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ABSTRACT

Bilingual corpora are an essential resource used to cross the language barrier in

multilingual Natural Language Processing (NLP) tasks. Most of the current work

makes use of parallel corpora that are mainly available for major languages and

constrained areas. Comparable corpora, text collections comprised of documents

covering overlapping information, are however less expensive to obtain in high volume.

Previous work has shown that using comparable corpora is beneficent for several NLP

tasks. Apart from those studies, we will try in this thesis to improve the quality of

comparable corpora so as to improve the performance of applications exploiting them.

The idea is advantageous since it can work with any existing method making use of

comparable corpora.

We first discuss in the thesis the notion of comparability inspired from the usage

experience of bilingual corpora. The notion motivates several implementations of the

comparability measure under the probabilistic framework, as well as a methodology

to evaluate the ability of comparability measures to capture gold-standard compara-

bility levels. The comparability measures are also examined in terms of robustness to

dictionary changes. The experiments show that a symmetric measure relying on vo-

cabulary overlapping can correlate very well with gold-standard comparability levels

and is robust to dictionary changes.

Based on the comparability measure, two methods, namely the greedy approach

and the clustering approach, are then developed to improve the quality of any given

comparable corpus. The general idea of these two methods is to choose the high-

quality subpart from the original corpus and to enrich the low-quality subpart with

external resources. The experiments show that one can improve the quality, in terms



x

of comparability scores, of the given comparable corpus by these two methods, with

the clustering approach being more efficient than the greedy approach. The enhanced

comparable corpus further results in better bilingual lexicons extracted with the stan-

dard extraction algorithm.

Lastly, we investigate the task of Cross-Language Information Retrieval (CLIR)

and the application of comparable corpora in CLIR. We develop novel CLIR models

extending the recently proposed information-based models in monolingual IR. The

information-based CLIR model is shown to give the best performance overall. Bilin-

gual lexicons extracted from comparable corpora are then combined with the existing

bilingual dictionary and used in CLIR experiments, which results in significant im-

provement of the CLIR system.
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1 INTRODUCTION

Comparable corpora1 have been shown to be useful in several multilingual natural

language processing (NLP) tasks. Since parallel corpora of high quality are consid-

erably more expensive to obtain, it makes sense to resort to comparable corpora in

applications where parallel resources are not readily available. Compared to the us-

age of parallel corpora, there are several problems not well considered or solved, and

specific to comparable corpora, which motivates the work in this thesis. In order to

facilitate the description of the thesis work, we will introduction in this chapter the

necessary background of comparable corpora. To be exact, we will first introduce in

section 1.1 the concepts related with comparable corpora. The quality of comparable

corpora will then be discussed in section 1.2. Lastly we will discuss in section 1.3

problems that remain unsolved in previous work prior to presenting a summary of

the thesis work.

1.1 Bilingual Corpora

The bilingual corpus, a text collection consisting of content in two languages, is

a commonly used resource in many multilingual NLP tasks. In previous work, two

types of bilingual corpora have been broadly used: parallel corpora and comparable

corpora. Parallel corpora are comprised of text that is the translation of each other.

This kind of resource has been used for a long period in applications such as bilin-

gual lexicon extraction (Kay and Roscheisen, 1993), statistical machine translation

(SMT) (Och and Ney, 2003) and cross-language information retrieval (CLIR) (Balles-

teros and Croft, 1997). It is however expensive to construct parallel corpora of high

1In corpus linguistics, comparable corpora refer to both monolingual, bilingual and multilingual
comparable corpora. We will only consider bilingual ones in this thesis.
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quality, especially the ones between minor languages or the ones covering broad top-

ics (Markantonatou et al., 2006). For instance, one can construct parallel corpora by

referring to resources such as books translated into different languages, international

laws, movie subtitles, and software manuals in various languages. To alleviate the

intensive human labor involved in building parallel corpora by hand, researchers have

tried to exploit the web for automatic construction. Existing work (e.g. (Ma and

Liberman, 1999; Resnik and Smith, 2003; Zhang et al., 2006)) makes use of such

features as URL, web page structure and page content to pick web pages containing

parallel content. However, as one can find, the parallel content on the web usually

appears on the websites of international companies, organizations and news agencies,

which again falls into constrained topics (e.g. government regulations and news) and

limited language pairs (i.e. the major languages in the world). For an overview of par-

allel corpora that are publicly available, one can refer to the UN proceedings corpus,

the Hansard corpus2 and the Europarl corpus (Koehn, 2005), which are commonly

used resources for SMT research.

Comparable corpora, as another kind of bilingual corppora, are cheaper to obtain

in high volume, even for minor languages, since it only demands that the text collec-

tion covers related content which can be easily found on the web. For example, the

newspapers published by various news agencies in different countries and in the same

period usually report the same hot affairs in the world, which thus covers similar

topics and can be used as a comparable corpus. In (Skadina et al., 2010), they list

several examples of comparable corpora which are:

• The comparable part of the Multilingual Corpora for Cooperation (MLCC) (Arm-

strong et al., 1998). This corpus includes financial newspaper articles from the

early 1990s in six European languages: Dutch (8.5 million words), English (30

million words), French (10 million words), German (33 million words), Italian

(1.88 million words), and Spanish (10 million words).

2Both the UN proceedings corpus and the Hansard corpus are available from:
http://www.ldc.upenn.edu
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• The Bulgarian-Croatian comparable corpus (Bekavac et al., 2004) in news do-

main. This corpus is comprised of 3.5 million tokens (393 thousand Bulgarian

words and 3.1 million Croatian words) and was built from subsets of two large

newspaper corpora of respective languages. The subsets were chosen according

to the same criteria (e.g. identical year, same domain, etc.).

• The English-Swedish comparable corpus in news domain (Talvensaari et al.,

2007). This corpus was built by an automatic approach from articles by a

Swedish news agency and a US newspaper.

• The English-French-Norwegian comparable corpus in science domain (Flottum,

2003). This corpus contains 450 reviewed scientific papers in three disciplines

(economics, linguistics and medicine) amounting to 3.2 million words.

• The INTERA Multilingual Corpus (Gavrilidou et al., 2006). This resource

contains content in various domains such as law, health, education, tourism,

environment, politics and finance. The comparable corpus is in 4 language

pairs: Bulgarian - English (2 million words), Greek - English (4 million words),

Serbian - English (2 million words), and Slovene - English (4 million words).

More recently, the content of Wikipedia3 has been used as a comparable corpus in

several NLP applications such as (Ni et al., 2009; Otero and Lopez, 2010; Smith

et al., 2010). Each Wikipedia article, corresponding to a concept, usually has a

cross-language link to its versions in other languages. Then two versions of the same

concept are highly related but, in most cases, are not the translation of each other

(refer to an example in Figure 1.1). In addition, one can note that, the Wikipedia

category structure clusters all the articles related to a topic under a category. Arti-

cles in different languages and in the same category thus talk about similar topics.

Those facts listed above draw a clear picture that Wikipedia can be used as a good

comparable corpus.

3http://www.wikipedia.org
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Historia

by Nikolaos Gysis (1892)

—George Santayana

History
From Wikipedia, the free encyclopedia

History (from Greek !"#$%&' - historia, meaning "inquiry, knowledge acquired by

investigation"[2]) is the discovery, collection, organization, and presentation of

information about past events. History can also mean the period of time after writing was

invented. Scholars who write about history are called historians. It is a field of research

which uses a narrative to examine and analyse the sequence of events, and it sometimes

attempts to investigate objectively the patterns of cause and effect that determine

events.[3][4] Historians debate the nature of history and its usefulness. This includes

discussing the study of the discipline as an end in itself and as a way of providing

"perspective" on the problems of the present.[3][5][6][7] The stories common to a particular

culture, but not supported by external sources (such as the legends surrounding King

Arthur) are usually classified as cultural heritage rather than the "disinterested

investigation" needed by the discipline of history.[8][9] Events of the past prior to written

record are considered prehistory.

Amongst scholars, the fifth century BC Greek historian Herodotus is considered to be the

"father of history", and, along with his contemporary Thucydides, forms the

foundations for the modern study of history. Their influence, along with other

historical traditions in other parts of their world, have spawned many different

interpretations of the nature of history which has evolved over the centuries and are

continuing to change. The modern study of history has many different fields

including those that focus on certain regions and those which focus on certain topical

or thematical elements of historical investigation. Often history is taught as part of primary and secondary education, and the

academic study of history is a major discipline in University studies.

Contents

Those who cannot remember the past are

condemned to repeat it.[1]

(a) A segment of the English article

Historia, allégorie de l'histoire

Peinture de Nikolaos Gysis (1892).

Histoire

L’histoire est à la fois l’étude des faits, des événements du passé et,

par synecdoque, leur ensemble. L'histoire est un récit, elle est la

construction d'une image du passé par des hommes et des femmes

(les historiens et historiennes) qui tentent de décrire, d'expliquer ou

de faire revivre des temps révolus. Ce récit historique n'est pas

construit par intuition intellectuelle, mais à partir de sources.

L'histoire s'attache avec ces sources à reconstruire plusieurs pans du

passé. Au cours des siècles, les historiens ont fortement fait évoluer

leurs champs d'intervention et ont aussi réévalué leurs sources, ainsi

que la manière de les traiter.

L'histoire, qui n'est pas seulement une réflexion sur le passé, se

construit aussi selon une méthode. Celle-ci a évolué au cours du

temps, évolution qu'on appelle l'historiographie. La méthode

historique s'appuie sur un ensemble de sciences auxiliaires qui aident

l'historien à construire son récit. Par delà les époques et les méthodes,

et quel que soit le but sous-jacent du travail de l'historien, l'histoire est toujours une construction humaine,

inscrite dans l'époque où elle est écrite. Elle joue un rôle social et elle est convoquée pour soutenir,

accompagner ou juger les actions des Hommes.

(b) A segment of the French article

Figure 1.1. The English article “History” has a cross-language link to
the French article “Histoire”. The two articles are highly related but not
parallel.
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Previous work has shown that comparable corpora can be successfully applied

to tasks such as bilingual lexicon extraction (for an example, refer to (Rapp, 1999),

more studies will be cited in section 2.2), the enhancement of SMT systems (Munteanu

et al., 2004; AbduI-Rauf and Schwenk, 2009), the enhancement of CLIR systems (Tal-

vensaari et al., 2007), and the modeling of topics across languages (Ni et al., 2009;

Boyd-Graber and Blei, 2009). These findings bring hope that comparable corpus can

be used to bridge the language barrier in some applications in the absence of parallel

resources. In this thesis, to exploit comparable corpora, we will make use of the task

of bilingual lexicon extraction as a testbed, since it is the mostly investigated task

using comparable corpora. The extracted lexicons will further be used to enhance

the CLIR system. The representative work of bilingual lexicon extraction and CLIR

will be reviewed in chapter 2.

1.2 Quality of Comparable Corpora

The definition for comparable corpus is rather vague compared to that of parallel

corpus. For example, (Ji, 2009) defines comparable corpora as document collections

describing similar topics. In (Munteanu et al., 2004; Hewavitharana and Vogel, 2008),

comparable corpus is defined as a text collection covering overlapping information. In

most of the other studies (e.g. (Fung and Yee, 1998)), they directly construct and use

comparable corpora according to their intuitions regardless what constitutes a real

comparable corpus. We will give in section 3.1 more discussions regarding the notion

of comparability. According to those existing definitions and various comparable

corpora used in previous work, one can find that different comparable corpora can be

quite different from each other, depending on the extend to which two monolingual

parts of comparable corpus are related to each other. Intuitively, parallel corpora

can be seen as a special case of comparable corpus, i.e. the one with the highest

comparability level, since there is no bilingual corpus better than parallel corpus in

terms of usability in applications. If one does not consider the corpus size, the quality
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of different parallel corpora should be the same, which is not the case for comparable

corpora.

Data driven NLP tasks depend a lot on the quality of the text resource used, and

the experience is that the better the corpus is, the better one algorithm can perform.

The theoretical principle under the assertion is that the corpus of higher quality can

provide more information useful for the corresponding NLP tasks. We conjecture

here that comparable corpora of higher quality can lead to applications of better

performance, a fact that will actually be validated in the following sections and that

has been ignored in previous work. Among comparable corpora of different quality,

we would like to pick the ones of good quality or we can try to enhance the low-quality

ones. However, as one can find, there has not been any practical measure on which

one can rely to judge the quality of comparable corpora. We will thus try to establish

in the thesis a measure to capture different comparability levels. With this measure,

we will be able to develop methods to enhance the low-quality comparable corpus so

as to improve the performance of applications relying on comparable corpora.

1.3 Work in the Thesis

As we have discussed in section 1.2, the quality of comparable corpora is an

important feature affecting their usability in NLP applications. However, this fact

has never been systematically investigated by previous work. Most of previous studies

did not pay attention to the corpus quality prior to the usage of comparable corpora.

We will focus in this thesis on topics related with the quality of comparable corpora

and their applications to NLP tasks. To exploit comparable corpora, we choose here

the tasks of bilingual lexicon extraction and CLIR.

The structure of the thesis is as follows:

• We first review in chapter 2 existing work for several NLP tasks that will be

discussed in the thesis. In section 2.1, we introduce previous work trying to

compare two corpora and to extract the parallel subparts from a comparable
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corpus. The approaches for bilingual lexicon extraction from comparable cor-

pora and CLIR are respectively detailed in section 2.2 and section 2.3.

• We then develop and evaluate in chapter 3 the comparability measures that

can be used to judge comparable corpus quality. The notion of comparability

is discussed in section 3.1 according to the the intuition one can have from the

usage experiences of various bilingual corpora. Following this notion, several

candidate measures are developed in section 3.2 and evaluated in section 3.3.

• Based on the comparability measure, two approaches are developed in chap-

ter 4 to improve the quality of comparable corpora. The greedy approach is

introduced in section 4.2.1, prior to the presentation of the clustering approach

having improved performance in section 4.2.2. These two approaches are val-

idated in section 4.3 to show that one can improve the quality of the given

comparable corpus and enhanced comparable corpora lead to better lexicons

extracted.

• The application of comparable corpora in CLIR is discussed in chapter 5. We

first propose in section 5.1 novel CLIR models extending the information-based

models recently introduced in (Clinchant and Gaussier, 2010). The proposed

CLIR models are then validated in section 5.2.2 to show their best performance

overall. The information-based CLIR model can be further improved with lex-

icons extracted from comparable corpora.

• Lastly, the thesis is concluded in chapter 6.



8



9

2 STATE-OF-THE-ART REVIEW

We will focus in the thesis on the quality of comparable corpora and their applica-

tions in bilingual lexicon extraction and CLIR. This chapter will be devoted to the

description of existing techniques in areas related with the thesis work. We will first

introduce in section 2.1 the work related with corpus quality, namely the methods

for comparing different corpora and for extracting parallel subparts from comparable

corpora. The approaches for bilingual lexicon extraction from bilingual corpora, both

parallel and comparable corpora, will then be reviewed in section 2.2. Lastly, we

would like to introduce in section 2.3 the CLIR models and standard resources used

in CLIR experiments. This chapter will be concluded in section 2.4.

2.1 Comparable Corpus Quality

Different from parallel corpora, the quality of comparable corpora is an important

characteristic featuring its usability, which has been discussed before in section 1.2.

There have been only a few studies trying to investigate the formal quantification of

how similar two corpora are. We will first review in section 2.1.1 previous attempts

to measure the similarity of two corpora. These approaches either deal with two

corpora in the same language, or are computationally infeasible in the case of bilingual

corpora. We will then discuss in section 2.1.2 the work trying to extract parallel

subparts from comparable corpora. These methods resemble our thesis work in that

both try to extract a high-quality subpart from the original comparable corpus. There

is however a significant difference as one will find from section 4.3.1.
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2.1.1 Comparing Different Corpora

The task of comparing corpora is relevant to the genres of corpora. Genre is a

concept often used in the literature on language variation. A genre can be defined as

a category of text assigned on the basis of external criteria such as intended audience,

purpose, and activity type, that is, it refers to a conventional, culturally recognized

grouping of texts (Lee, 2001). According to the user’s philosophy, different sets of

genres can be established for the text collection. As an example used in (Sharoff,

2010), one can find that there are 15 genres defined for the Brown Corpus, 70 genres

used in David Lee’s classification of the British National Corpus (BNC), and 120

genre labels in the Russian National Corpus (RNC). Let us take for an example 4 out

of the 15 genres defined for the Brown Corpus:

• B. PRESS: Editorial (including Institutional Daily, Personal, Letters to the

Editor)

• D. RELIGION (including Books, Periodicals, Tracts)

• J. LEARNED (including Natural Sciences, Medicine, Mathematics, Social and

Behavioral Sciences, Political Science, Law, Education, Humanities, Technology

and Engineering)

• N. FICTION: Adventure and Western (including Novels, Short Stories)

One can find from the four genres that texts in different genres (e.g. B. PRESS: Edi-

torial and N. FICTION) cover more different topics that texts in the same genre (e.g.

B. PRESS: Editorial) which fall into narrow topics related with editorial informa-

tion. The task of genre assignment to large set of documents is usually accomplished

through standard classification or clustering approaches (Sharoff, 2007; Sharoff, 2010),

which resembles corpus comparison in that corpora in the same genre are similar in

terms of content and text styles. The impact of corpus genre on the methods pro-

posed in this thesis will be discussed in section 4.4. Corpus genres are not a major

problem considered in our work (1) since they are a qualitative but not a quantitative
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characteristic of the corpora, and (2) since comparable corpora are mostly built from

texts belonging to the same or similar genres. We will now turn to the approaches to

comparing two corpora.

In corpus linguistics, there have been some studies trying to compare two corpora

in order to answer questions such as “what sort of a corpus is this?” and “how does

this corpus compare to that?”. The studies on this topic such as (Rayson and Garside,

2000) and (Kilgarriff, 2001) make use of similar ideas to compare two corpora. The

idea of these approaches is that key words can be identified for each corpus in a

statistical way, which are used to differentiate two corpora. These methods mostly

focus on a qualitative analysis and do not investigate into a precisely quantitative

measure for corpus similarity. Moreover, they try to compare two corpora in the

same language, which is different from the work in this thesis dealing with bilingual

corpora.

As for bilingual corpora, the work (Saralegi et al., 2008) is the only one we can find

to measure the degree of comparability of two corpora in different languages. They

infer a global comparability score from the similarity of all cross-language document

pairs. Let the corpus C1 in the language L1 havem documents di1(i = 1, 2, . . . ,m) and

let C2 be a corpus in the language L2 consisting of n documents dj2(j = 1, 2, . . . , n).

First, the document similarity between each two documents in different languages

is computed using the tool Dokusare (Saralegi Urizar and Alegria Loinaz, 2007).

One can thus obtain a n ∗ m matrix DM , where each element sij, corresponding

to the element on row i and column j, is the similarity between di1 and d
j
2. They

then define a process called EMD to estimate from DM a global score for the bilin-

gual corpus. Since the number of documents in comparable corpora is usually very

large, the computation of similarity over all cross-language document pairs makes this

measure not practical, especially when the comparability measure needs to be called

frequently. Recently, under the European 7th framework1 project ACCURAT (Skad-

ina et al., 2010), researchers plan to study and investigate existing measures and

1http://cordis.europa.eu/fp7/
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metrics for assessing corpus comparability and document parallelism in the context

of under-resourced comparable corpora. Despite the existing work, there has not been

any study developing and evaluating the comparability measure in a systematic and

quantitative way.

2.1.2 Parallel Subpart Extraction

Due to the lack of parallel resource, there have been some work trying to ex-

tract the parallel subparts, in most cases sentences, from comparable corpora. These

studies are similar with our thesis work trying to improve the quality of the given

comparable corpus. There is however a significant difference that we will try in our

work to preserve most of the original vocabulary.

In (Zhao and Vogel, 2002), to extract parallel sentences from bilingual news col-

lection, they combine sentence length models and lexicon-based models under a max-

imum likelihood framework. Let S denote a news story in the source language con-

sisting of sentences s1, s2, . . . , sj, . . . , sJ and T a news story comprised of sentences

t1, t2, . . . , ti, . . . , tI in the target language. The goal is to find an alignment A that

gives maximum likelihood of aligning S and T . They then try to align the sentences

(sj, ti) by using dynamic programming to find the Viterbi path between two sentence

sequences in (S, T ). The distance between (sj, ti) is computed based on both a trans-

lation lexicon model and a sentence length model. This alignment model considers

insertions and deletions of sentences, which are the common phenomenon in noisy

corpora.

The work in (Munteanu et al., 2004) relies on a maximum entropy classifier to

identify parallel sentences from comparable corpora. They first select from the corpus

candidate document pairs through an information retrieval approach. Then candidate

sentence pairs are chosen from the document pairs according to two heuristics. A

maximum entropy classifier is lastly used to judge whether a sentence pair is parallel

or not. This classifier makes use of the general features as follows:
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• Lengths of the sentences, as well as the length difference and length ratio;

• Percentage of words on each side that have a translation on the other side.

and alignment features based on IBM Model 1 (Brown et al., 1993):

• Percentage and number of words that have no connection;

• The top 3 largest fertilities;

• Length of the longest contiguous span;

• Alignment score.

In the later work (Munteanu and Marcu, 2006), they detect which segments of the

source sentence are translated into segments in the target sentence by analyzing po-

tential similar sentence pairs using a signal processing-inspired approach. The sub-

sentential knowledge extracted in this manner is then used to enhance the machine

translation system.

In (AbduI-Rauf and Schwenk, 2009), they first employ an SMT system trained

with a small amount of parallel text to translate the source language part of compara-

ble corpora. The translated text is then used as queries to retrieve related documents

in the target language part of comparable corpora, which results in the highly related

document pairs. Based on those documents pairs containing related content, parallel

sentences are extracted according to several criteria such as:

• The length correlation between the parallel sentence length;

• The Levenshtein distance (the number of operations required to transform one

sentence into the other. The operations include insertions, deletions and sub-

stitutions.) and translation error rate.

The system framework of the work (Sarikaya et al., 2009) resembles that of the

work (AbduI-Rauf and Schwenk, 2009), which consists of such steps as document

pairing, sentence alignments and a boosting step. The document pairing step in this
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work makes use of the SMT system to map the source language part of comparable

corpora to the target language part, prior to choosing the document pairs according

to the standard vector space comparison. Sentence alignment is then accomplished

by using the BLEU score (Papineni et al., 2002) as the similarity measure to compare

the sentence pairs in document pairs. The alignment algorithm first tries to extract

parallel sentence pairs with high confidence, which server as the anchor points. It

then performs iterative context extrapolation around the anchor points to include

more sentence pairs. This boosting procedure is developed to increase the amount

of new sentence pairs that are correctly paired but fail to achieve a sufficiently high

similarity score according to the BLEU measure used.

The work in (Tillmann and Xu, 2009) is more efficient than the methods mentioned

above, because it does not need to pair the documents before one can choose candidate

sentence pairs. The candidate sentence pairs can be picked from any two documents.

A similarity score can directly be assigned to a sentence pair to judge if they are

parallel. The similarity measure is inspired by phrase-based SMT (Koehn et al.,

2003) which includes a feature that scores phrases pairs using lexical weights. The

feature needs to be computed for two directions: source to target and target to source.

A sentence pair is then scored as a phrase pair that covers all the source and target

words.

The recent studies (Do et al., 2010) and (Do et al., 2011) have similar framework

with the methods (AbduI-Rauf and Schwenk, 2009; Sarikaya et al., 2009). The dif-

ference is that they train the SMT system on a noisy parallel corpus but not on a

parallel corpus as used in previous work. The trained SMT system is then used to

translate the source language part of the comparable corpora. The parallel sentence

extraction step is then the same as those used in (Sarikaya et al., 2009; AbduI-Rauf

and Schwenk, 2009). Lastly, the SMT system can be trained again on the new cor-

pus comprised of the original parallel corpus and parallel sentences extracted in this

round. This whole process is iterated to increase the parallel sentences obtained and

to enhance the performance of SMT system.
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2.2 Bilingual Lexicon Extraction

Bilingual lexicons, word pairs in parallel translation, are an important resource

in multilingual NLP tasks. It is however expensive to construct this kind of resource

by hand. The existing dictionaries can be easily turned into machine-readable lexi-

cons, which do not contain the newly appearing words and terminologies. This can

be a problem for applications dealing with the web data containing many out-of-

vocabulary words. To solve this problem, previous work has tried to automatically

extract the bilingual lexicons from bilingual corpora, both parallel and comparable

ones. The differences between two classes of approaches making use of two different

corpora lie in the fact that the search space is much larger in the case of compara-

ble corpora due to the lack of alignment information. We will review in this section

approaches for bilingual lexicon extraction from bilingual corpus, focusing more on

comparable corpora, which is one of the applications we will investigate to exploit

comparable corpora in the thesis. To be exact, the extraction techniques based on

parallel corpora are first reviewed in section 2.2.1. The methods for lexicon extraction

from comparable corpora are then introduced in section 2.2.2

2.2.1 Extraction from Parallel Corpora

Bilingual lexicon extraction from parallel corpora is highly related with statistical

machine translation (Brown et al., 1993) and conventionally named word alignment.

The general idea of the word alignment process is that words in parallel translation

usually appear in parallel sentences. We will thus first introduce in this section

the approaches to aligning sentences in parallel corpora. Following that procedure,

various methods for word alignment in parallel sentences are discussed.

The intuition under most studies on sentence alignment is that parallel sentences in

different languages should posse similar features such as sentence length, correspond-

ing words, and cognates. The methods presented in (Brown et al., 1991) and (Gale

and Church, 1991) rely on the assumption that the length, in terms of number of
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words or characters, of parallel sentences is highly correlated. For instance, the En-

glish translation of a long French sentence should also be long. The sentences are then

aligned in order to maximize the overall length similarity. To solve the maximiza-

tion problem, dynamic programming is employed in (Brown et al., 1991) and Hidden

Markov Models is used in (Gale and Church, 1991). In addition to the length-based

approaches above, one can also rely on some other features to judge if two sentences

are similar. For instance, the work in (Chen, 1993) makes use of the lexical informa-

tion by constructing a simple statistical word-to-word translation on the fly during

alignment. Two alignment engines are combined in (Simard and Plamondon, 1998)

to benefit from the robustness of the character-based methods and the accuracy of

stochastic translation models.

Compared to sentence alignment, word alignment is a higher level task and thus

more difficult. It is an important component in statistical machine translation (Brown

et al., 1993; Och and Ney, 2000; Och and Ney, 2003). The task of word alignment is

usually an unsupervised learning task given sentence-aligned parallel corpus, where

one tries to learn the parameters for the unobserved model, for instance the IBM

Models 1-5, which best explains the parallel corpus. It is also possible to combine sen-

tence alignment and word alignment in a single procedure. In (Kay and Roscheisen,

1993), they propose an algorithm based on the notion that which word in one text

corresponds to which word in the other text is essentially based on the similarity

of their distributions. Then they iteratively make use of the intuition that better

word alignments can lead to better sentence alignments which in turn refines the

word alignments. The algorithm appears to coverage to the correct sentence align-

ment in only a few iterations. One can easily find some other studies dealing with

the word alignment problem. The work (Gaussier, 1998) proposes the flow network

models which allow one to estimate the parameters in a computationally efficient

way. The study (Goutte et al., 2004) views word alignment as a problem of orthog-

onality non-negative matrix factorization. Word alignment in parallel corpora is not

the main focus of the thesis and we do not plan to review all the studies here. One
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can refer to the book (Veronis, 2000) for more discussions on this topic. Such tools

as GIZA++ (Och and Ney, 2000), the Berkeley Word Aligner 2 and NATools 3 are

publicly available for word alignment in parallel corpora.

Recently, some researchers refer to supervised approaches for word alignment,

which try to improve the alignment performance through the knowledge obtained

from human alignments. In (Haghighi et al., 2009), the inversion transduction gram-

mar (Wu, 1997) constraints are exploited in supervised word alignment methods. A

discriminative model is presented in (DeNero and Klein, 2010) that directly predicts

which set of phrasal translation rules should be extracted from a sentence pair. This

model scores extraction sets: nested collections of all the overlapping phrase pairs

consistent with an underlying word alignment. In (Setiawan et al., 2010), they ad-

dress the modeling, parameter estimation and search challenges that arise from the

introduction of reordering models which capture non-local reordering in alignment

modeling. The work in (Xu and Chen, 2011) shows a surprising result that the gain

of human alignment over a state of the art unsupervised method (GIZA++) is less

than 1 point in BLEU score and that the benefit of improved alignment becomes

smaller with more training data.

2.2.2 Extraction from Comparable Corpora

It is a costly task to build parallel corpora of high volume and researchers have

resorted to comparable corpora for bilingual lexicon extraction, although the per-

formance on comparable corpora is not as good as the methods relying on parallel

corpora. The alignment information, for instance the sentence alignments in par-

allel corpora, is generally not available for comparable corpora, so the search space

for finding translation candidates in comparable corpora is much larger than that

of parallel corpora. The basic assumption behind most studies on bilingual lexicon

extraction from comparable corpora is a distributional hypothesis, stating that words

2http://code.google.com/p/berkeleyaligner/
3http://linguateca.di.uminho.pt/natools/
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which are translations of each other are likely to appear in similar contexts across

languages. Under the same assumption, previous works differ in terms of context

representation or strategies to compare the context. Bilingual lexicon extraction is

an important task considered in the thesis in order to exploit comparable corpora and

we will detail typical methods below.

The work (Rapp, 1995) suggests that the identification of word translations should

be possible with non-parallel and even unrelated texts with the co-occurrence pat-

terns. For example, if in a text of one language two words wa and wb co-occur

more often than expected from chance, then in a text of another language those

words which are translations of wa and wb should also co-occur more frequently than

expected. He shows that the assumption holds even in the case of unrelated Ger-

man/English text. When comparing an English and a German co-occurrence matrix

of corresponding words, he finds a high correlation between the co-occurrence pat-

terns of the two matrices when the rows and and columns of both matrices are in

corresponding word order, and a low correlation when the rows and columns are in

random order. The method proposed in (Rapp, 1999) can be seen as a simple case of

the gradient descent method in (Rapp, 1995). The large number of permutations to

be considered in (Rapp, 1995) is reduced to a much smaller number of vector com-

parisons in (Rapp, 1999), which provides a practical implementation based on the

co-occurrence clue that yields good results. To be exact, for each of the source (resp.

target) language word, a co-occurrence vector can be built by considering the source

(resp. target) corpus. Then two vectors are mapped to the same space and compared

with each other through the help of the seed dictionary. The candidate translations

in the target vocabulary can be ranked according to its similarity with the source

word.

The work (Fung, 1995) assumes the statistical correlations between words and

their translations in non-parallel corpus, which says that words with productive con-

text in one language translate into words with productive context in another language,

and words with rigid context translate into words with rigid context. She proposes
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the context heterogeneity to measure how productive the context of a word is in a

given domain. Then words can be matched with their translations through the con-

text heterogeneity measure. Their later work in (Fung and McKeown, 1997; Fung

and Yee, 1998) relies on the co-occurrence assumption that is similar with the one

used in the work (Rapp, 1999). The work (Fung and McKeown, 1997) makes use

of a bilingual list of known translation pairs (i.e. seed word list) constructed from

online dictionaries. For each word in one language, a vector is built consisting of its

statistical word signature feature which is the correlation of this word and each other

word occurring in the same segment as the source word. The segment size in their

work is not fixed and changes according to the frequency of the source word in the

corpus. Finally the similarity of two correlation vectors, bridged by the bilingual dic-

tionary, is computed and the translation candidates with high similarity are chosen.

The work (Fung and Yee, 1998) also uses the words surrounding the source word in

a certain window as the context of the source word. The window size here is always

taken as a single sentence and the weight of each context dimension is measured in

the TF-IDF manner. Two vectors are then made comparable through the mapping

based on a bilingual dictionary. This approach also takes into account the reliability

of bilingual seed words.

The work (Déjean et al., 2002) tests several different models in bilingual lexicon

extraction from parallel or comparable corpora in specialized domains. They show

that the combination of the models significantly improves results, and that the use

of the thesaurus UMLS/MeSH is of primary importance. The studies in (Chiao and

Zweigenbaum, 2002) and (Chiao et al., 2004) also deal with comparable corpora in

medicine domain. They test and compare in (Chiao and Zweigenbaum, 2002) several

weighting factors and similarity measures for the strategy relying on the distributional

context. In order to prune translation alternatives in the later work (Chiao et al.,

2004), they reweigh translation candidates in the target language by applying the

same translation algorithm but in the reverse direction. The latter method (Chiao

et al., 2004) shows an improvement in the quality of top candidate translations. In
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studies such as (Deléger and Zweigenbaum, 2008) and (Deléger and Zweigenbaum,

2009), they make use of comparable corpora consisting of lay and specialized medical

documents to extract similar text segemnts.

In (Gaussier et al., 2004), they present a geometric view on bilingual lexicon

extraction from comparable corpora, which can interpret all the context vector ap-

proaches in a uniform framework. With such a presentation, they extend the standard

approaches to dealing with the problems of dictionary coverage and polysemy/synonym.

They try to find a vector space in which synonyms dictionary entries are close to each

other, while polysemous ones still select different neighbors. The context vectors of

words are then mapped to the new vector space for comparison. They show that

the combination of relatively simple methods helps to improve the performance of

bilingual lexicon extraction significantly. The work (Robitaille et al., 2006) proposes

a method for compiling bilingual terminologies of multi-word terms (MWTs) based

on the seed terms. They first collect MWTs semantically similar to the seeds in each

language. Then they work out the alignments between the MWTs in both sets. The

intuition is that both seeds have the same related terms across languages, and they

believe that this will simplify the alignment process. The alignment is done by gener-

ating a set of translation candidates using a compositional method, and by selecting

the most probable translations from that set. The method (Morin et al., 2007) tries

to extract French-Japanese terminologies from comparable corpora, considering both

single and multi-word terms. They show the fact that the quality of comparable cor-

pora is more important than the quantity and that this ensures the quality of acquired

terminological resources. They also conclude that besides the domains and subdo-

mains, the type of discourse is important as a characteristic of comparable corpora.

The work (Morin and Daille, 2010) introduces a general framework for the lexical

alignment of MWTs from comparable corpora, which includes a compositional trans-

lation process and the standard lexical context analysis. The compositional method

bridges the gap between MWTs of different syntactic structures through morpholog-
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ical links. In more recent work (Hazem and Morin, 2012), they review the task of

lexicon extraction as a question-answering (QA) problem.

Different from above work making use of the lexical context consisting of words co-

occurring with the source word in a certain window, the approach (Garera et al., 2009)

uses the dependency structure as the context. They use contexts derived from head-

words linked by dependency trees instead of the immediate adjacent lexical words.

With the deep semantic information, they gain significant improvement compared

to the approaches solely relying on the lexical context. The study (Yu and Tsujii,

2009) introduces the phenomenon that they called dependency heterogeneity which

is if one prepares the corpora with a dependency syntactic analyzer, a word in the

source language shares similar heads and modifiers with its translation in the target

language, no matter whether the two words occur in similar context or not. The

method is advantageous in that bilingual dictionary is not demanded so as to bridge

the context vectors. Their approach shows satisfactory performance on a small test

set.

The work (Shezaf and Rappoport, 2010) introduces a method to create a high

quality bilingual dictionary (Hebrew-Spanish) given a noisy one built from two pivot

language lexicons. The profiling process is based on two monolingual corpora. An

essential part of the algorithm is called the non-aligned signatures (NAS) context,

which consists of words that co-occur with the source word most strongly in the

corpus. NAS is used as a cross-language similarity score to remove from generated

lexicons incorrect translations using cross-lingual co-occurrences. NAS is computed

from the number of headword signature words that may be translated using the input

noisy lexicons into words in the signature of a candidate translation.

There are some other studies investigating specific problems in the task of bilingual

lexicon extraction from comparable corpora. For example, since the rare words,

appearing with low frequency in the corpus, do not have sufficient context information,

it is difficult to find their correct translations from the corpus. In (Pekar et al., 2006),

prior to performing the mapping between vector spaces of different languages, the
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method models context vectors of rare words using their distributional similarity to

words of the same language to predict unseen co-occurrences as well as to smooth

rare, unreliable ones. In (Prochasson and Fung, 2011), to solve the rare word problem,

they incorporate two features, namely a context-vector similarity and a co-occurrence

model between words, in aligned documents in a machine learning approach.

The exploitation of comparable corpora is still a rapidly evolving area. The Build-

ing and Using Comparable Corpora (BUCC) workshop, initiated in 2008, is an annual

event to investigate the techniques in this area. For the most recent advance, one

may refer to the latest proceedings of the workshop (Zweigenbaum et al., 2011).

2.3 Cross-Language Information Retrieval

Cross-Language Information Retrieval (CLIR) is the task of finding documents

written in a language different from that of the query. If attempts to model multi-

linguality in information retrieval date back to the early seventies (Salton, 1969), a

renewed interest was brought to the field by the rise of the Web in the mid-nineties,

as pages written in many different languages were all of a sudden availability. In-

ternational organizations, governments of multilingual countries, to name the most

important, have been traditional users of CLIR systems, but the need for such sys-

tems in everyday life, even though less ascertained, becomes more and more clear,

with the development of travels, tourism and multilinguality, at all levels. The recent

book by J.-Y. Nie on CLIR (Nie, 2010) exposes in detail the need for cross-language

and multilingual IR. In this thesis, we will investigate both novel CLIR models and

the enhancement of CLIR performance with lexicons extracted from comparable cor-

pora, and we would like to review in this section the classic CLIR strategies. Since

most of the precious CLIR models are the extensions of monolingual IR models, we

will introduce below the monolingual IR models in section 2.3.1 and their extensions

to CLIR settings in section 2.3.2.
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2.3.1 Monolingual IR Models

The monolingual IR models, aiming at weighting a query towards the documents

in a document collection, have been studied broadly since the notion of information

retrieval was firstly proposed in (Mooers, 1950). Such IR models as boolean retrieval

models, vector space models, probabilistic models and language modeling approaches

have been investigated in order to satisfy the users’ information needs (Manning et al.,

2008). The monolingual models are the basis of CLIR models and we will introduce

the representative monolingual IR models below.

Boolean Models

The boolean models try to find exact matches according to the logic operations

such as the logical product AND, the logic sum OR and the logical difference NOT.

These operations can be combined to constitute complex queries. For example, with

the query “chemistry AND physics”, one will retrieve the documents containing both

the words “chemistry” and “physics”. With the query “chemistry OR physics”, one

will fetch the documents containing at least one of the two words “chemistry” and

“physics”. Given the query “chemistry NOT physics”, one will get the documents

containing the word “chemistry” and meanwhile not containing “physics”. The basic

boolean models have two problems: it is not easy for untrained users to compose an

efficient query to accurately represent their information need; the retrieved result set

of the boolean model is not ranked, which is however important in many applications.

Additional operators such as the proximity operator can be integrated into the basic

boolean models to produce more flexible output.

Vector Space Models

The vector space models try to represent queries and documents as vectors prior

to comparing the vectors. The early work in (Salton, 1971) represents the query and

the document as vectors in a Euclidean space containing dimensions corresponding

to the different terms. The similarity of two vectors is then measured by the cosine

of the angle between two vectors.
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A crucial part of the vector space model is the method to weight each term in the

vectors. The TF-IDF approach is a broadly used approach for this purpose. The sim-

ple TF-IDF approach does not take into account the synonyms and polysemys which

affect the performance of the vector space representation. The techniques such as La-

tent Semantic Indexing (LSI) (Deerwester et al., 1990), Probabilistic Latent Semantic

Indexing (PLSI) (Hofmann, 1999) and Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) have been proposed to solve the problem.

Probabilistic Models

In the vector space models for IR reviewed above, matching is done in a for-

mally defined but semantically imprecise calculus of index terms. The probabilistic

approaches for IR try to model the retrieval tasks in the framework of probability

theory, which is thus easier to explain and extend in a mathematical way. The ran-

dom variable R is used to denote if the document in consideration is relevant to the

query. The values for R are thus picked from {0, 1}, corresponding to relevant and

irrelevant respectively.

The work (Robertson and Jones, 1976) proposes to rank the documents by the

probability P (R = 1|d, q) which is the probability of relevance given a query q and

a document d. In their work, both q and d are represented as vectors, respectively

corresponding to ~q and ~d consisting of the term weights in the query/document.

The vectors ~q and ~d consist of only 0-1 values identifying whether a term appears

in the query/document. Under this setting, one vector representation, either ~q or

~d, may correspond to several queries/documents with the same vocabulary. The

model is called Binary Independence Model (BIM) due to this fact. The probability

P (R = 1|~d, ~q) can then be interpreted as the probability of finding the relevant

documents in the document set represented by the same ~d vector. To realize the

model in practice, they make use of P (R=1|~d,~q)

P (R=0|~d,~q)
instead of P (R = 1|~d, ~q) to rank the

documents, where R = 0 denotes the irrelevance of q and d, the opposite of R = 1.



25

As they show, the new formula in use can result in the same ranking of the documents

but is easier to compute. With the Bayes rule, they have:

P (R = 1|~d, ~q)

P (R = 0|~d, ~q)
=

P (~d|R = 1, ~q)P (R = 1|~q)

P (~d|R = 0, ~q)P (R = 0|~q)
(2.1)

The parts P (R = 1|~q) and P (R = 0|~q) only depend on ~q and not on ~d, having no

effects on the ranking result, so they can be ignored in equation 2.1 without changing

the ranking function of the original model. To further reduce the computational cost,

they assume that the terms are independent given the relevance information and the

query (i.e. a naive Bayes conditional independence assumption), and obtain:

P (R = 1|~d, ~q)

P (R = 0|~d, ~q)
,

∏

t P (dt|R = 1, ~q)
∏

t P (dt|R = 0, ~q)

where dt is the t-th component (i.e. a term) of the document vector. By assuming

that terms not occurring in the query are equally likely to occur in relevant and

irrelevant documents, and using the logarithm instead of the products, they can get

the resulting function used for ranking the documents w.r.t. the query q, which is:

RSV (q, d) =
∑

t:dt=qt=1

log
P (dt = 1|R = 1, ~q)P (dt = 0|R = 0, ~q)

P (dt = 1|R = 0, ~q)P (dt = 0|R = 1, ~q)
(2.2)

where RSV denotes Retrieval Status Value. The computation of the probabilities in

equation 2.2 can be implemented in various ways. For a detailed discussion of related

techniques, one can refer to the book (Manning et al., 2008). The BIM model has

some obvious problems. For example, one loses such information as the document

length by using the boolean representations of the documents and queries. Meanwhile,

different terms are treated independently in the BIM model, which is different from

the real situation.

The simple binary representation does not consider the term frequency and doc-

ument length, potentially harming the retrieval performance. The BM25 weighting

scheme (Jones et al., 2000), also known as Okapi weighting, is a probabilistic model

considering those features ignored in BIM and has shown satisfactory performance

across many collections and search tasks. The work (Turtle and Croft, 1990) makes
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use of Bayesian networks to model the complex dependencies between the documents

and the queries to facilitate the retrieval tasks. Two networks are built: one for the

document collection and the other one for the query. A new network will be built

for each new query, which is then attached to the document network. This results

in a full network that can generalize simpler boolean and probabilistic models. This

model has motivated the InQuery system (Callan et al., 1992) which has been used

broadly in many IR experiments.

Language Modeling Approaches

The technique of language modeling tries to model a language by assigning a prob-

ability to any language string. It was originally proposed for the speech recognition

task to pick a real sentence from several candidates. The idea of using language mod-

eling in IR relies on the assumption that a document fits the topic of the query if the

query is likely to be produced by the language model of the document (i.e. document

model). Intuitively, it means that if the document contains the frequent occurrences

of the words in the query, the document is likely to be relative to the query.

Language modeling approaches are a very general framework which can be imple-

mentated in various ways. The basic language modeling approach used in IR is the

query likelihood model (Manning et al., 2008). This model tries to score the document

d w.r.t. a query q based on the probability P (d|q) that will be computed from the

language modeling approach. With the Bayes rule, one has:

P (d|q) =
P (q|d)P (d)

P (q)

Since P (q) is the same for all the documents and P (d) can be treated as uniform across

all the documents in text retrieval, we can choose to only consider the part P (q|d)

without changing the ranking of documents. P (q|d) is the probability of observing

the query q given the document d. This probability can be obtained by assuming a

generative process, which is the query q is generated from the language model Md

of the document d. To estimate the value P (q|Md), a simple idea is to assume the
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independency of words w in the query q, which equals to a multinomial distribution

assumption on the words in the query. With these considerations, we can have:

P (q|Md) = Zq

∏

w∈Vd

P (t|Md)
nw (2.3)

where Zq is a normalization factor only dependent on the query q and can thus be

ignored in the ranking function. The number of occurrences of the word w in the

vocabulary Vd of d is denoted as nw. One usually makes use of the log format of

equation 2.3 to get a formula in the form of sum instead of multiply, which can make

the implementation more efficient in real-world IR systems.

In order to compute the value P (w|Md) in equation 2.3, one can refer to maximum

likelihood estimation (MLE) for Md, which leads us to:

Pml(w|Md) =
nw

ld

where ld is the length, in terms of word count, of the document d. A problem of the

MLE approach is that it assigns zero probability to the words that do not appear in

the document, which will cause the value in equation 2.3 to 0. It means that a query

with a single word not present in the document will get a score 0, even if the query is

relative to the query. Meanwhile, solely relying on the original times of occurrences

leads to the over estimation for the words occurring only once which might have

appeared by chance.

The techniques to solve the zero probability problem in language models are called

smoothing. In the smoothing process, one discounts the non-zero probabilities and

allocates some probability to the words not present in the document. Several ap-

proaches have been developed to smooth the probability such as the one (Chen and

Goodman, 1996) in the speech recognition task. We introduce here two approaches

broadly used to smooth language models in IR, namely the Jelinek-Mercer (JM)

method and the Bayesian smoothing with Dirichlet priors (DIR) (Zhai and Lafferty,

2004).

• The JM smoothing approach makes use of a linear interpolation to smooth the

maximum likelihood model Mml with the collection language model P (w|C)
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where C is a text collection. Formally, the smoothed probability Pλ(w|Md) can

be :

Pλ(w|Md) = (1− λ)Pml(w|d) + λP (w|C)

where λ is a smoothing parameter controlling to what extent the maximum

likelihood model is smoothed.

• The DIR smoothing strategy makes use of the Dirichlet distribution which is

the conjugate prior for the multinomial distribution considered for the language

model. The parameters of the Dirichlet distribution are:

(µP (w1|C), µP (w2|C), . . . , µP (wn|C))

and the smoothed probability Pµ(w|Md) can be written as:

Pµ(w|Md) =
c(w; d) + µP (w|C)
∑

w c(w; d) + µ

where µ is a smoothing parameter and c(w; d) is the number of occurrences of

w in d.

In the language modeling approaches above, one always considers that the query

q is generated from the language model Md of the document. The reverse direction,

generating the document d from a query model Mq, is also feasible. Since the docu-

ment is often longer than the query, giving a better estimation for its language model,

it is more convenient to rely on P (q|Md) than on P (d|Mq) to rank the documents.

An important extension of the basic language modeling approach is to consider the

language models of both the query and the document. The two language models

can then be compared using the Kullback-Lebler (KL) divergence (Zhai and Lafferty,

2001). Formally, the relevance value of d with respect to q can be measured by the

negative KL-divergence function:

RSV (q, d) = −KL(Mq||Md) = −
∑

w∈V

P (w|Mq) log
P (w|Mq)

P (w|Md)
(2.4)

which is the one we will actually make use of in the experiment sections.
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2.3.2 CLIR Strategies

There are several ways to cross the language barrier in CLIR models: through

mapping the document representation into the query representation space (an ap-

proach known as document translation), through mapping the query representa-

tion into the document representation (an approach known as query translation)

or through mapping both representations into a third space (interlingua approach).

As for implementation, existing CLIR models fall into two categories:

• Model-independent approaches. Model-independent approaches treat transla-

tion and retrieval as two separate processes. The queries or the documents

are first translated into the corresponding language of the documents or the

queries. Monolingual IR models are then applied directly. A typical and also

broadly used approach of this type is the machine translation (MT) approach

(e.g. (Kraaij et al., 2003; Braschler, 2004)) which employs MT systems to trans-

late the queries or documents before the monolingual retrieval process. The

biggest problem of this approach is that MT systems are not readily available

for all the language pairs. As one can see, the model-independent approaches are

more like a monolingual IR task plus a translation process which is independent

from the monolingual IR model.

• Model-dependent approaches. These methods integrate the translation and re-

trieval processes in a uniform framework. The first model-dependent approach

commonly used in CLIR is the structure query technique (Pirkola, 1998; Dar-

wish and Oard, 2003) which counts the occurrences of the translation candidates

as the occurrence of the original word. This approach is realized as the SYN

operator in the InQuery system. We list in Appendix A an example of the

structured query technique. The other model-dependent approach, developed

in (Federico and Bertoldi, 2002; Kraaij et al., 2003) in the context of language

models, have the advantage of accounting better for the uncertainty of trans-

lation during retrieval. We will briefly introduce here the Query Translation
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(QT) model and the Document Translation (DT) model (Kraaij et al., 2003).

In order to explain how QT and DT work, we make use here of the language

modeling approach based on KL-divergence defined in equation 2.4.

We denote dt as the document in the target language, qs as the query in the

source language, Vt as the vocabulary of the target language, and Vs as the

vocabulary of the source language. The QT model tries to estimate the query

model Mqs of the query qs in the target language. Under these settings, the

retrieval function in equation 2.4 can be rewritten as:

RSV (qs, dt) = −KL(Mqs ||Mdt) = −
∑

wt∈Vt

P (wt|Mqs) log
P (wt|Mqs)

P (wt|Mdt)
(2.5)

and P (wt|Mqs) can be estimated as:

P (wt|Mqs) =
∑

ws∈Vs

P (ws, wt|Mqs) =
∑

ws∈Vs

P (wt|ws,Mqs)P (ws|Mqs)

≈
∑

ws∈Vs

P (wt|ws)P (ws|Mqs)

where the approximation is made by assuming the dependence of wt on ws is

independent from Mqs . The probability P (wt|ws) can be estimated from the

bilingual dictionaries or corpora, and P (ws|Mqs) can be simply estimated from

the language model used for the query. Different from QT, the DT model tries

to estimate the document model Mdt in the source language. In this case, the

retrieval function in equation 2.4 can be rewritten as:

RSV (qs, dt) = −KL(Mqs ||Mdt) = −
∑

ws∈Vs

P (ws|Mqs) log
P (ws|Mqs)

P (ws|Mdt)
(2.6)

and P (ws|Mdt) can be estimated as:

P (ws|Mdt) =
∑

wt∈Vt

P (ws, wt|Mdt) =
∑

wt∈Vt

P (ws|wt,Mdt)P (wt|Mdt)

≈
∑

wt∈Vt

P (ws|wt)P (wt|Mdt)

where the approximation is made by assuming the dependence of ws on wt is

independent from Mqt . Similar with the QT model, the probability P (ws|wt)
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should be estimated from the bilingual dictionaries or corpora, and P (wt|Mdt)

is to be computed from the language model of the document.

2.3.3 Resources for IR Experiments

For academic research, there have been standard resources that can be employed

to examine the performance of IR systems. We list here several of them which have

been used broadly. We will introduce both the test collections and publicly available

IR systems.

Several test collections with human judgements have been developed to help re-

searchers evaluate their IR models. We list below the details of these data sets.

• Text Retrieval Conference (TREC). The TREC test set was initialized by the

American National Institute of Standards and Technology (NIST), aiming at

evaluating IR performance in different domains and environments, and was

divided into various tracks. For example, the Chemical IR Track addresses

challenges in building testbeds to evaluate the state of the art in chemical infor-

mation retrieval. The Web Track investigates the web related retrieval tasks,

where a huge amount of data is involved. The Cross-Language Track provides

data sets adjusted for the CLIR tasks, with the queries in many languages.

The Question Answering Track deals with deep semantics understanding in the

retrieval tasks. The track that is mostly related with the IR task discussed in

the thesis is the Ad Hoc Track and the Cross-Language Track.

• Cross Language Evaluation Forum (CLEF). The CLEF test set is specifically

designed for the CLIR tasks. Most of the CLEF data set covers the main

European languages such as English, French and Germany. Similar with the

TREC test set, the CLEF test set is also divided into several tracks. For

example, the Multilingual Information Retrieval Track provides the possibility

of evaluating the search task towards a multilingual document collection using a

query in several possible languages. The Bilingual Information Retrieval Track
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is provided where the query can be chosen from one language and the target

documents can be chosen from one of several languages. Different from the

multilingual track, the documents in the bilingual track belong to only one

language once chosen. The bilingual track is the one we will actually make

use of in the thesis. There are also some other tracks such as the GIRT Track

supporting the CLIR task in specific domains.

• NII Test Collections for IR Systems (NTCIR). Similar with CLEF, the NTCIR

workshop is a series of evaluation workshops designed to evaluate relative re-

search work. It is currently supported by Japan Society for Promotion of Science

(JSPS) and National Institute of Informatics (NII). Such tracks as information

retrieval, question answering and text summarization have been designed to

evaluate various tasks. In addition to general IR tasks, the NTCIR forum pays

special attention to Asian language (e.g. Japanese and Chinese) IR and CLIR.

Besides the publicly available test sets introduced above, one also needs an IR

system with which one can easily test different IR models. We introduce here several

IR systems which are open-source and have been used in many studies.

• Lemur. The Lemur system was developed by the University of Massachusetts,

Amherst and Carnegie Mellon University. It provides search engines, browser

toolbars, text analysis tools, and data resources for the research in information

retrieval and text mining. The Indri search engine embedded in the Lemur

project provides state-of-the-art retrieval performance and out-of-the-box user

interface. The InQuery language coming with the Lemur system provides

flexible structured queries such as the operator SYN. The project website is:

http://www.lemurproject.org/.

• Terrier. The Terrier IR platform is a search engine developed by University

of Glasgow. It is deployable on large-scale collections of documents. They

have implemented in Terrier classic IR models such as TF-IDF, language mod-

eling approaches, and DFR models. The system has been modularized for
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easy alternation. Moreover, the system has provided customized interface for

standard IR experiments such as CLEF and TREC. The project website is:

http://terrier.org/.

• Lucene. The Apache Lucene is a high-performance text search engine, which

is usually extended for commercial use. This system also provides support for

query biased summarization. Regarding the IR models, Lucene only implements

the boolean model and the basic vector space model. The original distribution

of Lucene does not come with such classic IR models as language modeling

approaches. The project website is: http://lucene.apache.org/.

2.4 Conclusion

As explained in section 1.3, we plan to focus in this thesis on comparable corpus

quality and its application in NLP tasks. We have thus reviewed in this chapter

existing work related to corpus quality and two NLP tasks, namely bilingual lexicon

extraction and CLIR, relying on comparable corpora.

We have first discussed existing work concerning corpus quality. One class of work

tries to compare the similarity of two corpora, in the same or different languages. The

work in corpus linguistics tries to extract the key words that can differentiate two

corpora in the same language, which mostly focus on a qualitative analysis but not a

quantitive analysis. The work inferring a global comparability score for bilingual cor-

pora is however computationally infeasible for large corpora. In a word, there has not

been any practical measure on which one can rely to differentiate various comparabil-

ity levels. The other class of work aims to extract parallel subparts from comparable

corpora, which is similar with the thesis work trying to enhance comparable corpus

quality. There is however a significant difference as we will show later.

We have then focused on two NLP tasks making use of comparable corpora. The

first one is bilingual lexicon extraction which can be realized with both parallel corpora

and comparable corpora. Bilingual lexicon extraction from comparable corpora relies
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on a distributional hypothesis that similar words should appear in similar context

in different languages. Previous studies on this topic differ in terms of either the

representation for word context or strategies to compare two context sets. The second

task we have reviewed is CLIR which extends the monolingual IR models. We have

also discussed in this chapter standard resources for IR experiments.
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3 COMPARABILITY MEASURES

As we have discussed in section 1.2, the quality of comparable corpora affects their us-

ability in the NLP applications. However, the notion of comparability is rather vague

in previous works, which constrains us from differentiating comparable corpora of

different quality. In this chapter, we will try to develop efficient measures to quantify

the quality of comparable corpora. We will first formalize in section 3.1 the concept

of comparability following the usage experience from NLP practice. Then we will

develop in section 3.2 several measures to approximate the notion of comparability.

At last, in section 3.3, those comparability measures proposed above are validated

by the experiments to show their ability of capturing different comparability levels

as well as their robustness to dictionary changes. The chapter will be conclude in

section 3.4.

3.1 The Notion of Comparability

Without a clear notion of comparability, it is hard to tell whether one comparable

corpus can be seen as more comparable than the other. For the quality of compa-

rable corpora, we make additional discussions here to complement the ones made in

section 1.2. A comparability measure intends to capture the different comparability

levels, i.e. to provide an estimation that if a comparable corpus has the quality good

enough for relative NLP tasks. In this sense, the way we define comparability should

depend on the target applications in consideration, since different applications might

prefer comparable corpora of different genres. For example, in (Ni et al., 2009), one

needs to get the documents with aligned topics in order to build the multilingual topic

models. Comparable corpora containing overlapping information and without topic

alignments are however sufficient for the task of bilingual lexicon extraction (refer to
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the work cited in section 2.2.2). We will focus in this thesis on the task of bilingual

lexicon extraction1, which is one of the mostly investigated applications using com-

parable corpora. However, we believe that the notion of comparability argued here

works with other applications as well.

The comparability measure can be defined on various levels such as sentences,

documents and corpora. If one considers the comparability on the document or

sentence level, it can directly be treated as the similarity of sentences/documents in

two languages, where such classic strategies as vector space model can be applied. In

this chapter, we aim to develop a measure that can work on all levels with specific

attention to the corpus level. We intend to define comparability so as to reflect

the usability of comparable corpora in NLP tasks and to direct the enhancement of

existing comparable corpora. The intuition we are able to follow is that the following

comparable corpora have decreasing comparability levels:

1. Parallel corpora;

2. Parallel corpora with noise;

3. Non-parallel corpora covering overlapping topics (i.e. strongly comparable);

4. Non-parallel corpora covering different topics (i.e. weakly comparable).

The bilingual corpus is used to bridge the language barrier in NLP tasks, so the more

bridge information one can find from the corpus, the more one can rely on the corpus

in multilingual NLP tasks, which is the other way of explaining our intuition above.

It is thus no wonder the parallel corpus is of the best quality and the non-parallel

corpus covering different topics is of the worst quality. Given these discussions, we

would like to give additional comments on different text size levels. According to the

above intuition, both the parallel corpus and the parallel document pair (i.e. only 2

documents) are of the highest comparability level, since there is not any other text of

1The CLIR task does not directly depend on comparable corpora. It depends on the bilingual
lexicons extracted from comparable corpora, as we have discussed in section 1.1.
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higher quality than parallel text. However, in terms of usability, the parallel corpus

should be more useful in most NLP tasks such as statistical machine translation.

Judged from the usability, one should say, compared to the parallel document pair,

the parallel corpus is of higher quality and thus more comparable. The conflict

here can be avoided by assuming that we are only interested in comparing the text

resources belonging to similar scales.

The comparability measure we will develop needs to correlate with the intuition

above, meaning that the measure can capture different comparability levels reflected

by different comparable corpora. Moreover, we prefer to have a measure as simple

in computational complexity as possible because it will be used intensively in other

algorithms, which will be shown in the approaches to improving the corpus quality

in section 4.2.

3.2 Developing Comparability Measures

Following the discussions on the notion of comparability in section 3.1, several

implementations for comparability are proposed and discussed in this section which

are:

• Vocabulary overlapping approaches. These methods try to measure how much

the vocabularies of two corpora overlap with each other. It is realized through

mapping the vocabulary of the source language corpus to a vocabulary in the

target language, prior to the comparison of two vocabularies. We will make

use in this thesis of the bilingual dictionary to perform the mapping process.

When the polysemy of the words is not taken into account, we develop sev-

eral context-free comparability measures. Otherwise, we can develop the corre-

sponding context-based comparability measures considering word sense disam-

biguation. These measures will be presented in section 3.2.1.

• Vector space approach. This method makes use of the classic vector representa-

tion of the documents. The two monolingual corpora can be represented as two
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vectors in two languages. Then the bilingual vector similarity can be computed

through mapping two vectors into the same language space using approaches

such as the one in (Gaussier et al., 2004). This approach will be introduced in

section 3.2.2, severing as one baseline measure.

• Machine translation approaches. It is intuitive that the source language corpus

can be translated into the target language, resulting in two corpora in the same

language that can directly be compared relying on the matured techniques to

evaluate machine translation systems. These measures will be introduced in

section 3.2.2 and server as the second baseline measure.

For convenience, the following discussions will be made in the context of French-

English comparable corpora. The conclusions however hold for any language pair.

3.2.1 Measures Based on Vocabulary Overlapping

In order to develop comparability measures satisfying the notion in section 3.1,

we make use here of the intuition that it is easier to find the translation for each word

in comparable corpora of higher quality. In practice, the mathematical expectation

is employed to quantify if it is easy to find the translation candidates in the corpus.

We will investigate in this section two strategies to implement the intuition: one is

to consider the translation pairs without context information and the other one relies

on context-based disambiguation.

Measures without Context

The measures introduced in this part are the extensions of the ones proposed in

our former work (Li and Gaussier, 2010) and solely depend on the words themselves,

ignoring any context information. It is easier to find the translation pairs between

documents that are more comparable to each other, since authors tend to use similar

words to depict similar topics in different languages (see (Morin et al., 2007) for a

related analysis). The intuition can also be supported by the list of four types of
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comparable corpora with decreasing comparability levels listed in section 3.1. It is

easy to find many translation pairs from the parallel corpus, which is harder in the

context of non-parallel corpora covering different topics. This intuition provides us

with the possibility of measuring the degree of comparability based on if it is easy to

find the translations for the words in the corpora.

As a natural choice, we make use of the mathematical expectation to estimate the

difficulty in finding the translation pairs in the corpus. Let us assume that we have

a French-English comparable corpus C consisting of a French part Cf and an English

part Ce. If we consider the translation process from the English part to the French

part, the comparability measure Mef can be defined as the expectation of finding, for

each English word we in the vocabulary Cv
e of Ce, its translation in the vocabulary

Cv
f of Cf . The definition for Mef directly reflects our intuition. As one can note,

a general English-French bilingual dictionary D, independent from the corpus C, is

required to judge if two words are the translation of each other. Let σ be a function

which indicates whether a translation from the translation set Tw of a word w is found

in the vocabulary Cv of a corpus C, i.e.:

σ(w, Cv) =







1 iff Tw ∩ Cv 6= ∅

0 else
(3.1)

Mef is then defined as:

Mef (Ce, Cf ) = E(σ(w, Cv
f )|w ∈ Cv

e ) =
∑

w∈Cv
e

σ(w, Cv
f ) · Pr(w ∈ Cv

e ) (3.2)

where Dv
e is the English vocabulary of the given bilingual dictionary D. As assumed

above, comparable corpora and the general bilingual dictionary are independent from

one another. It is thus natural to assume that the dictionary covers a substantial part

of Cv
e and this substantial part can well represent the whole vocabulary. It means the

expectation of finding the translation in Cv
f of a word w is the same for w in Cv

e and

in Cv
e ∩ Dv

e . This assumption amounts to a practical version of Mef in equation 3.3:

Mef (Ce, Cf ) =
∑

w∈Cv
e∩D

v
e

σ(w, Cv
f ) · Pr(w ∈ Cv

e ∩ Dv
e) (3.3)
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The assumption is not always reliable while, for example, a remarkable part of the

corpus vocabulary is not covered by the bilingual dictionary. This can happen when

the bilingual dictionary is small or when the corpus contains content in the language

other than the language of the corpus itself. The latter case is more like a technical

problem where a language identifier (Lins and Gonçalves, 2004) can be employed to

filter out the noisy text. We will thus only consider the first problem, regarding the

dictionary coverage, in the following sections.

There are several possibilities to estimate Pr(w ∈ Cv
e ∩Dv

e) in equation 3.3. How-

ever, the presence of common words suggests that one should not solely rely on the

number of occurrences (i.e. term frequency), which is a broadly used approach in

other fields like unigram language models, since the high-frequency words will domi-

nate the final results. For example, in the Europarl corpus, the English word Europe

and the French word Europe are very common words. It means that even if one piece

of English text and one piece of French text are randomly picked from the Europarl

corpus, one can still expect to find many translation pairs Europe-Europe. To avoid

the bias common words can introduce in the comparability measure, one can weight

each word w as ρw through TF-IDF or through the simple Presence/Absence (P/A)

criterion. In this case, the part Pr(w ∈ Cv
e ∩ Dv

e) can be estimated as:

Pr(w ∈ Cv
e ∩ Dv

e) =
ρw

∑

w∈Cv
e∩D

v
e
ρw

(3.4)

With the P/A criterion, the weight ρw is 1 if and only if w ∈ Cv
e ∩ Dv

e , otherwise

the value is 0. Alternatively, considering the TF-IDF weight for each word w, the

weighting function ρw can be defined as:

ρw = tfw ∗ log(1 +
|Ce|

1 + dfw
) (3.5)

where tfw is the term frequency of the word w in the corpus Ce, |Ce| is the total

number of douments in the corpus Ce and dfw is the number of documents containing

the word w.
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Similarly, when considering the translation process from the French part to the

English part, the counterpart of Mef , Mfe, can be written as:

Mfe(Ce, Cf ) =
∑

w∈Cv
f
∩Dv

f

σ(w, Cv
e ) · Pr(w ∈ Cv

f ∩ Dv
f ) (3.6)

where Pr(w ∈ Cv
f ∩ Dv

f ) is defined in the same way as in equation 3.4.

The two asymmetric measures Mef and Mfe above reflect the degree of compa-

rability when considering the translation process in only one direction. They can be

combined to form a comprehensive measure M by reviewing the two directions as a

whole. The difference between Mef in equation 3.3 and Mfe in equation 3.6 comes

from the part which estimates the probability of a word in the corpus vocabulary.

We denote Cv as the whole vocabulary of C and Dv as the whole vocabulary of D.

Following the same idea, considering the English and French vocabularies as a whole,

one can directly obtain Pr(w ∈ Cv ∩ Dv) by replacing Cv
e ∩ Dv

e with Cv ∩ Dv in equa-

tion 3.4. The combined measure M , considering the translation in both directions,

can then be written as:

M(Ce, Cf ) =
∑

w∈Cv∩Dv

σ(w, Cv) · Pr(w ∈ Cv ∩ Dv) (3.7)

We give here additional comments on the P/A criterion which is the one we will

finally make use of in other algorithms in section 4.2. With this criterion, Pr(w ∈

Cv
e ∩ Dv

e) is directly
1

|Cv
e∩D

v
e |

and Pr(w ∈ Cv
f ∩ Dv

f ) is
1

|Cv
f
∩Dv

f
|
. One can then obtain:

Mef (Ce, Cf ) =
1

|Cv
e ∩ Dv

e |

∑

w∈Cv
e∩D

v
e

σ(w, Cv
f ) (3.8)

Mfe(Ce, Cf ) =
1

|Cv
f ∩ Dv

f |

∑

w∈Cv
f
∩Dv

f

σ(w, Cv
e ) (3.9)

From equations 3.8 and 3.9, one can find that Mef and Mfe can be interpreted as

the proportion of words in one language (English or French) translated into the other

language in the corpus. At last, according to equation 3.7, the combined measure M

can be written as:

M(Ce, Cf ) =

∑

w∈Cv
e∩D

v
e
σ(w, Cv

f ) +
∑

w∈Cv
f
∩Dv

f
σ(w, Cv

e )

|Cv
e ∩ Dv

e |+ |Cv
f ∩ Dv

f |
(3.10)
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which corresponds to the overall proportion of words for which a translation can be

found in comparable corpus. One can notice from equation 3.10 thatM is a symmetric

measure.

Measures with Context

In the measures without context information defined above, two words are treated

as a translation pair, as in equation 3.1, if they appear as an entity in the bilingual

dictionary. Due to the fact of polysemy, two words can be treated as the translation

of each other according to the dictionary but might hold different senses in the cor-

pus. We can make use of the simple assumption that words in parallel translation

usually appear in similar contexts to disambiguate the translation candidates in the

dictionary. This same assumption has been broadly exploited in the bilingual lexicon

extraction tasks. We will embed the assumption in the function σ in equation 3.1

to build the context version of all comparability measures without context. Let us

assume that the English word we (resp. French word wf ) appears in the context

word set Se (resp. Sf ) consisting of the words surrounding we (resp. wf ) in a certain

window in the corpora. Then the similarity of the two context sets is measured by

the overlap of the two sets which is directly the proportion of words of which the

translation can be found in the counterpart set. Formally, the similarity of we and

wf , in terms of their context similarity, can be written as:

sim(we, wf ) =

∑

w∈Se∩Dv
e
σ(w,Sf ) +

∑

w∈Sf∩D
v
f
σ(w,Se)

|Se ∩ Dv
e |+ |Sf ∩ Dv

f |

The enhanced version of the function σ in equation 3.1 is then defined as:

σc(w, C
v) =







1 iff ∃w′ ∈ Tw ∩ Cv, sim(w,w′) > δ

0 else

where δ, empirically set to 0.3 in our experiments, is the threshold for the similarity.

A word w is deemed to be translated, according to the function σc, if at least one of its

translations w′ identified by the function σ in the corpus, is similar to w based on the

context similarity measure sim(w,w′). Replacing σ with σc in equation 3.1 will lead



43

to the context versions of the comparability measures above, which are respectively

denoted as M c
ef , M

c
fe and M c.

3.2.2 Baseline Measures

In this section, we develop two categories of measures as baselines respectively

based on the classic vector space model and the machine translation system. The

first category, only relying on the bilingual dictionary, tries to map the word vectors

from one language to the other and then compares two vectors in the same language.

The second category makes use of machine translation systems to translate one corpus

to the language of the other corpus, and then compares the two corpora in the same

language. The second category of measures is not a practical method due to the lack

of machine translation systems between minor language pairs.

The Measure Based on Vector Space Model

It is common practice to represent documents as vectors consisting of words oc-

curring in the documents. The weight of each dimension, i.e. a word, is determined

by methods such as TF-IDF. In the cross-language settings, one needs to compare

two vectors in different languages, i.e. one vector in the source language needs to

be mapped to a vector in the target language. We make use here a strategy similar

with the one summarized in (Gaussier et al., 2004). Let us assume one has a vector

~ve for the English corpus and a vector ~vf for the French corpus. ~vf is mapped to ~ve

by accumulating the contributions from words in ~vf that yield identical translations.

Whether one uses Dice, Jaccard or Cosine coefficient, the dot-product usually plays

a central role. Let f(we) (resp. f(wf )) denote the weight of the word we (resp. wf )

in the vector ~ve (resp. ~vf ). In this paper, the weight is defined in the TF-IDF style

as in equation 3.5. The dot product between the vectors ~ve and ~vf is obtained from:

< ~ve, ~vf >=
∑

we∈ ~ve

f(we)
∑

wf∈Twf
∩ ~vf

f(wf ) (3.11)
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where Twf
is the translation set of wf in the bilingual dictionary. Based on the dot

product defined in equation 3.11, different measures can be deviated directly. We will

make use of the cosine similarity in this paper and obtain the comparability measure

M v based on vector space model as:

M v = cos(~ve, ~vf ) =
< ~ve, ~vf >

√

∑

we∈ ~ve
(f(we)2 + (

∑

wf∈Twf
∩ ~vf

f(wf ))2)

Measures Based on Machine Translation

In addition to the measure based on vector space model, we propose here a di-

rect approach for measuring the comparability based on machine translation systems.

These approaches are not feasible solutions for comparability measure and just de-

scribed here for the purpose of comparison, since machine translation systems are

not readily available for all the languages. The idea is to translate the corpora from

the source language into the target language prior to comparing two corpora in the

same language where various methods can be employed. For the translation task, we

will make use here of the google machine translation tool2 which is one of the best

systems as we can find.

In order to compare monolingual texts, one is the natural text and the other

one is produced by the MT system, we will employ the transforms of the BLEU

score (Papineni et al., 2002) initially developed to automatically evaluate MT systems

with the reference translations. The idea is that a good translation candidate should

share many n-grams with the reference translations. The computation of BLEU

scores however depends on the statistics from the source-target sentence pairs which

are not available in the context of comparable corpora. We will generalize the idea

of BLEU and represent the corpus as a vector of n-grams. Each dimension of the

vector is the weight of the corresponding n-gram computed in the same TF-IDF style

as before. While setting n to 1, one will actually arrive at the standard vector space

model of words. Two vectors of n-grams are then compared with each other with

standard measures such as the cosine similarity used in this paper. Restricted by the

2http://translate.google.com
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computational complexity, n will be set to 1 and 2 only in our work, corresponding

to the comparability measures denoted as M g1 and M g2.

3.3 Experimental Validation

In this section, we validate by the experiments the performance of the proposed

comparability measures. We first introduce in section 3.3.1 resources used for the

experiments. The procedure developed to validate the comparability measures is

then detailed in section 3.3.2. To be exact, we design several comparable corpora with

gold-standard comparability levels, prior to evaluating the comparability measures in

terms of correlation scores with gold standard and robustness to dictionary changes.

3.3.1 Resources in the Experiments

For the experiments designed to compare and validate the comparability measures,

several corpora are used: The parallel English-French Europarl3 corpus, the TREC4

Associated Press corpus and the corpora used in the multilingual track of CLEF5

which includes the Los Angeles Times, Glasgow Herald, Le Monde, SDA French 94

and SDA French 95. In addition to these existing corpora, two monolingual corpora

from the Wikipedia dump6 are built. For English, we construct the corpus Wiki-En

by retrievling all the articles below the root category Society. For French, the corpus

Wiki-Fr is built by getting all the articles below the category Société. The information

of all the corpora used in the experiments is detailed in Table 3.1. Since the Europarl

corpus we use has been aligned on the sentence level and stored as sentence pairs, the

number of documents (Nr. docs) is not available in the table.

3http://www.statmt.org/europarl/
4http://trec.nist.gov/
5http://www.clef-campaign.org
6The Wikipedia dump files can be downloaded at http://download.wikimedia.org. In this paper, we
use the English dump file on July 13, 2009 and the French dump file on July 7, 2009.
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Table 3.1
The information of the corpora used in the experiments in section 3.3.
(k=1000, m=1000k)

Name Short name Language Nr. docs Nr. words

Europarl Europarl
English - 51m

French - 55m

Associated Press AP English 243k 126m

Los Angeles Times LAT94 English 113k 71m

Glasgow Herald GH95 English 56k 27m

Le monde MON94 French 44k 24m

SDA French 1994 SDA94 French 43k 13m

SDA French 1995 SDA95 French 43k 13m

Wiki-En Wiki-En English 368k 163m

Wiki-Fr Wiki-Fr French 378k 169m

The bilingual dictionary used in our experiments is constructed from an online

dictionary. It consists of 33k distinct English words and 28k distinct French words,

which constitutes 76k translation pairs. Standard preprocessing steps: tokenization,

POS-tagging and lemmatization are performed on all the linguistic resources. We di-

rectly work on lemmatized forms of content words (nouns, verbs, adjectives, adverbs).

This dictionary and some of the corpora will be also used in the process of enhancing

the corpus quality in chapter 4.

3.3.2 Evaluating Comparability Measures

We try to evaluate the comparability measures in the following aspects:

1. Whether the designed comparability measures can capture the different compa-

rability levels in the corpora;
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2. Whether the proposed measures are robust to the dictionary coverage.

The first point has to be validated with corpora of gold comparability levels, and this

kind of comparable corpora are not readily available as we can find. In this paper, the

gold standards are built from the existing parallel corpora and monolingual corpora.

The second point can be validated with various dictionaries of different coverages.

Dictionaries of various sizes are obtained by randomly sampling the original bilingual

dictionary. We will detail all the processes below.

Constructing Test Corpora

In order to test the comparability measures introduced before, one needs to have

some corpora of known comparability levels. However, there has not been any work

which tries to build the corpora with quantified comparability levels. In our work,

the basic idea comes from the intuition established in section 3.1, which is that the

comparability levels decrease from the parallel corpus to non-parallel corpora covering

different topics. Following the intuition, we plan to develop gold-standard compara-

bility scores from the parallel corpus Europarl and the monolingual corpus AP. We

plan to build three groups of comparable corpora, following the different comparabil-

ity levels listed in section 3.1:

• Ga: All the comparable corpora in Ga are built from the parallel corpus Eu-

roparl. One starts from the parallel corpus Europarl, of which the comparability

level is the highest, and decreases the quality by exchanging some parallel parts

with some non-parallel parts in Europarl. In another word, we bring some noise

into the parallel corpus and the noise covers similar topics with the original

parallel corpus.

• Gb: Similar with the construction process of Ga, one also starts from the parallel

corpus Europarl. The difference is that one exchanges some parallel parts of

Europarl with the content from the AP corpus. That is to say, the noise brought

to the parallel corpus covers different topics from the original parallel corpus.
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• Gc: One has tried to build two groups of corpora starting from the parallel

corpus, producing parallel corpora with noise and corresponding to the first two

classes (i.e. parallel and parallel with noise) of corpora mentioned in section 3.1.

When all the parallel parts have been exchanged, as the case in Ga, one will get

comparable corpora belonging to the class non-parallel corpora covering similar

topics. In Gc, we start from the lowest comparability levels in Ga, i.e. the ones

containing no parallel parts, and exchange certain parts containing similar topics

with content from the AP corpus, meaning that the noise covering different

topics is introduced into the non-parallel corpora covering similar topics. As

a result, one obtains comparable corpora belonging to the class non-parallel

corpora covering different topics.

For the three groups of corpora, we give more details of the construction process

here. The first group Ga is built from the corpus Europarl only by following these

steps:

Step 1: The English part of the Europarl corpus and its corresponding French part is

split into 10 equal parts in terms of sentence number, leading to 10 parallel

corpora denoted as P1, P2, . . . , P10. The comparability level of the 10 parallel

corpora are arbitrarily set to 1 (i.e. the highest level), since they are equally

good and one can not find a corpus better than a parallel corpus in terms of

quality.

Step 2: For each parallel corpus, e.g. Pi (i = 1, 2, . . . , 10), we replace a certain propor-

tion p of the English part of Pi with content of the same size, again in terms

of sentence number, from another parallel corpus Pj(j 6= i), producing the new

corpus P ′
i with less content in parallel and thus less comparable than Pi. For

each Pi, as p increases, i.e. more noise is embedded in the parallel corpus, we

obtain a series of comparable corpora with decreasing comparability scores. In

our experiments, p is taken from 0 to 1 with the gap 0.01. All the Pi and their
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Figure 3.1. Constructing the test corpus group Ga with gold-standard
comparability levels

respective descendant corpora according to different p constitute the group Ga.

This process is illustrated in Figure 3.1.

The difference between building the corpora in Gb and in Ga is that, in Gb, the

replacement in Pi is done with documents from the AP corpus and not from another

parallel corpus Pj from Europarl. Compared with the corpora in Ga, we further

degrade the parallel corpus Pi in Gb since the AP corpus covers different topics as in

Europarl.

In Gc, we start with 10 comparable corpora P ′
i from Ga instead of the parallel

corpora. The 10 comparable corpora have the comparability scores of 0 in Ga, i.e.

the least comparable ones in Ga. They thus contain documents from Europarl which

are not the translation of each other. Each P ′
i is further altered by replacing certain

portions with documents from the AP corpus. Although P ′
i itself is comparable and

not parallel, its English part and French part cover similar topics embedded in the
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Europarl corpus. Replacing certain part of P ′
i with the content from AP will further

degrade the comparability levels of P ′
i.

From the process of building the comparable corpora in Ga, Gb and Gc, one can

note that the gold-standard comparability scores in different groups, e.g. Ga and

Gc, can not be compared with each other directly, since the comparability scores are

normalized to 0 and 1 in each group of corpora.

Correlation with Gold-standard Comparability Levels

The goal here is to assess whether comparability measures we have introduced can

capture the differences in comparability introduced in the three different groups Ga,

Gb and Gc. In order to quantify this, we use the Pearson correlation coefficient to

measure the correlation between the proposed measures and the comparability scores

of different corpora:

r =

∑

i(Xi −X)(Yi − Y )
√

∑

i(Xi −X)2
√

∑

i(Yi − Y )2

where Xi denotes the comparability score provided by one measure on a given bilin-

gual corpus and Yi is the arbitrary comparability score (i.e. gold standard) assigned

to this corpus in the construction process. X represents the average of Xis over all

the bilingual corpora considered in Ga, Gb or Gc (and similarly for Y ).

Let us first recall the measures we have proposed in section 3.2:

• Measures based on vocabulary overlapping. These measures are defined as

the mathematical expectation of finding the translation for each word in the

corpus vocabulary. Corresponding to the English/French/whole vocabulary of

the corpus, we have the measures Mef , Mfe, M and their context version M c
ef ,

M c
fe and M c. For the six measures, we will consider both the versions with

the P/A weighting criterion and the versions with TF-IDF weighting schema,

amounting to 12 measures in total.

• Baseline measures. The measures here, based on matured techniques in previ-

ous works, provide alternative choices for measuring the quality of comparable
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corpora. We have the measure M v based on the bilingual vector space model

and the measurers M g1 and M g2 based on the machine translation system and

n-grams representation.

We first make comparisons between measures based on vocabulary overlapping.

The correlation scores are listed in Table 3.2. Each column in the table, e.g. Mef ,

corresponds to the correlation scores between the specific comparability measure Mef

and the gold-standard comparability levels on different corpus groups, namely Ga, Gb

and Gc. Let us first pay attention to the measures without context, i.e. Mef , Mfe and

M . One can find that M together with the P/A weighting schema performs the best

and correlates very well with the gold standard on all the three groups of corpora, as

the Pearson coefficient is close to 1. Mfe performs worst among the three measures

with only one exception that, weighted by TF-IDF, Mfe performs better then Mef .

One can also conclude, for the best measure M , that using IDF to reduce the effects

of frequent words does not help to solve the problem of too frequent words, with P/A

playing better with M than TF-IDF. Although the weighting schema TF-IDF seems

to be efficient for Mfe on Gb and Gc, the measure Mfe together with TF-IDF still

performs far from the other two measures.

We then turn to the measures with context information, i.e. M c
ef , M

c
fe and M c.

One can find from Table 3.2 that all the context-based measures, weighted by ei-

ther TF-IDF or P/A, perform very well, which is also slightly better than the best

performing measure M in the context-free family. Among the three measures with

context, M c performs slightly better than M c
ef and M c

fe. The measures M c
ef and M c

fe,

with the context information, are better than their corresponding context-free ver-

sion Mef and Mfe. These findings are coincident with the assumption in the second

part of section 3.2.1 that using context information can disambiguate between the

translation candidates and thus leads to better performance of the measures.

Deeper analysis is given here in order to show the performance of different mea-

sures. We will only consider here the P/A weighting schema so as to simplify the

discussion. Figure 3.2 plots the measures M , Mef , Mfe, M
c, M c

ef , M
c
fe on 10 compa-
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Table 3.2
Correlation scores of the vocabulary overlapping measures with the gold
standard. The rows TF-IDF correspond to the TF-IDF weighting schema,
and the rows P/A correspond to the Presence/Absence weighting method.

Mef Mfe M M c
ef M c

fe M c

Ga

TF-IDF 0.634 0.724 0.786 0.980 0.974 0.980

P/A 0.897 0.770 0.936 0.976 0.966 0.972

Gb

TF-IDF 0.950 0.434 0.973 0.989 0.982 0.995

P/A 0.955 0.190 0.979 0.975 0.977 0.978

Gc

TF-IDF 0.964 -0.292 0.962 0.980 0.934 0.991

P/A 0.940 -0.595 0.960 0.984 0.968 0.990

rable corpora and their descendants in Gc with respect to their gold-standard com-

parability scores. We first compare here three context-free measures Mef , Mfe and

M . One can notice from Figure 3.2(c) that the comparability scores from Mfe even

decrease at a certain point as the gold standard scores increase. The reason for the

different performances is that asymmetric measures Mef and Mfe are sensitive to the

length of the corpus. Given a single English document and a large French document

collection, it is very likely that we can find the translations for most of the English

words according to the dictionary, although the two text sets are lowly comparable.

In our case, since the average sentence length in AP is larger than that of Europarl,

we increase the length of the English part of the test corpora remarkably when de-

grading the corpora in Gb and Gc, which leads to the poor performance of Mfe. The

length related problem can be overcome by M which considers the translation in both

directions.

We then consider the context-based versions M c
ef , M

c
fe and M c. All of these three

measures perform very well on the three groups of corpora. Let us pay attention to the

measure Mfe and its context version M v
fe. The former one is sensitive to the corpus

length and the latter one is not, resulting in different performance of two measures.
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Figure 3.2. Evolution of the measures Mef , Mfe, M , M v
ef , M

v
fe and M v

w.r.t. gold standard on the corpus group Gc (x-axis: gold-standard com-
parability scores, y-axis: comparability scores from the measures)
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In order to explain the different performance, let us reuse the same example as above.

Given a single English document and a large French document collection, although

the probability of finding the translation for each word in the English part is high

according the dictionary, the French translation candidate may hold a different sense

from the English word, which can be disambiguated by the context version M c
fe. As

the results show here, M and all the context-based measures are able to capture all

the differences in comparability artificially introduced in the degradation process we

have considered above. Meanwhile, one can conclude from the results that it is easier

to capture the different comparability levels in Gb than in Ga and Gc, which well

coincides with our intuition, given the construction process considered.

We lastly list in Table 3.3 the results from the baseline measures. The results

shown here are obtained in the same way as the ones for the vocabulary overlapping

measures in Table 3.2. From the results one can find that the measure M g1 performs

the best on all the three corpus groups and the measures M g2 and M v perform worse.

All these baseline measures do not perform as well as the measure M (weighed by

P/A) or the three context-based measures only relying on vocabulary overlapping.

The vector space model, being a standard approach, is broadly used to represent the

text in previous work to capture the similarity on the sentence or document level.

Due to the evaluation schema considered for the comparability measure, we however

work here on the corpus level, which covers diverse topics compared to the document

or sentence level. It is probably able to explain the fact that the baseline measures

using vector space representation do not perform as well as the simple measures based

on vocabulary overlapping. This finding is also partially supported by a recent report

of the ACCURAT project7.

Robustness of Comparability Measures

Since the two measures M and M c perform the best in their respective class of

measures, i.e. measures without context and measures with context, we choose to

7Related materials can be found on the deliverables of the project. The project website is:
http://www.accurat-project.eu/.
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Table 3.3
Correlation scores of the baseline comparability measures with the gold
standard

M v M g1 M g2

Ga 0.698 0.724 0.492

Gb -0.611 0.479 0.228

Gc -0.744 0.311 0.210

compare them in terms of the robustness w.r.t. the change of the dictionary. To

simplify the discussion here, we follow the same consideration as above and only use

the P/A weighting schema for this part of experiments. It is important that the

comparability measure one retains remains consistent when the dictionary coverage

of the corpus changes slightly, as this is a necessary condition to distinguish between

different comparability levels. Indeed, if a slight change in the dictionary coverage

entails an important change in the comparability score, it will become impossible in

practice to compare different corpora, as they will likely have a different coverage with

respect to the dictionary. We say, informally, that a comparability measure is robust

at certain dictionary coverage range if the measure can distinguish between different

comparability levels when the dictionary changes in this range. The experiments and

analysis below try to validate the robustness of the measures.

In our experiments, several dictionaries of different sizes, corresponding to different

coverages on the corpus vocabulary, are built by randomly choosing the subparts from

the original dictionary. The coverage here is simply defined as the proportion of unique

words in the corpus vocabulary that are covered by the dictionary. The definition

is actually coincident with the definition of M and M c, which corresponds to the

proportion of words translated in the part of vocabulary covered by the dictionary

in the whole vocabulary. In order to bridge the language barriers, a dictionary that

is sufficient large is necessary. We thus choose to randomly pick certain proportions,
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from 50% to 99% with a step of 1%, of the original dictionary listed in section 3.3.1.

For each proportion, 30 different dictionaries are built by randomly sampling the

original dictionary 30 times at this same proportion. These 1500 dictionaries (i.e.

50*30) are then used to compute M and M c on different corpora with decreasing

comparability scores in Ga, Gb and Gc.

As we have discussed in the corpus construction process above, in each of Ga, Gb

and Gc, one tries to obtain a series of decreasing comparability levels starting from 10

parallel corpora (in Ga and Gb) or 10 high quality comparable corpora (in Gc). For

the clarity of analysis, we only take here the first parallel corpus P1 from (P1, P2, . . . ,

P10) together with its 10 descendant corpora which are built by setting the proportion

p to 0.1, 0.2, ..., 1.0 in Ga. That is to say, we exchange 10%, 20%, ..., 100% percent

of the content in the high quality corpora with noise from other corpora. In this case,

we obtain 11 comparable corpora P1, P
0.9
1 , P0.8

1 , . . . , P0
1 with the gold comparability

scores from 1 to 0, with a step of 0.1. Lastly, for readability reasons, we only plot in

Figure 3.3 the comparability scores for some of the 11 comparable corpora, i.e. P1,

P0.7
1 , P0.4

1 and P0.1
1 , w.r.t. the different coverages.

From Figure 3.3(a) one can find that when the dictionary coverage lies above

a certain threshold (inspected from the figure, roughly set to 0.62), the differences

between the 4 different comparability levels8 can be captured very well, as the different

data points are well separated. In another word, the different comparability levels

can be captured very well by the measure M when the dictionary coverage is roughly

above 0.62. The same conclusion can be drawn from the inspection of Figure 3.3(b)

with another coverage threshold, roughly set to 0.51. One can thus conclude from the

qualitative analysis that both M and M v are robust to the changes of the dictionary

at a certain point.

We have drawn for comparability measures the intuitive conclusion regarding ro-

bustness from Figure 3.3. In order to analyze the results quantitively, we will first try

to define as below the degree of robustness of a comparability measure. The definition

8This is also true for all the 11 comparability levels although we only plot 4 in the figure.



57

0.5 0.6 0.7

0.83

0.84

0.85

0.86

0.87

0.88

0.89
P1

P1
0.7

P1
0.4

P1
0.1

coverage=0.62

coverage=0.56

coverage=0.58

Dictionary coverage

S
c
o

re
s
 f

ro
m

 t
h

e
 c

o
m

p
a
ra

b
il
it

y
 m

e
a
s
u

re

(a) M

0.5 0.6 0.7

0.2

0.3

0.4

P1

P1
0.7

P1
0.4

P1
0.1

coverage=0.51

Dictionary coverage

S
c
o

re
s
 f

ro
m

 t
h

e
 c

o
m

p
a
ra

b
il
it

y
 m

e
a
s
u

re

(b) M
c

Figure 3.3. Evolution of M and M c w.r.t. different dictionary coverages
on comparable corpora P1, P

0.7
1 , P0.4

1 and P0.1
1 in Ga (x-axis: different

dictionary coverages; y-axis: comparability scores from M or M c).
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directly reflects the ability of a measure to capture different comparability levels at

a certain coverage range. Then we depict the experiment results in Figure 3.3 in the

framework of probability theory and estimate the robustness in terms of the proba-

bilistic distribution. According to the qualitative analysis from Figure 3.3, we would

like to define the degree of robustness as:

Definition 3.3.1 Let us assume we have different comparable corpora C1, C2, . . ., Ck,

with gold-standard comparability levels that are increasing, which can be written as:

C1 ≺ C2 ≺ . . . ≺ Ck. The symbol ≺ is used here to denote the relation less in the gold-

standard comparability levels. We further assume to have a bilingual dictionary D

such that the coverage of D on all the k corpora Ci(i = 1, 2, . . . , k) belongs to a range

[r, r+ ǫ], with ǫ being a small fixed value. Then, we define the degree of robustness of

a comparability measure M w.r.t the dictionary coverage r as:

χ(M, r) = min
i∈1,2,...,k−1

Pr(M(Ci+1) > M(Ci))

One can find from definition 3.3.1 that the degree of robustness states the guaranteed

probability that a group of gold-standard comparability levels can be captured by the

comparability measure M at a certain coverage range.

The experiments are then performed to estimate the degree of robustness of the

comparability measures M and M v. Let us first focus on the measure M . One can

notice from Figure 3.3 that, for each of the test corpora, e.g. P0.1
1 in Figure 3.3(a),

the comparability scores corresponding to a certain coverage range (e.g. from 0.56

to 0.58, identified by the circle in the figure) follow a normal distribution, according

to the Shapiro-Wilk test (Shapiro and Wilk, 1965) at the significance level 0.05.

This fact is also illustrated by the frequency distribution histogram in Figure 3.4.

Thus, in a coverage range of size 0.02 (i.e. the value ǫ in the definition 3.3.1) here,

the comparability scores of M for a specific corpus can be modeled as a normally

distributed variable Z. Hence, on each span, the scores ofM on two bilingual corpora,

say P0.1
1 and P0.2

1 , can be described as two normally distributed variables denoted as
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Figure 3.4. The frequency histogram of the comparability scores (from
M) on P0.1

1 between the coverage 0.56 and 0.58 (x-axis: comparability
scores; y-axis: frequency).

Z0.1 and Z0.2 of which the parameters (i.e. the mean µ and variance σ2) can be

estimated from the samples, i.e. all the comparability scores on P0.1
1 and P0.2

1 in the

specific coverage range. With the estimated parameters, we can write:

Z0.1 ∼ N(µ0.1, σ
2
0.1), Z0.2 ∼ N(µ0.2, σ

2
0.2)

To computer the degree of robustness in definition 3.3.1, one needs to compute all

the probability Pr(M(Ci+1) > M(Ci)). Taking here the corpora P0.2
1 and P0.1

1 as an

example, one needs to estimate Pr(Z0.2 > Z0.1). With the independence assumption

between variables Z0.1 and Z0.2, the new variable Z0.2 − Z0.1 should satisfy:

Z0.2 − Z0.1 ∼ N(µ0.2 − µ0.1, σ
2
0.1 + σ2

0.2)

Then to compute Pr(Z0.2 > Z0.1) equals to the computation of Pr(Z0.2−Z0.1 > 0) (in

short, Pr(0.2, 0.1)). In Table 3.4, we list, for different coverage ranges, the Pr values

of different corpus pairs and also the degree of robustness at each coverage. One can

find from the results that the higher the dictionary coverage is, the more reliable one
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Table 3.4
The degree of robustness with the measure M and different dictionary
coverages. The coverage range is set to [r, r+ ǫ] as in definition 3.3.1 with
ǫ being fixed to 0.02.

r 0.46 0.48 0.50 0.52 0.54 0.56

Pr(0.2, 0.1) 0.69 0.70 0.73 0.74 0.76 0.79

Pr(0.4, 0.3) 0.67 0.68 0.71 0.73 0.75 0.79

Pr(0.6, 0.5) 0.59 0.60 0.61 0.63 0.65 0.69

Pr(0.8, 0.7) 0.76 0.74 0.76 0.77 0.82 0.86

Pr(1.0, 0.9) 0.76 0.68 0.75 0.78 0.82 0.82

χ(M, r) 0.59 0.60 0.61 0.63 0.65 0.69

r 0.58 0.60 0.62 0.64 0.66 0.68

Pr(0.2, 0.1) 0.79 0.79 0.81 0.84 0.89 0.92

Pr(0.4, 0.3) 0.84 0.83 0.88 0.91 0.95 0.98

Pr(0.6, 0.5) 0.74 0.72 0.75 0.82 0.85 0.91

Pr(0.8, 0.7) 0.89 0.86 0.91 0.96 0.96 0.99

Pr(1.0, 0.9) 0.88 0.87 0.91 0.94 0.97 0.98

χ(M, r) 0.74 0.72 0.75 0.82 0.85 0.91

can rely on M to distinguish between different comparability levels. Furthermore,

when the dictionary coverage is above a certain threshold (e.g. 0.64), we have a high

confidence (≥ 0.82) that the different comparability levels between the corpus pairs

can be reliably captured by M , so that the measure is robust in a given coverage

range, here set to 0.02. The same conclusions can be drawn for the other comparable

corpus pairs we have constructed (from Gb and Gc).

We also evaluate the robustness of the comparability measure M c as above and

the results are listed in Table 3.5. One can find from the results that, compared with

M , it is much easier to achieve high confidence, and thus higher robustness, with M c.
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Table 3.5
The degree of robustness with the measure M c and different dictionary
coverages. The coverage range is set to [r, r + ǫ] as in definition 3.3.1
with ǫ being fixed to 0.02. The table is designed in the same format as
Table 3.4.

r 0.46 0.48 0.50 0.52 0.54 0.56

Pr(0.2, 0.1) 0.84 0.87 0.90 0.94 0.96 0.97

Pr(0.4, 0.3) 0.79 0.85 0.87 0.90 0.94 0.93

Pr(0.6, 0.5) 0.86 0.88 0.91 0.94 0.96 0.96

Pr(0.8, 0.7) 0.81 0.80 0.85 0.88 0.92 0.90

Pr(1.0, 0.9) 0.84 0.82 0.82 0.89 0.90 0.90

χ(Mc, r) 0.79 0.80 0.82 0.88 0.90 0.90

r 0.58 0.60 0.62 0.64 0.66 0.68

Pr(0.2, 0.1) 0.98 1.00 1.00 1.00 1.00 1.00

Pr(0.4, 0.3) 0.96 0.98 0.99 1.00 1.00 1.00

Pr(0.6, 0.5) 0.98 0.99 1.00 1.00 1.00 1.00

Pr(0.8, 0.7) 0.93 0.96 0.98 0.99 1.00 1.00

Pr(1.0, 0.9) 0.96 0.95 0.98 0.99 1.00 1.00

χ(Mc, r) 0.93 0.95 0.98 0.99 1.00 1.00

Even when the dictionary coverage is only 0.54, the confidence is larger than 0.90

that M c can capture the different comparability levels. However, the computational

complexity of the context-based measures is usually very expensive. For this reason,

we will still make use of the measure M weighted by the P/A criterion in the following

experiments, as they require intensive calls to the comparability measure.

It could be useful to find a threshold for the coverage above which the compara-

bility measure will work robustly on every comparable corpus. It is however difficult

if one considers the experimentation. In order to build the gold-standard compara-

bility scores, we can not think out another strategy to construct them. So all the
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experiments must be performed on the artificial corpora we build. Different from the

comparability measures, testing the robustness relies a lot on the style of the corpora.

It is not easy to make a universal conclusion if the experiments are only done with

these corpora. Having reviewed several comparability measures, we will turn to the

problem of enhancing corpus comparability for bilingual lexicon extraction in the next

chapter.

3.4 Conclusion

Data-driven NLP applications rely a lot on the quality of text resources used, a fact

we conjecture here holding for the parallel corpus. However, there has not been any

clear definition for the notion of comparability and it is hard to distinguish between

different comparability levels. We have investigated in this section the intuitive notion

and the measures to quantify the degree of comparability of comparable corpora.

The experiments show that our proposed measure can correlate very well with gold-

standard comparability levels and is robust to dictionary changes.

In oder to quantify the comparability levels, we have first discussed the notion of

comparability according to the intuition one can have from the usage experience of

bilingual corpora. The intuition is that the usability of bilingual corpora decreases

from the parallel corpus to non-parallel corpora covering different topics, since the

bridge information decreases in this case. This notion motivates several candidate

implementations for the comparability measure as well as the methodology designed

to evaluate the measures.

Based on the notion above, we have then developed several measures to approxi-

mate the notion of comparability. We make use here of the idea that it is easier to find

the translation pairs from comparable corpora of higher quality. The mathematical

expectation is then employed to quantify the difficulty in finding the translations for

each word in the corpus vocabulary. One can judge the translation pairs based on a

bilingual dictionary. The fact of polysemy however inspires one to use the context-
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based disambiguation to filter out fake translation pairs holding different senses. We

have thus developed two classes of measures: context-free measures only relying on

the dictionary and context-based measures coming with word sense disambiguation.

We have also designed several baseline measures extending previous work in related

areas.

For the experiments, we have again followed the notion of comparability and devel-

oped comparable corpora with gold-standard comparability levels. The experiments

show that a simple context-free measure M and all the context-based measures M c
ef ,

M c
fe and M c can capture different comparability levels very well. Furthermore, the

measuresM andM c are shown to be robust to dictionary changes. The context-based

measure has more expensive computational cost and we will only rely on M in the

following chapters.
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4 ENHANCING COMPARABLE CORPUS QUALITY

We have proposed in chapter 3 the comparability measure based on vocabulary over-

lapping which can capture different comparability levels and is robust to dictionary

changes. Based on the measure, we will develop in this chapter the approaches to im-

proving the quality of any given comparable corpus. We will first discuss in section 4.1

the general methodology for enhancing corpus quality. Two such approaches, namely

the greedy approach and the clustering approach, are introduced in section 4.2 to

implement the general methodology. The efficiency of these approaches are then vali-

dated in the experiments in section 4.3, which shows that one can improve comparable

corpus quality in terms of comparability scores, and that the enhanced comparable

corpora lead to extracted lexicons of higher quality. Lastly, section 4.4 concludes this

chapter.

4.1 General Methodology

We have reviewed in section 2.1.2 the studies trying to extract from comparable

corpora the parallel content such as parallel sentences and sub-sentential segments.

However, parallel sentences and segments do not exist in high volume in comparable

corpora, especially in those low-quality ones. One can only extract a small amount

of parallel segments from comparable corpora, which does not satisfy the need of

such tasks as bilingual lexicon extraction aiming to extract the translations for each

word in the original corpus vocabulary. This fact will be experimentally validated

in section 4.3.1. we will consider in this chapter a methodology which can extract

a high-quality subpart from the original corpus as well as enhance the low-quality

subpart of the original corpus. With this methodology, one will be able to construct

a resulting corpus resembling the original one without losing too much information
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French part 

The original corpus 

English part 

External resource 

(English part) 

External resource 

(French part) 

The resulting corpus 

Part 1 Part 2 Part 3 

Figure 4.1. The general methodology for enhancing comparable corpus
quality. The resulting corpus consists of three parts: Part 1 corresponds
to the high-quality subpart of the original comparable corpus; Part 2/3
is the enriched version of the French/English low-quality subpart of the
original corpus.

as in the methods for parallel subpart extraction. The methodology we will make use

of in this chapter is illustrated in Figure 4.1.

The first step of our methodology is to extract a high-quality subpart (“Part

1” in Figure 4.1) from the original comparable corpus. Different from the work

extracting parallel content, we aim here to extract from comparable corpora the

subpart containing highly related content. The quality of extracted subpart should

have a guaranteed quality, which is the degree of comparability in our work.

The second step is to enhance the low-quality subpart of the original corpus. The

low-quality subpart is the content left in the original corpus after the high-quality

subpart (i.e. “Part 1”) being removed. The counterpart of low-quality content can not

be found in the original corpus, and we thus need to refer to external resources in order
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to complement the low-quality subpart. One can make use of either existing corpora

covering overlapping topics with the original corpus or the web content containing a

huge number of topics. As one can see from Figure 4.1, the French (resp. English)

low-quality subpart of the original comparable corpus is enriched with the English

(resp. French) external resource, resulting in the enhanced corpora “Part 2” and

“Part 3”. The genres of external resources actually affect the performance of the

methodology presented here, which will be discussed in section 4.4.

4.2 Approaches to Enhancing Corpus Quality

We will develop in this section the strategies to improve the quality of any given

comparable corpus in order to improve its usability. Two approaches are proposed

following the general methodology in section 4.1: the first one, named the greedy

approach, is introduced in section 4.2.1; the second one, named the clustering ap-

proach, overcomes some problems raising in the greedy approach and is detailed in

section 4.2.2. The brief versions of these two approaches have been discussed in (Li

and Gaussier, 2010) and (Li et al., 2011). In addition to the previous work, we will

provide here sounder theoretical background and extensions for the two approaches.

4.2.1 The Greedy Approach

We here try to improve the quality of a given corpus C, which we have referred

to as the original corpus in section 4.1, by extracting the highly comparable subpart

CH which is above a certain degree of comparability (Step 1), and by enriching the

lowly comparable part CL with texts from other sources (Step 2). In the context of

bilingual lexicon extraction, as we are interested in extracting information related to

the vocabulary of the original corpus, we want the newly built corpus to contain a

substantial part of the original corpus vocabulary. This can be achieved by preserving

in Step 1 as many documents from the original corpus as possible, and by using in

step 2 sources close to the original corpus.
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Step 1: Extracting the High-quality Subpart CH

The strategy consisting of building all the possible sub-corpora of a given size

from a given comparable corpora is not realistic as soon as the number of documents

making up the corpora is larger than a few thousands. In such cases, better ways for

extracting subparts have to be designed. The strategy we have adopted here aims at

efficiently extracting a subpart of C above a certain degree of comparability and is

based on the following property.

Property 1 Let d1e and d2e (resp. d
1
f and d2f) be two English (resp. French) documents

from a bilingual corpus C. We consider, as before, that the bilingual dictionary D is

independent from C. Let (d1e
′
, d1f

′
) be such that: d1e

′
⊆ d1e, d

1
f
′
⊆ d1f , which means d1e

′

is a subpart of d1e and d1f
′
is a subpart of d1f .

We assume:

(i) |d1e∪d
2
e|

|d2e|
=

|d1
f
∪d2

f
|

|d2
f
|

(ii) Mef (d
1
e
′
, d1f ) ≥ Mef (d

2
e, d

2
f )

Mfe(d
1
e, d

1
f
′
) ≥ Mfe(d

2
e, d

2
f )

Then:

M(d2e, d
2
f ) ≤ M(d1e ∪ d2e, d

1
f ∪ d2f )

Proof [sketch]: Let B = (d1e ∪ d2e) ∩ Dv
e)\(d

2
e ∩ Dv

e). One can show, by exploiting

condition (ii), that:
∑

w∈B

σ(w, d1f ∪ d2f ) ≥ |B| ·Mef (d
2
e, d

2
f )

and similarly that:

∑

w∈d2e∩D
v
e

σ(w, d1f ∪ d2f ) ≥ |d2e ∩ Dv
e | ·Mef (d

2
e, d

2
f )

Then exploiting condition (i), and the independence between the corpus and the

dictionary, one arrives at:
∑

w∈(d1e∪d
2
e)∩D

v
e
σ(w, d1f ∪ d2f )

|(d1e ∪ d2e) ∩ Dv
e |+ |(d1f ∪ d2f ) ∩ Dv

f |
≥

|d2e ∩ Dv
e | ·Mef (d

2
e, d

2
f )

|d2e ∩ Dv
e |+ |d2f ∩ Dv

f |
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The same development on Mfe completes the proof. �

The property 1 shows that one can incrementally extract from a bilingual corpus a

subpart with a guaranteed minimum degree of comparability η by iteratively adding

new elements, provided (a) that the new elements have a degree of comparability of

at least η and (b) that they are less comparable than the currently extracted subpart

(conditions (ii)). This strategy is described in Algorithm 1. The code in line 3 tries to

extract the document pair with the highest comparability score, which is then added

to the resulting corpus by the code in line 6. The code in line 7 removes the current

document pair from the corpus for the next circle.

Since the degree of comparability is always above a certain threshold and since the

new documents selected (d2e, d
2
f ) are the most comparable among the remaining docu-

ments, condition (i) is likely to be satisfied, as this condition states that the increase

in the vocabulary from the second documents to the union of the two is the same

in both languages. Similarly, considering new elements by decreasing comparability

scores is a necessary step for the satisfaction of condition (ii), which states that the

current subpart should be uniformly more comparable than the element to be added.

Hence, the conditions for property 1 to hold are met in Algorithm 1, which finally

yields a corpus with a degree of comparability of at least η.

Step 2: Enriching the Low-quality Subpart CL

This step tries to absorb knowledge from other resources, which will be called

external corpus, to enrich the lowly comparable part CL which is the left part in C

during the creation of CH , i.e. CL = C \ CH . One choice for obtaining the external

corpus CT is to fetch documents which are likely to be comparable from the Internet.

In this case, we extract representative words for each document in CL, translate

them using the bilingual dictionary and retrieve associated documents via a search

engine (Baroni and Bernardini, 2004). An alternative approach is of course to use

existing bilingual corpora. Once CT has been constructed, the lowly comparable part

CL can be enriched in exactly the same way as in Step 1: First, Algorithm 1 is used

on the English part of CL and the French part of CT to get the high-quality document
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Algorithm 1: The Greedy Algorithm

Input:

English document set Cd
e of C

French document set Cd
f of C

The threshold η

Output:

CH , consisting of the English document set We and the French document set Wf

1: Initialize We = ∅,Wf = ∅, temp = 0;

2: repeat

3: (de, df ) = argmax
de∈Cd

e ,df∈C
d
f

M(de, df );

4: temp = max
de∈Cd

e ,df∈C
d
f

M(de, df );

5: if temp ≥ η then

6: Add de into We and add df into Wf ;

7: Cd
e = Cd

e\de, C
d
f = Cd

f\df ;

8: end if

9: until Cd
e = ∅ or Cd

f = ∅ or temp < η

10: return CH ;

pairs. Then the French part of CL is enriched with the English part of CT by the same

algorithm. All the high-quality document pairs are then added to CH to constitute

the final resulting corpus CF .

4.2.2 The Clustering Approach

We have proposed in section 4.2.1 a greedy approach to improving the quality of

existing comparable corpus. A dramatic problem of the approach is that document

pairs are considered separately and the relations between different document pairs are

ignored. We will thus propose in this section a method that can take into account the

relations between each two documents. If a comparable corpus covers a limited set of
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topics, it is more likely to contain consistent information in different languages. The

term homogeneity directly refers to this fact, and we will say, in an informal manner,

that a corpus is homogeneous if it covers a limited set of topics. A homogeneous

comparable corpus can be of higher quality and is more useful in the applications.

For example, the distributional hypothesis underlying bilingual lexicon extraction

method is more reliable when the documents in different languages describe the same

or similar topics, since authors tend to use the same word combinations to describe

similar topics (see (Morin et al., 2007) for a related analysis). In other words, the

homogeneous comparable corpus can lead to improved bilingual lexicons extracted.

The rationale for the algorithm we introduce here to enhance corpus comparability

is precisely based on homogeneity.

Let us recall that our goal, in a first step, is to construct, from a given comparable

corpus, an enhanced version of it which displays a higher degree of comparability

and preserves most of the original vocabulary. We conjecture here that if one can

guarantee a certain degree of homogeneity in addition to a certain degree of compara-

bility, then the bilingual lexicons extracted from the obtained corpus will be of higher

quality. As we will see, this conjecture will be fully validated in the experimental

section. In order to find document sets which are similar with each other (i.e. homo-

geneous), it is natural to resort to clustering techniques. Furthermore, since we need

homogeneous corpora for bilingual lexicon extraction, it will be convenient to rely on

techniques which allows one to easily prune less relevant clusters. To perform all this,

we use in this work a standard hierarchical clustering method but other clustering

methods with associated pruning strategies can directly be used as well.

Bilingual Clustering Algorithm

The overall process retained to build high quality, homogeneous comparable corpora

relies on the following steps:
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Step 1: Using the bilingual similarity measure defined in equation 4.3 below, cluster

English and French documents so as to get the bilingual dendrogram from the

original corpus C by grouping documents with related content;

Step 2: Pick high quality sub-clusters by thresholding the obtained dendrogram accord-

ing to the node depth;

Step 3: Combine all these sub-clusters to form a new comparable corpus CH , which thus

contains homogeneous, high-quality subparts;

Step 4: Use again steps (1), (2) and (3) to enrich the remaining subpart of C (which

will be denoted as CL and CL = C \ CH) with external resources CT .

The overall framework of this approach is similar with the greedy approach and the

first three steps are summarized in Algorithm 2. As one can note, only C is used in

order to build CH , through clustering and pruning of documents. As such, Algorithm 2

aims at extracting the most comparable and homogeneous subpart of C. Once this has

been done, i.e. once C has been exploited, one needs to resort to some other resources

if one wants to build a homogeneous corpus with a high degree of comparability from

CL (which is the part of C left after removing CH ). To do so, we simply replace, in

step (4), the input corpus C with two comparable corpora: The first one consists of

the English part of CL and the French part of an external corpus CT ; The second one

consists of the French part of CL and the English part of CT . The two high-quality

subparts obtained from these two new comparable corpora in step (4) are then added

to CH to constitute the resulting comparable corpus CF of higher quality.

Similarity Measure

The similarity measure between the clusters plays a central role in the hierarchal

clustering algorithm. Let us assume that we have two document sets (i.e. clusters)

R1 and R2. In the task of bilingual lexicon extraction, two document sets are similar

to each other and should be clustered if the combination of the two can complement

the content of each single set, which relates to the notion of homogeneity introduced
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Algorithm 2: The Bilingual Clustering Algorithm

Input:

Set U of all English and French documents from C

The depth threshold θ

Output:

CH , high quality, homogeneous subpart of C

1: Set CH as the null set ∅;

2: Cluster U in order to obtain a bilingual dendrogram T ;

3: Set m as the maximal depth of T ;

4: Remove from T the low-quality sub-clusters of which the depth is lower than

the depth threshold computed from m · θ;

5: Add all the remaining documents in T to CH ;

6: return CH ;

before. In other words, both the English part Re
1 of R1 and the French part Rf

1 of

R1 should be comparable to their counterparts (respectively the French part Rf
2 of

R2 and the English part Re
2 of R2). This leads to the following similarity measure

for R1 and R2:

sim(R1,R2) = βM(Re
1,R

f
2) + (1− β)M(Re

2,R
f
1) (4.1)

where β (0 ≤ β ≤ 1) is a weight controlling the importance of the two subparts (Re
1,

Rf
2) and (Re

2, R
f
1). Intuitively, one would like to give more weight in the combination

to the larger subpart, as it contains more information. We use here the number of

document pairs to represent the amount of information contained in a comparable

sub-corpus. Thus, the weight β can be defined as the proportion of possible document

pairs in the current comparable corpus (Re
1, R

f
2) to all the possible document pairs,

which is:

β =
#d(R

e
1) ·#d(R

f
2)

#d(Re
1) ·#d(R

f
2) + #d(Re

2) ·#d(R
f
1)
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where #d(R) stands for the number of documents in R. As the clusters are first

formed from single document, in English or in French, one can see that the similarity

measure corresponds to a normalized comparability score between the English and

French sub-clusters making up the new cluster. However, this measure does not

integrate the relative length of the two parts in different languages, which may actually

impact the performance of bilingual lexicon extraction. If a 1-to-1 constraint is too

strong (i.e. assuming that all clusters should contain the same number of documents

in two languages), having completely unbalanced corpora is also not desirable. We

thus introduce a penalty function φ aiming at penalizing corpora for which the number

of documents in the English part and in the French part is too different:

φ(R) =
1

(1 + log(1 + |#d(Re)−#d(Rf )|

min(#d(Re),#d(Rf ))
)

(4.2)

The values of the function φ lie between 0 and 1 where small values identify strict

penalty. The above penalty function leads us to a new similarity measure siml which

is the one finally used in Algorithm 2:

siml(R1,R2) = sim(R1,R2) · φ(R1 ∪R2) (4.3)

Theoretical Analysis

The clustering process used in Algorithm 2 guarantees that comparable documents

covering similar content are grouped before documents which are comparable but

cover different topics. Thus, the corpus CH obtained through this algorithm will

be homogeneous, i.e. its documents will belong to a small set of related topics.

Furthermore, the fact that the comparable corpus CF obtained through steps 1 to

4 above directly derives from the original corpus C is an indicator that most of the

vocabulary of C will be preserved in CF . We will see in the experimental section that

this is indeed the case. What is not clear yet is whether we can have any lowest

guarantee concerning the degree of comparability of CF . The following development

establishes such a guarantee.
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Property 2 As used before, let R1 = Re
1 ∪Rf

1 and R2 = Re
2 ∪Rf

2 be two document

clusters to be combined in the clustering process. We will denote by R the union of

R1 and R2 (i.e. R = R1 ∪R2). We assume that:

(i) The dictionary D is independent of R1 and R2;

(ii)
|Re

1∪R
e
2|

|Re
2|

=
|Rf

1∪R
f
2 |

|Rf
2 |

.

Then we have:

M(Re,Rf ) ≥ min{M(Re
1,R

f
1),M(Re

2,R
f
2),M(Re

1,R
f
2),M(Re

2,R
f
1)} (4.4)

Condition (i) states that the proportion of English (resp. French) words translated

in the French (resp. English) corpus is homogeneous in the English (resp. French)

corpus, which is reasonable to assume if the bilingual dictionary is independent from

the corpus. Furthermore, condition (ii) is likely to be satisfied in our settings as

(a) all corpora are preprocessed to remove documents too short or too long, and (b)

the penalty used in the similarity measure in equation 4.3 guarantees clusters with a

similar number of documents in different languages. We now give the sketch of the

proof of this property.

Proof [sketch]: Let Q = Re
1 ∩ Re

2 be the intersection between the vocabularies of

Re
1 and Re

2. Using the fact that Mef (R
e
i ,R

f
i ) ≤ Mef (R

e
i ,R

f
i

′
) for all Rf

i

′
such that

Rf
i ⊆ Rf

i

′
(and similarly for the French to English direction), we have, for i = 1, 2:

∑

w∈Re
i \Q

σ(w,Rf
1 ∪Rf

2)) ≥ |Re
i\Q| ·max{Mef (R

e
i ,R

f
1),Mef (R

e
i ,R

f
2)}

and, for the words in Q:

∑

w∈Q

σ(w,Rf
1 ∪Rf

2)) ≥

|Q| ·max{Mef (R
e
1,R

f
1),Mef (R

e
2,R

f
2),Mef (R

e
1,R

f
2),Mef (R

e
2,R

f
1)} (4.5)
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Then, using the independence assumption between the corpus and the dictionary, one

can arrive at:

∑

w∈(Re
1∪R

e
2)∩D

e

σ(w,Rf
1 ∪Rf

2)) ≥

|(Re
1 ∪Re

2) ∩ De| ·min{Mef (R
e
1,R

f
1),Mef (R

e
2,R

f
2),Mef (R

e
1,R

f
2),Mef (R

e
2,R

f
1)}

The same derivation on Mfe and the application of condition (ii) completes the proof.

�

The inequality in 4.4 shows that, in order to maximize the comparability score of

the newly formed cluster (i.e. M(Re,Rf )), one should rely on those clusters R1 and

R2 such that the right-hand side of inequality 4.4 is maximal. As R1 and R2 are

existing clusters, originally formed by choosing sets of English and French documents

with the highest comparability scores, the minimum is attained on either M(Re
1,R

f
2)

or M(Re
2,R

f
1) (otherwise Re

1 and Rf
2 would have been grouped before). Thus, in

order to maximize the comparability score of the newly formed cluster, the clustering

process should select those clusters with a high score for M(Re
1,R

f
2) and M(Re

2,R
f
1).

This is exactly what the similarity measure defined in equations 4.1 and 4.3 and used

in our clustering process aims at. Hence, the overall process we have defined leads to

enhanced comparable corpora, which are both homogeneous and with a high degree

of comparability.

Computational Considerations

As comparable corpora usually consist of a large number of documents, the agglom-

erative clustering algorithm may cost a lot of memory space and computational time.

We address this problem (a) by providing a lower bound of the comparability mea-

sure which can be computed efficiently, (b) by filtering out document pairs with

comparability scores less than a predefined threshold η, empirically set to 0.3 in the

experiments, and (c) by updating the similarity matrix iteratively in an efficient way

during the clustering process. As the clustering process involves at each iteration the

merging of the two closest clusters, relying on a lower bound ensures that the clusters

to be merged have a high comparability score.
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In our implementation, the measure M(Cs, Ct) in equation 4.1 is replaced by a

lower-bound1 1
#d(Cs)·#d(Ct)

∑

de∈Cs,df∈Ct
M(de, df ) which yields a similarity measure de-

fined as the accumulative value of all the connections between two clusters. It is

feasible, with this new measure, to update the similarity matrix iteratively in the

clustering process. Assuming the clustering process merges, at some point, clusters

R1 and R2 into Rnew, the similarity matrix between clusters should be updated and

the similarity between Rnew and any other cluster (e.g. R3) should be computed.

According to equation 4.3 and the new similarity, the similarity between Rnew and

R3 can be written as:

siml(Rnew,R3) =
(NR1 +NR2) · φ(R1 ∪R2)

#d(Rs
new) ·#d(Rt

3) + #d(Rs
3) ·#d(Rt

new)

where (j = 1, 2) and:

NRj
=

(#d(R
s
j) ·#d(R

t
3) + #d(R

s
3) ·#d(R

t
j)) · siml(Rj,R3)

φ(Rj ∪R3)

In the clustering process, since siml(R1,R3) and siml(R2,R3) are already known

before the computation of siml(Rnew,R3), one can directly update the similarity

matrix at each iteration. Denoting Nc the number of clusters before a merge, the

complexity of this update is O(Nc), whereas it reaches O(Nc × C̄2) with the direct

application of equations 4.1 and 4.3 (with C̄ the average number of documents per

cluster).

4.3 Experimental Validation

We design in this section two experiments to test the performance of the ap-

proaches for improving comparable corpus quality. The first experiment in sec-

tion 4.3.1 tries to employ the two approaches to improving the quality of comparable

corpora and evaluate the performance in terms of the comparability scores. The sec-

ond experiment in section 4.3.2 tries to use comparable corpus of better quality in

1For space constraints, we do not show here that the new measure we introduce is indeed a lower
bound of M .
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the task of bilingual lexicon extraction to show that the NLP application can benefit

from the enhanced quality of comparable corpora.

4.3.1 Improving Corpus Quality

The experiments we have designed here aim at assessing whether the algorithms we

have introduced yield corpora of higher quality in terms of comparability scores.

In our experiments, we use the two methods described in section 4.2, as well as

the representative approaches trying to extract parallel sentences or sub-sentential

fragments from comparable corpora such as (Munteanu et al., 2004; Munteanu and

Marcu, 2006).

For the two methods introduced in this chapter, one needs to have the original

corpus and the external corpus. All the corpora in use have been described in sec-

tion 3.3.1. We will use in this part the corpora GH95 and SDA95 as the original

corpora C0. Two classes of external corpora are considered to prove that the efficiency

of our algorithm is not confined to a specific external resource. The first external cor-

pus C1
T consists of the corpora LAT94, MON94 and SDA94. The second external

corpus C2
T consists of Wiki-En and Wiki-Fr. The size of the original and external

corpora are given in Table 4.1.

Table 4.1
The size of the original and external corpora (k=1000)

C0 C1
T C2

T

English 56k 109k 368k

French 42k 87k 378k

For the clustering approach, we obtain the resulting corpora C1 (with the external

corpus C1
T ) and C2 (with the external corpus C2

T ). For the greedy approach, we can

obtain the resulting corpora C1′ (with C1
T ) and C2′ (with C2

T ) from C0. The results



79

are then listed in Table 4.2. In terms of lexical coverage, C1 covers 97.9% of the

vocabulary of C0, while C2 covers 99.0% of the vocabulary of C0. Hence, most of the

vocabulary of the original corpus has been preserved, which was one of the require-

ments behind our approach. Concerning comparability scores, the comparability of

C1 reaches 0.924 and that of C2 is 0.939. Both corpora are more comparable than the

original corpus C0 of which the comparability is 0.881. Furthermore, both C1 and C2

are more comparable than C1′ (comparability 0.912) and C2′ (comparability 0.915),

which shows that homogeneity is crucial for comparability.

Table 4.2
Information of the resulting corpora enhanced by different methods. The
row “Coverage” identifies the coverage of the resulting corpus vocabulary
w.r.t. the original corpus C0. The row “M” gives, for each comparable
corpus, the comparability score measured by M .

C0 C1′ C2′ C1 C2

Coverage 100% 95.1% 98.0% 97.9% 99.0%

M 0.882 0.912 0.916 0.924 0.939

The work presented in (Munteanu et al., 2004) and (Munteanu and Marcu, 2006)

try to extract parallel sentences and sub-sentential fragments from comparable cor-

pora. Depending on the quality of comparable corpora, there might be only a small

number of or absolutely no parallel sentences in them, which results in a low-coverage

corpus. For instance, with the corpus C0 and C1
T , we can only fetch 5124 parallel

sentences by the approach (Munteanu et al., 2004), which covers 23.8% of the orig-

inal vocabulary. This result does not satisfy the needs of our work in the context of

bilingual lexicon extraction which demands that most of the original vocabulary can

be preserved in the resulting corpus. Such studies as (Zhao and Vogel, 2002), (AbduI-

Rauf and Schwenk, 2009), (Sarikaya et al., 2009), (Tillmann and Xu, 2009) and (Do

et al., 2010), trying to mine the parallel content from comparable corpora, have the

same problem.
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4.3.2 Bilingual Lexicon Extraction

Following the experiments in section 4.3.1, we will further show in this part that

the bilingual lexicons extracted from the enhanced comparable corpora are of higher

quality. As previous studies on bilingual lexicon extraction from comparable corpora

radically differ on resources used and technical choices, it is very difficult to compare

them in a unified framework (Laroche and Langlais, 2010). More importantly, our

approach aims at enhancing corpus comparability, and can be coupled with any ex-

isting bilingual lexicon extraction method once the corpus has been enhanced. It is

thus more interesting to directly asses whether such a coupling can lead to increased

performance. To extract bilingual lexicons from comparable corpora, we directly use

here the method proposed by Fung and Yee (Fung and Yee, 1998), and which has

been referred to as the standard approach in more recent studies (Déjean et al., 2002;

Gaussier et al., 2004; Yu and Tsujii, 2009). In this approach, each word w is rep-

resented as a context vector consisting of its surrounding words in the documents.

Source (or target) context vectors are then translated with an existing bilingual dic-

tionary. Finally, a translation score is given to any word pair based on the cosine of

their respective context vectors.

Experimental Settings

In order to measure the performance of the lexicons extracted, we divide the

bilingual dictionary mentioned in section 3.3.1 into 2 parts: 10% of the English words

together with their translations are randomly chosen and used as the evaluation set,

the remaining words being used to compute context vector similarity. Given the

comparable corpus C, English words not present in Cv
e or with no translation in Cv

f

are excluded from the evaluation set. For each English word in the evaluation set,

all the French words in Cv
f are then ranked according to their similarity with the

English word. Precision, recall and the NMR measure are then computed on the first

N translations.
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The precision amounts in this case to the proportion of lists containing the correct

translation (in case of multiple translations, a list is deemed to contain the correct

translation as soon as one of the possible translations is present). The recall is the

proportion of correct translations found in the lists to all the translations provided

in the corpus. This evaluation procedure has been used in previous studies and

is now standard. The precision or recall measure is not precise enough as it does

not distinguish between candidate translations of different ranks. We thus use an

additional measure NMR, previously discussed in (Voorhees, 1999; Yu and Tsujii,

2009) to show the ability of the algorithm to precisely rank the selected translation

candidates. Assuming the total number of English words in the evaluation set is m,

NMR is defined as 1
m

∑m
i=1

1
ri

where ri is the rank of the first correct translation in

the candidate translation list for the i-th word in the evaluation set. If the correct

translation does not appear in the top N candidates, 1
ri

will be set to 0. In our

experiments, N is set to 20.

Furthermore, several studies have shown that it is easier to find the correct trans-

lations for frequent words than for infrequent ones (Pekar et al., 2006), since frequent

words are coupled with more context information. To take this fact into account,

we distinguished different frequency ranges to assess the validity of our approach for

all frequency ranges. Empirically, words with frequency less than 100 are defined as

low-frequency words (Wl), whereas words with frequency larger than 400 are high-

frequency words (Wh), and words with frequency in between are medium-frequency

words (Wm).

Results and Analysis

In a first series of experiments, bilingual lexicons were extracted from the corpora

obtained by the clustering approach (C1 and C2), the corpora obtained by the greedy

approach (C1′ and C2′) and the original corpus C0. Table 4.3 displays the results

obtained. Each of the last two columns “C1 > C0” and “C2 > C0” contains the absolute

and the relative difference (in %) w.r.t. C0. As one can note, the best results are

obtained from the corpora built with the clustering approach. The lexicons extracted
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Table 4.3
Performance of bilingual lexicon extraction from different corpora

C0 C1′ C2′ C1 C2 C1 > C0 C2 > C0

Precision 0.226 0.277 0.325 0.295 0.461 0.069, 30.5% 0.235, 104.0%

Recall 0.103 0.122 0.145 0.133 0.212 0.030, 29.1% 0.109, 105.8%

NMR 0.119 0.150 0.175 0.150 0.257 0.031, 26.1% 0.138, 116.0%

from the enhanced corpora through clustering are of much higher quality, in terms

of precision, recall and NMR, than the ones obtained from the original corpus and

from the corpora built according to the greedy methodology. The difference is more

remarkable with C2, which is obtained from a large external corpus C2
T . Intuitively,

one can expect to find, in larger corpora, more documents related to a given corpus,

an intuition which seems to be confirmed by our results.

To assess the behavior of the methods w.r.t. word frequencies, we focus on the

best results on C2′ from the greedy approach and the best results on C2 from the

clustering approach. Table 4.4 summarizes the results obtained. As one can note,

and not surprisingly, the results obtained with high frequency words are better than

the ones obtained with low frequency words. Furthermore, our approach is superior

for words in all the frequency ranges. The overall precision can be increased by 41.8%

relatively, from 0.325 to 0.461. Comparing C2 with the original corpus C0, we note, for

the overall precision, a relative increase of 104.0%, from 0.226 to 0.461, which is very

satisfactory in the context of general, large evaluation sets. Lastly, the improvement

for the low-frequency and medium-frequency ranges is more significant in C2, which

demonstrates that our approach behaves much better on what is generally considered

to be a hard problem (Pekar et al., 2006).

In the above experiments, the value N is fixed to 20. Intuitively, the value N

plays an important role in the above experiments. In a second series of experiments,

we let N vary from 1 to 300 and plot the results obtained with different evaluation
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Table 4.4
Comparison of the precision for words of different frequencies

C0 C2′ C2 C2′ > C0 C2 > C0 C2 > C2′

Wl 0.135 0.206 0.304 0.071, 52.6% 0.169, 125.2% 0.098, 47.6%

Wm 0.256 0.390 0.564 0.134, 52.3% 0.308, 120.3% 0.174, 44.6%

Wh 0.434 0.632 0.667 0.198, 45.6% 0.233, 53.7% 0.035, 5.5%

All 0.226 0.325 0.461 0.099, 43.8% 0.235, 104.0% 0.136, 41.8%

0 100 200 300

0.0

0.2

0.4

0.6

0.8

N

P
r
e
c
is
io
n

P
2

P
2'

P
1

P
1'

P
0

(a) Precision

0 100 200 300

0.0

0.1

0.2

0.3

0.4

N

R
e
c
a
ll

P
2

P
2'

P
1

P
1'

P
0

(b) Recall

Figure 4.2. Performance of bilingual lexicon extraction from different
corpora with varied N values from 1 to 300. The five lines from the top
down in each subfigure are corresponding to the results for C2, C2′, C1, C1′

and C0 respectively.

measure in Figure 4.2. In Figure 4.2(a) (resp. Figure 4.2(b)), the x-axis corresponds

to the values taken by N, and the y-axis to the precision (resp. recall) scores for the

lexicons extracted on each of the 5 corpora C0, C1′, C2′, C1 and C2. A clear fact from

the figure is that both the precision and the recall scores increase according to the

increase of the N values, which coincides with our intuition. As one can note, the

clustering method consistently outperforms the greedy method and also the original

corpus on all the values considered for N .
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4.4 Conclusion

We have developed in this chapter two approaches to improving the quality of

existing comparable corpus. These two approaches make use of the comparability

measure developed in chapter 3 and try to extract the high-quality subpart, as well

as to enhance the low-quality subpart, of the original corpus. The first approach,

namely the greedy approach, tries to pick the high-quality document pairs greedily,

which thus does not take into account the relations between different document pairs.

The second method, namely the clustering approach, uses a clustering process to select

high-quality sub-clusters, which partially relieves the problem of the greedy approach.

The theoretical analysis has shown that both approaches are able to guarantee a least

degree of comparability of the resulting comparable corpora.

The two approaches are then validated in the experiments which show that (1) The

resulting comparable corpora are of higher quality, in terms of comparability scores,

than the original corpus, with the clustering approach being more efficient than the

greedy approach; and (2) Bilingual lexicons extracted from better comparable corpora

are of higher quality. The extracted lexicons will be used to enhance the CLIR

systems in the following chapter. Previous work trying to extract parallel subparts

from comparable corpora resembles our work in this chapter. There is however a

significant difference as we have shown in the experiments.

We have used in section 4.3.1 two types of external corpora in order to enhance

the low-quality subpart of the original comparable corpus. One is the news collection

comprised of LAT94, MON94 and SDA94, which contains content of the same genre

as the original corpus that is also news corpus. The other external resource is the

corpora Wiki-En and Wiki-Fr built from the Wikipedia articles related to specific

topics (i.e. categories) that are of similar but not the same genre as the news articles.

Intuitively, using external resource of the same genre as that of the original corpus

will lead to more significant enhancement of the original corpus, since one can expect

to find more related content. However, we use here a much larger Wikipedia corpus
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giving us the possibility of finding the content relative to the original corpus, and we

have gotten the better results with Wikipedia corpus. Another choice for the external

corpus is the content on the web. For a reference of genes on the web, one may refer

to the work (Mehler et al., 2010). Intuitively, one can expect to get the best results

through using the web corpus consisting of all possible genres in large volume. We

do the same experiment as in section 4.3.2 with the greedy algorithm for simplicity,

and get a precision of 0.30 compared to 0.28 on C1′ (i.e. resulting corpus with the

news corpus as external resource) and 0.33 on C2′ (i.e. resulting corpus with the

Wikipedia corpus as external resource). The results ontained with the web corpus do

not comply with our expectation because the web corpus we have currently fetched

consists of much noise which harms the performance of bilingual lexicon extraction

relying on lexical context. The results also tell us that our approaches for enhancing

corpus quality are robust to a certain degree to the external resource chosen.
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5 CLIR MODELS AND COMPARABLE CORPORA

As one can find from the general strategies of CLIR in section 2.3, the model-

dependent approaches rely on a cross-language extension of existing monolingual IR

models. If most monolingual IR models have been extended to a cross-language set-

ting, it is not true for all of them, and we will explore in this chapter the cross-language

extension of the recently introduced information-based IR systems (Clinchant and

Gaussier, 2010). The brief version of this part of work has appeared in our previ-

ous work (Li and Gaussier, 2012). In addition to the previous work, we will pay in

this chapter additional attention to the enhancement of CLIR system with bilingual

lexicons extracted from comparable corpora. The information-based IR models and

their extensions to CLIR settings are first introduced in section 5.1. The performance

of the proposed CLIR models is then validated in sections 5.2.1 and 5.2.2. In sec-

tion 5.2.3, we make use of lexicons extracted from comparable corpora to enhance

the information-based CLIR models. This chapter is finally concluded in section 5.3.

5.1 Information-based CLIR Models

The information-based models (Clinchant and Gaussier, 2010) have been shown to

provide state-of-the-art performance in monolingual IR. The question of their possible

extensions, and the quality of these extensions, to a cross-language setting remains

unanswered until our work (Li and Gaussier, 2012). This section is devoted to the

detailed introduction of CLIR extensions of this model. We will first introduce in

section 5.1.1 the monolingual version of information-based models. Then several

extensions are proposed to adapt the CLIR environment in section 5.1.2.

The notations we will use throughout this chapter are summarized in Table 5.1

(w represents a word).
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Table 5.1
Notations used in IR models in chapter 5

Notation Description

xq
w Number of occurrences of w in query q

xd
w Number of occurrences of w in document d

tdw Normalized version of xd
w

ld Length of document d

lm Average document length

L Length of document collection

N Number of documents in the collection

Nw Number of documents containing w

TS(w) Set of translations of w

DS(w) Set of documents containing w (i.e. Nw = |DS(w)|)

RSV(q, d) Retrieval Status Value of document d for query q

5.1.1 Monolingual Models

Information-based models for IR, recently introduced in (Clinchant and Gaussier,

2010), compute the similarity between queries and documents through the quantity of

information brought by document terms on query words. Two such models, referred

to as the Log-Logistic model (in short LL) and the Smoothed Power Law model (in

short SPL), were shown in (Clinchant and Gaussier, 2010; Clinchant and Gaussier,

2011) to be either on par or to outperform other IR models on several collections and

in different settings, as the one of pseudo-relevance feedback.
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Information-based models are based on the following retrieval status value1:

RSV (q, d) =
∑

w∈q

−
xq
w

lq
logP (Xw ≥ tdw|λw)

=
∑

w∈q∩d

−
xq
w

lq
logP (Xw ≥ tdw|λw) (5.1)

where:

• tdw is a normalization function depending on the number of occurrences, xd
w, of

w in d, and on the length, ld, of d, and satisfies:

∂tdw
∂xd

w

> 0;
∂tdw
∂ld

< 0;
∂2xd

w

∂(tdw)
2
≥ 0

In the thesis, we follow the settings of the original work and set: tdw = xd
w log(1+

c lm
ld
) where c is a smoothing parameter;

• P is a probability distribution defined over a random variable, Xw, associated

to each word w. This probability distribution must be:

– Continuous, the random variable under consideration, tdw, being continu-

ous;

– Compatible with the domain of tdw, i.e. if tmin is the minimum value of tdw,

then P (Xw ≥ tmin|λw) = 1;

– Bursty, i.e. it should be such that:

∀ǫ > 0, gǫ(x) = P (X ≥ x+ ǫ|X ≥ x) is strictly increasing in x;

• And λw is a collection-dependent parameter of P . As suggested in the original

work, it is set as:

λw =
Nw

N
(5.2)

1We introduce a slight modification, namely the normalization by the query length, in the formula
given in (Clinchant and Gaussier, 2010), in order to provide a more intuitive explanation of the
models. This modification does not change the ranking of the documents.
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As one can note, equation 5.1 computes the information brought by the document

on each query word (i.e. − logP (Xw ≥ tdw|λw)) weighted by the importance of the

word in the query (i.e. xq
w

lq
). In order to define a proper IR model, one needs to

choose a particular bursty distribution. As mentioned above, two such distributions

have been proposed and studied, and we will rely on them here. These are the log-

logistic and smoothed power law distributions, associated to the models referred to

as LL and SPL and defined as (see (Clinchant and Gaussier, 2010)):

RSVLL(q, d) =
∑

w∈q∩d

−
xq
w

lq
log

λw

λw + tdw

RSVSPL(q, d) =
∑

w∈q∩d

−
xq
w

lq
log

λ

tdw

tdw+1
w − λw

1− λw

We now turn to cross-language extensions of this family of models.

5.1.2 Cross-Language Extensions

We will present in this section well-founded cross-language extensions of the

information-based models, namely the LL and SPL models. These extensions are

based on the following considerations:

• A generalization of the notion of information used in the information-based

family;

• A generalization of the random variables used in this family;

• The direct expansion of query terms with their translations.

First of all, one can note that the information brought by a document on a query

term in equation 5.1 is restricted to the query word itself. It is however possible to

adopt a more general view by considering the mean information brought by all words

in the document related to a given query term. Let F(w) denote the set of all the

words related, through a relation we leave unspecified for the moment, to a given
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query word w. Let us furthermore introduce the normalized relation between w and

a word w′ in d, a quantity we will denote as A(w,w′, d), as:

A(w,w′, d) =







IF(w)(w
′)

∑
w′′∈d IF(w)(w

′′)
if
∑

w′′∈d IF(w)(w
′′) > 0

0 otherwise

where IF(w) is the indicator function of the set F(w). The mean information brought

by all words of the document d related to a given query term w can then be defined

as: −
∑

w′∈d A(w,w′, d) logP (Xw′ ≥ tdw′ |λw′), leading to the overall retrieval function:

RSV (q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d

A(w,w′, d) logP (Xw′ ≥ tdw′ |λw′)

Equation 5.1 is just a special case of the above formulation, obtained by setting

F(w) = {w}, i.e. considering that words are only related to themselves. The ap-

plication to a cross-language setting then simply amounts to using the translation

relation, F(w) = TS(w), for computing A(w,w′, d) (TS(w) denotes the translation

set of word w in our general notations). This leads, for the LL and SPL models, to:

RSVLL(q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d

A(w,w′, d) log(
λw′

λw′ + tdw′

) (5.3)

RSVSPL(q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d

A(w,w′, d) log(
λ

td
w′

td
w′

+1

w′ − λw′

1− λw′

) (5.4)

The above equations 5.3 and 5.4 define two new CLIR models, which we will refer to

as MILL and MISPL, MI standing for Mean Information.

A second extension consists in considering that the random variable used in the

information-based family is not associated to a single word w, but to a set of words

F(w), namely the words related to w. This defines a new retrieval function of the

form:

RSV (q, d) = −
∑

w∈q

xq
w

lq
logP (XF(w) ≥ tdF(w)|λF(w))

As before, equation 5.1 is just a special case obtained by setting F(w) = {w}, and a

cross-language version can be obtained by setting F(w) = TS(w). One needs however
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to define tdF(w) and λF(w). We simply set here the first quantity, tdF(w), to the sum of

the corresponding quantities for the words in F(w), which corresponds to the fact that

we have indeed observed that many (normalized) occurrences of w in d, through its

related words. The second quantity, λF(w), is set in a similar fashion, by considering

the normalized document frequency of all the words in F(w) (see equation 5.2). This

leads to the following cross-language version of the LL and SPL models:

tdF(w) =
∑

w′∈F(w)

tdw′

λF(w) =
| ∪w′∈F(w) DS(w′)|

N

RSVLL(q, d) = −
∑

w∈q

xq
w

lq
log(

λF(w)

tdF(w) + λF(w)

) (5.5)

RSVSPL(q, d) = −
∑

wf∈q

xq
w

lq
log(

(λF(w))

td
F(w)

td
F(w)

+1
− λF(w)

1− λF(w)

) (5.6)

The above extension bears strong similarities with the SYN operator of the InQuery

system, developed for CLIR purposes in (Pirkola, 1998). Indeed, the above formula-

tion can also be obtained by considering that all related words form a single word. We

have shown here, however, that it also derives from a different perspective, through

the use, in the information-based family, of a single random variable to account for all

related words. The setting of the associated parameters (tdw and λw) then naturally

follows from the general framework of the information-based family of IR models. For

this reason, we will refer to the above CLIR models as JVLL and JVSPL, JV standing

for Joint random Variable.

Lastly, a third cross-language extension can directly be obtained by expanding all

query terms with their translations. As in standard bilingual dictionaries translations
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are not weighted, we resort to the following, simple extension of equation 5.1, which

could however be extended by taking translation weights into account:

RSV (q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d∩TS(w)

logP (Xw′ ≥ tdw′ |λw′)

This leads, for the LL and SPL models, to:

RSVLL(q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d∩TS(w)

log(
λw′

λw′ + tdw′

) (5.7)

RSVSPL(q, d) = −
∑

w∈q

xq
w

lq

∑

w′∈d∩TS(w)

log(
λ

td
w′

td
w′

+1

w′ − λw′

1− λw′

) (5.8)

We will refer to the above CLIR models as QELL and QESPL, QE standing for Query

Expansion.

To summarize, we have defined, through the above developments, three new CLIR

versions of the LL and SPL models, within the general framework of information-

based models for IR:

1. MILL and MISPL, corresponding to equations 5.3 and 5.4;

2. JVLL and JVSPL, corresponding to equations 5.5 and 5.6;

3. QELL and QESPL, corresponding to equations 5.7 and 5.8.

5.2 Validation of CLIR Models

In this section, we will, both theoretically and experimentally, validate the per-

formance of information-based CLIR models. Prior to the experimental validation

of these models in section 5.2.2, we want to address the question of whether it is

possible to validate them from a theoretical point of view. We do so in section 5.2.1

by resorting to the axiomatic theory of IR.
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5.2.1 Theoretical Validation

Heuristic retrieval constraints were first fully developed in the seminal work of

Fang et al. (Fang et al., 2004), and followed by many others since, including (Fang and

Zhai, 2006; Cummins and O’Riordan, 2007; Clinchant and Gaussier, 2010; Clinchant

and Gaussier, 2011; Zhai, 2011). Such constraints state conditions IR models should

satisfy, and there is now a large corpus of empirical evidence showing that models

failing on one condition do not yield an optimal performance. As shown in (Clinchant

and Gaussier, 2010), the LL and SPL models we have considered comply with all the

conditions for ad hoc information retrieval, and so do their cross-language extensions.

However, the cross-language setting also relies on new elements, the translations, and

the question remains as to whether these new elements can be regulated through a

particular CLIR condition. We develop such a condition below.

Let us assume a collection of French documents about rivers and lakes, and the

English query bank. In this context, the possible translations of bank in French are

rive, berge, banc2. Now let us assume that, in one document d, the words berge

and banc appear two times each, and that, in another document, d′, the word rive

appears four times. Let us also assume that d and d′ have roughly the same length

and that berge and banc only occur in d and rive only in d′. All these assumptions

can be met, for example, on a collection containing formatted articles on water flows.

In this context, there is absolutely no difference between d and d′ with respect to

their relevance according to the query, and one would like a good CLIR strategy to

assign the same score to these two documents. The following condition formalizes

this intuition.

2One can certainly think of other possible translations, but this does not change our argument.
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Condition 1 Let q be a source language query consisting of a single term w, d and

d′ two target language documents of equal length. Furthermore, let {w′
0, w

′
1, · · · , w

′
k}

be equally likely and equally good translations of w such that:







xd
w′

i
= 1, Nw′

i
= 1, 1 ≤ i ≤ k

xd′

w′
0
= k,Nw′

0
= 1

Then, a good CLIR strategy should satisfy:

RSV(q, d) = RSV(q, d′)

Because the translation of w is either diluted, in d, on several words, or concentrated,

in d′, on a single word, we will refer to the above condition as the DC condition, where

DC stands for Dilution/Concentration. We now review the different CLIR models we

proposed in light of this condition, focusing here on the LL model, the reasoning and

results being the same for SPL.

As all translations in d have the same number of occurrences, they also have

the same normalized frequency, which will be denoted by τ : τ = tdw′
i
, 1 ≤ i ≤ k.

Furthermore, it is direct to see: td
′

w′
0
= kτ . The DC assumptions furthermore imply

that all translations have the same parameter λ: λw′
i
= 1

N
, 0 ≤ i ≤ k. Given these

assumptions, one can have:

• For the QE extensions:

RSVLL(q, d) = k log(τN + 1), RSVLL(q, d
′) = log(kτN + 1)

Let us define the function ∆QE(τ) as the difference between RSVLL(q, d
′) and

RSVLL(q, d):

∆QE(τ) = RSVLL(q, d
′)−RSVLL(q, d) = log(kτN + 1)− k log(τN + 1)

The derivative of ∆QE w.r.t. τ is:

d(∆QE(τ))

dτ
= kN · (

1

kτN + 1
−

1

τN + 1
) (5.9)
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In our settings for condition 1, k > 1, τ > 0 and N > 1, so the derivative in

equation 5.9 is strictly negative, which implies that ∆QE is strictly decreasing

with τ . Noticing that ∆QE equals 0 when τ = 0, one can conclude:

RSVLL(q, d
′) < RSVLL(q, d)

The QE strategy thus does not fulfill the DC condition.

• For the MI extensions:

RSVLL(q, d) = log(τN + 1), RSVLL(q, d
′) = log(kτN + 1)

This time, let us define the function ∆MI(τ) such that:

∆MI(τ) = RSVLL(q, d
′)−RSVLL(q, d) = log(kτN + 1)− log(τN + 1)

The derivative of ∆MI w.r.t. τ is:

d(∆MI(τ))

dτ
= kN · (

1

kτN + 1
−

1

kτN + k
) (5.10)

With the same settings as before for k, τ and N , the derivative in equation 5.10

is strictly positive, which implies that ∆QE is strictly increasing with τ . Given

that ∆MI equals 0 when τ = 0, one can conclude:

RSVLL(q, d
′) > RSVLL(q, d)

The MI strategy thus does not fulfill the DC condition. One can find however

that in this extension RSVLL(q, d) is closer to RSVLL(q, d
′) than in the QE one.

The absolute values of ∆QE and ∆MI are a measure to quantify the fitness

of the corresponding CLIR model to the DC condition. In order to compare

the fitness of QE and MI to the DC condition, let us define here a function

∆QE/MI(τ) as:

∆QE/MI(τ) = |∆QE| − |∆MI |

= k log(τN + 1) + log(τN + 1)− 2 log(kτN + 1)
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Its derivative w.r.t τ is:

d(∆QE/MI(τ))

dτ
=

(k − 1) · (kτN − 1)

(τN + 1) · (kτN + 1)

which is a positive value as soon as kτN > 1, a fact being met in practice. The

function ∆QE/MI is thus increasing with τ . Together with the fact that ∆QE/MI

equals 0 when τ = 0, one can arrive at:

|∆QE| > |∆MI |

which implies that MI strategy satisfies the DC condition better than QE does.

• For the JV extension: RSVJV (q, d) = log(kτN + 1) = RSVJV (q, d
′). This

extension is thus fully compliant with the DC condition.

The above theoretical development thus reveals that both the MI and QE extensions

do not fulfill the DC condition, the violation of the condition being less remarkable

in the MI extension. Furthermore, the JV extension does fulfill the DC condition. As

we will see in section 5.2.2, our experiments are in agreement with these findings.

5.2.2 Experimental Validation

We use in our experiments the English text collections from the bilingual tasks

of the CLEF campaign3, with English, French, German and Italian queries, from the

year 2000 to 2004. Table 5.2 lists the number of documents (Nd), number of distinct

words (Nw), average document length (DLavg) in the English document collections,

as well as the number of queries, Nq, in each task (all the queries are available in all

languages). As the queries from the year 2000 to 2002 have the same target collection,

they are combined in a single task. In all our experiments, we use bilingual dictionaries

comprised respectively of 70k entries for the French-English language pair, 58k entries

for the German-English language pair, and 67k entries for the Italian-English language

pair. For evaluation, we use the Mean Average Precision (MAP) scores to evaluate

3http://www.clef-campaign.org
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the different models. Lastly, we rely on a paired t-test (at the level 0.05) to measure

significance difference between the different systems.

Table 5.2
Characteristics of different CLEF collections

Collection Nd Nw DLavg Nq

CLEF 2000-2002 113,005 173,228 310.85 140

CLEF 2003 169,477 232,685 284.09 60

CLEF 2004 56,472 119,548 230.52 50

Comparisons of Various CLIR Extensions

In a first series of experiments, we compare the different extensions (MI, JV and

QE) proposed for both the LL and SPL models. Information-based models rely on

one parameter, namely c, used in the normalization step. As this normalization step

is identical to the one used in DFR models ((Amati and Van Rijsbergen, 2002)),

we use the default setting provided in Terrier4 for this parameter: c = 1. The

results we obtained for MAP scores are displayed, for the three language pairs (i.e.

French(Fr)-English(En), Italian(It)-English(En), and German(De)-English(En)), in

Table 5.3. As one can note, and in accordance to the theoretical validation developed

in section 5.2.1, for both LL and SPL, the JV extension is significantly better than

both the MI and QE extensions, and meanwhile MI provides better results than QE.

In the following experiments aiming at comparing different CLIR systems, we will thus

only rely on the JV extension for the two models LL and SPL of the information-based

family.

Comparisons with Standard CLIR Models

We then compare the cross-language versions of LL and SPL we have introduced

with CLIR versions of standard systems, namely: (a) a vector space model based on

4terrier.org
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Table 5.3
Comparison of different cross-language extensions of LL and SPL in terms
of MAP scores, where “00-02”, “03” and “04” respectively correspond to
the data sets “CLEF 2000-2002”, “CLEF 2003” and “CLEF 2004”. A
† indicates, for each model, that the difference with the best performing
extension (in bold) is significant.

Collection LL SPL

JV QE MI JV QE MI

00-02

Fr-En 0.417 0.204† 0.375† 0.401† 0.194† 0.370†

It-En 0.393 0.212† 0.370† 0.373† 0.184† 0.342†

De-En 0.410 0.212† 0.375† 0.390† 0.199† 0.357†

03

Fr-En 0.480 0.223† 0.417† 0.462† 0.204† 0.420†

It-En 0.434 0.213† 0.382† 0.421† 0.199† 0.375†

De-En 0.463 0.220 0.394† 0.444† 0.203† 0.328†

04

Fr-En 0.520 0.309† 0.417† 0.432† 0.232† 0.346†

It-En 0.491 0.297† 0.406† 0.421† 0.209† 0.317†

De-En 0.492 0.297† 0.406† 0.422† 0.217† 0.328†

Robertson’s tf and Sparck Jones’ idf ((Robertson and Sparck Jones, 1988)), referred

to as TF-IDF, (b) BM25 with the default parameter setting given by the Terrier

system, (c) INQUERY (in short INQ) with the default parameters of the Lemur

system, and (d) the Jelinek-Mercer and Dirichlet versions of the language models,

again with the default parameters of the Terrier system (λ = 0.15 and µ = 2500),

referred to as LMJM and LMDIR. For the first three models, we directly rely on

the SYN strategy, which amounts to considering all the translations of a given query

term in the documents as forming a single word. This strategy has been shown to

outperform other ones in different studies ((Pirkola, 1998; Sperer and Oard, 2000;

Pirkola et al., 2001; Ballesteros and Sanderson, 2003)). For LMJM and LMDIR, two

additional strategies have been explored in previous studies (e.g. (Kraaij et al., 2003))
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and introduced in section 2.3.2: integration of the translations within the query model

(QT), or within the document model (DT), and we first compare them here.

The results of the comparison between three language model-related strategies

(SYN, QT, DT) are given in Table 5.4, for the MAP scores on three language pairs.

As one can note, the SYN strategy outperforms the other ones, the difference being

always significant. Because of that, we will rely for LMJM and LMDIR on the SYN

strategy in the following experiments.

Table 5.4
Comparison of different CLIR strategies (SYN, QT, DT) for language
models in terms of MAP scores, where “00-02”, “03” and “04” have the
same meaning as in Table 5.3. A † indicates, for each model, that the
difference with the best performing extension (in bold) is significant.

Collection DT QT SYN

JM DIR JM DIR JM DIR

00-02

Fr-En 0.371† 0.392† 0.364† 0.349† 0.393† 0.410

It-En 0.350† 0.366† 0.321† 0.314† 0.372† 0.388

De-En 0.373† 0.380† 0.349† 0.350† 0.393 0.398

03

Fr-En 0.442† 0.404† 0.398† 0.378† 0.472 0.424†

It-En 0.416† 0.421† 0.375† 0.380† 0.436 0.386†

De-En 0.427† 0.371† 0.381† 0.334† 0.455 0.410†

04

Fr-En 0.422† 0.422† 0.386† 0.419† 0.451 0.442

It-En 0.391† 0.382† 0.378† 0.381† 0.422 0.420

De-En 0.399† 0.387† 0.381† 0.380† 0.433 0.431

It is also interesting to note that DT yields results consistently better than QT,

which is the worst performing strategy based on language modeling approach. Inter-

estingly, QT is the only strategy which does not fulfill the DC condition introduced

in section 5.2.1. Indeed, for Jelinek-Mercer smoothing with the smoothing parameter
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λ (the reasoning and the results are the same for Dirichlet smoothing), we obtain,

under the setting of the DC condition5:

RSVQT (q, d
′)− RSVQT (q, d) = α(log k − (k − 1) log((1− λ)

1

ld
+ λ

1

L
))

where α corresponds to the translation probability between the query word and any

of its translations. The above quantity is strictly positive for k > 1. In contrast, both

the DT and SYN strategy are compliant with the DC condition. It is straightforward

to see this for SYN: the different words in d are grouped into a single word with k

occurrences, hence making the setting in d identical to the one in d′. For DT, we

obtain:

RSVDT (q, d
′) = log

(

kα((1− λ)
1

ld
+ λ

1

L
)

)

= RSVDT (q, d)

Lastly, Table 5.5 gives the results obtained with the different CLIR systems we

have reviewed, on all language pairs and all collections. The performance of the

monolingual version of the CLIR systems is given in the line MON. First of all, one

can note that either the model JVLL obtains the best score (9 times out of 12) ,

or the difference with the best system is not significant. Furthermore, when JVLL

obtains the best score, the difference with the other models is most of the time

significant. Indeed, for the cross-language part, only LMDIR is on a par with JVLL

on the CLEF2000-2002 collection, only LMJM is on a par with JVLL on the 2003

collection, and all models are significantly below JVLL on the 2004 collection.

5.2.3 Embedding Extracted Lexicons

This section is devoted to assessing whether bilingual lexicons extracted from compa-

rable corpora can be used to improve the performance of CLIR systems. As we have

shown in the above experiments that the information-based model JVLL works best

in the CLIR environment. We will utilize this model for this part of experiments.

Constrained by the corpora for bilingual lexicon extraction, CLIR experiments will be

5We omit the derivation here as it is similar with the ones given in section 5.2.1, which is purely
technical.
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Table 5.5
Comparison of different CLIR systems in terms of MAP scores on all
language pairs and collections, where “00-02”, “03” and “04” have the
same meaning as in Table 5.3. A † indicates, for each model, that the
difference with the best performing extension (in bold) is significant.

Data Model TF-IDF BM25 LMJM LMDIR INQ JVLL JVSPL

00-02

MON 0.448† 0.474† 0.462† 0.478† 0.423† 0.487 0.483

Fr-En 0.364† 0.389† 0.399† 0.410 0.353† 0.417 0.401†

It-En 0.333† 0.358† 0.372† 0.388 0.322† 0.393 0.373†

Ge-En 0.350† 0.367† 0.393 0.398 0.342† 0.410 0.390†

03

MON 0.476† 0.503 0.492† 0.475† 0.437† 0.503 0.500

Fr-En 0.416† 0.441† 0.472 0.424† 0.408† 0.480 0.462†

It-En 0.376† 0.400† 0.436 0.386† 0.373† 0.434 0.421†

Ge-En 0.397† 0.420† 0.455 0.410† 0.384† 0.463 0.444†

04

MON 0.519† 0.523† 0.511† 0.539 0.426† 0.538 0.529†

Fr-En 0.423† 0.420† 0.451† 0.442† 0.376† 0.520 0.432†

It-En 0.392† 0.383† 0.422† 0.420† 0.343† 0.491 0.421†

Ge-En 0.401† 0.395† 0.433† 0.431† 0.353† 0.492 0.422†

only performed on the French-English language pair. The following bilingual lexicons

will be used in the CLIR systems:

• bd: the original dictionary as used in above CLIR experiments in section 5.2.2,

which is a gold-standard dictionary constructed from the online dictionary;

• bd1: the bilingual lexicons extracted from the original comparable corpus C0 in

section 4.3.2;

• bd2: the bilingual lexicons extracted in section 4.3.2 from the resulting corpus

C2′, which is the best corpus constructed by the greedy approach;
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• bd3: the bilingual lexicons extracted in section 4.3.2 from the resulting corpus

C2, which is the best corpus constructed by the clustering approach.

The CLIR system only using the original dictionary bd is set as the baseline. As we

have discussed in section 5.1.2, the JV extension of information-based models has the

same function as that of the SYN strategy. We will then combine in each experiment

the extracted lexicons, e.g. bd1, with bd in a weighted SYN style (Darwish and

Oard, 2003), a strategy which augments the SYN strategy with translation weights as

follows: letWT (w) denote the translation weight of w, then the number of occurrences

of w in d is set to xd
wWT (w). The results obtained are displayed in Table 5.6.

Table 5.6
MAP scores of the CLIR experiment using the lexicons extracted from
comparable corpora (with JVLL model). The significant differences
against the baseline are marked with the †.

Data bd bd+ bd1 bd+ bd2 bd+ bd3

CLEF 2000-2002 0.417 0.415 0.420 0.428†

CLEF 2003 0.480 0.482 0.490† 0.495†

CLEF 2004 0.520 0.517 0.533† 0.540†

One can find from the results that with bd + bd3, one always observes a signifi-

cant improvement over the baseline. With bd + bd2, one can not notice a significant

improvement on CLEF 2000-2002 over the baseline. No significant improvement can

be observed if one rely on the dictionary bd + bd1 that is extracted from the origi-

nal comparable corpus. It demonstrates that using the lexicons extracted from the

comparable corpus of the best quality (i.e. C2) can enhance the performance of the

JVLL model. However, with the lexicons extracted from comparable corpora of lower

quality (i.e. C0 and and C2′), one can not always achieve the significant improvement.

Finally, the best results, in terms of MAP scores, reach 0.428 on CLEF 2000-2002,

0.495 on CLEF 2003 and 0.540 on CLEF-2004, which respectively accounts for 87.9%,
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98.4% and 100.4% of the corresponding monolingual baselines. This result is also sig-

nificantly better than the performance of any other CLIR model.

5.3 Conclusion

There have been a lot of studies investigating the extensions of classic IR models

to CLIR environment. None of them however addressed the problem of extending the

recently introduced information-based models to a cross-language setting. We have

presented in this chapter several strategies for such an extension, (a) through the

generalization of the information used in information-based models, (b) through the

generalization of the random variables also used in this family, and (c) through the

expansion of query terms. The strategy based on the generalization of the random

variables plays a role similar to the one of the SYN strategy reviewed in previous

studies. The good behavior of this strategy, noticed in these previous studies, is

confirmed here for the information-based family.

We have furthermore introduced a novel CLIR condition, thus extending the ax-

iomatic approach to IR to the cross-language setting. This new condition, which we

referred to as the Dilution/Concentration condition, helps us assess from a purely

theoretical point-of-view the different cross-language extensions we have introduced.

The results obtained from this theoretical assessment are confirmed in our experi-

ments. We have also used this condition to assess the possible strategies for building

cross-language extensions of the language modeling approach to IR, and again find

that the theoretical results are in line with the experimental ones.

We have also shown that the cross-language extension of the log-logistic model

(LL) based on the joint random variable (and equivalent to the SYN strategy) yields

the best performance on three collections and three language pairs. This model is

never significantly below any other model, always significantly above most of them if

not all of them. We thus believe this model to be a state-of-the-art CLIR model. Its
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simple form, given by equation 5.5, also makes it appealing from an implementation

perspective.

Lastly, we have combined into the CLIR system bilingual lexicons extracted from

comparable corpora. One can find that the combination of extracted lexicons con-

tributes to the CLIR performance. Moreover, the better the quality of bilingual

lexicons is, the more significant improvement one can obtain for the CLIR experi-

ment.
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6 CONCLUSION AND DISCUSSION

In this thesis, we have focused on topics related to comparable corpora and their

application in bilingual lexicon extraction and CLIR. Previous studies mining com-

parable corpora paid most attention to the mining algorithms themselves, which have

met with a bottleneck in terms of performance. Different from previous work, we have

tried here to enhance comparable corpus quality in order to improve the performance

of applications relying on comparable corpora. This general idea is advantageous

since it can work with any existing algorithm exploiting comparable corpora. The

deployment of this idea on real-world applications such as bilingual lexicon extraction

and CLIR further validates its efficiency.

We have first proposed in chapter 3 comparability measures to estimate the quality

of comparable corpora. The measure is developed according to a notion inspired from

the usage experience of bilingual corpora, which is the usability of various bilingual

corpora decreases from parallel corpora to non-parallel corpora covering different top-

ics as listed in section 3.1. The comparability measure then quantifies the expectation

of finding the translations for each word in the corpus vocabulary. We have developed

in practice two classes of comparability measures: one is to consider context-based

disambiguation and the other one is not. The same notion has also motivated the ex-

perimental design to validate the efficiency of various comparability measures, where

decreasing gold-standard comparability levels are obtained by incrementally introduc-

ing noise to the high-quality comparable corpus. The results show that a symmetric

measure M (refer to equation 3.10) based on vocabulary overlapping performs very

well, meaning that the measure can capture gold-standard comparability levels, which

is reflected by high correlation scores. This simple measure has cheap computational

cost and is robust to dictionary coverage as we have shown in the experiments. By

the way, all context-based measures M c
ef , M

c
fe and M c also perform very well. They



108

are however computationally too expensive, making them infeasible under intensive

calls.

Based on the comparability measure above, we have developed in chapter 4 two

strategies, namely the greedy approach and the clustering approach, to enhance the

quality of any comparable corpus. The general methodology of two approaches is to

extract the high-quality subpart and to enrich the low-quality subpart of the original

corpus. The greedy approach tries to choose the high-quality document pairs from

the original comparable corpus to construct a high-quality subpart. The low-quality

subpart is then enriched in a similar way by referring to an external resource. In

the greedy approach, document pairs are chosen independent from one another and

relations among different documents are not taken into account. To solve the problem,

the clustering approach makes use of the hierarchical clustering algorithm and a

pruning strategy to select the high-quality sub-clusters which are homogeneous. Both

approaches can be validated from a theoretical perspective that a least degree of

comparability can be guaranteed for the resulting corpora. These two approaches

are then used in the experiments to show their ability to improve the quality of

comparable corpora, with the clustering approach being more efficient than the greedy

one. The enhanced comparable corpora are lastly used in the task of bilingual lexicon

extraction with a standard method to produce lexicons of better quality. We have used

in the experiments two kinds of external corpora to enhance the low-quality subpart

of the original corpus, which shows that our algorithms are robust to a certain degree

to the external corpus chosen.

The last part of work in chapter 5 concerns about CLIR. The information-based

models have shown satisfactory performance in monolingual IR tasks. We have first

tried in our work to extend this model to CLIR settings and develop three candi-

date extensions, namely the one generalizing the notion of information, another one

generalizing the random variables, and the third one directly expending the query

terms. We have then developed a novel CLIR condition that can be used to assess

different CLIR models from a theoretical point-of-view. The experimental compar-
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isons of various CLIR models comply with the theoretical assessment using the CLIR

condition. Based on both theoretical and experimental validation of CLIR versions of

information-based models, we have lastly concluded that the Log-logistic model (LL)

with the Joint random Variable strategy for extension gives us a best-performing

CLIR model. This CLIR model can be further enhanced with bilingual lexicons ex-

tracted from comparable corpora. Moreover, the better one comparable corpus is,

the more significant improvement one can obtain by embedding in CLIR experiments

extracted lexicons with the existing bilingual dictionary.

We have proposed in this thesis a set of methods that have been well validated to

be able to measure and enhance comparable corpus quality. The enhanced comparable

corpus then results in better NLP performance. There are several directions we can

follow in future work.

• The first direction concerns about the style of gold-standard comparability lev-

els. We have introduced in section 3.3.2 a strategy to construct a group of

comparable corpora with decreasing comparability levels. The idea is that one

can decrease corpus quality by exchanging the high-quality part of the original

corpus with noisy content. The more noise one introduces into the original

corpus, the more one can degrade the original corpus quality. We have then

followed the list of comparable corpora in section 3.1 and built three groups of

comparable corpora. This is the only approach we are aware of to construct the

quantitative comparability levels. However, the degradation process we have

considered is not the only style which exists among different comparable cor-

pus quality in real-world cases. The idea of introducing noise is intuitive and

easy to use, but only reflects one type of difference among different compara-

ble corpora. One can think out, for example, an approach that relies more on

the content and topic similarity but not explicitly on the proportion of noisy

content in comparable corpora. In this case, manual efforts might be needed in

order to organize the content and topics according to certain criteria. We are

also interested in testing our comparability measures on different comparability
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styles. By the way, we currently focus on the French-English language pair.

The comparable corpora of other language pairs, especially those pairs between

different language families, can be considered as well.

• The second direction is regarding the comparability measures themselves. The

measures we have proposed in this thesis rely on the simple information that is

the overlapping of corpus vocabularies. As we have shown, the measure performs

very well in our experimental settings. The comparability measure however

suffers from problems such as the bilingual dictionary coverage. Although we

have validated in section 3.3.2 that the comparability measures M and M c are

robust to dictionary changes in a certain range, it will be more interesting if one

can have a measure which are efficient regardless of the dictionary chosen. More

deeply semantic information, for instance the topics contained in the corpus,

can be employed here to make the comparability measure more robust.

• The third direction is to extend the DC condition we have proposed in sec-

tion 5.2.1. The DC condition provides us with the possibility of assessing CLIR

models from a purely theoretical perspective. In this condition, we have consid-

ered a rather simple setting where there is only one word in the query against

two target documents. Similar to the set of constraints developed to feature

a good monolingual IR model, the DC condition can be extended by consid-

ering more query terms in a query against more complex document set, which

provides comprehensive constraints to assess the CLIR model.
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A AN EXAMPLE OF STRUCTURED AND UNSTRUCTURED QUERIES

A.1 The Original Query

For the example here, we take the French topic C089 from the CLEF-2001 task. The

parts we make use of as the query text in above CLIR experiments are title and desc,

and the part narr is simply ignored. The original text of the topic is as follows:

<num> C089 </num>

<FR-title> Faillite de M. Schneider </FR-title>

<FR-desc> Faillite de l’agent immobilier allemand Schneider</FR-desc>

<FR-narr> Les documents pertinents donnent des informations sur la fail-

lite de l’agent immobilier allemand Schneider et sur les raisons de cette

faillite. Ils prennent aussi en considération les omissions, les erreurs et la

responsabilité des banques allemandes dans cette affaire. </FR-narr>

Before the further process, stop words are removed and inflected forms of words are

lemmatized.

A.2 Structured and Unstructured Queries

The structured query is constructed based on the SYN approach which treats the

translation candidates of a query term as synonyms. The unstructured query is

however constructed by replacing each query term with all its translations and then

combining all the translation candidates as a long query. Based on a bilingual dictio-

nary, the structured and unstructured English queries for the French query C089 are

listed below. For simplification, the weight of different query terms are not considered

in this example.
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Structured:

#sum(#syn(bankruptcy failure insolvency collapse bust crash fall break-

ing wall smash) Mr. Schneider #syn(agent factor) immovable German)

Unstructured:

#sum(bankruptcy failure insolvency collapse bust crash fall breaking wall

smash Mr. Schneider agent factor immovable German)
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Lins, R. D. and Gonçalves, P. (2004). Automatic language identification of written
texts. In Proceedings of the 2004 ACM symposium on Applied computing, pages
1128–1133.

Ma, X. and Liberman, M. (1999). Bits: a method for bilingual text search over the
web. In Machine translation summit VII.

Manning, C. D., Raghavan, P., and Schutze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.

Markantonatou, S., Sofianopoulos, S., Spilioti, V., Tambouratzis, G., Vassiliou, M.,
and Yannoutsou, O. (2006). Using patterns for machine translation (mt). In Pro-
ceedings of the European Association for Machine Translation, pages 239–246.

Mehler, A., Sharoff, S., and Santini, M. (2010). Genres on the Web: computational
models and empirical studies. Springer.

Mooers, C. (1950). Coding, information retrieval, and the rapid selector. American
Documentation, 1:225–229.

Morin, E. and Daille, B. (2010). Compositionality and lexical alignment of multi-
word terms. Language Resources and Evaluation, 44:79–95.

Morin, E., Daille, B., Takeuchi, K., and Kageura, K. (2007). Bilingual terminology
mining - using brain, not brawn comparable corpora. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 664–
671.

Munteanu, D. S., Fraser, A., and Marcu, D. (2004). Improved machine translation
performance via parallel sentence extraction from comparable corpora. In Proceed-
ings of the HLT-NAACL 2004, pages 265–272.

Munteanu, D. S. and Marcu, D. (2006). Extracting parallel sub-sentential fragments
from non-parallel corpora. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the Association for Com-
putational Linguistics (ACL-COLING), pages 81–88.

Ni, X., Sun, J.-T., Hu, J., and Chen, Z. (2009). Mining multilingual topics from
wikipedia. In Proceedings of the 18th international conference on World wide web,
pages 1155–1156.



119

Nie, J.-Y. (2010). Cross-Language Information Retrieval. Morgan & Claypool, New
York, NY, USA.

Och, F. J. and Ney, H. (2000). Improved statistical alignment models. In Proceedings
of the 38th Annual Meeting on Association for Computational Linguistics, pages
440–447.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical align-
ment models. Computational Linguistics, 29(1):19–51.

Otero, P. G. and Lopez, I. G. (2010). Wikipedia as multilingual source of comparable
corpora. In Proceedings of the 3rd Workshop on Building and Using Comparable
Corpora.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 311–318.

Pekar, V., Mitkov, R., Blagoev, D., and Mulloni, A. (2006). Finding translations for
low-frequency words in comparable corpora. Machine Translation, 20(4):247–266.

Pirkola, A. (1998). The effects of query structure and dictionary setups in dictionary-
based cross-language information retrieval. In Proceedings of the 21st annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 55–63.

Pirkola, A., Hedlund, T., Keskustalo, H., and Järvelin, K. (2001). Dictionary-based
cross-language information retrieval: Problems, methods, and research findings. Inf.
Retr., 4:209–230.

Prochasson, E. and Fung, P. (2011). Rare word translation extraction from aligned
comparable documents. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 1327–1335.

Rapp, R. (1995). Identifying word translations in non-parallel texts. In Proceedings
of the 33rd annual meeting on Association for Computational Linguistics (ACL),
pages 320–322.

Rapp, R. (1999). Automatic identification of word translations from unrelated En-
glish and German corpora. In Proceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 519–526.

Rayson, P. and Garside, R. (2000). Comparing corpora using frequency profiling.
In Proceedings of the ACL workshop on Comparing corpora, pages 1–6.

Resnik, P. and Smith, N. A. (2003). The web as a parallel corpus. Comput. Linguist.,
29:349–380.

Robertson, S. E. and Jones, S. K. (1976). Relevance weighting of search terms.
Journal of the American Society for Information Science, 27(3):129–146.

Robertson, S. E. and Sparck Jones, K. (1988). Relevance weighting of search terms.
In Willett, P., editor, Document retrieval systems, pages 143–160. Taylor Graham
Publishing.



120

Robitaille, X., Sasaki, Y., Tonoike, M., Sato, S., and Utsuro, T. (2006). Compiling
French-Japanese terminologies from the web. In Proceedings of the 11st Conference
of the European Chapter of the Association for Computational Linguistics (EACL),
pages 225–232.

Salton, G. (1969). Automatic processing of foreign language documents. In Proceed-
ings of the 1969 conference on Computational linguistics, pages 1–28.

Salton, G. (1971). The SMART Retrieval System - Experiments in Automatic Doc-
ument Processing. Prentice-Hall, Inc.

Saralegi, X., San Vicente, I., and Gurrutxaga, A. (2008). Automatic extraction
of bilingual terms from comparable corpora in a popular science domain. In 6th
International Conference on Language Resources and Evaluations - Building and
using Comparable Corpora workshop.

Saralegi Urizar, X. and Alegria Loinaz, I. (2007). Similitud entre documentos mul-
tilingues de caracter cientifico-tecnico en un entorno web. In Proceedings of the
SEPLN, pages 71–78.

Sarikaya, R., Maskey, S., Zhang, R., Jan, E.-E., Wang, D., Ramabhadran, B., and
Roukos, S. (2009). Iterative sentence-pair extraction from quasi-parallel corpora for
machine translation. In Proceedings of the 10th Annual Conference of the Interna-
tional Speech Communication Association, pages 432–435.

Setiawan, H., Dyer, C., and Resnik, P. (2010). Discriminative word alignment with a
function word reordering model. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 534–544.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality
(complete samples). Biometrika, 3(52).

Sharoff, S. (2007). Classifying web corpora into domain and genre using automatic
feature identification. In Proceedings of Web as Corpus Workshop.

Sharoff, S. (2010). In the garden and in the jungle. In Mehler, A., Sharoff, S.,
and Santini, M., editors, Genres on the Web: Computational Models and Empirical
Studies. Springer.

Shezaf, D. and Rappoport, A. (2010). Bilingual lexicon generation using non-aligned
signatures. In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 98–107.

Simard, M. and Plamondon, P. (1998). Bilingual sentence alignment: Balancing
robustness and accuracy. Machine Translation, 13:59–80.

Skadina, I., Vasiljevs, A., Skadins, R., Gaizauskas, R., Tufis, D., and Gornostay, T.
(2010). Analysis and evaluation of comparable corpora for under resourced areas
of machine translation. In Proceedings of the 3rd Workshop on Building and Using
Comparable Corpora, LREC 2010, pages 6–14.

Smith, J. R., Quirk, C., and Toutanova, K. (2010). Wikipedia as multilingual source
of comparable corpora. In Proceedings of Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the ACL.



121

Sperer, R. and Oard, D. W. (2000). Structured translation for cross-language in-
formation retrieval. In Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval, pages 120–127.

Talvensaari, T., Laurikkala, J., Järvelin, K., Juhola, M., and Keskustalo, H. (2007).
Creating and exploiting a comparable corpus in cross-language information retrieval.
ACM Trans. Inf. Syst., 25(1):4.

Tillmann, C. and Xu, J.-m. (2009). A simple sentence-level extraction algorithm
for comparable data. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 93–96.

Turtle, H. and Croft, W. B. (1990). Inference networks for document retrieval. In
Proceedings of the 13th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 1–24.

Veronis, J. (2000). Parallel text processing: Alignment and use of translation corpora.
Kluwer Academic Publishers.

Voorhees, E. M. (1999). The TREC-8 question answering track report. In Proceed-
ings of the 8th Text Retrieval Conference, pages 77–82.

Wu, D. (1997). Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora. Comput. Linguist., 23(3):377–403.

Xu, J. and Chen, J. (2011). How much can we gain from supervised word alignment?
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short papers - Volume 2, pages 165–
169.

Yu, K. and Tsujii, J. (2009). Extracting bilingual dictionary from comparable cor-
pora with dependency heterogeneity. In Proceedings of HLT-NAACL 2009, pages
121–124.

Zhai, C. (2011). Axiomatic analysis and optimization of information retrieval models.
In Proceedings of ICTIR.

Zhai, C. and Lafferty, J. (2001). Model-based feedback in the language modeling ap-
proach to information retrieval. In Proceedings of the Tenth International Conference
on Information and Knowledge Management, pages 403–410.

Zhai, C. and Lafferty, J. (2004). A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22:179–214.

Zhang, Y., Wu, K., Gao, J., and Vines, P. (2006). Automatic acquisition of chinese-
english parallel corpus from the web. In Proceedings of 28th European Conference
on Information Retrieval, pages 420–431.

Zhao, B. and Vogel, S. (2002). Adaptive parallel sentences mining from web bilingual
news collection. In Proceedings of the 2002 IEEE International Conference on Data
Mining.

Zweigenbaum, P., Rapp, R., and Sharoff, S., editors (2011). Proceedings of the 4th
Workshop on Building and Using Comparable Corpora: Comparable Corpora and
the Web. Association for Computational Linguistics.


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Bilingual Corpora
	Quality of Comparable Corpora
	Work in the Thesis
	State-of-the-art Review
	Comparable Corpus Quality
	Comparing Different Corpora
	Parallel Subpart Extraction

	Bilingual Lexicon Extraction
	Extraction from Parallel Corpora
	Extraction from Comparable Corpora

	Cross-Language Information Retrieval
	Monolingual IR Models
	CLIR Strategies
	Resources for IR Experiments

	Conclusion

	Comparability Measures
	The Notion of Comparability
	Developing Comparability Measures
	Measures Based on Vocabulary Overlapping
	Baseline Measures

	Experimental Validation
	Resources in the Experiments
	Evaluating Comparability Measures

	Conclusion


	Enhancing Comparable Corpus Quality
	General Methodology
	Approaches to Enhancing Corpus Quality
	The Greedy Approach
	The Clustering Approach

	Experimental Validation
	Improving Corpus Quality
	Bilingual Lexicon Extraction

	Conclusion

	CLIR Models and Comparable Corpora
	Information-based CLIR Models
	Monolingual Models
	Cross-Language Extensions

	Validation of CLIR Models
	Theoretical Validation
	Experimental Validation
	Embedding Extracted Lexicons

	Conclusion

	Conclusion and Discussion
	An Example of Structured and Unstructured Queries
	The Original Query
	Structured and Unstructured Queries
	MY PUBLICATIONS
	LIST OF REFERENCES


