]. H. Ama95 and . Amann, Linear and quasilinear parabolic problems, Monographs in Mathematics. Birkhäuser Boston Inc, vol.89, 1995.

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, vol.35, issue.551, pp.161-177, 2000.

G. Basile, A. [. Bovier, J. D. Bouchut, F. Beck, and . Flandoli, Markov Process Related Fields On long time asymptotics of the Vlasov-Fokker- Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials Averaging lemmas without time Fourier transform and application to discretized kinetic equations A regularity theorem for quasilinear parabolic systems under random perturbations, BD99] F. Bouchut and L. Desvillettes, pp.15-44487, 1995.

C. Bardos, F. Golse, and B. Perthame, The rosseland approximation for the radiative transfer equations, Communications on Pure and Applied Mathematics, vol.29, issue.6, pp.691-721, 1987.
DOI : 10.1002/cpa.3160400603

C. Bardos, F. Golse, B. Perthame, and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, Bil09] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics, pp.434-460, 1988.
DOI : 10.1016/0022-1236(88)90096-1

A. Bensoussan, J. Lions, G. C. Papanicolaoubou93-]-f, and . Bouchut, Boundary layers and homogenization of transport processes Existence and uniqueness of a global smooth solution for the Vlasov- Poisson-Fokker-Planck system in three dimensions Brze?niak and S. Peszat. Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Brz97] Z. Brze?niak. On stochastic convolution in Banach spaces and applicationsCH98] T. Cazenave and A. Haraux. An Introduction to Semilinear Evolution Equations. Oxford lecture series in mathematics and its applications, pp.53-157239, 1979.

A. De-bouard and A. Debussche, A Stochastic Nonlinear Schr??dinger Equation??with Multiplicative Noise, Communications in Mathematical Physics, vol.205, issue.1, pp.161-181, 1999.
DOI : 10.1007/s002200050672

. A. Bibliography, M. De-bouard, and . Gazeau, A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers, Ann. Appl. Probab, vol.22, issue.6, pp.2460-2504, 2012.

A. Debussche, S. De-moor, and M. Hofmanova, A regularity result for quasilinear stochastic partial differential equations of parabolic type ArXiv e-prints, 2014.

A. Debussche, S. De, J. Moor, and . Vovelle, Diffusion limit for the radiative transfer equation perturbed by a Markovian process ArXiv e-prints, 2014.

A. Debussche, S. De, J. Moor, and . Vovelle, Diffusion limit for the radiative transfer equation perturbed by a Wiener process ArXiv e-prints, 2014.

P. Degond, T. Goudon, and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J, vol.49, issue.3, pp.1175-1198, 2000.

A. Debussche, M. Hofmanová, J. J. Vovelle-[-dl89-]-r, P. Diperna, A. Denis et al., Degenerate Parabolic Stochastic Partial Differential Equations: Quasilinear case ArXiv e-prints Ordinary differential equations, transport theory and Sobolev spaces Maximum principle for quasilinear SPDE's on a bounded domain without regularity assumptions. Stochastic Process, DM14] S. De Moor. Fractional diffusion limit for a stochastic kinetic equation. Stochastic Process, pp.511-5471104, 1989.

G. Da-prato, J. Zabczykdv12, ]. Debussche, J. N. Vovelleek86-]-s, T. G. Ethier et al., Encyclopedia of Mathematics and Its Applications Diffusion limit for a stochastic kinetic problem Characterization and convergence A short course on operator semigroups, Stochastic Equations in Infinite Dimensions Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical StatisticsEva10] L. C. Evans. Partial differential equations, pp.2305-2326, 1986.

J. P. Fouque, J. Garnier, G. Papanicolaou, and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability Strong solutions for stochastic partial differential equations of gradient type, Ges12] B. Gess, pp.2355-2383, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00172124

I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields, pp.143-158, 1996.

F. Golse, P. Lions, B. Perthame, R. [. Sentis, A. Goudon et al., Regularity of the moments of the solution of a transport equation On fluid limit for the semiconductors Boltzmann equation, J. Funct. Anal. J. Differential Equations, vol.76, issue.1891, pp.110-12517, 1988.

T. Goudon, Solutions d'??quilibre pour l'op??rateur de Pauli, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.330, issue.11, pp.1035-1038, 2000.
DOI : 10.1016/S0764-4442(00)00300-1

B. [. Golse and . Perthame, Generalized solutions of the radiative transfer equations in a singular case, Communications in Mathematical Physics, vol.16, issue.2, pp.211-239, 1986.
DOI : 10.1007/BF01454973

]. I. Gyö98 and . Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process, Appl, vol.73, issue.2, pp.271-299, 1998.

]. R. Has66a, Has'minskii. A limit theorem for solutions of differential equations with a random right hand part, Teor. Verojatnost. i Primenen, vol.11, pp.444-462, 1966.

]. R. Has66b, Has'minskii. Stochastic processes defined by differential equations with a small parameter, Teor. Verojatnost. i Primenen, vol.11, pp.240-259, 1966.

]. M. Hof13 and . Hofmanová, Strong solutions of semilinear stochastic partial differential equations, NoDEA Nonlinear Differential Equations Appl, vol.20, issue.3, pp.757-778, 2013.

]. Jab09 and . Jabin, Averaging lemmas and dispersion estimates for kinetic equations, Riv. Mat. Univ. Parma, vol.1, issue.8, pp.71-138, 2009.

M. Jara, T. Komorowski, and S. Olla, Limit theorems for additive functionals of a Markov chain, The Annals of Applied Probability, vol.19, issue.6, pp.2270-2300, 2009.
DOI : 10.1214/09-AAP610

URL : https://hal.archives-ouvertes.fr/hal-00315784

B. [. Krylov and . Rozovskii, Stochastic evolution equations [mr0570795], Stochastic differential equations: theory and applicationsLie96] G. M. Lieberman. Second order parabolic differential equations, pp.1-69, 1996.

J. [. Larsen and . Keller, Asymptotic solution of neutron transport problems for small mean free paths, Journal of Mathematical Physics, vol.15, issue.1, pp.75-81, 1974.
DOI : 10.1063/1.1666510

O. A. Ladyzhenskaia, V. A. Solonnikov, and N. N. , Ural'tseva. Linear and Quasilinear Equations of Parabolic Type translations of mathematical monographs, 1968.

]. A. Mel02 and . Mellet, Diffusion limit of a non-linear kinetic model without the detailed balance principle, Monatsh. Math, vol.134, issue.4, pp.305-329, 2002.

]. A. Mel10 and . Mellet, Fractional diffusion limit for collisional kinetic equations: a moments method, Indiana Univ. Math. J, vol.59, issue.4, pp.1333-1360, 2010.

S. [. Mellet, C. Mischler, and . Mouhot, Fractional Diffusion Limit for Collisional Kinetic Equations, Archive for Rational Mechanics and Analysis, vol.346, issue.2, pp.493-525, 2011.
DOI : 10.1007/s00205-010-0354-2

URL : https://hal.archives-ouvertes.fr/hal-00321478

L. [. Mouhot and . Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, vol.19, issue.4, pp.969-998, 2006.
DOI : 10.1088/0951-7715/19/4/011

URL : https://hal.archives-ouvertes.fr/hal-00087173

]. A. Paz83 and . Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.

D. [. Papanicolaou, S. R. Stroock, and . Varadhan, Martingale approach to some limit theorems. Duke Univ An evolution equation approach, PZ07a] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise of Encyclopedia of Mathematics and its Applications, 1977.

]. S. Pz07b, J. Peszat, and . Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Encyclopedia of Mathematics and its Applications, 2007.

]. P. Rab11 and . Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems, Electron. J. Differential Equations, issue.10, p.10, 2011.

T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3 of de Gruyter Series in Nonlinear Analysis and Applications, 1996.

J. Simon, Compact sets in the spaceL p (O,T; B), Annali di Matematica Pura ed Applicata, vol.287, issue.1, pp.65-96, 1987.
DOI : 10.1007/BF01762360

S. [. Stroock and . Varadhan, Multidimensional diffusion processes, Theory of function spaces. II, 1979.
DOI : 10.1007/3-540-28999-2

]. H. Tri95 and . Triebel, Interpolation theory, function spaces, differential operators, 1995.

]. E. Val09 and . Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. S eMA C. Villani. Hypocoercivity. Mem. Amer. Math. Soc, issue.49950, pp.33-44, 2009.