. Théorème, Soit ? : E(a, b) ? ?? M un plongement d'ellipsoide dans une variété de classe C * . Soit C une courbe symplectique plongée, d'aire supérieure à b. Alors il existe un plongement ? : E(a, b) ? ??

. Idée-de-preuve, Il est tout d'abord évident que pour ? ? 1, ?E(p, q) se plonge dans M , de sorte que son intersection avec C soit le grand axe Eclatons ce (petit) ellipsoide, et notons S le diviseur singulier et?Cet? et?C la transformée stricte de C. La courbê C intersecte S positivement et transversalement en un point de S max d'après la proposition A.8. Ainsi, S??CS?? S??C est un diviseur singulier au sens de la définition 4.1. La classe A := [? * ?] ? ? w i e i vérifie Gr (A) =0puisque E(a, b) se plonge dans M , A · E>0 puisque qA est représentée pour certains J génériques d'après la méthode de Donaldson. De plus, la condition A ? (C) >b implique exactement que A ·, On peut donc procéder à l'inflation singulière le long de la classe A, comme dans la proposition 4.2, et on obtient une forme symplectique dans la classe PD(A)

R. Buse and R. Hind, Symplectic embeddings of ellipsoids in dimension greater than four, Geometry & Topology, vol.15, issue.4, pp.2091-2110, 2011.
DOI : 10.2140/gt.2011.15.2091

O. Buse and R. Hind, Abstract, Compositio Mathematica, vol.44, issue.05, pp.889-902, 2013.
DOI : 10.1007/PL00001678

URL : https://hal.archives-ouvertes.fr/hal-00943318

P. Biran, Symplectic Packing in Dimension 4, Geometric And Functional Analysis, vol.7, issue.3, pp.420-437, 1997.
DOI : 10.1007/s000390050014

]. P. Bir99a and . Biran, A stability property of symplectic packing, Invent. Math, vol.136, issue.1, pp.123-155, 1999.

P. Biran, Constructing new ample divisors out of old ones. Duke Math, J, vol.98, issue.1, pp.113-135, 1999.

]. P. Bir01 and . Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal, vol.11, issue.3, pp.407-464, 2001.

L. Buhovsky and E. Opshtein, Some quantitative results in C 0 symplectic geometry. ArXiv e-prints, 2014.

D. K. Choi, D. Cristofaro-gardiner, M. Frenkel, V. G. Hutchings, and . Ramos, Symplectic embeddings into four-dimensional concave toric domains . ArXiv e-prints, 2013.

B. Fayad and A. Katok, Constructions in elliptic dynamics. Ergodic Theory Dynam, Systems, vol.24, issue.5, pp.1477-1520, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00103555

R. E. Gompf, A New Construction of Symplectic Manifolds, The Annals of Mathematics, vol.142, issue.3, pp.527-595, 1995.
DOI : 10.2307/2118554

M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Inventiones Mathematicae, vol.113, issue.108, pp.307-347, 1985.
DOI : 10.1007/BF01388806

L. Guth, Symplectic embeddings of polydisks, Inventiones mathematicae, vol.42, issue.2, pp.477-489, 2008.
DOI : 10.1007/s00222-007-0103-9

S. [. Hind and . Lisi, Symplectic embeddings of polydisks. ArXiv e-prints, 2013.

V. Humilière, R. Leclercq, and S. Seyffadini, Coisotropic rigidity and $C^{0}$ -symplectic geometry, Duke Mathematical Journal, vol.164, issue.4, 2013.
DOI : 10.1215/00127094-2881701

H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics . Birkhäuser Advanced Texts : Basler Lehrbücher, 1994.

E. Lerman, Symplectic cuts, Mathematical Research Letters, vol.2, issue.3, pp.247-258, 1995.
DOI : 10.4310/MRL.1995.v2.n3.a2

T. J. Li and A. Liu, General wall crossing formula, Mathematical Research Letters, vol.2, issue.6, pp.797-810, 1995.
DOI : 10.4310/MRL.1995.v2.n6.a11

T. Li and A. Liu, The equivalence between SW and Gr in the case where b + =1, Internat. Math. Res. Notices, issue.7, pp.335-345, 1999.

T. Li and A. Liu, Uniqueness of Symplectic Canonical Class, Surface Cone and Symplectic Cone of 4-Manifolds with B+ = 1, Journal of Differential Geometry, vol.58, issue.2, pp.331-370, 2001.
DOI : 10.4310/jdg/1090348329

F. Lalonde and D. Mcduff, Local non-squeezing theorems and stability, Geometric and Functional Analysis, vol.82, issue.2, pp.364-386, 1995.
DOI : 10.1007/BF01895671

F. Laudenbach and J. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, ff., approx. 8 pp. (electronic), p.161, 1994.

D. Mcduff, The local behaviour of holomorphic curves in almost complex 4-manifolds, Journal of Differential Geometry, vol.34, issue.1, pp.143-164, 1991.
DOI : 10.4310/jdg/1214446994

D. Mcduff, From symplectic deformation to isotopy, Topics in symplectic 4-manifolds First Int. Press Lect, pp.85-99, 1996.

D. Mcduff, Symplectic embeddings of 4-dimensional ellipsoids, Journal of Topology, vol.42, issue.1, pp.1-22, 2009.
DOI : 10.1112/jtopol/jtn031

]. D. Mcd13 and . Mcduff, Symplectic embeddings of 4-dimensional ellipsoids : erratum. ArXiv e-prints, 2013.

D. Mcduff and E. Opshtein, Nongeneric J-holomorphic curves and singular inflation. ArXiv e-prints, 2013.

D. Mcduff and L. Polterovich, Symplectic packings and algebraic geometry, Inventiones Mathematicae, vol.81, issue.1, pp.405-434, 1994.
DOI : 10.1007/BF01231766

D. Mcduff and D. Salamon, Introduction to symplectic topology. Oxford Mathematical Monographs, 1998.

D. Mcduff and F. Schlenk, The embedding capacity of 4-dimensional symplectic ellipsoids, Annals of Mathematics, vol.175, issue.3, pp.1191-1282, 2012.
DOI : 10.4007/annals.2012.175.3.5

E. Opshtein, Abstract, Compositio Mathematica, vol.143, issue.06, pp.1558-1575, 2007.
DOI : 10.1112/S0010437X07003041

E. Opshtein, $\mathcal{C}^0$-rigidity of characteristics in symplectic geometry, Annales scientifiques de l'??cole normale sup??rieure, vol.42, issue.5, pp.857-864, 2009.
DOI : 10.24033/asens.2111

E. Opshtein, Singular Polarizations and Ellipsoid Packings, International Mathematics Research Notices, issue.11, pp.2568-2600, 2013.
DOI : 10.1093/imrn/rns137

URL : http://imrn.oxfordjournals.org/cgi/content/short/rns137v1

E. Opshtein, Symplectic packings in dimension $4$ and singular curves, Journal of Symplectic Geometry, vol.13, issue.2, 2014.
DOI : 10.4310/JSG.2015.v13.n2.a3

F. Schlenk, Embedding problems in symplectic geometry, 2005.
DOI : 10.1515/9783110199697

]. V. She09 and . Shevchishin, Secondary Stiefel-Whitney class and diffeomorphisms of rational and ruled symplectic 4-manifolds. ArXiv e-prints, 2009.

C. Henry and T. , The Seiberg-Witten and Gromov invariants, Math. Res. Lett, vol.2, issue.2, pp.221-238, 1995.

C. H. Taubes, SW ? Gr : from the Seiberg-Witten equations to pseudo-holomorphic curves, Journal of the American Mathematical Society, vol.9, issue.03, pp.845-918, 1996.
DOI : 10.1090/S0894-0347-96-00211-1

L. Traynor, Symplectic packing constructions, Journal of Differential Geometry, vol.41, issue.3, pp.735-751, 1995.
DOI : 10.4310/jdg/1214456483

]. I. Wie09 and . Wieck, Explicit symplectic packings : Symplectic tunneling and new maximal constructions, Oxford Mathematical Monographs. Shaker Verlag, 2009.