L. Lu, J. Fuh, and Y. S. Wong, Laser-induced materials and processes for rapid prototyping, pp.1-7, 2001.

D. T. Pham and S. S. Dimov, Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling, pp.19-40, 2001.
DOI : 10.1007/978-1-4471-0703-3

C. K. Chua, K. F. Leong, and C. S. Lim, Rapid prototyping: principles and applications, pp.11-19, 2003.

J. Hanninen, Direct metal laser sintering, Adv. Mater. Proc, vol.160, pp.33-36, 2002.

D. King and T. Tansey, Rapid tooling: selective laser sintering injection tooling, Journal of Materials Processing Technology, vol.132, issue.1-3
DOI : 10.1016/S0924-0136(02)00257-1

C. M. Cheah, C. K. Chua, C. W. Lee, C. Feng, and K. Totong, Rapid prototyping and tooling techniques: a review of applications for rapid investment casting, The International Journal of Advanced Manufacturing Technology, vol.8, issue.3-4
DOI : 10.1007/s00170-003-1840-6

F. J. Lino, R. J. Neto, R. Paiva, and A. Moreira, Rapid Prototyping and Rapid Tooling Applied in Product Development of Ceramic Components, Materials Science Forum, vol.455, issue.456, pp.455-456, 2004.
DOI : 10.4028/www.scientific.net/MSF.455-456.835

R. S. Evans, D. L. Bourell, J. J. Beaman, and M. I. Campbell, Rapid manufacturing of silicon carbide composites, Rapid Prototyping Journal, vol.11, issue.1, pp.37-40, 2005.
DOI : 10.1108/13552540510573374

A. Gahler, J. G. Heinrich, and J. Gunster, Dental Ceramic Components by Layer-Wise Slurry Deposition, Journal of the American Ceramic Society, vol.77, issue.5, pp.3076-3080, 2006.
DOI : 10.1002/crat.200410314

V. Raja, S. J. Zhang, J. Garside, R. Chris, and D. Wimpenny, Rapid and cost-effective manufacturing of high-integrity aerospace components, The International Journal of Advanced Manufacturing Technology, vol.27, issue.7-8, pp.27-759, 2006.
DOI : 10.1007/s00170-004-2251-z

J. F. Zhang, Y. H. Huang, and Y. F. Shen, Studyon selective laser sintering of metallic powders, Transactions of Nanjing University of Aeronautics & Astronautics, vol.19, pp.77-83, 2002.

A. Vasinonta, J. L. Beuth, M. L. Griffith-bibliographie, I. , U. B. Song-irtes-lermps et al., A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures, Journal of Chapitre I. Contexte général de l'étude

P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat et al., Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia, vol.51, issue.6, pp.51-1651, 2003.
DOI : 10.1016/S1359-6454(02)00567-0

R. Wissenbach and . Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium

B. Vrancken, L. Thijs, J. P. Kruth, and J. V. Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, vol.541
DOI : 10.1016/j.jallcom.2012.07.022

L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti???6Al???4V, Acta Materialia, vol.58, issue.9, pp.58-3303, 2012.
DOI : 10.1016/j.actamat.2010.02.004

J. P. Kruth, M. P. Ercelis, J. Van-vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol.11, issue.1, pp.11-26, 2005.
DOI : 10.1108/13552540510573365

J. P. Kruth, S. Kumar, J. Van, and . Vaerenbergh, Study of laser???sinterability of ferro???based powders, Rapid Prototyping Journal, vol.11, issue.5, pp.287-292, 2005.
DOI : 10.1108/13552540510623594

D. Joguet, Développement d'une stratégie de synthèse de bio-matériaux, Thèse de l, 2013.

A. Simchi, Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features, Materials Science and Engineering: A, vol.428, issue.1-2, pp.428-148, 2006.
DOI : 10.1016/j.msea.2006.04.117

H. J. Niu and I. T. Chang, Selective laser sintering of gas atomized M2 high speed steel powder, Journal of Materials Science, vol.35, issue.1, pp.31-38, 2000.
DOI : 10.1023/A:1004720011671

P. Fischer, V. Romano, A. Blatter, and H. P. Weber, Highly precise pulsed selective laser sintering of metallic powders, Laser Physics Letters, vol.2, issue.1, pp.48-55, 2005.
DOI : 10.1002/lapl.200410118

K. Osakada and M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture, vol.46, issue.11, pp.1188-1193, 2006.
DOI : 10.1016/j.ijmachtools.2006.01.024

S. Pogson, P. Fox, W. O. Neill, and C. J. Sutcliffe, The direct metal laser remelting of copper and tool steel powders, Materials Science and Engineering A, vol.386, issue.1-2, pp.386-453, 2004.
DOI : 10.1016/S0921-5093(04)01051-2

F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology, vol.111, issue.1-3
DOI : 10.1016/S0924-0136(01)00522-2

T. Pattanayak, K. Matsushita, N. Sasaki, T. Nishida, T. Kokubo et al., Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting, Acta Biomater, vol.7, pp.2327-2336, 2011.

L. Thijs, M. L. Sistiaga, R. Wauthle, Q. G. Xie, J. P. Kruth et al., Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Materialia, vol.61, issue.12, pp.61-4657, 2013.
DOI : 10.1016/j.actamat.2013.04.036

N. Sasaki, T. Nishida, T. Nakamura, and . Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomater, vol.7, pp.1398-1406, 2011.

S. R. Pogson, P. Fox, C. J. Sutcliffe, and W. O. Neill, The production of copper parts using DMLR, Rapid Prototyping Journal, vol.9, issue.5, pp.334-343, 2003.
DOI : 10.1108/13552540310502239

M. Khan and P. Dickens, Selective laser melting (SLM) of gold (Au), Rapid Prototyping Journal, vol.18, issue.1, pp.81-94, 2012.
DOI : 10.1108/13552541211193520

. Lauwers, Selective laser melting of iron-based powder, J. Mater. Process. Tech, vol.149, pp.616-622, 2004.

R. R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, vol.213, issue.1-2
DOI : 10.1016/0921-5093(96)10233-1

G. P. Dinda, L. Song, and J. Mazumder, Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition, Metallurgical and Materials Transactions A, vol.349, issue.12, pp.392914-2922, 2008.
DOI : 10.1007/s11661-008-9634-y

X. Wu, J. Liang, J. Mei, C. Mitchell, P. S. Goodwin et al., Voice, Microstructures of laser-deposited Ti-6Al-4V, Mater. Des, pp.25-137, 2004.

T. Marcu, M. Todea, I. Gligor, P. Berce, and C. Popa, Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications, Applied Surface Science, vol.258, issue.7
DOI : 10.1016/j.apsusc.2011.11.081

E. Chlebus, B. Ku?nicka, T. Kurzynowski, and B. Dyba?a, Microstructure and mechanical behaviour of Ti???6Al???7Nb alloy produced by selective laser melting, Materials Characterization, vol.62, issue.5, pp.62-488, 2011.
DOI : 10.1016/j.matchar.2011.03.006

L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti???24Nb???4Zr???8Sn alloy, Scripta Materialia, vol.65, issue.1, pp.65-86, 2011.
DOI : 10.1016/j.scriptamat.2011.03.024

Y. M. Li, H. O. Yang, X. Lin, W. D. Huang, J. G. Li et al., The influences of processing parameters on forming characterizations during laser rapid forming, Materials Science and Engineering: A, vol.360, issue.1-2, pp.360-378, 2003.
DOI : 10.1016/S0921-5093(03)00435-0

C. P. Paul, P. Ganesh, S. K. Mishra, P. Bhargava, J. Negi et al., Investigating laser rapid manufacturing for Inconel-625 components, Optics & Laser Technology, vol.39, issue.4
DOI : 10.1016/j.optlastec.2006.01.008

Z. Wang, K. Guan, M. Gao, X. Y. Li, X. F. Chen et al., The microstructure and mechanical properties of deposited-Ni718 by selective laser melting, J. Alloys. Compd, pp.513-518, 2012.

K. A. Mumtaz, P. Erasenthiran, and N. Hopkinson, High density selective laser melting of Waspaloy??, Journal of Materials Processing Technology, vol.195, issue.1-3, pp.195-77, 2008.
DOI : 10.1016/j.jmatprotec.2007.04.117

T. Vilaro, C. Colin, J. D. Bartout, L. Nazé, and M. Sennour, Microstructural and mechanical approaches of the selective laser melting process applied to a nickelbase superalloy, Mater. Sci. Eng. A, pp.534-446, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00675998

S. Das, Physical Aspects of Process Control in Selective Laser Sintering of Metals, Advanced Engineering Materials, vol.5, issue.10, pp.701-711, 2003.
DOI : 10.1002/adem.200310099

R. D. Li, Y. S. Shi, Z. G. Wang, L. Wang, J. H. Liu et al., Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Applied Surface Science, vol.256, issue.13, pp.256-4350, 2010.
DOI : 10.1016/j.apsusc.2010.02.030

C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Materials & Design, vol.55
DOI : 10.1016/j.matdes.2013.10.027

E. Yasa and J. P. Kruth, Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting, Procedia Engineering, vol.19, pp.389-395, 2011.
DOI : 10.1016/j.proeng.2011.11.130

L. E. Edwin-martinez, J. Hernandez, S. Collins, K. N. Amato, S. M. Gaytan et al., Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, J. Mater. Res. Technol, vol.1, pp.167-177, 2012.

K. Guan, Z. M. Wang, M. Gao, X. Y. Li, and X. Y. Zeng, Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel, Materials & Design, vol.50
DOI : 10.1016/j.matdes.2013.03.056

Z. H. Liu, D. Q. Zhang, K. F. Leong, and C. K. Chua, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Materials Characterization, vol.84, pp.72-80, 2013.
DOI : 10.1016/j.matchar.2013.07.010

F. Feuerhahn, A. Schulz, T. Seefeld, and F. Vollertsen, Microstructure and Properties of Selective Laser Melted High Hardness Tool Steel, Physics Procedia, vol.41, pp.41-836, 2013.
DOI : 10.1016/j.phpro.2013.03.157

K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. Van-humbeeck, Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel, Physics Procedia, vol.12, pp.12-255, 2011.
DOI : 10.1016/j.phpro.2011.03.033

E. Louvis, P. Fox, and C. J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology, vol.211, issue.2, pp.275-284, 2011.
DOI : 10.1016/j.jmatprotec.2010.09.019

L. Thijs, K. Kempen, J. P. Kruth, and J. V. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, vol.61, issue.5, pp.61-1809, 2013.
DOI : 10.1016/j.actamat.2012.11.052

E. Louvis, P. Fox, and C. J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology, vol.211, issue.2, pp.275-284, 2011.
DOI : 10.1016/j.jmatprotec.2010.09.019

J. Pelleg, Reactions in the matrix and interface of the Fe???SiC metal matrix composite system, Materials Science and Engineering: A, vol.269, issue.1-2, pp.269-225, 1999.
DOI : 10.1016/S0921-5093(99)00158-6

O. Beffort, S. Long, C. Cayron, J. Kuebler, and P. A. Buffat, Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration, Composites Science and Technology, vol.67, issue.3-4, pp.67-737, 2007.
DOI : 10.1016/j.compscitech.2006.04.005

O. Yilmaz and S. Buytoz, Abrasive wear of Al 2 O 3 -reinforced aluminium-based MMCs, Compos. Sci. Technol, pp.61-2381, 2001.

D. D. Gu, G. B. Meng, C. Li, W. Meiners, and R. Poprawe, Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement, Scripta Materialia, vol.67, issue.2, pp.67-185, 2012.
DOI : 10.1016/j.scriptamat.2012.04.013

D. D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior, Composites Science and Technology, vol.71, issue.13, pp.71-1612, 2011.
DOI : 10.1016/j.compscitech.2011.07.010

D. D. Gu, Y. F. Shen, and G. B. Meng, Growth morphologies and mechanisms of TiC grains during Selective Laser Melting of Ti???Al???C composite powder, Materials Letters, vol.63, issue.29
DOI : 10.1016/j.matlet.2009.08.043

D. D. Gu, W. Meiners, Y. C. Hagedorn, K. Wissenbach, R. Poprawe et al., TiC in laser melted Ti???Si???C ternary system, Applied Physics Letters, vol.101, issue.17
DOI : 10.1063/1.4764055

S. Dadbakhsh, L. Hao, P. G. Jerrard, and D. Z. Zhang, Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted

D. D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Selective Laser Melting of in-situ TiC/Ti 5 Si 3 composites with novel reinforcement architecture and elevated performance, Surf. Coat. Technol, pp.205-3285, 2011.

A. Simchi and H. , Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science and Engineering: A, vol.359, issue.1-2, pp.359-119, 2003.
DOI : 10.1016/S0921-5093(03)00341-1

H. J. Niu and I. T. Chang, Instability of scan tracks of selective laser sintering of high speed steel powder, Scripta Materialia, vol.41, issue.11, pp.41-1229, 1999.
DOI : 10.1016/S1359-6462(99)00276-6

D. D. Gu, Y. C. Hagedorn, W. Meiners, G. B. Meng, R. J. Batista et al., Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Materialia, vol.60, issue.9, pp.60-3849, 2012.
DOI : 10.1016/j.actamat.2012.04.006

I. Takamichi and I. L. Roderick, The physical properties of liquid metals, 1993.

L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti???6Al???4V, Acta Materialia, vol.58, issue.9, pp.6-10, 2012.
DOI : 10.1016/j.actamat.2010.02.004

F. Collins and . Medina, Microstructures and mechanical behavior of Inconel 718

K. Guan, Z. M. Wang, M. Gao, X. Y. Li, and X. Y. Zeng, Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel, Materials & Design, vol.50
DOI : 10.1016/j.matdes.2013.03.056

L. Thijs, K. Kempen, J. P. Kruth, and J. V. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, vol.61, issue.5, pp.61-1809, 2013.
DOI : 10.1016/j.actamat.2012.11.052

D. Caillard and A. Couret, Dislocation movements controlled by friction forces and local pinning in metals and alloys, Materials Science and Engineering: A, vol.322, issue.1-2, pp.322-108, 2002.
DOI : 10.1016/S0921-5093(01)01123-6

H. Luong and M. R. Hill, The effects of laser peening on high-cycle fatigue in

I. Chapitre, Réalisation de pièces à partir de poudres de fer par fusion sélective par laser IRTES-LERMPS

J. Fourier, Mechanical effects induced by shock waves generated by highenergy laser pulses, Mater. Manuf. Process, pp.5-144, 1990.

L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela et al., Microstructure and mechanical behavior of Ti???6Al???4V produced by rapid-layer manufacturing, for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.1, pp.20-32, 2009.
DOI : 10.1016/j.jmbbm.2008.05.004

E. Chlebus, B. Ku?nicka, T. Kurzynowski, and B. Dyba?a, Microstructure and mechanical behaviour of Ti???6Al???7Nb alloy produced by selective laser melting, Materials Characterization, vol.62, issue.5, pp.62-488, 2011.
DOI : 10.1016/j.matchar.2011.03.006

M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.1, issue.1, pp.30-42, 2008.
DOI : 10.1016/j.jmbbm.2007.07.001

J. Chao, D. G. Morris, M. A. Muñoz-morris, and J. L. Gonzalez-carrasco, The influence of some microstructural and test parameters on the tensile behaviour and the ductility of a mechanically-alloyed Fe???40Al alloy, Intermetallics, vol.9, issue.4, pp.299-308, 2001.
DOI : 10.1016/S0966-9795(01)00005-X

A. Simchi and H. , Direct laser sintering of iron???graphite powder mixture, Materials Science and Engineering: A, vol.383, issue.2, pp.383-191, 2004.
DOI : 10.1016/j.msea.2004.05.070

X. T. Luo, G. J. Yang, and C. J. Li, Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating, Surface and Coatings Technology, vol.205, issue.20, pp.4808-4813, 2011.
DOI : 10.1016/j.surfcoat.2011.04.065

D. William, . Jr, and . Callister, Materials Science and Engineering: An Introduction, 2000.

J. J. Harwood, Strengthening Mechanisms in Solids, ASM Seminar, 1960.

H. Widersich, Hardening mechanisms and the theory of deformation, J. Met, vol.16, pp.423-430, 1964.

M. E. Kassner, Taylor hardening in five-power-law creep of metals and Class M

I. Chapitre, Réalisation de pièces à partir de poudres de fer par fusion sélective par laser IRTES-LERMPS, UTBM B. SONG 85 alloys, Acta Mater, vol.52, pp.1-9, 2004.

P. Grahle and E. Arzt, Microstructural development in dispersion strengthened NiAl produced by mechanical alloying and secondary recrystallization, Acta Materialia, vol.45, issue.1, pp.201-211, 1997.
DOI : 10.1016/S1359-6454(96)00159-0

G. K. Williamson and W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica, vol.1, issue.1, pp.22-31, 1953.
DOI : 10.1016/0001-6160(53)90006-6

S. Scudino, G. Liu, M. Sakaliyska, and K. Surreddi, Powder metallurgy of Al-based metal matrix composites reinforced with ??-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties, Acta Materialia, vol.57, issue.15, pp.4529-4538, 2009.
DOI : 10.1016/j.actamat.2009.06.017

V. C. Nardone and K. M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metall, pp.43-48, 1986.

G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun et al., Nanostructured highstrength molybdenum alloys with unprecedented tensile ductility, Nature Mater, pp.12-344, 2013.

M. J. Starink and S. Syngellakis, Shear lag models for discontinuous composites: fibre end stresses and weak interface layers, Materials Science and Engineering: A, vol.270, issue.2, pp.270-277, 1999.
DOI : 10.1016/S0921-5093(99)00277-4

H. P. Klug and L. E. Alexander, X-ray diffraction procedure for polycrystalline and amorphous Materials, 1974.

J. P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol.11, issue.1, pp.11-26, 2005.
DOI : 10.1108/13552540510573365

J. Yang, J. Chen, H. O. Yang, X. Lin, and W. D. Huang, Experimental study on residual stress distribution of laser rapid forming process, Rare Met. Mater. Eng, pp.12-1304, 2004.

F. Liu and G. C. Yang, Stress-induced recrystallization mechanism for grain refinement in highly undercooled superalloy, Journal of Crystal Growth, vol.231, issue.1-2, pp.231-295, 2001.
DOI : 10.1016/S0022-0248(01)01438-5

I. Chapitre, Réalisation de pièces à partir de poudres de fer par fusion sélective par laser IRTES-LERMPS, UTBM B. SONG 86 magnesium alloys in the semisolid state, Mater. Des, vol.26, pp.343-349, 2005.

I. Toda-caraballo, J. Chao, L. E. Lindgren, and C. Capdevila, Effect of residual stress on recrystallization behavior of mechanically alloyed steels, Scripta Materialia, vol.62, issue.1, pp.62-103, 2010.
DOI : 10.1016/j.scriptamat.2009.09.023

K. Handa, Y. Kimura, Y. Yasumoto, T. Kamioka, and Y. Mishima, Effect of deformation and annealing temperatures on ultrafine microstructure development and yield strength of pearlitic steel through continuous recrystallization, Materials Science and Engineering: A, vol.527, issue.7-8
DOI : 10.1016/j.msea.2009.11.036

C. Chen, C. X. Pan, and Q. Fu, Micro-residual stress measurement using Vickers micro-indentation, Mater. Mech. Eng, vol.1, pp.8-11, 2007.

S. Suresh and A. E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Materialia, vol.46, issue.16, pp.5755-5767, 1998.
DOI : 10.1016/S1359-6454(98)00226-2

S. Carlsson and P. L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part I: theoretical and numerical analysis, Acta Mater, pp.49-2179, 2001.

S. Carlsson and P. L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part II: experimental investigation, Acta Mater, pp.49-2193, 2001.

A. Kobayashi and T. Kitamura, Effect of heat treatment on high-hardness zirconia coatings formed by gas tunnel type plasma spraying, Vacuum, vol.59, issue.1, pp.59-194, 2000.
DOI : 10.1016/S0042-207X(00)00270-0

H. M. Tung, J. H. Huang, D. G. Tsai, C. F. Ai, and G. P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Materials Science and Engineering: A, vol.500, issue.1-2
DOI : 10.1016/j.msea.2008.09.006

M. Barth, B. Wei, and D. M. Herlach, Dendritic growth velocities of the intermetallic compounds Ni 2 TiAl, 3 Sn 2 and FeAl, pp.226-228, 1997.

D. D. Gu, G. B. Meng, C. Li, W. Meiners, and R. Poprawe, Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement, Scripta Materialia, vol.67, issue.2, pp.67-185, 2012.
DOI : 10.1016/j.scriptamat.2012.04.013

B. V. Reddy and S. C. Deevi, Thermophysical properties of FeAl (Fe-40 at.%Al), Intermetallics, vol.8, issue.12, pp.1369-1376, 2000.
DOI : 10.1016/S0966-9795(00)00084-4

V. Sima, P. Kratochvil, J. Kopecek, P. Hanus, and I. Schindler, Discussion meeting on the development of innovative iron aluminium alloys, Lanzarote (Canary Island), pp.121-124, 2011.

J. Rodriguez, S. O. Moussa, J. Wall, and K. Morsi, Low-energy forging of aluminide intermetallics, Scripta Metall, pp.48-707, 2003.

M. Krasnowski and T. Kulik, Nanocrystalline FeAl matrix composites reinforced with TiC obtained by hot-pressing consolidation of mechanically alloyed powders, Intermetallics, vol.15, issue.10, pp.15-1377, 2007.
DOI : 10.1016/j.intermet.2007.04.009

V. Ocelik, I. Furar, J. M. Th, and . De-hosson, Microstructure and properties of laser clad coatings studied by orientation imaging microscopy, Acta Materialia, vol.58, issue.20, pp.58-6763, 2010.
DOI : 10.1016/j.actamat.2010.09.002

W. Kurz and D. J. Fisher, Fundamentals of solidification, 1986.

J. Chao, D. G. Morris, M. A. Muñoz-morris, and J. L. Gonzalez-carrasc, The influence of some microstructural and test parameters on the tensile behaviour and the ductility of a mechanically-alloyed Fe???40Al alloy, Intermetallics, vol.9, issue.4, pp.299-308, 2001.
DOI : 10.1016/S0966-9795(01)00005-X

M. A. Morris, S. Gunther, and D. G. , Morris, Defects, dislocation and disorder during deformation, milling and quenching of an FeAl alloy, Mater. Sci. Forum, pp.631-269, 1998.

. Suriñach, Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments, Acta Mater, vol.46, pp.3305-3316, 1998.

T. Grosdidier, A. Tidu, and H. L. Liao, Nanocrystalline Fe-40Al coating processed by thermal spraying of milled powder, Scripta Materialia, vol.44, issue.3, pp.387-393, 2001.
DOI : 10.1016/S1359-6462(00)00611-4

URL : https://hal.archives-ouvertes.fr/hal-00111759

Y. Yang and I. Baker, The influence of vacancy concentration on the mechanical behavior of Fe-40Al, Intermetallics, vol.6, issue.3, pp.167-175, 1998.
DOI : 10.1016/S0966-9795(97)00062-9

F. Klocke, D. Lung, and C. Essig, 3D FEM Model for the Prediction of Chip Breakage, Modeling of machining operations, pp.142-151, 2011.

D. D. Risanti and G. Sauthoff, Strengthening of iron aluminide alloys by atomic ordering and Laves phase precipitation for high-temperature applications, Intermetallics, vol.13, issue.12, pp.131313-1321, 2005.
DOI : 10.1016/j.intermet.2004.12.029

B. Denkena, R. Meyer, J. H. Stiffel, and A. , Machining of Iron- Aluminum Alloys, 9th International Conference on Advanced Manufacturing Systems and Technology (AMST'11), pp.76-89, 2011.

P. Mouturat, J. Moinet, M. Romeggio, G. Sainfort, and G. Cabane, Influence de la teneur en aluminium et de la temperature sur les proprietes elastiques et plastiques de la solution solide fer-aluminium, Journal of Nuclear Materials, vol.19, issue.3, pp.234-247, 1966.
DOI : 10.1016/0022-3115(66)90147-4

P. Mouturat, G. Sainfort, and G. Cabane, Module d' élasticit é des alliages feraluminium en fonction de la temperature et de la teneur en aluminium, J. Nucl

P. Morgand, P. Mouturat, and G. Sainfort, Structure et proprietes mecaniques des alliages fer-aluminium, Acta Metallurgica, vol.16, issue.6, pp.867-875, 1968.
DOI : 10.1016/0001-6160(68)90107-7

M. Krasnowski and T. Kulik, Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidation, Intermetallics, vol.15, issue.2, pp.15-201, 2007.
DOI : 10.1016/j.intermet.2006.05.008

M. A. Muñoz-morris, A. Dodge, and D. G. Morris, Structure, strength and toughness of nanocrystalline FeAl, Nanostructured Materials, vol.11, issue.7, pp.873-885, 1999.
DOI : 10.1016/S0965-9773(99)00385-2

G. Ji, T. Grosdidier, H. L. Liao, J. P. Morniroli, and C. Coddet, Spray forming thick nanostructured and microstructured FeAl deposits, Intermetallics, vol.13, issue.6, pp.596-607, 2005.
DOI : 10.1016/j.intermet.2004.09.015

URL : https://hal.archives-ouvertes.fr/hal-00111854

V. Chapitre, Réalisation d'alliage in-situ au cours de la fabrication par fusion sélective par laser à partir de mélanges de poudres Fe et Al IRTES-LERMPS

T. Grosdidier, G. Ji, F. Bernard, E. Gaffet, Z. A. Munir et al., Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering, Intermetallics, vol.14, issue.10-11, pp.14-1208, 2006.
DOI : 10.1016/j.intermet.2005.11.033

URL : https://hal.archives-ouvertes.fr/hal-00109991

T. C. Totemeier, R. N. Wright, and W. Swank, FeAl and Mo???Si???B intermetallic coatings prepared by thermal spraying, Intermetallics, vol.12, issue.12, pp.12-1335, 2004.
DOI : 10.1016/j.intermet.2004.04.034

G. J. Yang, H. T. Wang, C. J. Li, and C. X. Li, Effect of annealing on the microstructure and erosion performance of cold-sprayed FeAl intermetallic coatings, Surface and Coatings Technology, vol.205, issue.23-24, pp.205-5502, 2011.
DOI : 10.1016/j.surfcoat.2011.06.033

F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, and J. C. Niepce, Mechanically activated synthesis studied by X-ray diffraction in the Fe???Al system, Materials Science and Engineering: A, vol.262, issue.1-2
DOI : 10.1016/S0921-5093(98)01017-X

. Suriñach, Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments, Acta Mater, vol.46, pp.3305-3316, 1998.

L. D. Angelo, L. D. Onofrio, and G. Gonzalez, Nanophase intermetallic FeAl obtained by sintering after mechanical alloying, J. Alloys. Compd, vol.483, pp.154-158, 2009.

G. Ji, T. Grosdidier, N. Bozzolo, and S. Launois, The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering, Intermetallics, vol.15, issue.2, pp.15-108, 2007.
DOI : 10.1016/j.intermet.2006.03.006

URL : https://hal.archives-ouvertes.fr/hal-00121287

T. Skiba, P. Hau?ild, M. Karlík, K. Vanmeensel, and J. Vleugels, Mechanical properties of spark plasma sintered FeAl intermetallics, Intermetallics, vol.18, issue.7, pp.18-1410, 2010.
DOI : 10.1016/j.intermet.2010.02.009

T. B. Massalski, Binary alloy phase diagrams, 1986.

D. William, . Jr, and . Callister, Materials Science and Engineering: An Introduction, 2000.

V. Chapitre, Réalisation d'alliage in-situ au cours de la fabrication par fusion sélective par laser à partir de mélanges de poudres Fe et Al IRTES-LERMPS

B. H. Rabin and R. N. Wright, Synthesis of iron aluminides from elemental powders: Reaction mechanisms and densification behavior, Metallurgical Transactions A, vol.4, issue.8
DOI : 10.1557/JMR.1989.1156

G. Sharma, R. Awasthi, and K. Chandra, A facile route to produce Fe???Al intermetallic coatings by laser surface alloying, Intermetallics, vol.18, issue.11, pp.18-2124, 2010.
DOI : 10.1016/j.intermet.2010.06.023

L. Thijs, M. L. Sistiaga, R. Wauthle, Q. G. Xie, J. P. Kruth et al., Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Materialia, vol.61, issue.12, pp.61-4657, 2013.
DOI : 10.1016/j.actamat.2013.04.036

M. Barth, B. Wei, and D. M. Herlach, Dendritic growth velocities of the intermetallic compounds Ni2TiAl

D. Wu and I. Baker, The effect of environment and strain rate on the room temperature tensile properties of FeAl single crystals, Intermetallics, vol.9, issue.1, pp.57-65, 2001.
DOI : 10.1016/S0966-9795(00)00097-2

D. J. Gaydosh, S. L. Draper, R. D. Noebe, and M. V. , Room temperature flow and fracture of Fe-40at.%Al alloys, Materials Science and Engineering: A, vol.150, issue.1, pp.150-157, 1992.
DOI : 10.1016/0921-5093(90)90003-L

M. V. Nathal and C. T. Liu, Intrinsic ductility of FeAl single crystals, Intermetallics, vol.3, issue.1, pp.77-81, 1995.
DOI : 10.1016/0966-9795(94)P3689-L

L. M. Pike and C. T. Liu, Environmental and Strain Rate Effects on the Ductility and Yield Strength of Fe-40Al, Scripta Materialia, vol.38, issue.10, pp.1475-1480, 1998.
DOI : 10.1016/S1359-6462(98)00087-6

D. D. Gu, Y. C. Hagedorn, W. Meiners, G. B. Meng, R. J. Batista et al., Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Materialia, vol.60, issue.9, pp.60-3849, 2012.
DOI : 10.1016/j.actamat.2012.04.006

B. Vrancken, L. Thijs, J. P. Kruth, and J. V. Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, vol.541
DOI : 10.1016/j.jallcom.2012.07.022

L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti???6Al???4V, Acta Materialia, vol.58, issue.9, pp.6-10, 2012.
DOI : 10.1016/j.actamat.2010.02.004

Z. M. Wang, K. Guan, M. Gao, X. Y. Li, X. F. Chen et al., The microstructure and mechanical properties of deposited-IN718 by selective laser melting, Journal of Alloys and Compounds, vol.513, pp.513-518, 2012.
DOI : 10.1016/j.jallcom.2011.10.107

F. Collins and . Medina, Microstructures and mechanical behavior of Inconel 718

R. D. Li, Y. S. Shi, Z. G. Wang, L. Wang, J. H. Liu et al., Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Applied Surface Science, vol.256, issue.13, pp.256-4350, 2010.
DOI : 10.1016/j.apsusc.2010.02.030

S. Dadbakhsh and L. Hao, Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites, Journal of Alloys and Compounds, vol.541
DOI : 10.1016/j.jallcom.2012.06.097

L. Thijs, K. Kempen, J. P. Kruth, and J. V. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia, vol.61, issue.5, pp.61-1809, 2013.
DOI : 10.1016/j.actamat.2012.11.052

J. Pelleg, Reactions in the matrix and interface of the Fe???SiC metal matrix composite system, Materials Science and Engineering: A, vol.269, issue.1-2, pp.269-225, 1999.
DOI : 10.1016/S0921-5093(99)00158-6

O. Beffort, S. Long, C. Cayron, J. Kuebler, and P. A. Buffat, Alloying effects on Chapitre VI. Fabrication de composites à matrice métallique par fusion sélective par laser IRTES-LERMPS

O. Yilmaz and S. Buytoz, Abrasive wear of Al 2 O 3 -reinforced aluminium-based MMCs, Compos. Sci. Technol, pp.61-2381, 2001.

D. D. Gu, G. B. Meng, C. Li, W. Meiners, and R. Poprawe, Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement, Scripta Materialia, vol.67, issue.2, pp.67-185, 2012.
DOI : 10.1016/j.scriptamat.2012.04.013

D. D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior, Composites Science and Technology, vol.71, issue.13, pp.71-1612, 2011.
DOI : 10.1016/j.compscitech.2011.07.010

L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development, Journal of Materials Processing Technology, vol.209, issue.17, pp.5793-5801, 2009.
DOI : 10.1016/j.jmatprotec.2009.06.012

S. Dadbakhsh, L. Hao, P. G. Jerrard, and D. Z. Zhang, Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted

T. D. Shen, C. C. Koch, K. Y. Wang, M. X. Quan, and J. T. Wang, Solid-state reaction in nanocrystalline Fe/SiC composites prepared by mechanical alloying, J. Mater. Sci, pp.32-3835, 1997.

S. Kalogeropoulou, L. Band, and N. Eustathopoulos, Relationship between wettability and reactivity in Fe/SiC system, Acta Metallurgica et Materialia, vol.43, issue.3, pp.907-912, 1995.
DOI : 10.1016/0956-7151(94)00336-G

X. L. Dong, Z. D. Zhang, Q. F. Xiao, X. G. Zhao, and Y. C. Chuang, Characterization of ultrafine ??-Fe(C), ??-Fe(C) and Fe3C particles synthesized by arc-discharge in methane, Journal of Materials Science, vol.33, issue.7, pp.33-1915, 1998.
DOI : 10.1023/A:1004369708540

A. Baltusnikas and R. Levinskas, XRD analysis of carbide phase in heat resistant steels, Mater. Sci, vol.12, pp.192-198, 2006.

Y. Nakajima, K. Sakamaki, and E. Takahashi, Melting experiments on Fe 3 C and FeH x under high pressures, Earth & Planetary Science, pp.126-127, 2008.

V. Chapitre, Fabrication de composites à matrice métallique par fusion sélective par laser IRTES-LERMPS, p.152

Q. J. Zhu, S. Y. Qu, X. H. Wang, and Z. D. Zou, Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding, Applied Surface Science, vol.253, issue.17, pp.253-706, 2007.
DOI : 10.1016/j.apsusc.2007.02.055

S. H. Yi, K. B. Kim, and H. S. Sohn, Fabrication of Fe-Based Bulk Amorphous Alloys Using Hot Metal and Commercial Ferro-Alloys, MATERIALS TRANSACTIONS, vol.46, issue.10, pp.46-2237, 2005.
DOI : 10.2320/matertrans.46.2237

M. Das, V. K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay, Laser processing of SiC-particle-reinforced coating on titanium, Scripta Materialia, vol.63, issue.4, pp.63-438, 2010.
DOI : 10.1016/j.scriptamat.2010.04.044

W. Mark and . Grinstaff, Magnetic properties of amorphous iron, Phys. Rev. B, vol.48, pp.269-273, 1993.

M. Xu, M. X. Quan, and Z. Q. Hu, Ferromagnetic Fe-based amorphous alloy with high glass-forming ability, J. Mater. Sci. Technol, vol.17, pp.260-262, 2001.

V. C. Nardone and K. M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metall, pp.43-48, 1986.

W. S. Miller and F. J. Humphreys, Strengthening mechanisms in particulate metal matrix composites, Scripta Metallurgica et Materialia, vol.25, issue.1, pp.33-38, 1991.
DOI : 10.1016/0956-716X(91)90349-6

M. Taya, K. E. Lulay, and D. J. Lloyd, Strengthening of a particulate metal matrix composite by quenching, Acta Metallurgica et Materialia, vol.39, issue.1, pp.73-77, 1991.
DOI : 10.1016/0956-7151(91)90329-Y

B. Derby and J. R. Walker, The role of enhanced matrix dislocation density in strengthening metal matrix composites, Scripta Metall, pp.529-532, 1988.

V. V. Ganesh and N. Chawla, Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation, Materials Science and Engineering: A, vol.391, issue.1-2, pp.391-342, 2005.
DOI : 10.1016/j.msea.2004.09.017

V. Provenzano, N. P. Louat, M. A. Imam, and K. Sadananda, On the validation of a strengthening concept, Scripta Metallurgica et Materialia, vol.24, issue.11, pp.24-2065, 1990.
DOI : 10.1016/0956-716X(90)90487-2

A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, vol.48, issue.1, pp.279-306, 2000.
DOI : 10.1016/S1359-6454(99)00300-6

A. R. Yavari, J. J. Lewandowski, and J. Eckert, Mechanical Properties of Bulk Metallic Glasses, MRS Bulletin, vol.57, issue.08, pp.635-638, 2007.
DOI : 10.1103/PhysRevLett.94.205501

URL : https://hal.archives-ouvertes.fr/hal-00345180

A. Inoue and N. Nishiyama, New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials, MRS Bulletin, vol.41, issue.08, pp.651-659, 2007.
DOI : 10.1016/S1359-6454(01)00181-1

A. R. Yavari, A new order for metallic glasses, Nature, pp.439-405, 2006.

K. Georgarakis, M. Aljerf, Y. Li, A. Lemoulec, F. Charlot et al., Shear band melting and serrated flow in metallic glasses, Applied Physics Letters, vol.93, issue.3, pp.93-0319071, 2008.
DOI : 10.1063/1.2956666

URL : https://hal.archives-ouvertes.fr/hal-00345063

K. Georgarakis, A. R. Yavari, D. Louzguine, J. Antonowicz, M. Stoica et al., Atomic structure of Zr-Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by X-ray diffraction using synchrotron lightin transmission, Appl. Phys. Lett, pp.94-1919121, 2009.

. Yavari, Strong and light metal matrix composites with metallic glass particulate reinforcement, Mater. Sci. Eng. A, pp.532-325, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728124

R. X. Zheng, H. Yang, T. Liu, K. Ameyama, and C. L. Ma, Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Febased metallic glass particles, Mater. Des, pp.53-512, 2014.

V. Chapitre, U. B. Song-irtes-lermps, and U. B. , Fabrication de composites à matrice métallique par fusion sélective par laser IRTES

B. Song, S. Dong, P. Coddet, H. Liao, and C. Coddet, Fabrication and microstructure characterization of selective laser???melted FeAl intermetallic parts, Surface and Coatings Technology, vol.206, issue.22, pp.206-4704, 2012.
DOI : 10.1016/j.surfcoat.2012.05.072

B. Song, S. Dong, and C. Coddet, Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC, Scripta Materialia, vol.75, pp.90-93, 2014.
DOI : 10.1016/j.scriptamat.2013.11.031

B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang et al., Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting, Journal of Alloys and Compounds, vol.579, pp.415-421, 2013.
DOI : 10.1016/j.jallcom.2013.06.087

B. Song, S. Dong, P. Coddet, H. Liao, and C. Coddet, Fabrication of NiCr alloy parts by selective laser melting: Columnar microstructure and anisotropic mechanical behavior, Materials & Design, vol.53, pp.1-7, 2014.
DOI : 10.1016/j.matdes.2013.07.010

B. Song, S. Dong, H. Liao, and C. Coddet, Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Materials & Design, vol.35, pp.120-125, 2012.
DOI : 10.1016/j.matdes.2011.09.051

B. Song, S. Dong, Q. Liu, H. Liao, and C. Coddet, Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior, Materials & Design (1980-2015), vol.54, pp.727-733, 2014.
DOI : 10.1016/j.matdes.2013.08.085