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Document à joindre au cahier d’observation du protocole d’analyse de la marche de l’enfant. 

Je soussigné Dr ………………………………………..……………………..., avoir examiné l’enfant : 

………………………………………………………………………….. né le …………….…………… 

en consultation à la suite de la pathologie suivante : 

…………………………………………………………………………………………………………… 

Il ne présente pas de critères de non inclusion dans l’étude CTC – Analyse de la marche de l’enfant. 

Critères d’inclusion 

oui non 
Âgés de dix mois à six ans (au cours de la 7ème année de vie : 6 ans + 11 mois) dont la 
marche indépendante est acquise, 
Sans anomalie neurologique ou orthopédique sous-jacente connue, 
Sans trouble de la marche, et sans pathologie autre susceptible de troubler la marche, 
Avec un état cardio-pulmonaire compatible avec l’exercice demandé, 
D’un niveau cognitif compatible avec la communication verbale, le respect des 
consignes et la compréhension des gestes réalisés 
Autorité parentale ayant signé le consentement de participation à l’étude et non 
opposition de l’enfant 
Enfant bénéficiaire d’un régime de sécurité sociale. 

Critères d’exclusion 

Enfants âgés de moins de dix mois et de 7 ans ou plus, oui non 
Ayant un poids de naissance inférieur à 2kg ou prématurité à moins de 34 semaines, 
Ayant séjournée en réanimation, 
Ayant acquis la marche après l’âge de 20 mois, 
Présentant des troubles de la marche de quelque origine que ce soit (inégalité de 
longueur des membres inférieurs, pathologie de la marche, maladie neuromusculaire), 
Présentant des troubles statiques du pied, en particulier : pied creux, des griffes d’orteils, 
des réflexes anormaux ou une flexion dorsale de la cheville inférieure à 20° genou fléchi, 
pieds plats apparaissant anormaux pour l’âge, 
Ayant des troubles de torsion des membres inférieurs à deux écrats-types par rapport à la 
norme pour l’âge, 
Présentant une infirmité motrice cérébrale, 
Présentant une surcharge pondérale, définie par un Indice de Masse Corporelle supérieur 
à 25. 
Présence d’un parent impossible 

Dr …………………......      date 

Signature : 



Biomechanical maturation of joint dynamics during early childhood:  

updated conclusions 

William SAMSON, Angèle Van Hamme2, Guillaume DESROCHES, 
Bruno DOHIN, Raphaël DUMAS, Laurence CHEZE 

Journal of Biomechanics 46 (2013) 2258–2263 
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Abstract 

Dynamic parameters were commonly explored to 
characterize biomechanical maturation of children 
gait, i.e. age revealing joint moment and power 
patterns close to adult patterns. However, the 
literature revealed a large disparity of conclusions 
about maturation depending on the authors, probably 
due to an inappropriate scaling strategy and 
uncontrolled walking speed. The first years of 
independent walking note a high increase of height 
growth and a large variability of dimensionless 
walking speed. Moreover, the dynamic parameters 
were not well studied during early childhood. 
In the present study, seventy-five healthy children 
between 1 and 6 years were measured during gait 
trials at self-selected speed. Four hundred and sixty 
two gait trials were selected to constitute five age 
groups with comparable dimensionless walking speed. 
3D joint moments and powers of lower limbs were 
computed and expressed using dimensionless scaling 
strategy (according to body weight, leg length and 
acceleration of the gravity). Statistical analysis was 
performed to examine intergroup differences. The 
current results concluded about a biomechanical 
maturation of joint dynamics around 4 years for the
ankle and between 6 and 7 years for the knee and the 
hip. Moreover, age groups comparison seemed more 
appropriate in young children using both 
dimensionless strategy and similar walking speed. 
Future investigations will be conducted on a largest 
population (i.e. adding children older than 6 years) to 
clearly define the status of knee and hip. 

Keywords 
Children gait, Joint moment, Joint power, 
Dimensionless parameters, Walking Speed. 

1. Introduction 

Dynamic parameters (often called kinetic parameters 
in the literature) were commonly used to evaluate 
children gait (Schwartz et al., 2008; Chester and 
Wrigley, 2008; Chester et al., 2006; Hallemans et al., 
2006-2005; Stansfield et al., 2003-2001; van der 
Linden et al., 2002; Cupp et al., 1999; Oeffinger et al., 
1997). In particular, dynamic parameters help to 
define age revealing dynamic patterns close to adult 
patterns. However, different conclusions about such a 
“biomechanical” maturation of joint dynamics were 

reported depending on the authors. For example, 
adult-like patterns of joint dynamics seemed to be 
reached at 5 years (Ounpuu et al., 1991), 9-13 years 
(Chester and Wrigley, 2008), 10 years (Oeffinger et 
al., 1996) and more than 10 years (Cupp et al., 1999). 
These disparities of conclusions about biomechanical 
maturation may be explained by an inappropriate 
scaling strategy, by uncontrolled walking speed, and 
by a limited knowledge of the dynamic parameters in 
very young children. 
First, previous studies already demonstrated the 
relevance of using dimensionless scaling strategy to 
express dynamic parameters in children (Mosio et al., 
2003; Pierrynowski and Galea., 2001; Sum et al., 
1998). In the case of dynamic parameters, scaling was 
led according to body height or leg length (as well as 
body weight and acceleration of the gravity). 
Nevertheless, ad hoc scaling strategy (according to 
body weight) was preferred in most of studies about 
children gait, as pointed out by Stansfield (Stansfield 
et al., 2006). From an investigation on ten subjects 
with a wide range of ages, heights and masses 
(respectively 9.2–74.5 years, 1.33-1.96 m and 42.3-
148.8 kg), Pierrynowski and Galea revealed similar 
reduction of inter-subject variability using ad hoc or 
dimensionless scaling strategy (Pierrynowski and 
Galea, 2001). Unfortunately, early childhood was not 
included in the aforementioned study. Like body 
weight, body size (height and leg length) changes 
during growth (McDowell et al., 2009-2005; Botton et 
al., 2008). Relation between age and height is not 
linear in young children (Botton et al., 2008). 
Therefore, dynamic analysis without considering body 
size could compromise conclusions about 
biomechanical maturation. 
Secondly, the literature reported large variations of 
dynamic parameters depending on the dimensionless 
walking speed (speed expressed according to body 
height and acceleration of the gravity), from middle 
childhood until adult age (Schwartz et al., 2008; 
Stanfield et 2006-2001, van der Linden et al., 2002). 
Notably, Stansfield reported that sagittal joint 
moments and powers were predominantly 
characterized by walking speed, not age, in normal 
children (7 to 12 years) (Stansfield et al., 2001). 
Nevertheless, most of studies on joint dynamics in 
healthy children did not considered walking speed 
(dimensionless or not) to evaluate age effect between 



groups. Therefore, dynamic analysis without 
controlling dimensionless walking speed could also 
compromise conclusions about biomechanical 
maturation. 
Thirdly, as underlined by Sutherland in 1997, future 
studies “should be undertaken to fill the gap in the 
available database of moments and powers in the ages 
of 2 through 4 years” (Sutherland, 1997). Since this 
remark, some studies explored joint dynamics during 
early childhood (Samson et al., 2011; Chester and 
Wrigley, 2008; Hallemans et al., 2006, 2005; Chester 
et al., 2006). Nevertheless, these studies were limited 
to the sagittal plane or to one particular joint. These 
studies also used an inappropriate scaling strategy or 
uncontrolled walking speed. 
The present study aims to investigate joint dynamics 
during early childhood (i.e. 1 to 6 years), taking into 
account walking speed and dimensionless scaling 
strategy, in order to clarify the conclusions on 
biomechanical maturation. 

2. Methods 
2.1. Population 

One-hundred and fifty three measurements were 
performed on 75 healthy children between 1 and 6 
years. Measurements started four years ago and are 
still ongoing. Independent walking was achieved 
between 10 and 18 months. Medical examination did 
not reveal any orthopedic or neurological disorder. 
Parents gave informed consent for their child to 
participate in this study, which was approved by the 
local ethics committee. Ideally, children were 
measured four, two and one times per year, 
respectively after one, two and more than three years 
of independent walking. Initial age of inclusion in the 
study varied between 1 and 5 years. Due to some 
imponderable events (e.g. children temporarily sick, 
parents or walking laboratory unavailable, rejection of 
the measurement by children, study desertion), the 
number of yearly measurements per child was not 
systematically respected. 
2.2. Experimental set-up 

Twenty-two skin markers were fixed on anatomical 
landmarks of the pelvis (right and left anterior and 
posterior superior iliac spines) and the lower limbs 
(great trochanter, medial and lateral epicondyles, 
anterior tibialis tuberosity, medial and lateral malleoli, 
calcaneus, metatarsal heads I and V). Fifteen to 
twenty gait trials were measured per subject using a 
Motion Analysis system with eight Eagle cameras 
(Santa Rosa, USA) and two Bertec force platforms 
(Columbus, USA) integrated in the walkway, 
synchronized at sampling frequencies of 100 Hz and 
1000 Hz, respectively. Gait was initiated three meters 
from the platform in order to obtain gait cycles at 
natural speed once the subjects stepped on the force 
plates. Only data from gait cycles with full contact of 
the foot on the platform were processed with a 
maximum of six trials per subject. All the ‘non-
walking’ trials (i.e., running, hopping, wriggling) 
were excluded from analysis.  

2.3. Data processing 

Taking into account of imponderable events, 
incomplete contact of the foot on the platform and 
non-walking trials, 721 gait trials with correct 
dynamic data were computed. After filtering (low-
pass zero-lag, 4th-order, Butterworth filter, 6-Hz 
cutoff frequency), markers trajectories were obtained 
in an Inertial Coordinate System (ICS) (Wu and 
Cavanagh, 1995). The hip joint center localization was 
determined using regression equations of Harrington 
taking into consideration only the healthy children’s 
data (Harrington et al., 2007). The inertial parameters 
were determined using Jensen’s regressions (Jensen, 
1989). The three orthogonal axes (X, Y, Z) 
corresponding to each Segment Coordinate System 
(SCS) were built following the ISB recommendations 
(Wu et al., 2002). The quaternion was extracted from 
the attitude of these axes in the ICS. The angular 
velocity of the proximal and distal segments was 
obtained in the ICS using the quaternion algebra and 
were subtracted in order to compute the (relative) 
joint angular velocity ωω. Net 3D joint moments M

were computed in the ICS by bottom-up inverse 
dynamics (Dumas et al., 2004). The power P was 
computed in 3D by the dot product between M and ω. 
Finally, M were expressed in the joint coordinate 
systems (Desroches et al., 2010) and both M and P

were re-sampled on percentage of the gait cycle and 
expressed using the dimensionless scaling strategy
(Hof, 1996), using the leg length as a metric value 
(distance from the ground to the great trochanter). 
Walking speed was defined from one foot contact to 
the next foot contact and expressed with a 
dimensionless parameter (Hof, 1996). 
2.4. Age groups definition and statistical analysis

After ordering the current population by age, five 
equal groups were constituted. Unfortunately, 
statistical intergroup differences appeared between 
groups regarding dimensionless walking speed 
(Kolmogorov-Smirnov, Bonferroni adjustment, 
p<0.005). Thus, the initial speed range was 
progressively decreased from the extreme speeds 
([0.09 0.72]) until statistical intergroup differences 
disappeared between the five groups newly formed 
(Groups 1 to 5) (Figure 1, Table 1). The walking 
speed and ages were compared between groups using 
a Kruskal-Wallis test. When significant, a Wilcoxon 
rank-sum test was performed to examine intergroup 
differences (Bonferroni adjustment, p<0.005). The 
maximum range of dimensionless walking speed 
avoiding statistical intergroup differences was [0.29 
0.51]. Consequently, 462 gait trials with a mean 
walking speed of 0.41±0.06 were kept to constitute 
age groups, gathering approximately to 64% of the 
complete gait trials (Figure 1a). The characteristics of 
the five age groups were described in Table 1. As 
expected, age criteria systematically revealed 
significant intergroup differences while no statistical 
difference was noted regarding speed criteria. Finally, 
statistical analysis was conducted on curves peaks 
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Table 1 Subject characteristics of each
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Gp
Age range
(years)  

Mean age
(years)  

 Trials
Height 
(m)  

M
(

1 1.1 – 2.1 1.7 ± 0.3 93  0.84 ± 0.05 1

2 2.1 – 3.1 2.6 ± 0.3 93  0.92 ± 0.03 1

3 3.1 – 3.7 3.4 ± 0.2 92  0.98 ± 0.04 1

4 3.7 – 4.7 4.3 ± 0.3 92  1.04 ± 0.05 1

5 4.8 – 5.8 5.3 ± 0.3 92  1.13 ± 0.06 2
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Table 2 Definition of curve pe
analysis. Each gait cyclewas de
contact until the next heel conta
expressed as a percentage of 
response: 0–15% of the gait cycle
the gait cycle; terminal stance: 2
pre- swing: 50–60% of the gait cyc
of the gait cycle; mid-swing: 80–8
terminal swing: 85–100% of the
2004)) 
Joints  Peaks  
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A1  Plantar flexion moment 
A2  Inversion moment  
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A4  Adduction moment  
A5  Absorbed energy  
A6  Absorbed energy  
A7  Generated energy  
Knee     
K1  Flexion moment  
K2  Extension moment  
K3  Flexion moment  
K4  Abduction moment  
K5  Abduction moment  
K6  Internal rotation moment
K7  External rotation moment
K8  Absorbed energy  
K9  Generated energy  
K10  Absorbed energy  
K11  Generated energy  
K12  Absorbed energy  
K13  Generated energy  
K14  Absorbed energy  
Hip     
H1  Extension moment  
H2  Flexion moment  
H3  Extension moment  
H4  Abduction moment  
H5  Abduction moment  
H6  Internal rotation moment
H7  Internal rotation moment
H8  Generated energy  
H9  Generated energy  
H10  Generated energy  
H11  Absorbed energy  

. 
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curve peaks due to this temporal-distance parameter 
(Schwartz et al., 2008; Stansfield et al., 2006-2001). 
Apart from intergroup differences discussed later, the 
results were similar to those found in the literature for 
joint moments and powers curve patterns (Samson et 
al., 2009; Schwartz et al., 2008; Chester and Wrigley 
2008, Chester et al., 2006; Stansfield et al., 2006-
2001; Hallemans et al., 2006-2005; Cupp et al., 1999; 
Oeffinger et al., 1997). Slight pattern variations 
should probably be due to the choice of the inverse 
dynamics processing (e.g., inertial parameters 
definition, joint center location, calculation method). 
The main difference in the curve patterns relative to 
literature was noted for the hip. Three reasons could 
explain this difference. First, the current population 
was younger than most of children samples from the 
literature: incomplete biomechanical maturation of hip 
dynamics could basically contribute to this non 
common curve pattern. Secondly, the hip joint center 
was located from more recent regressions (Harrington 
et al., 2007). Thirdly, the 3D power computation was 
defined in 3D by the dot product between the net joint 
moment M and the angular velocity ωω. In the 
literature, the power is often defined in 2D (i.e., 
Mx ωx, My ωy and Mz ωz) for interpretation purpose. 
However, this decomposition of the power on three 
axes remains inconsistent from a mechanical point of 
view, as power is a scalar quantity. Therefore, using 
3D power (rather than 2D) was preferred although 
some differences could be introduced between the 
current results and the literature.  
In contrast to the curve patterns, intergroup 
differences exhibited several dissimilarities compared 
to most of previous studies. For example, the ankle 
defined a mature dynamics between 5 and 13 years 
depending on the study (Samson et al., 2011; Chester 
and Wrigley 2008, Chester et al., 2006; Ganley and 
Powers, 2005; Cupp et al., 1999; Oeffinger et al., 
1997, Ounpuu et al., 1991). This high disparity in the 
literature conclusions seemed to be explained by 
subjects size (or leg length) variations, uncontrolled 
walking speed and the limited number of studies on 
children under 5 years old. The dependency of the 
scaling strategy on dynamics analysis was already 
demonstrated in adults (Moisio et al., 2003; Sum et 
al., 1998). As both body weight and size change 
quickly during growth in young children, using 
dimensionless rather than ad hoc scaling strategy 
appeared more appropriate in young children 
(Appendix 1). The dependency of dynamics analysis 
on dimensionless walking speed was also identified 
(Schwartz et al., 2008; Stansfield et al., 2006-2001). 
As walking speed variation is high in young children 
(Appendix 2), controlling dimensionless walking 
speed also appeared essential. 

Table 3 Statistical analysis of peak curves (no mark: no 
significant difference between 
groups; * p<5.10-3; ** p<5.10-4; *** p<5.10-5). Only curve 
peaks with a significant p-value after the Kruskal–Wallis 

test are displayed. The results are as follows: the first 

column compared Group 1 with Group 2, the second 
column compared Group 1 with Group 3, and the seventh 

column compared Group 2 with Group 3, etc.

4.2. Updated biomechanical maturation 

As far as the ankle joint is concerned, intergroup 
differences (well ordered) disappeared at Group 4, 
suggesting a biomechanical maturation of ankle joint 
dynamics around 4 years. Knee dynamics revealed 
high variations between the youngest and the other 
groups, suggesting a rapid joint maturation during the 
first years of independent walking. The only 
differences observed between older groups (Groups 4 
and 5) concerned power during swing (K13 and K14). 
These differences were well ordered in this study on 
children between 1 and 6 years old but non-ordered in 
the Stansfield’s study on children older than 7 years 
(Stansfield et al., 2001). Consequently, it can be 
hypothesized a biomechanical maturation of knee 
joint dynamics shortly after the age of the oldest 
group (i.e. between 6 and 7 years). Finally for the hip, 
in contrast to the ankle and the knee, on the one hand, 
most of intergroup differences were well ordered (H1, 
H2, H4, H7, H10 and H11), and on the other hand, all 
of the four dynamic parameters (i.e. three joints 
moments and one power) were affected by age. The 
differences of flexion moment and generated energy 
peaks (H2 and H10) between older groups were 
consistently ordered and significant, not in the 
Stansfield’s study (Stansfield et al., 2001). Similar to 
the knee, the hip dynamics might be biomechanically 
mature between 6 and 7 years. 
4.3. Limitations and future investigations 

Today, the current population measuring is to be 
extended, notably to realize same investigations on 
children older than 6 years and with different speed 
groups due to three limitations. First, conclusions 
were based on only one mean speed (i.e. ~0.4 
dimensionless walking speed), representing a 
common walking speed previously reported in the 
literature during childhood (Schwartz 2008, 
Hallemans 2005; van der Linden et al., 2002; 



Stansfield et al., 2001). Secondly, the biomechanical 
maturation of knee and hip joint dynamics seemed to 
achieve shortly after 6 years, the current age limit of 
the study. Thirdly, a number of age-related differences 
were found in the present age group, which were not 
found in age groups over 7 years. To conclude then 
that the maturation takes place just between age 6 and 
7 is may be worded with caution before studying older 
children. 
Another limitation of the present work concerned the 
regressions used to define segment inertial properties 
(i.e., based on children older than 4 years). 
Nevertheless, to the authors’ knowledge, no other 
regression was available for such a young population. 
Van Dam proposed regressions of segment inertial 
parameters in children younger than 3 years (Van 
Dam et al., 2009), but without the foot segment which 
was required in the processing of the present work.
Finally, the choice was done to limit statistical 
analysis on curve peaks, which was already large (i.e. 
32 curve peaks × 10 possible intergroup comparisons 
= 320 combinations). Similar investigations on this 
population might be done on curve patterns using 
classical indicators (e.g. ICC, CMC, RMSE). 
4.4. Concluding remarks 

The literature revealed a large disparity of conclusions 
about maturation depending on the authors. 
Consequently, this study analyzed joint dynamics in 
very young children distributed in five age groups 
with similar dimensionless walking speed to evaluate 
age effect on dimensionless 3D moments and powers. 
More than four hundred gait trials were analyzed. 
During early childhood, the current results 
demonstrated that joint dynamics was influenced by 
age. This influence was not reported in children older 
than 7 years (Stansfield et al., 2001). Updated 
conclusions on biomechanical maturation of joint 
dynamics were around 4 years for the ankle and 
between 6 and 7 years for the knee and the hip. Future 
investigations will be done on a larger population to 
clarify the current conclusions on the knee and the hip 
and to explore different dimensionless walking speeds 
during growth. 
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