R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Bibliography, 1993.

A. Alt?n, E. Amaldi, P. Belotti, and M. C. P?nar, Provisioning virtual private networks under traffic uncertainty, Networks, vol.21, issue.1, pp.100-115, 2007.
DOI : 10.1002/net.20145

G. R. Ash, Dynamic routing in telecommunications networks, 1997.

A. Bashllari and D. Nace, A Study on Two New Protection Strategies, Proceedings of the IEEE International Workshop on IP Operations and Management, 2008.
DOI : 10.1007/978-3-540-87357-0_6

A. Bashllari, D. Nace, E. Gourdin, and O. Klopfenstein, The MMF rerouting computation problem, Proceedings of the International Network Optimization Conference, 2007.

W. Ben-ameur, Between fully dynamic routing and robust stable routing, 2007 6th International Workshop on Design and Reliable Communication Networks, 2007.
DOI : 10.1109/DRCN.2007.4762277

W. Ben-ameur and H. Kerivin, Routing of uncertain demands, Proceedings of the INFORMS Telecommunications Conference, 2001.

W. Ben-ameur and H. Kerivin, Networks new economical virtual private, Communications of the ACM, vol.46, issue.6, pp.69-73, 2003.
DOI : 10.1145/777313.777314

W. Ben-ameur and H. Kerivin, Routing of Uncertain Traffic Demands, Optimization and Engineering, vol.6, issue.6, pp.283-313, 2005.
DOI : 10.1007/s11081-005-1741-7

W. Ben-ameur and T. T. Pham, Design of survivable networks based on end-toend rerouting, Proceedings of the International Workshop on the Design of Reliable Communication Networks, 2001.

W. Ben-ameur and M. ?otkiewicz, Robust routing and optimal partitioning of a traffic demand polytope. International Transactions in Operational Research
URL : https://hal.archives-ouvertes.fr/hal-00678809

A. Ben-tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations Research Letters, vol.25, issue.1, pp.1-13, 1999.
DOI : 10.1016/S0167-6377(99)00016-4

D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical Programming, pp.49-71, 2003.
DOI : 10.1007/s10107-003-0396-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Bhandari, Survivable Networks ? Algorithms for Diverse Routing, Kluwer, 1999.

G. Brightwell, G. Oriolo, and F. B. Shepherd, Reserving Resilient Capacity in a Network, SIAM Journal on Discrete Mathematics, vol.14, issue.4, pp.524-539, 2001.
DOI : 10.1137/S0895480100368189

R. E. Burkard, H. Dollani, and P. T. Thach, Linear approximations in a dynamic programming approach for the uncapacitated single-source minimum concave cost network flow problem in acyclic networks, Journal of Global Optimization, vol.19, issue.2, pp.121-139, 2001.
DOI : 10.1023/A:1008379621400

T. Carpenter, D. P. Heyman, and I. Saniee, Studies of random demands on network costs, Telecommunication Systems, vol.10, issue.3/4, pp.409-421, 1998.
DOI : 10.1023/A:1019175202276

C. Chekuri, Routing and network design with robustness to changing or uncertain traffic demands, ACM SIGACT News, vol.38, issue.3, pp.106-129, 2007.
DOI : 10.1145/1324215.1324236

C. Chekuri, F. B. Shepherd, G. Oriolo, and M. G. Scutellá, Hardness of robust network design, Networks, vol.46, issue.1, pp.50-54, 2007.
DOI : 10.1002/net.20165

D. Coudert, P. Datta, S. Perennes, H. Rivano, and M. Voge, SHARED RISK RESOURCE GROUP COMPLEXITY AND APPROXIMABILITY ISSUES, Parallel Processing Letters, vol.17, issue.02, pp.169-184, 2007.
DOI : 10.1142/S0129626407002958

URL : https://hal.archives-ouvertes.fr/hal-00371100

G. Dahl and M. Stoer, A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems, INFORMS Journal on Computing, vol.10, issue.1, pp.1-11, 1998.
DOI : 10.1287/ijoc.10.1.1

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan et al., A flexible model for resource management in virtual private networks, Proceedings of the ACM SIGCOMM, 1999.

J. Edmonds and R. M. Karp, Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems, Journal of the ACM, vol.19, issue.2, pp.248-264, 1972.
DOI : 10.1007/3-540-36478-1_4

A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger, Dynamics of IP traffic: A study of the role of variability and the impact of control, Proceedings of the ACM SIGCOMM, 1999.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford et al., Deriving traffic demands for operational IP networks: methodology and experience, IEEE/ACM Transactions on Networking, vol.9, issue.3, pp.265-279, 2001.
DOI : 10.1109/90.929850

J. A. Fingerhut, S. Suri, and J. S. Turner, Designing Least-Cost Nonblocking Broadband Networks, Journal of Algorithms, vol.24, issue.2, pp.287-309, 1997.
DOI : 10.1006/jagm.1997.0866

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Fortune, J. E. Hopcroft, and J. C. Wyllie, The directed subgraph homeomorphism problem, Theoretical Computer Science, vol.10, issue.2, 1978.
DOI : 10.1016/0304-3975(80)90009-2

M. R. Garey and D. S. Johnson, Computers and Intractability : A Guide to the Theory of NP-Completeness, Series of Books in the Mathematical Sciences). W. H. Freeman, 1979.

N. Goyal, N. Olver, and F. B. Shepherd, Dynamic vs. oblivious routing in network design, Proceedings of the European Symposia on Algorithms, 2009.

M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, vol.2, issue.2, pp.169-197, 1981.
DOI : 10.1007/BF02579273

M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 1988.

G. M. Guisewite and P. M. Pardalos, Minimum concave-cost network flow problems: Applications, complexity, and algorithms, Annals of Operations Research, vol.15, issue.1, pp.1-475, 1990.
DOI : 10.1007/BF02283688

J. Q. Hu, Diverse routing in optical mesh networks, IEEE Transactions on Communications, vol.51, issue.3, pp.489-494, 2003.

S. Irnich and G. Desaulniers, Shortest Path Problems with Resource Constraints, Column Generation, pp.33-65, 2005.
DOI : 10.1007/0-387-25486-2_2

R. M. Karp, Reducibility among combinatorial problems
DOI : 10.1007/978-3-540-68279-0_8

H. Kellerer, R. Mansini, U. Pferschy, and M. G. Speranza, An efficient fully polynomial approximation scheme for the Subset-Sum Problem, Journal of Computer and System Sciences, vol.66, issue.2, pp.349-370, 2003.
DOI : 10.1016/S0022-0000(03)00006-0

L. G. Khachiyan, Polynomial algorithms in linear programming, USSR Computational Mathematics and Mathematical Physics, vol.20, issue.1, pp.191-194, 1979.
DOI : 10.1016/0041-5553(80)90061-0

A. M. Koster and A. Zymolka, Demand-wise shared protection and multiple failures, Proceedings of the International Network Optimization Conference, 2007.
DOI : 10.1007/s10922-005-1855-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. M. Koster, A. Zymolka, M. Jäger, and R. Hülsermann, Demand-wise Shared Protection for Meshed Optical Networks, Journal of Network and Systems Management, vol.28, issue.6, pp.35-55, 2005.
DOI : 10.1007/s10922-005-1855-4

P. Kouvelis and G. Yu, Robust discrete optimization and its applications, 1997.
DOI : 10.1007/978-1-4757-2620-6

L. Lasdon, Optimization Theory of Large Systems, IEEE Transactions on Systems, Man, and Cybernetics, vol.1, issue.3, 1970.
DOI : 10.1109/TSMC.1971.4308301

A. Lisser, A. Ouorou, and J. Vial, Capacity planning under uncertain demand in telecommunications networks, 1999.

C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Journal of the ACM, vol.41, issue.5, pp.960-981, 1994.
DOI : 10.1145/185675.306789

J. Maurras and S. Vanier, Network synthesis under survivability constraints, pp.53-67, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00459695

M. Minoux, Mathematical Programming: Theory and Algorithms, 1986.

M. Nabe and M. M. Miyahara, Analysis and modeling of World Wide Web traffic for capacity dimensioning of Internet access lines, Performance Evaluation, vol.34, issue.4, pp.249-271, 1998.
DOI : 10.1016/S0166-5316(98)00040-6

S. Orlowski, Local and global restoration of node and link failures in telecommunication networks, 2003.

S. Orlowski and M. Pióro, On the complexity of column generation in survivable network design, 2008.

S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, SNDlib 1.0-Survivable Network Design Library, Networks, vol.3, issue.3, pp.276-286, 2010.
DOI : 10.1002/net.20371

A. Ouorou, Robust Capacity Assignment in Telecommunications, Computational Management Science, vol.3, issue.5, pp.285-305, 2006.
DOI : 10.1007/s10287-006-0019-7

G. Petrou, C. Lemaréchal, and A. Ouorou, Robust network design in telecommunications, Proceedings of the International Network Optimization Conference, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00821340

M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks, 2004.

M. Pióro, T. ?liwi?ski, M. Zago?d?on, M. Dzida, and W. Ogryczak, Path Generation Issues for Survivable Network Design, Proceedings of the International Conference on Computational Science and Its Applications, 2008.
DOI : 10.1007/978-3-540-69848-7_65

S. Sen, R. D. Doverspike, and S. Cosares, Network planning with random demand, Telecommunication Systems, vol.17, issue.1, pp.11-30, 1994.
DOI : 10.1007/BF02110042

P. D. Seymour, Disjoint paths in graphs, Discrete Mathematics, vol.306, issue.10-11, pp.979-991, 2006.
DOI : 10.1016/j.disc.2006.03.019

URL : http://doi.org/10.1016/j.disc.2006.03.019

T. Stidsen, B. Petersen, K. B. Rasmussen, S. Spoorendonk, M. Zachariasen et al., Optimal routing with single backup path protection, Proceedings of the International Network Optimization Conference, 2007.

J. W. Suurballe, Disjoint paths in a network, Networks, vol.19, issue.2, pp.125-145, 1974.
DOI : 10.1002/net.3230040204

J. W. Suurballe and R. E. Tarjan, A quick method for finding shortest pairs of disjoint paths, Networks, vol.3, issue.2, pp.325-336, 1984.
DOI : 10.1002/net.3230140209

R. E. Tarjan, Data structures and network algorithms, Society for Industrial and Applied Mathematics, 1983.
DOI : 10.1137/1.9781611970265

K. Thompson, G. J. Miller, and R. Wilder, Wide-area Internet traffic patterns and characteristics, IEEE Network, vol.11, issue.6, pp.10-23, 1997.
DOI : 10.1109/65.642356

A. Tomaszewski, M. Pióro, and M. ?otkiewicz, On the complexity of resilient network design, Networks, vol.4, issue.2, pp.108-118, 2010.
DOI : 10.1002/net.20321

R. Wessäly, Dimensioning Survivable Capacitated NETworks, 2000.

R. Wessäly, S. Orlowski, A. Zymolka, A. M. Koster, and C. Gruber, Demand-wise shared protection revisited: A new model for survivable network design, Proceedings of the International Network Optimization Conference, 2005.

M. ?otkiewicz and W. Ben-ameur, Adding dynamism to robust stable routing, Proceedings of the Polish Teletraffic Symposium, 2009.

M. ?otkiewicz and W. Ben-ameur, More Adaptive Robust Stable Routing, GLOBECOM 2009, 2009 IEEE Global Telecommunications Conference, 2009.
DOI : 10.1109/GLOCOM.2009.5425958

M. ?otkiewicz and W. Ben-ameur, Volume oriented routing, 2010 14th International Telecommunications Network Strategy and Planning Symposium (NETWORKS), 2010.
DOI : 10.1109/NETWKS.2010.5624920

M. ?otkiewicz, W. Ben-ameur, and M. Pióro, Failure disjoint paths, Proceedings of the International Symposium on Combinatorial Optimization, 2010.
DOI : 10.1016/j.endm.2010.05.140

M. ?otkiewicz, W. Ben-ameur, and M. Pióro, Finding Failure-Disjoint Paths for Path Diversity Protection in Communication Networks, IEEE Communications Letters, vol.14, issue.8, pp.776-778, 2010.
DOI : 10.1109/LCOMM.2010.08.100653

M. ?otkiewicz, M. Pióro, and A. Tomaszewski, Complexity of resilient network optimization, Proceedings of the Polish-German Teletraffic Symposium, 2008.

M. ?otkiewicz, M. Pióro, and A. Tomaszewski, Complexity of resilient network optimisation, European Transactions on Telecommunications, vol.66, issue.2, pp.701-709, 2009.
DOI : 10.1002/ett.1371

L. Différentes-variantes-ontétéétudiéesontétéontétéétudiées, Nous proposons des formulations en programmes linéaires, ou en programmes linéaireslinéairesà variables mixtes (MIP) Dans la plupart des cas, la formulation est une formulation non-compacte du type arc-chemin. La formulation compacte sommet-arc est utilisée uniquement dans deux cas de routage bifurquébifurquéà savoir: PP-PD (protection de chemin avec diversité), et la FI-nSR PR

. Dans-ladeuxì-eme-partie-de-la-thèse, nous nous intéressonsintéressonsà un autre type d'incertitude: l'incertitude de la demande de trafic, Nous nous focalisons sur le modèle polyédral