Evaluation biologique et phytochimique des substances naturelles d’Hyptis atrorubens Poit. (Lamiaceae), sélectionnée par un criblage d’extraits de 42 plantes

Amin Abedini

To cite this version:
THESE DE DOCTORAT

Présentée à la

FACULTE DES SCIENCES PHARMACEUTIQUES ET BIOLOGIQUES
UNIVERSITE LILLE NORD DE FRANCE
École Doctorale BIOLOGIE SANTE
Par
AMIN ABEDINI

Pour obtenir le grade de
DOCTEUR
Mention : SCIENCE DU MEDICAMENT
Spécialité : Pharmacognosie

Evaluation biologique et phytochimique des substances naturelles d’*Hyptis atrorubens* Poit. (Lamiaceae), sélectionnée par un criblage d'extraits de 42 plantes

Préparé sous la direction du Dr. Thierry HENNEBELLE
Laboratoire de Pharmacognosie (E.A. 4481)
Co-Encadrant : Dr. Vincent ROUMY

Soutenue le 9 Décembre 2013, devant le Jury composé comme suit :

<table>
<thead>
<tr>
<th>Pr. Sylvie BALTORA</th>
<th>Université de Picardie Jules-Verne</th>
<th>Rapporteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr. Pierre CHAMPY</td>
<td>Université de Paris Sud</td>
<td>Rapporteur</td>
</tr>
<tr>
<td>Dr. Christel NEUT</td>
<td>Université de Lille 2</td>
<td>Examineur</td>
</tr>
<tr>
<td>Dr. Thierry HENNEBELLE</td>
<td>Université de Lille 2</td>
<td>Directeur de thèse</td>
</tr>
<tr>
<td>Pr. Sevser SAHPAZ</td>
<td>Université de Lille 2</td>
<td>Invitée</td>
</tr>
<tr>
<td>Pr. Jean-Louis HILBERT</td>
<td>Université de Lille 1</td>
<td>Invité</td>
</tr>
</tbody>
</table>
SOMMAIRE

LISTE DES TRAVAUX .. 1
LISTE DES ABREVIATIONS ET SYMBOLES ... 2
LISTE DES ILLUSTRATIONS .. 4

INTRODUCTION .. 11

I. SÉLECTION DES PLANTES DE L’ÉTUDE ... 15
 I.1. Critères de sélection des plantes .. 16
 I.1.1. Origine géographique .. 16
 I.1.1.1. Iran .. 16
 I.1.1.2. Guadeloupe .. 17
 I.1.2. Utilisation traditionnelle .. 19
 I.1.3. Aspects botanique et chimiotaxonomique ... 20
 I.1.4. Les apports de la littérature .. 20
 I.2. Les plantes sélectionnées .. 21
 I.2.1. Catalogue plantes sélectionnées ... 22

II. SYNTHÈSE BIBLIOGRAPHIQUE ... 43
 II.1. Objectif de l’étude ... 44
 II.1.1. La résistance aux antibiotiques ... 44
 II.1.2. Les produits naturels dans la découverte des médicaments 44
 II.1.3. Les plantes et leurs composés antimicrobiens 45
 II.2. Présentation des espèces végétales les plus actives 46
 II.2.1. La famille des Lamiacées .. 46
 II.2.1.1. Hyptis atrorubens Poit. ... 47
 II.2.1.1.1. Caractéristiques botaniques ... 48
 II.2.1.1.2. Synonymes et noms vernaculaires 50
 II.2.1.1.3. Répartition géographique .. 50
 II.2.1.1.4. Utilisation en médecine traditionnelle 50
 II.2.1.1.5. Travaux antérieurs ... 52
 II.2.1.2. Les polyphénols ... 53
II.2.1. Les flavonoïdes .. 54
II.2.1.2. Les acides-phénols ... 56
II.2.1.2. Satureja khuzestanica Jamzad. ... 57
II.2.1.3. Perovskia abrotanoides Karel. ... 59
II.2.1.4. Phlomis anisodonta Boiss ... 60
II.2.1.5. Salvia mizayyani Rech. f. & Esfand. .. 62
II.2.1.3. Perovskia abrotanoides Karel. ... 59
II.2.2. La famille des Apiacées ... 64
II.2.2.1. Dorema ammoniacum D. Don. ... 64
II.2.2.2. Ferula assa-foetida L. .. 66
II.2.2.3. Ferulago contracta Boiss. et Hausskn. .. 68
II.4. Les souches microbienes testées ... 70
II.4.1. Effet antimicrobien ... 70
II.4.2. Mécanisme d’effet antimicrobien .. 70
II.4.3. Caractéristiques des souches bactériennes utilisées .. 70
II.4.3.1. Stenotrophomonas maltophilia .. 71
II.4.3.2. Staphylococcus epidermidis .. 71
II.4.3.3. Enterococcus faecalis ... 72
II.4.3.4. Escherichia coli .. 72
II.4.3.5. Klebsiella pneumoniae ... 72
II.4.3.6. Pseudomonas aeruginosa .. 72
II.4.3.7. Proteus mirabilis .. 72
II.4.3.8. Providencia stuartii .. 73
II.4.3.9. Salmonella sp. ... 73
II.4.3.10. Serratia marcescens .. 73
II.4.3.11. Acinetobacter baumannii ... 73
II.4.3.12. Citrobacter freundii .. 73
II.4.3.13. Enterobacter cloacae ... 73
II.4.3.14. Enterobacter aerogenes .. 73
II.4.3.15. Mycobacterium smegmatis ... 73
II.4.3.16. Staphylococcus aureus .. 74
II.4.3.17. Staphylococcus lugdunensis ... 74
II.4.3.18. Staphylococcus warneri .. 74
II.4.3.19. *Corynebacterium* ... 74
II.4.3.20. *Enterococcus* sp... 74
II.4.4. Caractéristiques des souches fongiques utilisées 74
 II.4.4.1. *Candida albicans* ... 75
 II.4.4.2. Les dermatophytes... 75

III. MATÉRIEL ET MÉTHODES... 77
 III.1. Extraction de matériaux végétaux... 78
 III.1.1. Matériel végétal... 78
 III.1.2. Protocole d’extraction général .. 78
 III.1.3. Procédure d’extraction des tiges d’*Hyptis atrorubens* Poit........ 81
 III.1.4. Procédure d’extraction des fleurs d’*Alcea rosea* L.................. 83
 III.2. Techniques chromatographiques de séparation............................ 84
 III.2.1. Chromatographie sur couche mince (CCM) analytique 84
 III.2.2. Chromatographie sur couche mince préparative (CCM prép.) 86
 III.2.3. Chromatographie en phase liquide (CPL) 87
 III.2.4. Chromatographie liquide moyenne pression (CLMP) 88
 III.2.5. Chromatographie liquide à haute performance (CLHP) 88
 III.2.5.1. Analyse quantitative des composés par CLHP. 91
 III.3. Détermination des structures chimiques...................................... 91
 III.3.1. Spectrométrie de masse... 91
 III.3.2. Détermination des structures chimiques par RMN 92
 III.4. Étude *in vitro* de l’activité cytotoxique (antiproliférative) 94
 III.5. Tests biologiques... 95
 III.5.1. Essais antimicrobiens.. 95
 III.5.1.1. Préparation des extraits végétaux.. 96
 III.5.1.2. Préparations des différentes concentrations. 96
 III.5.1.3. Préparation des souches microbiennes et culture *in vitro*. 97
 III.5.2. Bioautographie.. 100
 III.5.2.1. Préparation des plaques CCM. .. 101
 III.5.2.2. Préparation de la gélose ensemencée................................. 101
 III.5.3. Détermination de la CMI et de la CMB en microplaque 103
 III.5.4. Dénombrement bactérien (killing curves ou kill-time) 105
 III.5.4.1. Préparation de la suspension bactérienne 105
III.5.4.2. Préparation des extraits végétaux

III.5.4.3. Préparation des différents tubes

III.5.4.4. Préparation des plaques 24 puits

III.5.4.5. Préparation des boîtes de Petri

III.5.5. Courbes de croissance bactérienne

III.5.5.1. Préparation de la suspension bactérienne

III.5.5.2. Préparation des extraits végétaux

III.5.5.3. Préparation des différents tubes

IV. RÉSULTATS

IV.1. Évaluation de l’activité cytotoxique

IV.2. Évaluation de l’activité antibactérienne des extraits

IV.3. Détermination de la CMI et de la CMB (milieu liquide)

IV.4.1. Résultats biologiques préliminaires

IV.4.1.1. Sélection de l’extrait optimal pour l’inhibition antimicrobiennne

IV.4.1.2. Choisir les souches sensibles et l’organe le plus actif de la plante

IV.4.2. Séparation et purification des composés actifs

IV.4.2.1. Première étape de fractionnement

IV.4.2.2. Découvrir des fractions actives par bioguidage

IV.4.2.3. Deuxième étape de fractionnement

IV.4.2.4. Purification des composés actifs

IV.4.3. Détermination de structure des composés

IV.4.3.1. Détermination de structure du composé 1

IV.4.3.2. Détermination de structure du composé 2

IV.4.3.3. Détermination de structure du composé 3

IV.4.3.4. Détermination de structure du composé 4

IV.4.4. Analyse quantitative des quatre composés

IV.4.5. Activité antibactérienne des composés isolés

IV.4.5.1. Détermination de la CMI et de la CMB

IV.4.5.2. Effets synergiques entre les composés

IV.4.5.3. Dénombrement bactérien (killing curves ou kill-time)

IV.4.5.3.1. Staphylococcus epidermidis 5001
IV.4.5.3.2. Stenotrophomonas maltophilia ... 155

IV.4.5.4. Courbe de croissance à 37 °C ... 156

IV.4.5.5. Courbe de croissance à 4 °C .. 157

IV.5. Travaux phytochimiques sur Alcea rosea L. ... 160

IV.5.1. Isolement et purification des flavonoïdes d’Alcea rosea L. 161

IV.5.2. Détermination structurale des flavonoïdes d’Alcea rosea L. 164

IV.5.2.1. Détermination de structure du composé 5 .. 164

IV.5.2.2. Détermination de structure du composé 6 .. 167

IV.5.2.3. Détermination de structure du composé 7 .. 169

V. DISCUSSION .. 172

VI. CONCLUSION ET PERSPECTIVES ... 176

VII. RÉFÉRENCES ... 178

VIII. ANNEXES .. 198
REMERCIEMENTS AUX MEMBRES DU JURY

Je tiens tout d’abord à remercier le Pr. Sylvie BALTORA pour avoir accepté d’être l’un des rapporteurs de cette thèse et aussi pour avoir été présente lors des comités de suivi. C’est à elle que je dois mon intégration dans le laboratoire de Pharmacognosie de Lille 2 en tant que thésard. Durant ces trois dernières années, elle m’a promulgué de précieux conseils qui m’ont permis d’améliorer mon travail. Je tiens à lui adresser toute ma reconnaissance pour les nombreux déplacements Amiens-Lille qu’elle a effectué.

Mes remerciements vont également au Dr. Christel NEUT qui m’a accueilli au sein du Laboratoire de Bactériologie de Lille 2 et qui a été membre du comité de suivi de thèse durant trois années. Grâce à elle et à sa collaboration, j’ai pu développer entièrement mes travaux biologiques nécessaires à l’élaboration de ma thèse. Sa générosité et sa gentillesse m’ont permis d’intégrer facilement son équipe. Par son accompagnement et ses conseils, j’ai pu devenir rapidement autonome sur la partie technique des tests biologiques. Je la remercie également d’avoir effectué les relectures et les corrections nécessaires à la validation de mes articles scientifiques et de mon mémoire de thèse.

Je tiens également à remercier le Pr. Pierre CHAMPY pour le temps qu’il a consacré à la lecture de ma thèse en tant que rapporteur et pour avoir effectué le déplacement jusqu’à Lille afin d’assister à ma soutenance comme membre du jury.
REMERCIEMENTS

Mes remerciements vont tout particulièrement au Dr. Thierry HENNEBELLE qui a accepté de m’encadrer comme directeur de thèse pendant trois ans et m’a accueilli au sein du Laboratoire de Pharmacognosie de Lille 2. C’est lui qui a géré et orienté mes travaux afin que je puisse développer mes connaissances et mon savoir-faire en pharmacognosie et phytochimie. Je le remercie pour sa disponibilité, pour ses conseils bienveillants et la grande attention qu’il a portée à mon travail pendant ces trois ans. Grâce à lui, j’ai pu développer mes connaissances en chimie, particulièrement sur la procédure d’identification des composés purifiés. Je tiens à lui adresser mes remerciements pour les relectures et corrections de mes articles scientifiques, aussi, pour la grande aide qu’il m’a apporté lors de la rédaction de mon mémoire de thèse.

Je souhaite remercier le Pr. François BAILLEUL de m’avoir accueilli et accepté au sein du Laboratoire de Pharmacognosie de Lille 2. Je lui témoigne toute ma reconnaissance pour sa bonne humeur, son sourire et son agréable assistance durant ces trois années. Grâce à lui j’ai obtenu un financement indispensable à l’élaboration de ma thèse. Je le remercie aussi d’avoir effectué la relecture de mon mémoire et de m’avoir accordé sa confiance en m’attribuant le rôle d’assistant des travaux pratiques pour les étudiants de Pharmacie.

Je tiens à remercier Pr. Sevser SAHPAZ pour son accueil chaleureux lors mon arrivée au laboratoire, pour ses conseils et pour avoir été présente lors des comités de suivi ces trois dernières années.

Je veux remercier tout particulièrement Dr. Vincent ROUMY pour m’avoir encadré et pour sa grande contribution dans le développement de mon savoir-faire concernant les tests biologiques. Grâce à lui et à ses propositions, j’ai pu collaborer avec le Laboratoire de Bactériologie de Lille 2. Je le remercie aussi pour avoir effectué la relecture de ma thèse.

Je tiens à remercier Dr. Céline RIVIERE pour ses nombreux conseils, pour sa patience et sa gentillesse.
Je remercie également Dr. Annie STANDAERT-VITSE pour son accueil, pour son encadrement au sein du Laboratoire de Parasitologie de Lille 2, et pour m’avoir fourni les souches dermatophytes nécessaires à l’élaboration de mes tests biologiques.

Mes remerciements vont aussi à Mme Séverine MAHIEUX qui a été d’une grande aide durant mes manipulations au sein du Laboratoire de Bactériologie et m’a beaucoup appris au sujet des techniques de mesure d’activité antimicrobienne.

Je remercie le Dr. Murielle BIABIANY de m’avoir apporté la plante guadeloupéenne qui a été au centre de mes recherches et pour ses conseils.

Je remercie aussi le Dr. DUHAL pour avoir effectué les spectrométries de masse de mes produits isolés et Dr. MILLET pour les tests cytotoxiques.

Je souhaite remercier toutes les personnes qui font partie de l’équipe du Laboratoire de Pharmacognosie : Nadine POPELIER, Jennifer SAMAILLIE, Malika MOREIRA DA COSTA, leur bonne humeur et leur gentillesse ont contribué à mon bien-être dans l’équipe.

Je remercie aussi les personnes rencontrées dans ce laboratoire et avec qui j’ai pu nouer des liens d’amitié : Ulku, Espérance, Céline, Sylvie, Ameni, Siham, Arthur, Kevin, Daphné, Marie.

Je tiens à remercier l’équipe du Laboratoire de Bactériologie pour leur gentillesse et leur disponibilité : Isabelle, Carole, Marie, Oumeria, Mickaël et Bérangère.

Je veux particulièrement remercier mes parents, mes sœurs et mes frères pour leur soutien et leur patience durant mes huit années d’étude.

Enfin, mes remerciements s’adressent surtout à ma fiancée Anaïs qui partage ma vie et m’a beaucoup aidé dans la correction de ma thèse afin que je puisse améliorer mon français. Je la remercie vivement pour sa patience, sa générosité et sa disponibilité. J’espère pouvoir un jour lui rendre la pareille.
LISTE DES TRAVAUX

PUBLICATION

RÉSUMÉS

POSTERS

COMMUNICATION ORALE

LISTE DES ABBREVIATIONS ET SYMBOLES

AcOEt: acétate d’éthyle
AcOH : acide acétique
BH : Brain Heart cystéiné
CPL : chromatographie en phase liquide
CCM : chromatographie sur couche mince
CCM prép. : chromatographie sur couche mince préparative
CLHP : chromatographie liquide à haute performance
CLMP : chromatographie liquide moyenne pression
CD3OD : méthanol deutéré
CI50 : concentration inhibitrice de 50% de la population cellulaire
CMI : concentration minimale inhibitrice
CMB : concentration minimale bactéricide
COSY : correlation spectroscopy
δ : déplacement chimique
d : doublet
dd : doublet dédoublé
DMSO : diméthylsulfoxide
DO : densité optique
EP : éther de pétrole
HMBC : heteronuclear multiple-bond correlation spectroscopy
HSQC : heteronuclear single-quantum correlation spectroscopy
Hz : hertz
FIC : concentration inhibitrice fractionnaire
J : constante de couplage
INT : para-iodonitrotétrazolium
Me : méthyle
MeOH : méthanol
MH : Bouillon Mueller Hinton
MHA : Mueller Hinton agar
MTS : [3-(4,5-diméthylthiazol-2-yl)-(3-carboxyméthoxyphényl)-2-(4-sulfophényl)-2H-
tétrazolium]
m/z : masse/charge d’un ion
NOESY : Nuclear Overhauser Effect Spectroscopy
ppm : partie par million
RC : Ringer cystéine
Rf : rapport frontal
RMN : résonance magnétique nucléaire
s : singulet
SM-APCI : spectrométrie de masse par ionisation chimique à pression atmosphérique
SM-ESI : spectrométrie de masse en mode électrospray
T : triplet
UFC : unité formant colonie
u.m.a. : unité de masse atomique
UV : ultraviolet
LISTE DES ILLUSTRATIONS

TABLEAUX

Tableau 1 : Classification botanique d'Hyptis atrorubens Poit.
Tableau 2 : Classification botanique de Satureja khuzistanica Jamzad.
Tableau 3 : Classification botanique de Perovskia abrotanoides Karel.
Tableau 4 : Classification botanique de Phlomis anisodonis Boiss.
Tableau 5 : Classification botanique de Salvia mirzayanii Rech. f. & Esfand.
Tableau 6 : Classification botanique de Dorema ammoniacum D. Don.
Tableau 7 : Classification botanique de Ferula assa-foetida L.
Tableau 8 : Classification botanique de Ferulago contracta Boiss. et Hausskn.
Tableau 9 : Rendements d’extractions obtenus à partir de 30 g de matières sèches.
Tableau 10 : Principaux réactifs utilisés pour la révélation des CCM.
Tableau 11 : Les souches testées dans notre étude.
Tableau 12 : Neuf concentrations de composé, (TC : Témoin de culture, TS : Témoin de stérilité).
Tableau 13 : Temps de doublement in vitro et in vivo de quelques bactéries.
Tableau 14 : Activité antiproliférative de sept extraits méthanoliques sur des cellules cancéreuses (HT-29 : adénocarcinome de l’épithélium colique).
Tableau 15 : Concentration minimale inhibitrice (CMI) des extraits méthanoliques (mg/ml).
Tableau 16 : CMI et CMB des extraits sélectionnés déterminées par la méthode de micro-dilution (µg/ml).
Tableau 17 : Phase mobile utilisée pour chaque extrait en CCM.
Tableau 18 : Les souches sensibles à l’extrait hydrométhanolique d’H. atrorubens,
Tableau 19 : Masse des fractions obtenues par le premier fractionnement.
Tableau 20 : Résultats des tests bioautographiques des fractions A à I.
Tableau 21 : Produits purifiés actifs par CCM préparative.
Tableau 22 : Déplacements chimiques du spectre RMN 1H et 13C du composé 1 dans le méthanol deuteré.
Tableau 23 : Déplacements chimiques des spectres RMN 1H et 13C du composé 2 dans le méthanol deuteré.
Tableau 24 : Déplacements chimiques des spectres RMN 1H et 13C du composé 3 dans le méthanol deutéré.

Tableau 25 : Déplacements chimiques des spectres RMN 1H et 13C du composé 4 dans le méthanol deutéré.

Tableau 26 : Résultats de l'analyse quantitative des quatre composés par CLHP.

Tableau 27 : Valeurs de CMI et de CMB de quatre composés actifs (exprimés en mg/ml).

Tableau 28 : CMI de mélanges de quatre composés contre huit micro-organismes sélectionnés (ratio 1:1).

Tableau 29 : Deux types d'extractions d'Alcea rosea L.

Tableau 30 : Les composés obtenus par un deuxième fractionnement.

Tableau 31 : Déplacements chimiques du spectre RMN 1H et 13C du composé 5 dans le méthanol deutéré (* : interchangeables).

Tableau 32 : Déplacements chimiques du spectre RMN 1H et 13C du composé 6 dans le méthanol deutéré (* : interchangeables).

Tableau 33 : Déplacements chimiques du spectre RMN 1H et 13C du composé 7 dans le méthanol deutéré.

FIGURES

Figure 1 : Biotopes d'Iran.

Figure 2 : Carte des formations végétales de Guadeloupe.

Figure 3 : Hyptis atrorubens Poit.

Figure 4 : Hyptis atrorubens Poit., A : parties aériennes (×1), B : fleur (×6), C : étamine (×10), D : nucules (×10).

Figure 5 : Parties aériennes d’Hyptis atrorubens Poit. collectées en Guadeloupe.

Figure 6 : Parties aériennes d’Hyptis atrorubens Poit. collectées en Afrique de l’ouest.

Figure 7 : La distribution dans le monde d’Hyptis atrorubens Poit.

Figure 8 : L’infusion des feuilles d’Hyptis atrorubens Poit. au Brésil.

Figure 9 : Structures du germacrène D, du limonène et de l’estragole.

Figure 10 : La présence des flavonoïdes (les taches oranges) et des acides phénoliques (les taches vertes), sur une plaque de CCM, pulvérisée par le réactif de Neu.

Figure 11 : Structure de base des flavonoïdes.
Figure 12 : Structures des différentes classes de flavonoïdes.
Figure 13 : Structures des acides benzoïque et cinnamique.
Figure 14 : Satureja khuzistanica Jamzad.
Figure 15 : Structures du carvacrol, du γ-terpinène et du p-cymène.
Figure 16 : Perovskia abrotanoides Karel.
Figure 17 : Structures de la peradione, de la perovskone, de l’abiétane et de l’acétylcarnosine.
Figure 18 : Phlomis anisodon Boiss.
Figure 19 : Structures du germacrène D et du β-caryophyllène.
Figure 20 : Salvia mirzayanii Rech. f. & Esfand.
Figure 21 : Structures du spathulenol et du salvimirzacolide.
Figure 22 : Dorema ammoniacum D. Don.
Figure 23 : Structures des quatre composés isolés à partir de l'extrait chlorométhylénique de la résine de Dorema ammoniacum D. Don.
Figure 24 : Ferula assa-foetida L.
Figure 25 : Structures de deux nouveaux terpénocoumarines isolées à partir de l'extrait chloroformique de la résine de Ferula assa-foetida L.
Figure 26 : Ferulago contracta Boiss. et Hausskn.
Figure 27 : Structures de la lupanine, du dillapiole et de l’oxyde manoyle.
Figure 28 : Stenotrophomonas maltophilia (observation par balayage en microscopie électronique).
Figure 29 : Staphylococcus epidermidis (observation par balayage en microscopie électronique).
Figure 30 : Enterococcus faecalis (observation par balayage en microscopie électronique).
Figure 31 : Candida albicans (observation par balayage en microscopie électronique).
Figure 32 : Microsporum canis (à droite – par microscope optique, à gauche – par microscope électronique).
Figure 33 : Trichophyton mentagrophytes (à droite – par microscope optique, à gauche – par microscope électronique).
Figure 34 : L’extraction par macérations successives.
Figure 35 : Protocole d’extraction d’Hyptis atrorubens Poit.
Figure 36 : Extractions successives des fleurs broyées d’Alcea rosea L.
Figure 37 : Chromatographie sur couche mince (CCM). A - révélé par le réactif de Neu, B - sous UV à 254 nm, C - sous UV à 365 nm.
Figure 38 : Chromatographie sur couche mince préparative (CCM prép.)
Figure 39 : Chromatographie en phase liquide (CPL), A – de Sephadex® LH-20, B – de silice.

Figure 40 : Chromatographie liquide moyenne pression (CLMP).

Figure 41 : Schéma principal de la chromatographie en phase liquide à haute performance.
1 - Réservoirs des solvants, 2 - Dégazeur, 3 - Valve de gradient d’élution, 4 - Doseur de phase mobile (ou éluant), 5 - Pompe à haute pression, 6 - Vanne d'insertion en position "inject",
6' - Vanne d'injection en position "load", 7 - Boucle d’injection de l’échantillon,
8 – Précolonne (éventuelle), 9 - Colonie analytique, 10 – Détecteur, 11 - Acquisition du signal, 12 - Décharge déchets.

Figure 42 : CLHP (SHIMADZU) du laboratoire de Pharmacognosie.

Figure 43 : Spectromètre de masse API 3000.

Figure 44 : Résonance Magnétique Nucléaire (RMN).

Figure 45 : La réduction du MTS au formazan.

Figure 46 : Les boîtes de Petri avant et après ajout de MHA.

Figure 47 : Prédépôt des boîtes de Petri aux différentes concentrations.

Figure 48 : Culture sur milieu MHA, après 24 h d'incubation.

Figure 49 : Remplir les puits de la plaque de l’ensemenceur par les souches.

Figure 50 : Ensemenceur automatique.

Figure 51 : Boîtes témoins avant/après.

Figure 52 : Préparation de la suspension gélose-bactérie.

Figure 53 : La plaque de CCM est déposée dans une boîte de culture carrée.

Figure 54 : Inhibition de la croissance bactérienne dans la bioautographie. A- Résultat de bioautographie pour des fractions déposées sur la plaque CCM après migration. B- Résultat de bioautographie pour des composés purs déposés sur la plaque CCM sans migration.

Figure 55 : La plaque 96 puits pour la détermination des paramètres CMI et CMB.

Figure 56 : Microplaque avec la suspension de bactéries-composé-MHA avant et après incubation, et détection de la croissance par l’essai colorimétrique (INT).

Figure 57 : Prélèvement des puits et ajout sur le milieu pour déterminer la CMB.

Figure 58 : Plaque 24 puits utilisée pour le dénombrement bactérien.

Figure 59 : Première étape de dénombrement bactérien (T₀).

Figure 60 : Exemple d'une courbe de croissance bactérienne.

Figure 61 : Les étapes détaillées du test de la croissance bactérienne.

Figure 62 : Illustration d'une plaque de 96 puits dans laquelle un test colorimétrique MTS a été réalisé.
Figure 63 : Contrôle négatif contre 36 micro-organismes après 24 heures d'incubation.

Figure 64 : Activité antimicrobienne de *Salvia mirzayanii* contre les 36 micro-organismes pour les six concentrations.

Figure 65 : Bioautographie de l'extrait à l’éther de pétrole.

Figure 66 : Bioautographie de l'extrait au dichlorométhane.

Figure 67 : Bioautographie des extraits au méthanol.

Figure 68 : Bioautographie de l'extrait hydrométhanolique.

Figure 69 : Culture *in vitro* de nos dermatophytes sur milieu MHA.

Figure 70 : Comparaison entre le témoin et l’activité antimicrobienne de l’extrait dilué à 0,5 % (5 mg/ml) dans le premier essai.

Figure 71 : La première CCM pour toutes les fractions.

Figure 72 : Première étape de fractionnement par la colonne de Sephadex® LH-20.

Figure 73 : Bioautographie des neuf fractions contre *S. epidermidis* 10282, sans migration.

Figure 74 : A - séparation des composés de la fraction B par CLMP, B - analyse CCM des sous-fractions.

Figure 75 : A - séparation des composés de la fraction E par CLMP, B - analyse CCM des sous-fractions.

Figure 76 : A - séparation des composés de la fraction C par la colonne de silice, B - analyse CCM des sous-fractions.

Figure 77 : Les étapes de purification à partir de l’extrait hydrométhanolique.

Figure 78 : Bioautographie de quatre composés actifs d’*Hyptis atrorubens* contre *Staphylococcus epidermidis* 5001, dépôt CCM : 10 μl (5 mg/ml).

Figure 79 : Analyse du composé 1 par CLHP et CCM.

Figure 80 : A- spectre de masse (SM-APCI) du composé 1, B- spectre de RMN du 1H dans le MeOD du composé 1.

Figure 81 : A- spectre de RMN du 1H-1H COSY du composé 1, B- spectre de RMN du 1H-13C HMBC du composé 1.

Figure 82 : Structure du composé 1, l’acide rosmarinique.

Figure 83 : Analyse du composé 2 par CLHP et CCM.

Figure 84 : A- spectre de masse (SM-APCI) du composé 2, B- spectre de RMN du 1H dans le MeOD du composé 2.

Figure 85 : Structure du composé 2, le rosmarinate de méthyle.

Figure 86 : Analyse du composé 3 par CLHP et CCM.
Figure 87 : A- spectre de masse (SM-ESI) du composé 3, B- spectre de RMN du 1H dans le MeOD du composé 3.

Figure 88 : Structure du composé 3, la quercétine-3-glucoside. A – numérotation employée ; B – corrélations choisies (HMBC C⇒H ; COSY H⇔H ; NOESY H⇔H).

Figure 89 : L’analyse du composé 4 par CLHP et CCM.

Figure 90 : A- spectre de masse (SM-ESI) du composé 4, B- spectre de RMN du 1H dans le MeOD du composé 4.

Figure 91 : Structure du composé 4, la quercétine-3-galactoside. A – numérotation employée ; B – Corrélations choisies (HMBC C⇒H ; COSY H⇔H ; NOESY H⇔H).

Figure 92 : Plaques 24 puits et tubes de suspensions pour dénombrement bactérien.

Figure 93 : Chromatogrammes de détection des composés d'extrait dichlorométhane, révélés par le réactif d'anisaldéhyde (A), et sous UV 254 nm (B).

Figure 94 : Chromatogrammes de détection des flavonoïdes de l'extrait méthanolique, révélés par le réactif de Neu (A), et sous UV 365 nm (B).

Figure 95 : Première étape de fractionnement par la colonne de Sephadex® LH-20.

Figure 96 : CCM des fractions 27 à 31(F7), révélées par le réactif de Neu dans le visible (A), et sous UV/ 254 nm (B).

Figure 97 : Étapes de purification à partir de l'extrait méthanolique d'Alcea rosea.

Figure 98 : Spectre 1H dans le méthanol deutéré du composé 5.

Figure 99 : Structure du composé 5, l’apigénine-4’-O-glucoside. A – numérotation employée ; B – Corrélations choisies (HMBC C⇒H ; COSY H⇔H ; NOESY H⇔H).

Figure 100 : Spectre 1H dans le méthanol deutéré du composé 6.

Figure 101 : Structure du composé 6, le kaempférol-3-β-D-glucoside.

Figure 102 : Spectre 1H dans le méthanol deutéré du composé 7.

Figure 103 : Structure du composé 7, le kaempférol-α-L-rhamnosyl (1→6)-β-D-glucoside. A – numérotation employée ; B – Corrélations choisies (HMBC C⇒H ; COSY H⇔H ; NOESY H⇔H).

GRAPHIQUES

Graphique 1 : Courbes de bactéricidie de Staphylococcus epidermidis 5001 pour RA (acide rosmarinique).
Graphique 2 : Courbes de bactéricidie de *Staphylococcus epidermidis* 5001 pour MR (rosmarinate de méthyle).

Graphique 3 : Courbes de bactéricidie de *Stenotrophomonas maltophilia* pour RA (acide rosmarinique).

Graphique 4 : Courbes de bactéricidie de *Stenotrophomonas maltophilia* pour MR (rosmarinate de méthyle).

Graphique 5 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 37 °C pour RA (acide rosmarinique).

Graphique 6 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 37 °C pour MR (rosmarinate de méthyle).

Graphique 7 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 4 °C pour RA (acide rosmarinique).

Graphique 8 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 4 °C pour MR (rosmarinate de méthyle).
Depuis des milliers d'années, l'humanité a utilisé diverses ressources trouvées dans son environnement afin de traiter et de soigner toutes sortes de maladies [1]. Actuellement, l'organisation mondiale de la santé (OMS) estime qu'environ 80% de l’humanité a recours aux préparations traditionnelles à base de plantes en tant que soins de santé primaire [2]. Les médicaments à base de plantes sont encore largement utilisés et ont une importance considérable dans le commerce international.

Plus de 120 composés provenant de plantes sont aujourd'hui utilisés en médecine moderne et près de 75% d’entre eux sont utilisés selon leur usage traditionnel [3]. Parmi les 25 composés pharmaceutiques les plus vendus au monde, 12 sont issus de produits naturels [4, 5]. Cela signifie que le nombre de médicaments issus de produits naturels est supérieur à celui des produits issus de la chimie combinatoire où plus de 10 000 molécules doivent être synthétisées puis testées afin de mener au développement d'un seul médicament [6, 7].

Par conséquent, les quelque 250 à 300 000 espèces inventoriées de plantes que l'on trouve sur terre, dont seulement 5 à 15% ont fait l'objet de recherches de molécules bioactives, représentent un réservoir immense de nouveaux composés médicaux potentiels [8-10]. Selon certains auteurs, les composés d'origine naturelle présentent l'avantage d'une très grande diversité de structures chimiques et ils possèdent aussi un très large éventail d'activités biologiques [5].

Les propriétés antimicrobiennes des plantes aromatiques et médicinales sont connues depuis l’antiquité. Toutefois, il faudra attendre le début du 20ème siècle pour que les scientifiques commencent à s’y intéresser [11]. Récemment, l’attention s’est portée sur les herbes et les épices comme source d’antioxydants, qui peuvent être employés pour se protéger contre les effets du stress oxydant [12].

L’étude de la chimie des plantes est toujours d’une brûlante actualité malgré son ancienneté. Cela tient principalement au fait que le règne végétal représente une source importante d’une immense variété de molécules bioactives [13]. Cette matière végétale contient un grand nombre de molécules qui ont des intérêts multiples mis à profit dans l’industrie, en alimentation, en cosmétologie et en dermopharmacie. Parmi ces composés on retrouve, les coumarnes, les alcaloïdes, les acides phénoliques, les tanins, les lignanes, les terpènes et les flavonoïdes [14, 15].

Au cours des dernières années, la résistance aux antibiotiques chez les micro-organismes pathogènes est devenue un problème de santé publique de plus en plus important dans le monde. Les composés antimicrobiens issus des plantes sont capables d’inhiber la croissance bactérienne en agissant sur des cibles cellulaires différentes de celles visées par les
antibiotiques actuellement utilisés tels que les pénicillines, macrolides ou tétracyclines. Ils pourraient également présenter une valeur clinique significative dans le traitement des infections aux souches microbiennes résistantes [16]. Lors de traitements antibactériens, on observe de plus en plus de souches résistantes aux antibiotiques ordinaires [17]. La problématique de la résistance aux antibiotiques rappelle cependant qu'il est important de trouver de nouvelles molécules possédant une activité antibactérienne. Par conséquent, il est intéressant de réaliser un criblage de plantes médicinales contre un groupe de micro-organismes résistants et récemment isolés d’infections humaines dans le but de trouver de nouvelles substances auxquels ces germes sont sensibles.

Les travaux de criblage sont poursuivis selon les méthodes les plus couramment employées depuis la découverte par Fleming de la pénicilline. Ils consistent à trier les drogues avant d’en extraire les principes actifs contre les bactéries et se résument dans nos conditions aux étapes suivantes :

1. Sélectionner les plantes à propriétés antibactériennes en se basant notamment sur les médecines traditionnelles utilisées pour le traitement de maladies infectieuses.
2. Étudier leurs activités antimicrobiennes par différents tests microbiologiques, en utilisant plusieurs espèces de microbes appartenant à des groupes différents.
3. Extraire les substances antibactériennes et les comparer à d'autres déjà connues quant à leurs effets thérapeutiques.

Ce travail, fruit d'une collaboration entre le Laboratoire de Pharmacognosie (E.A. 4481) et le Laboratoire de Bactériologie (INSERM U995) de la Faculté des Sciences Pharmaceutiques et Biologiques de Lille, s’inscrit dans le cadre de la recherche des composés antimicrobiens qui peuvent trouver une application thérapeutique ou alimentaire.

Etant donné que l’objectif de nos recherches était de trouver de nouvelles substances naturelles antimicrobiennes, nous avons débuté notre étude par la réalisation d'un screening microbiologique de quarante-et-une plantes iraniennes et d’une plante guadeloupéenne (*Hyptis atrorubens* Poit.), fréquemment utilisées en médecine traditionnelle pour traiter les maladies infectieuses. Pour évaluer l’activité antimicrobienne de ces plantes, nous avons sélectionné trente-six souches microbiennes résistantes à de multiples drogues.

Cette étude a révélé que les plantes iraniennes étaient plus ou moins actives sur le plan de l’activité antimicrobienne. La plante guadeloupéenne présentait pour sa part une forte activité

Dans un premier chapitre, nous aborderons les différents critères de sélection des plantes qui conduiront et orienteront le choix des 42 plantes pour cette étude. Ensuite, nous détaillerons celles dont l’activité antimicrobienne a été la plus intéressante. Une étude bibliographique sur ces plantes, leur famille botanique et leurs composés isolés sera présentée dans ce chapitre. Nous aborderons également les différentes connaissances bibliographiques disponibles sur les souches microbiennes testées.

Dans le troisième chapitre, nous développerons le matériel et les méthodes analytiques utilisés pour évaluer l’activité antimicrobienne des extraits de 42 plantes et pour faire des études phytochimiques et biologiques ciblées.

Dans le quatrième chapitre nous commencérons par la présentation des résultats des tests biologiques préliminaires afin de sélectionner la plante la plus intéressante pour les études suivantes. Dans cette partie, nous détaillerons également les étapes de purification et le processus d’isolement et d’identification des composés actifs de cette plante. Les différents tests microbiologiques sur les composés actifs complèteront cette partie.

À la lumière de ces résultats, nous aborderons une discussion afin d’expliquer les avantages des tests biologiques réalisés, ainsi que pour interpréter l’action antimicrobienne des composés actifs. Enfin, nous présenterons la conclusion de ce travail avec différentes perspectives de recherche qui seront évoquées.
SÉLECTION DES PLANTES DE L’ÉTUDE

Partie I
I.1.Critères de sélection des plantes

Notre objectif sera d'identifier de nouvelles substances ayant des propriétés antimicrobiennes ainsi que de rationaliser l'utilisation de ces plantes médicinales.

Un certain nombre de critères ont été pris en compte pour la sélection des plantes de cette étude.

I.1.1. Origine géographique

I.1.1.1. Iran : L'Iran est un pays parmi les plus diversifiés géographiquement dans le monde. Étant donnée la grande taille du pays et les variétés climatiques dues à des facteurs divers tels que les différences d'altitude, le niveau des précipitations et de l'évaporation, les types de sols etc., le territoire de l'Iran possède une grande quantité de biomes et de biotopes, ce qui revient à dire une importante variété dans la flore autochtone (Figure 1). Plus de 8000 espèces (dont 450 endémiques) y sont répertoriées ; les trachéobiontes y sont plus nombreux qu'en Europe centrale [18].

Cette ancienne nation peut être divisée en 12 environnements géographiques distincts et bénéficie de 5 climats majeurs. Il n’est pas étonnant que l'Iran soit tant diversifié surtout lorsqu’il s'agit de remèdes à base de plantes qu'il produit en quantité [19].

En Iran environ 1800 espèces de plantes sont utilisées en médecine. D’après l’Organisation mondiale de la Santé (World Health Organization), actuellement 30 sociétés produisent des remèdes naturels à base de plantes en Iran. En plus de ses plantes médicinales, l'Iran est également un pays riche en herbes culinaires comme le basilic, le thym et la mélisse [20-22].

L'Iran est un véritable « trésor » en termes de plantes pour l’humanité. Il est évident que de nombreuses plantes médicinales sont encore à découvrir dans cette ancienne terre chargée d’histoire.
I.1.1.2. Guadeloupe : La Flore de Guadeloupe comprend environ 3800 plantes réparties sur 1705 km² avec 625 plantes répertoriées comme médicinales [23, 24].
La Guadeloupe est riche d’une flore très diversifiée qui participe à en faire un « hot-spot » de biodiversité mondiale reconnu par l’UNESCO [25]. La Guadeloupe compte au total 31 espèces endémiques strictes dont 4 sont des fougères. Ces espèces sont particulièrement...
importantes pour le patrimoine végétal local mais aussi mondial puisqu’à l’échelle globale on ne les trouve que sur ce territoire restreint. Cette diversité et la concentration d’espèces endémiques s’expliquent sans doute par la variété des zones pédoclimatiques sur une surface restreinte, par le fait que la Guadeloupe est parmi les plus vastes des Petites-Antilles et par sa position centrale dans la Caraïbe [26, 27].

La médecine créole utilise les propriétés des plantes que l’on trouve sur le territoire des Antilles. En Guadeloupe, les plantes médicinales sont appelées « rimèd razié ». La médecine créole est toujours très utilisée en Guadeloupe et joue un grand rôle dans la vie quotidienne même si les connaissances diminuent globalement.

En effet tout le monde ou presque connait un certain nombre de plantes pour une utilisation donnée, nombreux sont ceux qui connaissent la partie de la plante à utiliser et son mode d’emploi (infusion, cataplasme, bain, friction, massage...) mais les doses à respecter (et c’est un danger actuel) sont beaucoup moins bien connues. Il s’agit de domaines de recherche qui sont particulièrement gérés par le projet TRAMIL* à l’échelle de la Caraïbe, qui vise à montrer l’efficacité de la médecine créole ainsi que les raisons de son activité par l’étude des principes actifs.

Dans la Pharmacopée Caribéenne, des plantes médicinales étaient initialement classées en trois catégories qui sont les suivantes : Le groupe « A » rassemblait les plantes dont l’utilisation repose sur la tradition, mais n’est pas démontrée par des travaux scientifiques. La catégorie « B » regroupait les plantes dont l’utilisation est déconseillée en médecine traditionnelle en raison de leur toxicité. Le groupe « C » regroupait les plantes utilisées de manière très courante dans le traitement d’affections précises et dont l’efficacité est en plus validée par des recherches scientifiques [28].

* : TRAMIL est un programme/réseau de recherche appliqué à la médecine traditionnelle populaire dans le Bassin Caraïbe, dont le propos est de rationaliser les pratiques de santé basées sur l'utilisation de plantes médicinales.
Les remèdes à base de plantes tendent actuellement à se développer sur le territoire avec l’association APLAMADEROM (Association pour les PLantes MEdicinales et AROMatiques), mais aussi avec de nombreux agro-transformateurs (PHYTOBÔKAZ, HITECA,…), qui regroupent autour d’eux un certain nombre de producteurs ou d’animateurs. En avril 2009, une étape majeure est franchie grâce à la réforme du Code de la Santé Publique permettant la reconnaissance officielle et l’intégration des plantes de la Pharmacopée TRAMIL au sein de la liste des Plantes Médicinales de la Pharmacopée française. Elles sont classées en groupe A (plantes couramment utilisées) ou en groupe B (plantes présentant un risque de toxicité) [29].

1.1.2. Utilisation traditionnelle

Depuis 150 ans, les plantes médicinales ont fourni à la pharmacie des médicaments très efficaces. Aujourd'hui, de nombreux travaux menés dans le domaine de l'ethnopharmacologie, nous montrent que les plantes utilisées en médecine traditionnelle et qui ont été testées sont...
souvent d'une part, des plantes efficaces dans les modèles pharmacologiques et d'autre part pourraient s’avérer intéressantes en termes de tolérance [30]. L’ethnobotanique et l’ethnopharmacologie mettent en relation les savoirs ancestraux des médecins traditionnels et les connaissances scientifiques actuelles.

Malgré le fait que certaines plantes soient encore utilisées pour leurs propriétés antimicrobiennes et antifongiques dans la médecine traditionnelle sans aucune preuve scientifique, un criblage systématique de diverses plantes médicinales peut aboutir à la découverte de nouveaux composés antimicrobiens, ce qui justifie l’objectif de nos travaux.

I.1.3. Aspects botanique et chimiotaxonomique

Les plantes appartenant aux mêmes familles ou à des familles voisines et/ou qui poussent dans les mêmes biotopes sont susceptibles de synthétiser les mêmes molécules chimiques. La chimiotaxonomie, ou classification des plantes en fonction de leurs métabolites secondaires, complète les classifications botaniques basées sur des critères morphologiques et moléculaires [31]. Elle permet, si des substances sont particulièrement connues pour leur potentiel thérapeutique, de choisir des plantes chimiotaxonomiquement proches de celles dans laquelle la substance a été détectée et étudiée.

I.1.4. Les apports de la littérature

Dans l’optique de la découverte de nouvelles molécules et/ou de nouvelles voies d’application thérapeutiques (ou cosmétiques), il est plus judicieux de choisir des plantes qui ont été peu ou pas travaillées chimiquement et biologiquement. Cependant, si la famille ou le genre a déjà été étudié, il sera plus facile de trouver des procédés analytiques, d’identifier rapidement les composés déjà connus et de trouver des traceurs qualitatifs et quantitatifs. Cela permet également d’éliminer les genres et/ou les espèces connus pour leur toxicité.
I.2. Les plantes sélectionnées

Afin d’expliciter le choix des 42 plantes étudiées, nous avons réalisé un résumé bibliographique détaillé des noms des espèces étudiées et de leur famille botanique. De la même façon, nous avons présenté les usages les plus fréquents de ces plantes en médecine traditionnelle, à la fois pour les espèces iraniennes [32-34] et pour la plante guadeloupéenne (Hyptis atrorubens Poit.). Pour mesurer l’activité antimicrobienne, nous avons utilisé la partie de l’espèce qui était recommandée en médecine traditionnelle.
I.2.1. Catalogue des plantes sélectionnées

Partie utilisée : FL = fleur ; T = tige ; R = racine ; PA = partie aérienne ; GR = graine ;
F = feuille ; Th = thalle

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Phlomis olivieri Benth.</td>
<td>Mahroo</td>
<td>FL, PA, T, F</td>
<td>Antiseptique, antiallergique</td>
<td>[35-37]</td>
</tr>
<tr>
<td></td>
<td>Lamiaceae</td>
<td>Goshboreh irani</td>
<td>PA</td>
<td>Traitement des troubles digestifs</td>
<td>[38, 39]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : 1612-ACECR

Numéro d’herbier : 1610-ACECR
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Phlomis anisodonata Boiss.</td>
<td>Givej, Belgeh</td>
<td>PA, F, R</td>
<td>Traitement des troubles digestifs</td>
<td>[40-42]</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Perovskia artemisoides Boiss.</td>
<td>Brazembel</td>
<td>T+F</td>
<td>Anti-leishmaniose</td>
<td>[43]</td>
</tr>
</tbody>
</table>

Núméro d’herbier : 1634-ACECR

Núméro d’herbier : 271-ACECR
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Perovskia abrotanoides Karel.</td>
<td>Brazembel</td>
<td>PA</td>
<td>Anti-leishmaniose, traitement de la fièvre</td>
<td>[44-48]</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Teucrium persicum Boiss.</td>
<td>Maryam nokhodi</td>
<td>PA</td>
<td>Traitement des maladies oculaires</td>
<td>[49]</td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Satureja khuzistanica Jamzd.</td>
<td>Marzeh khuzistani</td>
<td>T+F</td>
<td>Analgésique, antiseptique</td>
<td>[50-55]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hymenocrater longiflorus Benth.</td>
<td>Arvaneh</td>
<td>T+F</td>
<td>Anti-moustiques, désodorisante</td>
<td>[56, 57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Zataria multiflora Boiss.</td>
<td>Avhishan Shirazi</td>
<td>F</td>
<td>Traitement des troubles respiratoires et digestifs</td>
<td>[58, 59]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Dracocephalum kotschyi Boiss.</td>
<td>Zarringiah PA</td>
<td></td>
<td>Traitement de la fièvre, l’arthrite et les rhumatismes</td>
<td>[60-63]</td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia verticillata L.</td>
<td>MaryamgoliBanafsh</td>
<td>R</td>
<td>Traitement de la maladie de la peau, antidiabétique</td>
<td>[64-66]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia chloroleuca Rech.f. & Aell</td>
<td>Maryamgoli</td>
<td>F</td>
<td>Antiseptique, désinfection</td>
<td>[67, 68]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : 1599-ACECR

Numéro d’herbier : 244-ACECR
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia hypoleuca Benth.</td>
<td>Maryamgoli boland</td>
<td>T+F</td>
<td>Laxative, digestive, antispasmodique</td>
<td>[69, 70]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : MPH-1654

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia sahendica Boiss. & Buhse.</td>
<td>Maryamgoli Sahandi</td>
<td>PA</td>
<td>Antiseptique, soulage les indigestions</td>
<td>[71-73]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : MPH-1592
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia reuteriana Boiss.</td>
<td>Maryamgoli</td>
<td>T+F</td>
<td>Traitement des troubles digestifs</td>
<td>[74, 75]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isphehani</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numéro d’herbier : MPH-231</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia lachnocalyx Hedge.</td>
<td>Maryamgoli</td>
<td>PA</td>
<td>Antiseptique, désinfection</td>
<td>[76, 77]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eghlidi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numéro d’herbier : MPH-674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia mirzaynii</td>
<td>Mourporzoo</td>
<td>PA</td>
<td>Traitement des troubles digestifs</td>
<td>[68, 78-80]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : FG-1825

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia syriaca L.</td>
<td>Maryamgoli Soori</td>
<td>T+F</td>
<td>Antiseptique</td>
<td>[81, 82]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : MPH-343
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamiaceae</td>
<td>Salvia ceratophylla L.</td>
<td>Maryamgoli shakhgavazn</td>
<td>PA</td>
<td>Sédative, antiseptique</td>
<td>[83, 84]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia urmiensis Bung.</td>
<td>Maryamgoli urumiehie</td>
<td>PA</td>
<td>Antiseptique</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Thymus kotschyanus Boiss. & Hohen.</td>
<td>Avhishan kohi</td>
<td>PA</td>
<td>Traitement de la toux</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyptis atrorubens Poit.</td>
<td>Makouza</td>
<td>T+F</td>
<td>Diurétique, anti-inflammatoire</td>
<td>[87, 88]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : FG-1880

Numéro d’herbier : 10473
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae</td>
<td>Ferula hezarlalezarica</td>
<td>Gichoo</td>
<td>R, GR</td>
<td>Traitement des troubles respiratoires</td>
<td>[89]</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Ferula oopoda Boiss. & Buhse.</td>
<td>Kamaye ghalafdar</td>
<td>R</td>
<td>Traitement de la toux et des troubles respiratoires</td>
<td>[90, 91]</td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Ferula gummosa Boiss.</td>
<td>Barijeh</td>
<td>GR</td>
<td>Antiséptique, traitement des troubles digestifs</td>
<td>[92-95]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae</td>
<td>Ferula assa-foetida L.</td>
<td>Anghozeh</td>
<td>GR</td>
<td>Traitement de la grippe</td>
<td>[96-99]</td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Ferulago contracta Boiss. & Hausskn.</td>
<td>Chavil</td>
<td>GR</td>
<td>Antiseptique</td>
<td>[100]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ferulago bernardii Tomk. & M. Pimen.</td>
<td>Chenoor</td>
<td>PA, T, R</td>
<td>Traitement des vers intestinaux et des hémorroïdes</td>
<td>[101]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Ferulago angulata (Schlecht) Boiss.</td>
<td>Chavil</td>
<td>T</td>
<td>Désinfection de l’air, propriétés carminatives</td>
<td>[102, 103]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : 1584-ACECR

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae</td>
<td>Zeravschanica pauciradiatum (Tamamsch). M. Pimen.</td>
<td>Hasaseh</td>
<td>T</td>
<td>Antiseptique</td>
<td>[104]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : 1633-ACECR
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae</td>
<td>Daucus littoralis</td>
<td>Havij vahshi</td>
<td>PA</td>
<td>Antiseptique, diurétique</td>
<td>[105-107]</td>
</tr>
<tr>
<td></td>
<td>Smith Subs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Echinophora platyloba DC.</td>
<td>Khosharizeh</td>
<td>T</td>
<td>Anti-moisissure, désodorisante</td>
<td>[108, 109]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Dorema ammoniacum</td>
<td>Vashagh</td>
<td>GR</td>
<td>Traitement des troubles respiratoires</td>
<td>[110-112]</td>
</tr>
<tr>
<td></td>
<td>D. Don</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Achillea tenuifolia</td>
<td>Bomadaran</td>
<td>PA</td>
<td>Traitement de l'inflammation de la peau</td>
<td>[113, 114]</td>
</tr>
<tr>
<td></td>
<td>Lam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Silybum marianum (L.) Gaertn.</td>
<td>Kharmaryam</td>
<td>GR</td>
<td>Traitement des maladies hépatiques</td>
<td>[115, 116]</td>
</tr>
<tr>
<td>Dictyotaceae</td>
<td>Padina boergesenia Allender & Kraft</td>
<td>Jolbak Ghahveii</td>
<td>Th</td>
<td>Antispasmodique, antiseptique</td>
<td>[117]</td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Mniaceae</td>
<td>Plagiommium undulatum</td>
<td>-</td>
<td>Th</td>
<td>Antiseptique</td>
<td>[118]</td>
</tr>
<tr>
<td>(Hedw.) T.J. Kop.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numéro d’herbier : FG-1810

<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachytheciaceae</td>
<td>Rhynchostegium riparioides (Hedw.) Cardot</td>
<td>Khaze</td>
<td>Th</td>
<td>Antiseptique</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alborzi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numéro d’herbier : FG-1821
<table>
<thead>
<tr>
<th>Famille</th>
<th>Nom botanique</th>
<th>Nom local</th>
<th>Organes utilisés</th>
<th>Utilisation traditionnelle</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conocephalaceae</td>
<td>Conocephalum conicum (L.) Underw.</td>
<td>Th</td>
<td>Antiseptique</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>Caulerpaceae</td>
<td>Caulerpa sertularioides (S.G.Gmelin) M.A. Howe</td>
<td>Th</td>
<td>Antiseptique</td>
<td>[121]</td>
<td></td>
</tr>
<tr>
<td>Famille</td>
<td>Nom botanique</td>
<td>Nom local</td>
<td>Organes utilisés</td>
<td>Utilisation traditionnelle</td>
<td>Références</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Alcea rosea L.</td>
<td>Golkhatmi</td>
<td>FL</td>
<td>Traitement des troubles respiratoires et digestifs</td>
<td>[122]</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia microsciaadia Boiss.</td>
<td>Forfion Denaii</td>
<td>PA</td>
<td>Purgative, traitement de la maladie de la peau</td>
<td>[123, 124]</td>
</tr>
</tbody>
</table>

Numéro d’herbier : FG-1152

Numéro d’herbier : FG-1652
SYNTHÈSE
BIBLIOGRAPHIQUE

Partie III
II.1. Objectif de l’étude

II.1.1. La résistance aux antibiotiques
La résistance aux agents antimicrobiens est devenue un problème de santé publique de plus en plus important dans le monde. Les maladies infectieuses sont responsables de plus de la moitié des décès dans les pays tropicaux. Dans les pays industrialisés, malgré les progrès réalisés dans la connaissance et le contrôle des maladies infectieuses, les maladies dues aux micro-organismes résistants et l’émergence des microbes pathogènes jusqu'alors inconnus, posent également d'énormes problèmes de santé publique [125]. Depuis le début de l'ère des antibiotiques, la résistance microbienne est considérée comme le principal obstacle à la réussite d’un traitement contre les maladies infectieuses, et constitue un défi important dans le secteur des soins de santé [125]. Par exemple, Staphylococcus aureus est devenu résistant à la benzylpénicilline et à la méticilline, par contre, il reste sensible à la gentamicine. Il existe au moins trois autres espèces de bactéries capables de provoquer des maladies infectieuses pouvant être mortelles (Enterococcus faecalis, Mycobacterium tuberculosis et Pseudomonas aeruginosa) qui sont devenues résistantes à un grand nombre d’antibiotiques à l'exception de la vancomycine [125]. Cette dernière est un antibiotique de dernier recours pour le traitement des infections résistantes mais les scientifiques ont récemment trouvé des souches de Streptococcus pneumoniae et de Staphylococcus aureus résistantes à cet antibiotique. Pour la plupart des antibiotiques développés certaines bactéries restent toujours résistantes. [125].
La problématique de l’émergence des bactéries résistantes aux médicaments, rappelle cependant qu’il est important de trouver de nouveaux composés antibactériens [126]. De nombreuses plantes utilisées dans le traitement de maladies liées aux bactéries le sont vraisemblablement à cause des composés actifs, ce qui renforce la responsabilité des scientifiques de consacrer plus d’attention au règne végétal [127].

II.1.2. Les produits naturels dans la découverte des médicaments
L'utilisation des plantes médicinales est très répandue dans le monde [128]. La production de médicaments et le traitement pharmacologique des maladies ont commencé avec l'utilisation de plantes [129]. Depuis des siècles, des médicaments essentiels issus ou dérivés de plantes médicinales tels que la morphine, la digoxine ou l'aspirine sont largement utilisés en thérapeutique. Des plantes ont servi dans le développement de médicaments et ceci se justifie
car chaque plante est elle-même une « usine » chimique capable de synthétiser un grand nombre de substances naturelles intéressantes. L'Organisation Mondiale de la Santé (OMS) estime qu'environ 80% de la population des pays développés a recours exclusivement aux plantes pour répondre à ses besoins en soins de santé primaire [130]. En ce qui concerne les substances biologiquement actives dérivées de plantes qui ont fourni les modèles pour la synthèse, cela peut s'expliquer par des profils pharmacologiques et toxicologiques, défavorables pour le produit naturel. Par ailleurs, les métabolismes secondaires des végétaux jouent un rôle en tant qu'outils pharmacologiques pour évaluer les processus physiologiques [131].
Des milliers de composés phytochimiques issus de plantes médicinales possédant des effets inhibiteurs sur les micro-organismes, ont démontré une activité in vitro. Comme ces composés n'ont pas été testés in vivo, leur activité ne peut pas être certifiée, mais il faut prendre en considération que la plupart de ces plantes ont été utilisées pendant des siècles en médecine traditionnelle pour le traitement de diverses maladies. Lorsque ces plantes sont utilisées à des concentrations élevées, leurs composés sont susceptibles d'inhiber la croissance des micro-organismes. Néanmoins, les concentrations élevées requises auraient sans doute des effets secondaires graves sur le patient, provoquant ainsi une maladie.

II.1.3. Les plantes et leurs composés antimicrobiens

Un antibiotique est défini comme un composé chimique dérivé ou produit par des organismes vivants, capable à de faibles concentrations d'inhiber la croissance microbienne [132]. Cette définition est limitée à des antibiotiques produits par des micro-organismes, mais celle-ci peut être étendue pour inclure des substances similaires présentes dans les plantes supérieures. Les plantes ont de nombreuses façons de générer des composés antimicrobiens pour les protéger contre les pathogènes [133]. Les surfaces végétales externes sont souvent protégées par des biopolymères tel que les cires, les esters d'acides gras comme la subérine et la cutine. En outre, les tissus externes peuvent être riches en composés phénoliques, alcaloïdes, terpénoïdes et d'autres composés qui inhibent le développement de champignons et de bactéries [134]. Les parois cellulaires de certaines monocotylédones contiennent également des protéines antimicrobiennes, appelées thionines [135, 136].
Depuis la découverte des antibiotiques dans les années 1950, l'utilisation de dérivés de plantes comme agents antimicrobiens a été pratiquement inexistante, mais la nécessité de résoudre le problème des résistances a motivé l'initiation de nouvelles recherches dans le domaine.

Les dépenses dans le monde entier sur la recherche de nouveaux agents anti-infectieux ont augmenté de 60% à partir de 1993, et les sources végétales sont devenues spécialement l’objet de recherches scientifiques [136].

II.2. Présentation des espèces végétales les plus actives

Pour cette étude bibliographique, nous avons développé plus en détails les plantes dont l’activité antibactérienne a révélé des résultats prometteurs. Ces plantes appartiennent à deux grandes familles : Les Lamiacées pour les genres *Satureja, Perovskia, Phlomis, Salvia* et *Hyptis*; et les Apiacées pour les genres *Dorema, Ferula et Ferulago*.

II.2.1. La famille des Lamiacées

Il s’agit de l’une des principales familles de plantes dicotylédones, qui comprend environ 258 genres et 6900 espèces plus ou moins cosmopolites, mais particulièrement répandues depuis le Bassin méditerranéen jusqu’en Asie centrale [137]. Les Lamiacées sont le plus souvent des plantes herbacées, annuelles ou vivaces aromatiques, des sous-arbrisseaux et rarement des arbres ou des lianes. La section des tiges est carrée et les feuilles opposées parfois verticillées. Les fleurs sont généralement bilabiées, à corolle irrégulière, possédant quatre étamines dont deux sont longues et deux sont courtes. De plus, les Lamiacées comptent beaucoup d’espèces cultivées comme condiments (ex. sauge, thym, basilic, menthe etc.). Par ailleurs, cette famille est une source importante d’huiles essentielles pour l’aromathérapie, la parfumerie et l’industrie des cosmétiques. Enfin, de nombreuses espèces sont utilisées en horticulture, notamment parmi les genres *Phlomis, Perovskia* et *Salvia*.

![Figure 3 : *Hyptis atrorubens* Poit.](image)

<table>
<thead>
<tr>
<th>Règne</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sous-règne</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Classe</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Sous-classe</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Ordre</td>
<td>Lamiales</td>
</tr>
<tr>
<td>Famille</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Genre</td>
<td>Hyptis</td>
</tr>
<tr>
<td>Espèce</td>
<td>atrorubens Poit.</td>
</tr>
</tbody>
</table>

Tableau 1 : Classification botanique d'*Hyptis atrorubens* Poit.
II.2.1.1. Caractéristiques botaniques : Hyptis atrorubens est une plante rampante à ascendante, de 15 à 60 cm de haut, avec des tiges filiformes, légèrement pubescentes, souvent rougeâtres dans les parties jeunes. Les petites feuilles, ovales à elliptiques, à sommet obtus à acuminé, à bord régulièrement denté, portent des poils glandulaires, longs et fins. L'inflorescence est en capitules axillaires opposés, à petites fleurs blanches teintées de mauve et portées par des pédoncules. Les fruits sont des petits nucules, verruqueux et bruns (Figure 4, 5 et 6). H. atrorubens préfère les sols humides et frais. Elle fleurit toute l'année, mais surtout d'octobre à mars [141].

Figure 4 : Hyptis atrorubens Poit., A : parties aériennes (×1), B : fleur (×6), C : étamine (×10), D : nucules (×10).
Figure 5 : Parties aériennes d’*Hyptis atrorubens* Poit. collectées en Guadeloupe.

Figure 6 : Parties aériennes d’*Hyptis atrorubens* Poit. collectées en Afrique de l’ouest.

Les noms vernaculaires sont Ti bombe noir ou rouge (Créole), Véronique (Créole antillais), Bompriye (Palikur), Trevo roxo et Hortelão bravo (Portugais), Bouton à vonvons, Herbe à miel, Herbe à mouches, Makouza (en Guadeloupe), Latenn, Balanta, Véwonik (en Afrique de l'ouest), wild mint (anglais) et Marubio oscuro (espagnol) [87].

II.2.1.3. Répartition géographique : *Hyptis atrorubens* Poit. est une espèce native du Mexique (Hidalgo, Oaxaca, Puebla, Veracruz), d' Amérique centrale et du bassin Caraïbe (Barbade; République dominicaine; Guadeloupe; Martinique; Montserrat; Porto Rico; Guyane; Sainte-Lucie; Saint-Vincent et les Grenadines), également présente dans les régions tropicales d' Amérique du Sud (Colombie; Equateur; Brésil; Pérou), elle a été introduite en Afrique de l' ouest (Côte D'Ivoire; Ghana; Guinée; Liberia; Sierra Leone) (Figure 7).

![Figure 7](https://example.com/image.jpg)

Figure 7 : La distribution dans le monde d ’*Hyptis atrorubens* Poit.

(U.S. Department of Agriculture).

II.2.1.4. Utilisation en médecine traditionnelle : *Hyptis atrorubens* est utilisée pour des propriétés diurétiques, anti-inflammatoires et bactéricides [88].
- **Pour les Créoles, en Haïti** : Cette plante sert à préparer des boissons rafraîchissantes, (calmant l’inflammation intérieure). Les parties aériennes sont préparées soit en infusion, soit mises à macérer dans de l’eau additionnée d’une poignée de « couac » grillé (farine de manioc torréfiée). Cette utilisation renvoie de toute évidence à des propriétés toniques et antianémiques [87].

- **En Guadeloupe** : Elle s’utilise pour traiter les éruptions cutanées, les coups de soleil, les rhumes, les vers intestinaux, la grippe et la digestion difficile. L’infusion de feuilles est considérée comme carminative et elle est utilisée contre la diarrhée, la dysenterie et le vomissement [87].

- **En Martinique** : Usage de la feuille froissée, en bains ou en application externe, contre les dermatites et le pied d’athlète [142]. Dans les Antilles francophones, la feuille était réputée contre les mycoses interdigitales. Elle est toujours utilisée en bains et frictions dans les affections dermatologiques [143]. Usage de la macération de la plante par voie orale, comme sudorifique dans les cas de fièvre, de rhumatisme et dans les problèmes respiratoires [144].

- **En Guyane** : Le jus des feuilles d’*H. atrorubens* est utilisé pour traiter la diarrhée, la dysenterie et les vomissements. Les décoctions de feuilles sont utilisées contre les rhumes et la grippe ainsi que contre les vers intestinaux. Et les infusions de feuilles sont utilisées dans l’indigestion ou comme carminatif [87]. Les Palikur utilisent la plante entière pour préparer une décoction bue pour soigner la toux [25].

- **Au Brésil** : *H. atrorubens* est utilisée pour soigner les boutons et taches sur la peau [145] et aussi pour son activité antimicrobienne et antifongique [146]. Une étude locale à Rio de Janeiro conclut que l’infusion des feuilles et des fleurs de cette plante est sudorifique et antispasmodique (Figure 8) [141].

- **à Trinidad (Cuba)** : Usage des parties aériennes en décoction par voie orale, comme vermifuge, anti-émétique et anti-diarrhéique. L’infusion des feuilles est utilisée contre les rhumes, la grippe, les parasites intestinaux et l’indigestion [147].
- **Au Venezuela** : La feuille est utilisée en bain aromatique en cas de refroidissement et de courbatures [148].

![Image](image.jpg)

Figure 8 : L’infusion des feuilles d’*Hyptis atrorubens* Poit. au Brésil.

II.2.1.1.5. Travaux antérieurs :

Des tests chimiques, réalisés sur les feuilles d’*Hyptis atrorubens* Poit., ont mis en évidence la présence de flavonoïdes et de saponines [87]. D’autre part, une autre étude, toujours sur les feuilles, a mis en évidence l’existence d’huile essentielle de deux types, l’une ayant pour constituant principal le germacrène D et l’autre un mélange de limonène et d’estragole (Figure 9) [149].

![Structures](structures.png)

Figure 9 : Structures du germacrène D, du limonène et de l’estragole.

Par ailleurs, des analyses pharmacologiques ont été réalisées. Les feuilles de cette plante n’ont aucune activité anti-HIV, mais ont montré une activité cytotoxique (CI₅₀ : 25 µg/ml) contre une souche maligne de lymphocytes humains responsable de la leucémie lymphoblastique humaine [150]. Dans la littérature, on ne trouve aucun rapport sur l’activité antimicrobienne des extraits de cette plante.
Comme nous l’avons indiqué, les polyphénols (flavonoïdes et phénylethylpropanoïdes) sont des composés majoritaires du genre d’*Hyptis*, c’est pourquoi nous ferons un rappel concernant cette classe de composé.

II.2.1.2. Les polyphénols : L’appellation « polyphénols » ou « composés phénoliques » regroupe un vaste ensemble de plus de 8 000 molécules, divisé en une dizaine de classes chimiques qui présentent toutes un point commun : la présence dans leur structure d’au moins un cycle aromatique à 6 carbones, lui-même porteur d’un nombre variable de fonctions hydroxyles (OH). Il existe de nombreuses classes de polyphénols : phloroglucinols, quinones, stilbénoides, coumarines, anthocyanes, tanins, flavonoïdes, acides-phénols,… (Figure 10).

Ces structures peuvent également être acylées, glycosylées, ce qui donne une grande variété de structures et de polarités.

Les composés phénoliques sont une famille thérapeutiquement et économiquement intéressante. Ils sont exploités en phytothérapie et dans des spécialités pour des propriétés vasculoprotectrices (flavonoïdes, anthocyanes, tanins), antispasmodiques (phloroglucinols) et suscitent beaucoup d’intérêt par leur potentiel antioxydant.

Figure 10 : La présence des flavonoïdes (les taches oranges) et des acides phénoliques (les taches vertes), sur une plaque de CCM F254, pulvérisée par le réactif de Neu (UV à 254 et 365 nm, respectivement à gauche et à droite).
II.2.1.2.1. Les flavonoïdes : Ce sont des pigments permettant la coloration des fleurs, des fruits et parfois des feuilles. Quand ils ne sont pas directement visibles, ils contribuent à la coloration par leur rôle de co-pigments. Ce sont des polyphénols ayant une structure de base en C6-C3-C6, constituée de deux noyaux aromatiques, que désignent les lettres A et B, reliés par un hétérocycle oxygéné, que désigne la lettre C (Figure 11).

![Structure de base des flavonoïdes.](image)

Figure 11 : Structure de base des flavonoïdes.

On les classe en fonction du degré d’oxydation du noyau pyranique central. On les distingue aussi par le nombre et la position des groupements hydroxyles, par l’existence ou non de substituants sur la génine [151]. Tous les flavonoïdes ont une origine biosynthétique commune et de ce fait possèdent le même élément structural de base. Ils peuvent être regroupés en différentes classes selon le degré d’oxydation du noyau pyranique central, le noyau B relié à l’hétérocycle C dans les positions 2 ou 3 (Figure 12).

- Dans la position 2 : le flavonoïde est appelé flavane.
- Dans la position 3 : le flavonoïde est désigné par le terme isoflavane.
- Si la position 4 du flavane porte un groupement carbonyle, la molécule est appelée flavanone.
- Si la liaison C2-C3 dans le squelette de la flavanone est en plus insaturée, le composé est nommé flavone.
- Si le squelette précédent est substitué en position 3 par un groupement hydroxyle, il est désigné par le nom de flavonol [152].
Flavane

Isoflavane

Flavanone

Flavone

Flavonol

Figure 12 : Structures des différentes classes de flavonoïdes.

Occupant une place prépondérante dans le groupe des phénols, les flavonoïdes sont des métabolites secondaires ubiquitaires des plantes.

En chromatographie sur couche mince (CCM), les flavonoïdes sont visibles en lumière UV (à 254 et 365 nm) en raison de leurs doubles liaisons conjuguées. On peut, en outre, pulvériser sur la plaque une solution méthanolique de diphénylborate d’éthanolamine (réactif de Neu)
afin d’exacerber les colorations observées en lumière visible et à 365 nm. Les hétérosides sont solubles dans l’eau et les alcools (éthanol, méthanol). Les génines sont généralement solubles dans les solvants organiques peu polaires (éther éthyllique, chloroforme) [153].

La principale propriété biologique reconnue des flavonoïdes est d’être « veino-actifs » (veinotrope, vitaminique « P ») c’est-à-dire qu’ils permettent de diminuer la perméabilité des capillaires sanguins et de renforcer leur résistance [151]. Par ailleurs, on attribue aux flavonoïdes de potentielles activités biologiques telles qu’anti-inflammatoires, antimicrobiennes, anti-oxydantes et anti-cancérogènes.

Les flavonoïdes montrent d’autres propriétés intéressantes dans le contrôle de la croissance et du développement des plantes en interagissant d’une manière complexe avec diverses hormones végétales de croissance. Certains d’entre eux jouent également un rôle de phytoalexines, c’est-à-dire des métabolites que la plante synthétise en grande quantité pour lutter contre une infection causée par des champignons ou par des bactéries [15].

II.2.1.2.2. Les acides-phénols : Le terme d’acide-phénol peut s’appliquer à tous les composés organiques possédant au moins une fonction carboxylique et un hydroxyle phénolique. La pratique courante en phytochimie conduit à réserver l’emploi de cette dénomination aux seuls dérivés des acides benzoïque (C$_6$-C$_1$) et cinnamique (C$_6$-C$_3$) (Figure 13).

![Acide cinnamique](image1.png) ![Acide benzoïque](image2.png)

Figure 13 : Structures des acides benzoïque et cinnamique.

La plupart des acides-phénols dérivés de l’acide cinnamique (acides 4-coumarique, caféique, férulique et sinapique) ont une distribution très large, mais les autres (comme l’acide 2-coumarique) sont peu fréquents. Ils sont rarement rencontrés à l’état libre et forment souvent :
- Des esters d’alcools aliphatiques (comme les acide mono- et dicaféyl-tartriques des Vitacées)
- Des esters de l’acide quinique (comme l’acide chlorogénique)
- Des depsides (comme l’acide rosmarinique), spécifiques des Lamiacées et des Boraginacées.

Ils peuvent également être amidifiés (comme des dérivés de la spermidine), ou combinés avec des sucres : esters du glucose ou éther du glucose.

Le rôle physiologique et/ou écologique des acides-phénols est très mal connu. Leur intérêt thérapeutique potentiel est très limité : propriétés antiseptiques urinaires de l’arbutine, propriétés anti-inflammatoires des dérivés salicylés. Par ailleurs, plusieurs composés acides-phénoliques sont antibactériens et antifongiques, en particulier à l’égard des organismes phytopathogènes [151].

II.2.1.2. Satureja khuzistanica Jamzad. : Le genre Satureja est principalement retrouvé dans la région méditerranéenne, et 14 espèces se développent dans le nord, le nord-ouest, l’ouest, le sud-ouest et le centre de l’Iran.

Satureja khuzistanica Jamzad. (Marzeh Khuzistani en persan) est une plante endémique largement répandue dans les régions du sud de l’Iran [50]. C’est un petit arbuste, pubescent à poils courts et blancs avec une tige ramifiée d’environ 30 cm de hauteur, très feuillue et de forme orbiculaire. Les feuilles sont atténuées et rétrécies, à base pétioliforme, et les feuilles florales ressemblent aux feuilles de la tige, mais sont plus petites. Chaque verticille a deux à huit fleurs avec des corolles violettes et des pédoncules courts [51].

Figure 14 : Satureja khuzistanica Jamzad.
<table>
<thead>
<tr>
<th>Règne</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sous-règne</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Classe</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Sous-classe</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Ordre</td>
<td>Lamiales</td>
</tr>
<tr>
<td>Famille</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Sous-famille</td>
<td>Nepetoideae</td>
</tr>
<tr>
<td>Genre</td>
<td>Satureja</td>
</tr>
<tr>
<td>Espèce</td>
<td>khuzistanica Jamzad.</td>
</tr>
</tbody>
</table>

Tableau 2 : Classification botanique de Satureja khuzistanica Jamzad.

Dans la médecine traditionnelle, les habitants des régions du sud de l’Iran utilisent cette plante pour ses propriétés analgésiques et antiseptiques. *Satureja khuzistanica* est aussi employée pour soulager les maux de dents par les habitants de la province du Lorestan [52].

Les principaux constituants de l'huile essentielle de *Satureja khuzistanica* sont des monoterpènes tels que le carvacrol (93%), le γ-terpinène (2,6%) et le p-cymène (1,7%) [53]. Des travaux ont permis de prouver que le carvacrol, composé principal de l'huile essentielle de cette espèce, avait des propriétés antioxydantes significatives [53] (Figure 15).

![Structures du carvacrol, du γ-terpinène et du p-cymène.](image)

Figure 15 : Structures du carvacrol, du γ-terpinène et du p-cymène.

Au cours de ces dernières années, l’huile essentielle de *Satureja khuzistanica* administrée par voie orale chez le rat, a été rapportée comme ayant des effets antioxydants, antidiabétiques, antihyperlipidémiques significatifs [54] mais aussi un effet stimulant sur la reproduction. Aucune toxicité n’a été observée [55].

58
II.2.1.3. *Perovskia abrotanoides* Karel. : *Perovskia* est un genre qui comprend sept espèces dont trois poussent en Iran (*P. abrotanoides*, *P. atriplicifolia* et *P. artemisioides*) [32].

Perovskia abrotanoides a pour noms vernaculaires *Brazambal, Domou*, et *Gevereh* [44]. C’est une plante herbacée, aromatique, vivace à l’état sauvage en Iran (Golestan, Ispahan, Khorassan, Mazandaran, et les provinces du Sistan Balouchistan), en Afghanistan, au Pakistan et au Turkménistan [45].

C’est un arbuste ou sous-arbrisseau à port érigé, d’une hauteur de 0,6 à 1,2 m, très ramifié, dioïque, fortement parfumé. Le feuillage est grisâtre à feuilles opposées, caduques, linéaires-oblongues, incisées ou pennatiséquées, parfois bipennatiséquées. Les fleurs sont petites, de couleur bleu « lavande » et forment de longues et souples panicules étroites [46]. La floraison s’échelonne de juillet à septembre selon les variétés.

![Figure 16 : *Perovskia abrotanoides* Karel.](image)

Perovskia abrotanoides est utilisée dans la médecine traditionnelle iranienne pour le traitement de la fièvre. Les villageois de la province d’Ispahan en Iran appliquaient un cataplasme préparé avec les racines écrasées de cette espèce végétale, de l’eau, de l’huile de sésame et de la cire pour soigner les lésions cutanées provoquées par la leishmaniose [47]. De plus, l’huile volatile de *Perovskia abrotanoides* est non toxique et possède des effets antibactériens et antifongiques [47]. Les plantes de ce genre sont connues pour contenir des triterpènes irréguliers tels que la peradione et la perovskone (Figure 17). De nombreuses études ont montré que ces diterpènes avaient des effets au niveau cardiaque, des effets...
antioxydants, des effets inhibiteur de l’aldose réductase, des activités cytotoxiques et un effet inducteur de l’apoptose [48].

Les études phytochimiques concernant l’huile essentielle de cette plante mettent en évidence des monoterpènes et sesquiterpènes comme le 1,8-cinéole (eucalyptol), le myrcène, le pinène, le camphre, le caryophyllène, l’humulène, le camphène et le bisabolol [154, 155]. Une autre étude réalisée sur l’extrait méthanolique de *Perovskia abrotanoides* confirme la présence de 7 diterpénoïdes de type abietane et de 2 dérivés de l’acétylcarnosine (Figure 17) [48].

![Structures de la peradione, de la perovskone, de l’abietane et de l’acétylcarnosine.](image)

Figure 17: Structures de la peradione, de la perovskone, de l’abietane et de l’acétylcarnosine.

II.2.1.4. Phlomis anisodonta Boiss. : Le genre *Phlomis* (famille des Lamiaceae) comprend environ 100 espèces dans le monde. En Iran, ce genre (à l’exception des hybrides et sous-espèces) représente 17 espèces dont 10 sont endémiques [40].

Ce sont des plantes herbacées, des sous-arbrisseaux ou des arbustes. Les feuilles sont veinées, entières, opposées, décussées (chaque paire de feuilles étant perpendiculaire à la suivante) et rugueuses ou réticulées. Les feuilles ou les bractées florales sont semblables ou différentes aux feuilles inférieures. Toutes les parties des plantes sont fréquemment couvertes de poils,
qui sont principalement radiés ou dendroïdes et qui peuvent prendre de nombreuses formes y compris glandulaires. Les fleurs sont disposées en verticilles autour des tiges qui sont habituellement de section carrée avec les coins arrondis. La couleur des fleurs change du jaune au rose, du pourpre ou blanc [41]. Les plantes appartenant au genre *Phlomis* contiennent différentes classes de glucosides d'iridoïdes, de flavonoïdes, de phénylpropanoïdes, de phényléthanols et de diterpènes [156].

![Phlomis anisodonta](image)

Figure 18 : *Phlomis anisodonta* Boiss.

<table>
<thead>
<tr>
<th>Règne</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sous-règne</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Classe</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Sous-classe</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Ordre</td>
<td>Lamiales</td>
</tr>
<tr>
<td>Famille</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Genre</td>
<td>Phlomis</td>
</tr>
<tr>
<td>Espèce</td>
<td>anisodonta Boiss.</td>
</tr>
</tbody>
</table>

Tableau 4 : Classification botanique de *Phlomis anisodonta* Boiss.

Un certain nombre d'espèces du genre *Phlomis* sont utilisées dans la médecine traditionnelle comme des stimulants, toniques, antalgiques, antidiabétiques, antipyrétiques, antidiarrhéiques, antiallergiques, antiulcéreux, et antihémorroidaires. Quelques études pharmacologiques et biologiques ont été réalisées sur le genre *Phlomis*. Certains travaux ont montré diverses activités biologiques telles que des activités anti-nociceptives, anti-inflammatoires,
immunosuppressives, antimitagènes, antioxydantes (piégeur de radicaux libres), antimicrobiennes, et antipaludiques. L’huile essentielle de *Phlomis anisodonta* contient deux sesquiterpènes : le germacrène D (65 %) et le β-caryophyllène (11 %) (Figure 19) [42].

Figure 19 : Structures du germacrène D et du β-caryophyllène.

II.2.1.5. Salvia mirzayanii Rech. f. & Esfand. : *Salvia*, l'un des plus grands genres de la famille des Lamiacées, comprend près de 900 espèces réparties dans le monde entier. Dans la flore iranienne, ce genre est représenté par 60 espèces dont 17 sont endémiques. *Salvia mirzayanii* (nom local : *Moor Talkh*) pousse seulement dans les régions du sud de l'Iran. Il s'agit d’une plante herbacée aromatique, vivace et touffue de 20 à 40 cm de haut avec plusieurs tiges couvertes de trichomes blanc et des fleurs de couleurs bleues et blanches. Cette espèce pousse de manière sauvage sur les pentes calcaires et sur les roches montagneuses dans les régions du sud de l'Iran [157].

Figure 20 : *Salvia mirzayanii* Rech. f. & Esfand.
Tableau 5 : Classification botanique de *Salvia mirzayanii* Rech. f. & Esfand.

Salvia mirzayanii est utilisée dans la médecine traditionnelle pour le traitement de la diarrhée, des maux d'estomac, des maux de tête, de l'hypercholestérolémie, du diabète, et aussi pour la cicatrisation des plaies [79]. Les parties aériennes de cette espèce sont utilisées dans la médecine traditionnelle iranienne comme antidiabétiques et spasmylytiques et pour soigner les douleurs de l’estomac [12]. De plus, plusieurs études ont montré les différentes activités biologiques de cette plante ; elle possède des propriétés antibactériennes, un effet antioxydant (piégeur de radicaux libres), des activités antiglycation et des effets neuroprotecteurs [68, 79, 80]. Les études précédentes ont montré la présence dans cette plante de spathulénol, un sesquiterpène qui dispose d’effets immunomodulateurs, (Figure 21) [158]. Javidnia *et al.* ont rapporté que le linalol, l’acétate de terpinyle, l’α-cadinol et le spathulénol sont les composants principaux de l’huile essentielle de *Salvia mirzayanii* [159]. Le salvimirzacolide (sesterterpène) est un autre composant de cette plante (Figure 21) [160].

![Figure 21 : Structures du spathulénol et du salvimirzacolide.](image_url)
II.2.2. La famille des Apiacées

La famille des Apiacées est une famille de plantes appartenant à la classe des Magnolopsida (Dicotylédones). Elle est composée d’environ 3 500 espèces réparties en 446 genres dont 3 ont été inclus dans notre étude : Dorema, Ferulago et Ferula. Cette famille est présente sur presque tout le globe, mais surtout dans les régions tempérées de l’hémisphère nord et les montagnes tropicales. C’est une famille relativement homogène, caractérisée par son inflorescence typique, l’ombelle.

Il s’agit de plantes herbacées, annuelles, bisannuelles ou vivaces, parfois arbustives. Les feuilles sont alternes, composées, rarement simples. Souvent, les pétiolo sont élargis à leur base, engainant la tige. La tige est souvent creuse, les fleurs sont réunies en ombelles simples ou composées, munies de bractées appelées involucelles à la base. Elles comptent 5 pétales et 5 étamines et un ovaire biloculaire. Les fruits sont formés de 2 méricarpes accolés à un axe central, le carpophage, se séparant à maturité [161].

La famille des Apiacées contient des plantes alimentaires (la carotte, Daucus carota L.), des condiments (le cumin, Cuminum cyminum L.), des plantes médicinales (le khella, Ammi visnaga (L.) Lam. et le fenouil, Foeniculum vulgare L.) ainsi que des plantes toxiques (la grande ciguë, Conium maculatum L.) [162].

II.2.2.1. Dorema ammoniacum D. Don : Le genre Dorema de la famille des Apiacées est représenté dans la flore de l’Iran par sept espèces dont deux sont endémiques (D. ammoniacum D. Don et D. aucheri Boiss.) [32, 163]. Ce sont des plantes médicinales importantes qui poussent dans les régions arides et semi-arides de l’Iran. Dorema ammoniacum est une espèce vulnérable qui a pour noms persans locaux Kandal, Vasha et Koma-Kandal [32, 110]. C’est une plante herbacée vivace pouvant atteindre environ 1 à 2 m de hauteur. Les feuilles sont disposées en spirale, avec des gaines clairement développées et la lame est souvent rudimentaire. La tige est creuse, noueuse, à rayures bleues, avec une épaisseur pouvant aller jusqu’à 5 cm. Au printemps et au début de l’été, elle renferme dans sa tige, dans ses racines et dans les pétiolo un suc laiteux : une gomme-résine médicinale connue sous le nom de gomme ammoniaque [164]. Lorsque la tige est percée par un insecte, la gomme laiteuse s’en exsude naturellement. Elle sèche au contact de l'air et forme des larmes ou des blocs solides qui sont récoltés par les populations locales.
<table>
<thead>
<tr>
<th>Règne</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sous-règne</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Classe</td>
<td>Equisetopsida</td>
</tr>
<tr>
<td>Sous-classe</td>
<td>Magnoliidae</td>
</tr>
<tr>
<td>Ordre</td>
<td>Apiales</td>
</tr>
<tr>
<td>Famille</td>
<td>Apiaceae</td>
</tr>
<tr>
<td>Genre</td>
<td>Dorema</td>
</tr>
<tr>
<td>Espèce</td>
<td>ammoniacum D. Don</td>
</tr>
</tbody>
</table>

Tableau 6 : Classification botanique de *Dorema ammoniacum* D. Don.

La résine a une action carminative, diurétique, diaphorétique, stimulante, antispasmodique et antimicrobienne. Elle sert aussi de cataplasme, et a un effet vasodilatateur [111]. Elle permet de faciliter l’expectoration dans les bronchites chroniques, en particulier chez les personnes âgées lorsque la sécrétion est visqueuse. [112].

Quatre composés ayant une activité inhibitrice de l'acétylcholinestérase ont été isolés à partir de l'extrait chlorométhylénique de la résine de cette plante, à savoir : ammorésinol, dshamirone, dorémone A et son analogue (un nouveau composé) (Figure 23) [165]. Une étude scientifique présente le composé ammorésinol comme un agent bactériostatique [166].

Le genre *Ferula* appartient à la famille des Apiacées et il a été révélé qu’il s’agit d’une riche source de gomme-résine. *Ferula assa-foetida* est l’une des espèces les plus importantes parmi les 30 espèces du genre *Ferula* en Iran. L’ase fétide est une gomme-oléorésine, un exsudat laiteux qui coagule au contact de l’air, obtenu à partir des racines de *Ferula assa-foetida*. Cette résine-gomme est également connue sous les noms *Anghouzeh*, *Khorakoma* et *Anguzakoma* en Iran [96].

C’est une plante herbacée, vivace, monoïque, à rhizome charnu, pouvant atteindre 2 m de hauteur, avec une odeur sulfureuse désagréable et un goût amer [97, 98]. Les feuilles sont grandes, bipennées et radicales. Les fleurs apparaissent après 5 ans en ombelles jaunes. Le fruit est ovale ou oblong, glabre, entouré d’un rebord plan.

Figure 23 : Structures des quatre composés isolés à partir de l’extrait chlorométhylénique de la résine de *Dorema ammoniacum* D. Don.

![Analogue de dorémone A](image1.png)

![Dshamiron](image2.png)

![Dorémone A](image3.png)

![Ammorésinol](image4.png)
Tableau 7 : Classification botanique de *Ferula assa-foetida* L.

Ferula assa-foetida est une source d’ase fétide, utilisée comme arôme alimentaire. Cette plante possède des propriétés expectorantes, carminatives, laxatives, stimulantes, antispasmodiques et anthelminthiques. Par ailleurs, elle est traditionnellement utilisée pour le traitement de diverses maladies telles que la grippe, l’asthme, l’épilepsie, les flatulences, et les parasitoses intestinales [98, 99].

De récentes études pharmacologiques et biologiques de la gomme-oléorésine ont également montré plusieurs activités, comme anti-oxydante [168], antivirale [98], antifongique [169-171], chimio-préventive [172, 173], antidiabétique [174], antispasmodique, hypotensive [175], et molluscicide [176].

Une étude biologique récente, a évalué l’activité antivirale de trente composés isolés de la résine de *Ferula assa-foetida*. Parmi ces composés, neuf composés (terpénocoumarines) ont
montré une forte activité antivirale à l’encontre de l’influenzavirus A (H1N1) (CI50 = 0,26 à 0,86 µg/ml) (Figure 25) [98].

Figure 25 : Structures de deux nouveaux terpénocoumarines isolées à partir de l'extrait chloroformique de la résine de *Ferula assa-foetida* L.

II.2.2.3. *Ferulago contracta* Boiss. et Hausskn. : Les plantes du genre *Ferulago* sont des plantes herbacées, représentées par 40 espèces dans le monde parmi lesquelles 8 poussent en Iran. *Ferulago contracta* fait partie des 3 espèces endémiques de l’Iran [32].

Figure 26 : *Ferulago contracta* Boiss. et Hausskn.
Cette plante est utilisée pour ses propriétés antiseptiques et antimicrobiennes [33]. Cependant, jusqu’à ce jour, cette espèce n’a fait l’objet que de très peu d’études phytochimiques. Un certain nombre d'espèces du genre *Ferulago* ont déjà été étudiées pour leurs compositions en huiles essentielles et leurs activités antimicrobiennes. De la lupanine, du dillapiole et des isomères d’oxyde manoyle, ont été rapportés comme étant des composés bioactifs du genre *Ferulago* (Figure 27) [177].

Tableau 8 : Classification botanique de *Ferulago contracta* Boiss. et Hausskn.

<table>
<thead>
<tr>
<th>Règne</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sous-règne</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Classe</td>
<td>Equisetopsida</td>
</tr>
<tr>
<td>Sous-classe</td>
<td>Magnoliidae</td>
</tr>
<tr>
<td>Ordre</td>
<td>Apiales</td>
</tr>
<tr>
<td>Famille</td>
<td>Apiaceae</td>
</tr>
<tr>
<td>Sous-famille</td>
<td>Apioidae</td>
</tr>
<tr>
<td>Genre</td>
<td>Ferulago</td>
</tr>
<tr>
<td>Espèce</td>
<td>contracta</td>
</tr>
</tbody>
</table>

Boiss. et Hausskn.

Figure 27 : Structures de la lupanine, du dillapiole et de l’oxyde manoyle.

69
II.4. Les souches microbiennes testées

II.4.1. Effet antimicrobien

Ces dernières années, il y a eu un grand intérêt pour la découverte de nouveaux agents antimicrobiens, due à une augmentation alarmante du taux des infections avec les micro-organismes résistant aux antibiotiques. Une des approches courantes pour la recherche des substances biologiquement actives est le criblage systématique des micro-organismes ou des plantes, qui sont des sources de beaucoup d'agents thérapeutiques utiles. En particulier, l'activité antimicrobienne d'huiles essentielles et des extraits de plantes ont formé la base de beaucoup d'applications, y compris, pharmaceutiques, médicales et agro-alimentaires. Le premier rapport des propriétés antimicrobiennes des épices est apparu en 1880 et concernait la moutarde, le clou de girofle, la cannelle et leurs huiles [178].

II.4.2. Mécanisme de l'effet antimicrobien

Il est sans doute très complexe, peut impliquer de multiples modes d'actions tels que l'inhibition des enzymes extracellulaires microbiennes, la séquestration de substrat nécessaire à la croissance microbienne ou la chélation de métaux tels que le fer, l’inhibition du métabolisme microbien [179], la dégradation de la paroi cellulaire, la perturbation de la membrane cytoplasmique (ce qui cause une fuite des composants cellulaires), l’influence sur la synthèse de l'ADN et de l'ARN [180], des protéines et des lipides [181]. Ces mécanismes ne sont pas des cibles séparées, certains peuvent être la conséquence d'un autre mécanisme. Le mode d'action des agents antimicrobiens dépend également du type de micro-organismes et de l'arrangement de la membrane externe.

Notre étude a pour objectif global de vérifier l’activité antibactérienne et antifongique de nos extraits sur une gamme étendue de micro-organismes pathogènes (staphylocoques, entérocoques, bacilles, streptocoques, candidoses).

II.4.3. Caractéristiques des souches bactériennes utilisées

Les infections bactériennes sont généralement traitées par des antibiotiques. Mais la très grande utilisation souvent inadaptée de ces molécules antibactériennes a entraîné la sélection
de souches multirésistantes. C’est le cas, par exemple, des bactéries productrices de β-lactamase, résistantes à toutes les β-lactamines et des bactéries qui présentent une résistance aux fluoroquinolones telles que l’acide nalidixique et la ciprofloxacine [182]. Nous avons testé nos extraits contre trente-cinq bactéries (Gram+, Gram-). Parmi ces bactéries trois ont été plus sensibles aux composés isolés à partir de tiges d’Hyptis atrorobens Poit., c’est pourquoi, dans un premier temps, nous détaillerons plus précisément ces bactéries.

II.4.3.1. *Stenotrophomonas maltophilia* : C’est une bactérie Gram négative, pathogène opportuniste ; elle est retrouvée dans l’environnement. Elle est la cause d’infections nosocomiales variées et de septicémies. Cette bactérie est souvent responsable d’infections graves et difficile à traiter en raison de sa résistance naturelle à la plupart des antibiotiques β-lactame tels que la pénicilline, les céphalosporines, les monobactames (Figure 28) [183].

![Figure 28 : *Stenotrophomonas maltophilia*](image)

(observation par balayage en microscopie électronique).

II.4.3.2. *Staphylococcus epidermidis* : C’est une bactérie Gram positive, habituellement non pathogène qui est retrouvée sur la peau et les muqueuses humaines et animales. Elle est la cause importante d’infections chez les patients dont le système immunitaire est déprimé et est responsable d’infections cutanées, nasales et urinaires. De plus, il peut se produire des biofilms permettant d’adhérer aux surfaces des prothèses médicales. Cette bactérie peut être résistante à une grande variété d’antibiotiques tels que la pénicilline et la méticilline (Figure 29) [184].

![Figure 29 : *Staphylococcus epidermidis*](image)

(observation par balayage en microscopie électronique).
II.4.3.3. *Enterococcus faecalis* : C’est une bactérie Gram positive, anaérobie facultative, qui habite le tube digestif des humains et d'autres mammifères. Elle cause des infections mortelles chez l'homme, particulièrement dans les environnements hospitaliers. Elle possède un haut niveau de résistance naturelle aux antibiotiques tels que les aminoglycosides, l’aztréonam, les céphalosporines, la clindamycine (Figure 30) [185].

Figure 30 : *Enterococcus faecalis*
(observation par balayage en microscopie électronique).

Ci-dessous, nous présentons les autres bactéries testées* qui étaient moins sensibles aux composés isolés d’*Hyptis atrorubens*.

II.4.3.4. *Escherichia coli* : Bacille aérobie et Gram négatif que l’on trouve couramment dans le tube digestif de l’être humain et des animaux à sang chaud.

II.4.3.5. *Klebsiella pneumoniae* : Bacille aéro-anaérobie, immobile et Gram négatif qui fait partie de la flore intestinale et peut être responsable d’infections urinaires et respiratoires.

* : http://microbewiki.kenyon.edu/index.php/

II.4.3.9. *Salmonella sp.*: Bacille aérobie, Gram négatif et mobile. Le réservoir principal de *Salmonella* sp. est constitué par le tractus gastro-intestinal des mammifères (porcs, bovins) et des oiseaux (volailles domestiques). Il peut être responsable d'infections chez l'homme.

II.4.3.11. *Acinetobacter baumanii*: Gram négatif, aérobie et immobile. Il s'agit d'un germe d'infection opportuniste chez l'homme, particulièrement chez les personnes immuno-déprimées et que l'on trouve aussi comme agent de maladies nosocomiales.

bovis. C’est pour cette raison que de nombreux laboratoires utilisent cette espèce afin de déterminer le processus pathologique des mycobactéries.

II.4.3.16. Staphylococcus aureus : Cocci à Gram positif ubiquitaire qui est commensal de l’homme et se révèle être pathogène opportuniste dans certains. *Staphylococcus aureus* est aussi responsable d’infections nosocomiales, d’intoxications alimentaires et sa résistance aux antibiotiques est parfois un grand problème pour le traitement des patients.

II.4.3.17. Staphylococcus lugdunensis : Bactérie Gram positive. Elle est responsable d’infections cutanées et d’endocardites infectieuses.

II.4.3.18. Staphylococcus warneri : Bactérie Gram positive. Elle provoque rarement la maladie, mais peut occasionnellement causer une infection chez les patients immuno-déprimés (germe ubiquitaire).

II.4.3.19. Corynebacterium : Bacille immobile à Gram positif, aérobie facultatif. Il peut être responsable d’infections chez l’homme. Il se trouve dans les aliments d'origine animale.

II.4.3.20. Enterococcus sp. : Cocci à Gram positif qui est commensal du tube digestif et des voies génitales féminines.

II.4.4. Caractéristiques des souches fongiques utilisées

Les champignons ou « mycètes » ou « fungi » sont des organismes eucaryotes qui n’ont pas d’organisation tissulaire et dont la masse cytoplasmique est enfermée dans une structure pariétale rigide qui constitue le thalle ou mycélium.

Le thalle se présente le plus souvent sous forme d’un système tubulaire, de filaments ramifiés et parfois anastomotiques, appelés « hyphes ». On parle alors de champignons filamentueux. Le thalle est parfois réduit à une structure simplifiée, unicellulaire, sphérique ou sub sphérique, uninucléée. Il n’y a pas formation d’un véritable mycélium, mais parfois d’un pseudomycélium par étirement des éléments cellulaires. Il s’agit dans ce cas d’un thalle dissocié, on parle alors de champignons levuriformes ou levures. Les champignons évoluent le plus souvent : à l’humidité, en aérobiose, à une température optimale de 20 à 28 °C.

La fréquence des infections fongiques a augmenté de façon considérable au cours des dernières années en raison principalement du nombre accru de patients immunodéprimés et d’interventions invasives. En pratique médicale, la disponibilité des agents antifongiques est
relativement faible et ils sont parfois inefficaces. Toutes ces raisons ont motivé la recherche de nouveaux antifongiques ou des cibles de cette action.

II.4.4.1. *Candida albicans* : Levure non pigmentée, non encapsulée, à bourgeonnement multiple et formant un pseudo-mycélium et du mycélium vrai. C’est un saprophyte endogène de la lumière intestinale humaine et des cavités génitales par contiguïté (chez la femme) (Figure 31).

Figure 31 : *Candida albicans* (observation par balayage en microscopie électronique).

II.4.4.2. Les dermatophytes: Ce sont des champignons filamentueux kératinophiles et kératinolytiques. Certains de ces organismes sont des parasites obligatoires de l’homme et/ou des animaux, en particulier des mammifères domestiques et sauvages. Le développement des dermatophytes à la surface de la peau ou dans les phanères est à l’origine de lésions cutanées. Les dermatophytoses font partie des dermatoses les plus fréquentes chez les chats et les chiens. Plus de 20 espèces de dermatophytes ont été isolées chez les carnivores domestiques.

Certains de ces dermatophytes jouent un rôle plus important que les autres, compte tenu de leur prévalence élevée et de leur potentiel zoonotique. En Europe. Les dermatophytes les plus fréquemment isolés à partir de chiens ou de chats sont *Microsporum canis* (surtout chez le
Le traitement des infections dermatophytiques à base de griséofulvine est maintenant considéré comme obsolète. Les principales substances utilisées sont la terbinafine (Lamisil®) et les dérivés azolés (fluconazole et itraconazole). Il y a certaines méthodes naturelles pour traiter des infections causées par les dermatophytes, comme les remèdes à base d’huile essentielle de *Melaleuca alternifolia* qui sont souvent conseillés [189].

Dans le cadre de la recherche de substances naturelles anti-dermatophytiques, nous avons testé l’effet fongitoxique *in vitro* (action fongicide et/ou fongistatique) de l’extrait hydro-méthanolique des tiges et des feuille d’*Hyptis atrorubens* contre cinq souches pathogènes et très importantes : *Microsporum canis, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton soudanense* et *Trichophyton tonsurans*.
MATÉRIEL ET MÉTHODES
Les plantes iraniennes ont été collectées dans différentes régions de l’Iran (Kurdistan, Azerbaïdjan, Khouzistan et les régions centrales) et ont été préparées par le Centre de Recherche des plantes médicinales de l’Université de Téhéran des sciences médicales (Dr. Gohari), l’Institut de Recherche des plantes médicinales de l’Université Shahid Beheshti (Dr. Farimani) et par un botaniste du Jardin des plantes médicinales de Firuzeh (Mme Mirabadi). L’identification taxonomique de ces espèces végétales a été validée par chacun des différents centres de recherche et chaque plante a été désignée par un numéro d’herbier (ces numéros figurent dans la partie I.2.1. Catalogue des plantes sélectionnées).

L’étude phytochimique a porté sur diverses drogues (écorces de racine et de tige, feuilles, fleurs et graines) qui ont été utilisées pour la préparation des extraits méthanoliques.

Les plantes séchées et broyées (30 g) sont soumises à une extraction par macérations successives utilisant le méthanol comme solvant (200 ml). La plante est macérée pendant deux heures sous agitation magnétique, à la température ambiante du laboratoire (environ 20 °C) et à l’abri de la lumière. L’extraction est répétée trois fois pour chaque plante. Après chaque macération, l’ensemble est filtré sur du papier filtre afin de séparer le marc du filtrat. Les filtrats sont évaporés grâce à un évaporateur rotatif pour obtenir des extraits secs (Figure 34).

Les extraits secs sont ensuite dissous dans le méthanol afin d’obtenir une concentration finale de 10 mg/ml.
Figure 34 : L’extraction par macérations successives.

Le rendement d’extraction obtenu pour chacune de ces 42 plantes a été calculé et est présenté dans le Tableau 9.
<table>
<thead>
<tr>
<th>Nom botanique</th>
<th>Organes utilisés</th>
<th>Rendement d'extraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlomis olivieri Benth.</td>
<td>FL ; PA ; T ; F</td>
<td>7,5 ; 6,6 ; 8,4 ; 5,9</td>
</tr>
<tr>
<td>Phlomis persica Boiss.</td>
<td>PA</td>
<td>8,9</td>
</tr>
<tr>
<td>Phlomis anisodontoid Boiss.</td>
<td>PA ; F ; R</td>
<td>14,6 ; 13,2 ; 9,3</td>
</tr>
<tr>
<td>Perovskia artemisioides</td>
<td>T+F</td>
<td>10,2</td>
</tr>
<tr>
<td>Perovskia abrotanoides</td>
<td>PA</td>
<td>8,8</td>
</tr>
<tr>
<td>Teucrion persicin Boiss.</td>
<td>PA</td>
<td>9,6</td>
</tr>
<tr>
<td>Satureja kuczistanica</td>
<td>T+F</td>
<td>8,1</td>
</tr>
<tr>
<td>Hymenocrater longiflorus</td>
<td>T+F</td>
<td>3,9</td>
</tr>
<tr>
<td>Zataria multiforma Boiss.</td>
<td>F</td>
<td>9,6</td>
</tr>
<tr>
<td>Dracocephalum kotschyi</td>
<td>PA</td>
<td>12,1</td>
</tr>
<tr>
<td>Salvia verticillata L.</td>
<td>R</td>
<td>4,1</td>
</tr>
<tr>
<td>Salvia chloroleuca Rech.f.</td>
<td>F</td>
<td>9,4</td>
</tr>
<tr>
<td>Salvia hypoleuca Benth.</td>
<td>T+F</td>
<td>18,3</td>
</tr>
<tr>
<td>Salvia sahendica Boiss.</td>
<td>PA</td>
<td>7,5</td>
</tr>
<tr>
<td>Salvia lachnocalyx Hedge.</td>
<td>T+F</td>
<td>6,9</td>
</tr>
<tr>
<td>Salvia mirzayani Rech. f.</td>
<td>PA</td>
<td>14,5</td>
</tr>
<tr>
<td>Salvia syriaca L.</td>
<td>T+F</td>
<td>9,2</td>
</tr>
<tr>
<td>Salvia ceratophylla L.</td>
<td>PA</td>
<td>12,1</td>
</tr>
<tr>
<td>Salvia urmiensis Bung.</td>
<td>PA</td>
<td>8,8</td>
</tr>
<tr>
<td>Thymus kotschyanus Boiss.</td>
<td>PA</td>
<td>12,8</td>
</tr>
<tr>
<td>Hyptis atrorubens Poit.</td>
<td>T+F</td>
<td>7,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nom botanique</th>
<th>Organes utilisés</th>
<th>Rendement d'extraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferula hezarlalezarica</td>
<td>R , GR</td>
<td>16,3 ; 23,5</td>
</tr>
<tr>
<td>Ferula oopoda Boiss. & Buhse.</td>
<td></td>
<td>7,8</td>
</tr>
<tr>
<td>Ferula gummosa Boiss.</td>
<td>GR</td>
<td>30,0</td>
</tr>
<tr>
<td>Ferula assa-foetida L.</td>
<td>GR</td>
<td>18,8</td>
</tr>
<tr>
<td>Ferulago contracta Boiss. & Hausskn.</td>
<td></td>
<td>29,1</td>
</tr>
<tr>
<td>Ferulago bernardii</td>
<td>PA ; T ; R</td>
<td>3,5 ; 5,5 ; 10,3</td>
</tr>
<tr>
<td>Ferulago angulata (Schlecht) Boiss.</td>
<td></td>
<td>15,7</td>
</tr>
<tr>
<td>Zeravschanica pauciradiatum (Tamamsch). M. Pimen.</td>
<td></td>
<td>6,8</td>
</tr>
<tr>
<td>Dauca litoralis Smith Subs.</td>
<td>PA</td>
<td>10,0</td>
</tr>
<tr>
<td>Echinophora platylobo DC.</td>
<td>T</td>
<td>11,5</td>
</tr>
<tr>
<td>Dorema ammoniacum D. Don</td>
<td>GR</td>
<td>16,2</td>
</tr>
<tr>
<td>Achillea tenuifolia Lam.</td>
<td>PA</td>
<td>7,1</td>
</tr>
<tr>
<td>Silybum marianum (L.) Gaertn.</td>
<td>GR</td>
<td>7,4</td>
</tr>
<tr>
<td>Padina boergesinii Allender & Kraft</td>
<td>Th</td>
<td>5,6</td>
</tr>
<tr>
<td>Plagiomnium undulatum (Hedw.) T.J. Kop.</td>
<td>Th</td>
<td>2,5</td>
</tr>
<tr>
<td>Rhynchostegium riparioides (Hedw.) Cardot</td>
<td>Th</td>
<td>4,3</td>
</tr>
<tr>
<td>Conocephalum conicum (L.) Underw.</td>
<td>Th</td>
<td>5,2</td>
</tr>
<tr>
<td>Caulerpa sertularioides (S.G.Gmelin) M.A. Howe</td>
<td>Th</td>
<td>2,1</td>
</tr>
<tr>
<td>Alcea rosea L.</td>
<td>FL</td>
<td>12,1</td>
</tr>
<tr>
<td>Euphorbia microsciadia Boiss.</td>
<td>PA</td>
<td>7,3</td>
</tr>
</tbody>
</table>

Tableau 9 : Rendements d’extractions obtenus à partir de 30 g de matières sèches.

Partie utilisée : FL = fleur ; T = tige ; R = racine ; PA = partie aérienne ; GR = graine ;
F= feuille ; Th = thalle.
III.1.3. Procédure d'extraction des tiges d’*Hyptis atrorubens* Poit.

Comme nous avons expliqué dans l’introduction (cf. pages 13 et 14), nous avons sélectionné *Hyptis atrorubens* Poit. dans les travaux phytochimiques afin d’isoler et d’identifier ses composés actifs.

Les études biologiques subséquentes sur cette plante, nous ont permis de trouver l’organe le plus actif de la plante (les tiges). Afin de pouvoir mener les études phytochimiques et biologiques, nous avons réalisé une procédure d’extraction en grande quantité pour *Hyptis atrorubens* Poit. en utilisant successivement quatre solvants de polarité croissante.

Les tiges d’*Hyptis atrorubens* Poit. séchées ont été réduites en poudre par broyage avec un mixer afin d’augmenter la surface de contact avec le solvant et ainsi faciliter l’extraction des composés. Cette étape d’extraction a été réalisée par macération à température ambiante et à l’abri de la lumière. Nous avons planifié des étapes d’extraction correspondant à l’utilisation de quatre types de solvants de polarités croissantes. Grâce aux tests biologiques préliminaires, nous avons constaté que l’extrait hydrométhanolique (dernière étape), qui disposait d’un rendement plus important, était plus actif.

Tout d’abord, nous avons utilisé 15 litres (3 × 5 L) d’éther de pétrole afin de réaliser la première extraction à partir de 1,1 Kg de plante, un extrait de 4,5 g a été ainsi obtenu. Puis, nous avons utilisé 15 litres (3 × 5 L) de dichlorométhane pour réaliser une seconde extraction à partir du marc de l’étape précédente, un extrait de 6,1 g a été ainsi obtenu. De la même façon, nous avons utilisé 15 litres (3 × 5 L) de méthanol pour réaliser une nouvelle extraction, un extrait de 61,2 g a été ainsi obtenu.

Et enfin, nous avons utilisé 15 litres (3 × 5 L) d’un mélange méthanol/eau (60:40), pour réaliser une dernière extraction, un extrait de 80,4 g a été ainsi obtenu (Figure 35). À chaque étape, les extraits ont été filtrés et les solvants ont été éliminés par évaporation sous pression réduite pour donner des résidus secs.
Hyptis atrorubens Poit.

Tiges (1,1 kg)

- Extraction EP (3 × 5 L)
- Filtration
- Évaporation

Extrait EP (4,5 g) Marc

- Extraction CH₂Cl₂ (3 × 5 L)
- Filtration
- Évaporation

Extrait CH₂Cl₂ (6,1 g) Marc

- Extraction MeOH (3 × 5 L)
- Filtration
- Évaporation

Extrait MeOH (61,2 g) Marc

- Extraction MeOH/H₂O (3 × 5 L)
- Filtration
- Évaporation

Extrait MeOH-H₂O (80,4 g) Marc

Figure 35 : Protocole d’extraction d’*Hyptis atrorubens* Poit.
III.1.4. Procédure d’extraction des fleurs d’*Alcea rosea* L.

Durant la première année de thèse, nous avons effectué parallèlement une étude phytochimique approfondie sur des fleurs d’*Alcea rosea* L., afin d’isoler et d’identifier ses composés.

Les fleurs d’*Alcea rosea* L. séchées et broyées (145 g) ont été extraites par macération à température ambiante et à l’abri de la lumière en utilisant successivement deux solvants de polarité croissante. Tout d’abord il a été utilisé 1 litre de dichlorométhane et puis 1 litre de méthanol (3 fois, chaque fois 24 heures agitations). Les extraits ont été filtrés et les solvants ont été éliminés par évaporation sous pression réduite pour donner des résidus secs (Figure 36). Nous parlerons dans une prochaine partie de l’isolement et de l’identification des composés de cette plante.

![Diagramme de la procédure d'extraction](image)

Figure 36 : Extractions successives des fleurs broyées d’*Alcea rosea* L.
III.2. Techniques chromatographiques de séparation

Les plantes ayant révélé des activités biologiques font l’objet d’une étude chimique incluant la purification, l’isolement, et l’identification structurale de principes actifs ayant l’activité biologique initialement détectée.

L’isolement des principes actifs est généralement réalisé à l’aide de différentes méthodes de chromatographie sur colonne et sur couche mince préparative et chromatographie liquide à haute performance (CLHP).

III.2.1. Chromatographie sur couche mince (CCM) analytique

La chromatographie sur couche mince est une méthode de séparation des composés qui permet d’analyser la complexité d’un mélange. Cette technique a été utilisée pour visualiser la séparation des molécules de l’extrait au cours de son fractionnement sur colonne et pour évaluer la complexité des fractions.

Principe : La chromatographie sur couche mince repose sur les phénomènes d’adsorption, d’interactions et de polarité. Un mélange de composés est placé sur un support solide (phase stationnaire) qui est plongé dans un solvant (phase mobile) qui, par capillarité, se déplace le long de la phase stationnaire. La phase mobile va entraîner les composés qui migreront à une hauteur variant en fonction de leur affinité pour la phase stationnaire et la phase mobile. On peut ainsi caractériser les composés selon leur R_f (Rapport frontal : rapport de la distance de migration du composé par rapport à celle du solvant).

Matériel :
- Cuve en verre munie d’un couvercle étanche
- Plaque de silice sur un support en aluminium : Silica gel 60 F254, épaisseur 0,2 mm (Merck)
- Micro-seringue
- Eluant
- Réactif
Mode opératoire : La cuve de migration est partiellement remplie du mélange de solvant (phase mobile) afin qu’elle soit saturée en vapeur d’éluant ce qui facilite et améliore la migration. Une ligne de dépôt est tracée à 1,5 cm du bord, les échantillons y sont déposés, puis la plaque est mise en contact avec la phase mobile dans la cuve jusqu’à migration de la phase mobile à 0,5 cm du bord supérieur de la plaque.

Les systèmes de solvant que nous avons employés le plus couramment sont les suivants :
- Extraits apolaires : éther de pétrole / acétate d’éthyle (1:1)
- Extraits polaires : acétate d’éthyle / acide acétique / acide formique / eau (100:11:11:27)
- Extraits polaires : acétate d’éthyle / méthanol / eau (16:2:1)

Ces compositions ne sont bien sûr qu’indicatives et peuvent être adaptées aux besoins spécifiques d’une analyse.

Les CCM sont analysées en lumière visible et sous UV (254 et 356 nm), avant et après révélation par les réactifs appropriés. L’utilisation de différents réactifs sur les plaques de chromatographie sur couche mince après éluition, permet de comparer les profils des fractions séparées et de les rassembler en fonction de leurs similitudes, d’obtenir des renseignements supplémentaires sur le type d’une molécule (cas de réactifs spécifiques) et éventuellement permettre de localiser certains composés, invisibles sans dérivation chimique. Les principaux réactifs utilisés sont montrés dans le Tableau 10.

<table>
<thead>
<tr>
<th>Réactif</th>
<th>Substances révélées</th>
<th>Mode d’utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisadéhyde sulfurique</td>
<td>Réactif polyvalent</td>
<td>Préparer une solution de p-anisaldéhyde à 0,5% dans un mélange CH₃OH/ACOH/H₂SO₄ (85:10:5) Pulvériser sur la plaque. Après chauffage intense, les composés organiques apparaissent sous forme de taches colorées en lumière du jour.</td>
</tr>
<tr>
<td>Neu</td>
<td>Flavonoïdes, acides phénoliques</td>
<td>Préparer une solution de diphenylborate d’éthanolamine à 1% dans le méthanol et ajouter 5% de PEG 4000. Vaporiser sur la plaque. Les flavonoïdes apparaissent sous forme de taches fluorescentes oranges, jaunes, bleues et vertes à 365 nm (Figure 37).</td>
</tr>
</tbody>
</table>

Tableau 10 : Principaux réactifs utilisés pour la révélation des CCM.
Figure 37 : Chromatographie sur couche mince (CCM).
A - révélé par le réactif de Neu, B - sous UV à 254 nm, C - sous UV à 365 nm.

III.2.2. Chromatographie sur couche mince préparative (CCM prép.)

Principe : Le principe est identique à la chromatographie sur couche mince mais dans un but de purification.

Matériel :
- Cuve en verre munie d’un couvercle étanche
- Plaque de silice sur un support en verre : SIL G200, épaisseur 2 mm
- Micro-seringue
- Eluant

Mode opératoire : La cuve de migration est partiellement remplie du mélange de solvants choisi comme phase mobile afin qu’elle soit saturée en vapeur d’éluant ce qui facilite et améliore la migration. Une ligne de dépôt est tracée à 2 cm du bord, l’échantillon est déposé le long de la ligne de dépôt, puis la plaque est mise en contact avec la phase mobile dans la cuve jusqu’à migration de la phase mobile à 0,5 cm du bord supérieur de la plaque. Après avoir séché la plaque, la partie contenant le composé voulu est récupérée, mise en suspension, puis centrifugée pour séparer le composé de la silice. Ensuite, le solvant est éliminé par évaporation, pour obtenir un produit sec (Figure 38).

Figure 38 : Chromatographie sur couche mince préparative (CCM prép.).
III.2.3. Chromatographie en phase liquide (CPL)

Principe : On utilise une colonne en verre équipée d’un fritté de verre et d’un robinet. La colonne est remplie d’une phase stationnaire qui peut être de la silice ou du Sephadex®. Un mélange de composés est placé en haut de la colonne. Selon la nature de l’éluant et du contenu de la colonne, certaines molécules sont plus facilement éluées que d’autres et la séparation des composés du mélange est ainsi permise (Figure 39).

Matériel :
- Silice 60 (Macherey-Nagel) 0,063-0,2 mm ou Sephadex® LH-20
- Sable de Fontainebleau
- Eluant
- Collecteur Büchi 684

Mode opératoire : Cette chromatographie est réalisée dans une colonne en verre. La taille et le diamètre de la colonne sont déterminés en fonction de la masse et du degré de pureté de l’échantillon à fractionner. Lorsqu’il n’y a pas de fritté de verre dans le bas de la colonne, du coton hydrophile est placé au fond de la colonne pour servir de filtre afin d’éviter les pertes de phase stationnaire. La silice ou le Sephadex® est mis en suspension dans le premier éluant puis coulé dans la colonne. Le premier mélange de solvant est ensuite élué sur la colonne jusqu’à ce que la silice ou le Sephadex® soit tassé et stabilisé. L’extrait à fractionner est dissout dans le premier mélange de solvants puis déposé sur la colonne sous forme sèche ou liquide à l’aide d’une pipette. Quand la phase stationnaire est de la silice, on ajoute du sable de Fontainebleau pour éviter les perturbations du dépôt de l’extrait lors de l’élation. L’élation des composés par différents mélanges de solvants successifs est alors réalisée en veillant à ne jamais laisser la colonne s’assécher. Les fractions sont alors récoltées dans des tubes à essai. Le suivi de l’élation des composés se fait sur CCM.

![Figure 39](image_url) : Chromatographie en phase liquide (CPL), A – de Sephadex® LH-20, B – de silice.
III.2.4. Chromatographie liquide moyenne pression (CLMP)

Principe : Cette technique repose sur l’adsorption spécifique des composés sur la phase stationnaire, notamment en fonction de leur polarité. Les interactions entre les différentes phases permettent alors d’avoir un temps de rétention qui est spécifique de chaque composé, et donc ainsi de pouvoir les séparer dans un mélange (Figure 40). La chromatographie est réalisée sous moyenne pression (20 bar)

Matériel :
- Colonne pré-remplie de silice RP-18
- Pompe Büchi C-605
- Contrôleur de pression et de débit Büchi C-615
- Eluant
- Collecteur Gilson FC 204

Mode opératoire : Cette chromatographie est réalisée grâce à une colonne pré-remplie de silice C18 (phase inverse : colonne apolaire). La taille et le diamètre de la colonne sont déterminés en fonction de la masse et du degré de pureté de l’échantillon. L’extrait à fractionner est dissout dans le premier mélange de solvants puis injecté dans la colonne. L’élution se fait par des mélanges de solvants successifs. Les fractions sont recueillies par un collecteur, puis évaporées pour être analysées par CCM.

Figure 40 : Chromatographie liquide moyenne pression (CLMP).

III.2.5. Chromatographie liquide à haute performance (CLHP)

Principe : La chromatographie en phase liquide à haute performance (l’abréviation anglaise HPLC - High Performance Liquid Chromatography est plus fréquemment utilisée) est une technique de séparation analytique basée sur l’hydrophobicité des molécules ou d’un mélange de composés. L’échantillon à analyser est poussé par un éluant liquide sous pression environ 70 bar (appelé aussi phase mobile) dans une colonne remplie d’une phase stationnaire composée de grains solides très fins.
Le débit d'éluant est assuré par une pompe à haute pression. Dans la colonne, les divers composés de l'échantillon sont séparés l'un de l'autre en raison de leurs diverses affinités à l'égard des deux phases – stationnaire et mobile. À la sortie de la colonne les composés sont détectés à l'aide d'un détecteur (pouvant être UV, IR etc.) (Figure 41).

Figure 41 : Schéma principal de la chromatographie en phase liquide à haute performance*.
1- Réservoirs des solvants, 2 - Dégazeur, 3 - Valve de gradient d'élution, 4 - Doseur de phase mobile (ou éluant), 5 - Pompe à haute pression, 6 - Vanne d'injection en position "inject", 6' - Vanne d'injection en position "load", 7 - Boucle d'injection de l'échantillon, 8 – Précolonne (éventuelle), 9 - Colonne analytique, 10 – Détecteur, 11 - Acquisition du signal, 12 - Décharge déchets.

Matériel :

- Pompe LC-20AP
- Injecteur automatique SIL-10AP
- Contrôleur CBM-20A
- Colonne Grace® C18 Basic (25 cm x 4,6 mm, 5μ), VisionHT
- Collecteur automatique de fractions SIL-10AP
- Vanne FCV-20AH2 (analytique et préparatif)
- Détecteur SPD-M20A

Mode opératoire : Nous avons utilisé la méthode CLHP (Figure 42) pour analyser les composés purs qui ont été isolés par CPL et CLMP. Ce travail nous permet de confirmer l’identité des composés par une comparaison avec les témoins existant au laboratoire. 20 μl de chaque composé isolé ont été injectés sur une colonne de type phase inverse C18, de dimensions égales à 250 × 4,6 mm. La phase mobile est constituée de deux composants : Une solution à 0,05 % d’acide acétique dans l’eau ultra pure (solvant A) et de l’acétonitrile (solvant B). Le gradient d’élation appliqué est de 17 %, 25 % et 50 % (aux temps zéro, 30 et 40 minutes) pour la pompe B. Le débit est de 1 ml/min. Ces conditions d’analyse ont été adaptées pour la plante *Hyptis atrorubens*.

Figure 42 : CLHP (SHIMADZU) du laboratoire de Pharmacognosie.
III.2.5.1. Analyse quantitative des composés par CLHP : Nous avons utilisé la méthode présentée ci-dessus pour mesurer la quantité de quatre composés dans l'extrait hydro-méthanolique d’Hyptis atrorubens. La linéarité a été vérifiée par l'obtention de cinq points d'étalonnage des courbes sur une gamme de concentration de 0,006 à 1 mg/ml.

III.3. Détermination des structures chimiques

La détermination des structures chimiques se fait par spectrométrie masse (MS), et résonance magnétique nucléaire (RMN).

III.3.1. Spectrométrie de masse

Cette technique repose sur deux éléments fondamentaux :

- La possibilité, par différentes méthodes, de fragmenter une molécule en différents ions, positifs ou négatifs, de rapports m/z (masse/nombre de charges élémentaires) différents.

- La détection de ces fragments. Là encore, différentes techniques existent (déflection par champ magnétique, filtre de masse quadripolaire, trappe ionique, temps de vol) mais leur nature influe essentiellement sur la précision des résultats.

Chaque molécule peut être caractérisée par un profil de fragmentation pour une technique de fragmentation donnée. De plus, il est possible qu’il se forme un ion moléculaire (M⁺, par exemple) ou pseudomoléculaire ([M+H]⁺), indiquant la masse de la molécule étudiée. Les techniques d’ionisation que nous avons utilisées dans notre étude :

- L’électrospray-ionspray (SM-ESI) : la solution contenant la substance à analyser est introduite dans la source via un capillaire à la sortie duquel un champ électrique intense est appliqué, ce qui entraîne la nébulisation de la solution à pression atmosphérique.

- L’ionisation chimique à pression atmosphérique (SM-APCI) : les échantillons liquides sont directement introduits dans un nébuliseur pneumatique. Sous l'effet d'un jet d'air ou d'azote, le liquide est transformé en fin brouillard. Un chauffage assure la
désolvatation des composés. Ces derniers sont ensuite ionisés chimiquement à pression atmosphérique.

Nous avons utilisé, pour plusieurs produits, un spectromètre API3000 (Perkin-Elmer Sciex) à triple quadripôle au Laboratoire d’Application de Spectrométrie de Masse de l’Université de Lille Nord de France (Figure 43).

Figure 43 : Spectromètre de masse API 3000.

III.3.1. Détermination des structures chimiques par RMN

La Résonance Magnétique Nucléaire ou RMN est une technique d’analyse spectroscopique non destructive permettant d’accéder à la structure des molécules. Elle exploite les propriétés magnétiques des atomes en les soumettant à de forts champs magnétiques. L’absorption d’énergie obtenue est enregistrée, intégrée et transformée en un signal de résonance puis en spectre de RMN.

Les particules atomiques doivent avoir un spin nucléaire non nul pour pouvoir être observées en RMN. Lorsqu’elles sont placées dans un champ magnétique, elles peuvent prendre plusieurs orientations. Des spectres RMN monodimensionnels (\(^1\)H et \(^{13}\)C) et bidimensionnels (COSY, HMBC, HSQC) peuvent être réalisés. Ces spectres apportent des informations différentes et complémentaires qui permettent de déterminer la structure des molécules.

En ce qui concerne le spectre du proton (RMN \(^1\)H), divers paramètres sont à observer et analyser :

- Le déplacement chimique (\(\delta\)) : la position des signaux dans le spectre exprimée en Hz ou en ppm qui donne une idée du type de groupement auquel appartient le proton correspondant à ce signal.
- L’intégration : l’air sous la courbe d’un pic proportionnelle au nombre de protons qui résonnent à cet endroit.
- La multiplicité du signal : le nombre de protons voisins du proton considéré.

Les spectres RMN sont enregistrés sur un spectromètre de type Bruker Avance 500. Les échantillons sont dissous dans des solvants deuterés (Figure 44).

Figure 44 : Résonance Magnétique Nucléaire (RMN).
III.4. Étude *in vitro* de l’activité cytotoxique (antiproliférative)

Nous évaluons l'activité antiproliférative de sept plantes sur une lignée de cellules cancéreuses (HT-29 : adénocarcinome de l'épithélium colique).

La prolifération des cellules est évaluée par une méthode colorimétrique développée par Promega, le CellTiter96 AQueous One Solution Cell Proliferation Assay. Cette méthode est basée sur la réduction d'un solvant le MTS ou [3-(4,5-diméthylthiazol-2-yl)-(3-carboxyméthoxyphényl)-2-(4-sulfophényl)-2H-tétrazolium] en un produit coloré, le formazan, par la NADPH ou NADH déshydrogénase des cellules métaboliquement actives (Figure 45). La quantité de formazan produite est mesurée par l'absorbance à une longueur d’onde de 490 nm, et elle est directement proportionnelle au nombre de cellules vivantes.

Les cellules sont ensemencées dans des plaques 96 puits (3000 cellules par puits). Elles sont cultivées pendant 24 heures dans leur milieu de culture. Les cellules sont ensuite traitées par sept extraits à étudier. Les solutions-mères des extraits sont préparées dans le DMSO à une concentration de 10^{-2} g/L. Ces solutions sont ensuite diluées dans du milieu contenant 10 % de SVF pour obtenir différentes concentrations. Ainsi la concentration finale en DMSO est inférieure à 1‰ et est compatible avec la croissance cellulaire.

Après 72 heures d’incubation, les cellules sont mises en contact avec 20 µL d’une solution de MTS. Enfin, après 1 à 4 heures d’incubation, l’absorbance est mesurée grâce à un lecteur de microplaques Power wave XS (Biotek) à 490 nm. Chaque expérience est réalisée en triplicate pour chaque concentration de molécule.
III.5. Tests biologiques

Les tests biologiques sont nécessaires pour guider le processus de fractionnement et d’isolement des substances actives. Toutes les fractions sont évaluées, et celles qui possèdent une activité biologique sont soumises à de nouvelles étapes de purification. Les tests biologiques doivent être simples, peu coûteux et rapides afin de pouvoir analyser un grand nombre d’échantillons. Par ailleurs, ces tests doivent être suffisamment sensibles car les principes actifs sont généralement de faible concentration.

Dans notre recherche, nous avons utilisé des tests antimicrobiens contre 35 bactéries, cinq levures (appartenant au genre *Candida*) et cinq dermatophytes (tous pathogènes) en culture *in vitro*, ainsi que des tests de bioautographie afin de visualiser les substances responsables de l’activité antimicrobienne.

Les tests biologiques ont été faits au laboratoire de bactériologie de la Faculté Pharmacie de Lille 2, sous la responsabilité du Dr. Christel Neut.

III.5.1. Essais antimicrobiens

L’inhibition de la croissance microbienne *in vitro* est étudiée par la méthode de diffusion en milieu solide afin de déterminer la concentration minimale inhibitrice (CMI). Cette valeur est définie comme étant la concentration minimale d’extrait qui inhibe toute croissance visible après 18 à 24 heures d’incubation à 37 °C.

En effet, la CMI est une valeur indicatrice du pouvoir bactériostatique d’un antibactérien. La CMI a été déterminée en utilisant la gélose de Mueller Hinton (MHA) coulée en boîtes de Petri puisensemencée grâce à un inoculateur à tête multiples (appareil de STEERS). L’activité est ensuite estimée visuellement par la présence ou l’absence de colonies après incubation à l’étuve à 37 °C pendant 18 heures.

Les valeurs de la CMI ont été relevées à la plus faible concentration du composé ne montrant aucune croissance microbienne. L’absence de toxicité des solvants utilisés a été vérifiée. Trois antibiotiques et un antifongique couramment employés ont été utilisés comme contrôles positifs pour ces essais : respectivement, la gentamicine; la vancomycine, l’amoxicilline et l’amphotéricine B.
III.5.1.1. Préparation des extraits végétaux : Les plantes séchées et broyées sont soumises à une extraction, par macération, via un solvant, le méthanol (cf. Protocole d’extraction). Cette étape est répétée trois fois, avec une durée de deux heures à chaque fois. Après filtration, l’extrait est concentré par élimination du solvant grâce à un évaporateur rotatif.

III.5.1.2. Préparations des différentes concentrations : Les extraits sont préparés à des concentrations de 1,00 %, 0,50 %, 0,25 %, 0,12 %, 0,06 % et 0,03 % (de 10 mg/ml à 0,3 mg/ml).

Tout d’abord, pour obtenir la concentration à 1 %, 2 ml d’extrait de concentration 0,1 g/ml sont introduits dans une boîte de Petri, puis il est ajouté 18 ml de gélose de Mueller Hinton (MHA) à chaud (donc à l’état liquide), l’ensemble est homogénéisé, la gélose se durcit en refroidissant. De même, pour la concentration de 0,5 %, 1 ml d’extrait est mis dans une boîte de Petri, à laquelle il est ajouté 19 ml de gélose.

Figure 46 : Les boîtes de Petri avant et après ajout de MHA.

Ensuite, pour les quatre autres concentrations, quatre tubes contenant chacun 5 ml d’eau distillée sont préparés dans le but de réaliser des dilutions. Puis 1 ml de chaque tube est mis dans une boîte de Petri à laquelle il est ajouté 19 ml de gélose (Figure 46 et 47).
III.5.1.3. Préparation des souches microbiennes et culture in vitro : Nous avons sélectionné différentes bactéries, résistantes ou non aux antibiotiques, pouvant être impliquées dans les maladies opportunistes ou nosocomiales ainsi que dans toute autre maladie infectieuse.

Premièrement, les tests antimicrobiens pour toutes les plantes présentées dans notre étude ont été réalisés en culture in vitro contre 36 souches microbiennes dont 24 bactéries Gram négatives, 11 bactéries Gram positives et une levure (Candida albicans) capable de se développer dans un milieu aérobie gélosé de Mueller Hinton (MHA). Dans un second temps, après avoir choisi la plante à étudier, 9 souches fongiques ont été ajoutées dans la liste des micro-organismes (Tableau 11).
<table>
<thead>
<tr>
<th>Type</th>
<th>Souche</th>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bactéries Gram négatives</td>
<td>Escherichia coli 8137</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli 8138</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli 8157</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>*Escherichia coli ATCC 25922</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae 11016</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae 11017</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa 8131</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa ATCC 27583</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Proteus mirabilis 11060</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Providencia stuartii 11038</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Salmonella sp. 11033</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Salmonella sp. 11037</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Serratia marcescens 11056</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Serratia marcescens 11057</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Stenotrophomonas maltophilia</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Acinetobacter baumannii 9010</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Acinetobacter baumannii 9011</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Citrobacter freundii 11041</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Citrobacter freundii 11042</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Citrobacter freundii 11043</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae 11050</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae 11051</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae 11053</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Enterobacter aerogenes 9004</td>
<td>24</td>
</tr>
<tr>
<td>Bactéries Gram positives</td>
<td>Enterococcus faecalis C159-6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Mycobacterium smegmatis 5003</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus 8146</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus 8147</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus epidermidis 5001</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus epidermidis10282</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus lugdunensis T26A3</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus warneri T12A12</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Corynebacterium T25-17</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Enterococcus sp. 8152</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Enterococcus sp. 8153</td>
<td>35</td>
</tr>
<tr>
<td>Levures</td>
<td>Candida albicans 10286</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Candida krusei</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Candida glabrata</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Candida kefyr</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Candida parapsilosis</td>
<td>40</td>
</tr>
<tr>
<td>Dermatophytes</td>
<td>Microsporum canis</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Trichophyton rubrum</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Trichophyton mentagrophytes</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Trichophyton soudanense</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Trichophyton tonsurans</td>
<td>45</td>
</tr>
</tbody>
</table>

Tableau 11 : Les souches testées dans notre étude.
Les micro-organismes sont cultivés, dans des tubes contenant un milieu MHA, à partir de suspension des souches contenues dans un milieu liquide BH (Brain Heart cystéine). Les tubes sont incubés pendant 24 heures dans une étuve à 37 °C (Figure 48).

Figure 48 : Culture sur milieu MHA, après 24 h d'incubation.

Après incubation, pour obtenir la suspension microbienne, 10 ml de liquide RC (Ringer Cystéine) sont ajoutés dans les tubes MHA, il est nécessaire de bien mélanger pour assurer une répartition homogène des micro-organismes, ensuite une goutte de chaque suspension est récupérée pour être ajoutée dans un tube contenant 10 ml de solution RC.

Pour finaliser la culture dans les boîtes de Petri, 1 ml de suspension de chaque tube est prélevé pour remplir les puits de la plaque de l’ensemenceur automatique (Appareil de STEERS) (Figure 49). La surface de la gélose est ensemencée avec un inoculum des souches à étudier (l’inoculateur à têtes multiples de l’appareil de STEERS, permet d’ensemencer au maximum 36 souches différentes par boîte) (Figure 50). Deux boîtes témoin "avant" et "après" l’ensemencement ont été réalisées pour vérifier la stabilité des concentrations des inocula (Figure 51). La culture des micro-organismes se fait par incubation des boîtes de Petri, pendant 24 heures, à 37 °C.

Figure 49 : Remplir les puits de la plaque de l’ensemenceur par les souches.
Après 24 heures, les colonies sur les boîtes de Petri seront dénombrées visuellement. Cette technique permet de connaître le nombre d'unités prélevées pouvant former une colonie (UFC). Cette méthode ne tient compte que des micro-organismes viables qui peuvent se développer dans les conditions de croissance utilisées.

III.5.2. Bioautographie

C’est une technique qui permet la détection de composés antimicrobiens au sein d’un extrait de plante [192].

En effet, la bioautographie est une technique de laboratoire visant à découvrir les substances qui affectent les taux de croissance des organismes d'essai dans des mélanges complexes et des matrices. La méthode est basée sur l'activité biologique de l'analyte qui peut être antibactérienne, antifongique, anti-tumorale, antiprotozoaire, etc.

Les principaux domaines d’application de la bioautographie sont notamment :

- La recherche de nouvelles substances antibiotiques et de nouveaux composés actifs en étudiant les activités biologiques des substances provenant de plantes, micro-organismes ou de la chimie combinatoire.
- L'étude des antibiotiques et d'autres composés biologiquement actifs dans les eaux usées, l'eau potable, des liquides organiques et des aliments.
- Le contrôle de qualité des médicaments antibiotiques.
- La détection et la détermination de la toxicité (par exemple, les aflatoxines) ou de la phototoxicité (par exemple des furocoumarines) des composés.
La bioautographie appartient à un grand groupe de méthodes de dépistage pour la détection de l'activité biologique. Les méthodes de diffusion et de dilution sont également utilisées.

Il existe trois grandes techniques de bioautographie :

- **La bioautographie directe** : dans ce cas les micro-organismes poussent directement sur les plaques de chromatographie sur couche mince.
- **La bioautographie de contact** : où les plaques de CCM sont mises en contact, pendant un certain temps, avec le milieu de culture. Les composés antimicrobiens sont transférés de la plaque CCM au milieu de culture, à ces endroits de transfert sont observées des zones d'inhibition.
- **La bioautographie d'immersion** : où une gélose ensemencée est appliquée sur la plaque CCM [192]. Cette technique peut être considérée comme un hybride de bioautographie directe et de contact. C’est cette technique que nous avons utilisée pour détecter les composés antimicrobiens d’*Hyptis atrorubens* Poit.

III.5.2.1. Préparation des plaques CCM : Les différents composés d’un extrait sont séparés par la méthode de chromatographie sur couche mince. Après migration, un témoin (la vancomycine) et l’extrait total sont aussi déposés sur la plaque.

III.5.2.2. Préparation de la gélose ensemencée : Dans un but d’obtenir une concentration bactérienne de 10^4 bactéries/ml, les micro-organismes sont cultivés dans des tubes contenant un milieu MHA. Un jour plus tard, 10 ml de liquide RC (Ringer Cystéine) sont ajoutés aux tubes. Ensuite, des dilutions sont réalisées selon l’explication sur le schéma suivant (Figure 52).

![Figure 52](image)

Figure 52 : Préparation de la suspension gélose-bactérie.
Les CCM développées et stérilisées sont introduites dans des boîtes de culture de forme carrée. Ensuite, 30 ml de suspension gélose-bactérie sont ajoutés à chaque boîte. L’incubation se fait pendant 24 heures à 37 °C (Figure 53).

Figure 53 : La plaque de CCM est déposée dans une boîte de culture carrée.

Pour observer les résultats, une solution de para-iodonitrotétrazolium (INT) à 2 mg/ml est vaporisée sur la surface de la gélose et incubée de nouveau pendant quatre heures. L’INT est alors transformée par une déshydrogénase en un composé d’une couleur rouge foncé. L’inhibition de la croissance bactérienne est révélée par la présence de zones claires (Figure 54).

A- Résultat de bioautographie pour des fractions déposées sur la plaque CCM après migration.

Figure 54 : Inhibition de la croissance bactérienne dans la bioautographie.

B- Résultat de bioautographie pour des composés purs déposés sur la plaque CCM sans migration.

Figure 54 : Inhibition de la croissance bactérienne dans la bioautographie.
III.5.3. Détermination de la CMI et de la CMB en microplaque

La méthode de dilution en milieu liquide permet de déterminer les paramètres (CMI, CMB) d’inhibition de la croissance microbienne par les extraits ou les composés actifs. La concentration minimale bactéricide (CMB) est définie comme étant la concentration minimale d’extrait (ou de composé) ne laissant pas de bactéries survivantes de l’inoculum après incubation à 37 °C pendant 18 à 24 heures.

Nous avons utilisé cette méthode par dilution en milieu liquide de Mueller Hinton (MH). Des microplaques à fond en U (plaque à microtitration) sont utilisables pour la détermination des CMI (Figure 55).

Figure 55 : La plaque 96 puits pour la détermination des paramètres CMI et CMB.

Le composé est préparé à neuf concentrations de 2,5 mg/ml à 0.93×10^{-2} mg/ml) (Tableau 12).

<table>
<thead>
<tr>
<th>N°</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/ml</td>
<td>2,5</td>
<td>1,2</td>
<td>0,6</td>
<td>0,3</td>
<td>0,15</td>
<td>0,07</td>
<td>0,04</td>
<td>0,02</td>
<td>0.93×10^{-2}</td>
<td>-</td>
<td>TC</td>
<td>TS</td>
</tr>
</tbody>
</table>

Tableau 12 : Neuf concentrations de composé

(TC : Témoin de culture, TS : Témoin de stérilité).

Tout d’abord, nous mettons 100 µl de milieu MH dans les puits 1 à 9 (pour chaque composé, cinq souches ont été testées), ainsi que dans les puits 11 et 12. Les puits 1 à 9 représentent les dilutions des différentes souches bactériennes, le puits 11 représente le témoin de culture des bactéries et enfin le puits 12 représente le témoin de stérilité du milieu de culture MH.
Ensuite, nous déposons 100 µl de composé végétal dans les puits A1 à E1 puis effectuons les dilutions successives (100 µl de A1 dans A2 et ainsi de suite).

De plus, on met 100 µl de la suspension bactérienne (dont la concentration est de 10^4 bactéries/ml) dans les puits 1 à 9 et le puits 11 pour obtenir un volume final de 200 µl. Il faut impérativement désinfecter la micropipette à l’alcool pour éviter les problèmes de contaminations et il est important d’homogénéiser le tube contenant la souche en le passant au vortex avant de l’ajouter dans les puits.

Pour obtenir une concentration bactérienne de 10^4 bactéries/ml, les micro-organismes sont cultivés dans des tubes contenant un milieu MHA et après 24 heures, 10 ml de liquide RC (Ringer Cystéine) sont ajoutés aux tubes. Ensuite, des dilutions sont réalisées selon la Figure 56.

Enfin, les microplaques seront mises à l’étuve pendant 24 heures à 37 °C. La lecture sera faite à 24 heures visuellement ou par essai colorimétrique en utilisant du réactif INT à 2 mg/ml qui sera pulvérisé sur la microplaque et incubée de nouveau pendant trente minutes.

Figure 56 : Microplaque avec la suspension de bactéries-composé-MHA avant et après incubation, et détection de la croissance par l’essai colorimétrique (INT).

Pour déterminer la CMB, on prélève 100 µl des puits contenant la CMI et deux fois la CMI (avant la pulvérisation par l’INT), qu’on ensemence sur des milieux de culture solide (MHA) (Figure 57). Si les bactéries se développent, alors ce n’est pas la CMB, il faudra vérifier le puits contenant quatre fois la CMI. Si les bactéries ne se développent pas, alors il s’agit de la CMB.
III. 5.4. Dénombrement bactérien (killing curves ou kill-time)
Il s’agit du dénombrement des bactéries qui restent vivantes après un traitement à 22 °C pendant un temps donné afin de déterminer la vitesse de réduction de la population bactérienne de notre composé actif.
Le mode opératoire d’un dénombrement par les microplaques à 24 puits pour au moins deux produits actifs est le suivant :

III. 5.4.1. Préparation de la suspension bactérienne : On préleve 1 ml du tube contenant la bactérie dans du milieu BH (10⁸ bactéries/ml), on l’ajoute dans un tube contenant 9 ml de milieu RC (10⁷ bactéries/ml), et ensuite on prélève 1 ml de ce tube et on l’ajoute dans un autre tube contenant 9 ml de milieu RC (10⁶ bactéries/ml).

III. 5.4.2. Préparation des extraits végétaux : Après détermination de la CMI pour chaque produit, il faut préparer les dilutions aux concentrations de la CMI et de quatre fois la CMI. Par exemple pour nos expériences, nous avons préparé les dilutions à 0,3 et 1,25 mg/ml dans une plaque à 24 puits.

III. 5.4.3. Préparation des différents tubes : Il faut préparer cinq tubes (témoin, produit 1 CMI, produit 1 : 4 × CMI, produit 2 CMI et produit 2 : 4 × CMI) contenant chacun 8 ml de milieu RC. Pour le tube témoin, il faut ajouter 1 ml de RC et 1 ml de suspension bactérienne.
Pour les autres tubes, il faut ajouter 1 ml de chacun des produits correspondant et 1 ml de suspension bactérienne dans chacun des tubes (temps zéro).

III.5.4.4. Préparation des plaques 24 puits : Il faut préparer cinq boîtes contenant 4 lignes et 5 colonnes de puits. Les lignes concernent les différentes dilutions, elles sont nommées -1, -2, -3 et -4. Et les colonnes concernent les différents temps : 0, 15 min, 60 min, 4 h et 24 h.

La première ligne de chaque plaque contient 900 µl de neutralisant (permet d’arrêter l’action du produit afin de réaliser le dénombrement au temps voulu). Les autres lignes contiennent 900 µl de RC (Figure 58).

![Figure 58](image)

Figure 58 : Plaque 24 puits utilisée pour le dénombrement bactérien.

T₀ : On doit ajouter 1 ml de la suspension bactérienne dans chaque tube (9 ml en total). Ensuite, il faut prélever 100 µl de chaque tube et l’ajouter au puits -1 de la boîte correspondante. 100 µl de ce puits -1 au puits -2 et ainsi de suite, puis étaler dans les boîtes de Pétri (Figure 59).
Ensuite, pour le tube témoin, on ajoute 1 ml de RC et pour les autres tubes, on ajoute 1 ml de chacun des produits correspondant dans chacun des tubes.

\(T_{15} \): Quinze minutes plus tard, il faut à nouveau prélever 100 µl de chaque tube, l’ajouter dans le puits -1 de la boîte correspondante et réaliser les différentes dilutions.
De même après une heure, quatre heures et vingt-quatre heures.

III.5.4.5. Préparation des boîtes de Petri : Pour chaque temps il faut avoir deux boîtes de Pétri (50 boîtes au total) contenant du milieu MHA solide. Pour le témoin on prélève, à chaque temps, 100 µl des puits -3 et -4 qu’on dépose dans les boîtes de Pétri, puis on étale (on prélève toujours des puits -3 et -4 car il n’y a pas d’ajout de produit bactéricide et donc le nombre de bactéries reste le même).
Pour les produits 1 et 2 aux CMI et 4 × CMI, on prélève 100 µl des puits -2 et -3 au temps \(T_{15} \), qu’on dépose dans les boîtes de Petri et qu’on étale (c’est parce qu’il existe une activité antibactérienne qu’on prélève des puits -2 et -3, car dans le puits -4 il risque de ne pas y avoir de bactéries et nous ne pourrons donc pas faire de dénombrement). Puis aux temps \(T_{60}, T_{4h} \) et \(T_{24h} \): il faut prélever 100 µl des puits -1 et -2 et déposer dans les boîtes de Petri.
Enfin, il faut mettre l’ensemble des boîtes de Petri à incuber pendant 24 heures et à une température de 37 °C.

Après 24 heures, les colonies sur les boîtes de Petri seront dénombrées visuellement. Cette technique permet de connaître le nombre d'unités prélevées pouvant former une colonie (UFC). Cette méthode ne tient compte que des micro-organismes viables qui peuvent se développer dans les conditions de croissance utilisées.

III.5.5. Courbes de croissance bactérienne

La croissance d'une bactérie consiste en une augmentation coordonnée de la masse des parties constitutantes. Ce n'est pas un simple accroissement de la masse totale puisque celui-ci pourrait être dû, par exemple, à l'accumulation d'un produit de réserve à l'intérieur de la cellule. Habituellement, la croissance conduit à la division de la cellule. La division d'une cellule en deux cellules (semblables ou identiques) par la formation d'un septum s'appelle fission binaire. C'est le type le plus commun de division cellulaire dans le monde bactérien. Après la division, les cellules se séparent habituellement de suite. Chez certaines espèces la séparation peut ne pas se produire immédiatement, ce qui donne lieu à l'une ou l'autre des associations (diplo, strepto, tetra, etc.) [193].

La croissance bactérienne est exponentielle car les cellules se divisent par fission binaire. Le temps entre les divisions cellulaires est appelé temps de doublement ou de génération. Le temps de doublement varie selon les espèces et les conditions de croissance. Pour avoir un temps de doublement minimum, il faut que les conditions de croissance soient optimales. *In vitro*, le temps de doublement se mesure habituellement en minutes. *In vivo*, la croissance est le plus souvent ralentie (Tableau 13). Sous l’action des antibiotiques, la croissance pourra se ralentir (bactériostatique), ou s’arrêter totalement (bactéricide).

<table>
<thead>
<tr>
<th>Bactérie</th>
<th>T_G in vitro (minutes)</th>
<th>T_G in vivo (heures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>20-40</td>
<td>5</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>40</td>
<td>3-5</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>10</td>
<td>2-3</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>120-240</td>
<td>24-48</td>
</tr>
</tbody>
</table>

* : T_G = Temps de génération

Tableau 13 : Temps de doublement *in vitro et in vivo* de quelques bactéries [193].
Les bactéries ne croissent que si leur environnement est adéquat. Si celui-ci n'est pas optimal, il peut y avoir croissance à plus faible vitesse ou pas de croissance du tout, ou encore les bactéries peuvent mourir, c'est selon les espèces et les conditions.

Les exigences essentielles pour la croissance comprennent une provision de nourriture adéquate ; une source d'énergie ; de l'eau ; une température appropriée ; un pH approprié ; une teneur appropriée en oxygène (parfois l'absence d'oxygène), une pression osmotique adéquate. Évidemment, aucun de ces facteurs n'agit seul : la modification de l'un d'entre eux peut renforcer ou réduire les effets d'un autre.

La croissance bactérienne se déroule en quatre phases (Figure 60) :

1- **Phase de latence (lag)** : Quand des bactéries sont introduites dans un nouveau milieu, la division cellulaire peut ne pas commencer immédiatement. Il peut y avoir une phase de latence initiale au cours de laquelle ne se produisent que peu (ou pas) de divisions. Pendant la phase de latence, les cellules s'adaptent à leur nouvel environnement. Au cours de la phase de latence (adaptative), des molécules sont synthétisées, mais l'augmentation de la masse totale de la population cellulaire ne s'accompagne pas d'une augmentation du nombre de cellules. On dit que les cellules sont en croissance non équilibrée.

2- **Phase de croissance (exponentielle ou log)** : Les cellules commencent à grandir et à se diviser à la vitesse maximum pour l'espèce. La population de cellules double en nombre à vitesse constante et double en masse à la même vitesse. Ceci est la marque d'une croissance équilibrée.

3- **Phase stationnaire** : Lorsque le nombre total de cellules vivantes n'augmente plus, on dit que la culture est en phase stationnaire. Elle se caractérise par un plateau sur la courbe.

4- **Phase de décroissance** : Les bactéries ne se divisent plus, elles meurent, le taux de mortalité est constant. Cela est lié à la lyse des bactéries par manque de nutriments et augmentation des déchets toxiques dans le milieu.
Figure 60 : Exemple d’une courbe de croissance bactérienne [193].

On a parfois une 5ème phase qui correspond à un redémarrage de la multiplication bactérienne pendant un temps très court, c’est la croissance critique. Cette phase est présente quand les bactéries sont saprophytes, elles exploitent le cadavre des bactéries mortes. Dans notre étude, nous avons étudié l’effet de deux produits antibactériens isolés d’\textit{Hyptis atrorubens} Poit., sur les courbes de croissance d’une souche sensible à deux températures différents (4 et 37 °C). Ce test nous a permis de comparer le témoin (sans produit actif) avec deux produits actifs à différentes concentrations. En plus, nous avons pu vérifier l’efficacité des produits dans la phase de non-croissance bactérienne (4 °C) et aussi suivre la croissance des bactéries à des concentrations sous-inhibitrices.

Le mode opératoire de ce test pour au moins deux produits actifs contre une souche bactérienne est le suivant :

\textbf{III. 5.5.1. Préparation de la suspension bactérienne} : On prélève 1 ml du tube contenant la bactérie dans du milieu BH (108 bactéries/ml), on l’ajoute dans un tube contenant 9 ml de milieu RC (107 bactéries/ml) et ensuite on prélève 1 ml de ce tube et on l’ajoute dans un autre tube contenant 9 ml de milieu RC (106 bactéries/ml).

\textbf{III. 5.5.2. Préparation des extraits végétaux} : Pour chaque produit à tester, nous avons besoin de trois concentrations : CMI, CMI/2 et CMI/4.

\textbf{III. 5.5.3. Préparation des différents tubes} : Nous avons préparé 4 tubes (témoin, CMI, CMI/2 et CMI/4), contenant chacun 8 ml de milieu liquide Brain Heart (BH), 1 ml de
suspension bactérienne et 1 ml du composé correspondant, les tubes sont incubés à 37 °C. 100 µl de chaque tube ont été échantillonnés après 2, 4, 5, 6, 7, 8 et 24 heures, ensuite 100 µl de dilutions sont étalés sur gélose MH. Les colonies sont comptées après incubation à 37 °C pendant 24 heures et les chiffres sont exprimés en log UFC/ml (Figure 61).

Nous avons répété cette étape avec la deuxième série des tubes à 4 °C, afin de comparer l'action des produits actifs sur les bactéries en croissance ou en phase stationnaire.

Figure 61 : Les étapes détaillées du test de la croissance bactérienne.
RÉSULTATS

Partie IV
IV.1. Évaluation de l’activité cytotoxique

Les résultats obtenus sont traités par le logiciel Gen5 et sont exprimés suivant une courbe effet-dose traduisant le pourcentage de cellules vivantes en fonction de la concentration de la molécule étudiée. Cette courbe permet de calculer la CI$_{50}$ qui correspond à la concentration de la molécule pour laquelle on observe une réduction de 50 % de la viabilité cellulaire par rapport à un contrôle n’ayant subi aucun traitement (Figure 62).

Figure 62 : Illustration d’une plaque de 96 puits dans laquelle un test colorimétrique MTS a été réalisé.

Les valeurs des CI$_{50}$ après l’évaluation de l’activité antiproliférative des extraits méthanoliques de sept plantes, ont été présentées dans le Tableau 14.

<table>
<thead>
<tr>
<th>Nom botanique</th>
<th>Famille</th>
<th>Pourcentage des cellules mortes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinophora platyloba DC.</td>
<td>Apiaceae</td>
<td>0% à 50 µg/ml</td>
</tr>
<tr>
<td>Alcea rosea L.</td>
<td>Malvaceae</td>
<td>0% à 50 µg/ml</td>
</tr>
<tr>
<td>Hyptis atrorubens Poit.</td>
<td>Lamiaceae</td>
<td>0% à 50 µg/ml</td>
</tr>
<tr>
<td>Thymus kotschyanus Boiss. & Hohen.</td>
<td>Lamiaceae</td>
<td>0% à 50 µg/ml</td>
</tr>
<tr>
<td>Plagiommium undulatum (Hedw.) T.J. Kop.</td>
<td>Mniaceae</td>
<td>50% à 14 µg/ml</td>
</tr>
<tr>
<td>Rhynchostegium riparioides (Hedw.) Cardot</td>
<td>Brachytheciaceae</td>
<td>0% à 50 µg/ml</td>
</tr>
<tr>
<td>Conocephalum conicum (L.) Underw.</td>
<td>Conocephalaceae</td>
<td>32% à 50 µg/ml</td>
</tr>
</tbody>
</table>

Tableau 14 : Activité antiproliférative de sept extraits méthanoliques sur des cellules cancéreuses (HT-29 : adénocarcinome de l'épithélium colique).
Les résultats montrent que l’extrait méthanolique de *Plagiomnium undulatum* a une activité cytotoxique sur les cellules HT-29 (*CI*₅₀ = 14 µg/ml). Des travaux précédents ont montré la présence de sept flavonoïdes glycosylés dans cette mousse [194]. La présence de ces flavonoïdes pourrait expliquer au moins en partie l’activité cytotoxique mise en évidence. En effet, certains flavonoïdes sont cytotoxiques à des concentrations plus élevées vers les cellules humaines normales et ils ont la capacité de bloquer la prolifération des cellules humaines issues de cancers [195].

Nous avons également observé qu’une concentration de 50 µg/ml de l’extrait méthanolique de *Conocephalum conicum*, détruit 32 % de la population cellulaire par rapport au contrôle. En revanche, quatre plantes n’ont pas d’activité cytotoxique.

L’impossibilité d’obtenir une quantité suffisante des espèces les plus actives nous a malheureusement conduit à abandonner la recherche de composés cytotoxiques dans le cadre de cette thèse.

IV.2. Évaluation de l'activité antibactérienne des extraits

L'activité antimicrobienne des extraits de plantes a été évaluée sur des souches bactériennes Gram positives, Gram négatives ainsi que sur une levure à l'aide de la méthode de diffusion en milieu gélosé Mueller Hinton agar. Cette technique nous a permis de déterminer les valeurs de CMI et ceci sans problème de solubilité des extraits.

Les résultats présentés dans le Tableau 15 montrent que les extraits ont des activités antimicrobiennes de degrés variables contre les souches des différents micro-organismes testés (Figure 63).

![Figure 63](image-url): Contrôle négatif contre 36 micro-organismes après 24 heures d'incubation.
<table>
<thead>
<tr>
<th>Espèces végétales</th>
<th>CMI (mg/ml)</th>
<th>Rancœuries Gram négatives</th>
<th>Rancœuries Gram positives</th>
<th>Levure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli 1</td>
<td>E. faecalis 1 2 4 5 6 7</td>
<td>P. aeruginosa</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>FL 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>FL 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>FL 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PA 10 10 10</td>
<td>1 2 5</td>
<td>1 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 1 2 5</td>
<td>1 2 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Tableau 15-1 : Concentration minimale inhibitrice (CMI) des extraits méthanoliques (mg/ml). FL= fleur ; T= tige ; R= racine ; PA= partie aérienne ; GR= graine ; Fe= feuille ; Th= thalle.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>S. ohaverdicus</td>
<td>PA</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>S. volcanensis</td>
<td>T+F</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S. lactuamensis</td>
<td>PA</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S. miragaeni</td>
<td>PA</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
<td>3</td>
<td>0.6</td>
<td>2</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>S. vernicosa</td>
<td>T+F</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S. controversa</td>
<td>PA</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S. aureus</td>
<td>T+F</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>F. haemolyticus</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>F. necrophorum</td>
<td>GR</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>F. succinifex</td>
<td>GR</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Tableau 15-2 : Concentration minimale inhibitrice (CMI) des extraits méthanoliques (mg/ml), FL= fleur ; T= tige ; R=pépin ; PA= partie aérienne ; GR= graine ; F= fruit ; Th= thalle.
<table>
<thead>
<tr>
<th>Espèces végétales</th>
<th>Facteurs utilisés</th>
<th>CMI (mg/ml)</th>
<th>Bactéries Gram négatives</th>
<th>Bactéries Gram positives</th>
<th>Lavues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. coli</td>
<td>P. aeruginosa</td>
<td>P. putida</td>
</tr>
<tr>
<td>F. communis</td>
<td>GR</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>F. benardii</td>
<td>PA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F. angustata</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. putida</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. leonoris</td>
<td>PA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. cesmei</td>
<td>GR</td>
<td>2,5</td>
<td>2,5</td>
<td>1,2</td>
<td>2,5</td>
</tr>
<tr>
<td>A. toninii</td>
<td>PA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. marcescens</td>
<td>GR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Th</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. maltamia</td>
<td>Th</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R. lip﹢strin</td>
<td>Th</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C. concinnus</td>
<td>Th</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 15-3 : Concentration minimale inhibitrice (CMI) des extraits méthanoliques (mg/ml). FL= fleur ; T= tige ; PA= partie aérienne ; GR= graine ; F= feuille ; Th= thalle.
<table>
<thead>
<tr>
<th>Espèces végétales</th>
<th>CMI (mg/ml)</th>
<th>Leures</th>
<th>Parts aériennes</th>
<th>E. coli</th>
<th>K. pneumoniae</th>
<th>P. aeruginosa</th>
<th>P. mirabilis</th>
<th>S. marcescens</th>
<th>S. typhi</th>
<th>S. aureus</th>
<th>A. baumannii</th>
<th>C. freundii</th>
<th>Enterobacter</th>
<th>E. cloacae</th>
<th>S. intermedius</th>
<th>S. epidermidis</th>
<th>S. haemolyticus</th>
<th>C. jejuni</th>
<th>C. perfringens</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mosse FL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>E. microspha CA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>2,5</td>
<td>10</td>
<td>2,5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Antibiotique</td>
<td></td>
</tr>
<tr>
<td>Gentamicine</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Vancomycine</td>
<td>R</td>
</tr>
<tr>
<td>Amoxicilline</td>
<td>I</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>Amphotéricine B</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 15-4 : Concentration minimale inhibitrice (CMI) des extraits méthanoliques (mg/ml), FL= fleur ; T= tige ; R= racine ; PA= partie aérienne ; GR= graine ; F= feuille ; Th= thalle, S= sensible, I= intermédiaire, R= résistant, CMI (µg/ml) des contrôles positifs : Gentamicine, S: ≤4, R: >8; Vancomycine, S: ≤4, R: >16; Amoxicilline, S: ≤4, R: >16; Amphotéricine B, S: ≤1, R: >4.
L’activité inhibitrice des extraits a été identifiée dans une large gamme de concentrations allant de 0,3 à 10 mg/ml. Parmi les trente-six extraits testés, les extraits méthanoliques de Satureja khuzistanica, Phlomis anisodonta (racines), Salvia mirzayani, Dorema ammoniacum, Ferulago contracta, Ferula assa-foetida, Perovskia abrotanoides et Hyptis atrorubens sont ceux qui ont montré l’activité antimicrobienne la plus élevée.

Parmi les 50 extraits méthanoliques étudiés (42 plantes), 22 extraits ont montré une CMI ≤ 0,3 mg/ml pour une ou plusieurs souches des 36 micro-organismes testés. Pour obtenir les valeurs exactes de CMI, il nous a fallu utiliser la méthode de dilution en série en milieu liquide. Il faut savoir que tous les extraits étudiés ont été actifs contre au minimum 2 et au maximum 36 micro-organismes.

Les meilleurs résultats ont été obtenus avec Perovskia abrotanoides et Salvia mirzayanii avec respectivement quatre et trois concentrations actives (10 ; 5 ; 2,5 et 1,2 mg/ml) contre tous les micro-organismes testés. De plus, le nombre maximum de CMI inférieures ou égales à 0,3 mg/ml, a été obtenu avec Salvia mirzayanii (13 cases) (Figure 64).

Figure 64 : Activité antimicrobienne de Salvia mirzayanii contre les 36 micro-organismes pour les six concentrations.

L’activité antifongique (contre Candida albicans) la plus élevée a été obtenue avec Satureja khuzistanica, Dorema ammoniacum, Ferulago contracta et Ferula assa-foetida (avec une CMI = 0,6 mg/ml).
Les résultats montrent que les micro-organismes à Gram positif sont plus sensibles à la plupart des extraits végétaux. En effet, *Staphylococcus epidermidis*, *Stenotrophomonas maltophilia*, *Mycobacterium smegmatis*, *Staphylococcus aureus*, *Staphylococcus lugdunensis*, *Staphylococcus warneri* et *Corynebacterium* sont les souches les plus sensibles aux extraits de plantes sélectionnés pour ce travail.

Pour chaque couple bactérie-antibiotique, on détermine la CMI (la plus petite concentration d'antibiotique qui inhibe toute croissance visible). En comparant la CMI aux concentrations critiques, on détermine la sensibilité ou la résistance de la bactérie à l'antibiotique.

- la bactérie est sensible (S) à l'antibiotique quand la CMI est inférieure à la concentration critique inférieure. Concrètement, ceci signifie qu'il suffit d'une faible concentration d'antibiotique pour tuer les bactéries et que cette dose nécessaire est encore plus faible que la plus faible des doses qu'on peut administrer chez l'homme. Donc en clair, si on traite quelqu'un avec l'antibiotique, la concentration de celui-ci dans l'organisme sera toujours suffisante pour tuer les bactéries.

- la bactérie est résistante (R) à l'antibiotique quand la CMI est supérieure à la concentration critique supérieure. Concrètement, la dose nécessaire pour tuer les bactéries est bien trop élevée pour être supportée chez l'homme sans effets secondaires importants. Cet antibiotique ne peut pas être utilisé pour traiter une infection.

- la bactérie est intermédiaire (I) à l'antibiotique quand la CMI est comprise entre les deux concentrations critiques. En pratique, cela correspond à une situation où la concentration est tantôt suffisante pour tuer les bactéries, tantôt insuffisante. Il faut considérer que la bactérie sera résistante in vivo et il ne faut donc pas utiliser cet antibiotique.

IV.3. Détermination de la CMI et de la CMB (milieu liquide)

La détermination des paramètres de CMI et de CMB des 22 extraits sélectionnés (extraits dont la CMI est inférieure ou égale à 0,3 mg/ml), a été effectuée grâce à la méthode de dilution en série en milieu liquide de Mueller Hinton (MH) contre six bactéries à Gram négative, neuf bactéries à Gram positive et une levure. D’après les résultats consignés dans le Tableau 15, les concentrations minimales inhibitrices (CMI) étaient comprises entre 78 et 312 µg/ml. Ainsi, nous pouvons constater que quatre extraits ont des valeurs de CMI optimales (c'est-à-dire 78 µg/ml) : *Dorema ammoniacum*, *Ferulago contracta*, *Ferula assa-foetida* et *Perovskia abrotanoides*. Le meilleur résultat de CMI pour *Salvia mirzayanii* et *Satureja khuzistanica* était de 156 µg/ml.

Les concentrations minimales bactéricides des 22 extraits ont été en général nettement plus élevées que les valeurs de CMI correspondantes. Les valeurs de CMB ont varié de 312 à 1250 µg/ml. *Dorema ammoniacum* (4 cases) a obtenu la valeur de CMB la plus intéressante avec 312 µg/mL. La CMB des espèces *Salvia mirzayanii* et *Satureja khuzistanica* étaient de 625 et 1250 µg/ml respectivement.

D’après les travaux de Carbomelle et al. [196], les substances antimicrobiennes sont considérées comme des agents bactéricides lorsque le rapport CMB/CMI est inférieur ou égal à 4. On parlera d’agents bactériostatiques quand le rapport CMB/CMI est supérieur à 4.

Les résultats illustrés dans le Tableau 16 montrent que 56 cases correspondent à un effet bactéricide (cases en caractère gras), les autres correspondent à un effet bactériostatique. Par conséquent, on peut constater que l’extrait de *Ferulago contracta* à un effet complètement bactéricide (toutes les cases sont en caractères gras).
<table>
<thead>
<tr>
<th>Espèces végétales</th>
<th>Bactéries Gram négatifs</th>
<th>Bactéries Gram positifs</th>
<th>Lasure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>P. aeruginosa</td>
<td>P. mirabilis</td>
</tr>
<tr>
<td>6</td>
<td>MBC</td>
<td>MBC</td>
<td>MBC</td>
</tr>
<tr>
<td>P. agitatus (PA)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. aeruginosa (Pa)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. aeruginosa (Pi)</td>
<td>156</td>
<td>1250</td>
<td>-</td>
</tr>
<tr>
<td>P. aeruginosa (Pi)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. aeruginosa (Pi)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T. prevotii</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. bovis</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. enterica</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F. necridis</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tableau 16 : CMI et CMB des extraits sélectionnés déterminées par la méthode de micro-dilution (µg/ml).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Les résultats obtenus ont indiqué l’existence de composés antimicrobiens dans la majorité des extraits méthanoliques bruts testés et ont montré également une bonne corrélation entre l’utilisation de ces plantes révélée en médecine traditionnelle contre les maladies infectieuses. Certaines plantes testées ont fait l’objet de nombreuses études (par exemple Salvia mirzayanii) mais leur activité antibactérienne n’avait jamais été évaluée sur tous les micro-organismes utilisés pour cette étude, ce qui nous a permis de confirmer nos résultats.

De façon générale, les Tableaux 15 et 16 montrent que les bactéries Gram positives sont beaucoup plus sensibles par rapport aux bactéries Gram négatives. Ceci est dû aux différentes structures de la paroi cellulaire des bactéries. En effet, contrairement aux bactéries à Gram+, les bactéries à Gram- possèdent une membrane externe en plus du peptidoglycane [197]. La paroi bactérienne constitue une surface d’échange avec l’extérieur. Le peptidoglycane est poreux et laisse passer de nombreuses substances ce qui n’est pas le cas de la membrane externe des bactéries à Gram négatif qui s’oppose, notamment, à la pénétration des antibiotiques hydrophobes. Par conséquent, il en résulte une résistance plus importante des souches Gram négatives contre l’activité de nos extraits végétaux.

D’après certaines études similaires, les extraits ayant une CMI inférieur à 100 µg/ml ont une bonne activité antibactérienne, entre 100 et 500 µg/ml, on parlera d’une activité antibactérienne modérée, entre 500 et 1000 µg/ml, l’activité antibactérienne est dite faible et enfin l’extrait est considéré comme inactif pour une CMI de plus de 1000 µg/ml [198, 199]. En tenant compte de cette classification, notre étude présente quatre bons agents antimicrobiens contre une ou plusieurs souches : Dorema ammoniacum, Ferulago contracta, Ferula assa-foetida et Perovskia abrotanoides (CMI = 78 µg/ml). En outre, tous les extraits testés figurant dans le Tableau 16, ont été considérés comme des agents antimicrobiens modérés (CMI ≤ 312 µg / ml).
IV.4. Travaux sur la plante sélectionnée *Hyptis atrorubens* Poit.

Dans les prochaines parties, notre travail consistera dans le fractionnement, l’isolement et l’identification des composés actifs d’*Hyptis atrorubens*, et dans la détermination de leurs activités antimicrobiennes par des valeurs microbiologiques (CMI, CMB, synergie, dénombrement bactérien et courbes de croissance). Comme il peut être constaté dans le Tableau 15, *H. atrorubens* n’est pas la plante la plus active parmi celles qu’ont été testées. Néanmoins, sa disponibilité immédiate en grande quantité, ainsi que l’intérêt d’initier sa caractérisation, en tant que plante récemment inscrite sur la liste des plantes médicinales de la pharmacopée française associés à une activité honorable, nous ont conduit à nous y intéresser en priorité. Nous avons aussi vérifié l’activité antifongique de l’extrait d’*Hyptis atrorubens* sur une gamme étendue de champignons pathogènes (candidoses et dermatophytes).

IV.4.1. Résultats biologiques préliminaires

IV.4.1.1. Sélection de l’extrait optimal pour l’inhibition antimicrobienne : Pour l’évaluation biologique de la plante sélectionnée, nous avons utilisé la méthode de la bioautographie d’immersion pour tous les extraits d’*Hyptis atrorubens* contre *Staphylococcus epidermidis* 5001 (l’une des souches les plus sensibles). Les extraits obtenus du mélange des tiges et des feuilles, sont déposés à différentes concentrations sur la plaque CCM. Après migration, nous déposons sur la plaque un témoin (la vancomycine) ainsi que l’extrait total. Les extraits à l’éther de pétrole (EP), dichlorométhane (CH$_2$Cl$_2$), méthanolique (MeOH) et hydrométhanolique (MeOH + H$_2$O, 1:1) sont déposés sur des plaques de CCM, puis élués respectivement par les solvants indiqués dans le Tableau 17.

<table>
<thead>
<tr>
<th>Solvant d'extraction</th>
<th>Éluant de migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éther de pétrole (EP)</td>
<td>EP / acétate d'éthyle (9:1)</td>
</tr>
<tr>
<td>Dichlorométhane (CH$_2$Cl$_2$)</td>
<td>CH$_2$Cl$_2$ / MeOH (9:1)</td>
</tr>
<tr>
<td>Méthanol (MeOH)</td>
<td>acétate d'éthyle / MeOH / eau (8:2:1)</td>
</tr>
<tr>
<td>Méthanol et Eau (MeOH + H$_2$O)</td>
<td>acétate d'éthyle / MeOH / eau (8:2:1)</td>
</tr>
</tbody>
</table>

Tableau 17 : Phase mobile utilisée pour chaque extrait en CCM.
En utilisant la bioautographie, nous avons constaté que l'extrait à l'éther de pétrole n'avait aucune activité contre S. epidermidis 5001 (Figure 65), par contre on voit une inhibition de la croissance bactérienne pour les extraits au dichlorométhane et au méthanol (Figure 66 et 67).

Figure 65 : Bioautographie de l'extrait à l’éther de pétrole.

Figure 66 : Bioautographie de l'extrait au dichlorométhane.

Figure 67 : Bioautographie des extraits au méthanol.
Par conséquent, nous avons trouvé que l'extrait hydrométhanolique est optimal contre *S. epidermidis* 5001 avec plusieurs zones d'inhibitions sur CCM. (Figure 68).

![Figure 68](image)

Figure 68 : Bioautographie de l'extrait hydrométhanolique.

Pour la suite de notre étude, nous nous sommes donc intéressé à l’extrait hydrométhanolique, en vue d’isoler et d’identifier les différents composés et plus particulièrement les composés actifs. Cet extrait a donc été soumis à plusieurs étapes de fractionnement par différentes techniques chromatographiques.

IV.4.1.2. Choisir les souches sensibles et l'organe le plus actif de la plante : Pour choisir les souches les plus sensibles et pour trouver l’organe le plus actif (des tiges ou des feuilles), nous avons testé l’extrait hydrométhanolique d’*Hyptis atrorubens* sur une gamme étendue de micro-organismes pathogènes (staphylocoques, entérocoques, bacilles, streptocoques, candidoses et dermatophytes). Ce test a été fait contre 36 bactéries, cinq levures du genre *Candida* et cinq dermatophytes (46 micro-organismes) en culture *in vitro*.

Selon le protocole décrit dans la partie Matériels et Méthodes, nous avons d’abord préparé les extraits végétaux. Nous avons obtenu 1,5 g d’extrait à partir de 25 g de tiges et 1 g d’extrait à partir de 20 g de feuilles d’*Hyptis atrorubens*, le solvant d’extraction utilisé était un mélange à parts égales de méthanol et d’eau (300 ml).

Ensuite, nous avons préparé les extraits aux différentes concentrations (de 10 mg/ml à 0,3 mg/ml). Et enfin, nous avons préparé les souches microbiennes et les cultures *in vitro*. La capacité de la plaque de l’ensemenceur automatique (STEERS) était de 36 souches pour
chaque essai ; nous avons donc testé les bactéries et les champignons séparément. Les dermatophytes ont été cultivés sur les milieux de Sabouraud et sur MHA (Figure 69).

Figure 69 : Culture in vitro de nos dermatophytes sur milieu MHA.

Après incubation et observation de nos résultats, nous avons constaté que l’extrait hydrométhanolique des tiges d’*Hyptis atrorubens* est bien actif contre 29 souches microbiennes (Figure 70).

Figure 70 : Comparaison entre le témoin et l’activité antimicrobienne de l’extrait dilué à 0,5 % (5 mg/ml) dans le premier essai.

De plus, ce test montre une activité antibactérienne optimale, dans toutes ses concentrations, contre quatre bactéries pathogènes : *Staphylococcus epidermidis* 10282, *Staphylococcus epidermidis* 5001, *Enterococcus faecalis* C159-6 et *Stenotrophomonas maltophilia* (Tableau 18).
Tableau 18 : Les souches sensibles à l’extrait hydrométhanolique d’*H. atrorubens*.

<table>
<thead>
<tr>
<th>N</th>
<th>Souches sensibles</th>
<th>Tiges CMI (mg/ml)</th>
<th>feuilles CMI (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acinetobacter baumanii 9010</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Acinetobacter baumanii 9011</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Proteus mirabilis 11060</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>4</td>
<td>Proteus mirabilis 11061</td>
<td>5</td>
<td>2,5</td>
</tr>
<tr>
<td>5</td>
<td>Providencia stuartii 11038</td>
<td>5</td>
<td>2,5</td>
</tr>
<tr>
<td>6</td>
<td>Stenotrophomonas maltophilia</td>
<td><0,3</td>
<td><0,3</td>
</tr>
<tr>
<td>7</td>
<td>Pseudomonas aeruginosa 8131</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>8</td>
<td>Pseudomonas aeruginosa ATCC 27583</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>9</td>
<td>Mycobacterium smegmatis 5003</td>
<td>0,6</td>
<td>1,2</td>
</tr>
<tr>
<td>10</td>
<td>Staphylococcus aureus 8146</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>Staphylococcus aureus 8147</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>12</td>
<td>Staphylococcus epidermidis 10282</td>
<td><0,3</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Staphylococcus epidermidis 5001</td>
<td><0,3</td>
<td><0,3</td>
</tr>
<tr>
<td>14</td>
<td>Corynebacterium T25-17</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>15</td>
<td>Enterococcus sp. 8152</td>
<td>1,2</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>Enterococcus sp. 8153</td>
<td>1,2</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>Enterococcus faecalis C159-6</td>
<td><0,3</td>
<td>2,5</td>
</tr>
<tr>
<td>18</td>
<td>Staphylococcus lugdunensis T26A3</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>19</td>
<td>Staphylococcus warneri T12A12</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>20</td>
<td>Candida krusei</td>
<td>0,6</td>
<td>2,5</td>
</tr>
<tr>
<td>21</td>
<td>Candida glabrata</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>22</td>
<td>Candida kefyr</td>
<td>5</td>
<td>NA</td>
</tr>
<tr>
<td>23</td>
<td>Candida albicans</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>24</td>
<td>Candida parapsilosis</td>
<td>2,5</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>Microsporum canis</td>
<td>1,2</td>
<td>2,5</td>
</tr>
<tr>
<td>26</td>
<td>Trichophyton rubrum</td>
<td>0,6</td>
<td>2,5</td>
</tr>
<tr>
<td>27</td>
<td>Trichophyton mentagrophytes</td>
<td>0,6</td>
<td>1,2</td>
</tr>
<tr>
<td>28</td>
<td>Trichophyton soudanense</td>
<td>1,2</td>
<td>5</td>
</tr>
<tr>
<td>29</td>
<td>Trichophyton tonsurans</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

NA : non active
- : sensible à toutes les concentrations,
- : bactérie Gram négative,
- : bactérie Gram positive,
- : levure,
- : dermatophyte.
Nous n'avons trouvé aucune activité antimicrobienne de notre plante contre les 17 souches suivantes :

Citrobacter freundii 11041; *Citrobacter freundii* 11042; *Citrobacter freundii* 11043; *Enterobacter aerogenes* 9004; *Enterobacter cloacae* 11050; *Enterobacter cloacae* 11051; *Enterobacter cloacae* 11053; *Escherichia coli* 8137; *Escherichia coli* 8138; *Escherichia coli* 8157; *Escherichia coli* ATCC 25922; *Klebsiella pneumoniae* 11016; *Klebsiella pneumoniae* 11017; *Salmonella* sp. 11033; *Salmonella* sp. 11037; *Serratia marcescens* 11056; *Serratia marcescens* 11057; qui sont toutes Gram négatifs appartenant à la famille des entérobactéries.

Nous avons également évalué l'activité antifongique *in vitro* sur cinq levures et 5 dermatophytes. Les meilleurs résultats ont été obtenus pour les trois dermatophytes (*Trichophyton rubrum*, *Trichophyton mentagrophytes* et *Trichophyton tonsurans*). Les levures sont moins sensibles que les dermatophytes. Compte tenu de l'activité antifongique faible, nous avons concentré notre étude seulement sur l'activité antibactérienne de l’extrait hydrométhanolique des tiges d’*Hyptis atrorubens*.

IV.4.2. Séparation et purification des composés actifs

En fonction des résultats biologiques obtenus dans la partie IV.4.1. et du rendement obtenu dans le procédure d’extraction (cf. page 82), l’extrait hydrométhanolique a été choisi pour le fractionnement.

IV.4.2.1. Première étape de fractionnement : Une première étape de séparation est réalisée sur la totalité de l’extrait hydrométhanolique (80 g). Pour ce faire, nous avons utilisé deux colonnes en verre de 80 cm de longueur et de 5 cm de diamètre, remplies avec 500 g de Sephadex® LH-20. Nous avons fait un dépôt liquide de 40 g dans un mélange de méthanol-eau (1:1), dans chacune des colonnes. L’élution a été réalisée par de l’eau et ensuite par une succession de mélange de solvants eau-méthanol avec un pourcentage croissant de méthanol (H₂O 100 % à MeOH 100 %). Des fractions de 250 ml ont été recueillies, puis évaporées à sec afin d’être analysées par CCM et regroupées (Figure 71). Ce fractionnement a abouti à l’obtention de neuf fractions nommées de A à I et dont les masses sont indiquées dans le Tableau 19. Nous avions plusieurs fractions, avant A et après I, qui contenaient en grande quantité des impuretés, ce qui explique la faible masse des fractions A à I.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse (en g)</td>
<td>7,4</td>
<td>0,8</td>
<td>1</td>
<td>1,4</td>
<td>0,8</td>
<td>0,5</td>
<td>1,5</td>
<td>0,5</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Tableau 19 : Masse des fractions obtenues par le premier fractionnement.
Figure 71 : La première CCM pour toutes les fractions.

Figure 72 : Première étape de fractionnement par la colonne de Sephadex® LH-20.
IV.4.2.2. Découvrir des fractions actives par bioguidage : Afin de trouver les fractions qui sont responsables de l’activité antimicrobienne, des analyses par bioautographie sont réalisées contre les micro-organismes pour lesquels il y avait eu une inhibition de la croissance microbienne dans toutes les concentrations (*Staphylococcus epidermidis* 10282, *Staphylococcus epidermidis* 5001, *Enterococcus faecalis* C159-6 et *Stenotrophomonas maltophilia*) (Tableau 20).

<table>
<thead>
<tr>
<th>Fractions</th>
<th>S. epidermidis 10282</th>
<th>S. epidermidis 5001</th>
<th>E. faecalis C159-6</th>
<th>S. maltophilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>B</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>C</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>G</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Tableau 20 : Résultats des tests bioautographiques des fractions A à I.

Ces résultats montrent une activité optimale pour deux fractions présentées dans le Tableau ci-dessus, les fractions B et C qui seront fractionnées dans l’étape suivante (Figure 73).

![Figure 73 : Bioautographie des neuf fractions contre *S. epidermidis* 10282, sans migration.](image)

IV.4.2.3. Deuxième étape de fractionnement : Afin de poursuivre la séparation et l’isolement des composés actifs, les fractions actives (B, C, D, E, F et G) ont été purifiées. Dans chaque étape, des tests bioautographiques ont été réalisés. Pour toutes ces fractions, Il y avait toujours plusieurs composés communs.

Pour les fractions B et E, nous avons utilisé deux colonnes de silice en phase inverse (RP-18) de 46 cm de longueur et de 5 et 2 cm de diamètre (pour les fractions B et E, respectivement). Une pompe de marque Büchi, réglée à un débit de 10 ml/min, est utilisée pour ces fractionnements par chromatographie liquide moyenne pression (CLMP). Nous avons effectué un dépôt liquide, puis fait migrer l’éluant constitué d’eau pure d’abord et ensuite
d’une succession de mélanges de solvants eau/méthanol avec un pourcentage croissant de méthanol (H₂O 100 % à MeOH 100 %). Des fractions de 250 ml sont recueillies, puis évaporées à sec afin d’être analysées par CCM et regroupées.

A partir de la fraction B, nous avons obtenu deux sous-fractions (Figure 74). A partir de la fraction E, nous avons obtenu sept sous-fractions (Figure 75).

Figure 74 : A - séparation des composés de la fraction B par CLMP,
 B - analyse CCM des sous-fractions.

Figure 75 : A - séparation des composés de la fraction E par CLMP,
 B - analyse CCM des sous-fractions.
Pour la fraction C, nous avons utilisé une colonne de silice de 60 cm de longueur et de 3 cm de diamètre.

Dans un premier temps, nous avons rempli la colonne de 100 g de silice (60-200 µm), avec un mélange acétate d’éthyle-tolueène (9:1).

L’échantillon est déposé sec, pour ce faire, nous mélangeons la fraction dans de la silice, puis nous évoluons le solvant pour obtenir une poudre. Après avoir réalisé le dépôt de l’échantillon, nous avons ajouté du sable pour éviter la perturbation du dépôt lors de l’élution. Cette dernière est réalisée par une succession de mélanges de solvants allant d’acétate d’éthyle-tolueène (9:1) à acétate d’éthyle pur, puis avec un pourcentage croissant de méthanol, jusqu’au méthanol pur. Des fractions de 250 ml sont recueillies par un collecteur puis évoluées, afin d’être analysées par CCM puis regroupées suivant leurs similitudes de profil en CCM. Ce fractionnement a permis l’obtention de sept sous-fractions (Figure 76).

Figure 76 : A - séparation des composés de la fraction C par la colonne de silice, B - analyse CCM des sous-fractions.

IV.4.2.4. Purification des composés actifs : Pour certaines des sous-fractions, nous avons réalisé une étape de purification par chromatographie sur couche mince préparative (Tableau 21). Dans la Figure 77, nous avons mis en avant toutes les étapes de purification pour 3 fractions sélectionnées.
Enfin, nous avons vérifié l’activité antibactérienne de chaque composé isolé en utilisant la bioautographie contre la souche *Staphylococcus epidermidis* 5001. Les résultats obtenus confirment leur implication dans l’activité antimicrobienne d’*Hyptis atrorubens* (Figure 78).

Figure 77 : Les étapes de purification à partir de l’extrait hydrométhanolique.

Figure 78 : Bioautographie de quatre composés actifs d’*Hyptis atrorubens* contre *Staphylococcus epidermidis* 5001, dépôt CCM : 10 µl (5 mg/ml).
IV.4.3. Détermination de structure des composés

IV.4.3.1. Détermination de la structure du composé 1 : Ce composé se présente sous forme d’une poudre beige soluble dans le méthanol. Ce composé réagit avec le réactif de Neu en affichant une fluorescence verte sous UV à 365 mn (Figure 79).

L’analyse de ce composé par spectrométrie de masse (SM-APCI) en mode positif révèle un ion moléculaire m/z 361,0 [M+H]$^+$ (Figure 80-A).

Nous observons sur le spectre de RMN du 1H du composé 1 deux systèmes ABX correspondant à des cycles phényles 1,3,4-trisubstitués, à δ 6,71 (d, $J = 2,0$ Hz, H-2), δ 6,64 (d, $J = 8,0$ Hz, H-5) et δ 6,61 (dd, $J = 2,0 ; 8,0$ Hz, H-6) d’une part ; δ 7,04 (d, $J = 2,0$ Hz, H-2’), δ 6,91 (dd, $J = 2,0 ; 8,0$ Hz, H-6’) et δ 6,75 (d, $J = 8,0$ Hz, H-5’) d’autre part (Figure 80-B).

Le spectre du 13C vient confirmer la présence de quatre carbones aromatiques oxygénés à δ 145,0, δ 144,9, δ 143,2 et δ 149,5, correspondant aux groupements phénols présents en positions 3, 4, 3’ et 4’. Les signaux à δ 145,7 et δ 115,8 appartiennent à la double liaison conjuguée (Tableau 22) et le signal à δ 77,8 correspond à une fonction alcool. Des signaux à δ 169,4 et δ 174,3 sont attribués à la présence de deux fonctions esters. L’attribution de chacune de ces fonctions à une des deux parties de la molécule peut se faire sur la base des corrélations HMBC observées (Figure 81-B).

Ces informations ont été complétées par d’autres spectres de corrélations homonucléaires scalaires tel que le COSY 1H-1H (Figure 81-A) et hétéronucléaires comme la HSQC et l’HMBC pour déterminer l’ensemble des positions des carbones et leurs protons associés.
Figure 80 : A- spectre de masse (SM-APCI) du composé 1, B- spectre de RMN du \(^1\)H dans le MeOD du composé 1.
Figure 81 : A- spectre de RMN du 1H-1H COSY du composé 1,
B- spectre de RMN du 1H-13C HMBC du composé 1.
Tableau 22 : Déplacements chimiques du spectre RMN 1H et 13C du composé 1 dans le méthanol deutéré [200].

Le composé 1 a été identifié comme étant l’acide rosmarinique, dont la structure est la suivante :

![Figure 82 : Structure du composé 1, l’acide rosmarinique.](image)

L’acide rosmarinique est un acide-phénol qui a été isolé pour la première fois à l’état pur par deux chimistes italiens, Scarpati et Oriente en 1958 [201-203]. Son nom vient du nom de la plante à partir de laquelle il a été isolé, le romarin (*Rosmarinus officinalis*). L’acide rosmarinique (C_{18}H_{16}O_{8}) est un ester de l’acide cafécique et de la fonction alcool aliphatique de l’acide 3,4-dihydroxyphényllactique.
Dans la nature, l’acide rosmarinique existe sous forme de trans-isomère, mais, exposé à la radiation de la lumière du jour, il se transforme en cis-isomère [204, 205]. C’est un composé polaire, qui est donc soluble dans les solvants polaires comme l’eau et le méthanol. L’acide rosmarinique est présent dans les espèces de la famille des Lamiacées [204, 206, 207]. Le rôle biologique de l’acide rosmarinique chez les plantes est la défense contre les pathogènes et les herbivores [208]. L’acide rosmarinique est intéressant pour ses propriétés biologiques : anti-inflammatoire, antimutagène, antibactérienne, antivirale et surtout antioxydante [204, 206, 209]. Une activité anti-VIH de l’acide rosmarinique a également été rapportée dans la littérature [206]. Certains extraits de plantes aromatiques contenant de l’acide rosmarinique ont des applications dans les domaines alimentaire, cosmétique, pharmaceutique, dans la production de boissons, etc. [210].

IV.4.3.2. Détermination de structure du composé 2 : Ce composé se présente sous forme d’une poudre jaune clair soluble dans le méthanol. Ce composé réagit avec le réactif de Neu en affichant une fluorescence vert clair sous UV à 365 mn (Figure 83).

Figure 83 : Analyse du compose 2 par CLHP et CCM.

Les attributions de tous les signaux des spectres du proton et du carbone de ce composé sont présentées dans le Tableau 23 avec les valeurs des déplacements chimiques. L’analyse de ce composé par spectrométrie de masse (SM-APCI) en mode positif révèle un ion moléculaire \(m/z \ 375.0 \ [M+H]^+ \) (Figure 84-A). Les données des spectres de RMN \(^1\text{H} \) et \(^{13}\text{C} \) du composé 2 sont très proches de celles observées pour le composé 1, à l’exception d’un
signal supplémentaire intégrant pour trois protons méthylrique, ce qui permet d’expliquer la différence de masse entre les deux composés de 14 u.m.a. par un groupement méthyle supplémentaire dans le composé 2. L’HMBC permet d’établir, par l’observation d’une corrélation scalaire entre les protons de ce méthyle et le carbone carboxylique de la partie 3,4-dihydroxyphényl-lactique, qu’il s’agit d’un ester méthylrique de l’acide rosmarinique décrit ci-dessus.

Figure 84 : A- spectre de masse (SM-APCI) du composé 2,
B- spectre de RMN du 1H dans le MeOD du composé 2.
Ces informations ont été complétées par d’autres spectres de corrélations homonucléaires scalaires tel que COSY 1H–1H et hétéronucléaires (HSQC et HMBC) pour déterminer l’ensemble des positions des carbones et de leurs protons associés.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>1H en ppm (J en Hz)</th>
<th>13C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>128,4</td>
</tr>
<tr>
<td>2</td>
<td>6,70 d (2,0)</td>
<td>117,8</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>146,1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>145,6</td>
</tr>
<tr>
<td>5</td>
<td>6,69 d (8,0)</td>
<td>116,9</td>
</tr>
<tr>
<td>6</td>
<td>6,57 dd (8,0 ; 2,0)</td>
<td>122,8</td>
</tr>
<tr>
<td>7a</td>
<td>3,06 dd (14,5 ; 5,5)</td>
<td>38,0</td>
</tr>
<tr>
<td>7b</td>
<td>3,00 dd (14,5 ; 5,5)</td>
<td>38,0</td>
</tr>
<tr>
<td>8</td>
<td>5,11 dd (7,5 ; 5,0)</td>
<td>74,8</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>172,1</td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>127,5</td>
</tr>
<tr>
<td>2’</td>
<td>7,04 d (2,0)</td>
<td>115,3</td>
</tr>
<tr>
<td>3’</td>
<td>-</td>
<td>147,3</td>
</tr>
<tr>
<td>4’</td>
<td>-</td>
<td>150,1</td>
</tr>
<tr>
<td>5’</td>
<td>6,75 d (8,5)</td>
<td>116,1</td>
</tr>
<tr>
<td>6’</td>
<td>6,91 dd (8,5 ; 2,0)</td>
<td>123,3</td>
</tr>
<tr>
<td>7’</td>
<td>7,52 d (15,5)</td>
<td>148,6</td>
</tr>
<tr>
<td>8’</td>
<td>6,26 d (15,5)</td>
<td>114,1</td>
</tr>
<tr>
<td>9’</td>
<td>-</td>
<td>168,2</td>
</tr>
<tr>
<td>-OCH₃</td>
<td>3,72 s</td>
<td>52,8</td>
</tr>
</tbody>
</table>

Tableau 23 : Déplacements chimiques des spectres RMN 1H et 13C du composé 2 dans le méthanol deutéré [200].

Le composé 2 a été identifié comme étant le rosmarinate de méthyle, dont la structure est la suivante :

Figure 85 : Structure du composé 2, le rosmarinate de méthyle.
Le rosmarinate de méthyle est l’ester méthylique de l’acide rosmarinique (C_{19}H_{19}O_{8}). Il n’avait jamais été testé pour son activité antimicrobienne, à la date de son isolement par nous. Une étude antérieure a montré son activité contre la tyrosinase (c’est une enzyme qui catalyse l’oxydation des phénols présente dans l’épiderme humain qui transforme la tyrosine qui est un acide aminé essentiel en mélanine). Le rosmarinate de méthyle a été isolé pour la première fois de la plante Rabdosia serra (Lamiaceae) [211].

Dans les travaux antérieurs de Kang et al. [212], l’acide rosmarinique et son ester méthylique ont été considérés aussi comme des inhibiteurs compétitifs de l’oxydation de la L-tyrosine avec des valeurs de CI_{50} de 16,8 et 21,5 µM, respectivement.

IV.4.3.3. Détermination de structure du composé 3 : Ce composé se présente sous forme d’une poudre jaune soluble dans le méthanol. Ce composé réagit avec le réactif de Neu en affichant une fluorescence orange sous UV à 365 nm laissant envisager une structure de type flavonoïde.

Figure 86 : Analyse du composé 3 par CLHP et CCM.

L’analyse de ce composé par spectrométrie de masse (SM-ESI) en mode positif révèle un ion moléculaire m/z 465,2 [M+H]^+ (Figure 87-A).

Ce produit présente également un aspect relativement simple en RMN du 1H (Figure 87-B), permettant d’envisager la substitution d’une génine aromatique de type flavone par un seul hexose.
Figure 87 :

A- spectre de masse (SM-ESI) du composé 3,

B- spectre de RMN du 1H dans le MeOD du composé 3.
Les attributions de tous les signaux des spectres du proton et du carbone de ce composé sont présentées dans le Tableau 24 avec les valeurs des déplacements chimiques.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>1H en ppm (J en Hz)</th>
<th>13C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>158,0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>135,1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>178,9</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>163,2</td>
</tr>
<tr>
<td>6</td>
<td>6,10 d (2,0)</td>
<td>99,6</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>167,3</td>
</tr>
<tr>
<td>8</td>
<td>6,26 d (2,0)</td>
<td>95,4</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>158,6</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>105,2</td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>123,0</td>
</tr>
<tr>
<td>2’</td>
<td>7,70 d (2,0)</td>
<td>116,2</td>
</tr>
<tr>
<td>3’</td>
<td>-</td>
<td>145,9</td>
</tr>
<tr>
<td>4’</td>
<td>-</td>
<td>149,5</td>
</tr>
<tr>
<td>5’</td>
<td>6,85 d (8,0)</td>
<td>117,4</td>
</tr>
<tr>
<td>6’</td>
<td>7,57 dd (7,5 ; 2,0)</td>
<td>122,7</td>
</tr>
<tr>
<td>Glc-1’’</td>
<td>5,01 d (7,7)</td>
<td>101,4</td>
</tr>
<tr>
<td>Glc-2’’</td>
<td>3,47 dd (9,5 ; 7,7)</td>
<td>74,3</td>
</tr>
<tr>
<td>Glc-3’’</td>
<td>3,42 t (9,0)</td>
<td>76,8</td>
</tr>
<tr>
<td>Glc-4’’</td>
<td>3,34 t (9,0)</td>
<td>70,3</td>
</tr>
<tr>
<td>Glc-5’’</td>
<td>3,21 dd (9,0 ; 2,4)</td>
<td>77,5</td>
</tr>
<tr>
<td>Glc-6’’a</td>
<td>3,70 dd (12,0 ; 2,4)</td>
<td>61,3</td>
</tr>
<tr>
<td>Glc-6’’b</td>
<td>3,56 dd (12,0 ; 5,4)</td>
<td>61,3</td>
</tr>
</tbody>
</table>

Tableau 24 : Déplacements chimiques des spectres RMN 1H et 13C du composé 3 dans le méthanol deutéré.

Dans la région des aromatiques, cinq signaux sont observables :

- Trois constituent un système ABX : δ 6,85 d ($J=8,0$ Hz) ; δ 7,70 d ($J=2,0$ Hz) ; δ 7,57 dd ($J=2,0$ Hz, 7,5 Hz). Ceci indique une disubstitution du cycle B en 3’ et 4’.

- Deux doublets, à δ 6,10 et δ 6,26 semblent couplés, avec une faible constante de couplage ($J = 2$ Hz) qui nous conduit à proposer une position relative de type *meta* pour les deux hydrogènes. La biogenèse des flavonoïdes conduit à envisager comme hypothèse la plus simple une disubstitution phénolique en 6 et 8 de la benzopyrone. La génine serait donc le quercétol (ou quercétine).
Les expériences bidimensionnelles permettent de préciser la position et la nature de l’ose (glucose), qui sera discutée en comparaison avec le composé 4, structuralement très proche, dans la partie suivante.

Au vu des résultats obtenus par CCM, CLHP, SM-ESI et RMN, et en comparaison avec le témoin, nous pouvons identifier le composé 3 comme étant la quercétine-3-glucoside (isoquercétine) [213].

Figure 88 : Structure du composé 3, la quercétine-3-glucoside. A – numérotation employée ; B – corrélations choisies (HMBC C→H ; COSY H↔H ; NOESY H↔H).
IV.4.3.4. Détermination de structure du composé 4 : Ce composé se présente sous forme d'une poudre jaune-marron soluble dans le méthanol. Ce composé réagit également avec le réactif de Neu en affichant une fluorescence orange sous UV à 365 mn laissant envisager une structure de type flavonoïde.

Figure 89 : L’analyse du composé 4 par CLHP et CCM.

L’analyse de ce composé par spectrométrie de masse (SM-ESI) en mode positif révèle un ion moléculaire m/z 465,2 [M+H]$^+$ (Figure 90-A), masse identique à celle du composé 3.

De même, les données obtenues en RMN du 1H et du 13C sont très similaires à celles du composé 3. La carte HMBC permet d’établir comme précédemment que le résidu osidique est attaché à la même position (3) que pour l’isoquercétine.
Figure 90 : A- spectre de masse (SM-ESI) du composé 4,
B- spectre de RMN du 1H dans le MeOD du composé 4.
Les attributions de tous les signaux des spectres du proton et du carbone de ce composé sont présentées dans le Tableau 25 avec les valeurs des déplacements chimiques.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>1H en ppm (J en Hz)</th>
<th>13C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>159,2</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>133,7</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>177,5</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>161,2</td>
</tr>
<tr>
<td>6</td>
<td>6,28 d (2,2)</td>
<td>98,6</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>164,1</td>
</tr>
<tr>
<td>8</td>
<td>6,48 d (2,2)</td>
<td>93,5</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>156,3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>103,9</td>
</tr>
<tr>
<td>1'</td>
<td>-</td>
<td>121,2</td>
</tr>
<tr>
<td>2'</td>
<td>7,97 d (2,2)</td>
<td>115,3</td>
</tr>
<tr>
<td>3'</td>
<td>-</td>
<td>144,7</td>
</tr>
<tr>
<td>4'</td>
<td>-</td>
<td>148,3</td>
</tr>
<tr>
<td>5'</td>
<td>6,94 d (8,4)</td>
<td>116,2</td>
</tr>
<tr>
<td>6'</td>
<td>7,54 dd (8,4 ; 2,2)</td>
<td>121,7</td>
</tr>
<tr>
<td>Gal-1''</td>
<td>5,01 d (7,7)</td>
<td>102,3</td>
</tr>
<tr>
<td>Gal-2''</td>
<td>3,64 dd (9,5 ; 7,7)</td>
<td>71,2</td>
</tr>
<tr>
<td>Gal-3''</td>
<td>3,52 dd (9,5 ; 4,4)</td>
<td>73,4</td>
</tr>
<tr>
<td>Gal-4''</td>
<td>3,77 dd (4,4 ; 3,7)</td>
<td>68,0</td>
</tr>
<tr>
<td>Gal-5''</td>
<td>3,48 m</td>
<td>75,7</td>
</tr>
<tr>
<td>Gal-6''a</td>
<td>3,60 d (5,5)</td>
<td>60,5</td>
</tr>
<tr>
<td>Gal-6''b</td>
<td>3,64 d (5,5)</td>
<td>60,5</td>
</tr>
</tbody>
</table>

Tableau 25 : Déplacements chimiques des spectres RMN 1H et 13C du composé 4 dans le méthanol deutéré.

Les différences sensibles sont observées grâce à l’expérience NOESY, où des corrélations dipolaires sont observées entre les protons 1'', 3'' et 4'', alors qu’elles se limitaient à 1'' et 3'' dans la molécule précédente. Ceci laisse envisager une orientation inverse de la fonction alcool en 4'' de l’ose, c’est-à-dire la présence d’un résidu galactose en lieu et place du glucose. Cette hypothèse semble confirmée :

- Par l’absence de corrélation entre H-2’’ et H-4’’ – corrélation qui était observée pour le glucose ;

- Par l’identité de temps de rétention des deux composés avec leur témoin respectif en CLHP ;

148
Par des expériences de co-élution du composé 3 avec la quercétine-3-glucoside et du composé 4 avec la quercétine-3-galactoside.

Au vu des résultats obtenus par CCM, CLHP, SM-ESI et RMN, et en comparaison avec le témoin, nous pouvons identifier le composé 4 comme étant la quercétine-3-galactoside (hypéroside) [213].

Figure 91 : Structure du composé 4, la quercétine-3-galactoside. A – numérotation employée ; B – Corrélations choisies (HMBC C→H ; COSY H↔H ; NOESY H↔H).

Ces deux composés (isoquercétine et hypéroside) sont largement présents dans les plantes médicinales. En dépit d'une forte similarité de structure entre ces deux composés, ils sont différents dans leur activité biologique et la biodisponibilité parce qu'ils ont des fragments distincts pour le sucre [214]. Ces composés ont été étudiés pour de nombreuses activités, notamment antivirale [215] et antimicrobienne [216, 217].
IV.4.4. Analyse quantitative des quatre composés

Les pourcentages des quatre composés dans l’extrait total ont été calculés à partir des aires des pics par CLHP. Les résultats de l’analyse quantitative sont présentés dans le Tableau 26. Le composé RA (acide rosmarinique) se trouve en quantité nettement supérieure à celle des trois autres.

<table>
<thead>
<tr>
<th>Composé</th>
<th>Temps de rétention (min)</th>
<th>Gamme de concentration (mg/ml)</th>
<th>y = ax + b (model de gamme)</th>
<th>Coefficient de corrélation (R^2)</th>
<th>Pourcentage en extrait total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>20,67±0,45</td>
<td>0,125-1,000</td>
<td>5898776=(2×10^{-7}) x+243823</td>
<td>0,9996</td>
<td>5,60</td>
</tr>
<tr>
<td>MR</td>
<td>38,77±0,52</td>
<td>0,030-1,000</td>
<td>705509=(2×10^{-7}) x+38893</td>
<td>0,9995</td>
<td>0,03</td>
</tr>
<tr>
<td>IQ</td>
<td>15,38±0,96</td>
<td>0,006-0,500</td>
<td>103118=(2×10^{-7}) x-31067</td>
<td>0,9999</td>
<td>0,08</td>
</tr>
<tr>
<td>HS</td>
<td>17,88±0,85</td>
<td>0,006-0,500</td>
<td>218757=(2×10^{-7}) x-57439</td>
<td>0,9995</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Tableau 26 : Résultats de l’analyse quantitative des quatre composés par CLHP.

IV.4.5. Activité antibactérienne des composés isolés

IV.4.5.1. Détermination de la CMI et de la CMB : Les quatre composés antibactériens ont été évalués afin de déterminer leur CMI et leur CMB en utilisant la méthode de dilution en milieu liquide contre huit souches bactériennes (les plus sensibles à l’extrait total). Les résultats obtenus figurent dans le Tableau 27.

<table>
<thead>
<tr>
<th>Bactéries</th>
<th>RA</th>
<th>MR</th>
<th>IQ</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMI</td>
<td>CMB</td>
<td>CMI</td>
<td>CMB</td>
</tr>
<tr>
<td>Staphylococcus epidermidis 5001</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Enterococcus faecalis C159-6</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Staphylococcus lugdunensis T26A3</td>
<td>0.6</td>
<td>1.2</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27583</td>
<td>2.5</td>
<td>>2.5</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Corynebacterium T25-17</td>
<td>2.5</td>
<td>>2.5</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Mycobacterium smegmatis 5003</td>
<td>1.2</td>
<td>2.5</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Staphylococcus warneri T12A12</td>
<td>1.2</td>
<td>2.5</td>
<td>0.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Tableau 27 : Valeurs de CMI et de CMB de quatre composés actifs (exprimés en mg/ml).

Les CMI ont varié de 0,3 mg/ml à la concentration limite de 2,5 mg/ml. Ces résultats montrent la plus forte activité inhibitrice pour MR contre quatre bactéries (la valeur moyenne de la CMI sur huit bactéries était, à titre indicatif, de 0,6 mg/ml) et pour RA contre trois bactéries (moyenne de 1,2 mg/ml au total).

Si l’on compare les quatre composés, nous avons pu observer la plus forte activité inhibitrice et bactéricide pour MR contre huit bactéries pathogènes. Mais pour deux souches pathogènes, Staphylococcus epidermidis 5001 et Stenotrophomonas maltophilia, RA était plus bactéricide que MR.

Les trois souches Staphylococcus epidermidis 5001, Stenotrophomonas maltophilia et Enterococcus faecalis C159-6, ont affiché la sensibilité la plus élevée dans ce test.

Nous avons aussi observé que la CMI la plus basse obtenue était à 0,3 mg/ml, ce qui est une valeur médiocre par rapport à celles de l’extrait brut (0,3 mg/ml). À ce stade, nous avons décidé de chercher des effets synergiques entre les quatre composés afin d’essayer d’expliquer les mécanismes de compensation vis-à-vis de la dilution dans l’extrait.
IV.4.5.2. Effets synergiques entre les composés : Les substances isolées ont été testées ensemble à deux ou à plusieurs (à des concentrations égales) pour rechercher une synergie qui a été évaluée par l’indice FIC (concentration inhibitrice fractionnaire). L’effet combiné a été calculé par la formule suivante :

\[
FIC = \frac{\text{CMI de composé A en combinaison}}{\text{CMI de A}} + \frac{\text{CMI de composé B en combinaison}}{\text{CMI de B}}
\]

Les résultats obtenus ont été interprétés comme une synergie (S, \(FIC \leq 0,5\)), addition (A, \(0,5 < FIC <1\)), l’indifférence (I, \(1 < FIC <2\)) et l’antagonisme (AN, \(FIC \geq 2\)) [218]. L’indice FIC (Tableau 28) a révélé plusieurs mélanges synergiques (cases en caractère gras-vert).

<table>
<thead>
<tr>
<th>Bactéries</th>
<th>RA+MR</th>
<th>RA+IQ</th>
<th>RA+HS</th>
<th>MR+IQ</th>
<th>MR+HS</th>
<th>IQ+HS</th>
<th>RA+MR+IQ+HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus epidermidis 5001</td>
<td>0,3-(I)</td>
<td>1,2-(AN)</td>
<td>0,3-(I)</td>
<td>0,3-(I)</td>
<td>0,3-(I)</td>
<td>2,50-(I)</td>
<td>0,15-(I)</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>0,3-(I)</td>
<td>0,6-(I)</td>
<td>0,6-(I)</td>
<td>0,3-(I)</td>
<td>0,6-(I)</td>
<td>2,50-(A)</td>
<td>0,15-(I)</td>
</tr>
<tr>
<td>Enterococcus faecalis C159-6</td>
<td>0,15-(A)</td>
<td>0,6-(I)</td>
<td>0,3-(I)</td>
<td>0,15-(A)</td>
<td>0,3-(I)</td>
<td>1,25-(I)</td>
<td>0,07-(S)</td>
</tr>
<tr>
<td>Staphylococcus lugdunensis T26A3</td>
<td>0,6-(I)</td>
<td>0,3-(A)</td>
<td>0,6-(I)</td>
<td>0,15-(S)</td>
<td>0,6-(I)</td>
<td>2,50-(I)</td>
<td>0,3-(I)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27583</td>
<td>1,2-(I)</td>
<td>1,2-(I)</td>
<td>1,2-(A)</td>
<td>1,2-(I)</td>
<td>1,2-(I)</td>
<td>2,50-(I)</td>
<td>0,6-(I)</td>
</tr>
<tr>
<td>Corynebacterium T25-17</td>
<td>0,3-(S)</td>
<td>0,6-(A)</td>
<td>0,6-(A)</td>
<td>0,15-(S)</td>
<td>0,6-(A)</td>
<td>1,25-(I)</td>
<td>0,3-(A)</td>
</tr>
<tr>
<td>Mycobacterium smegmatis 5003</td>
<td>0,3-(A)</td>
<td>0,6-(A)</td>
<td>0,3-(S)</td>
<td>0,3-(A)</td>
<td>0,3-(A)</td>
<td>2,50-(I)</td>
<td>0,3-(A)</td>
</tr>
<tr>
<td>Staphylococcus warneri T12A12</td>
<td>0,15-(A)</td>
<td>0,6-(A)</td>
<td>0,3-(S)</td>
<td>0,3-(I)</td>
<td>0,3-(I)</td>
<td>2,50-(I)</td>
<td>0,3-(I)</td>
</tr>
</tbody>
</table>

Tableau 28 : CMI de mélanges de quatre composés contre huit micro-organismes sélectionnés (ratio 1:1). L’indice FIC : synergie (S, \(FIC \leq 0,5\)), addition (A, \(0,5 < FIC <1\)), l’indifférence (I, \(1 < FIC <2\)) et l’antagonisme (AN, \(FIC \geq 2\)).

Selon le tableau ci-dessus, les combinaisons contenant IQ et HS ont généralement montré des effets indifférents. Une seule combinaison a montré un effet antagoniste, il s’agit de l’association entre RA et IQ pour *Staphylococcus epidermidis* 5001 (case en caractère gras-rouge). L’augmentation de l’activité antibactérienne a été observée entre RA et HS (deux effets de synergie), et entre MR et IQ (deux effets synergiques). Au total, six effets synergiques ont été détectés dans cette étude *in vitro*.

152
Les CMI les plus basses pour une association de deux composés, ont été obtenues pour la combinaison MR-IQ.

Enfin, l’effet de la combinaison des quatre composés contre *Enterococcus faecalis* C159-6, a montré la CMI la plus basse observée dans cette étude (0,07 mg/ml).

IV.4.5.3. Dénombrement bactérien (killing curves ou kill-time) : Afin d’évaluer la rapidité de l’activité antibactérienne pour se rapprocher d’un contexte d’utilisation clinique, nous avons mesuré le taux de réduction de la population bactérienne par les deux composés les plus actifs (acide rosmarinique et rosmarinate de méthyle) contre deux souches bactériennes : *Staphylococcus epidermidis* 5001 et *Stenotrophomonas maltophilia* à la concentration de CMI et à quatre fois la CMI par rapport aux témoins (Figure 92).

En fonction des résultats obtenus, nous avons réalisé les courbes de bactéricidie représentées par les Graphiques 1 à 4.

IV.4.5.3.1. Staphylococcus epidermidis 5001 : Nous observons que le composé RA, à quatre fois la CMI (1,25 mg/ml), a permis une réduction bactérienne de 5 log en un temps de 240 minutes (4 heures). Nous pouvons conclure que RA permet de diminuer le nombre de bactéries présentes puisque nous arrivons au seuil de détection (<100 bactérie/ml). Puis, ce composé, à une fois la CMI (0,3 mg/ml), a diminué le nombre de bactéries jusqu’à 3 log après 1440 minutes (24 heures) (Graphique 1).

Figure 92 : Plaques 24 puits et tubes de suspensions pour dénombrement bactérien.
Graphique 1 : Courbes de bactéricidie de *Staphylococcus epidermidis* 5001 pour RA (acide rosmarinique).

Pour le composé MR, à quatre fois la CMI (1,25 mg/ml), les bactéries ont diminué de 3 log ; et à une fois la CMI (0,3 mg/ml), nous avons observé une diminution de 2 log après 24 heures (Graphique 2).

Graphique 2 : Courbes de bactéricidie de *Staphylococcus epidermidis* 5001 pour MR (rosmarinate de méthyle).
IV.4.5.3.2. *Stenotrophomonas maltophilia* : D’après les graphiques 3 et 4, nous constatons que le produit 1, à quatre fois la CMI (1,25 mg/ml), a eu une action très rapide (en 15 minutes) pour détruire des bactéries jusqu’au seuil de détection (<100 bactérie/ml).

Graphique 3 : Courbes de bactéricidie de *Stenotrophomonas maltophilia* pour RA (acide rosmarinique).

En revanche, pour les autres, il n’y a quasiment aucune activité bactéricide en comparaison aux témoins (Graphique 4).

Graphique 4 : Courbes de bactéricidie de *Stenotrophomonas maltophilia* pour MR (rosmarinate de méthyle).
Les résultats obtenus de CMI et de CMB dans la partie précédente, nous ont confirmé que le composé le plus actif semble être le rosmarinate de méthyle (MR) mais l’approfondissement des résultats de cette partie nous a amené à revoir notre appréciation.

En effet, ce test nous a montré que l’activité bactéricide de l’acide rosmarinique est beaucoup plus rapide que celle du rosmarinate de méthyle sur les bactéries utilisées. Nous avons également constaté qu’une concentration d’au moins 1,25 mg/ml d’acide rosmarinique, diminue le nombre de bactéries jusqu’à 5 log de l’inoculum initial (<100 bactérie/ml) après 15 et 240 minutes d’action sur Stenotrophomonas maltophilia, et sur Staphylococcus epidermidis 5001, respectivement.

IV.4.5.4. Courbe de croissance à 37 °C : Ce test a été réalisé afin de mesurer l’activité antibactérienne pour les concentrations sous-inhibitrices (CMI/2 et CMI/4) de deux composés les plus actifs (RA et MR).

Trois concentrations de RA et MR ont été testées sur les phases de croissance de Staphylococcus epidermidis 5001 à 37 °C. Les résultats sont présentés dans les graphiques 5 et 6.

![Graphique 5](image)

Graphique 5 : Courbes de croissance de Staphylococcus epidermidis 5001 à 37 °C pour RA (acide rosmarinique).
Graphique 6 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 37 °C pour MR (rosmarinate de méthyle).

Les graphiques montrent que les deux composés à la concentration minimale inhibitrice, ont abaissé lentement le nombre de bactéries en comparaison avec le test kill-time.

A des concentrations sous-inhibitrices, la phase de latence est plus longue et le niveau de la croissance bactérienne n'a pas atteint le niveau du témoin au bout de 24 heures. Ce test nous a confirmé que les concentrations sous-inhibitrices ont encore un effet important sur la croissance bactérienne. Ils ont retardé l'entrée des bactéries à la phase exponentielle [2 heures pour CMI/4 (75 mg/l) et 3 heures pour CMI/2 (150 mg/l)], pour l'acide rosmarinique. En outre, les phases stationnaires des concentrations sous-inhibitrices sont une et deux log sous le témoin, respectivement. Dans le graphique 6, on observe presque la même chose pour MR, bien que les résultats soient légèrement plus faibles.

IV.4.5.5. Courbe de croissance à 4 °C : A cette température, lorsque les bactéries sont restées dans la phase stationnaire, les concentrations sous-inhibitrices n'ont eu aucun effet intense sur les populations bactériennes (la réduction maximale observée était de 0,5 log) (Graphique 7 et 8).
Graphique 7 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 4 °C pour RA (acide rosmarinique).

Graphique 8 : Courbes de croissance de *Staphylococcus epidermidis* 5001 à 4 °C pour MR (rosmarinate de méthyle).
Cependant, comme on peut le constater sur le graphique 7, la concentration de CMI de RA (0,3 mg/ml) a réduit le nombre de bactéries jusqu’à un log après 24 heures (des résultats comparables ont été obtenus pour MR).

Enfin, si nous comparons les quatre graphiques de courbe de croissance, nous observons presque la même activité inhibitrice (un log) pour les CMI des deux composés (à 4 °C et 37 °C), ce qui signifie que l'activité antibactérienne n'a pas besoin d'une multiplication des bactéries et se manifeste au même niveau lorsque des bactéries sont dans la phase stationnaire.
IV.5. Travaux phytochimiques sur *Alcea rosea* L.

Nous avons effectué une étude phytochimique supplémentaire sur les fleurs d’*Alcea rosea* L. Ce travail était justifié par un essai préliminaire de criblage mettant en évidence un effet inhibiteur significatif de l’extrait méthanolique sur la production de TNFα induite par lipopolysaccharide sur macrophages isolés, déterminés par méthode ELISA (26% d’inhibition pour l’extrait à 10 µg/mL contre 38% d’inhibition pour la dexaméthasone à 10⁻⁶M). Ceci a été déterminé par le Dr. Mathilde Body-Malapel (U995 INSERM) dans le cadre d’une collaboration avec le Pr. Régis Millet (EA4481). N’ayant pas participé à la réalisation des essais et étant donné leur caractère très préliminaire, nous n’évoquons que brièvement ces manipulations ici.

Après les étapes d’extraction, nous avons réalisé deux chromatographies sur couche mince (CCM) pour comparer les deux extraits obtenus avec les différents éluants de migration qui sont présentés dans le Tableau 29.

<table>
<thead>
<tr>
<th>Solvant d'extraction</th>
<th>Éluant de migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlorométhane (CH₂Cl₂)</td>
<td>CH₂Cl₂ / MeOH (9:1)</td>
</tr>
<tr>
<td>Méthanol (MeOH)</td>
<td>acétate d'éthyle / acide acétique / acide formique / eau (100:11:11:27)</td>
</tr>
</tbody>
</table>

Tableau 29 : Deux types d'extractions d'*Alcea rosea* L.

Le criblage phytochimique effectué sur les extraits dichlorométhane et méthanolique par CCM, a donné les résultats consignés dans les Figures 93 et 94.

Pour révéler les tâches de substances sur la plaque, on utilise soit la détection UV, soit des révélateurs chimiques caractéristiques de certains groupes phytochimiques. Après migration et séchage, les plaques sont examinées sous UV, dans le cas où l’observation en UV ne paraît pas suffisante, on peut compléter ces résultats par la pulvérisation sur le chromatogramme en utilisant le réactif de Neu.

La pulvérisation se fait sous hôte ventilée. Pour l'extrait dichlorométhane, on a utilisé l’anisaldéhyde qui est un réactif polyvalent (après pulvérisation avec ce réactif, la plaque doit être chauffée à l’étuve).
Dans les deux extraits étudiés, il y a des spots qui correspondent aux flavonoïdes. La présence de flavonoïdes dans l'extrait méthanolique a été confirmée par le réactif de Neu qui les fait apparaître dans le visible sous forme de tâches jaunes, et sous UV à une longueur d'onde de 366 nm, sous forme de tâches bleues. Donc, nous avons décidé de poursuivre le processus de purification sur l'extrait méthanolique qui contient notamment des flavonoïdes.

IV.5.1. Isolement et purification des flavonoïdes d'Alcea rosea L.

La première analyse de l'extrait méthanolique par chromatographie liquide sur colonne de Sephadex® LH-20, a permis d'obtenir 40 fractions (Figure 95). L’éluant utilisé pour ce fractionnement était un mélange eau/méthanol de polarité décroissante.

Les fractions ont été analysées par CCM, éluées par le mélange de solvants eau/acide acétique/acide formique/acétate d'éthyle (27:11:11:100). Les fractions recueillies sont regroupées selon les résultats de l’analyse par CCM. Celles qui

![Figure 93](image1.png)

Figure 93 : Chromatogrammes de détection des composés d'extrait dichlorométhane, révélés par le réactif d’anisaldéhyde (A), et sous UV 254 nm (B).

![Figure 94](image2.png)

Figure 94 : Chromatogrammes de détection des flavonoïdes de l'extrait méthanolique, révélés par le réactif de Neu (A), et sous UV 365 nm (B).

![Figure 95](image3.png)

Figure 95 : Première étape de fractionnement par la colonne de Sephadex® LH-20.
nous intéressent sont les fractions 27 à 31 (F7) (Figure 96).

Figure 96 : CCM des fractions 27 à 31(F7), révélées par le réactif de Neu dans le visible (A), et sous UV/254 nm (B).

La fraction F7 (399 mg) a été analysée par passage sur une deuxième colonne de Sephadex® LH-20 en utilisant comme éluant le mélange eau / méthanol avec une polarité décroissante. 90 fractions ont été obtenues avec 3 composés purs (Tableau 30). Dans la Figure 97, nous avons mis en avant toutes les étapes de purification pour 3 fractions sélectionnées.

Figure 97 : Étapes de purification à partir de l’extrait méthanolique d’*Alcea rosea*.
<table>
<thead>
<tr>
<th>Composé</th>
<th>Sous fractions (les fractions regroupées)</th>
<th>Couleur obtenue par le réactif Neu visible</th>
<th>Masse obtenue (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>F7-18 (77-78)</td>
<td>Orange, Noir, Orange</td>
<td>22,1</td>
</tr>
<tr>
<td>6</td>
<td>F7-16 (70-75)</td>
<td>Jaune, Noir, Vert</td>
<td>110,7</td>
</tr>
<tr>
<td>7</td>
<td>F7-11 (58)</td>
<td>Jaune, Noir, Vert</td>
<td>21,0</td>
</tr>
</tbody>
</table>

Tableau 30 : Les composés obtenus par un deuxième fractionnement.
IV.5.2. Détermination structurale des flavonoïdes d’*Alcea rosea* L.

IV.5.2.1. Détermination de structure du composé 5 : L’analyse de ce composé par spectrométrie de masse (SM-ESI) en mode positif révèle un ion moléculaire \(m/z \) 433,2 [M+H]^+. Le spectre de RMN du \(^1\text{H} \) (Figure 98) est très similaire à ceux déjà rencontrés pour les flavonoïdes d’*Hyptis atrorubens*, et correspondent vraisemblablement à la substitution d’une génine aromatique de type flavone par un seul hexose.

Dans la région des aromatiques, cinq signaux sont observables :

- Deux doublets, à \(\delta 6,18 \) et \(\delta 6,42 \) semblent couplés, avec une faible constante de couplage \(J = 1,5 \) et 1,7 Hz, respectivement), qui nous conduit à proposer une position relative de type *meta* pour les deux hydrogènes. La biogenèse des flavonoïdes conduit à envisager comme hypothèse la plus simple une disubstitution phénolique en 5 et 7 de la benzopyrone. Dans ce cas, ceci est vérifié sans ambiguïté par le très fort déblindage du carbone de la fonction cétone en 4 (\(\delta 182,7 \)), classiquement observé (formation d’une liaison hydrogène intramoléculaire entre l’OH et la cétone) lorsqu’un OH libre se trouve en 5 ou en 3, cette dernière position étant éliminée dans le paragraphe suivant.

- Un singulet supplémentaire pourrait correspondre à un proton isolé en position 3. Ceci est confirmé par l’observation de corrélations HMBC avec les carbones 4 (\(\delta 182,7 \)) et 1’ (\(\delta 124,8 \)). La génine n’est donc plus ici un flavonol, mais une flavone.

- On n’a pas ici de système ABX, mais deux doublets à \(\delta 7,89 \) (\(J = 8,7 \) Hz) et \(\delta 7,21 \) (\(J = 8,9 \) Hz), intégrant chacun pour deux protons, qui nous conduisent plutôt dans ce cas à l’hypothèse d’un seul substituant, en *para*.

La génine correspond donc à la 5,7,4’-trihydroxyflavone, généralement appelée apigénine ou apigénol.

Les attributions de tous les signaux des spectres du proton (Figure 98) et du carbone de ce composé sont présentées dans le Tableau 31 avec les valeurs des déplacements chimiques. Nous avons ensuite cherché à identifier le sucre grâce à la position des différents signaux des carbones et hydrogènes en les comparant avec des valeurs de référence [219].
Figure 98 : Spectre 1H dans le méthanol deutéré du composé S.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>1H (J en Hz) en ppm</th>
<th>13C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>164,2</td>
</tr>
<tr>
<td>3</td>
<td>6,60 s</td>
<td>103,4</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>182,7</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>162,0</td>
</tr>
<tr>
<td>6</td>
<td>6,18 d (1,7)</td>
<td>98,9</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>164,8</td>
</tr>
<tr>
<td>8</td>
<td>6,42 d (1,5)</td>
<td>93,7</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>158,0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>104,0</td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>124,8</td>
</tr>
<tr>
<td>2’-6’</td>
<td>7,89 d (8,7)</td>
<td>127,7</td>
</tr>
<tr>
<td>3’-5’</td>
<td>7,21 d (8,9)</td>
<td>116,6</td>
</tr>
<tr>
<td>4’</td>
<td>-</td>
<td>160,7</td>
</tr>
<tr>
<td>1”’</td>
<td>5,04 d (7,1)</td>
<td>100,3</td>
</tr>
<tr>
<td>2”’</td>
<td>3,51 m*</td>
<td>73,4</td>
</tr>
<tr>
<td>3”’</td>
<td>3,52 m*</td>
<td>76,9</td>
</tr>
<tr>
<td>4”’</td>
<td>3,51 m*</td>
<td>69,9</td>
</tr>
<tr>
<td>5”’</td>
<td>3,52 m*</td>
<td>76,5</td>
</tr>
<tr>
<td>6”’</td>
<td>3,73 dd (12,4 ; 5,7) ; 3,93 dd (12,0 ; 2,0)</td>
<td>61,1</td>
</tr>
</tbody>
</table>

Tableau 31 : Déplacements chimiques du spectre RMN 1H et 13C du composé 5 dans le méthanol deutéré (* : interchangeables).
Les expériences bidimensionnelles permettent de préciser la nature de l’ose (glucose) suivant le même cheminement que celui proposé pour le composé 3 d’*Hyptis atrorubens*. Sa position en 4’, quant-à-elle, est déduite des corrélations du proton anomérique (δ 5,04) avec le carbone 4’ (δ 160,7) en HMBC et qu’avec les protons 3’-5’ (δ 7,21) en NOESY.

La molécule a ainsi été identifiée comme étant l'apigénine-4’-O-glucoside (Figures 99).

Figure 99 : Structure du composé 5, l’apigénine-4’-O-glucoside. A – numérotation employée ; B – Corrélations choisies (HMBC C→H ; COSY H↔H ; NOESY H↔H).
IV.5.2.2. Détermination de structure du composé 6 : L’analyse de ce composé par spectrométrie de masse (SM-ESI) en mode positif révèle un ion moléculaire m/z 449,3 $[M+H]^+$. On a utilisé la même méthode pour analyser et identifier ce composé par des spectres de RMN dans du méthanol deutéré. Les attributions de tous les signaux des spectres du proton (Figure 100) et du carbone de ce composé sont présentées dans le Tableau 32 avec les valeurs des déplacements chimiques.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>1H (J en Hz) en ppm</th>
<th>13C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>158,9</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>135,3</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>179,3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>162,9</td>
</tr>
<tr>
<td>6</td>
<td>6,22 d (2,0)</td>
<td>99,8</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>165,8</td>
</tr>
<tr>
<td>8</td>
<td>6,41 d (2,0)</td>
<td>94,6</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>158,3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>105,6</td>
</tr>
<tr>
<td>1'</td>
<td>-</td>
<td>122,6</td>
</tr>
<tr>
<td>2'-6'</td>
<td>8,08 d (8,8)</td>
<td>132,1</td>
</tr>
<tr>
<td>3'-5'</td>
<td>6,90 d (8,8)</td>
<td>115,9</td>
</tr>
<tr>
<td>4'</td>
<td>-</td>
<td>161,4</td>
</tr>
<tr>
<td>1''</td>
<td>5,28 d (7,2)</td>
<td>103,9</td>
</tr>
<tr>
<td>2''</td>
<td>3,42 m*</td>
<td>75,7</td>
</tr>
<tr>
<td>3''</td>
<td>3,40 m*</td>
<td>78,0</td>
</tr>
<tr>
<td>4''</td>
<td>3,27 m*</td>
<td>71,3</td>
</tr>
<tr>
<td>5''</td>
<td>3,19 m*</td>
<td>78,3</td>
</tr>
<tr>
<td>6''</td>
<td>3,71 dd (12,0 ; 2,4) ; 3,55 dd (12,0 ; 5,6)</td>
<td>62,6</td>
</tr>
</tbody>
</table>

Tableau 32 : Déplacements chimiques du spectre RMN 1H et 13C du composé 5 dans le méthanol deutéré (* : interchangeables).

On retrouve ici une génine de flavonoïde avec deux doublets faiblement couplés intégrant chacun pour un proton (2,0 Hz - protons 6 et 8), deux doublets couplés avec une constante de 8,8 Hz et intégrant chacun pour deux protons (protons 2'-6' et 3'-5', correspondant à une substitution du cycle B en *para*), mais pas de singulet pouvant être attribué à la position 3, contrairement au composé précédent. La génine serait donc la 3,5,7,4'-tétrahydroxyflavone ou kaempférol.
Les expériences HMBC, NOESY et la comparaison des données obtenues avec celles de la littérature permettent d’établir la structure du composé comme étant celle du kaempférol-β-D-glucoside (Figure 101).

Figure 100 : Spectre 1H dans le méthanol deutéré du composé 6.

Figure 101 : Structure du composé 6, le kaempférol-3-β-D-glucoside.
IV.5.2.3. Détermination de structure du composé 7 : L’analyse de ce composé par spectrométrie de masse (SM-ESI) en mode positif révèle un ion moléculaire m/z 594,7 $[\text{M+H}]^+$. Les attributions de tous les signaux des spectres du proton (Figure 102) et du carbone de ce composé sont présentées dans le Tableau 33 avec les valeurs des déplacements chimiques.

<table>
<thead>
<tr>
<th>Signaux</th>
<th>^1H (J en Hz) en ppm</th>
<th>^{13}C en ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>158,8</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>134,1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>179,4</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>162,9</td>
</tr>
<tr>
<td>6</td>
<td>6,19 d (2,0)</td>
<td>99,9</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>165,7</td>
</tr>
<tr>
<td>8</td>
<td>6,38 d (2,0)</td>
<td>94,6</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>158,2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>104,2</td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>121,1</td>
</tr>
<tr>
<td>2’-6’</td>
<td>8,03 d (8,8)</td>
<td>132,1</td>
</tr>
<tr>
<td>3’-5’</td>
<td>6,45 d (8,8)</td>
<td>115,5</td>
</tr>
<tr>
<td>4’</td>
<td>-</td>
<td>161,3</td>
</tr>
<tr>
<td>1’’</td>
<td>5,13 d (7,3)</td>
<td>103,2</td>
</tr>
<tr>
<td>2’’</td>
<td>3,46 dd (7,3 ; 3,4)</td>
<td>74,3</td>
</tr>
<tr>
<td>3’’</td>
<td>3,37 m</td>
<td>75,8</td>
</tr>
<tr>
<td>4’’</td>
<td>3,29 m</td>
<td>70,1</td>
</tr>
<tr>
<td>5’’</td>
<td>3,44 m</td>
<td>76,7</td>
</tr>
<tr>
<td>6’’</td>
<td>3,39 d (10,5) ; 3,83 d (10,5)</td>
<td>67,2</td>
</tr>
<tr>
<td>1’’’</td>
<td>4,53 d (1,5)</td>
<td>101,0</td>
</tr>
<tr>
<td>2’’’</td>
<td>3,66 dd (3,3 ; 1,6)</td>
<td>70,7</td>
</tr>
<tr>
<td>3’’’</td>
<td>3,54 dd (9,4 ; 3,3)</td>
<td>70,8</td>
</tr>
<tr>
<td>4’’’</td>
<td>3,30 d (9,4)</td>
<td>72,5</td>
</tr>
<tr>
<td>5’’’</td>
<td>3,47 m</td>
<td>68,3</td>
</tr>
<tr>
<td>6’’’</td>
<td>1,14 d (6,5)</td>
<td>16,5</td>
</tr>
</tbody>
</table>

Tableau 33 : Déplacements chimiques du spectre RMN ^1H et ^{13}C du composé 7 dans le méthanol deutéré.
Ce produit présente un profil de substitution identique au précédent, dans la zone des aromatiques du spectre de RMN du 1H. La génine est donc identique (kaempférol). En revanche deux signaux vraisemblablement attribuables à des protons anomériques d’oses sont observables, à δ 5,13 ($J = 7,3$ Hz) et δ 4,53 ($J = 1,5$ Hz).

Le premier ose est identifié comme étant un glucose, lié au kaempférol par l’atome d’oxygène en 3 comme dans le cas précédent (expériences HMBC, NOESY).

Pour le deuxième ose, le déplacement chimique et la faible constante de couplage, ainsi que l’observation très caractéristique d’un doublet à champs fort δ 1,14 ($J = 6,2$ Hz) intégrant pour trois protons et correspondant donc à un groupement méthyle, nous laisse envisager l’hypothèse du rhamnose, un desoxyose (6-desoxymannose), généralement rencontré sous sa forme α-L. Le NOESY et l’HMBC indiquent sa substitution sur la fonction alcool primaire en 6 du glucose.
La comparaison avec un échantillon authentique permet de confirmer l’identification de ce composé en tant que kaempférol-α-L-rhamnosyl (1→6)-β-D-glucoside (Figure 103).

Figure 103 : Structure du composé 7, le kaempférol-α-L-rhamnosyl (1→6)-β-D-glucoside.
A – numérotation employée ; B – Corrélations choisies (HMBC C→H ; COSY H↔H ; NOESY H↔H).

Ces trois composés ont été mis en évidence pour la première fois dans cette plante, ce qui constitue un intérêt dans sa caractérisation sur le plan chimiotaxonomique.
L’étude des activités biologiques des plantes réalisée in vitro doit toujours être soumise à la prudence. De nombreuses études utilisent des concentrations très élevées et non physiologiques des médicaments qui ne seront jamais atteintes dans les tissus humains [220]. En effet, la recherche d'une activité antibactérienne est souvent faite par des tests de diffusion qui ne peuvent être quantifiés et ne peuvent pas être comparés parce que la diffusion dépend de la taille moléculaire et peut être très différente d'un produit à l'autre ou être d'une signification incertaine pour des extraits bruts contenant un mélange des différents composés potentiellement actifs.

Les études antimicrobiennes sont souvent réalisées sur des souches provenant d'une ou deux espèces. Nous avons choisi de déterminer la CMI contre une série de micro-organismes, ce qui nous permet d’envisager de découvrir des extraits à large spectre. La plupart des souches ont été récemment isolées d'infections humaines. A titre de comparaison, nous avons également inclus certaines souches de référence ATCC (American Type Culture Collection). En revanche, ces souches ont été isolées il y a quelques années puis repiquées sur un milieu de culture en laboratoire, elles ne reflètent donc pas ce que l'on rencontre aujourd'hui dans les hôpitaux.

Les résultats obtenus dans les parties IV.2 et IV.3, ont confirmé l'existence de composés antimicrobiens dans la majorité des extraits méthanoliques bruts testés et ont validé l'utilisation de ces plantes en médecine traditionnelle contre les maladies infectieuses.

Le but de notre étude était non seulement de tester des extraits bruts, mais aussi de purifier et d'évaluer l’activité antibactérienne des composés chimiquement définis (leur activité biologique a été approfondie). La première approche a été effectuée par des tests de kill-time présentant leur action en fonction du temps. Notre principal composé, RA (acide rosmarinique), a diminué le nombre des bactéries de plus de 5 log en quelques heures. Cette action peut être comparée aux désinfectants qui agissent de manière beaucoup plus rapide que la plupart des antibiotiques.

Ensuite, les courbes de croissance ont été établies, en montrant que des concentrations inférieures à la CMI pourraient encore ralentir la croissance des souches bactériennes. Même lorsque la concentration était inférieure au niveau de la CMI, un effet biologique (effet bactériostatique pendant quelques heures) peut encore être présent. Les courbes de croissance ont été mesurées en utilisant une méthode très consommatrice de temps et de matériel, la numération viable (viable count). La densité optique (DO) est souvent préférée [221], mais de
nombreuses souches bactériennes (y compris des *Staphylococcus* et des *Pseudomonas*) produisent des composés extracellulaires qui augmentent la DO sans modifier la numération viable.

Nos courbes de croissance montrent à la fois une phase de latence plus longue sur CMI/2 et CMI/4 avant la croissance et aussi une concentration bactérienne finale qui est inférieure au témoin après 24 heures (pour les deux) (Graphiques 5 et 6).

L'activité antimicrobienne des Lamiacées est souvent attribuée à des composants volatils de leur huile essentielle. Bien que ces composés aient été étudiés de manière approfondie, il est souvent difficile de corrélérer les résultats obtenus *in vitro* avec les observations ethnopharmacologiques, car leur présence dans les méthodes de préparation traditionnelles est souvent incertaine, en raison de la forte variabilité et aussi de nombreux protocoles d'extraction inadéquats. Par exemple, le thym (*Thymus vulgaris* L.) est une espèce bien connue, avec au moins 7 chimiotypes (certaines espèces de plantes présentent des variations chimiques de leurs métabolites secondaires en fonction des influences de leurs écosystèmes), dont un seul possède le thymol comme composé principal [222]. De même, le genre *Hyptis* comporte plusieurs espèces qui ont au moins deux chimiotypes [149]. Par conséquent, il nous semble plus intéressant de tester des fractions non volatiles, dont les composés sont souvent moins variables, ce qui peut nous conduire à des résultats plus fiables.

L’acide rosmarinique (RA), composé majoritaire de l’extrait hydrométhanolique (5,6 %) est principalement présent dans les espèces de la famille des Boraginacées et chez les Népétoïdées (sous-famille des Lamiacées). RA est un métabolite secondaire thérapeutique et cosmétique avec une très faible toxicité. Il a déjà été caractérisé pour de nombreuses activités biologiques (activités anti-inflammatoire, antioxydante, antibactérienne, antivirale et antimutagène) [223], mais son activité antimicrobienne n’avait jamais été détaillée.

L'activité biologique de RA contre une série de micro-organismes pathogènes met en valeur ce composé comme un agent antimicrobien intéressant. Son mécanisme d'action n'a pas été clairement défini, en dépit de numérisation par microscopie électronique (SEM ou Scanning Electron Microscopy) qui montre une surface cellulaire endommagée sous traitement de RA [224]. Les résultats de notre étude ont mesuré le taux d'activité inhibitrice et bactéricide de ce composé contre huit bactéries pathogènes, dont trois sont souvent problématiques pour leurs résistances aux antibiotiques disponibles (*Staphylococcus epidermidis* 5001, *Stenotrophomonas maltophilia* et *Enterococcus faecalis* C159-6).
Enfin, la présence d'un groupe acide carboxylique dans le composé RA, rend possible l’ionisation de ce composé et/ou la création de sels avec des cations minéraux, comme ce qui a été observé avec les antibiotiques tels que la polymyxine [225], la bacitracine [226] et la daptomycine [227]. Cela pourrait contribuer à expliquer les écarts entre les activités de ce composé et de son ester méthylique.

L'ester méthylique de RA (méthyle rosmarinate ou MR) affiche des activités biologiques similaires à son acide libre [228]. Une étude récente a fourni des données préliminaires (CMI sur cinq espèces) de son activité antimicrobienne [229]. Notre étude a démontré que ce composé est plus inhibiteur et bactéricide que RA. Deux autres composés, IQ et HS (isoquercétine et hypéroside), rapportés dans la partie Résultats, ont de nombreuses activités biologiques.

Nous avons essayé de mesurer l'activité antibactérienne des quatre composés par des valeurs pertinentes microbiologiques (CMI, CMB et FIC). Bien que ces valeurs ne présentent pas une activité remarquable (par exemple la CMI de RA a été plutôt modérée en comparaison avec celle de l'extrait total), ils peuvent posséder des effets synergiques intéressants : une forte activité inhibitrice et bactéricide a été obtenue pour des mélanges de composés dans six cas (Tableau 28). La meilleure CMI (70 µg/ml) a été atteinte pour une combinaison des quatre composés ; cette valeur s’approche de la CMI des antibiotiques.

Cette dernière observation souligne l'importance de l'analyse de mélanges de composés. Les études de synergie sont rarement effectuées en ethnopharmacologie, mais semblent être une approche adaptée, puisque plusieurs composés différents sont toujours présents dans les plantes et ces associations peuvent contribuer à un système de défense antimicrobien. Ce dernier a besoin d’être exploré [230].

175
CONCLUSION ET PERSPECTIVES
Les résultats obtenus au cours de nos travaux de criblage phytochimique de 42 plantes, ont révélé la présence de principes actifs antibactériens dans chacune des plantes, ce qui contribue à confirmer l’expérience séculaire de nos ancêtres dans l’utilisation des plantes médicinales pour traiter les maladies infectieuses. Notre criblage a permis également de démontrer la richesse de ces plantes en métabolites secondaires, et en substances naturelles potentiellement intéressantes pour leurs propriétés antibactériennes.

Enfin, nos résultats biologiques en criblage pourront donner suite à un examen plus approfondi par bioautographie (pour chacune des plantes actives) afin de déterminer de nouvelles molécules actives et de procéder à leur purification, leur identification et leur quantification dans le but d’une utilisation pour des études in vivo.

Nous avons également réalisé une étude phytochimique assez approfondie de l’espèce *Hyptis atrorubens* Poit., dans le but d’extraire, purifier et identifier les différents composés ayant une activité antimicrobienne. Des analyses biologiques nous ont permis de trouver les quatre principaux composés actifs de cette plante.

Les travaux sur les composés isolés doivent se poursuivre afin de révéler leur mécanisme d’action. La microscopie électronique peut aider à visualiser les lésions cellulaires après contact des bactéries avec des composés identifiés. L’analyse protéomique de la membrane bactérienne révélera ses modifications après le contact.

Les études in vivo des modèles animaux peuvent aussi être intéressantes dans l’approche d’une utilisation pratique des produits. Pour ces modèles animaux, il faudra orienter les recherches au niveau des infections fréquentes par les micro-organismes Gram positifs et Gram négatifs (en particulier les entérobactéries qui ne sont pas sensibles à nos composés identifiés). Cependant, il est à noter que les bactéries les plus sensibles aux composés actifs, étaient du genre *Staphylococcus*, fréquemment mis en cause dans les infections cutanées, ce qui confirme l’usage traditionnel d’*Hyptis atrorubens*.

Notre recherche suggère la forte potentialité d’activité antimicrobienne dans les produits naturels. Cette action est mise en évidence par les différents tests microbiologiques comme la CMI, la CMB, le dénombrement (kill-time), les courbes de croissance et les tests de synergie.

En conclusion, les plantes ont évolué au fil du temps et montrent une bonne résistance contre l’invasion bactérienne. Elles constituent une source potentielle pour renforcer la lutte de l’homme contre les bactéries de plus en plus résistantes aux antibiotiques, ce qui constitue un problème majeur de santé publique.

53. Majd A, Nejad-sattari T, Doosti B. 2009. Chemical composition of *Satureja Khuzestanica* Jamzad (Lamiaceae) essential oils produced during ontogenesis and in-

isolated from rainbow trout (Oncorhynchus mykiss), Archives of Biological Sciences 63: 59-66.

143. Longuefosse JL. 2007 Plantes médicinales caribéennes : Tome, Orphie (ed), St Denis, La Réunion.

189. Hammer KA, Carson CF, Riley TV. 2002. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi, department of microbiology, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Australia.

Site internet
http://www.portail-guadeloupe.com/medecine-creole.html
http://microbewiki.kenyon.edu/index.php/
http://microbio.ucoz.com
http://www.ru.nl/bio-orgchem/instrumentation/chromatography/hplc/

Sources photos
http://coldb.mnhn.fr/ScientificName
http://ww2.bgbm.org/Herbarium
http://eol.org: © Royal Botanic Garden Edinburgh
http://www.ville-ge.ch : © Conservatoire & Jardin botaniques de la Ville de Genève
http://www.aquaportail.com

197
Composition de base des milieux utilisés

Milieu de Brain Heart cystéiné (BH)

<table>
<thead>
<tr>
<th>Produit, références ou N° de fiche</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base cervelle-coeur (PC17)</td>
<td>37 g</td>
</tr>
<tr>
<td>Extrait de levure (PC4)</td>
<td>5 g</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine (PC5)</td>
<td>0,5 g</td>
</tr>
<tr>
<td>Eau osmosée</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

- **pH final** : 7,4
- **Présentation** : 10 mL par tube 16*160 ou flacon 100 mL
- **Autoclavage** : 20 mn à 121°C

Bouillon Mueller Hinton (MH)

<table>
<thead>
<tr>
<th>Produit, références ou N° de fiche</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller Hinton Broth (PC65-oxoid)</td>
<td>23,8 g</td>
</tr>
<tr>
<td>Eau osmosée</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

- **pH final** : 7,2
- **Présentation** : Tubes de 10 mL
- **Autoclavage** : 15 mn à 121 °C
Gélose Mueller Hinton (MHA)

<table>
<thead>
<tr>
<th>Produit, références ou N° de fiche</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller Hinton Agar (PC66-oxoid)</td>
<td>38 g</td>
</tr>
<tr>
<td>Eau osmosée</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

pH final: 7.2
Présentation: Tubes de 6 mL en pente ou flacon 100 mL
Autoclavage: 15 mn à 121 °C

RINGER cystéiné au 1/4 (RC)

<table>
<thead>
<tr>
<th>Produit, références ou N° de fiche</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastilles de Ringer (PC19)</td>
<td>2 pastilles</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine (PC5)</td>
<td>0,3 g</td>
</tr>
<tr>
<td>Eau osmosée</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

pH final: 6,9
Présentation: Flacons de 100 mL
Autoclavage: 15 mn à 121°C
Résumé

La présente étude porte tout d’abord sur la mesure de l’activité antimicrobienne de 42 plantes médicinales qui sont utilisées traditionnellement en Iran et en Guadeloupe, contre 36 souches microbiennes résistantes à de multiples drogues afin de sélectionner la plante la plus intéressante. Les résultats obtenus révèlent la présence de principes actifs antimicrobiens dans chacune des plantes.

Nous avons finalement sélectionné *Hyptis atrorubens* Poit. qui présente une forte activité antimicrobienne. De plus, cette plante n’a jamais été étudiée dans la littérature. Des analyses phytochimiques et biologiques sur l’extrait hydro-méthanolique des tiges, nous ont permis de trouver pour la première fois les quatre principaux composés actifs de cette plante : acide rosamarinique, rosmarinate de méthyle, quercétine-3-glucoside (isoquercétine) et quercépine-3-galactoside (hypéroside).

L’activité antibactérienne de ces composés a été évaluée par différentes valeurs microbiologiques (CMI, CMB, synergie, dénombrement bactérien et courbes de croissance). La meilleure activité inhibitrice et bactéricide a été trouvée pour le rosmarinate de méthyle (0,3 mg/ml).

Cette recherche suggère la forte potentialité d’activité antimicrobienne pour la combinaison de quatre composés avec une CMI de 70 µg/ml, qui s’approche de la CMI des antibiotiques.

Ce travail présente les composés d’*Hyptis atrorubens* Poit. comme étant de nouveaux agents antimicrobiens et comme étant une source potentielle de lutte contre les bactéries, de plus en plus résistantes aux antibiotiques.

Abstract

This study focuses firstly on the extent of the antimicrobial activity of 42 medicinal plants that are traditionally used in Iran and Guadeloupe, against a panel of 36 pathogenic and multi-resistant bacteria and fungi. The results show presence of the antimicrobial agents in all plants. We finally selected *Hyptis atrorubens* Poit. which has a strong antimicrobial activity. In addition, this plant has never been studied in the literature. Phytochemical and biological analysis of the hydro-methanolic extract of stems, enabled us to find for the first time the four main active compounds of this plant: rosmarinic acid, methyl rosmarinate, quercetin-3-glucoside (isoquercetin) and quercetin-3-galactoside (hyperoside).

The antibacterial activity of these compounds was evaluated by various microbiological values (MIC, MBC, synergy, kill-time and growth curves).

This research suggests the high potential of antimicrobial activity for a combination of all four compounds (MIC = 70 µg/ml), which is very close to MICs of antibiotics.

This work presents the main compounds of *Hyptis atrorubens* Poit. as new antimicrobial agents and as potentially useful tools against bacteria that are more and more resistant to antibiotics.