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Résumé

Ce travail a consisté a developper un modele de canopée (CIM), qui pourrait
servir d’interface entre des modeles méso-échelles de calcul du climat urbain et des
modeles micro-échelles de besoin énergétique du batiment. Le développement est
présenté en conditions atmosphériques variées, avec et sans obstacles, en s‘appuyant
sur les théories précédemment proposées. Il a été, par exemple, montré que, pour
étre en cohérence avec la théorie de similitude de Monin-Obukhov, un terme correc-
tif devait étre rajouté au terme de flottabilité de la T.K.E. CIM a aussi été couplé
au modele méso-échelle WRF. Une méthodologie a été proposée pour profiter de
leurs avantages respectifs (un plus résolu, l‘autre intégrant des termes de trans-
ports horizontaux) et pour assurer la cohérence de leurs résultats. Ces derniers
ont montré que ce systeme, en plus détre plus précis que le modele WRF a la
méme résolution, permettait, par l'intermédiaire de CIM, de fournir des profils

plus résolus pres de la surface.

Abstract

This study consisted in the development of a canopy model (CIM), which could
be use as an interface between meso-scale models used to simulate urban climate
and micro-scale models used to evaluate building energy use. The development
is based on previously proposed theories and is presented in different atmospheric
conditions, with and without obstable. It has been shown, for example, that to be
in coherence with the Monin-Obukhov Similarity Theory, that a correction term
has to be added to the buoyancy term of the T.K.E. CIM has also been coupled
with the meteorological meso-scale model WRF. A methodology was proposed to
take advantage of both models (one being more resolved, the other one integrating
horizontal transport terms) and to ensure a coherence of the results. Besides be-
ing more precise than the WRF model at the same resolution, this system allows,

through CIM, to provide high resolved vertical profiles near the surface.
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1.1 Climate change and building energy consump-

tion

1.1.1 Global Climate Change

The Fifth Assessment Report (AR5) issued by the IPCC (Intergovernmental Panel
on Climate Change) in 2013, stated that there is clear evidence that the current
global warming is being caused by human activities. There is compelling proof
this is due to the release of greenhouse gases (GHG) such as carbon dioxide (see

Figure 1.1) from the combustion of fossil fuels to produce energy [IPCC, 2013].

Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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©
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Figure 1.1: Carbon dioxide concentration at Mauna Loa Observatory from 1960
to 2011

Human induced climate change as described by the AR5, indicates that miti-
gation and adaptation measures have to be taken to ensure that there will be as
little impact as possible on Earth and its ecosystems. Since 2007, the European
Union and the French government have called for immediate actions to reduce by

4 GHG emissions by 2050.

There has been increasing concern about the world energy dependency after

the first oil crisis and this has been enhanced by the ever-increasing oil prices on
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Population (in billions)
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Figure 1.2: World urban and rural population (in billions) from 1950 to 2050 [UN,
2012]

the world markets (save for the 2008-2009 financial crises) and by the fact that
these fuels are from non-renewable resources. This also highlighted the need for
a reduction in energy consumption and increase in energy efficiency of various
systems (such as fuel consumption in cars or energy use in buildings). Energy use
is one of the main drivers of the world’s economy and it can be expected that
energy consumption will increase in the future with the rise of the world’s human

population.

1.1.2 Urban development

After 1970, there has been a drastic increase in urban population (see Figure 1.2)
that had led to half of the world population living in urban areas in 2008 [UN,
2012]. This can be explained mainly by the fact that agriculture was not regarded
anymore as the main source of revenue for a large part of the population as well
as by market reforms in the 1970s [Davis, 2006].

The migration of rural dwellers to smaller cities/towns and the increasing pop-
ulation in these areas were met by a lack of urban planning. Buildings were
constructed without careful consideration on their energy consumption and their

impact on natural ecosystems. Urban development as well as the expansion of

1-2



1.1 Climate change and building energy consumption

cities, through the modification of land uses (from natural to artificial) change the
local energy budget and wind patterns. This causes a phenomenon named Urban
Heat Island (UHI) [Oke, 1982]. The industrialization of urban areas also brought
air, noise and water pollution. Regulations have been enforced since then to pro-
tect the health and the well being of urban citizens but also that of the existing

fauna and flora.

UN-Habitat [2009] projects that by 2050 the population living in urban areas
will rise to 70% of the world population, with the major part of this increase
taking place in developing countries. This will undeniably be accompanied by
an expansion of urban areas [UN, 2012]. According to the International Energy
Agency, around 70% of the final energy produced are consumed in urban areas
[IEA, 2008]. An expected growth in population leading to an increase in energy
consumption is thus going to accentuate the responsibility of urban areas towards

climate change if more sustainable buildings and cities are not planned.

1.1.3 Adaptation and mitigation strategies

Two approaches are needed in this context: mitigation and adaptation. Mitiga-
tion solutions are required if cities and local governments want to reduce their
GHG emissions. In order to achieve the target that has been set by international
agreements, more efficient energy transformation systems have to be built and this
should be applied to all sectors among which are the transportation, the building
and the industry sectors. Adaptation strategies on the other hand means that
cities have to be redesigned or adjusted to allow urban dwellers as well as the
other ecosystems to live in a warming world.

In this context, it is important that cities are planned accordingly. Energy use
in buildings (residential and tertiary) accounts for 40% of energy consumption in
France (see Figure 1.3) and this contributes to about 25% of GHG emissions. A
major part of this energy (70%) is used for heating and cooling purposes [ADEME,
2012].

Heating and cooling rates are highly dependent on the climate. In winter, at

higher latitudes, more energy is used to heat the buildings while in summer energy
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Figure 1.3: Energy consumption in urban areas by sectors [ADEME, 2012]

is used to cool these buildings. The use of energy in urban areas also modifies
the local heat balance and hence can lead to an enhanced energy consumption in
buildings. Architectural, designing and construction techniques (isolation of walls
or roofs, double or tripled paned windows) are now used to build more efficient
and less energy consuming buildings. When conceiving the latter, modeling tools
are often used to provide estimates of their energy consumption.

It is thus essential to have access to tools which can evaluate, with precision, the

interactions that exist between buildings, their energy use and the local climate.

1.2 Objectives

Distinct models have been used in the past to simulate the atmospheric circu-
lations at an urban regional scale [Kondo and Liu, 1998, Masson, 2000, Martilli
et al., 2002] and for building energy use [Crawley et al., 2000, Salamanca et al.,
2010, Groleau et al., 2003]. There is still, however, a lack of models that can grasp
the whole extent of urban processes that influence the urban heat islands intensity
and which can also provide precise calculation of building energy consumption.
Using high resolution meteorological mesoscale model will require extensive com-

putational resources which is not feasible at present [Martilli, 2007].

The aim of this study was to develop a Canopy Interface Model (CIM) that
could be used to couple meso-scale meteorological models to micro-scale models.

The use of a canopy model is intented to improve surface representation in low
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resolution meso-scale models by providing enhanced vertical profiles to micro-scale
models. The history of the meteorological variables are thus taken into account
with data coming from the meso-scale models. In return, the meso-scale mod-
els will get more accurate information regarding the surface layer as more precise

fluxes will be calculated in the urban canopy.

This work provides the foundation to the coupling of meso-scale models and
micro-scale models. It was carried out to develop a tool that will (1) improve the
low-resolution meso-scale models and the computational time and (2) calculate
with an enhanced precision high resolution meteorological profiles in the canopy.
The intended objective is to use these profiles to evaluate more precisely build-
ing energy use and define planning and construction strategies (such as improved
building isolation materials or new building thermal regulation) to reduce the im-
pact of urban areas on the atmosphere. Adopting such strategies will not only
help increase human comfort in urban areas (for example during heat waves that
are expected to be more likely in a warming world) but will also help as possible
mitigation solutions in view of the current climate change by reducing greenhouse

gas emissions in urban areas.

1.3 Structure of the thesis

In Chapter 2 of the manuscript, an overview of the various processes at different
spatio-temporal scales that influences urban climate will be provided. State of the
art meso-scale and micro-scale models that are pertinent to this study are com-
pared. It is shown that in order to further improve surface parameterization, more
precise vertical meteorological profiles are required. Providing these profiles with
highly resolved meso-scale model is not feasible and it is thus proposed here to

develop a 1-D column model.

This development work was conducted in three parts. A Canopy Interface
Model (CIM), using a diffusion process based on a 1.5 order turbulence closure,

was developed in an offline mode [Mauree et al., 2014b]. The model was first tested
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in a neutral environment and without obstacles. The results were compared to the
surface layer theory as proposed by Prandtl [1925]. To keep the coherence between
the theory and the formulation, that has been adopted, it was shown that a con-
stant turbulent kinetic energy (T.K.E) profile is obtained above a plane surface in
a neutral case. Obstacles were then integrated following the work of Krpo [2009],
Kohler et al. [2012] and the model was validated with results from a C.F.D exper-
iment from Santiago et al. [2007], Martilli and Santiago [2007].

In the second part of this study, the T.K.E equation was modified to add the
buoyancy term so as to take into account the stability of the atmosphere [Mauree
et al., 2014a]. The model was tested above a plane surface and the results were
then compared to the Monin-Obukhov Similarity Theory [Monin and Obukhov,
1954] and the formulations proposed by Businger et al. [1971]. It was shown that
in order to keep both the theory and the formulations of Businger in coherence, the

buoyancy term in the T.K.E equations has to be multiplied using a correction term.

Finally in the last part of this study, the Canopy Interface Model (CIM) that
has been developed is integrated in WRF v3.5 [Skamarock et al., 2008] and is
coupled with the BEP-BEM model [Martilli et al., 2002, Krpo et al., 2010, Sala-
manca et al., 2010]. A theoretical study was designed to show the improvements
that CIM has brought [Mauree et al., 2014c]. It was shown that profiles calculated

from CIM are in very good agreement with a high resolution simulation from WRF.
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Abstract

The atmospheric circulation at the meso-scale is governed by various processes
taking place at the global as well as at the building scale. The processes that are

of interest for the present study are presented in this chapter.

Distinct models have been used in the past to simulate the atmospheric cir-
culations at an urban scale and for building energy use. There is however still a
lack of models that can grasp the whole extent of urban processes that influence
the Urban Heat Islands intensity as well as precise calculation of building energy
consumption. Using high resolution meteorological meso-scale model will require

extensive computational resources which is not feasible at present [Martilli, 2007].

It is thus showed here that in order to represent all the different processes
taking place at various spatio-temporal scales that a canopy model is needed.
This canopy model is expected to be used in low resolution meso-scale model to
improve surface representation as well as provide high resolution vertical profiles

to either micro-scale model or urban parameterizations.
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2.1 Introduction

Over 50% of the world population now lives in urban areas [UN, 2012]. This figure
is expected to increase even further in the future. Understanding the processes
that regulate urban climate is thus of crucial importance for several reasons includ-
ing dispersion of air pollution, heat island mitigation, urban planning strategies,
energy consumption and urban dwellers thermal comfort.

For the scope of this work, particular interest will be given to the influence of
obstacles on urban climate and energy consumption in buildings. Urban climate
and the evaluation of energy consumption inside buildings in urban areas depend
on interactions between different spatio-temporal scales. To understand the pro-
cesses which influence the urban climate, it is important to analyze the intricate
behavior of the atmosphere. The Earth’s atmosphere is composed of four layers
and is illustrated in Figure 2.1.

The troposphere contains about 80% of the atmospheric mass and most of the
human activities and life are concentrated in this layer. The focus will hence be
given only on the troposphere. The average height of the troposphere is about
10km (16 km at the Equator and 7km at the Poles). The troposphere can be
further divided in the Planetary Boundary Layer (PBL) and the Free Atmosphere
(see Figure 2.2).

The PBL is directly in contact with the Earth’s surface and responds to forc-
ing from the land uses, the radiation and turbulence, as it will be explained in
Section 2.2. The influence of surface friction and heating is transferred very effi-
ciently to the PBL through turbulent mixing or transfer. These processes, which
take place at different time and length scales, regulate the atmospheric circula-
tions in the PBL. Close to the ground, a surface layer is developed. The Earth’s
surface exerts a frictional resistance to atmospheric motions and slow them down
[Arya, 2001]. This surface layer is a region where turbulent fluxes and stress vary
by less than 10% of their magnitude. This layer is also often referred to as the
constant-flux layer.

However it is now generally acknowledged that this cannot be totally applied in
urban areas [Roth, 2000]. The high density of vertical obstacles, the modification

of the energy budget and wind patterns can lead to the formation of an additional
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2.2 From the Global to the Building scale

Scale Length Time

Global > 500Km Years
Meso-scale 100-200Km | Daily
Neighborhood and street 1-2Km Hour(s)
Building < 100m < Hour

Table 2.1: Time and distance scale relative to the different spatial scales

phenomenon called the Urban Heat Island. Particular attention will be given in
this study to the processes taking place in the urban canopy and how they have
been addressed in past studies.

Section 2.2 describes of the physical phenomena driving the weather/ climate
at different scales (global, meso-scale, neighborhood and building). The interac-
tions that exist between them is given in Section 2.3. The complexity and high
heterogeneity of urban areas makes modeling an excellent tool to simulate the at-
mospheric circulations as well as the energy use in these areas. A review of the
state-of-the-art meso-scale and micro-scale models is made in Section 2.4 and the
various processes that are taken into account at each of these scales are given.
Finally the limitations of these models will be pointed out and it will be explained

how a canopy model can be used to overcome these limitations.

2.2 From the Global to the Building scale

Atmospheric processes are governed by processes taking place at different spatial
scales. Each of these spatial scales are linked to a time scale through the wind
velocity [Britter and Hanna, 2003]. The relationship between the time and spatial

scale can be expressed as follows:

x = ut (2.1)

where x is the spatial scale, u is the velocity and t is the time scale. Table 2.1
summarizes the four spatio-temporal scales which will be discussed in this section.
Britter and Hanna [2003] had an intermediate city scale which is omitted here,

but is are included here in the meso-scale. Depending on the intended application,
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more or less attention have been given by previous studies for each of these scales.

2.2.1 Global

At the global scale, the weather and climate processes are dominated by three

main factors:

e The main driver for Earth’s climate is the Sun, more particularly the position
of the Earth with respect to the Sun. The elliptic course of Earth around
the sun and its rotation on itself as described by Galilei [1632, Ed. 2000],
affects the global repartition of the incoming solar radiation which influences

the atmospheric circulations on the entire globe.

e Earth’s climate is also highly influenced by the presence of greenhouse gases
in its atmosphere. Over long periods of time (more than a year), the average
temperature of the Earth can be considered constant [Ramanathan et al.,
1992]. The presence of carbon dioxide and other gases (water vapor for
example) causes the atmosphere to warm up as they absorb some of the
energy that is emitted by the planet in the infra-red wavelength. This causes
Earth’s average temperature to be around 15°C or 288K [IPCC, 2007].

e Other factors can also influence the Earth’s climate. For example, volcanic
eruptions can release large amount of gases and small particles that can
influence the energy budget of the Earth. Other climate-related events, such
as the El-Nino, can also influence the atmospheric circulations for many years

at various points on the globe.

Energy use inside buildings is thus mainly driven by the prevailing climate at

a global scale since it will highly influence the climate at smaller scales.

2.2.2 Meso-scale

The meso-scale can be said to have a horizontal resolution of a few kilometers to

several hundred of kilometers with a time scale of 1 to 24 hours.
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Figure 2.3: Evolution of the boundary layer during a diurnal cycle

At the meso-scale, a number of processes, along with the global variations,
influences the atmospheric circulation. At this scale, complex topography, land-
use characteristics, water bodies, atmospheric aerosols, snow, sea-ice and ocean
interactions can have significant impact on the meso-scale atmospheric circulations.

Processes in the Planetary Boundary Layer become increasingly important for
the atmospheric circulations. Figure 2.3 shows the evolution of the boundary layer
during a diurnal cycle. The PBL, height and processes, evolves during the day and

according to Stull [1988], the following description can be given for its evolution:

e The development of a mixed (convective) layer starts with the beginning of
the day. Two situations contribute to the convection in this layer. Warm
air rising from the surface creates thermals of warm air while cold air from
cloud top sinks and creates thermals of cool air. The growth of this layer is
entertained by the growing buoyant (heat-driven) turbulence which mixes it
into the less turbulent air above the layer. The convective layer height varies

in general between 1500m to 4000m.

e Just before sunset, the formation of the thermals stop and turbulence starts

to dissipate without any more production. This layer does not have direct
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contact with the ground, but pollutant, for example, can stay trapped in this
layer since it originates from “former mixed layer”. This layer has thus been

dubbed, the residual layer and is as such not part of the boundary layer.

e However under the influence of the ground, part of this residual layer is
transformed at night in a stable boundary layer. The layer is characterized
by weak turbulence. In such a layer, due to low vertical mixing, there is

large horizontal dispersion, which can be seen, for example, with pollutants.

The planetary boundary layer is thus highly impacted by the land use. Large
areas of vegetation, such as tropical forests, deserted areas, or urban areas can
have a significant effect on the precipitation patterns [Lin et al., 2011] and the
latent heat fluxes. Oke [1976] proposed that there is a distinction between the
urban canopy layer and the boundary layer above it. A focus is given specially on
how urban areas influence meteorological variables and circulation patterns around
them.

Urban areas are made of a complex mosaic of land use and building forms.
These forms are characterized by a high density of vertical surfaces and are made
of artificial materials. Urban areas induce thermal and dynamic effects that are
quite different from a natural environment.

The specific thermal and radiative properties of materials used in urban areas
for construction purposes (roads, car parks, houses, commercial areas...) differ
from natural environment and hence urban areas tend to store more energy. The
presence of urban areas also modifies the surface energy budget due to change
in land use and the presence of vertical surfaces as compared to the surrounding
areas. This tends to cause these areas to be warmer and temperature can increase
by as much as 10°C' [Santamouris et al., 2001, Chow and Roth, 2006]. The presence
of obstacles and the high density of vertical surfaces also generates a drag effect
which modifies the wind patterns [Raupach, 1992, Martilli and Santiago, 2007,
Hamdi and Masson, 2008, Aumond et al., 2013].

As the wind pattern and the atmospheric stability change on a daily basis,
the atmospheric circulation inside urban areas is modified at the same scale (as
opposed to the global scale whose time scales are quite large (years to thousands

of years)). For example, at night, the atmosphere becomes very stable close to the
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Figure 2.4: Example of an idealized Urban Heat Island - Temperature profile above
an urban area (taken from http://www.uta.eduw)

surface (see Figure 2.3) and hence a new regime is developed. Both dynamic and
thermal effects modify the surface temperature and can enhance buildings’ energy
consumption for heating and cooling [Salamanca and Martilli, 2010, Santamouris
et al., 2001].

The combination of all these effects generates a phenomenon which is referred
to as an Urban Heat Island, which was first described by Luke Howard for a case
study on London [Mills, 2008].

Below are a few of the physical reasons explaining the occurrence of this phe-

nomenon:

1. Thermal Properties. Urban areas are built using man-made materials such as
concrete and asphalt. These materials often have different thermal properties
when compared to natural environment such as trees/forests. They have a
distinctive specific heat capacity, thermal conductivity, albedo and emissivity
[Oke, 1982]. They thus modify the surface energy budget of a particular area,
since they will absorb and re-emit differently. Urban materials usually tend
to have a larger specific heat capacity which means that there will be a change
in the sensible heat fluxes coming from the Earth’s surface as compared to
vegetated environments. The heat released by the artificial materials at night

is however trapped inside the urban areas due to the high density of vertical
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surface (see next paragraph). This thus creates a distortion in the energy
budget of the urban canopy layer and hence a temperature profile that is

unlike that of the surrounding natural areas (see Figure 2.4).

2. Building structures. The geometry of the buildings in urban areas has a great
influence on the energy balance of cities and creates a particular temperature
distribution over these areas. This is due to the fact that buildings can
provide shade to the incoming solar radiation and also block the release of
radiation back into the atmosphere depending on the sky view factor (a
measure of the degree to which the sky is observed by the surrounding for a
given point [Grimmond et al., 2001])[Arnfield, 2003, Oke, 1982]. Reflection of
energy between surfaces is enhanced as well as energy absorption. The great
density of high vertical surfaces further increases these effects in comparison
to rural areas that are relatively flat. Longwave radiations emissions into the
atmosphere are thus reduced while more short wave radiations are absorbed
[Oke, 1982], hence leading to a disruption in the energy balance leading to
higher temperature than surrounding areas [Arnfield, 2003, Chow and Roth,
2006, Oke, 1982, Santamouris et al., 2001].

3. Awailable humidity. Construction of buildings and roads requires the cutting
down of trees and natural vegetation. The lack or absence of vegetation
and water bodies in urban areas leads to the reduction of available humidity
and of evapo-(transpi)ration [Oke, 1982]. A change in the latent heat fluxes
inevitably contributes to the formation and enhancement of the Urban Heat
Island, since the surface energy budget is modified. Evapo-(transpi)ration
would normally act as a cooling agent whenever trees or vegetation are

present and could help mitigate the effect of sudden heating [Taha, 1997].

4. Heat Generation. The presence of human population in metropolitan areas
implies presence of buildings, cars, industries and so on. This leads to the
use of energy for a variety of purposes such as cooling, heating and trans-
portation. This is dubbed Anthropogenic Heat Generation. According to the
IEA [2008], around 50% of the energy used in buildings (world energy use)
were directly related to space heating/cooling. At mid and higher latitudes,
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during winter, this also account for a significant part of the occurrence of
the Urban Heat Island [Offerle et al., 2006]. In summer, the use of air con-
ditioning system will contribute to the enhancement of Urban Heat Islands
[Ohashi et al., 2007, Salamanca et al., 2011] which can in turn decrease the

efficiency of air conditioning devices [Ashie et al., 1999].

. Greenhouse gas emissions. Transportation, buildings and industries emit
greenhouse gases from their energy consumption. Most of this energy pro-
duced are used in urban areas. In France, for example, buildings only ac-
count for about 23% of the emission of greenhouse gases, for 40% energy
consumption. Local emissions of greenhouse gases and other air pollutants
can enhance local warming [Oke et al., 1991, Oke, 1982] but more impor-
tantly they affect the global climate. According to the IPCC, the global
mean temperature would increase by as much as 6°C' by 2100 and this could
lead to an increase in the occurence of heat waves in urban areas, hence

causing further distress to local population in these areas [[PCC, 2007].

. Other factors. An increase in wind speed and cloud cover will tend to have a
negative effect on the presence of Urban Heat Island [Arnfield, 2003]. How-
ever, anti-cyclonic conditions, city size and population will tend to have a
positive feedback on the Urban Heat Island intensity. This intensity is also
increased at night and during summers. The presence of topographical fea-

tures such as mountains can also impact the intensity of Urban Heat Island.

All these different factors contribute to make the temperature in cities around
3 — 10K higher than in rural areas [Oke, 1987]. One of the most dangerous and

negative effects of the presence of an Urban Heat Island is the thermal comfort

inside the city. Heat waves are enhanced and can lead to increased mortality

like it was the case in France during the summer of 2003 [Poumadre et al., 2005,
Fouillet et al., 2006]. However, it should be noted that the presence of an Urban

Heat Island would lead to lower energy consumption during winter, particularly

for high and mid-latitude countries, since cities tend to be warmer.

Since the population and activities inside cities are projected to increased in the

future, an expansion of the urban areas and hence of the Urban Heat Islands can
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be expected. This will thus lead to a rise in temperature during both summer and
winter. While in winter this will cause the energy consumption linked to heating
to drop (for high and mid-latitudes countries), in summer the energy consumption
will escalate with the use of air conditioning. This will further be enhanced by the
likelihood of more heat waves as mentioned by the Fourth Assessment Report of
the IPCC on the impacts of global warming [[PCC, 2007].

To summarize, the meso-scale is affected by a number of factors (land cover,
topography, global climate, ...). Flow above the urban canopy is disturbed and
deflected, and is even sometimes visible with a capping cloud [Britter and Hanna,
2003]. Due to the variations of land uses in urban areas, there is an increase in the
complexity of the weather processes in the planetary boundary layer. The time
scale for processes driving the weather at this scale is relatively small (~ day) as
compared to the global scale (~ year(s)) while the spatial scale here is of the order
of a couple of hundred of kilometers. It can thus be seen here that the macro-scale
structure of the city can significantly influence the atmospheric circulations at the

meso-scale in particular with regards to the the Urban Heat Island occurence.

2.2.3 Neighborhood and Street scale

At the neighborhood scale, the urban canopy interacts directly with the atmo-
sphere and thus impacts directly the atmospheric circulations in the canopy. The
spatial scale here varies from 1-2km. The flow can be assumed to be at quasi-
equilibrium, and is a result of change from other scales [Britter and Hanna, 2003].

Even though above the canopy the wind can correspond to a classical logarith-
mic profile, the same thing is not necessarily true inside the urban canopy [Britter
and Hanna, 2003, Kastner-Klein and Rotach, 2004] as the flow structure in the
roughness sublayer is highly impacted by the morphological characteristics (height
and size of buildings,...) of urban areas.

In this transition zone, the impact of urban areas on turbulence production is
also enhanced [Rotach, 1993a,b, Kastner-Klein and Rotach, 2004].

Excess heat produced inside buildings is rejected in street canyons in urban
areas. The flux exchanges between the urban canopy and the atmosphere are

hence modified and can bring changes in the circulation patterns at a larger scale.
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The presence of building or green areas at the neighborhood scale can also modify
the wind and the temperature profiles [Park et al., 2012]. At the neighborhood
level these changes occur at the time scale of an hour and thus can influence very

rapidly the heat island and the atmospheric circulations.

2.2.4 Building scale

The horizontal spatial scale for this category is from a few meters to about one
hundred meters and concern the lowest 5-10% of the PBL [Foken, 2008]. The time
scale for processes at this scale is of the order of the hour. People inside cities
live at this particular scale and most of their activities (including emissions of
pollutants) takes place here. One of the reason why processes at this scale drew
attention, was to evaluate the dispersion of pollutants inside street canyons.

This scale is highly influenced by the roughness elements that are present such
as buildings or plants. In the case of urban areas, the variation of building heights
and density will impact this roughness length [Foken, 2008].

For the scope of this study, exchange with the street canyon will be the main
interest. The surface layer is the layer where the main energy exchange takes place
(see Section 2.1). Processes involved at this scale include solar energy transformed
into other forms of energy and also the modification of wind patterns due to friction
[Foken, 2008].

The heat coming from the surface will influence the production of turbulence
since it will influence the atmospheric stability in the surface layer. The occupants
of a building will use more or less energy inside buildings depending on the time of
the day but this usage will also be influenced by the local heat exchanges. Buildings
which are better equipped (e.g. better insulation) will tend to less disrupt less the
atmospheric circulations at this scale.

Moreover, at this scale, mechanical turbulence is generated and enhanced by
the presence of obstacles. The presence of obstacles generates a drag effect which
modifies the wind patterns [Raupach, 1992, Martilli and Santiago, 2007, Hamdi
and Masson, 2008, Aumond et al., 2013] and hence have an effect on the wind flow.

Both of these effects will contribute as sources or sinks of heat and momentum

within the street canyons. Thermal turbulence at this scale is small as compared
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to the production of mechanical turbulence. This then induces changes that will
impact the meteorological variables profiles in the urban canopy. In fine the in-
tensity of the Urban Heat Island can be modified (e.g. on a calm day or stable
night), simply with modifications taking place at this scale.

Besides, the surface layer turbulence is responsible for exchanges between the
atmosphere and the Earth’s surface. The flow in the street canyon will also depend
on the characteristics of the flow above [Britter and Hanna, 2003]. This is for

example the case at night when there is a stable boundary layer.

2.3 Interactions and feedbacks

In Section 2.2, the different scales were presented and it has been made clear that
a number of processes influences each of these scales but, that there are strong
interactions between each one of them. Figure 2.5 shows the chain of interactions
that creates a feedback loop up from the building scale (micro-scale) to the scale
of the city (meso-scale) to influence the intensity of a heat island above an urban
area. The fact that building energy consumption depends on all the different scales
highlights the importance of determining the impacts of buildings on the climate
at the meso-scale level and vice-versa.

The global climate is driven essentially by the position of the Earth with respect
to the Sun. The time scales at which these changes occur are larger than the time
scales that are involved at the other three scales (meso-scale, neighborhood and
building). Since the global scale has such a different time scale than the other
ones, one can assume that there is no direct feedback on the global scale (although
it is known that urban areas are responsible for an important part of greenhouse
gases emissions - which in turn contribute to global climate change).

Previous studies have also suggested that Urban Heat Islands (or the presence
of urban areas themselves) do not have a direct significant influence on the global
climate or global temperature [[PCC, 2007, Parker, 2006]. However a few recent
studies have shown that it is not to be totally neglected at the global scale [Mah-
mood et al., 2013]. A recent study also suggested that energy consumption at
meso-scale can influence, on a relatively short time scale, the global climate and

there can be disruption or changes in global wind circulations [Zhang et al., 2013].
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Figure 2.5: Multi-scale climate interactions (Global scale to micro-scale)

Assuming that this is not the case, the following chain of action and interac-
tions can be proposed. Changes in the global climate are essentially driven by
the Sun and hence are seasonal or yearly. It thus influences the meso-scale atmo-
spheric circulations. At this scale, the land use becomes increasingly important
and the presence of urban areas, the modification of the energy budget and wind
circulation, cause the development of an Urban Heat Island. This, in turn, will
impact the weather processes in the urban canopy which then interacts with the
buildings. The energy consumption inside buildings within urban areas is regu-
lated by all these processes. The buildings themselves will release heat inside the
urban canopy and will also have an impact on the circulation pattern at the neigh-
borhood scale. In this transition zone, the buildings’ top will also be responsible
for an increase in turbulence at this scale. The modifications brought at the urban
canopy scale will then impact the weather processes at the meso-scale level, influ-
encing again the intensity of the Urban Heat Island. As atmospheric circulations,
and not climate processes, are the main goal of this study, it can be assumed on
small time scales that there is no feedback to the global scale. Figure 2.6 show the

different processes and interactions between the meso- and micro-scales.
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Figure 2.6: Interactions between the meso-scale and building (micro-scale) ( Voogt,
2007)

2.4 Models

As it was seen in Section 2.3, urban meteorology and the occurrence of Urban Heat
Islands are the result of very complex non-linear physical processes and can cause
a number of environmental disturbances. A lot of progress has been made during
the last decades in this particular field particularly regarding weather forecast at
the urban scale [Baklanov et al., 2002, 2005]. But there is still a lack of models
that can grasp the whole extent of urban processes that influence the intensity of
Urban Heat Islands.

It would be unrealistic to try to represent the complete heterogeneous nature
of urban areas due to the limited CPU power and data availability [Martilli, 2007].
However, there have been several attempts, using various techniques, to under-
stand the processes that regulate the climate around a metropolitan area. At first,
observations of the surface energy budget were used to build empirical models

[Grimmond and Oke, 1999]. These models were just as realistic as the data that
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were obtained through intensive measurement campaigns. Results were obtained
using statistical tools to reproduce the existing conditions. Nevertheless, these
models could only be used under the same conditions in which the measurements
were made and could not be applied in cities with different situations.

This hence highlighted the importance of more physically-based numerical
modeling. Since it was not possible to reproduce an urban area to the finer details,
it was proposed that only the basic structures of cities were considered. Below,
a description of models at the meso-scale as well as models at the building scale
are given. Most models at the meso-scale that have been developed were used to
evaluate the impact of urban areas and land use changes on the weather at this
scale and on pollutant dispersion. Models at the building scale that are given here
were used to calculate and represent the impacts of buildings on the energy use
inside these buildings. These descriptions will show how the processes described
in Section 2.2 are taken into account in these models, and hence how realistic they

are. The differences between the models will also be shown.

2.4.1 Meso-scale models

As mentioned in Section 2.2, the horizontal scale of the meso-scale varies from a
few to hundred of kilometers with a time range varying from hours to a day. The
smallest scale matches with atmospheric features for weather forecasting whose
characteristics can be represented statistically, while the longer limits correspond
to the smallest features which can be seen at a synoptic scale [Pielke, 2002].

The horizontal domain size is sufficiently big to make the hydrostatic approxi-
mation, but is too small for geostrophic wind to be an appropriate approximation
in the Planetary Boundary Layer. The resolution that is used at this scale also
depends on the computer performance [Martilli, 2007].

Meso-scale models working at this scale have been designed to take a number
of processes, specially in urban areas, into account. Several models have been de-
veloped in the recent years including NIRE-MM [Kondo, 1989], MM5 [Grell et al.,
1994], FVM [Clappier et al., 1996], MESO-NH [Lafore et al., 1997] or WRF [Ska-
marock et al., 2008]. Each model was developed for several functions: (1) opera-

tional forecast models or (2) for dispersion or (3) to evaluate the thermal energy
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budget of urban areas or (4) for other research purposes.
For the current study, focus is given on the impact of urban areas on meso-scale
meteorology. In this context, the following processes are known to be taken into

account in these models:

Vertical Processes Each of the model reproduces the generation of the sur-
face layer (see Figure 2.2). This means that they include a calculation of the
solar radiation and are able to calculate the production of mechanical and thermal
(buoyant) turbulence. Some of them, such as WRF, include cloud formation which

can also influence the occurrence or the intensity of Urban Heat Islands.

Horizontal Processes The formation of an Urban Heat Island is also rep-
resented in these meso-scale models. This would mean that they have been able
to take into account the interactions that can exist between the rural and urban
areas at these scales. To do so, these models should be able to modify the energy
budget in urban areas as compared to a natural environment, and also modify the
wind profile, which show that the model should be capable of accounting for more
complex land use. Modification of wind pattern at this scale also arises due to the
interaction between rural and urban areas, highlighting the need for large domains

where advection processes can take place.

According to Baklanov et al. [2005], two types of approaches have been adopted
in the past to calculate the influence of urban areas in meso-scale meteorological

models:

e Monin-Obhukov Similarity Theory (MOST) The MOST developed by Monin
and Obukhov [1954] and adapted by Businger et al. [1971] and Zilitinkevich
and Esau [2007], was mainly applied for non-urban surfaces. It is modified
by using new values for the roughness length, displacement height and heat
fluxes. The first model level is generally displaced at the top of the canopy
(displacement height). The main disadvantage of such models is that they
cannot take into account the high heterogeneity of urban areas. Roth [2000]
argued that the MOST does not hold in urban areas, and according to Arya
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[2005] the similarity theories can only be applied over homogeneous surfaces.
New diagnostic analytical models have thus been developed for the urban
roughness layer to modify the calculation of the meteorological variables
[Baklanov et al., 2005].

e Urban parameterization In these types of models, new sources and sinks
terms, for each of the variables (momentum, heat and turbulent kinetic en-
ergy), representing building effects are calculated [Masson, 2000, Kusaka
et al., 2001, Martilli et al., 2002]. These parameterizations calculate the
mean thermal and dynamic effect of urban areas on the atmosphere [Sala-

manca et al., 2011].

A focus is given here on urban parameterizations as they are more pertinent to
this study. With increasing computer performance, simplified parameterizations of
cities were introduced in urban models coupled with atmospheric models to under-
stand its impact on the boundary layer as well as the meteorological variables. In
these models, the buildings and urban areas were simply represented as porosities.

The first generation of models, that included urban parameterization did not
take into account the vertical surfaces present in urban areas. Their primary goal
was essentially to modelize the modification of the energy budget of urban areas
[Grimmond and Oke, 1999].

In a second attempt, the buildings were represented as uniform cubes that were
regularly spaced [Kikegawa et al., 2003], so as to take into account the high density
of vertical surfaces, which influence the energy budget of the city.

Furthermore two other types of models were developed and gave rise to more
complete parameterization schemes. Both schemes solved the energy budget in a 3-
dimensional urban canopy where buildings are represented with a basic geometry.
Urban areas have a variety of surfaces that are exposed to radiation (roof, wall
and streets) and those surfaces radiate part of the energy they receive back into
the canopy layer. In addition, these models also take into account the influence of
buildings or obstacles on the wind circulation pattern via a drag-force approach.

The main difference between these two schemes is that in one the urban canopy
layer can be immersed in several vertical layers of the meteorological model (hence
multi-layer)[Kondo and Liu, 1998, Kondo et al., 1999, Ca et al., 1999, Martilli
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Meteorological
model grid
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Figure 2.7: Representation of the urban canopy: left: single layer and right: multi-
layer

et al., 2002] while for the other the canopy layer is forced from data coming from
the first meteorological layer[Kusaka and M., 1999, Kusaka et al., 2001, Masson,
2000]. This is illustrated in the Figure 2.7.

Another difference between some of the models is that some do not take into
account the orientation of the canyon and hence there can be discrepancies in the
energy budget that is calculated at this scale and that is received by the buildings
[Kusaka et al., 2001].

Previous works were carried out to improve the calculations of the fluxes that
feedback on the meteorological model. A Finite Volume Method model (FVM),
developed by Clappier et al. [1996], has been used to make such developments.
Martilli et al. [2002] worked on the source terms from the surface while Rasheed
[2009] worked on the diffusion processes in the urban canopy. Krpo [2009] de-
veloped a Building Energy Model (BEM), which was coupled with FVM, and
Salamanca et al. [2010], Salamanca and Martilli [2010] showed that BEM is highly

influenced by the weather processes at this scale.

Table 2.2 shows a selection of urban canopy parameterizations that have been
implemented in meso-scale models as well as some of the characteristics of these
models. Salamanca et al. [2011] compared the different schemes (Bulk, UCM,
Building Effect Parameterization (BEP) and BEP-Building Energy Model) and
showed that depending on the use for the meso-scale model, the appropriate scheme
should be then chosen.

As it was mentioned in Section 2.2, a number of different factors affects the in-
tensity of Urban Heat Islands. Depending on the use of the model, several schemes

have been adopted and validated. For numerical weather prediction at this scale,
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Model Authors Resolution of Vegetation Primary use Anthropogenic
canopy heat
MM5 MRF BL Liu et al. [2006] No canopy, No Weather  Fore- No
roughness length cast
modification
ARPS Sarkar and De Rid- Yes UHI formation Yes
der [2011]
Meso-NH-TEB Masson [2000] Single layer Yes Urban meteorol- from fixed tem-
ogy poral files
Kusaka et al. [2001] Yes Yes
SUMM Kanda et al. [2005] Yes No
FVM-BEP Martilli et al. [2002] Multi-layer Yes Air  pollution No
modeling
WRF-BEP Yes No
NIRE-M Kondo et al. [2005] Yes No
MM-CM-BEM Kikegawa et al. Multi-layer Yes Building energy Yes
[2003] use, air pollution
modeling  and
urban planning
WRF-BEP-BEM Salamanca et al. Yes Yes

2010]

Table 2.2: Urban canopy parameterization implemented in meso-scale models (adapted from Salamanca et al. [2011])
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Figure 2.8: Grid in a meso-scale model

simple urban parameterization can grasp Urban Heat Island generation and be
used to forecast at this scale. For other needs, such as pollutant dispersion or
energy budget of urban areas, more complex parameterizations have been devel-
oped [Salamanca et al., 2011]. These parameterizations have shown that they are
able to reproduce the effect of urban areas on the planetary boundary layer. Even
though these parameterizations are really powerful now and have been able to
represent the interactions between the urban areas and the atmosphere, buildings
and streets are still not ‘seen’ in the grid cells of the meso-scale models due to
the low vertical and horizontal resolution (see Figure 2.8). To be able to achieve
this, an increase in the vertical and horizontal resolution would be needed and this

would require tremendous amount of computational time and data collection.

2.4.2 Micro-scale models

A series of micro-scale models have been developed in the recent decades. Each has
been used in different configurations and thus have different capabilities (air pollu-
tion problem, vegetation, building energy use, ...). In the present work, the focus
will be given mainly to models used in the evaluation of energy use in buildings.
The processes driving the meteorology at the micro-scale is limited by phe-

nomena which originate from the surface layer of the Planeteray Boundary Layer
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Figure 2.9: Grid in a micro-scale model

[Arya, 2001] and which are essentially influenced by the frictional forces,.

In micro-scale models obstacles are not represented like porosities. Buildings,
roads and other obstacles can be explicitly described(see Figure 2.9) in these mod-
els which allow for precise calculations of the variables (momentum, energy and
turbulent fluxes and energy consumption).

Standard E-e (turbulent kinetic energy - dissipation) closure models and Navier-
Stokes equation are usually used to resolve the turbulence and variables respec-
tively [Yang et al., 2013]. Sources or sinks, for the momemtum, energy (heat) or
humidity, are calculated and impact each of these variables. These models take
into account the following processes:

Mechanical Effect At these scales, as it was shown in Section 2.2, mechanical
effect of the buildings or obstacles are an important source of perturbation of the
atmospheric circulations. These obstacles will modify the wind and temperature
profiles and will generate turbulence. Micro-scale models can thus calculate the
impact of the obstacles, often parameterized using a drag-force approach, on the
wind flow.

Thermal Effect Some of the micro-scale models have been developed to ac-

count for the thermal effect (change in radiation). In these models, the height to
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which an air parcel can travel, can be as high as the PBL, due to the convection
processes that can be initiated. Such models can also differentiate between hu-
mid and dry convection which can influence the latent heat fluxes, crucial for the
dissipation of heat.

Some micro-scale models such as Envimet [Bruse and Fleer, 1998] use a prog-
nostic equation to calculate the evolution of the variables. These models can
reproduce a more typical climate at this scale than steady-state simulations which
can only simulate for small period of time [Bruse and Fleer, 1998]. Micro-scale
model can receive their hourly data either from other meso-scale model or from a
database where they can extract an average dataset for a particular location.

Table 2.3 shows a selection of micro-scale models used to simulate energy bal-
ance and used in urban areas. A more complete description of building energy use

models can be found in Crawley et al. [2008].

2.5 Limits of existing models

The simulations using meso- and micro-scale models remain however incomplete
and lack precision if the primary goal is to evaluate building energy consumption
or urban planning scenarios, since the effect of the surrounding environment, which
impacts the local energy balance and the dynamical flow around the obstacles, is
not fully taken into account.

Meso-scale models have a coarse horizontal resolution (around 1Km) which
does not allow for complete description of the landuses and hence of the interac-
tions that can exist between the atmosphere and the Earth’s surface. Until now,
computer power and capacity have limited the resolution of these models [Martilli,
2007], but with increasing performances, the resolution of meso-scale models have
been enhanced over the past decades.

From a physical point of view, meso-scale models, must able to take a number
of processes, such as the development of the Planetary Boundary Layer, and inter-
actions, such as rural-urban areas interactions, which demand the domain to be
sufficiently large. Their time-scale is mainly governed by the wind advection and
the change in solar radiation. Urban canopy parameterizations have been devel-

oped and used in meso-scale models during the past decades. Even though these
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Model Authors Coupling with Vegetation = Anthropogenic
MM heat

BEM Kikegawa et al. [2003] Yes Yes Yes

Building Energy Model Krpo et al. [2010] Yes Yes Yes
Salamanca et al. [2010]
Salamanca et al. [2011]

Energy Plus Crawley et al. [2000] No No Yes

EnviMET Bruse and Fleer [1998] No Yes No
Yang et al. [2013]

Solene Groleau et al. [2003] No Yes Yes
Idczak et al. [2010]

CitySim Robinson et al. [2009] Yes No Yes

Kéampf and Robinson [2007]

Table 2.3: Micro-scale models used to evaluate building energy use
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parameterizations have improved the representation of the impact of urban areas
on atmospheric circulations, they still do not simulate correctly the near-surface
temperature and wind speed [Salamanca et al., 2011].

As opposed to meso-scale models, micro-scale models have a high enough res-
olution which means that obstacles, such as buildings or plants, can be explicitely
described. Increasing the size of the domain to capture large scale processes would
require high amount of computing power and time and is not feasible for the time
being.

Due to these restrictions, their boundary conditions are often specified using
either averaged climatic data or they come from a database. They hence have a
significant flaw in the data used for their boundary conditions due to the limitation
of their horizontal domain. The meteorological variables, that have been calculated
by the micro-scale model or are coming from averaged data from a database, do not
take into account the advection processes that could bring wind, heat or turbulence
from a different area/region upstream. This means that the data used as input for
these models do not have a history of the thermal or mechanical effects which can

travel large distances.

2.6 Conclusion

In the urban canopy, the atmospheric circulations are mostly impacted by mechan-
ical effects. There are also thermal effects which can influence more or less turbu-
lence generation. According to Santiago and Martilli [2010] the size of turbulent
eddies inside the canopy is limited by the presence of buildings and they showed
that these eddies can be considered to have a constant height inside the canopy.
Inside the urban canopy, mechanical production of turbulence (proportional to the
size of the eddies) are pre-dominant. In the Monin-Obhukov Similarity Theory, it
is assumed that after a height, L (often above the height of the urban canopy),
the buoyancy effects becomes much greater than the mechanical effect. It can thus
be seen that there is a transition zone, which happens to be between two different
scales, which is not often easy to grasp and take into account in models.
Moreover, an enhancement of the boundary conditions in models (both meso-

scale for the surface layer and in micro-scale for actual boundary condition) is
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needed to improve simulations and also to include the spatial and chronological
history of the weather variables.

Britter and Hanna [2003] pointed out that there is still a gap into how the
neighborhood scale should be addressed and how it should be connected to the
city and street scale. We proposed here to develop a canopy model, that will be
at the interface between these two scales, and can thus be used to connect meso-
scale models and micro-scale models. The aim of this canopy model is to use data
from meso-scale models as input so as to calculate new profiles for the various
variables which can then be used as input for urban parameterization schemes or
micro-scale models. The model also aims at addressing the limits mentionned in
Section 2.5. The canopy model will be able to provide an improved profile for the
micro-scale models where the history of these variables are taken into account with
data coming from the meso-scale models. In return, the meso-scale models will
get more precise information concerning the surface layer as more precise fluxes
will be calculated in urban areas and hence the impact of obstacles and buildings
will be properly described.

Besides the fact that meso-scale models can now interact directly with micro-
scale models, it will not be necessary to increase the vertical resolution of the
meso-scale models to improve simulations. With the use of a canopy model the
first level of the meso-scale model can thus be increased as the use of the canopy
model is expected to improve the calculation of more precise and accurate vertical
meteorological profile for the meso-scale grid. It is hence expected that computer
processing time will be reduced with the use of a canopy model as compared to

highly resolved meso-scale model simulations.
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Development of a 1D-CANOPY
model. Part I: Neutral case and
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This chapter corresponds to “Mauree, D. et al. 2014b, Development of a 1D
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Abstract

A new Canopy Interface Model (CIM) is developed to evaluate the influence of
obstacles on the atmosphere in the boundary layer. The objective is to analyze ur-
ban parameterizations and guarantee the coherence between these propositions to
simulate their influence on spatially averaged variables (wind speed, temperature,
humidity and turbulent kinetic energy).

CIM development is presented through the main governing equations, with a
specific focus on the coherence with past propositions and the modification brought
to these equations. Compared to previous studies, obstacles characteristics are
computed using surface and volume porosities in each cell of the model domain.
These porosities are used to weight several terms in the Navier-Stokes equations
and have been introduced to prepare a coupling of the model with micro-scale
model including the modeling of different kind of obstacles. A 1.5 order turbulence
closure using the Turbulent Kinetic Energy (T.K.E) is used in the model. The
mixing length is computed to take into account the obstacle density in the canopy
layer as proposed by Santiago and Martilli [2010].

Results are compared with analytical solutions obtained in neutral atmospheric
conditions, and also with data collected from a C.F.D experiment. When no obsta-
cles are present, the comparison of results from CIM with the analytical solutions
shows that CIM is able to reproduce the surface layer processes over a plane sur-
face. We show that over such a surface, a constant turbulent kinetic energy profile
is obtained. With the presence of obstacles, few scenarios are performed in order
to analyze the effect of obstacles on wind and turbulent kinetic energy profiles.
The results show that fluxes from vertical surfaces have the most important effect.
CIM is also able to reproduce an Inertial Sub-layer as described by the Prandlt
or constant-flux layer theory above a displacement height over a homogeneous

canopy. The comparison of CIM with the C.F.D results show good agreements.

Keywords: atmospheric boundary layer, turbulence parameterization, turbu-

lent kinetic energy, surface layer theory, urban canopy.
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3.1 Introduction

The study of the effects of urban areas on the boundary layer structure and on
the wind fields were first motivated by the will to understand the dynamics of the
planetary boundary layer with respect to pollutant dispersion [Delage and Taylor,
1970, Bornstein, 1975]. The enhancement of computer performance in the last
decades has also allowed more precise meso-scale models to be developed with
several new propositions to parameterize the surface fluxes and their diffusion
[Masson, 2000, Kusaka et al., 2001, Martilli et al., 2002]. However in view of the
current state of the art models and growth of computer performance, it is still not
possible to use very high resolution (for ex. 1m) that would be able to integrate
obstacles (such as buildings or trees) in meso-scale models [Martilli, 2007] while
at the same time simulating large enough domains so as to capture large scale
interactions.

Indeed the complexity and high heterogeneity of urban surfaces (buildings,
roads, green spaces) make it very difficult to simulate the urban boundary layer.
The surfaces and obstacles present in such areas modify the fluxes as well as the
profiles of various meteorological variables inside the canopy itself [Oke, 1987,
Foken, 2008]. They also influence the boundary layer above the urban canopy
impacting meso-scale weather processes [Craig Jr, 2002]. The use of traditional
theories (such as the similarity theory), to simulate the boundary layer in an urban
context, is thus not expected to work [Rotach, 1993a, Roth, 2000]. The turbulent
flux of momentum, for example, is not constant with height anymore but instead
decreases to zero up to the zero-displacement height.

Masson [2000] developed a single layer canopy model where an urban canopy
parameterization is used to calculate the effects of urban areas on various meteoro-
logical variables. The first level of the meteorological model is displaced above the
urban areas and a mean value of the variables in the canopy is used to calculate
the source and sink terms due to urban areas. Martilli et al. [2002] proposed an-
other parameterization scheme. The multi-layer scheme they developed was fully
integrated in the meso-scale model. Using the same methodology as Martilli et al.
[2002], Muller [2007] designed experiments to show that a canopy module can be

used to enhance the computational time while decreasing the vertical resolution.
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Figure 3.1: Use of a canopy module allows low vertical resolution (results from
Muller, C., 2007) Bold black line (-) high resolution (20m) in meso-scale model;
dotted line (- -) canopy model in meso-scale with low resolution (60m); pale black
line (-) meso-scale model with low resolution (60m)

Figure 3.1 shows that the use of a canopy module with a low resolution (60m) in
a meso-scale model gives the same trend as using a very high resolution (20m) in
such models [Muller, 2007]. Using a canopy model is hence expected to reduce
computational time while allowing at the same time a more precise integration of
obstacles and calculation of the fluxes generated by the presence of these obsta-
cles. However in this work, the canopy model developed by Muller [2007] was not
independent of the meso-scale model.

Based on this statement, a new Canopy Interface Model (CIM) has been devel-
oped. The objective was to develop a 1D model that could be used independently
of a meso-scale model, but could also be coupled with a meso-scale model. The
coupling with meso-scale model could be done to improve urban boundary layer
description or to give the possibility to the user to couple the meso-scale model
with a micro-scale model that may provide a detailed representation of the geom-
etry of the surface obstacles (real building or urban vegetation shapes) or even

computation of surface fluxes.
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This work is based on developments, proposed by Martilli et al. [2002], as well
as on the work of Muller [2007], to improve the effect of urban parameterization on
meteorological variables. The multi-layer scheme, that was previously developed,
was modified to include a diffusion process based on a 1.5 order turbulence closure
using the turbulent kinetic energy in order to calculate a more precise profile
for the variables. A diagnostic mixing length is used in the model based on the
formulation proposed by Santiago and Martilli [2010]. To be able to take into
account any obstacle, an interface has been developed to represent the obstacle’s
effects in terms of porosities inside the Navier-Stokes equations.

When developing the model, a specific attention was brought to test several
urban parametrizations and control their relative coherence. For that purpose,
the model is here first tested offline in neutral atmospheric conditions over a plane
surface and results are compared to classical theories such as the Prandtl surface
layer theory. Obstacles are then integrated in CIM and the results are compared
with data issued from a C.F.D experiment [Santiago et al., 2007, Martilli and
Santiago, 2007].

In Sect. 3.2, the main assumptions and theories proposed to describe the surface
layer are given. In Sect. 3.3, a complete description of CIM and the set of equations
on which the model is based are presented. Section 3.5 shows the comparison
of CIM, without obstacles and in neutral conditions, with an analytical solution
obtained using the Prandtl’s surface layer theory. The results are also compared
in the presence of obstacles with results from a C.F.D experiment. The results
that are obtained and their limits are finally discussed in Sect. 3.6 as well as the

different perspectives for CIM.

3.2 The Surface Layer

A number of processes have been parameterized in the past to describe the flow in
the surface layer. Important characteristics of the surface layer were first described
by Prandtl [1925] and has been afterwards recognized as the Prandtl or constant
flux layer theories. Consequently, several studies were conducted to improve the
mathematical representation of the different processes taking place in this surface

layer and under different atmospheric stability conditions [Monin and Obukhov,
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1954, Foken, 2006, Zilitinkevich and Esau, 2007].

The surface layer theory is commonly described using a series of theory and

assumptions:

1. Homogeneity assumption
When considering large enough horizontal distances, it is assumed that the
horizontal properties of a flow is homogeneous and hence that the vertical

fluxes are relatively more important as compared to the horizontal fluxes.

Following this assumption, the averaged characteristics of the flow are con-

sidered to be a function of the z(vertical)-coordinate only.

2. The K-Theory

The vertical kinematic turbulent fluxes can then be approximated to:

_ v
Mtaz

v = (3.1)
where u' and w’ are the fluctuations of the horizontal and vertical wind veloc-
ity components respectively, where U is U and is the horizontally averaged

wind velocity (ms™!) and gy is the eddy diffusion coefficient (m?s=1).

3. Boundary layer theory
The boundary layer theory states that in the surface layer, above a plane
surface, the vertical fluxes can be assumed constant (variation of less than
10% and while neglecting the effect of the Coriolis forces). This surface layer
is called the Prandtl or constant-flux layer. This gives rise to the boundary

layer assumption where
| W' | = u? = constant (3.2)

where u, is the friction velocity.

4. First order turbulence closure in neutral conditions
To compute the turbulent diffusion coefficient, an analogy with the molecular

diffusion process is made. The diffusion coefficient can be described as the
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product of a velocity scale, V', times a length scale, [, like when describing

the molecular diffusion and is given by Eq. (3.3).

Over a plane surface, the length [ is the mixing length. It is usually assumed
to be equal to the height z or kz. If we follow the analogy to the molec-
ular diffusion, we will consider that the mixing length is equal to z, as it
could represent the maximum distance that an air parcel will travel before
it touches the surface; it could also, in this way, represent the maximum size
of the turbulent eddies. The velocity scale can be replaced by the friction

velocity u, and a constant k, yielding the following equation:

fe = kusz (3.4)

where k is the von Kédrméan constant (0.41) according to Hogstrom [1996].
Recent studies showed however that k was closer to 0.39 and suggest that

this value can change with stability [Zhang et al., 2008].

These theories and assumptions, all build together, produce the so-called
Prandtl surface layer theory. The wind profile can then be calculated
using Egs. (3.1), (3.2) and (3.4):

ou  w,

5 = (3.5)

Integrating between z, (which is also commonly known as the roughness
height and represents the height of obstacles that can be placed randomly
on the ground and around which the mean horizontal velocity is equal to

zero) and z, the following logarithmic profile is obtained:

U(z) = %m (i) (3.6)

)

When the roughness elements are closely packed together, such as in a city

or in a forest, the top of the elements act as a displaced surface [Stull, 1988].

3-5
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The wind speed can then be assumed to be equal to zero at that displaced

height. Equation (3.6) can be written as follows to take this into account:

U(z) = %m (Z - d) (3.7)

20

where d is the displacement height (m) and U is defined as being equal to

zero when z is d + zg.

3.3 Canopy Interface Model

The Canopy Interface Model is developed with the objective of testing the coher-
ence between parameterizations proposed to represent the effects of built surfaces
on the atmosphere, and to prepare a 1D-column model that could be used offline or
online in a meso-scale model. One of the goals of CIM, is to prepare the coupling
of meteorological meso-scale models with micro-scale models in such a way that
the user of the micro-scale model may provide coherent information of the geome-
try of the obstacle (such as volume or surface porosities) and eventually exchange
surface fluxes. The coupling of the models is not presented here. This article aims
at showing how CIM was developed, testing step by step the coherence with past
propositions.

As it has been stated before, the high complexity of surfaces in urban areas is a
major problem for their integration inside models. The presence of urban surfaces

inside the canopy has a major influence on the air-flow:

1. Radiation trapping and heat conduction by building
2. Drag force induced by vertical and horizontal surfaces

3. New ways of transformation of Mean Kinetic Energy into Turbulent Kinetic

Energy.

Each of these effects needs to be taken into account as they impact the different

meteorological variables (temperature, wind speed and turbulent kinetic energy).
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3.3 Canopy Interface Model

In this specific study, we will not describe the effect of building on the radiation
and heat exchanges, but we will focus on mechanical effects only. For this purpose,

we will consider the atmosphere in a neutral stability condition.

3.3.1 Governing Equation: Momentum Equation

The transport of a quantity, can be written in a conservative form [Clappier et al.,
1996]. The resulting equation for the momentum calculates the time evolution of

the mean momentum in the following way.

oU, oU, 10P 08U, O(uu))
R €ijalUj — —3— - - — . 3.8
o1 + U 0 39 + fegijsU; 70, +v 0:17? oz, + fa (3.8)

where U; or U; are the mean wind (ms™') with three components depending
on ¢ and j which are indices for each direction, x; or x; are the distance in each
direction (m), t is the time (s), d;3 is the Kronecker delta (a scalar quantity), g
is the acceleration due to gravity(ms=2), f. is the Coriolis force (s7!), g;3 is a
unit tensor (also a scalar quantity), p is the density (kgm™3), P is the pressure
(kgm~'s7?), v is the kinematic viscosity (m?s™') and u; and u; are the turbulent
component of the wind (ms™1).

The first term on the left hand side is the mean momentum while the second
term is the advection of the mean momentum by the mean wind. The terms on
the right hand side represents respectively the effect of gravity, the influence of the
Earth’s rotation (Coriolis force), the mean pressure-gradient forces, the influence of
the viscous stress on mean motions, the influence of Reynolds’ stresses on the mean
motions due to air parcels friction and the specific sources of momentum f; due
to the friction of air with surfaces (bare soil, vegetation, buildings...). Additional
information about these specific sources can be found in Martilli et al. [2002] and
Krpo [2009].

CIM is a 1-D column model. It was developed taking into account that:

1. when working at the canopy (neighborhood) scale, it is possible to assume
horizontal homogeneity, that is, it is assumed that the a% and a% terms are

equal to zero
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2. the subsidence can also be considered to be small (with W, the vertical wind
component being of the order of mm/s compared to the horizontal wind
component, U and V' which are of the order of m/s) [Stull, 1988]

3. at this scale the Coriolis effect is also neglected
4. viscous stress is very small compared to the other terms in Eq. (3.8)

5. the Reynolds stress can be approximated, under certain conditions, to a be

proportional to the wind gradient (see Sect. 3.2)

6. advection processes as well as the mean pressure gradient are also neglected.

Using such approximations, Eq. (3.8) gives:

A NV A
o= o () 4 (39)

where pi; is the turbulent diffusion coefficient and U; is the wind speed. In CIM

the turbulent diffusion coefficient is computed using a 1.5 order turbulence closure.

3.3.2 1.5 order turbulence closure

When obstacles are present, it is however no longer possible to make the same
assumption on the mixing length which was made in the first order turbulence
closure [Coceal and Belcher, 2004, Santiago and Martilli, 2010]. Furthermore u,
cannot be considered constant anymore in the presence of obstacles [Hogstrom,
1996, Roth, 2000, Foken, 2008]. In such cases, Eq. (3.4) is thus not applicable and
it was proposed to use a different calculation for the diffusion coefficient.

Besides the one derived from the K-Theory (Eq. 3.1), the turbulent diffu-
sion coefficient can be computed using a 1.5 order turbulence closure using the

Turbulent Kinetic Energy (T.K.E) as given in the following equation:
1 = CyVEl (3.10)

where Cj is a constant. A value of 0.4 has been used by different authors
[Therry and Lacarrere, 1983, Bougeault and Lacarrere, 1989, Abart, 1999]. In
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Sect. 3.3.4, to further guarantee the coherence of the formulations that have been

proposed, a different methodology to compute this value will be presented.

3.3.3 Coherence between formulations of the turbulent dif-

fusion coefficient

Equation (3.4) may be applied only over a plane surface in neutral conditions
where no obstacles are present. However, Eq. (3.10) may be applied on any kind
of surfaces and stability conditions. A statement to build CIM was that these
two formulations should be coherent over plane surfaces and neutral conditions.
In such cases, if the two different propositions for the turbulent coefficients are

equal, then it can be shown that a constant turbulent kinetic energy profile will

be obtained : )
ku,
E = 3.11
(%) (311)

This coherence statement will be used to simplify the turbulent kinetic energy

governing equations which will be presented in Sect. 3.3.4.

3.3.4 Governing Equation: Turbulent Kinetic Energy Equa-
tion

As for the momentum, the same equation could be obtained for computing the
Turbulent Kinetic Energy (T.K.E). For the purpose of this paper a focus is given
only to the neutral conditions and the equation will be given for accordingly.
Assuming horizontal homogeneity, a prognostic equation can be used to calculate
the Turbulent Kinetic Energy (T.K.E):

0E 0 (. OE .
E = @ ()\ta) + P —ec+ fe (312)

where )\; can be assumed to be equal to .
Equation(3.12) gives the time-evolution of the T.K.E in neutral conditions and
the buoyancy term is hence neglected here. The terms on right hand side represent

respectively the diffusion term, the mechanical production term, the dissipation
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term and the fluxes due to the presence of obstacles.

The production term represents the wind shear caused by wind gradient and

friction over surfaces and is given by the following equation:

P = —u/w’aa—g (3.13)

where v/w’ is the momentum flux. Note here that a negative sign is present
so that the production term actually contributes positively to the generation of

turbulence since the term u/w’ is negative.

Based on the surface layer theory, u/w’ can be replaced using Eq. (3.1). This

then yields a production term equal to:
A
P= — 3.14
(%) .14

The dissipation term represents the breaking down of the larger turbulent ed-

dies into smaller ones and can be expressed as:

3

FE2

:C*
€ =7

(3.15)

where [ is still the parameterized mixing length representing the maximum
size of the turbulent eddies and C} a constant. One can note that the dissipation
term is not written as usual: in other studies another a specific dissipation length is
defined [Chen and Kim, 1987] with various formulations [Louis et al., 1983, Delage,
1974]. This dissipation length is sometimes assumed to be different from the mixing
length scales [Christen et al., 2009, Santiago and Martilli, 2010]. It is argued in
this article that the geometry of the canyon is the most important parameter
and there is no reason to use a different mixing length in the dissipation term.
However, it is important to take into account a constant to scale the dissipation
compared to the production. One can say that the mixing length, defined here as
the maximum distance that could reach an air parcel (analogy with the molecular
diffusion) is weighted in the dissipation term using only a constant. Thus the C*

value is chosen to be different from the traditional C..
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Replacing Egs. (3.14) and (3.15) in Eq. (3.12) yields:

OE 8 (. 0F ouN® . E:
Ezg(/\tg>+ﬂt (%) —Cl—+ 1 (3.16)

Using Eq. (3.10) to replace the diffusion coefficient in Eq. (3.16), the following

equation is obtained:

oE 0 (. 0FE ou\®> ,Er
E — & (Ata> + Ok\/El (@) - CE_ + fe (317)

Re-arranging Eq. (3.16):

OE 0 ( OFE VE
— =— | N= f—— (Bt — F ; 1
ot 8z(t8z>+05 l (Bt )+ Je (3.18)

The simplicity of Eq. (3.18) makes it easy to resolve when discretizing it with
an implicit and explicit term. Fg,; represents the stationary value of the T.K.E
that can be obtained over a plane surface under neutral conditions (i.e. when the

local production of T.K.E is equal to the dissipation). It is written as follows:

Cy o (OU\°
B = o (57 (3.19)

From this, the value of C} can be calculated. As mentioned in Sect. 3.3.3 both
formulations of the turbulent diffusion coefficient (Egs. 3.4 and 3.10) have to be
equal. If it is assumed here again that the mixing length is equal to the height
and that the wind gradient is proportional to the friction velocity (as in Eq. 3.5),
then it can be calculated that:

_ = .2

Thus, if we consider that the most important result is that the production term
should be scaled compared to the dissipation term (or the countrary), it can be

seen here that if a value of 1 is chosen for C7, C} is equal to ks

To sum up this section, it has been shown that CIM solves 1-D transport equa-

tions. If CIM is coupled with a meso-scale model, the top boundary conditions,
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for the different variables, are expected to come from the meso-scale model.

3.3.5 Discretization

CIM uses a Finite Volume Method to find a solution for the partial differential
equation given in Eq. (3.21). The discretization of the equations is only done here
for the momentum equation but the same methodology is applied for both the U

and the V wind component as well as for the discretization of the T.K.E equation.

oU 0 oU s
e <Nt$) + fa (3.21)
where the term f; is the source term representing the fluxes that will impact
the flow. oU 5 5U
% %

where F, is the integral over a volume dV of f? (for additional information refer
to [Martilli et al., 2002]).

Using Gauss-divergence theorem to change the volume integrals of the diffusion

term into surface integrals:

ou ou

sV 3
Discretizing Eq. (3.23) to determine the solution:

Si UI—1—UI+AtSi+1 tUI_UI-i—l

t+1 _ t At—z
Ui Ur+ ‘/[Mt Nz \%; a Nz

+ AtF, (3.24)

where S and V' are the surface and the volume of the obstacles respectively and
and [ are indices representing the cell face or centre respectively. These surfaces
and volumes could be replaced by surface and volume porosities. These values
can be obtained from a different model where the porosities will be represented
more precisely. These porosities could represent any obstacles (such as buildings

or trees) present in the canopy.
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3.3.6 Obstacles integration

CIM calculates the fluxes generated by horizontal and vertical surfaces mainly
based on the formulation proposed by Martilli et al. [2002] but reformulated here
using porosities. The objective is to be able in the future to include any kind of

obstacles.

Geometrical obstacles characteristics

Obstacles sizes are specified here at each of the levels inside the urban canopy
module for the x- and y-directions (until now obstacles, and specially buildings,
were only considered as regular cubes). These dimensions are then used to calculate
the volume and surface porosities which will be used in the calculation of the fluxes
and the diffusion coefficient.

Obstacles 3-D geometry are described according to Krpo et al. [2010], Kohler
et al. [2012] and are shown in Fig. 3.2. The obstacles (buildings and street canyons)
are repeated to fill the space inside a grid cell. Surface and volume porosities are
then defined as in Fig. 3.3 where I represents variables assigned to the cell centre
and 7 to the cell face.

The geometrical characteristics of the obstacles are calculated as follows and

their values vary from 0 to 1.
e The free volume porosity is then given by:

o(I) =1—¢() (3.25)

where the occupied volume q; is given by:

B.(I) B,(I)
(Ba(1) + Wa(1)) (By(I) + Wy (1))

o(1) = (3.26)

e Based on volume porosity, the free surface porosity can be calculated as

follows:

(i) = min(o(I), p(I — 1)) (3.27)
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Figure 3.2: Integration of obstacles inside CIM (B, and B, are the building length
and W, and W, are the street width in the x and y-directions respectively. dx and
dy are the horizontal grid resolution while dz is the vertical resolution)
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Figure 3.3: Side view of a section of the 1-D column showing the interpretation of
porosity by CIM
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3.3 Canopy Interface Model

e The obstacles horizontal () and vertical (¢, and ¢,,) surfaces (not shown

on Fig. 3.3) are computed as follows:

ou(i) = (1) — (1 — 1) (3.28)
) =B W GO D) Gy
Gupll) = ) Bl (3.30)

Modification of the governing equations

The surface and volume porosity, as calculated with Egs. (3.27) and (3.26) respec-
tively, can be used to replace the S and V' terms from Eq. (3.24).

; U1 —U
£M11 I+At

vit1 Ur—=U
oM Az o AL

Ut = Ut + At L AtE, (3.31)
where F,, in Eq. (3.8) represents the additional forces that will impact the

momentum.

As stated before, the presence of obstacles inside the canopy alters the flow
pattern, the surface fluxes and the generation of turbulence. The influence of
obstacles has been parameterized and has been used in previous models [Masson,
2000, Martilli et al., 2002]. The parameterization of these fluxes are adapted from
Martilli et al. [2002]. The geometrical variables given in Sect. 3.3.6 will influence
the diffusion coefficient as shown in Eq. (3.31) and the calculations of the different
fluxes as shown in Sects. 3.3.6 and 3.3.6.

Modification of the momentum flux terms

Horizontal surfaces in the canopy (roofs, streets...) induce a frictional force on the
movement of air masses and lead to a loss of momentum. Above such surface,

the surface layer theory can be used to express the fluxes that are induced [Louis,
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1979, Martilli et al., 2002].

2
k

In (AL/Q)
20

where k is the von Karmén constant (0.41), Az is the size of the vertical levels,

| Uher | 0,20 (3.32)

ﬁu?:—p 5

2o is the roughness length (0.05m), U"" is the horizontal wind speed and @ is

the total horizontal obstacle surfaces at each level.

Vertical surfaces of the obstacles create a pressure gradient which is parame-
terized as a drag-force [Raupach, 1992, Otte et al., 2004, Martilli, 2007, Hamdi

and Masson, 2008, Aumond et al., 2013] in the momentum conservation equation.

Fu¥ = —pCy | U™ | U}% (3.33)

where [ is the x or y-direction, Cy is the drag coefficient as parameterized by
Santiago and Martilli [2010], U is the orthogonal wind component and ¢, is the

total vertical obstacle surfaces in each direction at each level.

Modification of the Turbulent Kinetic Energy

To evaluate the production of T.K.E by horizontal surfaces of obstacles, it is
possible to use the Ey, value given by Eq. (3.19) which has been obtained over
a plane horizontal surface. Using Equation (3.5) from the surface layer theory,

0U/0z can be replaced to obtain the following equation:

Egury = g—g (%)2 (3.34)

It can clearly be seen, that when no obstacles are present and under stationary

conditions, this value is constant with height as it is proportional to w,.

To take into account these additional sources in the T.K.E equation in each
grid cell, Eg,f, is weighted by the obstacles horizontal surfaces as this term is

due to the production of T.K.E due to the movement of fluids layers on horizontal
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surfaces while Fy,; is weighted by the ‘free surface’ porosity as this is due to

fluid-Aluid interactions.

G w2
Gy (OUN? g
Egior = C;‘l (82) 5 (3.36)

Since both terms (from Eqs. 3.35 and 3.36) have been weighted proportional

to the surface from which they have been generated they can simply be summed up.

For the vertical surfaces that are present, there is additional transformation of
Mean Kinetic Energy into T.K.E. The production of T.K.E by vertical surfaces is
parameterized using Eq. (3.37):

FeY = pCy | Ut B % (3.37)

where Cy is the drag coefficient and ¢, is the total vertical obstacles surfaces

in each direction at each level.

3.4 Experiments with CIM

After a detailed presentation of CIM development strategies, three sets of experi-
ments are proposed. Each of these simulations are done in a domain with a vertical
height of 50m which corresponds to twice the height of the obstacles that would be
included in the domain. This is based on the fact that the bottom of the inertial
sub-layer is twice that of the surface layer [Roth, 2000].

When developing these tests, the meteorological boundary conditions for CIM
are fixed at the top of the domain. The surface temperature inside the model is
kept at 293K such that a neutral atmospheric condition prevails. CIM is initialized

with values given in Table 3.1.
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Wind speed 9.68ms1
Potential Temperature 293K
Canyon width 25 m
Building width 25m
Building height 25m

Table 3.1: Boundary conditions and obstaclees characteristics used for CIM in
neutral conditions

3.4.1 Comparison of CIM with an analytical solution over

a plane surface

CIM is first tested in the absence of obstacles under neutral conditions and its
results are compared to the analytical solutions. Using Eq. (3.6), a logarithmic
profile of the horizontal wind can be computed and the same is expected from
CIM. From Egs. (3.4) and (3.10) the T.K.E should give a constant value.

3.4.2 Scenarios to evaluate the impact of obstacles

The objective is to analyze how the presence of cubic obstacles (see Table 3.1)
inside the canopy model impacts the wind and T.K.E profiles. For that purpose,
the mechanical effect of the obstacles will be introduced progressively. Firstly,
only the porosity terms will be added in Eq. (3.31) while keeping the same ground
surface fluxes as when there were no obstacles. Secondly, the horizontal roof

surfaces are added. Finally, the effect of vertical surfaces are analyzed.

3.4.3 Comparison of CIM with a C.F.D model over an ar-
ray of buildings

One of the shortcomings of this study is the lack of experimental measurements in
urban areas and the fact that known theories such as the surface layer theory or
the Monin-Obhukov Similarity Theory cannot be applied when there are obstacles
[Hogstrom, 1996, Roth, 2000], especially in urban areas.

Therefore, it is not a simple task to validate the results that are obtained with
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these types of models. In view of these constraints, it was chosen to compare
results from CIM with a C.F.D experiment in the neutral case. The results that
are used here to validate CIM are from a C.F.D experiment from Santiago et al.
[2007], Martilli and Santiago [2007], Santiago and Martilli [2010].

Cubic obstacles with a height of 25 m are integrated in CIM. The width of
the obstacles also correspond to the street width such that the occupied volume
porosity, ¢, is equal to 0.25, which is the value that was used in the C.F.D experi-
ment from Santiago et al. [2007], Martilli and Santiago [2007]. As opposed to CIM,
the C.F.D experiment used a higher (2.5) order turbulent closure to calculate the
diffusion coefficient.

A pressure gradient has been imposed in the C.F.D to create an entrainment
movement in the canopy, which is not present in CIM as we expect the fluxes
coming from the surfaces to be sufficient to cause these movements. As CIM is
not expected to work over very long vertical distances, there is no need for such a
gradient to be included in the model. However, for comparison purposes with the
C.F.D, a pressure gradient is added as an explicit term in the momentum equation.

Two parameterizations for mixing length were tested.

Mixing length proportional to the height
As a first approach, the mixing length was chosen to be equal to the height. The
first parameterization for the mixing length was first developed by Prandtl [1925]
and have been the object of several studies [Therry and Lacarrere, 1983, Watanabe
and Kondo, 1990, Coceal and Belcher, 2004].

Mixing length as proposed by Santiago and Martilli [2010]
One of the disadvantages of using a linearly increasing mixing length is that the
presence of obstacles as well as the density of obstacles (which can vary in the
case of urban areas) is not taken into account. This can largely contribute to the
reduction of the mixing length as the geometry will limit the maximum distance
that an air parcel can travel. Hence, eddy sizes can be very far from the assump-
tion, made above, that the mixing length increases linearly with height. Santiago
and Martilli [2010] proposed a new formulation that modifies the calculation of

the mixing length. Inside the canopy, they argued that the mixing length is close
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to a constant which corresponds to results from Raupach et al. [1996] but are
however in contradiction with other results from Coceal and Belcher [2004]. They
proposed to calculate a displacement height (see Eq. 3.7) that takes into account

the obstacles density using the following equation:
d=h(1—¢)* (3.38)

where h is the obstacle’s height, ¢ is the volume porosity and A is equal to 0.13
and is taken from Santiago and Martilli [2010].
A specific mixing length is then calculated and constrained inside the canopy

while increasing linearly with height above the canopy.

| =max(h—d,z—d) (3.39)

3.5 Results in neutral atmospheric conditions

All following results were obtained in neutral atmospheric conditions. For this rea-
son, it is chosen, in this particular context, not to show the potential temperature

profiles, but to present only the wind and T.K.E profiles.

3.5.1 Without obstacles

The first two set of calculations were performed considering a surface without
any obstacle : one profile is based on the Prandtl surface layer theory, giving an
analytical solution for the wind profile (Eq. 3.6) and a constant value for the T.K.E
(Eq. 3.11); the other is issued from CIM.

Figure 3.4 shows the set of profiles obtained from these calculations for the
wind and the T.K.E.

It can be seen that the wind profile and a constant profile for the T.K.E are
obtained and that they correspond to what is expected from the theory. This
shows that the mechanical production of turbulence and the diffusion processes

are well represented in the formulations that have been adopted.
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Figure 3.4: Comparison of the wind (in ms™!) and T.K.E (in m?s~2) profiles
computed using the analytical solution from the Prandtl surface layer theory and
CIM. Altitude is in meter.

3.5.2 With obstacles

As mentionned earlier, obstacles have a mechanical effect on the atmosphere
through the friction of the air on horizontal (ground and building roofs) and ver-
tical surfaces, and a drag force also due to the vertical surfaces. The global effect

and the effect of each type of surfaces are analyzed in this section.

Impact of the sources

In this section, three different tests are carried out to evaluate how the pres-
ence of obstacle may impact and modify the wind and the T.K.E as computed in

Sect. 3.5.1.

Evaluation of the impact of the obstacle porosities
The difference between the case without obstacles and this scenario, is that the
integration of obstacles is impacting only the free volume available in the domain
with the porosity terms in the governing equation (see Eq. 3.31). This test aims to
demonstrate how the presence of obstacles inside the grid cell can impact the wind
and T.K.E profiles, previously computed, via the diffusion terms in Eq. (3.31).

For this test, in addition to the base case where the occupied volume for each
grid cell was 25%, another simulation was done with an occupied volume of 75%.

Fig 3.5 shows that the sole presence of obstacles inside the canopy impacts only
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Figure 3.5: Comparison of the wind (in ms™!) and T.K.E (in m?s~2) profiles
computed to evaluate the impact of the obstacle porosities (with 25% and 75% of
empty space in a grid cell). Altitude is in meter.

slightly the diffusion process. The wind profile changed on average by only 0.3% in
the case where the obstacles filled 25% of the volume. The main difference between
these two scenarios are noted on the T.K.E profiles above the canopy (average of
20% difference above the obstacles top). There is a decrease in the T.K.E above
the canopy when the obstacles are integrated, while inside the canopy there is a
slight increase. One can assume that the production of T.K.E is increased in the

lowest layers but it is also more dissipated just above the obstacles where strong

turbulent eddies may be observed.

Evaluation of the impact of obstacles roof surfaces
In this test, an evaluation of the impact of the momentum sources from horizontal
surfaces inside the canopy (such as the ground or roof) is undertaken. All vertical

sources are also not considered in this test.

Figure 3.6 shows that the momentum and T.K.E sources from the surface and
‘roof” of the obstacles also have very little impact on the wind speed profile. The
T.K.E is slightly more sensitive to this test and there is an increase in the T.K.E.
This is due to the additional source of T.K.E at the top of the obstacles which
thus modifies the profile.

Evaluation of the impact of vertical surfaces
For this last test, only the vertical sources are taken into account. It can be seen
in Fig. 3.7 that the wind and T.K.E profiles are considerably modified. There is a
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Figure 3.6: Comparison of the wind (in ms™') and T.K.E (in m?s~2) profiles
computed to evaluate the impact of obstacles roof surfaces. Altitude is in meter.
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Figure 3.7: Comparison of the wind (in ms™!) and T.K.E (in m?s~2) profiles
computed to evaluate the impact of obstacles vertical surfaces. Altitude is in
meter.

decrease in the wind speed in the canopy and an increase in the T.K.E. up to the
top of the obstacles.

These separate tests have shown that the main momentum sources inside the
canyon are from the vertical surfaces. This can be explained from Eq. (3.32)
and (3.33) which represents the horizontal and vertical forces respectively. This
is in agreement with various studies which stressed on the importance of the drag
parameterization in urban canopy models but without showing the quantitative
evaluation [Martilli et al., 2002, Raupach, 1992, Martilli et al., 2002, Martilli and
Santiago, 2007, Hamdi and Masson, 2008, Aumond et al., 2013]. One unexpected

result from this series of test, is the relatively low impact of the porosities on the
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Figure 3.8: Comparison of the wind (in ms™!) and T.K.E (in m?s~2) profiles
obtained with obstacles from CIM and the C.F.D experiment with the mixing
length equal to the height. Altitude is in meter.

diffusion process.

Comparison with C.F.D

CIM is here again tested in a neutral boundary layer.

Results with a mixing length equal to the height, z
The mixing length is first taken as increasing linearly with height (equal to z).
Figure 3.8 gives the wind and turbulent kinetic energy profiles in the canopy in the
presence of obstacles as well as the profiles obtained from the C.F.D experiment.

Note that the C.F.D height was normalized and hence had to be multiplied
by the height of our obstacles for a more appropriate comparison. It can be seen
that CIM overestimates the wind speed inside the canopy while above it there is
a better correspondence. The higher wind speed is very likely to be due to the
higher T.K.E. Furthermore, as obstacles are present in the canopy, a drag force
term is added to the T.K.E. This drag force term is proportional to the cube of
the wind speed and hence further accentuates the errors in the T.K.E.

Results with a modified mixing length [Santiago and Martilli, 2010]
Based on the poor results obtained when using a mixing length proportional to
the height, a formulation adopted from Santiago and Martilli [2010] was used.

Figure 3.9 shows that wind profile differences are less than 5%. It can be seen

that in the presence of obstacles, when the mixing length is modified to take into
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Figure 3.9: Comparison of the wind (in ms™!) and T.K.E (in m?s~2) profiles
obtained with obstacles from CIM and the C.F.D using the mixing length as given
by Eq. (3.39) from Santiago and Martilli [2010]. Altitude is in meter.

account the density and presence of obstacles, the profiles and the diffusion of
the fluxes are modified. There are still some differences in the T.K.E profile and
more particularly in the height at which the maximum T.K.E occurs. Santiago
and Martilli [2010] showed that there were already differences between the C.F.D
experiment and data from a wind tunnel experiment. The negative gradient for the
T.K.E above the buildings top which appears in the C.F.D can also be reproduced
in CIM by fixing a pressure gradient. The presence of this pressure gradient hence
modifies the expected constant T.K.E value which was expected above a plane

surface.

3.6 Discussions and Conclusion

A Canopy Interface Model was described with a specific attention on the need
to put theories in coherence and prepare a 1-D column model to be used as a
coupling tool between meso-scale and micro-scale model. A new methodology was
proposed for the calculation of the Turbulent Kinetic Energy. We proposed here
to calculate a stationary value of T.K.E which simplified the numerical resolution
of the T.K.E in the model.

CIM was first run in neutral conditions over a plane surface and results were

compared to the analytical solutions obtained using the Prandtl surface layer the-
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ory. The results were coherent with what was expected. It was shown that over a
plane surface a constant profile of the Turbulent Kinetic Energy is obtained.

Scenarios were built with CIM in order to analyze the effects of obstacles on
the wind and T.K.E profiles. It was shown that vertical surfaces, due to the
parameterization of the fluxes they generate, have more influence, on the wind
speed profile and on the production of T.K.E than the horizontal surfaces or even
the porosities of the obstacles.

Results from CIM in a neutral case were then compared to results from a CFD
experiment. Very good agreement was obtained for the wind speed. Although the
general trend for the turbulent kinetic energy corresponds to what is obtained from
the C.F.D (increase in the canopy to a maximum at the top of the obstacle and a
decreasing trend above), there are still discrepancies in the profile however. The
T.K.E is under-estimated at the bottom of the domain (and more particularly at
the ground) as well as above the obstacles. One of the reason for this difference can
also be due to wake production of T.K.E, for which no parameterization is included
in CIM [Christen et al., 2009]. Additionally, a new formulation for the T.K.E
has been developed. It has been argued that in the canopy the most important
parameter is the mixing length and that there is no need to use a coefficient to
weigh the dissipation term. It has been shown that there is a strong coherence
between the formulation that has been developed and what can be expected from
the theory over a plane surface and in neutral conditions.

It was seen, in the present study, that the formulation of the mixing length
is a very important parameter, if not the most, in the determination of the wind
profile. The T.K.E profile still has some discrepancies but the formulation we
have adopted are in coherence with past propositions. Even though there are still
differences in the T.K.E profile, CIM computation of the wind profile is in very
good agreement with the C.F.D experiment.

The use of CIM to resolve high resolution profile inside a canopy, using meso-
scale data as boundary condition, has been shown to be possible. This first part
of the study was meant to demonstrate the capacity of CIM to compute and give
appropriate result over a plane surface as well as when obstacles are present in
neutral conditions. As Rotach [1995] stated, generally the roughness sub-layer is

in near-neutral condition, we feel confident that CIM can be used very effectively
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to act as an interface between meso-scale and micro-scale model based on the re-
sults from this study. However, a modified version of CIM that takes into account

atmospheric stratification has to be developed.
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Unstable case - modification
brought to the T.K.E equation
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Abstract

The development of a Canopy Interface Model (CIM) was presented in a neutral
case by Mauree et al. [2014b]. In the present study, the implementation of new
terms into the governing equations of the model is discussed to take into account
the effects of the stability of the atmosphere on the vertical profiles of the main
atmospheric variables. Two different atmospheric stability (stable and convective)
conditions are tested, with or without the presence of obstacles. These results
are compared with what is expected from the Monin-Obukhov Similarity Theory
(MOST).

In order to keep the coherence with the MOST over plane surfaces, it is pro-
posed to add a correction to the buoyancy term of the turbulent kinetic energy
balance equation. Results from CIM showed good correspondence with the MOST
when this adjustment is brought. Simulations are also run in the presence of ob-

stacles and the profiles are compared to profiles obtained in a neutral environment.

Keywords: urban canopy, atmospheric boundary layer, urban meteorology,
urban climate, turbulence parameterization, turbulent kinetic energy, similarity

theory
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4.1 Introduction

Several studies have been conducted to investigate the impact of the atmospheric
stability on the evolution of the meteorological variables and the surface fluxes:
using experimental data, Monin and Obukhov [1954] first proposed a set of univer-
sal functions that were based on the Obukhov length described by Obukhov [1971]
to modify the turbulent diffusion coefficients; Businger et al. [1971] also analyzed
measurement, data to provide other formulations of those empirical functions. All
these studies have been conducted over plane surfaces to improve weather forecast,
and are not adapted to built areas [Roth, 2000, Foken, 2008].

On the other hand, urban parameterizations were developed to be included in
mesoscale meteorological models in order to improve the representation of urban
heat island as well as the calculation surface fluxes [Masson, 2000, Martilli et al.,
2002]. These parameterizations take into account different atmospheric stability
conditions through the buoyancy term of the T.K.E equation (used to compute the
turbulent diffusion coefficient) and with the use of Louis functions [Louis, 1979] to
modify the surface fluxes.

Recently, a Canopy Interface Model was developed to improve the representa-
tion of the surface in meteorological mesocale models [Mauree et al., 2014b] and
proposed a calculation that brought coherence between past propositions. The
first development of the Canopy Interface Model (CIM) integrating the influence
of obstacles on the first layer of the atmosphere under neutral conditions was pre-
sented by Mauree et al. [2014b]. Under neutral conditions, the results from CIM
were compared with the Prandtl surface layer theories when there were no obsta-
cles. In the case where obstacles are present, the results were compared with a
C.F.D experiment based on a study from Santiago et al. [2007] and Martilli and
Santiago [2007].

The aim of the present study is to show how the effect of the atmospheric
stability is taken into account in CIM. A prognostic equation for the T.K.E is
solved to compute the turbulent diffusion coefficient. Buoyancy effects are also
taken into account by using Louis functions [Louis, 1979] to modify surface fluxes.
As compared to Masson [2000] and Martilli et al. [2002], new formulations are

proposed in order to keep CIM in coherence with the Monin-Obukhov Similarity
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Theory (MOST) when applied over a plane surface. To do so, it is shown that
the buoyancy term in the T.K.E equation has to be multiplied by a coefficient.
Obstacles are then integrated in the canopy and the impact of the fluxes on the
variables is evaluated.

In Sect. 4.2, the Monin-Obhukov Similarity Theory, is presented as applicable
to the unstable and stable conditions. In Sect. 4.3, modifications brought to CIM,
more specifically to the set of equations used, are given. Section 4.4 describes
the experiments that have been done to determine whether CIM can work in
different stability conditions. Section 4.5 shows the results that are obtained under
stable and unstable conditions without obstacles and how these compare to what
is expected from the MOST. An overview of the results that are obtained with
obstacles and how these compare to the results that were presented in [Mauree
et al., 2014b] are also given in Sect. 4.6. The results that are obtained and their

limits are finally discussed in Sect. 4.7 as well as the different perspectives for CIM.

4.2 Monin-Obukhov Similarity Theory

The similarity theory developed by Monin and Obukhov [1954] has been applied
and validated over plane surfaces in several studies under different types of condi-
tions [Monin and Obukhov, 1954, Foken, 2006, Zilitinkevich and Esau, 2007]. It is
now called the Monin-Obhukov Similarity Theory (MOST).

The MOST considers that the turbulent diffusion of the momentum and the
heat are dependent of the stability of the atmosphere. In this way, it proposes to
add functions in the computation of turbulent diffusion coefficients as proposed by
the Prandtl Theory [Prandtl, 1925]:

ku,z

ku,z
Ky = 4.2
= 4.2)

where ¢,, is a universal stability function for the momentum and ¢, is a uni-

versal stability function for the heat.
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4.2 Monin-Obukhov Similarity Theory

Monin and Obukhov [1954] studied the wind and temperature profiles under
different atmospheric stability to fit these functions. Businger et al. [1971] proposed
reformulations for these functions (more details can be found in Dyer [1974] who

proposed an extensive review of the topic):

For0 < =<1 5 (4.3)
Lo on=rr(148.7)
L
2\ /4
2 om=(1=m7)
For -2 < — <0 (4.4)
L z\ /2
¢h == PT’. (1 — ")/hz)
where L is the Obukhov Length [Obukhov, 1971] written as:
u?6
L= 4.5
ho. (4.5)

where u, if the friction velocity, 6 is 6, and is the mean virtual potential
temperature, k is the von Karmén constant (and is taken to be 0.41), g is the
acceleration due to gravity and wu.f, is the heat flux. These functions were then
re-evaluated by Hogstrom [1988] who proposed that (3, is 6, 5y is 7.8, Yy, 18 19.3, v
is 11.6. Pr is the Prandtl number that represents the ratio between the momentum
(Eq. 4.1) and heat turbulent diffusion coefficients (Eq.4.2) showing clearly that Pr
depends on the stability of the atmosphere, [Priestley and Swinbank, 1947]:
% — z—z > 1 (4.6)
Pr is however often considered as a constant: Monin and Obukhov [1954] chose
this number to be 1. Other studies [Hogstrom, 1996, Foken, 2006] considered it as

having a constant value of 0.95.

Using these formulations, a partial differential equation for the wind can be

written as follows:

oUu  w.
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A similar reasoning can be used to determine the temperature profile:

00 0,
5 = Eﬁbh (4.8)

Integrating Eqgs. (4.7) and (4.8) between 2y and z the following equation giving

the vertical profiles are obtained:

U(z) = % {m (Zio) - qpm] (4.9)

0(:) = by = [0 (2 ) = 1] (4.10)
where
Y —/ (1 —cbm)d;z (4.11)
and
U, z/ (1— ¢h)% (4.12)

20

The complete set of equations relating to the ¢ values can be found in Jacobson
[1999].

There are two main constraints with these equations. First, the Obukhov
Length is determined by using fluxes (uz and u,6,) that have to be computed
simultaneously so as to calculate the variables themselves. This is done using an
iterative process which can thus use extensive computer resources. Second, this
theory is not applicable when obstacles are present as the fluxes are not constant
anymore in the surface layer. This theory is used in this study to build reference

simulations when CIM is applied and tested over plane surfaces.

4.3 CIM developments considering atmospheric
stability

A description of the governing equations was given for the momentum and turbu-
lent kinetic energy under neutral conditions in Mauree et al. [2014b]. It was shown

how the horizontal and vertical surfaces of obstacles impact these variables. In this
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study, a modified version of these equations taking into account the atmospheric

stability is given.

Only the momentum, heat and turbulent kinetic energy equations are described
here. CIM also resolves a humidity equation, but is not presented here as it is very

similar to the heat equation.

4.3.1 Turbulent diffusion coefficient and condition of a co-

herence

To overcome the limitations of the MOST when obstacles are present on the sur-
face, the diffusion coefficient used in CIM to resolve the momentum equation is
calculated using Eq. (4.13) while the diffusion coefficient for the heat equation has
to be weighted by the Prandtl number (Pr), chosen to be equal to 0.95.

1y = CuVEL (4.13)

_ CwEI

Ry =
Pr

(4.14)

where Cj, can be calculated to be equal to k3 according to Mauree et al. [2014b].

The first task of CIM’s development was to write the condition for this formu-
lation to be in coherence with the MOST in stable and unstable conditions over
a plane surface. Thus based on the turbulent diffusion coefficient calculated from
the MOST (Eq. 4.1) and the turbulent diffusion coefficient calculated from CIM
(Eq. 4.13), the T.K.E can be calculated using the following equation:

. \?
E- (ké%) (4.15)

Equation (4.15) shows that the T.K.E is constant with height only under neu-

tral conditions (when ¢,, is equal to 1).
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4.3.2 Momentum

The momentum equation is solved using the following equation.

ou 0 ou s
e <Mta) + fa (4.16)

where f? in Eq. (4.16) represents the forces (stress) that will impact the mo-
mentum.

The influence of the atmospheric stability is only applied to fluxes coming from
horizontal surfaces (the fluxes from the vertical surfaces remain unchanged from
the description given by Mauree et al. [2014b]). Horizontal surfaces in the canopy
(roofs, streets...) induce a frictional force on the movement of air masses and
leads to a loss of momentum. Above such surfaces the Monin-Obhukov Similarity
Theory (MOST) can be used to express the fluxes that are induced [Louis, 1979,
Martilli et al., 2002].

2
k Az/2

N * m —7
In <AL/2) g ( 20

20

Full = —p RiB) |Uhm‘|lf,% (4.17)

where k is the von Kérman constant (0.41), Az is the size of the vertical levels,
2o is the roughness length (0.05m) and U"*" is the horizontal wind speed. ¢y, is
the total horizontal obstacle surface at each level and ¢ is the volume porosity as
described by Mauree et al. [2014b]. g, is the Louis function for momentum that

will be given in Sect. 4.3.6.

4.3.3 Energy

The energy equation is solved using the following equation:
00 0 00
- - = il s 4.18
ot 0z (Rt 82’) L (4.18)
where 6 is the mean virtual potential temperature, f; represent the additional

flux sources coming from the obstacles.

Based on the MOST, the same type of equation as Eq. (4.17) can be used for
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the energy transfer from horizontal surfaces to the atmosphere.

2

ok *gh(
In (AZLO/Q)

Az/2

FoH = == Rz’B) |U’W|A®H% (4.19)

where g, is the Louis function for energy that will also be given in Sect. 4.3.6
and AOy is the difference between the air potential temperature and potential

temperature of the horizontal surface.

For the energy equation, the classical drag-force parameterization cannot be
used as the heat fluxes from the vertical surface are a function of the difference
between the air temperature and the wall temperature [Martilli et al., 2002]. A
different formulation which has been used by Martilli et al. [2002] and was first
formulated by Arnfield and Grimmond [1998] is hence adopted.

Fov — _ A, P 4.20
I Op \% ¢ ( )

where AOy is the difference between the air potential temperature and poten-
tial temperature of the vertical surface, ¢, is the vertical surface in each direction

at each level, C, is the air heat capacity and is taken as 1004.J/kg.K and 7 is given

by Eq. (4.21),
_ | U |
n=ce| a.+ b I (4.21)

where a., b., c., d. are 1.09, 0.23, 5.678 and 0.3048 respectively taken from
Martilli et al. [2002].

4.3.4 Turbulent Kinetic Energy

A prognostic equation is used to calculate the Turbulent Kinetic Energy (T.K.E)
and consecutively to compute the turbulent diffusion coefficients as used in the 1.5

turbulence closure.

A complete description of the resolution of the T.K.E was given in Mauree
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et al. [2014b]. In the present article, a buoyancy term is added to the equation.

a_E_a OF
ot 0z

)\ta) + PG —c+ [ (4.22)

Equation (4.23) gives the time-evolution of the T.K.E. It is assumed here that
is equal to p;. The terms on the right hand side represent respectively the diffusion
term, the mechanical production term, the buoyancy term, the dissipation term
and the surface fluxes due to the presence of obstacles. One can note that Eq.
(4.23) could be written as follows:

OE 0

oF : s
E_2 ()\t—) L P Rip) -4 f (4.23)

0z

G

where Riy is the flux Richardson number and is i

This equation could also be written as proposed by Mauree et al. [2014b]:

OE 0 ([, 0FE NVE )
9t 0s (/\tg) +C: e (Egtat — E) + [ (4.24)
where )
B Ci o (OU )
Estat = C—;l <§> (1 RZf) (425)

where C7 is a constant chosen to be equal to 1 [Mauree et al., 2014b]. It
should be reminded that the turbulent kinetic energy is constant with height only
in neutral stability conditions. This means that the diffusion term is not always
equal to zero and Fg, is not necessarily the stationary value. However in order
to simplify the study we keep the same denomination for this term as in Mauree
et al. [2014b]. Egq will represent here the stationary value that is obtained over

a plane surface in neutral stability conditions and without obstacles.

Taking into account that the mechanical production is equal to:

——oU
P =ww—— 42
uw' o (4.26)
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and that the buoyancy term is:

G = w’@’% (4.27)

Riy can be written as in Eq. (4.28) based on Stull [1988]:

g_00
Riy = £r0oz (4.28)
f 8U)2
9z

~—

Over plane surfaces, when momentum and heat diffusion coeffcients may be
computed using Eqs. (4.1) and (4.2), a relation between 7 and Riy, can be used
[Businger et al., 1971]:

Riféhm = % (4.29)

4.3.5 Coherence over a plane surface

The formulation of F,; should be in coherence with other propositions in the case
of a plane surface as discussed in Mauree et al. [2014b]. Indeed it was shown that
in stationary flow, over a plane surface and in a neutral environment, the T.K.E
has a constant value that has to be equal to the F, value written in this study.
It is actually the case when ¢,, is equal to 1 and Riy is equal to 0. Since the local
production still equilibrates the local dissipation, as in the neutral case and as
it was demonstrated by Brouwers [2007], Charuchittipan and Wilson [2009], Egs.
(4.15) and (4.25) should yield the same result over a plane surface in any stability

case: 9 9
Egar = C_;l (a) (1 - Riy) = (m) (4.30)

Since above a plane surface Eq. (4.7) can be used to replace g in Eq. (4.30),

a relation appears between ¢, and Riy:
Om = (1 — Rip)™/* (4.31)

This equation has to be compared to the Businger et al. [1971] functions, as

presented in Egs. (4.3) and (4.4), which show very close formulation.
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In order to propose a coherent methodology that could be used in any stability
case with and without the presence of obstacles on the surface these statements

were listed:

1. the Riy should be computed using the gradient of the wind and the mean

virtual potential temperature, and not the fluxes;

2. the function as presented in Eq. (4.31) should be kept but it should be slightly
adapted to satisfy the Businger et al. [1971] propositions for any stability

cases. The new proposition 1s:
¢m = (1—Cgq- Rig) /" (4.32)
where Cg can be determined for different stability cases.
Thus Cg could be linked to Businger’s functions at least over plane surfaces.

Indeed in an unstable atmosphere, using Eqs. (4.4) and (4.31) a coefficient can be

calculated to lead to:

o ANA
(1-Cg- Riy) = (1 - ’ymz> (4.33)
, z
(1—Cg- Rij) = (1 - ’ymz) (4.34)
Considering that:
z .
= Risop, (4.35)

It is then possible to write:

(1= Ca - Rig) = (1 = ym(Risdm)) (4.36)

In the same way, for the stable case, the same can be done using Eqgs. (4.31) and
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(4.3) and using Taylor series to eliminate the power functions (if | Cg- Rif [<< 1).

(1-Cg - Rij)™V* = (1 + Bm%) (4.38)
(1 + %sz) - (1+ 5,,%) (4.39)
Cor = 4B (4.40)

Equations (4.32), (4.37) and (4.40) could be also interpreted in this way: in
order to ensure the maximum coherence between previous theories, the Richardson
number, from the T.K.E. governing equation of CIM’s, should be multiplied by a

new term in order to take into account the atmospheric stability.

To conclude CIM solves this equation:

OE 0 (. O0E\ VE )
E — & ()\tg) + T (Estat - E) + fe (441)

where Fg4 can now be expressed as:

2

B = o (52 ) (1= Ca i (1.42)

with Cg values computed as proposed by Eq. (4.37) when the atmosphere is

unstable and Eq. (4.40) when the atmosphere is stable. Rif is computed using
Eq. (4.28).

This new proposition could also be seen as an adjustment that can be made
to the buoyancy term in the T.K.E equation in order to obtain an expression
equivalent to that which was first proposed by Monin and Obukhov [1954] and
modified by Businger et al. [1971]. This adjusment is further justified by the fact
that Mauree et al. [2014b] already showed that the mechanical production term of
the T.K.E was coherent with the theory. It will be called the C¢ correction in the

following sections.

In order to avoid having a vanishingly small %—g term at the denominator in

the Riy, which is very likely in stable atmosphere when the frictional stress can
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be small, it is proposed to calculate Fg,; as follows:

B Ck 5 oU\ > g 00
Estat — O_gl ((&) - CGm@ (443)

4.3.6 Atmospheric stability

To avoid the iteration process involved in the calculation of the Obukhov length
and of the Richardson number, an approximation can be made by calculating a
bulk Richardson number.

. gAQ H(Z — Zo)
Riy = ——7—-—— 4.44
b G (4.44)
where Afy is the difference between the potential temperature 6 at this level
and the surface potential temperature 0y, f.
Louis [1979] used this number to calculate different functions that will influence
the fluxes depending on the atmospheric stability:

When R, <0
9.4 Ri,

gm =1 - 702 (| Rig|2/70)05
L+ ln2(2/z0)0

) 9.4 Ry,
gh =1 = 50k2(|Riy|z/20)0
L+ an(Z/ZO)O

(4.45)

(4.46)

When Ri, >0 .

gy~ 44
Im = I = 1 4 ATRiy )2 (4.47)

4.4 Experiments with CIM

A series of experiments are proposed to illustrate CIM’s development and its re-

sults:

1. CIM is run over a plane surface with the different stability conditions and the
simulated profiles are compared to the profiles calculated using the Monin-

Obukhov Similarity theory as presented in Sect. 4.2. First we compare the
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4.5 Comparison of CIM with the MOST over a plane surface

Wind speed 9.68ms~t
Potential Temperature 293K
Stable surface Temperature 286 K
Convective surface Temperature 300K

Table 4.1: Boundary conditions used for CIM

results with the traditional formulation of the T.K.E (without the C¢ cor-
rection). The results from CIM with the MOST using the modification we
brought to the T.K.E equation (with the C¢g correction) is then presented.

2. Secondly, we evaluate the influence of an array of cubic obstacles on the
meteorological variables in different atmospheric conditions. The results for
these simulations are only presented to give an insight on the capacity of CIM
to perform in various atmospheric conditions. Data with such resolution are
difficult to obtain and the purpose here is only to show how CIM handles the
diffusion process in various atmospheric conditions. Cubic obstacles with a
width 25m are integrated in CIM and the size of the street canyons are also

given as 25m.

For all experiments, the meteorological boundary conditions for CIM, fixed
at the top of the domain, are given in Table 4.1. The same configurations as
Mauree et al. [2014b] are used here. However the comparison of CIM with the
C.F.D experiments are not possible as the C.F.D can only be used for the moment
in neutral stability conditions. The surface temperature is taken such that it

corresponds to an unstable and stable atmosphere.

4.5 Comparison of CIM with the MOST over a

plane surface

4.5.1 Results from the MOST

Figures 4.1 and 4.2 shows the profiles that can be calculated using the MOST in

stable and unstable conditions and how they compare with the Prandtl surface
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Figure 4.1: Comparison of wind (in ms™!), potential temperature (in K) and
T.K.E (in m?s™2) vertical profiles obtained with the MOST over a plane surface
in neutral and stable cases. Altitude is in meter.

layer theory in neutral condition over a plane surface. It is shown here that in a
stable condition, when compared to a neutral environment, both the wind speed
and the T.K.E decrease. The opposite situation occurs in an unstable environment

where the wind speed increases as does the T.K.E.

4.5.2 CIM with a traditional formulation of the T.K.E

This section is dedicated to the presentation of the CIM’s results without consid-
ering the Cg correction as proposed in Sect. 4.3.5. In this case, the production
and the buoyancy terms are computed as commonly done in other studies. The
wind, temperature and T.K.E profiles calculated with CIM in a stable atmospheric
condition are shown in Fig. 4.3. It can be seen that the wind speed for the stable

case in the first levels is much higher than what is obtained from the MOST (over
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Figure 4.2: Comparison of wind (in ms™!), potential temperature (in K) and
T.K.E (in m?s™2) vertical profiles obtained with the MOST over a plane surface

in neutral and unstable cases. Altitude is in meter
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50% difference on average with a maximum of 150% near the surface). The T.K.E
profile obtained from the MOST is close to zero as is expected in a stable atmo-
sphere while with CIM a higher value of the T.K.E is calculated and this is very
likely to be due an over-estimation of the buoyancy term of the T.K.E. Figure 4.4
shows the wind, temperature and T.K.E profiles calculated with CIM and with
the MOST for an unstable case. In the unstable case, the wind speed is lower
than the wind speed obtained with the MOST formulations over the whole do-
main (less than 5% difference on average with a maximum of 10% at the surface).
The potential temperature profiles are in good agreement here with less than 1%
error. It can be noted here that the T.K.E profile calculated from CIM is quite
different (an average of 60% over the domain with more than 70% difference at
the top of the domain), in the unstable case, from the MOST profile. Even though
the differences for the potential temperature profiles are small, the profiles showed

some differences particularly near the surface.

4.5.3 CIM using the C; correction of the T.K.E equation

In order to improve previous results, an adjustment was proposed to this buoyancy
term (see Sect. 4.3.5).

Figures 4.3 and 4.4 highlight the fact that when these corrections are brought,
the wind and turbulent kinetic energy profiles calculated from CIM correspond
better to the profiles computed using the MOST.

In both the stable and unstable cases, the wind speed and the potential tem-
perature were in very good agreement with the MOST (less than 0.5% difference).
There were no significant differences in the profile calculated for the T.K.E. In the
stable case however the magnitude of the T.K.E still differed and since the values

are very close to zero the percentage differences were around 60%.

4.6 Results with obstacles

CIM is run in this section with obstacles with the same characteristics as those
described in Part I of this study. The simulations done under stable and unstable

atmospheric conditions are compared to the results obtained for neutral condi-
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Figure 4.3: Comparison of wind (in ms™'), potential temperature (in K) and
T.K.E (in m?s™2) vertical profiles obtained with the MOST over a plane surface
and with CIM (without and with the C¢ correction in the T.K.E.) under stable
conditions. Altitude is in meter.
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Figure 4.5: Comparison of wind (in ms™!), potential temperature (in K) and
T.K.E (in m?s™2) vertical profiles computed with CIM applied on a surface with
obstacles under neutral and stable case atmospheric conditions

tions. Thus compared to Mauree et al. [2014b], CIM is here tested to analyze the
effect of the stability of the atmosphere on the vertical profiles of wind, potential
temperature and T.K.E.

Figure 4.5 shows the comparison of wind, potential temperature and T.K.E
vertical profiles computed with CIM, applied on a surface with obstacles under
neutral and stable atmospheric conditions. It is shown that when obstacles are
present in a stable case they can further interfere with the wind profile. The
potential temperature is lower close to the ground and in the canopy while the
T.K.E is lower at the top and above of the canopy when comparing to the neutral

case. The T.K.E are shown to decrease as compared to the neutral environment.

As for the unstable case, the profiles show slight differences when comparing to

the neutral case for the temperature and the T.K.E. The change in the potential
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Figure 4.6: Comparison of wind (in ms™!), potential temperature (in K) and
T.K.E (in m?s72) vertical profiles computed with CIM applied on a surface with
obstacles under neutral and unstable case atmospheric conditions

temperature profile is expected since the surface is warmer and the lower levels
of the canopy are also warmer. For the T.K.E, the profiles show that above the
canopy, the buoyancy effects tend to be more important than the mechanical effect
and hence affects the profile. The trend that is shown here is in good agreement
with the calculations that were expected from the MOST as shown in Sect. 4.5.1.
The wind speed increases in an unstable environment as does the T.K.E when

compared with the neutral case.

4.7 Discussions and Conclusion

When CIM was tested over a plane surface with the MOST in stable and unstable

atmospheric conditions, it was shown that there were discrepancies in the results.
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For the stable case the difference for the wind speed was around 55% while for the
unstable case, the differences were less than 5%. However the calculated T.K.E
was quite different from the profile that was expected from the MOST.

In order to improve those results, it was proposed to modify the buoyancy term
of the T.K.E. The other terms were considered to be well represented since Mauree
et al. [2014b] showed good coherence between CIM and other formulations under
neutral atmospheric conditions. Thus taking into account the Monin-Obhukov
Similarity Theory, with the Businger formulations which are widely accepted, cor-
rections were proposed. It was shown that a correction to this buoyancy term
could be brought, if one wanted to get results which corresponded to the MOST.
This was used to ascertain that the modifications we proposed to the buoyancy
term in the T.K.E governing equation were good options. We showed that the
correction terms, in the stable and unstable case, are indeed different if we want
to be in coherence with the Businger’s formulations. The correction that is pro-
posed in the present study, improves the results significantly in both the stable
and unstable case.

Finally, obstacles effects were integrated in CIM equations in the stable and
unstable atmospheric conditions. The validity of the simulated profiles inside the
canopy is arguable due to the lack of appropriate measurements to verify these
results. However these results follow expectations. When the results from the
MOST are compared to the Prandtl surface layer theory, the trends correspond to
those obtained with CIM when obstacles are integrated. When compared to the
profiles obtained in a neutral environment, it is expected that in an unstable case,
the wind speed and the T.K.E are higher while in a stable case, the wind speed
is expected to be lower. Besides above the displacement height, a surface layer is
reproduced. However in the stable case, there are still some discrepancies. One of
the unexpected results, in the stable case with obstacles, is that even though the
T.K.E is slightly lower, we have a higher wind speed. A possible explanation for
this is that as the T.K.E is lower, the diffusion of the momentum decreases. This
then causes the fluxes coming from the obstacles to have a lower impact on the
wind speed.

The main advantage of the development of this simple canopy model, is that

not much computational time or data is needed to resolve vertical profiles of the
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main meteorological variables. CIM can be used as an interface between meso-scale
meteorological model and microscale models such as Building Energy Models. Fur-
ther studies are however needed to complete our understanding of the impact of
turbulence generation and why this correction had to be brought to the T.K.E
terms. This is particularly important as it was shown that the similarity theory
and the universal functions developed by the previous studies cannot be used in
an urban context. Hence the modification brought here, using these universal
functions are still to be improved. Data and measurements need to be collected
to validate and enhance our understanding of turbulent processes in such type of

canopy model.
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Abstract

Urban parameterizations have been recently proposed and integrated in meso-
scale meteorological models for a better reproduction of Urban Heat Islands and to
compute building energy consumptions. These parameterizations usually improve
the estimation of the surface fluxes of momentum, heat and kinetic energy, even
if these surface fluxes are computed using low resolution vertical profiles of mete-
orological variables. The objective of the present study is to evaluate the value of
the use of a module able to produce highly resolved profiles of these variables. For
this purpose, the new 1D Canopy Interface Model (CIM) developed by Mauree
et al. [2014a,b] has been integrated as an additional urban physics option in WRF
v3.5. The coupling methodology is here detailed and its evaluation is done using
a reference run based on a fine resolution WREF simulation. In order to keep both
CIM and the meso-scale model in coherence, an additional term is added to CIM’s
calculation.

In general, this work allows the conclusions that the coupling improves the
simulations of the meso-scale model and allows the WRF-CIM system to provide
highly resolved vertical profiles while at the same time improving significantly
computational time. The data from these preliminary results are very promising
as it provides the foundations for CIM to act as an interface between meso-scale

and micro-scale models.

Keywords: urban meteorology, multiscale meteorological modeling, urban canopy

parameterizations, urban heat island.
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5.1 Introduction

Meteorological meso-scale models were initially dedicated to weather forecast with-
out the need to detail interactions between urban areas and the atmosphere [Sala-
manca et al., 2011]. For the last few years, urban parameterizations have been
integrated in these meso-scale models to also simulate Urban Heat Islands (UHI)
[Masson, 2000, Martilli et al., 2002], building energy consumption [Krpo et al.,
2010] and improve air pollution modelling [Salamanca et al., 2011]. Table 5.1
shows the different schemes that have been developed in the recent years. The
underlying purpose is thus to develop systems that could help urban planners
take decisions and propose sustainable urban planning scenarios to decrease UHIs,
building energy demand, or urban air pollution.

Baklanov et al. [2009] gave a guideline for the level of complexity that is needed
for Urban Canopy Parameterizations based on the “fitness for purpose”. For air-
quality, urban climatology, strategies to mitigate heat islands and urban planning,
it is necessary to have more detailed and precise meteorological profiles and fluxes
(see Table 5.2).

It is now well known that urban climate depend on a series of processes taking
place at different spatio-temporal scales from global to local [Oke, 1982], and that
building energy demand and urban climate are closely related and interdependent
[Ashie et al., 1999, Salamanca et al., 2011]. However using meso-scale meteorolog-
ical models, with a high resolution, to cover a whole urban area and resolving at
the same time local building effect and urban heat island is still not feasible with
the actual computer performances [Martilli, 2007]. Moreover the use of available
micro-scale models (such as Envimet [Bruse and Fleer, 1998] or EnergyPlus [Craw-
ley et al., 2008]) on more than a neighborhood (few streets) is also not feasible.
Thus multi-scale modeling is proposed as a solution.

Using the same methodology as Martilli et al. [2002], Muller [2007] designed
experiments to show that a canopy module can be coupled with meso-scale models.
He showed that the use of a canopy module in a meso-scale model with a low
resolution gives the same trend as using a very high resolution in such models
[Muller, 2007]. Using a canopy model is hence expected to reduce computational

time while allowing at the same time a more precise integration of obstacles and
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[2010]

Model Authors Resolution of Vegetation  Primary use Anthropogenic
canopy heat
MM5 MRF BL Liu et al. [2006] No canopy, No Weather  Fore- No
roughness length cast
modification
ARPS Sarkar and De Rid- Yes UHI formation Yes
der [2011]
Meso-NH-TEB Masson [2000] Single layer Yes Urban meteorol- from fixed tem-
ogy poral files
Kusaka et al. [2001] Yes Yes
SUMM Kanda et al. [2005] Yes No
FVM-BEP Martilli et al. [2002]  Multi-layer Yes Air  pollution No
modeling
WREF-BEP Yes No
NIRE-M Kondo et al. [2005] Yes No
MM-CM-BEM Kikegawa et al. Multi-layer Yes Building energy Yes
[2003] use, air pollution
modeling  and
urban planning
WRF-BEP-BEM Salamanca et al. Yes Yes

Table 5.1: Urban canopy parameterization implemented in meso-scale models (adapted from Salamanca et al. [2011])
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tion

Application v/s | Air quality Urban cli- Urban Weather fore-

Importance matology Planning casting

Wind speed ++ + ++ + (above canopy)

Temperature (and | + +++ ++ ++ (2-m tempera-

Humidity) ture)

Turbulent fluxes ++ ++ ++ ++ (at the top of
the canopy)

Pollutant concentra- | +++ ++

Table 5.2: Variable importance versus application adapted from [Baklanov et al., 2009] (’+ represent important,

++ “very important’ and +++ ‘very very important’)
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calculation of the fluxes generated by the presence of these obstacles.

Based on the same methodology, a Canopy Interface Model (CIM) was de-
veloped and tested in an offline mode by Mauree et al. [2014a,b]. CIM is here
introduced in the Weather Research and Forecasting model (WRF v3.5) commu-
nity research model [Skamarock et al., 2005, 2008] in order to build a multi-scale
urban meteorological system able to produce highly resolved vertical profiles of
meteorological variables in low resolution meso-scale meteorological models. The
idea is to use these profiles to improve the estimation of surface fluxes of mo-
mentum, heat, kinetic energy and humidity inside the meso-scale model and at
the same time to allow the meso-scale model to be coupled in with a micro-scale
model, if needed.

The objective of the present article is to detail the steps followed to set up and
to evaluate the coupling. Indeed, a new methodology is proposed to ensure the
maximum of coherence between the models and to take advantages of both models
in the coupling system. When used with a low resolution, the meso-scale model
cannot reproduce correctly the vertical meteorological profiles and surface fluxes in
the canopy. However it still simulates the horizontal fluxes that are not considered
in CIM, which is able to well reproduce the vertical transport. A correction of
CIM computations is thus proposed to add horizontal fluxes effects in an effective
way.

In Sect. 5.2 a brief description of the governing equations in WRF is given. In
Sect. 5.3 it will be explained how CIM has been integrated in WRF in order to
keep in coherence both the meso-scale model and CIM. In Sect. 5.4 a description
of the experiments conducted with WRF is presented. In Sect. 5.5 the results from
the series of sensitivity tests are presented to evaluate the value of the use of CIM
and the proposed coupling. The last section is devoted to the discussions and the

conclusions of this study.

5.2 Weather Research and Forecasting model

The Weather Research and Forecasting model [Skamarock et al., 2005, 2008] is
a numerical weather prediction (NWP) and atmospheric simulation system. The
Advanced Research WRF (ARW), version 3.5, developed by the National Center
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for Atmospheric Research (NCAR) for research purpose, is used in the present
study and will be referred to hereafter as WRF. Broad variety of physics and
dynamics options has been proposed by the scientific community. In Sects. 5.2.1
and 5.2.2, only a brief description of the conservation equations and the physics
options that are used to simulate the surface layer is given. The objective of this
section is mainly to help understand the coupling of the Canopy Interface Model
with WRF', which is fully described in Sect. 5.3.

5.2.1 Governing equations and turbulent closure

Following Ooyama [1990], variables with conservation properties (mass for exam-
ple) are written with equations in their flux form and using a terrain-following
mass vertical coordinate. We here present briefly these equations to prepare the
presentation of the coupling with CIM. More details on the chosen formulations
can be found in Skamarock et al. [2008].

Momentum and Heat

The following equation represents the conservation of momentum or heat.
N + (V.Fy), = Fy (5.1)

where NNV is the momentum for the x, y or z or the heat and F%, is the source or
sink terms from the surface. The second term on the left hand side of the equation
is a flux divergence term which represents the advection, the pressure-gradient and
the diffusion terms. The latter is a function of the diffusion coefficients, K} , which

will be described later. The V.Fy term depends on 7, the eta-levels given by:

(Ph — Pnt)
n=-——-= (5.2)
1
where p;, is the hydrostatic pressure at this height, py, is the pressure at the
top boundary and g is the mass per unit area within the column in the domain,

given by p = pnps — ppe Where pp, is the pressure at the surface.

1.5 order turbulence closure
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WRF provides several closure formulations for the calculation of the turbulent
diffusion coefficients. A prognostic Turbulent Kinetic Energy (T.K.E) closure is
chosen here. With this closure the turbulent diffusion coefficient can be computed
using:

Khy = Crlppve (5.3)

where the subscript h,v represent horizontal and vertical directions respec-
tively, Cf is a constant (ranging from 0.15 to 0.25), [}, is the mixing length and e

is the turbulent kinetic energy.

Turbulent Kinetic Energy

The T.K.E, E, can be calculated using a prognostic equation:

Oy(e) + (V.Fo)y = (P + G —¢) (5-4)

where e is pF, P is the mechanical production, G is the buoyancy and € is the

dissipation.

5.2.2 Focus on specific physics schemes

WRF provides a large variety of physics schemes to represent different processes
taking place in the atmosphere. For the purpose of this study, the focus is mainly

on specific schemes that are in relation with a future use of CIM.

Surface layer scheme
The surface layer schemes, proposed in WRF, calculate the friction velocities and
exchange coefficients that enable the computation of surface heat and moisture
fluxes by the land-surface models and surface stress in the Planetary Boundary
Layer. The Monin-Obukhov Similarity Theory [Monin and Obukhov, 1954] option

was chosen for this study.

Land-Surface Model
The Land-Surface Model (LSM) is a 1-D column model computing surface fluxes

over land and sea-ice grid point starting from land-surface properties and outputs
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of the surface layer scheme and the radiation scheme. These fluxes give a lower
boundary condition for the vertical transport done in the Planetary Boundary
Layer (PBL) schemes. The Noah LSM [Chen and Dudhia, 2001] was selected.

For the purpose of this study, we also chose to use the BEP-BEM [Salamanca
et al., 2011] urban physics option to simulate the buildings effects on the long wave
and short wave radiation (shadow effects and multi-reflexion) and the surface fluxes
of momentum and heat.

The Building Effect Parameterization (BEP) module is based on Martilli et al.
[2002] who proposed a multi-layer model. Obstacles effects are estimated in several
layers of the meso-scale model. It takes into account the 3-D geometry of urban
surfaces as well as the ability for buildings to diffuse sources and sinks of heat and
momentum vertically through the whole urban canopy layer. The Building En-
ergy Model (BEM), developed by Krpo et al. [2010], computes the building energy
balance (and the associated building demand) to keep a comfort temperature in-
side buildings. This energy balance takes into account the effect of anthropogenic

heating and heat diffusion through surfaces, radiation exchange through windows.

Planetary Boundary Layer
The PBL scheme calculates flux profiles so as to compute the temperature, mois-
ture and horizontal momentum profiles for the atmosphere. One important aspect
of this type of schemes is that they are one dimensional and assume that there is a
clear separation between resolved and sub-grid eddies [Skamarock et al., 2008]. For
the purpose of this study the Bougeault and Laccarere turbulence closure scheme
[Bougeault and Lacarrere, 1989] developed specially for the BEP-BEM schemes

will be used to compute [ ,.

5.3 Canopy Interface Model integration in WRF

A 1-D Canopy Interface Model (CIM) was developed by Mauree et al. [2014a,b] in
order to improve low resolution meso-scale meteorological models or to be used as
an interface between low resolution meteorological meso-scale model and micro-

scale models. After a brief description of CIM, it is explained in the present section
how CIM was introduced in WRF.
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5.3.1 Canopy Interface Model

CIM solves 1-D transport equations, i.e. only terms along the vertical (z-direction)
are kept from Eq. (5.1).

ou 0 ou s
Er (Mt%) + /a (5.5)

20 0 a0 .
% os </ft@> + fa (5.6)

where u is the mean wind speed in the x or y directions, 6 is the mean potential
temperature, f; and f; are the momentum and heat surface fluxes and p, and x;
are the turbulent diffusion coefficients. k; is p; divided by the Prandtl number
(0.95).

CIM solves these equations using a 1.5 order turbulence closure based the
Turbulent Kinetic Energy (T.K.E).

MUt = Okl\/g (57)

where C} is a coefficient calculated to be equal to k:%, from Mauree et al.
[2014Db], where k is the von Karman constant (0.41), [ is the mixing length cal-
culated according to Santiago and Martilli [2010] and E is the T.K.E calculated

independently as follows:

E = & )\tE T(Estat — E) —+ fe (58)

orE 0 oF E
where \; is here assumed to be equal to y; and Egq, is a stationary T.K.E
value obtained in neutral condition and without obstacles as explained by Mauree
et al. [2014b]. Further details about the development of CIM and the governing

equations used in CIM can be found in Mauree et al. [2014a,b].
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5.3.2 WRF-CIM coupling strategy

CIM computes highly resolved vertical profiles of meteorological variables, but it
doesnt include horizontal fluxes like a mesoscale model such as WRF (see Eq. 5.1).
In such a context, it is possible to force CIM with WRF in a one-way nesting but
it will not be valuable to correct the values calculated by WREF using CIM values
as it could have been proposed in a traditional two-way nesting.

Thus two methodologies are tested : the first one is based on a coupling us-
ing fixed top boundary conditions as done by Muller [2007] ; the second is a new
proposition to add an additional term in CIM’s calculation in order to account for

the processes described by the flux divergence term in Eq. (5.1).

Coupling by fixing top boundary condition - Method FT
CIM can calculate vertical profiles using prescribed top boundary conditions and
description of the surface obstacles in each grid (geometry and surface tempera-
ture). In an offline mode, the boundary conditions may be fixed at the top with a
constant value, while when coupled with a meso-scale model, this value is interpo-
lated from the meso-scale model at each time step. At the initialization time step,
the meso-scale values are interpolated on each of CIM vertical level and used to
initialize the computation of the surface fluxes done by the BEP-BEM system. At
other time steps, CIM high resolution vertical profiles (wind speed, temperature
and humidity) are given to BEP-BEM which then proceeds to a potentially more
detailed estimation of compute sources/sinks. The sources and sinks are then given
back to CIM to compute new vertical profiles, and to the meso-scale model (the
surface fluxes are in this way aggregated at each of the meso-scale vertical levels
and represent the Fy terms in the Eq. 5.1 from Sect. 5.2).

This coupling may be enough when the mixing boundary layer is well developed
but could be limited in stable conditions when the exchanges between air layers
are low. Indeed, in such cases the horizontal fluxes cannot be neglected anymore
as compared to the vertical fluxes and the method will not conserve the coherence

between the two models from a fluxes point of view.

Coupling by fixing fluxes - Method FF
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Figure 5.1: WRF scheme with the implementation of CIM (all in blue corresponds
to WRF, in red variables corresponding to CIM and the fluxes are represented in
green)

We hence propose in this section a methodology to keep the coherence between
the models and take into account the horizontal transport in CIM as well as a
new forcing at the top of CIM using fluxes. To develop this new methodology, an
analysis of the fluxes budget is done over the vertical column of CIM and for a
corresponding volume from the meso-scale model. Figure 5.2 gives a representation
of the fluxes considered in both CIM and the meso-scale model. The following
statements may be noted to ensure the coherence between the models and a balance

of the fluxes:

e The mean value of each variables calculated on the CIM column should be the
same as the one computed by the meso-scale model (both models proposing

an estimation of the same real profiles);

e Bottom surface fluxes (i.e. surface fluxes calculated to take into account
the effects of buildings at each level of the column) are computed once for

forcing both the meso-scale model and CIM; the values should hence be equal
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M
FTOP F ‘ F T%P

M
F BOTTOM K BCOTTOM

Figure 5.2: Representation of fluxes calculated on the vertical column in CIM
(right) before correction and in the corresponding volume in WREF (left)

: M _pC _ .
in both models (Fgorron=Fsorrom=Feorrom);

e Far enough from the surface the flux at the top of both columns should be
equal as it would be less influenced by the surface effects. In this case, a
constant flux layer is considered and it is assumed that the flux at the top

is equal to the bottom fluxes (FX5p,=FS,p=Frop).

Based on the above statements, CIM’s profiles may be corrected after each
time step using an estimation of the horizontal fluxes. The formulation is done to
allow a computation of these values that are not known a priori in order to ensure
a coherence between the models. Equation 5.9 points out the consequences of this

condition on the new CIM profiles.

Fori <n{N'"" = N+ AFy

(5.9)
Fori=n{NS"" = N$*+ AFpi— Frop

where N is one of the variables calculated by CIM (wind speed, potential
temperature or humidity), ¢ is the time step considered, i is an index corresponding
to the center of a grid cell in CIM, NP is the updated vertical value of CIM,
NE* is an “initial” value and AFy; the horizontal fluxes to be added. A different

equation is proposed for the top most level of CIM since the objective is to not
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force the model with a value of wind, temperature and humidity but with a flux
value at the top, Frop, that ensures the balance of both models. For each of the
other levels, this flux may be computed at the cell faces. However the flux value
on the top surface of the CIM column cannot be determined and has to be fixed.
Thus, NF* represents Nt including all fluxes except the horizontal ones and the

top one.

To ensure coherence between the models using these formulation, we can write
that the mean value of the variables calculated by CIM have to be equal to the

meso-scale value:

— F
NMHHE = NOHL = NC* 4 AFy; — ror (5.10)
n

where W is the mean meso-scale value interpolated from the meso-scale model
over the n levels present in CIM’s column and where n is the number of levels in
the urban grid. As a first assumption, the horizontal fluxes, can be assumed
constant over CIM’s column (equal to their mean) and it can then be written

using Equation 5.10 as:

Frop

AFy; = AFy; = NMHE - NO* 4
n

(5.11)

This then leads with Egs. 5.9 to the Eqs. 5.12, which give the new formulations
used in CIM.

Ml vos F
For i < n {NiC’t-H _ Nl-c*—l- NthH— Nic*_{_ rror
o (5.12)
For i =n { NC*l = NC 4 NOHI_ NCry T;lop— Frop

When this correction is made, the results from CIM and the meso-scale mod-
els should be coherent. It is proposed here to fix Frop equal to Fgorrom, in

accordance with the statement formulated earlier.
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5.4 Experiments with WRF-CIM

Sensitivity tests were designed to assess the value of the use of CIM in WRF and
specially to see how CIM can improve the meteorological profiles when using a
coarse vertical resolution and what its impact will be on the computational time.

A theoretical domain of 20*20 cells was designed each with a horizontal reso-
lution of 45km*45km. It was centered at latitude 48.404N and longitude 2.248F,
situated near the “Ile-de-France” region in France, such that the topography did
not interfere with the test that have been conducted. An urban area of 9 cells at
the centre of the domain has been designed and the land use for the rest of the
domain was taken from the MODIS database.

Several simulations were performed, with WREF all using the urban parameter-
ization BEP-BEM, over 5 days from the 27th of January 2010 at 00h00 to the 1st
of February 2010 at 00h00 (with the first day of initialization not being discussed
here). Simulations were also conducted for a summer period, but since the results
showed similar behavior to the results presented in this study they are not further

discussed.

Reference Simulation (Ref.) : WRF is run with a fine vertical resolution
of bm (corresponding to the vertical resolution of CIM), for the first 10 levels,
without CIM. This is considered to be the reference simulation and will be denoted
“Fine res. (Ref)”. The simulation integrates all processes needed to compute high
resolved vertical profiles with BEP-BEM computing the urban effects.

C1 : WRF is run with a coarse vertical resolution of 94m, for the first level,
without CIM. This simulation (“Coarse res. (C1)”), compared to the reference
one, will show the impact of the vertical resolution on the surface representation
and on the calculation of the meteorological variables in the WRF model.

C2 : WRF is run with the same resolution as the reference run with CIM coupled
using Method FF (denoted “Fine res. with CIM - FF (C2)”). BEP-BEM has
no connection to the meso-scale model but runs with CIM profiles. This test is
carried out to see if the integration of CIM in WRF when using high resolution
will have an effect on the meso-scale solution.

C3 : WREF is run with a coarse vertical resolution with CIM coupled using Method
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FF. BEP-BEM also runs with CIM profiles issued from the coarse resolution WRF.
This test, denoted “Coarse res. with CIM - FF (C3)”, is performed to see how
the profiles that are calculated by CIM when it is integrated in the WRF model
correspond to the simulation with a fine resolution and how this will in turn
influence the meso-scale processes in a low resolution simulation.

C4 : WRF is run with a fine vertical resolution with CIM coupled using Method
FT. This test, denoted “Fine res. with CIM - FT (C4)”), is done to compare with
the FF' method.

C5 : WREF is run with a coarse vertical resolution with CIM coupled using Method
FT. This test, denoted “Coarse res. with CIM - FT (C5)”, is also done to compare

with the FF method in a low resolution simulation.

5.5 Results

This section aims at evaluating the coupling of CIM and WRF and to justify
the strategy that has been developed. As previously mentioned, the simulations
presented here were performed for a period of 5 days in January 2010. We only

show results for the horizontal wind speed and the temperature.

5.5.1 Global comparisons on specific vertical levels

We present here the comparisons over the four days of simulation and a series of
statistical tests in order to show the general trends when CIM is integrated in
WREF. Table 5.3 summarizes the comparisons in terms of biases, correlations and
the root mean square errors (R.M.S.E) computed on hourly values of the simulated
temperatures and wind speeds for the 4 days of simulation. Figure 5.3 present a
time-evolution of the different simulations cases discussed in Sect. 5.4 over the 4

days at bm and 50m.

Effect of the WRF vertical resolution - (Ref./C1)
We focus here on the differences observed between the fine and coarse resolution
WRF simulations, without CIM, as increasing the resolution can have a significant

effect on the temperature and the wind speed. It can indeed be seen from Table 5.3
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that on average the coarse WRF configuration (C1) tends to over-estimate the
potential temperatures and to under-estimate the wind speed.

But Fig. 5.3a shows that the differences in temperature may be under-estimated
by more than 1K for some hours. The horizontal wind speed computed at 50m is
weaker for the coarse resolution than in the fine resolution simulation and these

differences may reach 4ms=!.

These first results justify the development of CIM
model and its coupling in WREF since the vertical resolution may influence the

accuracy of the temperature and wind profiles.

Effect of a coupling with CIM at high resolution - (Ref./C2)
Another experience constisted of introducing CIM in WREF and test the system
with a high vertical resolution in the meso-scale model (C2). One can note from
Table 5.3 that the comparison with the high resolution simulation with CIM gives
satisfactory correlations. There were no biases on average for temperature and
small positive bias for the wind speed. This experience showed that the meso-
scale simulations were not significantly modified when CIM was used with a fine
vertical grid resolution in WRF and hence that CIM is not disturbing the WRF

simulations.

Effect of a coupling with CIM at low resolution - (Ref./C3)
The integration of CIM in WRF drastically reduces the under-estimations of
the coarse meso-scale model from -35% to -17% at 50m and improves the over-
estimation of the temperature from 10% to 7% (see Table 5.3). It can also be
noted that in some cases the temperature is still under-estimated by about 1K.
CIM produces new high vertical resolution profiles that only slightly over-estimate
the wind speed by 2% at 50m and respect their variability (high correlation co-
efficient). Although the wind speed from CIM at 50m is in agreement with the
fine resolution simulation, there are a few hours where the difference can be up to

1ms™!

. It however under-estimates the wind speed by 24% at 5m and the vari-
ability of these values is not as well represented, at the surface, as at 50m. But as
shown in Fig. 5.3d the variability amplitude is also less important at 5m than at
50m. There are also some periods when CIM has a good correspondence with the

fine resolution simulation.
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Simulations Resolution  Method Bias R.M.S.E R
Fine Coarse FF FT Value % Value %
For Potential Temperature
Meso outputs at 50 m
WRF C1 X 0.4 10 0.5 12 0.99
WRF-CIM C2 X X 0.0 0 0.0 0 1.0
WRF-CIM C3 X X 0.3 7 0.5 12 0.99
WRF-CIM C4 X X 0.0 0 0.1 2 1.0
WRF-CIM C5 X X 0.3 7 0.6 15 0.97
CIM outputs at 50 m
WRF-CIM C3 X X 0.2 5 0.4 10 0.99
WREF-CIM C5 X X 0.4 10 0.5 12 0.99
CIM outputs at 5 m
WRF-CIM C3 X X 0.4 9 0.5 12 0.99
WREF-CIM C5 X X 0.7 16 0.8 19 0.98
For Wind
Meso outputs at 50 m
WRF C1 X -1.8  -35 1.9 37 0.97
WRF-CIM C2 X X 0.1 2 0.2 4 1.0
WRF-CIM C3 X X -0.9 -17 0.9 17 0.99
WREF-CIM C4 X X 0.4 8 0.6 12 1.0
WRF-CIM C5 X X -0.5  -10 0.8 15 0.96
CIM outputs at 50 m
WRF-CIM C3 X X 0.1 2 0.5 10 0.99
WRF-CIM C5 X X -0.3 -6 0.5 10 0.99
CIM outputs at 5 m
WRF-CIM C3 X X 0.5 24 06 28 0.90
WREF-CIM C5 X X -1.0 47 1.3 61 0.39

Table 5.3: Statistical comparison between the fine resolution simulation (Fine
res. (Ref.) and the WRF (C1), WRF-CIM (C2), WRF-CIM (meso and cim -
C3), WRF-CIM (C4) and WRF-CIM (meso and cim - C5) simulations). The %
represent the percentage difference with respect to the mean temperature in (°C)
and the mean horizontal wind speed values from the fine resolution simulation. R
is the correlation. FF (fixed flux) and FT (fixed top) represent the two coupling
methods.
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potential temperature (K)

potential temperature (K)

Figure 5.3: Comparison of the potential temperature (K') (left) and wind speed (ms™!) (right) computed using WRF
without and with the coupling of CIM at 50m (top) and at 5m (bottom). Black lines refer to reference simulation
(Ref.) , purple refer to C1, blue line refer to meso-scale values from C3 (meso - C3) and red line refer to CIM values
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Effect of the FT coupling - (Ref./C4 and C5)

In order to show the importance of the coupling methodology proposed in Sect. 5.3,
Table 5.3 also presents the results of a comparison between the WRF fine simu-
lations and the WRF-CIM simulations without taking into account the horizontal
fluxes (C4 and C5). It can be noted that when the horizontal fluxes are removed
the bias and the R.M.S.E increase for both the temperature and the wind speed
as compared to the simulation where the fluxes were present (except for the wind
speed at 50m from the meso-scale model). The correlation coefficient for the wind
speed at 5m is also drastically reduced.

Even though we know that in CIM the vertical fluxes and diffusion processes
are better taken into account, we cannot conclude that the results are better in
this context. The meso-scale model contains a number of processes, such as the
horizontal wind advection or pressure gradient, which are not taken into account.
It is thus important to take these processes into account in CIM in such a way
that both calculations from CIM and WRF remain coherent.

5.5.2 Comparison on specific vertical profiles

This section aims at showing vertical profiles at specific hours to illustrate the
effect of the coupling methods in different stability conditions of the atmosphere.
A time-evolution of the mean wind speed and potential temperature (not shown
here), over the 4 days of simulations were made and we chose some profiles based

on these.

Comparison using a fine vertical grid resolution in the meso-scale
model
For example, Figs. 5.4 and 5.5 show the comparison between the vertical profiles
obtained by the meso-scale model when used at high resolution with or without
CIM (Ref. and C2). We note that the temperature profile is not modified while the
wind profile is slightly over-estimated in these cases. When CIM is used, the effect
of the horizontal coupling is also tested by removing the evaluation of the horizon-
tal fluxes of CIM’s computation (C4). It turns out that CIM with the horizontal
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fluxes correction is able to correctly simulate the temperature and wind profile, at
both times in neutral or unstable conditions. However, when these fluxes are not
taken into account, there are changes in the profiles both at the meso-scale level
and in CIM. The temperature is over-estimated (0.5K) close to the surface while
the wind speed is further under-estimated as compared to the solution with the

horizontal fluxes.

The effect of the correction can be noted on the profiles at 02h00 with a discon-
nection at the top of the column between CIM’s profile and the meso-scale profile.
This is due to the fact that the correction forces CIM to give a mean value equal
to the meso-scale mean value. This is not observed when the mixing is important

(at 15h00).

Comparison using a coarse vertical grid resolution in the meso-scale
model
As we have now ensured that CIM is not significantly changing the meso-scale
model solution when using a fine resolution, we performed a series of experiments
with CIM using a coarse resolution. The differences between the profiles calculated
by CIM and by the meso-scale model were studied on an hourly basis and were
found to be minimal during the morning when the development of the boundary
layer was at a maximum. We thus chose two vertical profiles out of this zone
to show that CIM can perform in near-neutral (stable) or unstable conditions.
Figures 5.6 and 5.7 show the comparisons on the vertical profiles obtained by the
meso-scale model when used at coarse resolution without or with CIM (Ref., C1
and C3). In the same way as previous experiences with high resolution, when
CIM is used, the effect of the horizontal coupling is also tested by removing the
horizontal fluxes of CIM’s computation (C5).

It is shown that when CIM is used the model is able to reproduce a profile
for the potential temperature, at 02h00, which is in good agreement with the
profile as calculated by the fine resolution meso-scale simulation. At 15h00, with
horizontal fluxes, there is a global difference of less than 0.5K between the profile
calculated by CIM and the fine resolution. In the absence of horizontal fluxes, the

temperature is over-estimated over the whole column of CIM and the difference is
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Figure 5.4: Profile of the potential temperature (K') using a fine resolution (Ref. -
bold black curve), coarse resolution (C1 - purple curve), fine resolution with CIM
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(Ref. - bold black curve), coarse resolution (C1 - purple curve), fine resolution
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increased to more than 1.5K in the first 10 meters. There are however no significant
improvements of the meso-scale temperatures. It is noteworthy to mention that
the correction does not change the stability regime of the atmosphere.

The horizontal wind speed in a near-neutral situation, for example at 02h00,
(see Fig. 5.7a), is significantly improved for the meso-scale model. At 50m the wind

speed is increased from 3ms~! to over 4ms1.

The profiles which are calculated
from CIM are also in very good agreement with the reference simulation. If the
horizontal fluxes are removed the wind speed above the canopy is under-estimated
in CIM.

The results are more contrasted in an unstable condition, such as at 15h00
(see Fig. 5.7b). The profiles calculated by CIM, with the horizontal fluxes are
much closer to the reference simulation (less than 0.5ms™! difference). However
above the canopy the profile without the horizontal fluxes are closer to the refer-
ence simulation. If we look at the meso-scale profiles when using CIM with and
without horizontal fluxes, we can observe that the green curve is much closer to
the reference solution. This can also be explained with the methodology that we
have proposed in Sect. 5.3 for the calculation of the horizontal fluxes. We worked
this correction using a mean value for the canopy as well as a mean value for the
meso-scale model over the corresponding volume. In order to be in agreement with
this statement, if one wants to calculate a coherent profile in CIM, then there is a
slight deterioration of the meso-scale value.

It is should also be noted here that in the simulation without horizontal fluxes,
the value is fixed at the top boundary conditions. We evaluated in this way two
possibilities for fixing the boundary condition at the top. We determined, from
these experiments, that the addition of the horizontal fluxes were more important
as compared to fixing the top boundary conditions, in order to keep the coherence

between both models.

5.5.3 Computational time

Finally an analysis of the computational time was made. Table 5.4 gives a summary
of the CPU time used for several simulations.
The data highlight the fact that when the resolution of WRF is decreased, the
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Simulations Computational Time
Ref. 14
C1 11
C2 14
C3 11

Table 5.4: Computational time (in minutes) needed to run the model for each of
the simulations

computational time is decreased but when CIM is introduced the computational
time is not impacted even though there is an additional calculation which is now

being performed by the system to produce high resolution profiles.

5.6 Discussions and Conclusion

A Canopy Interface Model was designed by Mauree et al. [2014b,a] in such a way
that it can act as an interface between meso-scale models and micro-scale models.
In this study it has been coupled with the WRF model. The aim of this study
was to evaluate the coupling done specially to improve surface representation in
meso-scale models and to demonstrate the ability of the built system to provide
valuable high resolution vertical profiles. CIM is a standalone 1-D column model
that can be forced only at the top using values interpolated from the meso-scale
model to calculate meteorological profiles independently of the meso-scale model.
However in order to keep the coherence between both CIM and WRF models, a
methodology was proposed so as to add an additional term, in CIM’s calculations,
to take into account the horizontal fluxes and to fix a flux at the top of the column.

Through a series of sensitivity tests, it was shown that:

e The coupling of CIM and WRF improved the meso-scale simulations specially
when WREF was used with a coarse resolution (we also verified that when
WRF was used with a the same vertical resolution as CIM, the simulations
of both models were very similar and in this way coherent). Compared to the
highly resolved simulation, it was shown that WRF, with a low resolution,

tends to over-estimate the temperature and under-estimate the wind speed.

9-25



Chapter 5 Integration of CIM in WRF

Coupled with CIM, the new system showed better performances with smaller

biases and R.M.S.E. Usually the correlation was similar and very good.

e [t was demonstrated that the correction brought to CIM’s calculation to take
into account the horizontal fluxes was very important in order for both the

meso-scale model and CIM to be in coherence.

All of the experiments that were conducted were not presented here. A simu-
lation was carried out for a summer period. The results showed similar behavior
to the results presented in this study. Tests were also conducted to evaluate the
influence of fixing a value at the top of the canopy or calculating a flux. There were
no significant changes between the two scenarios, but it is indeed more coherent
to use a flux instead of fixing a value at the top based on the methodology that we
have proposed. This provides an enhanced degree of freedom for the calculation
in CIM. We also analyzed the influence of having different vertical resolutions for
the first meso-scale grid cell. This did not show significant impact on the results
and therefore means that CIM can be used independently of the height of the first
level in the meso-scale model. The assumption made, when describing the method
“FF”, that the flux at the top of the canopy has to be equal to the bottom flux,
imposes that a constant-flux layer needs to fully develop at the top of the column.
There is thus a requirement on the minimum number of levels needed in CIM to
achieve the best performance. No empirical law was found to define a limit. This
is something that is still to be understood.

Further investigations are needed to improve our understanding of the processes
taking place at these different scales. The resolution of the turbulence closure in
CIM is different from that of WRF: this would explain why close to the surface
CIM has a more important impact than far enough from the surface. Moreover
when a correction was brought to CIM in such a way that CIM calculations were
coherent with the meso-scale calculation, this meant that the results in the meso-
scale models were less affected in some cases.

In conclusion of this study, we can say that the WRF-CIM system is able to
calculate coherent high resolution vertical profiles, in the canopy and these profiles
were in good agreement with those calculated using WRF with a high vertical grid

resolution. It was therefore demonstrated that CIM can be used with a low verti-
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cal resolution meso-scale model to reduce the computational cost. In view of the
above promising results, the foundation for the use of CIM as interface to improve

surface representation and to couple meso-scale models to micro-scale models is
established.
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6.1 Conclusions

The 5th report issued by the Intergovernmental Panel on Climate Change in 2013,
highlighted again the role of anthropogenic greenhouse gas emissions in the cur-
rent climate change we are experiencing. Non-binding and binding international
agreements have encouraged countries and governments to implement new policies
to reduce their greenhouse gas emissions. These emissions come typically from our
energy production. Around 70% of the energy produced is used in urban areas.
Since 2010, over 50% of the world’s population lives in urban areas and this figure
is expected to increase to 75% in 2050. Besides, buildings account for around 40%
of the total final energy consumption among which 70% is dedicated to the thermal
comfort of their occupants. It is thus crucial to reduce this energy use in order to

decrease the building footprint in the greenhouse gas emissions.

To evaluate more precisely building energy use and urban planning scenarios,
it is essential to develop models that are able to grasp all the processes taking
place at various spatio-temporal scales and that influences the urban climate. To
address this issue, it was proposed to develop a 1-D column model, the Canopy
Interface Model (CIM). The intended objective of CIM is to provide an interface

in order to couple meso-scale model and micro-scale models.

CIM is a standalone model using a 1.5 order turbulence closure. It was first
tested in an offline mode, where values were prescribed at the top for the bound-
ary conditions and in a neutral environment. Fluxes coming from the surface
(horizontal and vertical) were calculated according to Martilli et al. [2002]. A
new formulation for the resolution of the Turbulent Kinetic Energy (T.K.E) was
derived. To be in coherence with the traditional Prandtl surface layer theory, a
constant T.K.E profile is obtained. In such cases, it was then showed that the value
of the T.K.E corresponds to the stationary T.K.E. Obstacles were then integrated
in CIM according to Krpo [2009] and Kohler et al. [2012]. The novelty with this
approach was that any kind of obstacles could be integrated in CIM as porosities.
This means that CIM can be used with building energy use models or other veg-

etation models such as EnviMet [Bruse and Fleer, 1998] where the obstacles will
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be better represented. Furthermore the mixing length was modified according to
Santiago and Martilli [2010]. The results that were obtained when obstacles were
integrated in CIM were in very good agreement with a C.F.D experiment from
Santiago et al. [2007] and Martilli and Santiago [2007]. However, there were still
some discrepancies in the magnitude of the maximum T.K.E but the horizontal

wind speed was well reproduced.

In the second part of this study, the buoyancy term was included in the T.K.E
equation. The fluxes were also modified with the Louis functions [?]. The re-
sults from CIM were then compared with the Monin-Obukhov Simularity Theory
(MOST [Monin and Obukhov, 1954] in both a stable and unstable condition above
a plane surface. It was shown that if the traditional formulation of the buoyancy
term was used then the results from CIM when compared with the MOST were
different. It was demonstrated that a coefficient, Cg, based on the Businger func-
tions [Businger et al., 1971], has to be used to multiply the buoyancy term so that
the results would be coherent with the MOST. Finally obstacles were integrated
and CIM was tested in different stability conditions. The results from CIM were
very promising as they provided a canopy model which was able to produce high
resolution meteorological profiles which were in very good agreement with tradi-

tional theories.

In the last part of this study, CIM was integrated in the meso-scale meteoro-
logical model WRF v3.5 [Skamarock et al., 2008]. The aim of this integration was
to provide high resolution data to the urban parameterization scheme (BEP-BEM
[Martilli et al., 2002, Krpo, 2009, Salamanca et al., 2010]. To keep the coherence
between profiles calculated by CIM and by WRF, a new methodology was proposed
to also include horizontal fluxes in CIM’s calculation. When CIM is running offline
it can be forced only at the top. In the case where it is coupled with a meso-scale
model, we derived a new formulation where a flux can be used instead as the top
boundary condition. A theoretical study was designed to demonstrate the effective-
ness of CIM. It was shown that CIM was able to reproduce high resolution vertical
profiles of the horizontal wind and potential temperature and that they were in

good agreement with a high resolution simulation of WRF. CIM brought consider-
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able improvement to the wind speed of the meso-scale meteorological model when
using a low resolution. This was expected with the use CIM, as the calculation of
the surface fluxes in low resolution meso-scale models have been enhanced. Ad-

ditionally it was seen that CIM did not have an impact on the computational time.

These results provided a solid foundation for the future coupling of meso-scale
and micro-scale models. The use of CIM has insignificant impact on the com-
putational time and can hence be used in low resolution models to provide high

resolution vertical profiles.

6.2 Perspectives

Further work is needed to address some of the issues that have been encountered
during our studies. Firstly, when comparing CIM with the C.F.D experiment from
Santiago et al. [2007] and Martilli and Santiago [2007], it was seen that even though
the horizontal wind speed was in very good agreement, there were still some dif-
ferences between the T.K.E profiles. CIM seems to underestimate the T.K.E but
this does not appear to have an influence on the diffusion process. One of the
questions which rises is the importance of the magnitude of the T.K.E particularly

in the transition zone above the obstacles and the canopy.

Secondly, when the buoyancy term is added to the T.K.E equation, we observed
that to obtain results in agreement with the well-known and accepted theories, a
coefficient has to be added. The fact that this coefficient is a function of the ¢,,
function from Businger et al. [1971] means that this equation cannot be used in all
cases. A simple diffusion process using a 1.5 order turbulence closure was adopted
for CIM. The use of the ¢,, functions in the resolution of the T.K.E equation is
not intended to be a permanent solution. These functions can only be applied
over a plane surface when it can be assumed that the fluxes are constant. In the
case where obstacles are constant this statement does not hold true and hence we
expect the ¢,, functions to be erroneous. In order to generalize the use of CIM
and the formulations as proposed by Mauree et al. [2014b,a], it is necessary to

find a new formulation for this coefficient and to understand why this correction
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is needed.

Thirdly, one of the major obstacles that we came across during this study is the
lack of experimental data to validate the simulations that have been made. The
aim of CIM was to provide highly resolved meteorological data at the neighbor-
hood scale. In neutral conditions results were validated with a C.F.D experiment.
However in other stability conditions and in real cases, no appropriate dataset
could be exploited. Various means were hence designed to justify the method-
ology that was chosen and to validate the results which were obtained from the

experiments that were conducted.

The integration of CIM in WRF was only a preliminary step to test the valid-
ity of CIM when coupled with a meso-scale model and an urban parameterization
scheme. A few questions are still to be investigated for that purpose. For the
simulations that were run it was noted that BEP had higher walls and surface
temperatures (up to 10K more than the air temperature). Although this might
be the case during summer, it is hardly plausible that such a situation will occur
when the sun is very low in winter at high latitudes. Further investigations are

therefore needed to understand why the wall temperatures are so high.

Coupling CIM and WRF with another micro-scale model may bring an insight
to this particular question. The coupling with another model should prove to be
relatively simple. CIM can provide vertical meteorological profiles to this model

and needs in return only fluxes and obstacles characteristics.

For the purpose of this study, a theoretical domain was designed and used.
Although this was enough for the present context, this type of domain is not
the best configuration for using meso-scale meteorological models. It is therefore
strongly advised, in the future, to use CIM on a more realistic and smaller domain
over a longer time period and where data is available to validate the meteorolog-
ical profiles as well as the energy use. In such a configuration, it would then be
judicious to analyze the influence of land use changes on urban energy consump-

tion. Urban planning scenarios have to be evaluated to determine whether the
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thermal comfort of the inhabitants as well as legislation concerning the energy use

in buildings are respected in the construction of new neighborhoods in urban areas.

In view of the results obtained from the current study, CIM can be used as
a tool to couple meso-scale meteorological models to micro-scale models. It can
thus be fully integrated in a meso-scale model like it has been done with WRF and
precise vertical meteorological profiles can be provided to building energy models.
This will prove to be very useful in the design of more energy efficient buildings

as well as in evaluating urban planning scenarios.

Furthermore, since CIM has been built to be a standalone column model, it can
be used in various type of model to improve the representation of the surface in
low resolution meteorological models, and at the same time decrease computational
time. It can thus prove very useful in global climate model where it is very costly

to use high vertical resolution.
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7.1 Le changement climatique et les dépenses

énergétiques des batiments

7.1.1 Changements climatiques globaux

Le cinquieme rapport d’évaluation (AR5), du Groupe d’experts Intergouvernemen-
tal sur I’'Evolution du Climat (GIEC), sur le changement climatique paru en 2013,
démontre clairement que le changement climatique actuel est dii aux activités hu-
maines. Des preuves irréfutables montrent que cela est die aux émissions de gaz
a effet de serre (GES), comme le dioxyde de carbone (voir Figure 7.1), issues de

la combustion de carburants fossiles lors de la production d’énergie[IPCC, 2013].

Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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Figure 7.1: Concentration du dioxyde de carbone a 1’Observatoire de Mauna Loa
de 1960 a 2011

Le changement climatique anthropogénique, comme décrit par le AR5, indique
que des mesures d’atténuation et adaptation doivent étre prise pour s’assurer que
les effets du changement climatique sur la Terre et ses écosystemes soient le moins
possible. Depuis 2007, I’'Union Européenne et le gouvernement francais ont de-

mandé des actions immédiates pour réduire les émissions de GES par 4 avant 2050.
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Figure 7.2: Population mondiale urbaine et rurale (en milliards) de 1950 a 2050
[UN, 2012]

Par ailleurs, apres la premiere crise pétroliere, il y a eu des craintes quant a
notre forte dépendance énergétique et cela n’a fait qu’empirer avec I’augmentation
du cotut du pétrole sur les marchés internationaux et par le fait que ces ressources
sont non-renouvelables. Cela a donc aussi mis en évidence le besoin de réduire
la consommation énergétique et d’augmenter 'efficacité énergétique des procédés
(comme la consommation de combustibles dans les voitures ou les dépenses énergétiques
de batiments). De plus, les dépenses énergétiques sont I'un des principaux moteurs
de I’économie mondiale et on peut s’attendre a ce que la consommation d’énergie

augmente dans le futur avec une augmentation de la population.

7.1.2 Développement urbain

Apres la deuxieme guerre mondiale, il y a une eu une forte augmentation de la
population dans les zones urbaines (voir Figure 7.2). En 2008, plus de la moitié de
la population mondiale vivait dans les villes [UN, 2012]. Ceci peut étre expliqué
par le fait que l'agriculture n’était plus considérée comme la source de revenue
principale pour la majeur partie de la population et par les réformes du systeme
de marché dans les années 1970 [Davis, 2006].

La migration des habitants, des campagnes vers les villes, et I’augmentation de
la population, dans les zones urbaines, ont donné lieu a un manque de planifica-

tion de 'aménagement territorial. Les batiments ont été construits sans considérer
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pour leurs besoins énergétiques, ni leurs influences sur les écosystéemes naturels.
Le développement urbain et I’expansion des villes, de part la modification des oc-
cupations du sol (de naturel a artificiel) ont modifié le bilan thermique local et les
régimes de vent. Ces effets sont a 1'origine d’'un phénomene plus communément
appelé 116t de Chaleur Urbain (ICU) [Oke, 1982]. L’industrialisation des zones
urbaines a accentué, par ailleurs, la pollution sonore, de I'air et de I’eau. Depuis,
des réglementations ont été mises en place pour protéger la santé et le bien-étre

des citadins mais aussi de la faune et de la flore existante.

UN-Habitat [2009] prévoit que d’ici 2050 environ 70% de la population mon-
diale habitera dans les zones urbaines et que cette augmentation aura lieu essen-
tiellement dans les pays dit en voie de développement. Il est indéniable que ceci
conduira a une expansion des zones urbaines [UN, 2012]. D’apres I’Agence Interna-
tionale de I’Energie, environ 70% de 1’énergie finale produite est consommée dans
les villes [TEA, 2008]. 11 est donc fort probable qu'une augmentation de la popu-
lation accentuera la responsabilité des villes face aux changements climatiques si

des villes et des batiments plus durables ne sont pas construits.

7.1.3 Stratégies d’adaption et d’atténuation

Deux approches sont donc nécessaires dans ce contexte: ’atténuation et I’adaptation.
Les solutions d’atténuation du changement climatique sont indispensables si les
villes et les collectivités veulent réduire leurs émissions de gaz a effet de serre.
Pour atteindre les objectifs qui ont été fixés par les accords internationaux, des
systemes énergétiques plus efficaces doivent étre construits. Cela s’applique a tous
les secteurs consommateurs d’énergie tel que les transports, I'industrie mais aussi
les batiments. Quant aux stratégies d’adaptation, elles impliquent que les villes
soient repensés ou modifiés afin de permettre aux citadins, de mémes que les autres
écosystemes, de vivre dans un monde affecté par le changement climatique.

Dans ce contexte, il est indispensable que les villes soient aménagées pour ten-
ant en compte de ces contraintes. Les dépenses énergétiques des batiments (secteur
résidentiel et tertiaire) représentent environ 40% de la consommation énergétique

en France (voir Figure 7.3). Ces dépenses contribuent a environ 25% des émissions
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Figure 7.3: Consommation d’énergie par secteur dans les zones urbaines [ADEME,
2012]

de GES en France et sont essentiellement liées aux conforts thermiques (70%) des
usagers [ADEME, 2012].

Les besoins de chauffage et de climatisation sont fortement dépendants du cli-
mat. Dans les hautes latitudes, en hiver, davantage d’énergie est nécessaire pour
chauffer les batiments, alors qu’en été, de 1’énergie est utilisée pour les refroidir.
L’utilisation d’énergie dans les villes modifie aussi le bilan thermique localement
et peut entrainer une hausse de la consommation d’énergie dans les batiments.
Les techniques architecturales, de construction et d’ingénierie (isolation des murs
ou des toits, fenétres double ou triple vitrage, ...) sont maintenant utilisées pour
diminuer la consommation d’énergie des batiments en les rendant plus efficaces.
Lors de leur conception, des outils de modélisation sont souvent utilisés pour es-
timer leurs dépenses énergétiques.

Il est donc indispensable de disposer d’outils qui puissent évaluer avec le plus
de précision possible les interactions qui existent entre les dépenses énergétiques

des batiments et le climat local.

7.2 Modeéles existants

Le climat urbain résulte d’une série de processus physiques complexes et non-
linéaires. De plus,, la consommation d’énergie d'un batiment est fortement liée
au climat local et a l’architecture et ’enveloppe du batiment. Le développement

de nouveaux matériaux ainsi que 'aménagement de villes plus durable, est es-
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sentiel pour réduire les dépenses énergétiques (et donc les émissions de GES) et
les pertes a I'environnement extérieur. Cela souligne 'importance de développer
de nouveaux outils pour comprendre et prendre en compte tous les processus qui
régulent les dépenses énergétiques des batiments. Des progres considérables ont
été fait au cours de ces dernieres décennies dans le domaine de la modélisation du

climat urbain et des dépenses énergétiques des batiments.

Les modeles méso-échelles fonctionnent a 1’échelle de la ville ou a 1’échelle re-
gionale. Ces modeles considerent d’un certain nombre de processus (comme le
développement de la couche limite atmosphérique) et des interactions (interac-
tions entre zones urbaines et rurales) et ceci nécessitent que les domaines soient
suffisamment grandes (de 100km a 500km). Les échelles de temps qui sont liées a
ces modeles sont essentiellement régies par I’advection du vent et les changements
dans la radiation solaire. La performance et la puissance des ordinateurs ont
limité jusqu’a présent la résolution horizontale des modeles et ces derniers ont une
résolution grossiere (autour de 1km). Cela ne permet pas de définir précisément les
occupations du sol et donc des interactions qui peuvent exister entre I’atmosphere
et la surface de la Terre. Des paramétrisation urbaines [Kondo and Liu, 1998,
Masson, 2000, Martilli et al., 2002] ont été développés et utilisés dans des modeles
méso-échelles, ces dernieres décennies, pour améliorer la représentation des ob-
stacles dans les zones urbaines. Méme si ces paramétrisation représentent mieux
I'influence des zones urbaines sur la circulation, ils ne sont toujours pas capable de
simuler correctement la température et le vent tres proche de la surface [Salamanca
et al., 2011] alors méme que ces variables sont indispensables pour I’évaluation des

dépenses énergétiques.

Contrairement aux modeles méso-échelles, les modeles micro-échelles (tels que
EnergyPlus [?], Solene [Groleau et al., 2003], BEM [Salamanca et al., 2010]) ont
une résolution tres fine. Cela implique que les obstacles, tels que les batiments ou
les plantes, peuvent étre représentés explicitement. Les caractéristiques techniques
et physiques, des matériaux de construction et d’isolation de batiments, pour les
batiments ou classes de batiments, sont utilisées comme données d’entrées pour ces

modeles. Ces parametres sont utilisés pour calculer les flux (de moment, de chaleur
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ou d’humidité) provenant des murs, des toits ou des fenétres. Augmenter la taille
du domaine (qui est de 'ordre du kilometre, en général) pour la prise en compte des
processus a plus grande échelle, nécessiterait des besoins considérables en temps
de calcul et n’est pas réalisable a ce jour. Par ailleurs, ces modeles sont souvent
forcés avec des données météorologiques annuelles moyennées pour un endroit par-
ticulier. Les données ne tiennent pas compte de I’historique des effets thermiques
et mécaniques qui peuvent étre transportés sur de tres grandes distances. Elles
ne sont donc pas aussi précises qu’elles devraient 1’étre pour évaluer au mieux les
dépenses énergétiques. De plus, comme les modeles micro-échelles (qui calculent
les flux a partir des surfaces ou de systemes d’air conditionné) et méso-échelles ne
sont pas couplés, il n’y a pas de retour d’informations. Les systéemes d’air condi-
tionné peuvent etre, par exemple, a I’origine d'une augmentation de la température
en zone urbaine de 1-2°C [Ashie et al., 1999] et peuvent donc influencer en retour

les dépenses énergétiques.

7.3 Objectif de la these

Comme démontré dans la partie précédente, des modeles distincts ont été utilisés
dans le passé pour prévoir la circulation atmosphérique a I’échelle régionale et pour
évaluer les dépenses énergétiques. Il y a toutefois un manque de modeles qui sont
capables de passer résolument de 1’échelle d’une ville a 1’échelle du batiment pour
une meilleure prise en compte de toute I’étendue des processus qui influencent
I'intensité des 1lots de chaleurs urbains et pour calculer de fagon plus précise les
dépenses énergétiques des batiments. L’objectif final est de développer un modele
de canopée qui pourra étre utilisé pour coupler les modeles météorologiques méso-
échelles a des modeles micro-échelles. Les conditions de bord, plus précises, dans
les deux types de modeles devraient améliorer les simulations aux deux échelles. De
plus, I'historique des variables sera donc présente dans les deux types de modeles.
Les modeles méso-echelles fournissent des variables qui incluent les interactions a
plus grandes échelles alors que les modeles micro-échelles vont donner en retour
des calculs de flux plus précis.

Pour cette étude, un modele de canopée (Canopy Interface Model (CIM)) a été
développé et couplé au modele météorologique WRF [Skamarock et al., 2008]. Le
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but de ce travail était d’estimer les apports d’un tel modele de canopée dans un
modele météorologique avec une faible résolution. Une méthodologie a été mise
en place afin d’évaluer si le modele a pu améliorer les simulations dans le modele
méso-échelles et s’il a été capable de fournir des profils verticaux avec une tres
forte résolution. Ce travail s’est déroulé en trois parties qui seront decrites dans

les sections suivantes.

7.4 Développement d’un modele de canopée. Par-

tie 1: cas neutre et comparaison avec un
modele C.F.D

Développement d’un modele de canopée. Partie 1: cas neutre et comparaison avec
un modele C.F.DDéveloppement d’un modele de canopée. Partie 1

Un modele colonne 1-D, qui utilise un processus de diffusion basé sur une
fermeture turbulente d’ordre 1.5, a été développé [Mauree et al., 2014a]. Dans
un premier temps, le modele a été testé dans un environnement neutre et sans
obstacles.

Une nouvelle méthodologie a été mise en place pour le calcul de 'énergie
cinétique turbulente (T.K.E). Nous avons proposé de calculer une valeur station-
naire de la T.K.E, ce qui a aussi simplifié, par ailleurs, la résolution numérique de
I'énergie cinétique turbulente dans le modele (voir Equation 7.1).

OE 0 ( aE) VE

E = & At% + CET (Estat — E) + fe (71)

ou E est la T.K.E, \; est un coefficient de diffusion, C est une constante, [ une
longueur de mélange, f. représente les sources de T.K.E et ou Ey, est la valeur

stationnaire de la T.K.E qui peut étre écrit comme suit:

Cr o (OU?
Egu = =1 | — 7.2

e (8z) (7:2)
ou C} est une constante et U représente le vent horizontal moyen.

Les résultats ont été comparés a la théorie de la couche limite de Prandtl

-7



Chapter 7 Résumé

neutral neutral
CIM — M
50T Theory - 50 ¢ Theory -
40 40
E g
z 301 = 30}
% 5
e E
T 20 f T 20t
10 10 +
0 - 0
0 2 4 6 8 10 0 1 2 3 4 5 6 7
Wind speed (ms-1) Turbulent Kinetic Energy (m2s-2)

Figure 7.4: Comparaison du profil de vent (en ms™!) et de I'énergie cinétique

turbulente (en m?s~2) calculées & partir de la solution analytique issue de la théorie

de la surface de Prandtl et de CIM. L’altitude est en metre.

[Prandtl, 1925]. Afin de garder la cohérence entre la théorie et la formulation qui
a ¢été adoptée, il a été démontré que le profil de I’énergie cinétique turbulente doit
étre constant au dessus d’une surface plane dans un cas neutre (Figure 7.4).

Les obstacles ont ensuite été intégrés suivant les travaux de Krpo [2009] et
de Kohler et al. [2012] et le modele a été validé avec des résultats issues d'une
expérience C.F.D de Santiago et al. [2007] et de Martilli and Santiago [2007]. Afin
d’obtenir des résultats comparables a ceux du C.F.D, une formulation proposée
par [Santiago and Martilli, 2010] pour la longueur de mélange a été adoptée (Fig-
ure 7.5).

7.5 Développement d’un modele de canopée. Par-
tie 2: cas stable et instable, modification de

la ’énergie cinétique turbulente

Développement d’un modele de canopée. Partie 2: cas stable et instable, modifi-
cation de la I’énergie cinétique turbulenteDéveloppement d’un modele de canopée.
Partie 2

Dans la deuxiéme partie de cette étude [Mauree et al., 2014b], les équations ont
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Figure 7.5: Comparaison du profil de vent (en ms™') et de I’énergie cinétique
turbulente (en m?s~2) avec des obstacles a partir de CIM et du C.F.D. L’altitude
est en metre.

été modifiées pour la prise en compte de la stabilité de ’atmosphere. Le modele a
été testé au dessus d’une surface plane et les résultats ont été comparés a la théorie
de similitude de Monin-Obukhov [Monin and Obukhov, 1954] et les formulations
qui ont été proposées par [Businger et al., 1971].

L’étude a permis de mettre en évidence que, pour garder la cohérence avec les
théories et la formulation de Businger, il fallait ajouter un coefficient au terme
de flottabilité dans l’équation régissant l'énergie cinétique turbulente qui a été
proposée.

OE 0 ( 8E) VE

E — & )\ta + Ce T (Estat - E) + fe (73)

ou Fg, est maintenant exprimé comme suit:

Ch o (OUN? .
Estat:éﬁﬂ (§> (1—Cq - Riy) (7.4)

ou Cg est la correction qui est apporté et Ri; est le nombre de Richardson.
Les Figure 7.6 et Figure 7.7 montrent les résultats qui ont été obtenus avec et

sans l'ajout de cette correction. On peut voir qu’avec cette correction, les résultats

sont tres similaires aux courbes théoriques.
Des obstacles ont aussi été intégré pour mieux comprendre l'influence de la

stabilité de ’atmosphere sur les profils de vents et de I’énergie cinétique turbulente
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Figure 7.6: Comparaison du profil de vent (en ms™!), de la température potentielle
(en K) et de I'énergie cinétique turbulente (en m?s™2) obtenu avec la MOST au
dessus d’une surface plane et avec CIM (avec et sans la correction Cg dans la
T.K.E.) dans des conditions stable. L’altitude est en metre.
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Figure 7.8: Comparaison du profil de vent (en ms™!), de la température potentielle
(en K) et de I'énergie cinétique turbulente (en m?s~2) issues de CIM avec des

obstacles dans des conditions stable et neutre. L’altitude est en metre.

(Figure 7.8 et Figure 7.9).

Face au manque de mesures appropriées pour valider les simulations, avec les

obstacles, les résultats peuvent étre discutés. Toutefois, les tendances obtenues

dans les deux cas (stable et instable) sont en cohérence avec ce qu’on aurait pu

avoir dans des cas sans obstacles en comparant les profiles neutre, stable et instable.
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7.6 Modélisation multi-échelle de la météorologie
urbaine: intégration de CIM dans le modele

météorologique WRF

Modélisation multi-échelle de la météorologie urbaine: intégration de CIM dans le
modele météorologique WRFIntégration de CIM dans le modele météorologique
WRF

Dans la derniére partie de cette étude [Mauree et al., 2014c]|, le modele CIM
a été intégré au modele météorologique WRF v3.5 [Skamarock et al., 2008]. Pour
cette étude la paramétrisation urbaine BEP-BEM [Salamanca et al., 2011] a été
choisi pour représenter les effets de la surface sur la circulation atmosphérique.

Afin de garder la cohérence avec le modele méso-échelle, WRF, une méthodologie
simple, a été mise en place pour rajouter un terme supplémentaire aux calculs de
CIM (voir Equation 7.5). Ce terme additionnel représente tous les effets horizon-
taux (comme l'advection ou les différences de gradient de pression) qui sont prises

en compte dans le modele méso-échelle mais pas le modele CIM.

~o i ~or, T
Fori <n{N{™*' = N&* NOH- NOryp 198
Fre (7.5)
Fori=n {N{'" = NO'+ NOW— NO TP pr,

ou N représente la variable a calculer (vent, température ou humidité), i est
un indice pour les mailles du modele, ¢ est le pas de temps considéré, NE* est N&*
incluant tous les flux sauf les flux horizontaux et le flux au sommet, Frop le flux
au top et n le nombre de niveau dans le modele CIM.

Une étude théorique de sensibilité a été mise en place pour démontrer les
améliorations que CIM a apportées. La Figure 7.10 donne un apercu générale
de I’évolution des profils issus des simulations qui ont été faites.

On peut constater que le couplage de CIM et de WRF a amélioré les simu-
lations du modele méso-échelle surtout avec une résolution grossiere. Une com-

paraison statistique et une analyse temporelle des différentes simulation a montré

7-14



qr-.

284 T T T T T T T T T 10 T T — T T T T
S ¢
3
5 &
£ z
2 £
k= =
] =
] S
T
S € res. (Ref.) —
274 Coarse res. (C1)
Coarse res. with CIM (meso - C3) ==--==--+ Coarse res. with CIM (meso - C3) ==--==---
) ) ) ) ) Cuulrse res. willh CIM (clim -C3) . o ) ) ) ) ) Coallrse res. wiilh CIM ((.;im -C3) R
30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120
Time (hours) Time (hours)
7 N . N
(a) Température a 50m (b) Vitesse de vent hor. a 50m
284 T T T T T T T T T 10 T T T T T T T
8 - -
g ¢
£ &
g z
8 =
z El
E s 4T ]
g 2
S S
T
2
24 r Fine res. (Ref.) — ) Fine res. (Ref.) m—
) ) ) ) Coalrse res. willh CIM (clim -C3) . o ) ) ) ) Cozlirse res. wiith CIM (L;im -C3) R
30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120
Time (hours) Time (hours)
, N . N
(c) Température a 5m (d) Vitesse de vent hor. & bm

Figure 7.10: Comparison de la température potentiel (K) (gauche) et du vent horizontal (ms~!) (droite) calculé
dans WRF avec et sans le couplage de CIM a 50m (haut) et a 5m (bas). La ligne noir représente la courbe issue
du modele méso-échelle avec une résolution tr-s fine (Ref.), la courbe violette est issue du modele méso-échelle avec
une résolution grossiere sans CIM (C1), la ligne blue est isue du modele méso-échelle avec une résolution grossiere
avec CIM (meso - C3) et la ligne rouge est issue de CIM dans la simulation avec une résolution grossiere avec CIM
(cim - C3). L’abscisse représente le temps apres le début de la simulation a partir de 24 heures (jour 2) jusqu’a 120
heures (jour 5).

D[0I0YFOU S[IPOU ] SURP JNT)) 9P UOTFRISOIUT :9UTR(IN SILF0[0I0PIUL B 9P S[[AYI-T} N UOTIBSI[OPOIN 9/,



Chapter 7 Résumé

que généralement, WRF avec une telle configuration, sur-estimait la témpérature
et sous-estimait la vitesse du vent. Le systeme météorologique qui a été mis en
place, a montré une meilleure performance avec des biais et une erreur quadra-
tique moyenne plus petites. Les corrélations étaient significatives par rapport a la
simulation de référence. De plus, CIM a été capable de produire des profils, avec

une résolution vertical tres fine, qui étaient proches de la solution de la référence.

7.7 Conclusions et perspectives

Le but de ces études était d’amorcer le développement d’un outil capable d’évaluer
plus précisément les dépenses énergétiques des batiments et de définir des stratégies
de construction et d’aménagement urbains (telles que de nouvelles réglementations
ou de nouveaux matériaux de construction) pour réduire 'impact des zones ur-
baines sur 'atmosphere. Adopter de telles stratégies devrait non seulement aider
a améliorer le confort thermique des habitants (par exemple lors de vagues de
chaleurs qui devraient étre plus fréquentes avec le réchauffement climatique) mais
pourrait aussi aider a diminuer les émissions de gaz a effet de serre et ainsi atténuer
les effets du changement climatique.

Pour atteindre cet objectif, un modele de canopée (CIM) a été développé en
plusieurs étapes. Une nouvelle méthode pour la résolution de I’énergie cinétique
turbulente a été mise en place. Le modele a été testé dans un premier temps en
condition neutre et sans obstacles et les résultats ont été comparés avec la théorie
de Prandtl. Les obstacles ont été intégrés dans le modele et les résultats ont
été validés avec une expérience C.F.D. Les équations du modele CIM ont ensuite
été modifiées pour une prise en compte de la stabilité atmosphérique. Il a été
démontré qu’un terme additionnel devait étre rajouté afin d’étre en cohérence avec
la théorie de Monin-Obukhov. La derniere étape de ce travail a permis le couplage
du modele CIM au modele WRF. Une méthodologie simple a été proposée pour
ajouter un terme supplémentaire aux calculs de CIM. Ce terme représente les effets
horizontaux qui existent dans le modele méso-échelle WRF mais qui n’étaient pas
présents dans CIM.

Au vu des résultats obtenus lors de cette étude, il a été démontré que les

fondations pour 'utilisation de CIM comme une interface qui permettrait de mieux
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représenter la surface et de coupler les modeles méso-échelle et les modeles micro-

échelle ont bien été mises en place.
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of Development of a multi-scale
meteorological system to
Improve urban climate modeling

Résumeé

Ce travail a consisté a developper un modele de canopée (CIM), qui pourrait servir d'interface entre
des modéles méso-échelles de calcul du climat urbain et des modéles micro-échelles de besoin
énergétique du batiment. Le développement est présenté en conditions atmosphériques variées,
avec et sans obstacles, en s’appuyant sur les théories précédemment proposeées. Il a été, par
exemple, montré que, pour étre en cohérence avec la théorie de similitude de Monin-Obukhov, un
terme correctif devait étre rajouté au terme de flottabilité de la T.K.E. CIM a aussi été couplé au
modele méso-échelle WRF. Une méthodologie a été proposée pour profiter de leurs avantages
respectifs (un plus résolu, I'autre intégrant des termes de transports horizontaux) et pour assurer la
cohérence de leurs résultats. Ces derniers ont montré que ce systéme, en plus d’étre plus précis
gue le modéle WRF a la méme résolution, permettait, par I'intermédiaire de CIM, de fournir des
profils plus résolus prés de la surface.

Mots-clés: climat urbain, météorologie urbaine, modele de canopée, modélisation multi-échelle, énergie
cinétique turbulente, paramétrisation de la turbulence

Résumé en anglais

This study consisted in the development of a canopy model (CIM), which could be use as an
interface between meso-scale models used to simulate urban climate and micro-scale models used
to evaluate building energy use. The development is based on previously proposed theories and is
presented in different atmospheric conditions, with and without obstable. It has been shown, for
example, that to be in coherence with the Monin-Obukhov Similarity Theory, that a correction term
has to be added to the buoyancy term of the T.K.E. CIM has also been coupled with the
meteorological meso-scale model WRF. A methodology was proposed to take advantage of both
models (one being more resolved, the other one integrating horizontal transport terms) and to ensure
a coherence of the results. Besides being more precise than the WRF model at the same resolution,
this system allows, through CIM, to provide high resolved vertical profiles near the surface.

Keywords: urban climate, urban meteorology, canopy model, multi-scale modeling, turbulent kinetic
energy, turbulence parameterization
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