class of genetic adaptive systems, 1975.

]. S. Doi-02, Y. Doi, S. Onoda, and . Kumagai, Parameter estimation of various Hodgkin-Huxley-type neuronal models using a gradient-descent learning method, Proceedings of the 41st SICE Annual Conference. SICE 2002., pp.1685-1688, 2002.
DOI : 10.1109/SICE.2002.1196569

. B. Erm-08-]-g, R. F. Ermentrout, and N. N. Galan, Urban, Reliability, synchrony and noise, Trends Neurosciences, pp.428-434, 2008.

D. E. Feldman, V. Feoktistov, and S. Janaqi, Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex, th IEEE Int. Symp. on Parallel and Distributed Processing Stochastic versions of the Hodgkin?Huxley equations, pp.45-56, 1997.
DOI : 10.1016/S0896-6273(00)00008-8

S. Fregonese, H. Cazin-d-'honincthun, J. Goguet, C. Maneux, T. Zimmer et al., Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design, IEEE Transactions on Electron Devices, vol.55, issue.6, pp.1317-1326, 2002.
DOI : 10.1109/TED.2008.922494

URL : https://hal.archives-ouvertes.fr/hal-00287142

W. M. Gerstner and . Kistler, Spiking Neuron Models, 2002.

G. Ghibaudo and T. Boutchacha, Electrical noise and RTS fluctuations in advanced CMOS devices, Microelectronics Reliability, pp.4-5, 2002.

]. B. Gil-90 and . Gilbert, Current-mode circuits from translinear viewpoint: a tutorial, Chap. 2 dans Analogue IC design : the current-mode approach de C, 1990.

M. Gurkiewicz, A. Korngreen, R. Gutig, R. Aharonov, S. Rotter et al., A numerical approach to ion channel modelling using whole?cell voltage?clamp recordings and genetic algorithm Learning input correlations through nonlinear temporally asymmetric hebbian plasticity, GUT 03] Pathological synchronization in Parkinson's Disease: Networks, models, and treatments, pp.169-3697, 2003.

A. L. Donoghue, A. F. Hodgkin, and . Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve NeuReal: An interactive simulation system for implementing artificial dendrites and large hybrid networks, Nature J. of Physiology J. of Neuroscience Methods, vol.442, issue.169, pp.7099-164, 1952.

G. Indiveri, E. Chicca, and R. Douglas, A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity, IEEE Transactions on Neural Networks, vol.17, issue.1, pp.211-221, 2006.
DOI : 10.1109/TNN.2005.860850

. R. Kan-91-]-e, J. H. Kandel, and T. M. Schwartz, Principles of neural science, Troisième édition, p.1135, 1991.

M. C. Van-rossum, S. Song, and J. Tegner, Spike timing dependent plasticity: common themes and divergent vistas, Biological Cybernetics, vol.87, pp.446-458, 2002.

]. J. Lam-99, I. Lampinen, and . Zelinka, Mixed variable non-linear optimization by Differential Evolution, Proc. of the 2 nd Int. Prediction Conf, pp.45-55, 1999.

J. J. Lazzaro and . Wawrzynek, Silicon Models for Auditory Scene Analysis, Proc. of NIPS, pp.699-705, 1995.

]. G. Lem-01, R. Le-masson, and . Maex, Introduction to equation solving and parameter fitting, Chap. 1 dans Computational Neuroscience: Realistic Modeling for Experimentalists, Boca Raton, vol.348, 2001.

]. G. Lem-02, S. Le-masson, D. Renaud-le-masson, T. Debay, and . Bal, Feedback inhibition controls spike transfer in hybrid thalamic circuits, Nature, pp.417-854, 2002.

]. G. Lem-98 and . Masson, Stabilité fonctionnelle des réseaux de neurones : Étude expérimentale et théorique dans le cas d'un réseau simple, Thèse de l'Université de Bordeaux 1, 1998.

O. W. Levy and . Steward, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience, vol.8, issue.4, pp.791-797, 1983.
DOI : 10.1016/0306-4522(83)90010-6

P. Lichtsteiner, C. Posch, and T. Delbrück, A 128x128 dB 15 ?s Latency Asynchronous Temporal Contrast Vision Sensor, IEEE J. of Solid- State Circuits, vol.42, issue.2, pp.566-576, 2008.

W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, Bayesian inference with probabilistic population codes, Nature Neuroscience, vol.9, issue.11, pp.1432-1438, 2006.
DOI : 10.1038/nn1691

J. L. Madden, Z. B. Miled, R. C. Chin, and J. Schild, On parameter estimation for neuron models, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, p.253, 2000.
DOI : 10.1109/BIBE.2000.889615

D. J. Magee and . Johnston, A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons, Science, vol.275, issue.5297, pp.209-213, 1997.
DOI : 10.1126/science.275.5297.209

E. Margalit, M. Maia, J. D. Weiland, R. J. Greenberg, G. Y. Fujii et al., Retinal Prosthesis for the Blind, MAR 97] H. Markram, J. Lubke, M. Frotscher, B. Sackmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, pp.335-356, 1997.
DOI : 10.1016/S0039-6257(02)00311-9

J. Misra and I. Saha, Artificial neural networks in hardware: A survey of two decades of progress, Neurocomputing, vol.74, issue.1-3, pp.239-255, 2010.
DOI : 10.1016/j.neucom.2010.03.021

. Masmoudi, Schottky barrier carbon nanotube transistor: Compact modelling, scaling study and circuit design applications, IEEE Trans. on Electron Devices, vol.58, issue.1, pp.195-205, 2011.

M. A. Nicolelis, Opinion: Brain???machine interfaces to restore motor function and probe neural circuits, Nature Reviews Neuroscience, vol.4, issue.5, pp.417-422, 2003.
DOI : 10.1038/nrn1105

C. Pecher, La Fluctuation D'excitabilit?? de la Fibre Nerveuse, Archives Internationales de Physiologie, vol.49, issue.2, pp.129-152, 1939.
DOI : 10.1113/jphysiol.1934.sp003185

M. Pospischil, M. Toledo-rodriguez, C. Monier, Z. Piwkowska, T. Bal et al., Minimal Hodgkin???Huxley type models for different classes of cortical and thalamic neurons, Biological Cybernetics, vol.17, issue.4-5, pp.99-427, 2008.
DOI : 10.1007/s00422-008-0263-8

URL : https://hal.archives-ouvertes.fr/hal-00377075

I. Reuveni, A. Friedman, Y. Amitai, and M. J. Gutnick, Stepwise repolarization from Ca2+ plateaux in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites, J. of Neurosci, vol.13, pp.4609-4621, 1993.

P. D. Roberts and C. C. Bell, Spike timing dependent synaptic plasticity in biological systems, Biological Cybernetics, vol.87, issue.5-6, pp.392-403, 2002.
DOI : 10.1007/s00422-002-0361-y

M. Rudolph and A. Destexhe, An Extended Analytic Expression for the Membrane Potential Distribution of Conductance-Based Synaptic Noise, Neural Computation, vol.17, issue.11, pp.2301-2315, 2005.
DOI : 10.1023/A:1011268215708

URL : https://hal.archives-ouvertes.fr/hal-00018677

M. A. Saarinen and O. Linne, Yli-Harja, Modeling single neuron behavior using stochastic differential equations, Neurocomputing, vol.69, pp.10-12, 2006.

]. S. Scott, Neuroscience: Converting thoughts into action Analysis and Synthesis of Translinear Integrated Circuits, Nature, vol.442, pp.7099-141, 1988.

. Ser-06-]-t, R. Serrano-gotarredona, A. Serrano-gotarredona, B. Acosta-jimenez, and . Linares-barranco, A neuromorphic cortical-layer microchip for spike-based event processing vision systems, IEEE Trans. on Circuits and Systems I, vol.53, pp.12-2548, 2006.

M. F. Simoni, G. S. Cymbalyuk, M. E. Sorensen, R. L. Calabrese, and S. P. Dewerth, A Multiconductance Silicon Neuron With Biologically Matched Dynamics, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.342-354, 2004.
DOI : 10.1109/TBME.2003.820390

M. F. Simoni, S. P. Dewerth, W. Singer, C. M. Gray, K. Song et al., Two-Dimensional Variation of Bursting Properties in a Silicon-Neuron Half-Center Oscillator Visual feature integration and the temporal correlation hypothesis Competitive hebbian learning through spike-timing-dependent synaptic plasticity, IEEE Trans. on Neural Systems and Rehabilitation Engineering Annual Review of Neuroscience Nature Neuroscience, vol.14, issue.3, pp.281-289, 1995.

S. Song and L. Abbott, Cortical Development and Remapping through Spike Timing-Dependent Plasticity, Neuron, vol.32, issue.2, pp.339-350, 2001.
DOI : 10.1016/S0896-6273(01)00451-2

R. B. Stein, E. R. Gossen, and K. E. Jones, Neuronal variability: noise or part of the signal?, Nature Reviews Neuroscience, vol.17, issue.5, pp.389-397, 2005.
DOI : 10.1016/S0167-9457(02)00156-2

R. Storn, K. Price, F. Tenore, R. Etienne-cummings, and M. A. Lewis, Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces, Jour. of Global Optimization Entrainment of silicon central pattern generators for legged locomotory control, Proc. of NIPS, pp.341-359, 1997.

. H. Tsa-94-]-m, T. P. Tsai, and . Ma, The Impact of device scaling on the current fluctuations in MOSFETs, IEEE Trans. on Electron Devices, vol.41, issue.11, pp.2061-2068, 1994.

. J. Uhl-06-]-p, W. Uhlhaas, and . Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, pp.155-168, 2006.

. L. Vel-00-]-j, P. L. Velazquez, and . Carlen, Gap junctions, synchrony, and seizures, Trends in Neuroscience, pp.68-74, 2000.

W. Van-geit, E. De-schutter, and P. Achard, Automated neuron model optimization techniques: a review, Biological Cybernetics, vol.1, issue.4598, pp.241-251, 2008.
DOI : 10.1007/s00422-008-0257-6

J. Volgestein, U. Mallik, and G. Cauwenberghs, Silicon spike-based synaptic array and address-event transceiver, Proc. of IEEE Int

M. C. Van-rossum, G. Bi, and G. G. Turrigiano, Stable hebbian learning from spike timing-dependent plasticity, J. of Neuroscience, vol.20, pp.8812-8821, 2000.

M. C. Van-rossum and G. G. Turrigiano, Correlation based learning from spike timing dependent plasticity, Neurocomputing, vol.38, issue.40, pp.38-40, 2001.
DOI : 10.1016/S0925-2312(01)00360-5

A. Van-schaik and S. Shamma, A Neuromorphic Sound Localizer for a Smart MEMS System, Analog Integrated Circuits and Signal Processing, vol.39, issue.3, pp.267-273, 2004.
DOI : 10.1023/B:ALOG.0000029662.37528.c7

J. J. White, A. R. Rubinstein, and . Kay, Channel noise in neurons, Trends in Neurosciences, vol.23, issue.3, pp.131-137, 2000.
DOI : 10.1016/S0166-2236(99)01521-0

]. K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature, vol.373, issue.6509, pp.33-36, 1995.
DOI : 10.1038/373033a0

A. R. Willms, D. J. Baro, R. M. Harris-warrick, and J. Guckenheimer, An improved parameter estimation method for Hodgkin-Huxley models, Macready, No free lunch theorems for optimization, pp.145-168, 1997.

]. S. Wong and C. A. Salama, Impact of Scaling on MOS Analog Performance, IEEE Journal of Solid-State Circuits, vol.18, issue.1, pp.106-114, 1983.
DOI : 10.1109/JSSC.1983.1051906

W. M. Yamada, C. Koch, and P. R. Adams, Multiple Channels and Calcium Dynamics, Chap. 4 in Methods in Neuronal Modeling: From Ions to Networks de C. Koch, I. Segev, 1989.

Q. Zou, Y. Bornat, J. Tomas, S. Renaud, and A. Destexhe, Real-time simulations of networks of Hodgkin???Huxley neurons using analog circuits, Neurocomputing, vol.69, issue.10-12, pp.1137-1140, 2006.
DOI : 10.1016/j.neucom.2005.12.061

URL : https://hal.archives-ouvertes.fr/hal-00182181