Towards three-dimensional face recognition in the real

Huibin Li 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Résumé : En raison des naturelle, non-intrusive, facilement percevable caractéristiques, et une large diffusive applicabilité pour la criminalistique et de la sécurité, reconnaissance faciale basée sur la machine a reçu beaucoup d'attention de la communauté biométrie au cours des trois dernières décennies. Par rapport à la traditionnelle reconnaissance faciale basée sur le visage 2D, la reconnaissance faciale basé sur la forme 3D est plus stable aux variations d'éclairage; petite changements de tête pose, et variant cosmétiques pour le visage. Cependant, le visage 3D numérise capturé dans des conditions non-contraintes peut conduire à des difficultés diverses, comme des déformations non rigides provoquées par la variant expressions, les données manquantes en raison de l'auto-occlusion et des occlusions externes, ainsi que des données de faible qualité en raison de certaines imperfections de la technologie de numérisation. Pour régler ces difficultés et d'améliorer les applications du monde réel, dans cette thèse, nous proposons deux approches de 3D reconnaissance faciale: l'un se concentre sur le handling de divers changements d'expression, l'autre peut reconnaître les gens à la situation de présence d'un grand les expressions facial, des occlusions et des grands pose divers. En outre, nous fournissons une surface prouvable et pratique algorithme de surface maillage pour l'amélioration de la qualité de données. Pour faire face aux problème d'expression, nous supposons que la variabilité des formes de intra-expression/inter-expression de la faciale local région différent (e. g., nez, yeux) est différent, et a donc une importance niveau différente. Sur la base de cette hypothèse, nous concevons une stratégie d'apprentissage pour découvrir l'importance de la quantification de régions faciales locales en fonction de leur énergie discriminant. Pour une description du visage, nous proposons un nouveau descripteur pour coder la microstructure du multi- canal d'information normale du visage dans multiples échelles, à savoir, Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP). On peut globalement décrire les changements de forme locale de 3D surfaces faciales par un ensemble d'histogrammes LNP y compris les indices globaux et locaux. Pour le visage correspondant, Weighted Sparse Representation-based Classifier (W-SRC) est formulée sur la base de l'importance de la quantification appris et les histogrammes LNP. L'approche proposée est évaluée sur quatre bases de données: le FRGC v2. 0, Bosphore, BU- 3DFE et 3D -TEC, y compris les scans du visage en présence de diverses expressions et des unités d'action, ou de plusieurs expressions prototypiques avec des intensités différentes, ou des variations d'expression du visage combinée avec de fortes similitudes faciales (c.à.d. jumeaux identiques). Résultats expérimentaux étendus montrent que l'approche de reconnaissance de 3D visage proposé avec l'utilisation de descripteurs discriminants du visage peut régler les variations d'expression et d'effectuer avec assez de précision sur toutes les bases de données, et a ainsi une bonne capacité de généralisation. Pour faire face à l'expression et problème des données manquantes dans un cadre uniforme, nous proposons une approche sur le sans-enregistrement maillage-basé reconnaissance du 3D visage basé sur un nouveau local descripteur de la forme du visage et un correspondance processus d'clairsemée représentation du visage basée multi- tâche. [...]
Type de document :
Thèse
Other. Ecole Centrale de Lyon, 2013. English. <NNT : 2013ECDL0037>
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00998798
Contributeur : Abes Star <>
Soumis le : lundi 2 juin 2014 - 16:47:21
Dernière modification le : mercredi 26 octobre 2016 - 09:44:17
Document(s) archivé(s) le : mardi 2 septembre 2014 - 12:50:15

Fichier

TH_T2338_hli.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00998798, version 1

Collections

Citation

Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de Lyon, 2013. English. <NNT : 2013ECDL0037>. <tel-00998798>

Partager

Métriques

Consultations de
la notice

238

Téléchargements du document

957