P. Albers and H. Hofer, On the Weinstein conjecture in higher dimensions, Commentarii Mathematici Helvetici, vol.84, issue.2, pp.429-436, 2009.
DOI : 10.4171/CMH/167

[. Au-yeung, C. Li, and L. Rodman, -Unitary and Lorentz Matrices: A Review, SIAM Journal on Matrix Analysis and Applications, vol.25, issue.4, pp.1140-1162, 2004.
DOI : 10.1137/S0895479803421896

URL : https://hal.archives-ouvertes.fr/halshs-00642494

]. S. Bas and . Basu, An introduction to equivariant homology. Available at www.math.binghamton

[. Bourgeois, T. Ekholm, and Y. Eliashberg, Effect of Legendrian surgery, Geometry & Topology, vol.16, issue.1, pp.301-389, 2012.
DOI : 10.2140/gt.2012.16.301

URL : https://hal.archives-ouvertes.fr/hal-01010999

]. F. Beh-+-03, Y. Bourgeois, H. Eliashberg, K. Hofer, E. Wysocki et al., Compactness results in symplectic field theory, Geom. Topol, vol.7, pp.799-888, 2003.

H. Berestycki, J. Lasry, G. Mancini, and B. Ruf, Existence of multiple periodic orbits on star-shaped hamiltonian surfaces, Communications on Pure and Applied Mathematics, vol.22, issue.3, pp.253-289, 1985.
DOI : 10.1002/cpa.3160380302

[. Bourgeois and K. Mohnke, Coherent orientations in symplectic field theory, Mathematische Zeitschrift, vol.248, issue.1, pp.123-146, 2004.
DOI : 10.1007/s00209-004-0656-x

URL : https://hal.archives-ouvertes.fr/hal-01011007

[. Bourgeois and A. Oancea, An exact sequence for contact- and symplectic homology, Inventiones mathematicae, vol.8, issue.3, pp.611-680, 2009.
DOI : 10.1007/s00222-008-0159-1

URL : https://hal.archives-ouvertes.fr/hal-00142328

[. Bourgeois and A. Oancea, Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces, Duke Mathematical Journal, vol.146, issue.1, pp.71-174, 2009.
DOI : 10.1215/00127094-2008-062

URL : https://hal.archives-ouvertes.fr/hal-00142013

[. Bourgeois and A. Oancea, Fredholm theory and transversality for the parametrized and for the S1-invariant symplectic action, Journal of the European Mathematical Society, vol.12, issue.5, pp.1181-1229, 2010.
DOI : 10.4171/JEMS/227

URL : https://hal.archives-ouvertes.fr/hal-00422072

[. Bourgeois and A. Oancea, -EQUIVARIANT SYMPLECTIC HOMOLOGY, Journal of Topology and Analysis, vol.05, issue.04, pp.361-407, 2013.
DOI : 10.1142/S1793525313500210

URL : https://hal.archives-ouvertes.fr/halshs-00607826

[. Bourgeois and A. Oancea, The index of Floer moduli problems for parametrized action functionals, Geometriae Dedicata, vol.9, issue.5, pp.5-24, 2013.
DOI : 10.1007/s10711-012-9763-8

URL : https://hal.archives-ouvertes.fr/hal-01010949

A. Borel, Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts, The Annals of Mathematics, vol.57, issue.1, pp.115-207, 1953.
DOI : 10.2307/1969728

E. Brieskorn, Beispiele zur Differentialtopologie von Singularit???ten, Inventiones Mathematicae, vol.144, issue.1, pp.1-14, 1966.
DOI : 10.1007/BF01403388

K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and back
DOI : 10.1090/coll/059

A. [. Cieliebak, H. Floer, and . Hofer, Symplectic homology II, Mathematische Zeitschrift, vol.45, issue.1, pp.103-122, 1995.
DOI : 10.1007/BF02571891

A. [. Cieliebak, H. Floer, K. Hofer, and . Wysocki, Applications of symplectic homology II: Stability of the action spectrum, CGH12] Daniel Cristofaro-Gardiner and Michael Hutchings. From one Reeb orbit to two, pp.27-45, 1996.
DOI : 10.1007/BF02621587

K. Cieliebak, Handle attaching in symplectic homology and the Chord Conjecture, Journal of the European Mathematical Society, vol.4, issue.2, pp.115-142, 2002.
DOI : 10.1007/s100970100036

C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian Equations, Communications on Pure and Applied Mathematics, vol.26, issue.2, pp.207-253, 1984.
DOI : 10.1002/cpa.3160370204

M. De and G. , On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths, J. Math. Pures Appl, issue.96, pp.91598-613, 2009.

S. Bibliography-[-dgdgp08-]-maurice-de-gosson, P. De-gosson, and . Piccione, On a product formula for the Conley-Zehnder index of symplectic paths and its applications

A. [. Eliashberg, H. Givental, and . Hofer, Introduction to Symplectic Field Theory, Geom. Funct. Anal, pp.560-673, 1999.
DOI : 10.1007/978-3-0346-0425-3_4

H. [. Ekeland and . Hofer, Symplectic topology and Hamiltonian dynamics, Mathematische Zeitschrift, vol.98, issue.3, pp.355-378, 1989.
DOI : 10.1007/BF01215653

[. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Mathematische Zeitschrift, vol.98, issue.3, pp.553-567, 1990.
DOI : 10.1007/BF01215653

I. Ekeland, Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas, 1990.
DOI : 10.1007/978-3-642-74331-3

[. Ekeland and J. Lasry, On the Number of Periodic Trajectories for a Hamiltonian Flow on a Convex Energy Surface, The Annals of Mathematics, vol.112, issue.2, pp.283-319, 1980.
DOI : 10.2307/1971148

L. [. Ekeland and . Lassoued, Multiplicit?? des trajectoires ferm??es de syst??mes hamiltoniens connexes, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.4, issue.4, pp.307-335, 1987.
DOI : 10.1016/S0294-1449(16)30362-6

[. Eliashberg, Contact 3-manifolds twenty years since J. Martinet's work, Annales de l???institut Fourier, vol.42, issue.1-2
DOI : 10.5802/aif.1288

H. [. Floer and . Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Mathematische Zeitschrift, vol.22, issue.1, pp.13-38, 1993.
DOI : 10.1007/BF02571639

H. [. Floer and . Hofer, Symplectic homology I open sets in ??? n, Mathematische Zeitschrift, vol.17, issue.2, pp.37-88, 1994.
DOI : 10.1007/BF02571699

A. Floer, H. Hofer, and D. Salamon, Transversality in elliptic Morse theory for the symplectic action. Duke Math, J.. Applications of symplectic homology. I. Math. Z, vol.80, issue.2174, pp.251-292577, 1994.

A. Floer, Symplectic fixed points and holomorphic spheres, Communications In Mathematical Physics, vol.17, issue.106, pp.575-611, 1989.
DOI : 10.1007/BF01260388

URL : http://projecteuclid.org/download/pdf_1/euclid.cmp/1104177909

[. Geiges, Contact geometry, Handbook of differential geometry

L. Viktor, B. Z. Ginzburg, and . Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics, Geom. Topol, vol.13, issue.5, pp.2745-2805, 2009.

L. Viktor, E. Ginzburg, and . Kerman, Homological resonances for Hamiltonian diffeomorphisms and Reeb flows Indefinite linear algebra and applications, Int. Math. Res. Not. IMRN, issue.1, pp.53-68, 2005.

I. Gohberg and B. Reichstein, On H-unitary and block-Toeplitz Hnormal operators. Linear and Multilinear Algebra, pp.17-48, 1991.
DOI : 10.1080/03081089108818086

J. Gutt, Generalized Conley-Zehnder index, Annales de la faculté des Sciences de Toulouse
DOI : 10.5802/afst.1430

URL : http://arxiv.org/abs/1307.7239

J. Gutt, Normal forms for symplectic matrices, Portugaliae Mathematica, vol.71, issue.2
DOI : 10.4171/PM/1944

]. D. Her98 and . Hermann, Homologie symplectique etépaisseuretépaisseur de Gromov d'un ouvert de type contact restreint, 1998.

M. Hutchings, Floer homology of families I, Algebraic & Geometric Topology, vol.8, issue.1, pp.435-492, 2008.
DOI : 10.2140/agt.2008.8.435

K. [. Hofer, E. Wysocki, and . Zehnder, Properties of pseudo-holomorphic curves in symplectisations II: Embedding controls and algebraic invariants, Geometric and Functional Analysis, vol.45, issue.2, pp.270-328, 1995.
DOI : 10.1007/BF01895669

K. [. Hofer, E. Wysocki, and . Zehnder, The Dynamics on Three-Dimensional Strictly Convex Energy Surfaces, The Annals of Mathematics, vol.148, issue.1, pp.197-289, 1998.
DOI : 10.2307/120994

J. Kang, EQUIVARIANT SYMPLECTIC HOMOLOGY AND MULTIPLE CLOSED REEB ORBITS, International Journal of Mathematics, vol.24, issue.13, 2013.
DOI : 10.1142/S0129167X13500961

[. Long and D. Dong, Normal Forms of Symplectic Matrices, Acta Mathematica Sinica, English Series, vol.147, issue.2, pp.237-260, 2000.
DOI : 10.1007/s101140000048

A. J. Laub and K. Meyer, Canonical forms for symplectic and Hamiltonian matrices, Celestial Mechanics, vol.61, issue.2, pp.213-238, 1974.
DOI : 10.1007/BF01260514

[. Lin, V. Mehrmann, and H. Xu, Canonical Forms for Hamiltonian and Symplectic Matrices and Pencils, Linear Algebra and its Applications, vol.302, issue.303, pp.469-533, 1998.
DOI : 10.1016/S0024-3795(99)00191-3

[. Long, Precise Iteration Formulae of the Maslov-type Index Theory and Ellipticity of Closed Characteristics, Advances in Mathematics, vol.154, issue.1, pp.76-131, 2000.
DOI : 10.1006/aima.2000.1914

[. Long, Index theory for symplectic paths with applications, Progress in Mathematics, vol.207, 2002.
DOI : 10.1007/978-3-0348-8175-3

[. Long and C. Zhu, Closed Characteristics on Compact Convex Hypersurfaces in R 2n, The Annals of Mathematics, vol.155, issue.2, pp.317-368, 2002.
DOI : 10.2307/3062120

[. Mcduff and D. Salamon, Introduction to symplectic topology. Oxford Mathematical Monographs, 1998.

[. Mcduff and D. Salamon, J-holomorphic curves and symplectic topology, 2004.
DOI : 10.1090/coll/052

C. [. Müller and . Thiele, Normal forms of involutive complex Hamiltonian matrices under the real symplectic group, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.1999, issue.513, pp.97-114, 1999.
DOI : 10.1515/crll.1999.065

A. Oancea, Fibered symplectic cohomology and the Leray-Serre spectral sequence, Journal of Symplectic Geometry, vol.6, issue.3, pp.267-351, 2008.
DOI : 10.4310/JSG.2008.v6.n3.a3

F. Rit-]-alexander and . Ritter, Morse homology lecture notes

A. F. Ritter, Topological quantum field theory structure on symplectic cohomology, Journal of Topology, vol.6, issue.2, pp.391-489, 2013.
DOI : 10.1112/jtopol/jts038

L. Rodman, Similarity vs unitary similarity and perturbation analysis of sign characteristics: Complex and real indefinite inner products, Linear Algebra and its Applications, vol.416, issue.2-3, pp.945-1009, 2006.
DOI : 10.1016/j.laa.2006.01.025

. L. Bibliography-[-rr89-]-p, J. H. Robinson, and . Rawnsley, The metaplectic representation, Mp c structures and geometric quantization, Mem. Amer. Math. Soc, vol.81, issue.410, p.92, 1989.

J. Robbin and D. Salamon, The Maslov index for paths, Topology, vol.32, issue.4, pp.827-844, 1993.
DOI : 10.1016/0040-9383(93)90052-W

[. Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, pp.143-229, 1997.

P. Seidel, A biased view of symplectic cohomology In Current developments in mathematics, pp.211-253, 2006.

]. V. Ser87 and . Serge?-ichuk, Classification problems for systems of forms and linear mappings, Izv. Akad. Nauk SSSR Ser. Mat, vol.51, issue.6, pp.1170-1190, 1358.

E. Spence, m-symplectic matrices, Trans. Amer. Math. Soc, vol.170, pp.447-457, 1972.

[. Salamon and E. Zehnder, Morse theory for periodic solutions of hamiltonian systems and the maslov index, Communications on Pure and Applied Mathematics, vol.23, issue.10, pp.1303-1360, 1992.
DOI : 10.1002/cpa.3160451004

[. Taubes, The Seiberg???Witten equations and the Weinstein conjecture, Geometry & Topology, vol.11, issue.4, pp.2117-2202, 2007.
DOI : 10.2140/gt.2007.11.2117

[. Ustilovsky, Infinitely many contact structures on S 4m+1, Internat. Math. Res. Notices, issue.14, pp.781-791, 1999.

C. Viterbo, A proof of Weinstein???s conjecture in ??? 2n, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.4, issue.4, pp.337-356, 1987.
DOI : 10.1016/S0294-1449(16)30363-8

C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.5, issue.3
DOI : 10.1016/S0294-1449(16)30345-6

]. C. Vit99 and . Viterbo, Functors and computations in Floer homology with applications. I. Geom, Funct. Anal, vol.9, issue.5, pp.985-1033, 1999.

W. Wang, X. Hu, and Y. Long, Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Mathematical Journal, vol.139, issue.3, pp.411-462, 2007.
DOI : 10.1215/S0012-7094-07-13931-0

J. Williamson, On the Normal Forms of Linear Canonical Transformations in Dynamics, American Journal of Mathematics, vol.59, issue.3, pp.599-617, 1937.
DOI : 10.2307/2371583

H. K. Wimmer, Normal forms of symplectic pencils and the discrete-time algebraic Riccati equation, Linear Algebra and its Applications, vol.147, pp.411-440, 1991.
DOI : 10.1016/0024-3795(91)90241-N