L. Allison, I. Trevor, and . Dix, A bit-string longest-common-subsequence algorithm, Information Processing Letters, vol.23, issue.5, pp.305-310, 1986.
DOI : 10.1016/0020-0190(86)90091-8

F. Stephen, W. Altschul, W. Gish, . Miller, W. Eugene et al., Basic local alignment search tool, Journal of molecular biology, vol.215, issue.3, pp.403-410, 1990.

[. Andonov, N. Malod-dognin, and N. Yanev, Maximum Contact Map Overlap Revisited, Journal of Computational Biology, vol.18, issue.1, pp.27-41, 2011.
DOI : 10.1089/cmb.2009.0196

URL : https://hal.archives-ouvertes.fr/inria-00536624

A. Buluç, J. R. Gilbert, and C. Budak, Solving path problems on the GPU, Parallel Computing, vol.36, issue.5-6, pp.241-253, 2010.
DOI : 10.1016/j.parco.2009.12.002

R. [. Churchill and . Doerge, Empirical threshold values for quantitative trait mapping, Genetics, vol.138, issue.3, p.963, 1994.

G. Chapuis, O. Filangi, J. Elsen, D. Lavenier, P. L. et al., Graphics Processing Unit???Accelerated Quantitative Trait Loci Detection, Journal of Computational Biology, vol.20, issue.9, pp.672-686, 2013.
DOI : 10.1089/cmb.2012.0136

URL : https://hal.archives-ouvertes.fr/hal-00903794

M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and J. F. Reid, A fast and practical bit-vector algorithm for the Longest Common Subsequence problem, Information Processing Letters, vol.80, issue.6, pp.279-285, 2001.
DOI : 10.1016/S0020-0190(01)00182-X

H. Thomas, C. Cormen, R. L. Stein, C. E. Rivest, and . Leiserson, Introduction to Algorithms, 2001.

S. Deorowicz, Bit-parallel algorithm for the constrained longest common subsequence problem, Fundamenta Informaticae, vol.99, issue.4, pp.409-433, 2010.

W. Edsger and . D?kstra, A note on two problems in connexion with graphs. Numerische mathematik, pp.269-271, 1959.

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1, pp.46-55, 1998.
DOI : 10.1109/99.660313

C. Robert and . Edgar, Muscle, BMC bioinformatics, vol.5, issue.1, p.113, 2004.
DOI : 10.1007/978-1-349-13443-4_4

URL : https://hal.archives-ouvertes.fr/hal-00897814

B. Jean-michel-elsen, B. Mangin, D. Goffinet, P. L. Boichard, and R. , Alternative models for QTL detection in livestock . i. general introduction, Genet. Sel. Evol, vol.31, issue.10, pp.1-121297, 1186.

[. Farrar, Striped Smith-Waterman speeds database searches six times over other SIMD implementations, Bioinformatics, vol.23, issue.2, pp.156-161, 2007.
DOI : 10.1093/bioinformatics/btl582

. Fca-+-00-]-f, W. Farnir, J. J. Coppieters, P. Arranz, N. Berzi et al., Extensive genome-wide linkage disequilibrium in cattle, Genome Res, vol.10, pp.220-227, 2000.

J. [. Favier, S. Elsen, A. De-givry, and . Legarra, Optimal haplotype reconstruction in half-sib families, ICLP-10 workshop on Constraint Based Methods for Bioinformatics, 2010.

. Fmg-+-10-]-o, C. Filangi, H. Moreno, A. Gilbert, P. L. Legarra et al., QTLMap, a software for QTL detection in outbred populations, Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, pp.1-6, 2010.

G. N. Frederickson, Fast Algorithms for Shortest Paths in Planar Graphs, with Applications, SIAM Journal on Computing, vol.16, issue.6, pp.1004-1022, 1987.
DOI : 10.1137/0216064

[. Fang, A. L. Varbanescu, and H. Sips, A Comprehensive Performance Comparison of CUDA and OpenCL, 2011 International Conference on Parallel Processing, pp.216-225, 2011.
DOI : 10.1109/ICPP.2011.45

R. [. Goffinet and . Didier, Alternative models for QTL detection in livestock. III. Heteroskedastic model and models corresponding to several distributions of the QTL effect, Genetics Selection Evolution, vol.31, issue.4, pp.341-350, 1999.
DOI : 10.1186/1297-9686-31-4-341

URL : https://hal.archives-ouvertes.fr/hal-00199719

P. H. Gilbert, C. Roy, D. Moreno, J. M. Robelin, and . Elsen, QTLMap, a software for QTL detection in outbred populations, In Annals of Human Genetics, vol.72, pp.694-694, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01193540

W. Gropp, L. Ewing, A. Lusk, and . Skjellum, Using MPI-: Portable Parallel Programming with the Message Passing Interface, 1999.

J. Gibrat, T. Madej, H. Stephen, and . Bryant, Surprising similarities in structure comparison, Current Opinion in Structural Biology, vol.6, issue.3, pp.377-385, 1996.
DOI : 10.1016/S0959-440X(96)80058-3

[. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall, Evaluating graph coloring on GPUs, ACM SIGPLAN Notices, vol.46, issue.8, p.297, 2011.
DOI : 10.1145/2038037.1941597

D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick et al., Big data: The future of biocuration, Nature, vol.2, issue.7209, pp.45547-50, 2008.
DOI : 10.1038/455047a

P. Harish and P. Narayanan, Accelerating Large Graph Algorithms on the GPU Using CUDA, High performance computing?HiPC, pp.197-208, 2007.
DOI : 10.1007/978-3-540-77220-0_21

. R. Hps-+-10-]-j, D. K. Humphrey, K. E. Price, A. L. Spagnoli, E. J. Paolini et al., CULA: hybrid GPU accelerated linear algebra routines, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p.1, 2010.

A. [. Hill and . Robertson, Linkage disequilibrium in finite populations, Theoretical and Applied Genetics, vol.19, issue.6, pp.226-231, 1968.
DOI : 10.1007/BF01245622

A. [. Hemani, W. Theocharidis, C. Wei, and . Haley, EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards, Bioinformatics, vol.27, issue.11, pp.1462-1465, 2011.
DOI : 10.1093/bioinformatics/btr172

H. Hyyrö, Bit-parallel LCS-length computation revisited, Proc. 15th Australasian Workshop on Combinatorial Algorithms, pp.16-27, 2004.

K. Inoue, A. Doncescu, and H. Nabeshima, Hypothesizing about Causal Networks with Positive and Negative Effects by Meta-level Abduction, Inductive Logic Programming, pp.114-129, 2011.
DOI : 10.1007/978-3-642-21295-6_15

M. Richard and . Karp, Reducibility among combinatorial problems

S. Kuo and G. R. Cross, An improved algorithm to find the length of the longest common subsequence of two strings, ACM SIGIR Forum, pp.89-99, 1989.
DOI : 10.1145/74697.74702

K. Karimi, N. G. Dickson, and F. Hamze, A performance comparison of CUDA and OpenCL. arXiv preprint, 2010.

J. [. Knott, C. Elsen, and . Haley, Methods for multiple-marker mapping of quantitative trait loci in half-sib populations, Theoretical and Applied Genetics, vol.93, issue.1-2, pp.71-80, 1007.
DOI : 10.1007/BF00225729

J. Konc and D. Jane?i?, ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment, Bioinformatics, vol.26, issue.9, pp.1160-1168, 2010.
DOI : 10.1093/bioinformatics/btq100

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

G. Karypis and V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs, Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '96, pp.96-129, 1998.
DOI : 10.1145/369028.369103

J. Gary, J. T. Katz, and J. Kider, All-pairs shortest-paths for large graphs on the GPU, Proceedings of the 23rd ACM SIG- GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH '08, pp.47-55, 2008.

P. Kolodny, M. Koehl, and . Levitt, Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures, Journal of Molecular Biology, vol.346, issue.4, pp.1173-1188, 2005.
DOI : 10.1016/j.jmb.2004.12.032

K. Kimura, A. Koike, and K. Nakai, A BIT-PARALLEL DYNAMIC PROGRAMMING ALGORITHM SUITABLE FOR DNA SEQUENCE ALIGNMENT, Journal of Bioinformatics and Computational Biology, vol.10, issue.04, pp.10-2012
DOI : 10.1142/S0219720012500023

K. Katoh and H. Toh, Parallelization of the MAFFT multiple sequence alignment program, Bioinformatics, vol.26, issue.15, pp.1899-1900, 2010.
DOI : 10.1093/bioinformatics/btq224

D. Lavenier, PLAST: parallel local alignment search tool for database comparison, BMC bioinformatics, vol.10, issue.1, p.329, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00425301

P. Liu, K. Dimitris, . Agrafiotis, L. Douglas, and . Theobald, Fast determination of the optimal rotational matrix for macromolecular superpositions, Journal of Computational Chemistry, vol.450, issue.Suppl 2, pp.311561-1563, 2010.
DOI : 10.1002/jcc.21439

]. R. Lew64 and . Lewontin, The interaction of selection and linkage. II. Optimum models, Genetics, vol.50, pp.757-782, 1964.

R. [. Legarra and . Fernando, Linear models for joint association and linkage QTL mapping, Genetics Selection Evolution, vol.41, issue.1, p.43, 2009.
DOI : 10.1186/1297-9686-41-43

[. Liu, W. Huang, J. Johnson, and S. Vaidya, GPU Accelerated Smith-Waterman, Computational Science?ICCS 2006, pp.188-195, 2006.
DOI : 10.1007/11758549_29

J. Leskovec, D. Huttenlocher, and J. Kleinberg, Predicting positive and negative links in online social networks, Proceedings of the 19th international conference on World wide web, WWW '10, pp.641-650, 2010.
DOI : 10.1145/1772690.1772756

J. Leskovec, J. Kevin, A. Lang, . Dasgupta, W. Michael et al., Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters, Internet Mathematics, vol.6, issue.1, pp.29-123, 2009.
DOI : 10.1080/15427951.2009.10129177

L. Ligowski and W. Rudnicki, An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases, 2009 IEEE International Symposium on Parallel & Distributed Processing, pp.1-8, 2009.
DOI : 10.1109/IPDPS.2009.5160931

[. Roy, D. Jm-elsen, B. Boichard, . Mangin, B. Bidanel et al., An algorithm for QTL detection in mixture of full and half-sib families, Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, pp.257-260, 1998.

[. Lai and S. Sahni, Anomalies in parallel branch-and-bound algorithms, Communications of the ACM, vol.27, issue.6, pp.594-602, 1984.
DOI : 10.1145/358080.358103

Y. Liu, B. Schmidt, L. Douglas, and . Maskell, MSA-CUDA: multiple sequence alignment on graphics processing units with CUDA, Application-specific Systems, Architectures and Processors 20th IEEE International Conference on, pp.121-128, 2009.

[. Liu, B. Schmidt, L. Douglas, and . Maskell, CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions, BMC Research Notes, vol.3, issue.1, p.93, 2010.
DOI : 10.1186/1756-0500-3-93

[. Liu, B. Schmidt, L. Douglas, and . Maskell, MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities, Bioinformatics, vol.26, issue.16, pp.261958-1964, 2010.
DOI : 10.1093/bioinformatics/btq338

[. Liu, B. Schmidt, G. Voss, and W. Müller-wittig, GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment, High Performance Computing-HiPC, pp.363-374, 2006.
DOI : 10.1007/11945918_37

[. Lynch, Big data: How do your data grow?, Nature, vol.455, issue.7209, pp.28-29, 2008.
DOI : 10.1038/455028a

E. Gordon and . Moore, Cramming more components onto integrated circuits, 1965.

[. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, An Experimental Study of a Parallel Shortest Path Algorithm for Solving Large-Scale Graph Instances, ALENEX. SIAM, 2007.
DOI : 10.1137/1.9781611972870.3

R. Malod-dognin, N. Andonov, and . Yanev, Maximum Cliques in Protein Structure Comparison, Experimental Algorithms, pp.106-117, 2010.
DOI : 10.1007/978-3-642-13193-6_10

URL : https://hal.archives-ouvertes.fr/inria-00536700

K. Matsumoto, N. Nakasato, and S. G. Sedukhin, Blocked United Algorithm for the All-Pairs Shortest Paths Problem on Hybrid CPU-GPU Systems, IEICE Transactions on Information and Systems, vol.95, issue.12, pp.952759-2768, 2012.
DOI : 10.1587/transinf.E95.D.2759

K. Mehlhorn, S. Näher, and C. Uhrig, Leda: A platform for combinatorial and geometric computing, 1999.

E. Gordon and . Moore, Excerpts from a conversation with gordon moore: Moore's law, 2005.

U. Meyer and P. Sanders, ??-stepping: a parallelizable shortest path algorithm, Journal of Algorithms, vol.49, issue.1, pp.114-152, 2003.
DOI : 10.1016/S0196-6774(03)00076-2

A. Svetlin, G. Manavski, and . Valle, CUDA compatible GPU cards as efficient hardware accelerators for smith-waterman sequence alignment, BMC bioinformatics, issue.9 2, p.10, 2008.

G. Myers, A fast bit-vector algorithm for approximate string matching based on dynamic programming, Journal of the ACM, vol.46, issue.3, pp.395-415, 1999.
DOI : 10.1145/316542.316550

[. Ortega-arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-escribano, A tuned, concurrent-kernel approach to speed up the APSP problem, 2013.

[. Okuyama, F. Ino, and K. Hagihara, A task parallel algorithm for finding all-pairs shortest paths using the GPU, International Journal of High Performance Computing and Networking, vol.7, issue.2, pp.87-98, 2012.
DOI : 10.1504/IJHPCN.2012.046384

P. Guilherme, . Pezzi, C. Márcia, E. Cera, N. Mathias et al., On-line scheduling of MPI-2 programs with hierarchical work stealing, Computer Architecture and High Performance Computing SBAC-PAD 2007. 19th International Symposium on, pp.247-254, 2007.

J. [. Rabier, J. M. Azais, C. Elsen, and . Delmas, Threshold and power for Quantitative Trait Locus detection, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00482142

T. Rognes and E. Seeberg, Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors, Bioinformatics, vol.16, issue.8, pp.699-706, 2000.
DOI : 10.1093/bioinformatics/16.8.699

E. [. Strickland, J. S. Barnes, and . Sokol, Optimal Protein Structure Alignment Using Maximum Cliques, Operations Research, vol.53, issue.3, pp.389-402, 2005.
DOI : 10.1287/opre.1040.0189

G. Seaton, J. Hernandez, J. A. Grunchec, I. White, J. Allen et al., GridQTL: a grid portal for QTL mapping of compute intensive datasets, Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, pp.13-18, 2006.

C. S. Shk-+-02-]-george-seaton, S. A. Haley, M. Knott, P. M. Kearsey, and . Visscher, QTL Express: mapping quantitative trait loci in simple and complex pedigrees, Bioinformatics, vol.18, issue.2, pp.339-340, 2002.
DOI : 10.1093/bioinformatics/18.2.339

S. Schmitt, D. Kuhn, and G. Klebe, A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology, Journal of Molecular Biology, vol.323, issue.2, pp.387-406, 2002.
DOI : 10.1016/S0022-2836(02)00811-2

D. [. Subbiah, M. Laurents, and . Levitt, Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core, Current Biology, vol.3, issue.3, pp.141-148, 1993.
DOI : 10.1016/0960-9822(93)90255-M

F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences, pp.5463-5467, 1977.
DOI : 10.1073/pnas.74.12.5463

M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-lederman, MPI: the complete reference, 1995.

[. Segundo, F. Matia, D. Rodríguez-losada, and M. Hernando, An improved bit parallel exact maximum clique algorithm. Optimization Letters, pp.1-13, 2013.

[. Segundo, D. Rodríguez-losada, and A. Jiménez, An exact bit-parallel algorithm for the maximum clique problem, Computers & Operations Research, vol.38, issue.2, pp.571-581, 2011.
DOI : 10.1016/j.cor.2010.07.019

T. Schank and D. Wagner, Finding, Counting and Listing All Triangles in Large Graphs, an Experimental Study, Experimental and Efficient Algorithms, pp.606-609, 2005.
DOI : 10.1007/11427186_54

V. Traag and J. Bruggeman, Community detection in networks with positive and negative links, Physical Review E, vol.80, issue.3, p.36115, 2009.
DOI : 10.1103/PhysRevE.80.036115

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

[. Thimm, P. Kreher, and . Merkey, A parallel implementation for the maximum clique problem, Journal of Combinatorial Mathematics and Combinatorial Computing, vol.63, p.183, 2007.

Y. Chuan, C. L. Tang, M. Lu, . Dah-tsyr, Y. Chang et al., Constrained multiple sequence alignment tool development and its application to rnase family alignment, Journal of Bioinformatics and Computational Biology, vol.1, issue.02, pp.267-287, 2003.

Y. Tsai, The constrained longest common subsequence problem, Information Processing Letters, vol.88, issue.4, pp.173-176, 2003.
DOI : 10.1016/j.ipl.2003.07.001

Y. Tomita, T. Sutani, S. Higashi, M. Takahashi, and . Wakatsuki, A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique, WALCOM: Algorithms and computation, pp.191-203, 2010.
DOI : 10.1007/978-3-642-11440-3_18

N. Ukiyama and H. Imai, Parallel multiple alignments and their implementation on CM5, Genome Informatics, vol.4, pp.103-108, 1993.

V. Volkov and J. W. Demmel, Benchmarking GPUs to tune dense linear algebra, 2008 SC, International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-11, 2008.
DOI : 10.1109/SC.2008.5214359

V. Volkov, Better performance at lower occupancy, Proceedings of the GPU Technology Conference, 2010.

D. Panagiotis, . Vouzis, V. Nikolaos, and . Sahinidis, GPU-BLAST: using graphics processors to accelerate protein sequence alignment, Bioinformatics, vol.27, issue.2, pp.182-188, 2011.

M. Waldrop, Big data: Wikiomics, Nature, vol.455, issue.7209, p.45522, 2008.
DOI : 10.1038/455022a

[. Wohlers, R. Andonov, W. Gunnar, and . Klau, DALIX: Optimal DALI Protein Structure Alignment, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.10, issue.1, pp.26-36, 2013.
DOI : 10.1109/TCBB.2012.143

[. Wang, D. Korkin, and Y. Shang, A fast multiple longest common subsequence (MLCS) algorithm. Knowledge and Data Engineering, IEEE Transactions on, vol.23, issue.3, pp.321-334, 2011.

A. Wozniak, Using video-oriented instructions to speed up sequence comparison Computer applications in the biosciences, CABIOS, vol.13, issue.2, pp.145-150, 1997.

[. Wohlers, L. Petzold, F. Domingues, and G. Klau, PAUL: protein structural alignment using integer linear programming and Lagrangian relaxation, BMC Bioinformatics, vol.10, issue.Suppl 13, p.2, 2009.
DOI : 10.1186/1471-2105-10-S13-P2

[. Weiguo, B. Schmidt, G. Voss, and W. Muller-wittig, Streaming algorithms for biological sequence alignment on GPUs. Parallel and Distributed Systems, IEEE Transactions on, vol.18, issue.9, pp.1270-1281, 2007.

S. Xiao and . Wu-chun-feng, Inter-block GPU communication via fast barrier synchronization, Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pp.1-12, 2010.

[. Yang, Y. Xu, and Y. Shang, An efficient parallel algorithm for longest common subsequence problem on GPUs, Proceedings of the world congress on engineering, 2010.

K. Zhao, X. Chu, and . Gpu-blastn, Accelerating nucleotide sequence alignment by GPUs

Y. Zhang and J. Skolnick, Scoring function for automated assessment of protein structure template quality, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.4, pp.702-710, 2004.
DOI : 10.1002/prot.20264

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Research, vol.33, issue.7, pp.2302-2309, 2005.
DOI : 10.1093/nar/gki524