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Chapter 1

Introduction

In this chapter, we give a general introduction of the manuscript. First, we describe the context

and the motivation of the thesis. Second, we highlight the approach, the structure and the main

contributions of this work.

1.1 Context and Motivation

A call center is a service system. It is a facility designed to support the delivery of some interactive

service via telephone communications, email, chat, etc. The de�nition of a call center is continuously

changing with technological development, but the core fundamentals of acustomer making a call

(via a phone, email, web site, fax or Interactive Voice Response) to acenter (collection of resources)

will remain constant. This thesis focuses on operations management issues for multi-skill and multi-

channel call centers. In what follows, we �rst present the context of the call center industry and

the related operations management issues. Second, we focus on the motivation of this work, and

present our collaboration with the French consulting company Interact-iv, which was at the origin

of most of the addressed problems in this thesis.
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Context. Call centers make up a large and growing part of the global economy. They are very

labor-intensive operations, employing millions of persons across theglobe. Call centers serve as

the public face in various areas and industries: insurance companies,emergency centers, banks,

information centers, help-desks, tele-marketing, etc. The success of call centers is due to the

technological advances in information and communications systems, see Pinedo et al. (1999). The

most important call centers equipments are the Interactive Voice Response (IVR), the Automated

Call Distributor (ACD), and the Computer Telephone Integration (CTI ). These technologies have

grown cheaper, more reliable, and more sophisticated. Moreover, these advances enabled various

call center tasks which requires multiple skills and channels.

In multi-skill call centers, the call assignment strategy of Skills-Based Routing (SBR), is used

to assign incoming calls to the most suitable agent. The report of Holman et al. (2007) made on

2500 call centers in 17 countries with 475,000 employees points out that 56% of call centers use

SBR strategies. These strategies are an enhancement to ACD systems.

Next, the development of alternative channels goes together with an adaptation to impatient

customers with higher expectations. The recent report of ICMI (2013), based on the analysis of 361

large contact centers, presents the increasing use of new channels and the related research issues.

In particular, they point out that outbound tasks require intensive i ntegration with inbound ones

in most call centers. Although the inbound calls remain present in mostcall centers (98%), emails

are also widely used (89%). Moreover, outbound calls (76%), Web (70%) and chats (40%) are

important and developing channels. We refer the reader to the description of the general context

of multi-channel call centers management in Chapter 7 of Koole (2013).

Due to the operational di�culties to �nd better solutions than intui tive ones, managers have

a continuous interest in the related research disciplines. The literature on operations management

in call centers has focused on the following issues: demand forecasting, quality of service, capacity

planning, queueing, call routing, sta�ng and agents scheduling. The related main academical dis-
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ciplines are Mathematics and Statistics, Operations Research, Industrial Engineering, Information

Technology, Human Resource Management, as well as Psychology and Sociology. Theoverall pur-

pose of this literature is helping the manager in improving the management of their call centers.

We refer the reader to the complete surveys of the academic literature on call center operations

management by Gans et al. (2003) and Ak�sin et al. (2007).

The goal of the present thesis is to contribute to the operations management research in multi-

skill and multi-channel call centers. The purpose is to enhance ourunderstanding of such complex

systems, so as we obtain useful guidelines for the practitioners.

Motivation. In what follows, we want to motivate the problems under consideration. These are

related to exibility in multi-skill call centers and also to the routing issues in multi-channel call

centers.

The concept of exibility is related to the ability of a company to e�c iently match its capacity

to an uncertain demand with multiple types. A wide literature has focused on the distribution of

skills par agent. Increasing the number of skills per agent goes together with a better use of the

resources but also with more costly resources. A well known studied and e�cient con�guration is

chaining, �rst pointed out by Jordan and Graves (1995) in the context of manufacturin g systems.

In this con�guration each agent has only two skills and the distribution of the skills corresponds

to a chain. A precise de�nition of the chaining architecture will b e given in Chapter 2. Developing

intelligent con�gurations such as chaining is very interesting for practitioners. The value of these

con�gurations is that they capture the bene�ts of pooling by only havin g a limited exibility.

However, the robustness of chaining fails in the case of asymmetric parameters (Sheikhzadeh et al.

(1998)). The situations with asymmetric parameters arise in practice. The typical example is that

of an European multilingual call center where customers call from several countries. For instance in

Bluelink (a service provider of Air France KLM), each agent speaks twolanguages: her own native

language and English. The workload is unbalanced ranging from only some few calls from a given
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country to several thousand of calls from another country. For such cases in practice, it is important

to develop new architectures that allow on the one hand to account for demand asymmetry, and

on the other hand to capture the bene�ts of pooling with only a limited exibility.

Call centers require a very accurate match of demand and supply. Since the volatility of call

arrival patterns is high, there is often a mismatch between demand andthe scheduled number of

inbound agents. Moreover, even if the demand is accurately forecasted, a considerable overcapacity

should be scheduled to be able to deal with the random Poisson uctuations of the demand. To

prevent idle overcapacity and to limit the necessity to have extremely accurate forecast, inbound

calls are sometimes mixed with other types of channels which have a less strict allowable delay,

such as emails or outbound calls. This is referred to as(call) blending. It arises in the context of

multi-channel call centers. Next, we describe some motivational examples for blended operations

issues.

In practice, we may �nd situations where a conversation between an agent and a customer

contains a natural break. For example, an agent of an internet hotline asks the customer to reboot

her modem or her computer which may take some time where no interactions can take place. It is

also often the case that a call center agent of an electricity supplier company asks the customer for

the serial number of her electricity meter box. Another example isthat of commercial call centers

with a �nancial transaction during the call conversation. Inside an underway conversation, the

agent is then free to do another task if needed. For an e�cient use of theagent time, there might

be an opportunity to route the less urgent jobs (emails) to agents, not only when the system is

empty of calls, but also during the call conversations. An interesting research question here is how

should be the routing rules as a function of the system parameters.

Even in the classical case of a single stage call conversation, the ACD programming is still

a complex task for a blending situation. Bhulai and Koole (2003) and Gans and Zhou (2003b)

show that e�cient assignment policies are those with agent reservation for inbound calls. The
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main complexity comes from the uctuation of the system parameters, in particular those of the

jobs arrival processes. For instance from the statistical analysis of a call center data provided

by Interact-iv, we observe that during a given period the arrival volume can triple from one day

to another. The reasons of the uctuations is hard to determine and an observation can hardy

be duplicated on a future period. Given this fact, one could focus ondeveloping routing policies

with a continuous adaptation of the agent reservation threshold, while using at a minimal level the

forecasted system parameters.

In the context of highly congested call centers, the use of a callback option can be proposed to

customers so as to balance workload and avoid excessive abandonments. Since a callback option

transforms an inbound call into an outbound one, the issue in the management of this option is

somewhat similar to that of a blended situation. Some practical speci�cproblem can be pointed

out: What should be the routing rules of the jobs in the ACD, in order to optimize the system

performance in terms of the waiting times of inbound and outbound jobs?

This work is done, in its major part, under a collaboration with the Fren ch consulting company

Interact-iv. Interact-iv sells software, advice and methods to call centers. The customers of Interact-

iv are for a large part small multi-channel call centers. Through the collaboration, the purpose

of Interact-iv is to provide to its customers (call center managers)solutions that are thoroughly

supported quantitatively. We had the opportunity to work on various issues of multi-channel call

centers and had access to real call center data. This collaboration o�ered awealth of learning

opportunities.

1.2 Structure and Main Contributions

In this section, we describe the structure and the main contributions of the manuscript. We briey

describe the di�erent chapters separately and give their corresponding submitted or working papers.

The current thesis can be divided into two parts. The topic of the � rst part is the design of

5



multi-skill call center architectures. It corresponds to Chapter 2. The topic of the second part is

the optimal routing in multi-channel call centers. It corresponds to Chapters 3, 4 and 5.

In Chapter 2, we focus on architectures with limited exibility f or multi-skill call centers. The

context is that of call centers with asymmetric parameters: unbalanced workload, di�erent service

requirements, a predominant customer type, unbalanced abandonments and high costs of cross-

training. The well known architectures with limited exibilit y such as chaining fail against such

asymmetry. We propose a new architecture referred to as single pooling with only two skills per

agent. We provide a comparison framework between chaining and single pooling and demonstrate

the e�ciency of single pooling under various situations of asymmetry. We also develop analytical

results for particular single pooling models, in order to get some sense on the e�ect of arrival

asymmetry on performance. This Chapter is based on Legros et al. (2012) (undersecond round

revision in International Journal of Production Economics ).

In the second part, we focus on routing problems in multi-channel call centers. In Chapter 3,

we consider a blended call center with calls arriving over time andan in�nitely backlogged queue of

emails. The call service is characterized by three successive stages where the second one is a break.

We de�ne parameters of control for the routing of emails between or inside calls treatment. Next,

we develop a method based on the analysis of Markov chains in order to derive the performance

measures of interest for calls and for emails. We focus on optimizing the email routing parameters.

In addition, we develop an approximation method for the system performance evaluation under

the light-tra�c regime. We also propose an approximation method to extend the results to the

multi-server case. We derive various structural results and conclude that all the time at least one

of the two email routing parameters has an extreme value. This chapter is based on Legros et al.

(2013c) (submitted to Stochatic Systems).

In Chapter 4, we examine a threshold policy that reserves agents for inbound calls. We study a

general non-stationary model where the call arrival follows a non-homogeneous Poisson process. The
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optimization problem consists of maximizing the throughput of outbound tasks under a constraint

on the waiting time of inbound calls. We propose an e�cient adaptive threshold policy easy to

implement in the Automatic Call Distributor (ACD). This scheduli ng policy is evaluated through

a comparison with the optimal performance measures found in the case of a constant stationary

arrival rate, and also a comparison with other intuitive adaptive threshold policies in the general

non-stationary case. This chapter is based on Legros et al. (2013a) (submitted to IIE Transactions ).

In Chapter 5, we consider a call center model with a callback option, which allows to transform

an inbound call into an outbound one. The optimization problem consists of minimizing the

expected waiting time of the outbound calls while respecting a service level constraint on the

inbound ones. We propose a routing policy with two thresholds, one on the reservation of the

agents for inbound calls, and another on the number of waiting outbound calls. A curve relating

the two thresholds is determined. This chapter is based on the ongoing paper Legros et al. (2013b).

In Chapter 6, we close the thesis by giving general concluding remarksand highlighting direc-

tions for future research.
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Chapter 2

A Flexible Architecture for Call

Centers with Skill-Based Routing

We focus on architectures with limited exibility for multi-sk ill call centers. The context is that of

call centers with asymmetric parameters: unbalanced workload, di�erent service requirements, a

predominant customer type, unbalanced abandonments and high costs of cross-training. The most

knowing architectures with limited exibility such as chainin g fail against such asymmetry. In this

paper, we propose a new architecture referred to as single pooling with only two skills per agent

and we demonstrate its e�ciency. We conduct a comprehensive comparison between this novel

architecture and chaining. As a function of the various system parameters, we delimit the regions

where either chaining or single pooling is the best. Single poolingleads to a better performance

than chaining while being less costly under various situations of asymmetry: asymmetry in the

number of arrivals, in the service durations, in the variability of service times, or in the service

level requirements. It is also shown that these observations are more apparent for situations with

a large number of skills, or for those with a large call center size.
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2.1 Introduction

Context and Motivation. The concept of exibility is related to the ability of a company to

e�ciently match its capacity to an uncertain demand with multiple t ypes. The need for exibility

arises in a wide range of manufacturing systems. It also extends to service systems, such as call

centers, where di�erent types of customers ask for a quasi-instantaneous processing. Resource ex-

ibility in call centers reduces to cross-training agents, which allows to improve both the utilization

and the performance. Since cross-training agents is achieved with higher operating costs, resource

exibility could result in a trade-o� between performance and cost. The performance is measured

through operational indicators such as the expected waiting time, the probability of waiting, and

the waiting time distribution, or also through human resource aspectsthat result in a higher e�-

ciency of the agents. Cross-training may improve the agent motivation and provides a career path.

In this chapter, we only focus on the operational indicators.

The process exibility problem have been studied in di�erent directions, such as machine shar-

ing, multi-stage supply chains, queueing systems and exible workforce scheduling. Here we con-

sider exibility questions in the context of queueing models for call centers. A wide literature has

focused on contrasting two extreme situations. Thefull exible architecture (FF) versus the the

full dedicated (FD) one. In the FF model, each agent is fully cross-trained for all call types. In

most situations in which call types have similar service duration requirements, FF would require

less agents than any other architecture, in order to reach a given prede�ned service level. The

reason is that it bene�ts from the economies of scale, which absorb stochastic variability (Borst

et al. (2004)). However the agents in FF are too costly and even sometimes impossible to �nd.

As commented by Marengo (2004), the multilingual Compaq call center certainly could not �nd or

train agents to speak eleven languages! In the other extreme situation of the FD model, an agent

is only trained to handle a single call type. Agents are then less costly, but FD would require a

larger sta�ng level to reach the same service level as in FF or any other architecture.
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Full exibility and full dedication, however, are only two extrem e situations. A well known and

studied intermediate con�guration is chaining, �rst pointed out by Jordan and Graves (1995). In the

chaining model, each call type can be assigned to one of two adjacent agent teams, and each agent

can handle calls from two adjacent types. Sheikhzadeh et al. (1998), Gurumurthi and Benjaafar

(2004), and Jordan et al. (2004) prove that chaining, with an appropriate linkage between demand

and resource types, behaves just as well as full exibility. In the context of Constant Work in

Process (CONWIP) serial production lines, Hopp et al. (2004) showed thatthe impact of forming a

complete chain of skill sets can be substantial in increasing throughput. Wallace and Whitt (2005)

consider the problem of routing and sta�ng in multi-skill call cente rs. They again con�rm the

principal that a little exibility has the potential to achieve the performance of total exibility.

Using simulation they demonstrate that the performance, with an appropriate and limited cross-

training of agents (two skills per agent) such as in chaining, is almost as good as when each agent

has all skills.

Developing intelligent con�gurations such as chaining is very interesting for practitioners. The

value of these con�gurations is that they capture the bene�ts of pooling by only having a limited

exibility. However, the robustness of chaining fails in the case ofasymmetric demand (Sheikhzadeh

et al. (1998)). By asymmetric demand, we mean di�erent workload intensities and service time

requirements, and also di�erent variabilities in inter-arrival an d service times. For such cases in

practice, it is important to develop new architectures that allows from the one hand to account for

demand asymmetry, and from the other hand to capture the bene�ts of pooling with only a limited

exibility.

In this chapter, we consider skill-based routing (SBR) call centers with two particular features:

demand asymmetry and costly/di�cult agent training. The typical exampl e is that of an European

multilingual call center where customers call from several countries. It is di�cult for managers to

�nd agents speaking more than two languages. For instance in Bluelink (the service provider of Air
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France KLM), each agent speaks two languages: her own native language and English. Note that

Bluelink is more interested in agents speaking two languages than thosespeaking three or more

languages. The reason is that the latter often feel themselves over-quali�ed. They are therefore

likely to leave the company faster than the others, which increasesthe turnover. The workload

is also unbalanced ranging from only some few calls from a given country to several thousand of

calls from another country. Another example is that of post-sales servicecall centers of retailers

such as Darty and Fnac which are French distributors of white goods, telecommunications products,

information technology, but also internet services, photo servicesor travel services. We also give the

example of retail banking call centers where questions are with regardto savings or stock exchange

for examples. The main characteristics in the previous examples are (i) the demand is unbalanced,

(ii) the nature of the required agent skills can be very di�erent which make di�cult or too costly

the agent training, and (iii) one may �nd a predominant and \easy" type of qu estions that could

be handled by most of the agents without any particular training, for example the English task in

a multilingual call center, account information and simple bank tasks in banking, order tracking

and payment for retailers, etc.

Main �ndings. Motivated by this prevalence in practice, we propose in this chaptera new call

center architecture that can be used instead of chaining. For such cases, applying chaining is too

costly and di�cult to implement (many combinations of two tasks per agen t are even hard to

obtain). Moreover, existing literature have shown that chaining is not appropriate for such demand

situations: unbalanced workload of the \di�cult" tasks and a predominant \e asy task". As proven

in Bassamboo et al. (2010), the tailored pairing architecture is e�cient for small systems including

those with asymmetries. However, this architecture requires an important number of cross-trained

teams which might be again di�cult to implement in practice. We propos e a new organizational

model, referred to assingle pooling, where we dedicate a team of agents to each di�cult type of

calls, and the easy type of calls have access to all agents from all teams. Balancing the workload
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among the agents in this way captures the bene�ts of pooling without requiring every agent to

process every call type.

A concise de�nition of our model will be given later. We do not claim that our model is better

than chaining in all cases, but only in the particular range of parameters asshown in the call

center examples above. The value of our architecture is that it has a low degree of exibility (each

agent handles one di�cult type and the easy task) while behaving in terms of performance as a

fully exible call center. This is important in practice since add itional exibility often comes at

the cost of high operating overhead. Hence, the results of our analysis have signi�cant managerial

implications.

Using simulation, we conduct a comprehensive comparison between this novel architecture and

chaining. As a function of the various system parameters, we delimit the regions where either

chaining or single pooling is the best. Our key �ndings are highlighted next. Single pooling leads

to better performance while being less costly than chaining undervarious situations of asymmetry

between the customer types: asymmetry in the number of arrivals, in the service duration, in the

variability of service times, or in the service level requirements. Moreover, we conclude that these

observations are more apparent for situations with a large number of skills, or for those with a

large call center size. In practice, the issue of limiting the exibility appears more in large call

centers, rather than in small ones with a few number of agents. In smallcall centers, the number

of customer types is often very limited or they are very similar in terms of the required agent skills,

so that the agents are usually full-exible. Hence, there is often noneed for managers to deal with

cross-training questions. These insights show that there might beopportunities for managers of

call centers to improve performance using the single pooling architecture.

The rest of the chapter is organized as follows. In Section 2.2 we reviewsome of the literature

related to this chapter. In Section 2.3 we describe chaining and single pooling models, and provide

the comparison framework. In Section 2.4, we develop analytical results for particular single pooling
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models, in order to get some sense on the e�ect of arrival asymmetry on performance. In Section

2.5, we use simulation to compare between the two call center models under various situations of

asymmetry on the system parameters. Section 2.6 concludes the chapter and highlights some future

research.

2.2 Literature Review

There is an extensive and growing literature on call centers. We refer the reader to Gans et al.

(2003) and Ak�sin et al. (2007) for an overview. We review in what follows some of the literature

related to this work.

Impact of Pooling. The value of pooling comes from the creation of exibility. The general

known intuition is that pooled systems are more e�ective than independent ones. The impact of

pooling has been �rst studied in Smith and Whitt (1981). They show that pooling always leads

to a better performance in terms of the expected delay in queue. Ak�sin and Karaesmen (2007)

investigate the impact of the call center size on the opportunity to addexibility. They demonstrate

that a small call center will bene�t more from adding exibility than a large one.

Benjaafar (1995) studies the impact of pooling for a variety of manufacturing,telecommunica-

tion and computer systems. He considers a multi-processing system consisting of several facilities

and shows that in some situations of heterogeneity in the workloads, increasing exibility can dete-

riorate performance. Mandelbaum and Reiman (1998) consider stochastic service systems modeled

as queueing networks. The service of a customer amounts to a collection of tasks. They show

that adding exibility does not automatically improve performance. T hey point out that adding a

partial exibility could be devastating for a queueing network. Recently, van Dijk and van Der Sluis

(2008) show in the context of SBR call centers that without any clever routing rules and under

a high variability in the call types and the resources, pooling could deteriorate the performance

in terms of the average waiting time. In their work, Tekin et al. (2009) investigate the e�ciency
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bene�ts achievable via cross-training in SBR call centers. They conclude that under �rst come,

�rst served (FCFS), the pooling of the dedicated teams is appropriate for heavy workloaded teams.

However, it is not necessarily the case for teams with light workloads. They then use the di�erence

between the arrival rates of the customers as a choice parameter based on which the decision of

pooling would be taken or not. Inspired by the results of Smith and Whitt (1981), they also con-

clude that pooling teams could be counterproductive if services time means are very di�erent from

one customer type to another (for example when one is six times higher than the other ones).

Flexible Architectures. The most fundamental work on exibility is that by Jordan and Graves

(1995) for the automobile assembly plants, but it can be also applied to broader manufacturing

system settings. They conduct an extensive simulation study and conclude that \a little exibility

can achieve almost all the bene�ts of total exibility" under a con�gurat ion referred to as chaining,

with two product types per plant. They demonstrate that the expected shortfall and capacity

utilization of chaining resources are close to those under a full exible con�guration. Garavelli

(2001) considers the setting of job shop cellular manufacturing systemsused to perform batch

production. He �nds similar results to those by Jordan and Graves (1995) through a comparison

between the performance of a full dedicated system, a full exible one and chaining. Similar results

are found by Garavelli (2003) in a complex supply chain environment, requiring the coordination of

many plants producing good to customers located in di�erent places. Again in the context of cellular

manufacturing systems, Albino and Garavelli (1999) analyze the bene�tsof a limited exibility.

Starting from two industrial case studies concerning in-house metalworking shops, Nomden and

van der Zee (2008) �nd by simulation that a chained distribution of routes behave very well.

For queueing systems, Gurumurthi and Benjaafar (2004) compare di�erentscenarios of adding

exibility under di�erent routing policies. They prove that th e value of chaining decreases for an

asymmetric demand. Hopp and van Oyen (2004) consider the question of how to cross-train a worker

to two skills in the context of serial production lines. They conclude that a novel strategy called skill
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chaining strategy is more robust against variability than a cherry-picking strategy (a team is full

exible) when demand is symmetric. The cherry-picking strategy in a serial production line can be

seen as similar to single pooling, where the customers are the machines, and the bottleneck machine

represents the easy type of calls. Tomlin and Wang (2005) consider the context of unreliable supply

chains that produce multiple products. They study four canonical supply chain design strategies,

where one of them, referred to as dual-source exible, has been already proposed by Chevalier et al.

(2004) in the context of call centers. They re�ne the prevailing intui tion that a exible network

is preferable to a dedicated network by proving that this intuiti on is valid if either the resource

investments are perfectly reliable or the �rm is risk neutral. In a similar setting to ours, Robbins

and Harrison (2010) introduce an SBR call center queueing model with twocustomer types, referred

to as partial pooling. They consider two dedicated agent teams for each customer type, and one

cross-trained team for both types. They show that cross-training a small number of agents can

deliver a substantial bene�t. They also �nd the level of cross-training that minimizes sta�ng costs,

while satisfying a service level constraint. Bassamboo et al. (2010) study the exibility problem

with a newsvendor network model of resource portfolio investment.They conduct a comparison

between chaining and tailored pairing. They show that a system that combines dedicated and

cross-trained agents is asymptotically optimal. They also show using simulation experiments that

the \tailored pairing" design is superior for small systems, including systems with asymmetries.

The tailored pairing architecture might be one of the best propositionsin the literature to deal

with the asymmetric parameters. However as already mentioned above, we can not retain this

architecture as a reference in our project. The reason is that for callcenters with many skills,

working under tailored pairing may lead to non-realizable situations. In such a case, the number

of two-skills combinations could be very high.

Garnett and Mandelbaum (2001) argue on the importance of adapting the system architecture

to the asymmetry in the customer arrival rates. In summary, chaining is robust according to its
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ability to support variability. It however fails when demand is asymmetric. It can be also too

expensive to train agents on various combinations of two skills. For these situations, we propose

and analyze in this project a new e�cient con�guration of a queueing call center model.

Agent Skills, Sta�ng and Routing. In an SBR call center, agents can often only be trained

for a subset of skills. One key management issue is to determine thesubset of skills that will be

considered, and the number of agents for each subset of skills. Pinkerand Shumsky (2000) build

a learning model where the quality of service is related to the employee experience. According to

their model, the bene�ts of exibility are not guaranteed. It is tru e that a exible agent can treat

more customers, but the quality of service would not be as good as it wouldbe with a dedicated

agent. They also compare between di�erent system sizes and show thatspecialization is preferred

in large systems and complete pooling is preferred in small systems. For medium size systems, a

mix of exibility and specialization would be appropriate. In a call center context, Wallace and

Whitt (2005) conclude using an extensive simulation study that, when you add skills to an agent,

most of the bene�ts is taken going from one skill per agent to two skills per agent. These results

tend to support the idea of limiting the number of skills per agent.

As for the problems of sta�ng and routing, we refer the reader to the survey by Gans et al.

(2003), where the authors present the square-root sta�ng rule. Borst et al. (2004) revisited the

square-root rule by including principles of routing based on agent costs. To optimize the sta�ng

level in an SBR call center, Henderson and Mason (1998) combine simulation andinteger program-

ming with cutting plane methods. Atlason et al. (2008) provide interesting properties of a cutting

plane method for sta�ng and prove that it outperforms traditional sta�ng heuristics which are

based on analytical queueing methods. Some other works have investigated the impact of the type

of the agent contract on the required sta�ng level in order to reach a given service level: Ren and

Zhou (2008) consider piece-meal and pay-per-call-resolved contracts andpropose other contracts

that coordinate both sta�ng and e�ort.
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Borst and Seri (2000) present a routing heuristic that assigns customersto the available agent

with the most specialized set of skills which is a generalization of the \specialist-�rst" principle.

Chevalier et al. (2004) show that in terms of performance a 20/80 model (20% of generalists and

80% of specialists) performs almost as good as a full exible model, moreover, it has lower operating

costs. In a manufacturing setting, Sheikhzadeh et al. (1998) evaluate thedi�erence in performance

between strict priority, longest queue �rst and random priority in a comparison between chaining

and full exibility. They remark that the longest queue �rst policy is the best one. In order to

perform a coherent comparison between chaining and our model, we �rstchoose the appropriate

routing rules and also sta�ng levels.

2.3 Problem Setting

We consider call center models withn + 1 call types (types 0, 1, ..., n). Customer types 1, 2, ...,

n, referred to as also regular types are those requiring speci�c agent skills 1, 2, ..., n, respectively,

while customers 0 can be handled by any agent without a particular \sophisticated" training as

required for the regular types. In other words, skill 0 is an easy skill. The mean arrival, service

and abandonment rates of customers typei are � i , � i and  i , respectively (i = 0 ; 1; :::; n). The

agents are organized in homogeneous teams, i.e., all agents from a given team have the same set of

skills. In this chapter we only consider agent teams with at most two skills per agent. We de�ne

an economic framework as follows. We assume that skill 0 costs 1, and that skill i costs 1+t i (for

i = 1 ; � � � ; n). For two skills i and j , the cost is 1+t i;j (for i; j 2 f 0; � � � ; ng). Since skill 0 is the

easy skill, we assume thatt i; 0 � t i;j (for i; j 2 f 0; � � � ; ng).

We are interested in the performance in terms of the expected waiting time in the queue of

each customer typei taken in service, denoted byWi , for i = 0, 1, ..., n. We denote the objective

service level for a typei by W �
i , for i = 0, 1, ..., n. In what follows, we describe the two models

that we compare in this chapter: chaining and single pooling. We do not consider the architectures
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developed by Borst and Seri (2000), and Bassamboo et al. (2010), because in our context they are

too costly or even very hard to implement by a call center manager due to the speci�city of the

agent skills.

Chaining and single pooling models are shown in Figures 2.1(a) and 2.1(b),respectively. In

the chaining model, the skills of the teams are such that they form a chain. The value of the well

known chaining model comes from its capability to smooth the workload over the agent teams.

In the single pooling model, customers type 0 bene�t from a complete pooling, whereas the other

types have only access to one dedicated team. The value of this architecture is that it allows to

appropriately handle situations of asymmetry in demand as we will show later. Single pooling can

be seen as a dual of the architecture proposed by Chevalier et al. (2004), with dedicated single skill

agent teams and one team of agents with all skills.
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Figure 2.1: Call center con�gurations

The functioning we consider for chaining and single pooling is intuitive and easy to implement

in practice. Under chaining, a customer upon her arrival has access to agents from two teams. If at

least an agent is available in one of them, then the customer is routed to the team with the higher

proportion of idle agents (number of idle agents in a team over the total number of agents in that

team). If this proportion is the same for the two teams, then she is equiprobably routed to one of

the two teams. Otherwise if all agents from the two teams are busy upon her arrival, the customer
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waits in her queue (each customer type has its own queue). An agent can handle customers from

two queues. Within each queue, the discipline of service is FCFS. When an agent becomes idle,

she selects to service one of the customers that are waiting in the two queues, if any. The priority

is given to the customer with the longest waiting time.

For single pooling, the routing rules are as shown in Figure 2.1(b). The discipline of service in

each one of then + 1 queues is FCFS. A customer typei (for i = 1 ; :::n) can be served by only

an agent from its associated team. A customer type 0 however can be served by any agent of any

one of the n + 1 teams. Upon arrival, a customer type 0 is in priority handled by an idle agent

from team 0, if any. If not, she is handled by an idle agent from one of the teamsof the regular

customer types, if any. If more than one of those have at least one idle agent, then customer 0 is

routed to the team with the higher proportion of idle agents. If many teams have the same highest

proportion, then customer 0 is equiprobably routed to one of these teams. If all agents of all teams

are busy, then customer 0 is placed in her queue. When an agent from one ofthe teams of the

regular customers becomes free, it can serve either a regular customer or a customer 0. However

a regular customer has a non-preemptive priority over a customer 0. This means that the idle

agent deals with a call from her regular queue �rst (the �rst in line). If the queue of the associated

regular type is empty, this agent provides service to a customer 0 (the �rst in line). We assume in

our models that the queues are in�nite.

In this project, we compare between the two models chaining and single pooling through sim-

ulations. In order to have a coherent comparison we optimize their totalsta�ng cost under the

constraints Wi � W �
i , for i = 0 ; 1; :::; n. We use greedy heuristics for the simulation based opti-

mization step. We refer the reader to the details in Section A.1 of theappendix. For the sta�ng

optimization of SP, we use an increasing greedy algorithm. Starting from anunder-sta�ed situation

(a full dedicated model with customers 0), we increase step by step the arrival rate of customers

0. In each iteration, we increment the number of agents in the various teams such that we strictly
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reach the service level constraints. For chaining, we develop a decreasing greedy algorithm. The

algorithm starts with an over-sta�ed situation using a full dedicated model, which is the worst for

chaining since it ignores the links between the teams. We then usean e�cient method suggested

by Wallace and Whitt (2005) in order to correct the sta�ng levels to the ch aining setting.

2.4 Particular Single Pooling Cases

The analytical analysis of the general case of single pooling is too complex. We consider in this

section two particular Markovian cases of single pooling, for which, we develop exact and approxi-

mate results. The objective of this analysis is to obtain some sense on the e�ect of the parameters

asymmetry on performance. A more comprehensive analysis of the e�ect ofasymmetry is then

conducted in Section 2.5 using simulation.

2.4.1 Three Customer Types

Consider a single pooling model with three customer types 0, 1 and 2. The arrival process of types

0, 1 and 2 is Poisson with rates� 0, � 1 and � 2, respectively. There two agent teams 1 and 2 with

sizess1 and s2, respectively. The service rate, denoted by� , is identical for all customer types.

Using a Markov chain approach, we compute in what follows the expected waiting times for all

customer types.

Let us de�ne the stochastic processf (x(t); y(t); z(t)) t � 0g, where x(t) and y(t) denote the

number of busy agents in teami plus the number of waiting customers in queuei (i = 1 ; 2), and

z(t) denotes the number of waiting customers in queue 0, for an instantt � 0. Since inter-arrival

and service times are Markovian,f (x(t); y(t); z(t)) t � 0g is a Markov chain. Let us denote the

system steady-state probabilities by � x;y;z , for x, y, z 2 N. Note that we can have z � 1 only

when x � s1 and y � s2. From the Markov chain, one may write the following set of equations.

We have (� 1 + � 2 + � 0)� 0;0;0 = � (� 1;0;0 + � 0;1;0). For x = 0 and y > 0, (� 1 + � 2 + � 0)� 0;y;0 =
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min(y + 1 ; s2)�� 0;y+1 ;0 + �� 1;y;0 + � 2� 0;y� 1;0. For x > 0 and y = 0, ( � 1 + � 2 + � 0)� x;0;0 = min( x +

1; s1)�� x+1 ;0;0 + �� x;1;0 + � 1� x� 1;y;0. For 0 < x < s 1 or 0 < y < s 2, there are 5 cases: Ify � 1 > s2
s1

x,

(� 1 + � 2 + � 0 +min( x; s1)� +min( y; s2)� )� x;y; 0 = min( x +1 ; s1)�� x+1 ;y;0 +min( y +1 ; s2)�� x;y +1 ;0 +

(� 1 + � 0)� x� 1;y;0 + � 2� x;y � 1;0. If y � 1 = s2
s1

x, (� 1 + � 2 + � 0 + min( x; s1)� + min( y; s2)� )� x;y; 0 =

min(x+1 ; s1)�� x+1 ;y;0+min( y+1 ; s2)�� x;y +1 ;0+( � 1+ � 0)� x� 1;y;0+( � 2+ � 0=2)� x;y � 1;0. If y� 1 < s2
s1

x

and y > s2
s1

(x � 1), (� 1 + � 2 + � 0 + min( x; s1)� + min( y; s2)� )� x;y; 0 = min( x + 1 ; s1)�� x+1 ;y;0 +

min(y + 1 ; s2)�� x;y +1 ;0 + ( � 1 + � 0)� x� 1;y;0 + ( � 2 + � 0)� x;y � 1;0. If y = s2
s1

(x � 1), (� 1 + � 2 +

� 0 + min( x; s1)� + min( y; s2)� )� x;y; 0 = min( x + 1 ; s1)�� x+1 ;y;0 + min( y + 1 ; s2)�� x;y +1 ;0 + ( � 1 +

� 0=2)� x� 1;y;0 +( � 2 + � 0)� x;y � 1;0. If y < s2
s1

(x � 1), (� 1 + � 2 + � 0 +min( x; s1)� +min( y; s2)� )� x;y; 0 =

min(x + 1 ; s1)�� x+1 ;y;0 + min( y + 1 ; s2)�� x;y +1 ;0 + � 1� x� 1;y;0 + ( � 2 + � 0)� x;y � 1;0. For x = s1,

y = s2 and z = 0, ( � 1 + � 2 + � 0 + ( s1 + s2)� )� s1 ;s2 ;0 = s1�� s1+1 ;s2 ;0 + s2�� s1 ;s2+1 ;0 + ( � 1 +

� 0)� s1 � 1;s2 ;0 + ( � 2 + � 0)� s1 ;s2 � 1;0 + ( s1 + s2)�� s1 ;s2 ;1. For x = s1 and y > s 2, (� 1 + � 2 + � 0 +

(s1 + s2)� )� s1 ;y;0 = s1�� s1+1 ;y;0 + s2�� s1 ;y+1 ;0 + ( � 1 + � 0)� s1 � 1;y;0 + � 2� s1 ;y� 1;0 + s1�� s1 ;y;1. For

x > s 1 and y = s2, (� 1 + � 2 + � 0 + ( s1 + s2)� )� x;s2 ;0 = s1�� x+1 ;s2 ;0 + s2�� x;s2+1 ;0 + � 1� x� 1;s2 ;0 +

(� 2 + � 0)� x;s2 � 1;0 + s2�� x;s2 ;1. For x > s 1, y > s 2 and z = 0, ( � 1 + � 2 + � 0 + ( s1 + s2)� )� x;y; 0 =

s1�� x+1 ;y;0 + s2�� x;y +1 ;0 + � 1� x� 1;y;0 + � 2� x;y � 1;0. For z > 0, (� 1 + � 2 + � 0 + ( s1 + s2)� )� s1 ;s2 ;z =

s1�� s1+1 ;s2 ;z + s2�� s1 ;s2+1 ;z + � 0� s1 ;s2 ;z� 1 +( s1 + s2)�� s1 ;s2 ;z+1 . For x = s1, y > s 2 and z > 0, (� 1 +

� 2+ � 0+( s1+ s2)� )� s1 ;y;z = s1�� s1+1 ;y;z + s2�� s1 ;y+1 ;z+ � 0� s1 ;y;z� 1+ s1�� s1 ;y;z+1 . For x > s 1, y = s2

and z > 0, (� 1 + � 2 + � 0 +( s1 + s2)� )� x;s2 ;z = s1�� x+1 ;s2 ;z + s2�� x;s2+1 ;z + � 0� x;s2 ;z� 1 + s2�� x;s2 ;z+1 .

For x > s 1, y > s 2 and z > 0, (� 1+ � 2+ � 0+( s1+ s2)� )� x;y;z = s1�� x+1 ;y;z + s2�� x;y +1 ;z + � 0� x;y;z � 1.

One may intuitively see from the Markov chain how the asymmetry in arrivals increases the

performance of single pooling. The counterproductive states are thosewith waiting customers and

idle agents at the same time, i.e.,x > s 1 and 0 � y < s 2, or y > s 2 and 0 � x < s 1. When

being in one of these two \bad" cases, the probabilities to take the direction of leaving them are

� 0+ � 2+ s1 �
� 1+ � 2+ � 0+( s1+ y)� and � 0+ � 1+ s2 �

� 1+ � 2+ � 0+( s1+ y)� , respectively. This shows for example that increasing the

21



proportion of customers 0 (one form of asymmetry) increases the performance in single pooling.

A further illustration is given next. The expected waiting times as a function of the steady-state

probabilities are given by

W1 =
1
� 1

0

@
+ 1X

x= s1

+ 1X

y=0

(x � s1)� x;y; 0 +
+ 1X

x= s1

+ 1X

y= s2

+ 1X

z=1

(x � s1)� x;y;z

1

A ;

W2 =
1
� 2

 
+ 1X

y= s2

+ 1X

x=0

(y � s2)� x;y; 0 +
+ 1X

y= s2

+ 1X

x= s1

+ 1X

z=1

(y � s2)� x;y;z

!

;

W0 =
1
� 0

+ 1X

z=0

+ 1X

x= s1

+ 1X

y= s2

z� x;y;z :

The performance measures above are computed numerically. We solve the steady-state equations

relating the state probabilities using a state space truncation, with a su�ciently high precision (six

digits beyond the decimal point). Let us now denote byp the proportion of customers 0 among all

arriving customers, p =
� 0P n
i =0 � i

. Figure 2.2 shows howW1 and W0 considerably improve in p.

�

���

���

���

���

�

���

�� ��� ��� ��� ��� ����

	�

	�

�

Figure 2.2: Impact of p on SP performance (� 1 = � 2 = � 0 = 0 :2,
P 2

i =0 � i = 4, � 1 = � 2, s1 = s2 =
12)

2.4.2 A Fixed Point Approximation

We consider here a Markovian single pooling case with an arbitrary number of skills. There are

n + 1 customer types (type 0, and types 1; 2; :::; n), n teams (no team 0),n � 1. The arrival rates

are � 0 and � i = � for i = 1 ; :::; n, and the service rates are� i = � for i = 0 ; 1; :::; n. Since the

con�guration is symmetric, we consider the same sta�ng level s in each team. In what follows, we
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develop an approximation to compute the expected waiting time of regular customers type i , for

i = 1 ; :::; n. The approximation is based on a Markov chain approach and a �xed point algorithm.

One can see that our model can be divided inton identical sub-systems. It su�ces then to focus

on the performance analysis of one of these sub-systems. A sub-systemis a simple queueing system

with s servers and an in�nite queue. Two types of customers arrive to thissub-system: customers

type i with a Poisson process with rate� and customers type 0 with a general arrival process with

mean arrival rate � 0
n . (The arrival process of customers 0 to the whole system is Poisson. However,

it becomes a general process at each sub-system because of the routingrules.)

Recall that customers 0 wait in their own queue before being routed to one of the sub-systems

for an immediate processing. Because of the routing rule, customers 0can be routed to a sub-system

only if the number of customers in the sub-system is less or equal tos � 1. Also since we route

customers 0 to the one of the less busiest sub-systems (with an equiprobable choice), the arrival

rate of customers 0 is decreasing in the number of busy servers in a sub-system and it becomes 0

when all the s servers become busy.

Let us now de�ne, for a sub-system, the stochastic processf E(t); t � 0g, where E(t) denotes

the number of customers in the system (queue + service). Note that the customers in the queue

are only the regular customers, and those in service can be both regular or type 0 customers. We

approximate customers 0 inter-arrival times by an exponential distribution with state-dependent

rates. Since inter-arrival and service times are Markovian,f E (t); t � 0g is a Markov chain as shown

in Figure 2.3. The arrival rate � k denotes the state-dependent arrival rate of customers 0 when

the number of customers in the sub-system isk, for k = 0 ; :::; s � 1 (no customers 0 arrive at the

sub-system fork � s).

Assume that exactly s customers are in the sub-system and that a service completion occurs

�rst before the next arrival epoch of a regular customer at this sub-system (Figure 2.3). Therefore,

two possibilities may happen. The �rst possibility corresponds to the case of an empty queue 0.
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Figure 2.3: Markov chain associated to a sub-system of single pooling

We then move to state s � 1. The second one corresponds to the case of a non-empty queue 0. We

then stay in state s, because the server who just became idle immediately takes the customer 0 in

the head of queue 0 into service. Let us denote by� the probability that queue 0 is not empty.

Then the rate to move from state s to sate s � 1 in the Markov chain is s� (1 � � ).

Let us now assume that the stability condition of a sub-system holds, i.e., � + � 0
n < s� , and

denote the stationary probabilities of the system states by� k , for k � 0. We may then write

� k =
Q k� 1

i =0 (� + � i )
k!� k � 0; (2.1)

for 1 � k � s � 1, and

� s+ k = (
�
s�

)k
Q s� 1

i =0 (� + � i )
s!� s(1 � � )

� 0; (2.2)

for k � 0. Since all probabilities sum up to one, we obtain

� 0 =
1

1 +
P s� 1

k=1

Q k � 1
i =0 (� + � i )

k!� k +
Q s� 1

i =0 (� + � i )
s!� s (1� � )

1
1� �

s�

: (2.3)

The di�culty to compute the stationary probabilities is that we do not have the values of� k

(k = 0 ; :::; s� 1) and � . We use a �xed point algorithm to jointly compute them with the station ary

probabilities. Let us now write � 0, the arrival rate of customers 0 at a given sub-system when this

sub-system is empty, as a function of the stationary probabilities of this sub-system. We use here

a second approximation. We indeed assume that the states of the sub-systems are independent,
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which is not true. Assume that our sub-system is the only one that is empty, i.e., each one of the

other n � 1 sub-systems have at least one customer in the system (queue + service). Using the

approximation this occurs with probability (1 � � 0)n� 1, then � 0 is simply � 0 in that case. Assume

now that our sub-system and only another one are empty. Then� 0 is � 0
2 (equiprobable routing of

customers 0 to one of the less busiest sub-systems). This occurswith probability � 0(1 � � 0)n� 2

and there are
� n� 1

1

�
combinations (where

� n
k

�
= n!

k!(n� k)! for 0 � k � n). Continuing with the same

reasoning and averaging over all possibilities, we obtain

� 0 = � 0

n� 1X

j =0

1
j + 1

�
n � 1

j

�
� j

0(1 � � 0)n� 1� j : (2.4)

Since 1
j +1

� n� 1
j

�
= 1

n

� n
j +1

�
, Equation (2.4) becomes

� 0 =
� 0

n

n� 1X

j =0

�
n

j + 1

�
� j

0(1 � � 0)n� 1� j =
� 0

n� 0

nX

j =1

�
n
j

�
� j

0(1 � � 0)n� j ;

which leads to

� 0 = � 0
1 � (1 � � 0)n

n� 0
: (2.5)

In the same way, we obtain

� k = � 0

�
1 �

P k� 1
j =1 � j

� n
�

�
1 �

P k
j =1 � j

� n

n� k
; (2.6)

for 1 � k � s � 1. Let us now give the expression of� as a function of the stationary probabilities

� k , k � 0. Since the mean arrival rate of customers 0 at our sub-system is� 0
n , we have

s� 1X

k=0

� k � k + �s� =
� 0

n
; (2.7)
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which implies

� =
� 0
n �

P s� 1
k=0 � k � k

s�
: (2.8)

In summary, from the one hand, Equations (2.1)-(2.3) give the stationary probabilities � k

(k � 0) as a function of � k (0 � k � s � 1) and � . From the other hand, Equations (2.5), (2.6)

and (2.8) give � k (0 � k � s � 1) and � as a function of � k (k � 0). As a consequence, we have a

�xed point. We propose the following �xed point algorithm to compute it . In the �rst iteration,

we choose� 0 = � 0
n , � k = 0 for 1 � k � s � 1, and � = 0. Then we compute � k (k � 0) using

Equations (2.1)-(2.3). From these� k , we next compute the new values of� k (0 � k � s � 1) and

� using Equations (2.5), (2.6) and (2.8). In the second iteration, we use thelatter values of � k

and � to compute � k . From these new� k , we compute the new values of� k and � . We do the

same in the third iteration, and so on. We stop the algorithm when the values of � k (k � 0), � k

(0 � k � s � 1) and � converge to their limits with a given prede�ned precision (we have chosen

a precision of 10� 6 in the numerical experiments below). Proposition 1 proves the convergence of

the �xed point algorithm.

Proposition 1 The �xed point algorithm always converges.

Proof. We use the Brouwer's theorem to prove the convergence. The Brouwer's theorem states

that any continuous function from a convex compact subsetK of an Euclidean space to itself has

at least one �xed point. In what follows, we prove that the conditions of t he Brouwer's theorem

hold in our context.

After k iterations, the �xed point algorithm gives the vector ( � 0; � 1; � 2; � � � ; � c)k belonging to

a convex compact, [0; 1]s+1 , that is included in an Euclidean space,Rs+1 . From Equations (2.1)-

(2.8), it is obvious to see that the function that allows to calculate (� 0; � 1; � 2; � � � ; � c)k+1 (iteration

k + 1) as a function of (� 0; � 1; � 2; � � � ; � c)k is continuous (combination of continuous functions),
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for � k 6= 0 ( k = 0 ; :::; s � 1). In what follows, we prove that this function is continuous in � k = 0

(k = 0 ; :::; s � 1) by prolongation. From Equations (2.5) and (2.6), we have

� k = � 0

�
1 �

P k� 1
j =1 � j

� n
�

�
1 �

P k
j =1 � j

� n

n� k
= � 0

�
1 �

P k� 1
j =1 � j

� n

n� k

0

@1 �

�
1 �

P k� 1
j =1 � j

� n

�
1 �

P k� 1
j =1 � j

� n

1

A ;

for k = 0 ; :::; s � 1, where by convention an empty sum is equal to 0. Calculating further,we obtain

� k = � 0

�
1 �

P k� 1
j =1 � j

� n

n� k

 

1 �

 

1 �
� k

1 �
P k� 1

j =1 � j

! n !

;

for k = 0 ; :::; s � 1. The Taylor expansion of � k as a function of � k in the neighborhood of 0 is

� k = � 0

�
1 �

P k� 1
j =1 � j

� n

n� k
(1 � (1 � n o(� k ))) = � 0

0

@1 �
k� 1X

j =1

� j

1

A

n

+ o(1);

where o(1) is a function that converges to a �nite limit as � k goes to 0, fork = 0 ; :::; s � 1. Since

� 0

�
1 �

P k� 1
j =1 � j

� n
is �nite, � k is continuous by prolongation in � k = 0, for k = 0 ; :::; s � 1.

It remains now to focus on the issue for� = 1 in Equation (2.3). This case of � = 1 can not hap-

pen. The proof is as follows. Assume that� = 1. Equation (2.7) thus leads to s� = � 0
n �

P s� 1
k=0 � k � k .

Since� k and � k (0 � k � s� 1) are positive, s� � � 0
n . As a consequence the sub-system is unstable,

which is absurd. This completes the proof of the convergence of the �xed point algorithm. 2

Having in hand the stationary probabilities, we next compute for the regular customers the

expected waiting time in the queue and the probability of delay. Recall that all sub-systems are

identical because of the symmetry in the parameters. Using Little'slaw, the expected waiting time

of a regular customer typei (i = 1 ; :::; n) is given by

Wi =
1
�

1X

k=1

k� s+ k ; (2.9)
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Table 2.1: Fixed point approximation, � = 0 :2
Wi PD

� � 0 s ( � + � 0 ) =n
s� Simulation Approximation Simulation Approximation

0.35 0.35 5 70% 0.581 0.581 37.78% 37.78%
0.475 0.475 5 95% 1.672 1.672 87.78% 87.78%

n = 1 1.4 1.4 20 70% 0.035 0.035 9.36% 9.36%
1.9 1.9 20 95% 0.359 0.359 75.54% 75.54%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 0.7 5 70% 0.436 0.435 29.74% 28.28%
0.475 0.95 5 95% 1.623 1.623 87.51% 85.23%

n = 2 1.4 2.8 20 70% 0.003 0.0027 0.74% 0.72%
1.9 3.8 20 95% 0.320 0.290 61.03% 60.98%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 1.75 5 70% 0.290 0.288 19.06% 18.76%
0.475 2.375 5 95% 1.556 1.550 81.84% 81.38%

n = 5 1.4 7 20 70% 0.001 0.001 0.28% 0.27%
1.9 9.5 20 95% 0.205 0.204 42.99% 42.97%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 3.5 5 70% 0.259 0.252 17.21% 16.39%
0.475 4.75 5 95% 1.516 1.504 79.07% 78.96%

n = 10 1.4 14 20 70% 0.0001 0.0001 0.23% 0.23%
1.9 19 20 95% 0.167 0.167 35.23% 35.21%
3.8 0 20 95% 3.777 3.777 75.54% 75.54%

for i = 1 ; :::; n, and its probability of delay denoted by PD;i is

PD;i =
1X

k=1

� s+ k ; (2.10)

for i = 1 ; :::; n. The approximation for both Wi and PD;i works very well for the regular customer

types, however it does not for customers 0 because of their complex routing. The comparison

between the approximate results using the �xed point algorithm and the exact ones using simulation

are given in Table 2.1. Note that in the extreme situations ofn = 1 or � 0 = 0, our method gives

the exact results.

Table 2.1 reveals that our approximation yields very accurate estimates, while slightly over-

estimating the performance. It gives lower values forWi and PD;i than those from simulation.

An explanation would be as follows. In our approximation, we assume that all sub-systems are

independent one of another. In reality, the routing rule leads to a fair sharing of customers between

the sub-systems. Therefore, when a given sub-system is almost busy, the other ones are likely to

be almost busy. Thus, the arrival rates � k (for high values of k close tos � 1) should be in reality
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higher than those in the approximation, which implies that the latter would give better performance

(lower waiting and lower probability of delay) than simulation does.

Using the above approximate analysis, we illustrate in Figure 2.4 how the asymmetry in arrivals

(by increasing p) improves performance (expected waiting timeWi for i = 1 ; :::; n).
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Figure 2.4: Impact of p on SP performance (n = 4, � i = � 0 = 0 :2,
P 2

i =0 � i = 8, � i = � j , si = 12
for i; j = 1 ; :::; 4)

2.5 E�ect of the Parameters Asymmetry

In this section, we present the results of the comparison between chaining and single pooling. We

use simulation experiments to optimize the call center sta�ng. In using simulation for call center

operations management, we are following longstanding practice, see for example Wallace and Whitt

(2005).

We simplify the cost model such that the SP cost is upper bounded andthat of chaining is

lower bounded. All the numerical comparisons are based on the lower and upper bounds values.

This makes the results pessimistic for SP and optimistic for chaining, i.e., the performance of SP is

in reality better than what we present. The cost of single pooling is
P n

i =0 (1 + t i; 0)si . This is upper

bounded by (
P n

i =0 si ) maxi (1+ t i; 0). The cost of chaining is (1+t0;1)s0+(1+ t1;2)s1+ � � � (1+ tn;0)sn

and is lower bounded by (1 + t0;1)s0 + (1 + min i;j (1 + t i;j ))(
P n� 1

i =1 si ) + (1 + tn;0)sn . Let us now

simplify the problem as follows. An agent with skills 0 and i (i = 1 ; :::; n) costs 1. An agent

with skills i and j (i; j = 1 ; :::; n and i 6= j ) costs 1 + t, t � 0. In this simpli�cation, we have
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maxi (1 + t i; 0) = 1 and min i;j (1 + t i;j ) = 1 + t (i; j = 1 ; :::; n and i 6= j ). The parameter t is then

the incremental cost of an agent with two regular skills compared to that with a regular skill and

skill 0.

Design of Experiments. As we are interested in the e�ect of asymmetry of the parameters on

performance, we propose various forms of asymmetry. For customers 0, we de�ne the parameters

p and p0 to measure the relative importance in arrivals and service durations,respectively. They

are given by p = � 0P n
i =0 � i

and p0 =
1

� 0P n
i =0

1
� i

. We measure the asymmetry between the arrival rates

of regular customers by V = � 1
� 2

= � 2
� 3

= � � � = � n � 1
� n

, and that between service durations by

U = 1=� 1
1=� 2

= 1=� 2
1=� 3

= � � � = 1=� n � 1
1=� n

. We also consider for customers 0 the asymmetry in the variability

of service times, measured by the coe�cient of variation of its distribution and denoted by cvs.

We consider other forms of asymmetry in terms of the required service level and also the time to

abandon for customers 0 relatively to those for the regular customers. These e�ects are studied in

the settings of small and large call centers, and also in the settings of small and large number of

skills. Although the considered forms of asymmetries do not cover all possibilities, they allow to

obtain the main useful conclusions.

The approach to conduct the simulation experiments is as follows. Dueto the high number

of parameters, we �rst run experiments by separately treating one parameter at a time. In a

systematic way, we vary one parameter while holding all the others constant. Second to see the

possible interaction e�ects, we simultaneously vary the values of more than one of them at a time.

For the values of the parameters, we choose wide ranges that allow to cover most of call center

situations in practice. For the rest of the chapter, inter-arrival are assumed to be Markovian.

Service times are also assumed to be Markovian, except in Section 2.5.2. The abandonment rates

are assumed to be equal to zero, except for Section 2.5.4.
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2.5.1 Asymmetry in Arrival Rates

We want to understand the e�ect of the asymmetry in the demand. We separate the study into

two steps. First, we construct the asymmetry only on the arrival rate of customers 0. Second, we

construct it by di�erentiating between all the arrival rates of all cu stomer types.

Asymmetry on Customers 0

To isolate the impact of p =
� 0P n
i =0 � i

, we assume that all customer types have the same expected

service time, and all the arrival rates of the regular customers are the same, � i = � for i = 1 ; :::; n

(V = 1). In particular, we are interested to know, for the di�erent range s of p, which one of the

models would be preferred to the other. We choose call center examples with n = 4, i.e., 5 agent

teams and 5 skills including skill 0. The results are shown in Table2.2 and Figures 2.5(a) and

2.5(b).

Table 2.2: Impact of p (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P 4

i =0 � i = 8, i = 1 ; :::; 4, U = V = 1,
p0 = 20%, n = 4)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% t=100% (Chaining = SP)

0% 49 50.95 52.9 58.75 68.5 88 60 t=28.21%
10% 49 50.7 52.4 57.5 66 83 56 t=20.58%
25% 48 49.3 50.6 54.5 61 74 52 t=15.38%
50% 49 49.9 50.8 53.5 58 67 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 62 51 t=0%
90% 51 51.3 51.6 52.5 54 57 51 t=0%
100% 47 47 47 47 47 47 47 t=0%

Since any agent in SP has skills 0 andi (i.e., costs 1), the sta�ng cost of SP does not depend on

t. In Table 2.2, the column Crossing valuegives the value oft for which the two models chaining

and SP are equivalent. Below this threshold chaining is better thanSP and viceversa (see Figure

2.5(a)). Consider small values oft. Table 2.2 reveals that chaining performs well for small values

of p. The best situation for chaining is reached in the symmetric case (identical arrival rates). The

performance of SP improves asp increases. For small values ofp, SP approaches FD which has

the worst performance. For high values ofp, customers 0 are �rst preponderant and second bene�t
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(b) Relative bene�ts

Figure 2.5: Comparing single pooling and chaining (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P 4

i =0 � i = 8,
i = 1 ; :::; 4, U = V = 1, p0 = 20%, n = 4)

from pooling, which highly improves the performance of SP. With t = 0, SP and chaining become

equivalent for values ofp � 75%.

For higher values of t, SP goes ahead of chaining. The reason is related to the increase of

the costs of the agents with two skills i and j (i; j = 1 ; :::; 4). It su�ces to have t = 15:38% to

outperform the best performance of chaining (the symmetric case). For any t beyond 30%, SP is

systematically better than chaining whatever is p.

We also measure the relative bene�ts between SP and chaining. Figure2.5(b) provides, for

various values of the relative bene�ts, the associated curve oft as a function of p. We observe

that the sensitivity of the relative bene�t as a function of t decreases inp. The reason is that the

number of customers 0 increases inp, which decreases the number of agents with two regular skills

in chaining (i.e., decreases the cost sensitivity int).

The main conclusion here is that SP can be better than chaining when the demand for skill 0

is important and/or when skill 0 is less costly than the other ones. The main idea is that as type

0 dominates, they pro�t in SP from a total pooling from all teams, while chaining, they do pro�t

from a partial pooling from only two teams.
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Asymmetry on the other Arrival Rates

The parameter p, that is de�ned on customers 0, is one way of measuring asymmetry in arrivals.

Here, we focus on the asymmetry between regular customer types, measured by V = � 1
� 2

= � 2
� 3

= � 3
� 4

.

The simulation results for the casesV = 2 and 5 are shown in Table 2.3. The experiments for the

caseV = 1 reduces to those given in Table 2.2.

Table 2.3: Impact of V (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P 4

i =0 � i = 8, i = 1 ; :::; 4, U = 1, p0 = 20%,
n = 4)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 50 51.8 53.6 59 68 57 t=19.44%
10% 50 51.55 53.1 57.75 65.5 56 t=19.35%
25% 49 50.3 51.6 55.5 62 53 t=15.38%

V = 2 50% 48 48.8 49.6 52 56 51 t=18.75%
75% 50 50.55 51.1 52.75 55.5 52 t=18.18%
90% 52 52.3 52.6 53.5 55 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 50 51.8 53.6 59 68 56 t=16.67%
10% 50 51.45 52.9 57.25 64.5 55 t=17.24%
25% 49 50.25 51.5 55.25 61.5 52 t=12.00%

V = 3 50% 49 50 51 54 59 52 t=15.00%
75% 50 50.75 51.5 53.75 57.5 52 t=13.33%
90% 52 52.2 52.4 53 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 49 51.05 53.1 59.25 69.5 54 t=12.20%
10% 50 51.5 53 57.5 65 54 t=13.33%
25% 50 51.25 52.5 56.25 62.5 52 t=8.00%

V = 5 50% 50 50.7 51.4 53.5 57 52 t=14.29%
75% 51 51.4 51.8 53 55 52 t=12.50%
90% 52 52.25 52.5 53.25 54.5 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%
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Table 2.3 and Figure 2.6 reveal that the performance of SP increases inV . An intuitive ex-

planation is as follows. Remark that the team sizesi = s(� i ) is increasing and concave in� i ,

for i = 1 ; :::; n. Applying then the Jensen inequality leads to
nX

i =1

s(� i ) � n � s
� P n

i =1 � i

n

�
. In this

inequality, the left hand side corresponds to the overall sta�ng level for an arbitrary situation, i.e.,

with arbitrary values of � i s. As for the right hand side, it gives the overall sta�ng level for a sym-

metric situation, i.e., all the � i s are identical. We also observe from Table 2.3 that the performance

of chaining is however relatively insensitive toV . Note that we change each time the con�guration

of chaining such that the large teams are close to each others in order to create more pooling e�ect.

This is better than having small teams each of which connected to a large team.

2.5.2 Asymmetry in Service Rates

In this section, we focus on the comparison between chaining and SP with regard to the asymmetry

in the customer service times. We �rst de�ne the asymmetry only on customers 0, and second on

all customer types.

Asymmetry on Customers 0

We measure the asymmetry on customers 0 byp0 =
1

� 0P n
i =0

1
� i

. The asymmetry here is de�ned by

the di�erence between the value of the mean service time of customers 0 and that of the regular

types. The results are shown in Table 2.4 and Figure 2.7(a).

Table 2.4: Impact of p0 (� i = � 0 = 2,
P 4

i =0
1
� i

= 25, W0 = W �
i = 0 :2, i = 1 ; :::; 4, p = 20%,

U = V = 1, n = 4)

Chaining SP Crossing value
p0 t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 60 62.45 64.9 72.25 84.5 72 t=24.49%
10% 59 60.95 62.9 68.75 78.5 67 t=20.51%
25% 58 59.65 61.3 66.25 74.5 62 t= 12.12%
50% 60 61.05 62.1 65.25 70.5 65 t=23.81%
75% 61 61.6 62.2 64 67 68 t=58.33%
90% 65 65.25 65.5 66.25 67.5 69 t=80.00%
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(d) Relative bene�ts ( � 0 = 2, � i = 1 :5, � 0 = � i = 0 :2,
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i = 0 :2, i = 1 ; :::; 4, p = 25%, p0 = 20%,
U = V = 1, n = 4)

Figure 2.7: Preference zone

From Table 2.4, we observe that the performance of both models chaining andSP improves inp0

(from 0 until the symmetric case for p0 = 25%). The reason is that for chaining we are approaching

the symmetric case where it behaves well, and for SP we are pro�tingbetter from the pooling

e�ect when all service times are statistically identical. Howeverthe performance of the two models

deteriorates in p0 (for p0 above 25%), and no model performs well for a high asymmetry in service

times. The explanation is related to a phenomenon referred to as theblocking e�ect. The blocking

e�ect is the situation where the agents are excessively blocked bycustomers 0 (who are in need of

large service times) which deteriorates the waiting time of the regular customers. This phenomenon

is more apparent for single pooling since in the latter customers 0 have access to all teams, whereas

in chaining they do only have access to two teams. We refer the reader to Tekin et al. (2009)

for more details on how pooling could be counterproductive when service times are very di�erent.

Recall that this situation with a slow service rate for customers 0 isout of our context. In our
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context, customers 0 are in need of an easy skill, and are therefore likely to be served within a

short duration. We also measure the relative bene�ts between SP and chaining as a function of p0

(see Figure 2.7(a)). Similarly to the e�ect of p, we again observe that the sensitivity of the relative

bene�t as a function of t decreases inp0. The reason is that the service time duration of customers

0 increases inp0, which decreases the number of agents with two regular skills in chaining (i.e.,

decreases the cost sensitivity int).

In what follows, we go further by de�ning the asymmetry on the variabi lity of customers 0

service times. We choose to measure this variability by the coe�cient of variation (ratio of standard

deviation over expected value), denoted bycvs. We consider a log-normal distribution for the

service times of customers 0 (inter-arrival times of all types, and service times of all regular types

are Markovian). The choice of the log-normal distribution is based on the call center statistical

analysis in Brown et al. (2005). The results are shown in Table 2.5 and Figure 2.7(c). We draw the

same conclusions as those for service rates. Due to the blocking e�ect, both models do not behave

well as the variability is increasing. Figure 2.7(d) reveals that the relative bene�t as a function of

t is not sensitive to the variation of cvs. To the contrary to the case for p and p0, the arrival and

service rates of regular types do not vary here.

Table 2.5: Impact of variability in service times (� i = � 0 = 0 :2, W0 = W �
i = 0 :2, i = 1 ; :::; 4,

p = 25%, p0 = 20%, U = V = 1,
P 4

i =0 � i = 8, n = 4)

cvs 0% 5% 10% 25% 50% value of t

0 49 50.3 51.6 55.5 62 52 11.54%
0.5 49 50.25 51.5 55.25 61.5 52 12.00%
1 50 51.3 52.6 56.5 63 53 11.54%
2 54 55.3 56.6 60.5 67 56 7.69%
3 62 63.45 64.9 69.25 76.5 63 3.45%
5 64 65.45 66.9 71.25 78.5 66 6.90%

Asymmetry on the Other Service Rates

We examine the impact of asymmetry by de�ning it on all service times. The service times can

be now di�erent from one regular customer to another. Recall that the ratio U is de�ned by
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U = 1=� 1
1=� 2

= 1=� 2
1=� 3

= 1=� 3
1=� 4

. We also consider cases with a high proportion of customers 0,p = 50%.

This can be seen as a worst case for SP, since the blocking e�ect is more apparent in such a case.

The simulation results are shown in Table 2.6, and Figures 2.8(a) and 2.8(b).

Table 2.6: Impact of U (� 0 = 0 :2, � 0 = 4, � i = 1, W0 = W �
i = 0 :2, i = 1 ; :::; 4,

P 4
i =0

1
� i

= 25,
p0 = 20%, p = 50%, V = 1, n = 4)

Chaining SP Crossing value
U t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 49 50.25 51.5 55.25 61.5 52 t=12.00%
2 49 49.75 50.5 52.75 56.5 53 t=26.67%
3 50 51.65 52.3 54.25 57.5 53 t=9.09%
5 52 52.65 53.3 55.25 58.5 52 t=0.00%
10 55 55.75 56.5 58.75 62.5 55 t=0.00%
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(b) Relative bene�ts

Figure 2.8: Preference zone (� 0 = 0 :2, � 0 = 4, � i = 1 for i = 1 ; :::; 4,
P 4

i =0
1
� i

= 25, p0 = 20%,
p = 50%, V = 1, n = 4)

From the numerical results we observe that SP is preferred to chaining for a wide range of

parameters. The performance of SP is quite insensitive to the asymmetry de�ned by U. The

reason is that whatever isU, the agent teams in SP are divided to two types. One �rst type with

two teams where customers 0 are served faster than regular customers (positive e�ect), and a second

type with two teams where customer 0 are served slower than regular customers (negative e�ect

of blocking). The performance of chaining is however decreasing in asymmetry. In chaining, each

team receives two customer types with di�erent service times,which creates a negative blocking

e�ect in all teams and deteriorates as a consequence the performance. In general for both single

pooling and chaining with U 6= 1, regular customers require di�erent mean service times. We then
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have regular customers that are served faster than others. The slowlyserved ones block the teams

in which they are routed to. This is more apparent in chaining because regular customers are

routed to two teams (and to only one in SP). We also measure the relativebene�ts between SP and

chaining. Figure 2.8(b) reveals that this bene�t as a function of t is not sensitive to the variation

of U. The reason is that although the service rates of regular types do vary, the total sta�ng level

for the regular types do not.

2.5.3 Asymmetry in the Service Level Constraints

We de�ne the asymmetry on the service level of customers 0,W �
0 . The results are shown in Table

2.7 and Figure 2.9(a).

Table 2.7: Impact of W �
0 (� 0 = 4, � i = 1, � i = � 0 = 0 :2 and W �

i = 0 :2 for i = 1 ; :::; 4, p = 50%,
p0 = 20%, U = V = 1, n = 4)

Chaining SP Crossing value
W �

0 t=0% t=5% t=10% t=25% (Chaining = SP)

0.01 58 59 60 63 56 t=-10.00%
0.1 51 51.9 52.8 55.5 52 t=5.56%
0.2 49 49.9 50.8 53.5 52 t=16.67%
1 48 48.9 49.8 52.5 52 t=22.22%

We observe as expected that SP behaves better than chaining in the case of a high asymmetry

in the service levels. Chaining is requiring higher sta�ng levels than needed for some customer

types. The agent teams are less correlated in SP than in chaining. This gives more exibility under

SP to adjust the size of the teams as required. However, the strong link between the chains in

chaining forces the size of the teams to be adjusted with regard to thehigh requirement of some

customer types while it is not needed for other types. As for the relative bene�ts between SP and

chaining, we observe from Figure 2.9(b) that it is not sensitive to the variation of W �
0 . Since the

parameters related to the regular types do not vary, the associated sta�ng levels do not change

also.
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(b) Relative bene�ts

Figure 2.9: Preference zone (� 0 = 4, � i = 1, � i = � 0 = 0 :2 and W �
i = 0 :2 for i = 1 ; :::; 4, p = 50%,

p0 = 20%, U = V = 1, n = 4)

2.5.4 Asymmetry in Abandonments

We allow in this section customers to abandon. After entering the queue, a customer will wait a

random length of time for service to begin. If service has not begun by this time she will abandon

and be lost. Abandonment is an important feature in call centers. We �rst investigate the impact of

abandonment on the performance of single pooling and chaining. We then investigate the e�ect of

the asymmetry in the abandonment rate of customers 0. Recall that that i denotes the abandon

rate of customers i , for i = 0 ; � � � n. In the experiments below, times before abandonment are

assumed to be exponentially distributed. Note that with customer abandonment, new performance

measures do appear for waiting times. Since the sojourn time in queue may end up with a start of

service or an abandonment, we distinguish the conditional waiting timegiven service, that given

abandonment, and the unconditional one. We focus here on the conditional waiting time given

service.

Impact of Abandonment. We investigate the impact of abandonment on the performance of

SP and chaining in various situations of asymmetries. We consider homogeneous abandonments for

all customer types, i =  for i = 0 ; � � � n. The results are shown in Figures 2.10(a)-2.10(d). Further

results are also given in Tables A.6-A.9 in Section A.3 of the appendix. An important observation

here is that the e�ect of the parameters asymmetry changes in the presence of abandonment. For
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example, to the contrary to the results with no abandonment, the performance of SP deteriorates

in p, but improves in p0. The reason is that the abandonment of customers reduces the arrivals

to service, which in turn reduces the asymmetry. This can be seen from Table 2.8, where the the

probability to abandon of customers 0 increases inp.
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Figure 2.10: Impact of abandonment

Asymmetry in Abandonment. Consider the asymmetry in the abandonment rates measured

by the relative di�erence between the abandonment rate of customers0 compared to those of the

regular customers. The results are shown in Figures 2.11(a)-2.11(d). Further results are also given

in Tables A.10-A.13 in Section A.3 of the appendix. We again observe an importantimpact of

the abandonment on the performance of SP and chaining. This impact mainly depend on how

the abandonment a�ects the asymmetry. For example, we observe from Figure 2.11(a) that when

regular customers have higher abandonment rates than customers 0, the asymmetry in terms of
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Table 2.8: Probability of abandonment (� i = � 0 = 0 :2,
P 2

i =0 � i = 8, � i = � j , W �
0 = W �

i = 0 :2,
 i =  0 =  for i; j = 1 ; :::; 4, p0 = 20%, U = V = 1, n = 4)

 = 0 :1  = 0 :2
Single Pooling Chaining Single Pooling Chaining

p Type i Type 0 Type i Type 0 Type i Type 0 Type i Type 0

0% 3.04% 1.68% 7.00% 3.20%
10% 2.05% 0.00% 2.24% 1.95% 5.00% 0.03% 3.58% 3.13%
25% 1.84% 0.01% 1.52% 1.79% 4.30% 0.07% 4.44% 4.24%
50% 1.73% 0.08% 1.69% 2.11% 4.18% 0.40% 3.82% 4.13%
75% 1.70% 0.53% 1.09% 1.27% 4.12% 1.45% 3.80% 3.47%
90% 1.68% 1.14% 0.29% 1.13% 4.10% 2.62% 4.63% 3.33%
100% 1.67% 1.67% 4.25% 4.25%

p is accentuated (which further improves SP performance). In the opposite case however, the

asymmetry in p reduces because of the abandonment of customers 0.
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(a) Impact of p (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,P 4
i =0 � i = 8, i = 1 ; :::; 4, p0 = 20%, U = V = 1, n = 4)
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(b) Impact of p0 (W �
0 = W �

i = 0 :2,
P 4

i =0
1

� i
= 25, i =

1; :::; 4, p = 50%, U = V = 1, n = 4)
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(c) Impact of V (� 0 = 2, W �
0 = W �

i = 0 :2, � i = � 0 =
0:2, i = 1 ; :::; 4, p = 25%, p0 = 20%, U = 1, n = 4)
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(d) Impact of U (� 0 = 4, W �
0 = W �

i = 0 :2, � 0 = 0 :2,
i = 1 ; :::; 4, p = 50%, p0 = 20%, V = 1, n = 4)

Figure 2.11: Impact of the asymmetry in abandonment
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Table 2.9: Impact of the Call Center Size (� i = � 0 = 0 :2, W �
i = W �

0 = 0 :2 for i = 1 ; :::; 4, p0 = 20%,
U = V = 1, n = 4)

Small Call Center (
P 4

i =0 � i = 1) Large Call Center (
P 4

i =0 � i = 100)

Chaining SP Crossing value Chaining SP Crossing value
p t = 0% t = 5% t = 10% (Chaining = SP) t = 0% t = 5% t = 10% (Chaining = SP)
0% 12 12.4 12.8 16 t = 50% 513 534.6 556.2 536 t = 5 :32%
10% 12 12.4 12.8 16 t = 50% 513 531.15 549.3 518 t = 1 :38%
25% 11 11.3 11.6 16 t = 83 :33% 513 527.2 541.4 513 t = 0%
50% 12 12.25 12.5 15 t = 60% 513 522.1 531.2 513 t = 0%
75% 13 13.25 13.5 13 t = 0% 515 519.45 523.9 513 t = � 2:25%
90% 12 12.15 12.3 11 t = � 33:33% 517 519 521 513 t = � 10:00%
100% 9 9 9 9 t = 0% 513 513 513 513 t = 0%

2.5.5 Impact of the Call Center Size

We focus in this section on the impact of the size of the call center on the comparison between

the two models. Ak�sin and Karaesmen (2007) showed that a small call center bene�ts more from

a exible architecture than a larger one. From the simulation experiments conducted here, we

con�rm this conclusion. The results are shown in Table 2.9 and Figure 2.12. In Table 2.10 provides

the achieved expected waiting times for the optimal sta�ng levels.

Table 2.10: Expected waiting times (� i = � 0 = 0 :2, W �
i = W �

0 = 0 :2 for i = 1 ; :::; 4, p0 = 20%,
U = V = 1, n = 4)

Small Call Center (
P 4

i =0 � i = 1) large Call Center (
P 4

i =0 � i = 100)

Single Pooling Chaining Single Pooling Chaining
p Wi W0 Wi W0 Wi W0 Wi W0

0% 0.08 0.06 0.18 0.20
10% 0.07 0.00 0.06 0.06 0.15 0.20 0.19 0.19
25% 0.05 0.00 0.09 0.08 0.08 0.19 0.19 0.20
50% 0.04 0.00 0.07 0.05 0.05 0.17 0.18 0.20
75% 0.19 0.01 0.07 0.02 0.04 0.20 0.17 0.19
90% 0.19 0.03 0.06 0.05 0.02 0.19 0.15 0.18
100% 0.10 0.10 0.17 0.17

Because of the small teams, the lack of the pooling e�ect in small call centers makes the threshold

values of t higher than those in large call centers. However in large call centers, the team sizes are

quite large in the sense that we have a less need to the chains. Thismakes SP better than chaining

even under the symmetric case of arrival rates. From Table 2.10 we observe that to the contrary

to small call centers, the service level constraints are saturated for large call centers. Because of
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(a) Small Call Center (
P 4

i =0 � i = 1)
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(b) Relative bene�ts (
P 4

i =0 � i = 1)
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(c) Large Call Center (
P 4

i =0 � i = 100)
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(d) Relative bene�ts (
P 4

i =0 � i = 100)

Figure 2.12: Preference zone (� i = � 0 = 0 :2, W �
i = W �

0 = 0 :2 for i = 1 ; :::; 4, p0 = 20%, U = V = 1,
n = 4)

the discrete nature of sta�ng levels, the impact of adding or removing an agent on performance

is higher in small call centers. For the same reason, the sta�ng levelsof the regular teams do not

vary much in small call centers. This makes the relative bene�ts between SP and chaining not

sensitive to the variation of p in small call centers, while the opposite is true for large call centers

(see Figures 2.12(b) and 2.12(d)).

2.5.6 Impact of the Number of Skills

In this section, we investigate the e�ect of the number of skills (denoted by N = n + 1). For two

cases with di�erent number of skills, it is not possible to keep at the same time a constant workload

on each team and a constant overall workload. We choose to separately treat each situation.

Constant Workload per Team. We consider identical service rates for all customer types. In

the experiments below, the ratio
P n

i =0 � i
N is then hold constant. The results are presented in Table

2.11 and Figure 2.13(a). We observe that SP behaves much better than chaining as the number of
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skills increases. Figure 2.13(a) shows that forN = 10, the crossing value oft should be negative for

high values ofp (this means that SP is better in all cases). Single pooling behaves much better than

chaining for the following two reasons. First asN increases, the exibility in chaining decreases. A

customer type in the chaining con�guration has access to a fewer proportion of agent asN increases

(the gap with the full exible model increases). The second reason is related to the impact of the

constant ratio
P n

i =0 � i
N , which increases the overall size of the call center asN increases. Having

large call centers makes SP more e�cient (see Section 2.5.5).

Table 2.11: Impact of the number of skills (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P n

i =0 � i =N = 2,
i = 1 ; :::; n, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 36 37.8 39.6 45 54 40 t=11.11%
10% 37 38.05 39.1 42.25 47.5 40 t=14.29%
25% 37 37.75 38.5 40.75 44.5 39 t=13.33%

N = 3 50% 37 37.4 37.8 39 41 37 t=0.00%
75% 36 36.15 36.3 36.75 37.5 36 t=0.00%
90% 36 36.05 36.1 36.25 36.5 36 t=0.00%
100% 36 36 36 36 36 36 t=0.00%

0% 48 49.95 51.9 57.75 67.5 54 t=15.38%
10% 48 49.45 50.9 55.25 62.5 52 t=13.79%
25% 47 48.15 49.3 52.75 58.5 50 t=13.04%

N = 4 50% 48 48.8 49.6 52 56 48 t=0.00%
75% 48 48.5 49 50.5 53 48 t=0.00%
90% 47 47.25 47.5 48.25 49.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 60 62.55 65.1 72.75 85.5 68 t=15.69%
10% 59 61 63 69 79 67 t=20.00%
25% 58 59.6 61.2 66 74 64 t=18.75%

N = 5 50% 59 60.1 61.2 64.5 70 61 t=9.09%
75% 60 60.75 61.5 63.75 67.5 61 t=6.67%
90% 61 61.3 61.6 62.5 64 61 t=0.00%
100% 57 57 57 57 57 57 t=0.00%

0% 116 121 126 141 166 144 t=28.00%
10% 115 119.6 124.2 138 161 135 t=21.74%
25% 115 118.8 122.6 134 153 126 t=14.47%

N = 10 50% 117 119.75 122.5 130.75 144.5 117 t=0.00%
75% 120 121.65 123.3 128.25 136.5 114 t=-18.18%
90% 122 122.95 123.9 126.75 131.5 110 t=-63.16%
100% 109 109 109 109 109 109 t=0.00%

Constant Overall Workload. We again consider identical service rates for all customer types.

The summation
P n

i =0 � i is then hold constant. The results are presented in Table 2.12 and Figure

2.13(b). We distinguish two e�ects depending onp. For small values ofp, the preference zone for

SP reduces. The opposite is true for large values ofp. The reason is related to the decreasing of
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the size of each team asN increases. Since we keep constant the overall workload, increasing the

number of skills implies a lower demand per skill, which requires less agents per team. This makes

the e�ect of pooling predominant. For the case of largep, the large number of customers 0 bene�ts

from pooling under SP. For the case of smallp, the system contains more regular customers, each

of which bene�ts in chaining from the pooling of two adjacent teams.

Table 2.12: Impact of p, t and N on the sta�ng cost ( � i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P n

i =0 � i = 8,
i = 1 ; :::; n, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 47 49.35 51.7 58.75 70.5 52 t=10.64%
10% 47 48.45 49.9 54.25 61.5 49 t=6.90%
25% 47 47.95 48.9 51.75 56.5 48 t=5.26%

N = 3 50% 47 47.5 48 49.5 52 47 t=0.00%
75% 47 47.2 47.4 48 49 47 t=0.00%
90% 47 47.05 47.1 47.25 47.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 48 49.95 51.9 57.75 67.5 54 t=15.38%
10% 48 49.45 50.9 55.25 62.5 52 t=13.79%
25% 47 48.15 49.3 52.75 58.5 50 t=13.04%

N = 4 50% 48 48.8 49.6 52 56 48 t=0.00%
75% 48 48.5 49 50.5 53 48 t=0.00%
90% 47 47.25 47.5 48.25 49.5 47 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 49 51.3 53.6 60.5 72 60 t=23.91%
10% 49 50.7 52.4 57.5 66 56 t=20.59%
25% 48 49.3 50.6 54.5 61 52 t=15.38%

N = 5 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 51 t=0.00%
90% 51 51.3 51.6 52.5 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 58 60.65 63.3 71.25 84.5 72 t=26.42%
10% 55 57.2 59.4 66 77 72 t=38.64%
25% 55 56.85 58.7 64.25 73.5 63 t=21.62%

N = 10 50% 56 57.45 58.9 63.25 70.5 60 t=13.79%
75% 57 57.95 58.9 61.75 66.5 56 t=-5.26%
90% 56 56.6 57.2 59 62 55 t=-8.33%
100% 47 47 47 47 47 47 t=0.00%

2.5.7 Mix of Asymmetry

In this section we mix the e�ects of more than a parameter at a time. We propose to interact

the e�ects of p and p0, U and p, U and p0, U and V , and also all of them. The results are

presented in Tables 2.13-2.17 and Figures 2.14(a)-2.14(d). From the numericalresults, we observe

that the individual e�ects are still present, but they may accumu late or make up for one another.

45



����

����

����

����

��

���

���

�� ��� ��� ��� ��� ����

	
��

	
�

	
�

	
�

�

�
��������		����


�������

(a) Preference zone (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,P n
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(b) Preference zone (� i = � 0 = 0 :2, W �
0 = W �

i = 0 :2,P n
i =0 � i = 8, i = 1 ; :::; 4, U = V = 1)

Figure 2.13: Preference zone

One important observation is that two asymmetries may lead to a bad performance for SP. For

example SP behaves well in each one of the asymmetric situations (U = 2 and V = 1) and ( U = 1

and V = 1=3) in isolation. However, it does not behave well for the mixed situation (U = 2

and V = 1=3). In such a situation, the customers types with large arrival rates arethe faster

to be served, and viceversa. Therefore, the di�erent customer types workloads are likely to be

symmetric. For the same reason, SP behaves well in the situation (U = 2 and V = 3) because the

mix of asymmetries further accentuates the asymmetry in workloads.

Tables 2.14 and 2.15 reveal also that the most predominant e�ects are those ofp (because of

pooling) and p0 (because of blocking). Various scenarios of mixed asymmetries are considered in

Table 2.17. We �nd again that SP behaves well in large call centers (the �rst four scenarios).

Scenarios 3 and 7 are similar in terms of the values ofp and p0 (high values for the two param-

eters). This means that the e�ect of pooling and blocking are highly present in both scenarios.

An important observation here is that scenario 3 is the best among scenarios 1-4, while scenario 7

is the worst among scenarios 5-8. This gives an indication on the direct competition between the

e�ects of p and p0. In large call centers, the pooling e�ect created by customers 0 is predominant

over the blocking e�ect, and the opposite is true in small call centers.

Main Conclusions. In summary, the numerical analysis of this section con�rms that singlepooling
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Table 2.13: Impact of p and p0 (� i = � j and � i = � j for i; j = 1 ; :::; 4, W �
0 = W �

i = 0 :2,
P 4

i =0 � i =
8,

P 4
i =0

1
� i

= 25 i = 1 ; :::; 4, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 52 53.95 55.9 61.75 71.5 64 t=30.77%
10% 51 52.7 54.4 59.5 68 60 t=26.47%
25% 46 47.45 48.9 53.25 60.5 52 t=20.69%

p0 = 10% 50% 39 39.9 40.8 43.5 48 43 t=22.22%
75% 35 35.6 36.2 38 41 35 t=0.00%
90% 31 31.3 31.6 32.5 34 31 t=0.00%
100% 24 24 24 24 24 24 t=0.00%

0% 49 50.95 52.9 58.75 68.5 60 t=28.21%
10% 49 50.7 52.4 57.5 66 56 t=20.58%
25% 48 49.3 50.6 54.5 61 52 t=15.38%

p0 = 20% 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 51 t=0.00%
90% 51 51.3 51.6 52.5 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 24 24.95 25.9 28.75 33.5 40 t=84.21%
10% 40 41.05 42.1 45.25 50.5 53 t=61.90%
25% 53 53.85 54.7 57.25 61.5 63 t=58.82%

p0 = 50% 50% 75 75.6 76.2 78 81 82 t=58.33%
75% 97 97.4 97.8 99 101 100 t=37.50%
90% 111 111.2 111.4 112 113 112 t=25.00%
100% 112 112 112 112 112 112 t=0.00%

performs better than chaining for various cases of asymmetry in the system parameters. In the

case of a predominance of customers 0 and/or an important asymmetry in the arrival rates of the

regular types (captured by V), SP is more robust than chaining even for small di�erences between

the costs of a regular skill and that of skill 0. Because of the blocking e�ect, the performance of both

chaining and SP deteriorates in the asymmetry de�ned by the service time duration of customers 0

relatively to that of regular customers. This is more apparent in singlepooling because customers

0 have access to all teams, while in chaining they do only have accessto two teams. We have

also observed that SP is more robust than chaining against an increasing asymmetry between the

service times of regular types. Since the teams under SP are less inter-dependent than under

chaining, SP is again preferred in the case of an asymmetry between the objective service levels.

We therefore avoid over-sta�ng situations that may happen in chainin g. Another important feature

is that of abandonment, because it may a�ect the asymmetry of the parameters. Finally, all above

conclusions are more apparent for the situations with a large number of skills, or for those with a
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Table 2.14: Impact of p and U (� i = � j for i; j = 1 ; :::; 4, � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P 4

i =0 � i =
8,

P 4
i =0

1
� i

= 25 i = 1 ; :::; 4, p0 = 20%, V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 49 50.8 52.6 58 67 57 t=22.22%
10% 49 50.6 52.2 57 65 55 t=18.75%
25% 49 50.15 51.3 54.75 60.5 53 t=17.39%

U = 2 50% 49 49.75 50.5 52.75 56.5 53 t=26.67%
75% 51 51.5 52 53.5 56 53 t=20.00%
90% 53 53.35 53.7 54.75 56.5 53 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 51 52.4 53.8 58 65 55 t=14.29%
10% 50 51.4 52.8 57 64 53 t=10.71%
25% 50 51.5 53 57.5 65 53 t=10.00%

U = 3 50% 50 51.3 52.6 56.5 63 52 t=7.69%
75% 51 52.3 53.6 57.5 64 52 t=3.85%
90% 52 53.35 54.7 58.75 65.5 52 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 52 53.2 54.4 58 64 55 t=12.50%
10% 51 51.95 52.9 55.75 60.5 53 t=10.53%
25% 52 53.2 54.4 58 64 53 t=4.17%

U = 5 50% 52 52.05 52.1 52.25 52.5 52 t=0.00%
75% 52 52.05 52.1 52.25 52.5 52 t=0.00%
90% 52 52.15 52.3 52.75 53.5 52 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

large call center size.

2.6 Concluding Remarks

We focused on a fundamental problem in the design and management of SBR call centers, for

which it is important to choose an intelligent architecture. We considered the context of call

centers with unbalanced workload, di�erent service requirements, a predominant customer type

and high costs of cross-training. With these asymmetry in the parameters, the well known existing

architectures such as chaining lose their robustness. For those particular cases, we proposed a new

call center architecture (single pooling) and demonstrated its e�ciency. SP allows to balance the

workload among the agents in a way that captures the bene�ts of pooling, without requiring every

agent to process every type of call. The results of the comparison between SP and chaining have

signi�cant managerial implications. We showed that SP behaves well inmost cases of asymmetry

in the parameters. There might be then opportunities for managers of callcenters to improve
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Table 2.15: Impact of p0 and U (� i = � j = 1 :5 for i; j = 1 ; :::; 4, � 0 = 2, W �
0 = W �

i = 0 :2,P 4
i =0

1
� i

= 25 i = 1 ; :::; 4, p = 25%, V = 1)

Chaining SP Crossing value
p0 t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 51 52.15 53.3 56.75 62.5 55 t=17.39%
10% 50 51.2 52.4 56 62 54 t=16.67%
25% 51 52.25 53.5 57.25 63.5 54 t=12.00%

U = 2 50% 51 52.25 53.5 57.25 63.5 56 t=20.00%
75% 52 53.25 54.5 58.25 64.5 62 t=40.00%
90% 52 53.25 54.5 58.25 64.5 68 t=64.00%

0% 52 53.15 54.3 57.75 63.5 54 t=8.70%
10% 51 52.2 53.4 57 63 53 t=8.33%
25% 51 52.25 53.5 57.25 63.5 53 t=8.00%

U = 3 50% 51 52.25 53.5 57.25 63.5 56 t=20.00%
75% 54 55.25 56.5 60.25 66.5 61 t=28.00%
90% 56 57.3 58.6 62.5 69 67 t=42.31%

0% 52 53.2 54.4 58 64 53 t=4.17%
10% 51 52.25 53.5 57.25 63.5 52 t=4.00%
25% 51 52.3 53.6 57.5 64 52 t=3.85%

U = 5 50% 52 53.3 54.6 58.5 65 54 t=7.69%
75% 55 56.25 57.5 61.25 67.5 60 t=20.00%
90% 58 59.3 60.6 64.5 71 66 t=30.77%

performance using the single pooling architecture.

In a future research, it would be useful to extend the use of the �xed point algorithm to evaluate

the performance measures of customers 0. Another interesting work is to generalize the functioning

of single pooling in order to avoid the blocking e�ect in the case of long service times for customers

0.
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Table 2.16: Impact of U and V (� 0 = 0 :8, � 0 = 0 :2, W �
0 = W �

i = 0 :2,
P 4

i =0
1
� i

= 25 and
P 4

i =0 � i = 8, p = 10%, p0 = 20% )

Chaining SP Crossing value
U V t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1/3 50 51.45 52.9 57.25 64.5 55 t=17.24%
1/2 50 51.55 53.1 57.75 65.5 56 t=19.35%

1 1 49 50.7 52.4 57.5 66 56 t=20.58%
2 50 51.55 53.1 57.75 65.5 56 t=19.35%
3 50 51.45 52.9 57.25 64.5 55 t=17.24%

1/3 26 26.8 27.6 30 34 34 t=50.00%
1/2 31 32 33 36 41 37 t=30.00%

2 1 49 50.6 52.2 57 65 55 t=18.75%
2 71 72.6 74.2 79 87 76 t=15.63%
3 81 82.3 83.6 87.5 94 84 t=11.54%

1/3 20 20.55 21.1 22.75 25.5 26 t=54.55%
1/2 24 24.65 25.3 27.25 30.5 31 t=53.85%

3 1 50 51.4 52.8 57 64 53 t=10.71%
2 79 80.65 82.3 87.25 95.5 82 t=9.09%
3 93 94.35 95.7 99.75 106.5 95 t=7.41%

Table 2.17: Impact of p, p0, U and V (W �
i = 0 :2 for i = 0 ; � � � 4)

Scenarios Chaining SP Crossing value
� 1 � 2 � 3 � 4 � 0 � 1 � 2 � 3 � 4 � 0 t = 0% t = 10% t = 20% (Chaining=SP)

Sc 1 1 2 3 4 5 0.05 0.1 0.2 0.5 1 78 83.5 89 87 16.36%
Sc 2 2 3 4 5 1 0.05 0.1 0.2 0.5 1 115 122.6 130.2 127 15.79%
Sc 3 1 2 3 4 5 1 0.5 0.2 0.1 0.05 179 184.9 190.8 184 8.47%
Sc 4 2 3 4 5 1 1 0.5 0.2 0.1 0.05 111 116.9 122.8 119 13.56%

Sc 5 0.1 0.2 0.3 0.4 0.5 0.05 0.1 0.2 0.5 1 14 15 16 18 40.00%
Sc 6 0.2 0.3 0.4 0.5 0.1 0.05 0.1 0.2 0.5 1 18 19.4 20.8 24 42.86%
Sc 7 0.1 0.2 0.3 0.4 0.5 1 0.5 0.2 0.1 0.05 26 26.7 27.4 30 57.14%
Sc 8 0.2 0.3 0.4 0.5 0.1 1 0.5 0.2 0.1 0.05 18 18.7 19.4 21 42.86%
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Figure 2.14: Preference zone
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Chapter 3

Optimal Email routing in a

Multi-Channel Call Center

Motivated by the call center practice, we consider a blended call center with calls arriving over time

and an in�nitely backlogged queue of emails. Calls have a non-preemptive priority over emails. The

call service is characterized by three successive stages where the second one is a break, i.e., there

is no required interaction between the customer and the agent for a non-negligible duration. This

leads to a new opportunity to e�ciently split the agent time betwee n calls and emails.

We focus on the optimization of the email routing to agents. Our objective is to maximize

the throughput of emails subject to a constraint on the call waiting tim e. We develop a general

framework with two parameters for the email routing to agents. One parameter controls the routing

between calls, and the other does the control inside a call. We then derive various structural results

with regard to the optimization problem and numerically illustrate th em. Various guidelines to call

center managers are provided. In particular, we prove for the optimal routing that all the time at

least one of the two email routing parameters has an extreme value.
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3.1 Introduction

Context and Motivation: Call centers are an important part of customers' service in many

organizations. New technology-driven innovations are multiplying the opportunities to make more

e�cient use of an agent as she can handle di�erent types of workow, including inbound calls, out-

bound calls, email, chat, etc. However, several issues on the management of call center operations

emerged also as a result of advanced technology. In this chapter, we consider a call center with

two types of jobs, inbound calls and emails. We focus on how to e�ciently share the agent time

between the two types of jobs in order to improve the call center performance.

In practice, we encountered call center situations where inbound calls and emails are combined.

This is called blending. The key distinction of problems with blending comes from the fact that

emails are less urgent and can be inventoried to some extent, relativeto incoming calls. Therefore

managers are likely to give a strict priority to calls over emails. An important question here is what

should be the best way of routing of emails (or the non-urgent job) to agents, i.e., as a function of

the systems parameters and the service level constraints (on calls and emails) when should we ask

the agent to treat emails between the call conversations (Bernett et al., 2002; Bhulai and Koole,

2003; Legros et al., 2013a). The email routing question is further important in the context of

the call center applications we consider here. We encountered examples where a call conversation

between an agent and a customer contains anatural break. We mean by this a time interval with

no interaction between the agent and the customer. During the conversation, the agent asks the

customer to do some necessary operations in her own (without the needof the agent availability).

After �nishing those operations, the conversation between the two parties can start again. Inside

an underway conversation, the agent is then free to do another task if needed. For an e�cient use

of the agent time, one would think about the routing of the less urgent jobs(emails) not only when

the system is empty of calls, but also during call conversations. In practice, such a situation often

occurs. For example, an agent in an internet hotline call center asks the customer to reboot her
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modem or her computer which may take some time where no interactionscan take place. It is also

often the case that a call center agent of an electricity supplier company asks the customer for the

serial number of her electricity meter box. This box is usually located outside of the house and is

locked, so, the customer needs some non-negligible time to get the required information. Another

example is that of commercial call centers with a �nancial transaction during the call conversation.

After some time from the start of the call conversation, the customer is asked to do an online

payment on a website before coming back to the same agent in order to �nish the conversation.

The online paiement needs that the customer looks for her credit card, then she enters the credit

card numbers, then she goes through the automated safety check with her bank (using SMS, etc.),

which may take some minutes.

In the call center examples we encountered, the back o�ce job could bea con�rmation email of

subscription or unsubscription, simple answers for various customer requests, etc. The answers to

these emails usually consist on a set of preprepared text blocks thatthe agent should mix/adapt

with the customer case. Some minutes are then enough for the agent to handle more than one email.

For such situations, it is natural that call center managers think about using the opportunity to

route emails to an agent during the break of an undergoing call conversation,and not only when

no calls are waiting in the queue. The main advantages arei) an e�cient use of the agent time and

therefore better call center performance,ii) also, agents become less bored because of the diversity

of activities, and therefore they are kept from falling into a rut.

Main Contributions: In this chapter, we consider a call center with an in�nite amount of out -

bound jobs (emails), and inbound jobs (calls) arriving over time for which a break is required in the

middle of the call conversation. Given this type of call centers, we are interested in optimizing its

functioning by controlling how the resource is shared between thetwo types of jobs. Calls are more

important than emails in the sense that calls request a quasi-instantaneous answer (waiting time in
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the order of some minutes), however emails are more exible and could be delayed for several tens

of hours. An appropriate functioning is therefore that the agent works on calls as long as there is

work to do for calls. The agent can then work on emails when she becomes free from calls, i.e.,

after a service completion when no calls are waiting in the queue, or during the call conversation

break. We assume that calls have a non-preemptive priority over emails, which means that if a

call is busy with an email (that has started after a service completion orduring the break), the

agent will �nish �rst the email before turning to a new arrived call t o the queue or a call that

has accomplished the requested operations and wants to start again the conversation to �nish her

service. The non-preemption priority rule is coherent with the operations in practice and also to

the call center literature (Bhulai and Koole, 2003; Deslauriers et al., 2007). It is not appropriate to

stop the service of a low priority customer, and it is not e�cient for t he agent to stop the treatment

of an email or to group emails for a simultaneous treatment. In Appendix in Section B.1 we prove

that the simultaneous treatment is not an interesting opportunity in a call center.

We focus on the research question: when should the agent treat emails?Between calls, or inside

a call conversation, or in both situations? Given the nature of the job types, a call center manager

in practice would be interested in maximizing the number of treated emails while respecting some

service level objective on the call waiting time (Bhulai and Koole, 2003). For calls, we are interested

in the steady-state performance measures in terms of the expected waiting time, the probability

that the waiting time is less than a given threshold, and the probability of delay. We do not consider

the call waiting after the break because it is not perceived as badly as that before entering the �rst

stage of service (less uncertainty for the customer because she has been already connected to an

agent). For emails, we are interested in the steady-state performancein terms of the throughput

of emails, i.e., the number of treated emails per unit of time.

The email routing problem considered in this chapter is a part of a collaboration between the

authors and the French consulting company Interact-iv.com. In the small call center customers of
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Interact-iv.com, an e�cient control of the agent time is important. For t hose call centers, Interact-

iv.com wants to implement, in the email dispatcher, an intelligent email routing algorithm adapted

to the call system load.

Despite its prevalence, there are no papers in the call center literature addressing such a ques-

tion. Most of the related papers only focus on the email routing betweencall conversations but

not inside a call conversation. To answer this question, we develop a general framework with two

parameters for the email routing to agents. One parameter controls the routing between calls, and

the other does the control inside a call conversation. For the tractability of the analysis, we �rst

focus on the single server case. We then discuss the extension of the results to the multi-server case.

For the single server modeling, we �rst evaluate the performance measures using a Markov chain

analysis. Second, we propose an optimization method of the routing parameters for the problem of

maximizing the email throughput under a constraint on the service level of the call waiting time.

As a function of the system parameters (the server utilization, the email service time, the severity

of the call service level constraint, etc.), we derive various guidelines to managers. In particular, we

prove for the optimal routing that all the time at least one of the two email routing parameters has

an extreme value. As detailed later in this chapter, an extreme value means that the agent should

do all the time emails inside a call (or between calls) or not at all. In other cases the parameters

lead to randomized policies. We also solve our optimization problem by proposing 4 particular

cases corresponding to the extreme values of the probabilistic parameters. We analytically derive

the conditions under which one particular case would be preferred toanother one. The interest

from these particular cases is that they are easy to understand for agentsand managers. Several

numerical experiments are used to illustrate the analysis. To simplify the Markov chain analysis,

we further propose an approximation method under the light-tra�c regi me.

The rest of the chapter is organized as follows. In Section 3.2 we reviewsome of the related
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literature. In Section 3.3, we describe the blended call center modeling and the optimization

problem. In Section 3.4, we develop a method based on the analysis of Markov chains in order

to derive the performance measures of interest for calls and for emails. In Section 3.5, we focus

on optimizing the email routing parameters. We also provide various numerical illustrations and

discuss the results. In Section 3.6, we develop an approximation method for the system performance

evaluation under the light-tra�c regime. We also propose an approximation method to extend the

results to the multi-server case. Finally in Section 3.7, we provide some concluding remarks and

directions for future research.

3.2 Literature Review

There are three related streams of literature to this chapter. The �rst one deals with blended call

centers. The second one is the Markov chain analysis for queueing systems with phase type service

time distributions. The third one is related to the cognitive analysis, or in other words the ability

for an agent to treat and switch between di�erent job types.

The literature on blended call centers consists on developing performance evaluation and optimal

blending policies. Deslauriers et al. (2007) develop a Markov chain for the modeling of a Bell Canada

blended call center with inbound and outbound calls. The performancemeasures of interest are

the rate of outbound calls and the waiting time of inbound calls. Through simulation experiments

they prove the e�ciency of their Markov chain model to reect real ity. Brandt and Brandt (1999)

develop an approximation method to evaluate the performance of a call center model with impatient

inbound calls and in�nitely patient outbound calls of lower priority t han the inbound tra�c. Bhulai

and Koole (2003) consider a similar model to the one analyzed in this chapter, expect that the call

service is done in a single stage without a possible break. The model consists on inbound and

outbound jobs where the inbound jobs have a non-preemptive priorityover the outbound ones. For

the special case of identically distributed service times for thetwo jobs, they optimize the outbound
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jobs routing subject to a constraint on the expected waiting time of inbound jobs. Gans and Zhou

(2003a) study a call center with two job types where one of the jobs is an in�nitely backlogged

queue. They develop a routing policy consisting on the reservation ofservers in order to maximize

the throughput on the jobs of the in�nitely backlogged queue. Armony and Maglaras (2004a)

analyze a similar model with a callback option for incoming customers. The customer behavior

is captured through a probabilistic choice model. Other references include (Bernett et al., 2002;

Keblis and Chen, 2006; Pichitlamken et al., 2003).

The analysis in this chapter is also related to the analysis of queueing systems with phase type

service time distributions. We model the call service time through three successive exponentially

distributed stages, where the second stage may also overlap with theservice of one or several emails

with an exponential time duration for each. The performance evaluation of such systems involves

the stationary analysis of Markov chains and is usually addressed using numerical methods. We refer

the reader to Kleinrock (1975) for simple models with Erlang servicetime distributions. For more

complex systems, see Neuts (1982); Sze (1984); Bolotin (1994); Brown et al. (2005); Guo and Zipkin

(2008). Our approach to derive the performance measures is based on �rst deriving the stationary

system state probabilities for two-dimension and semi-in�nite continuous time Markov chains. One

may �nd in the literature three methods for solving such models. The �rst one is to truncate the

state space, see for example Seelen (1986) and Keilson et al. (1987). The secondmethod is called

spectral expansion (Daigle and Lucantoni, 1991; Mitrani and Chakka, 1995; Choudhuryet al.,

1995). It is based on expressing the invariant vector of the process in terms of the eigenvalues and

the eigenvectors of a matrix polynomial. The third one is the matrix-geometric method, see Neuts

(1981). The approach relies on determining the minimal positive solutionof a non-linear matrix

equation. The invariant vector is then expressed in terms of powersof itself. In our analysis, we

reduce the problem to solving cubic and quartic equations, for whichwe use the method of Cardan

and Ferrari (Gourdon, 1994).
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Finally, we briey mention some studies on human multi-tasking, as it is the case for the agents

in our setting. Gladstones et al. (1989) show that a simultaneous treatmentof tasks is not e�cient

even with two easy tasks because of the possible interferences. Inour models, we are not considering

successive tasks in the sense that an agent can not talk to a customer and atthe same time treats

an email. More interestingly, Charron and Koechlin (2010) studied the capacity of the frontal lobe

to deal with di�erent tasks by alternation (as here for calls and emails). They develop the notion of

branching: capacity of the brain to remember information while doing something else. They show

that the number of tasks done alternatively has to be limited to two to avoid loss of information.

Dux et al. (2009) showed that training and experience can improve multi-tasking performance.

The risk from alternating between two tasks is the loss of e�ciency because of switching times.

An important aspect to avoid ine�ciency as pointed out by Dux et al. (2009) and Charron and

Koechlin (2010) is that the alternation should be at most between two tasksquite di�erent in

nature (like inbound and outbound jobs).

3.3 Problem Description and Modeling

For tractability and a better understanding of the results, we �rst focus on a single server queueing

model. We then extend the analysis to the multi-server case in Section 3.6.2 using simulation.

We consider a single server queue with two types of jobs: calls and emails. The arrival process

of customers is assumed to be Poisson with mean arrival rate� . We assume to have an in�nite

amount of emails that are waiting to be treated in a dedicated �rst come, � rst served (FCFS) queue

with an in�nite capacity. One can think of a call center that stores a su�ciently large number of

emails of a given day and handles them the next one.

Upon arrival, a call is immediately handled by the agent, if available. If not, the call waits for

service in an in�nite FCFS dedicated queue. Calls have a non-preemptive priority over emails. This

means that the idle agent deals with a call �rst (the �rst in line). If the queue of calls is empty,
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this agent can handle an email (the �rst in line) from the queue of emails. Non-preemption priority

is a natural assumption for our application. An agents in practice prefers to �nish answering an

underway email rather than starting it over later on. This is also preferred from an e�ciency

perspective. We assume in our models that there is no call abandonment or retrial.

As mentioned in Section 3.1, we consider call center applications wherethe communication

between the agent and the customer includes a break (the customer does not need the agent

availability). We model the service time of a call by 3 successivestages. The �rst stage is a

conversation between the two parties. The second stage is the break, i.e., no interactions between

the two parties. The third and �nal step is a again a conversation between the two parties. The

service completion occurs as soon as the third stage �nishes. We model each stage duration as an

exponentially distributed random variable. The service rates of the�rst, second and third stages

are denoted by � 1, � 2 and � 3, respectively. This Markovian assumption, which is common in

modeling in service operations, is reasonable for systems with high service time variability where

service times are typically small but there are occasionally long service times. An agent handle

an email within one single step without interruption. The time durat ion of an email treatment is

random and assumed to be exponentially distributed with rate� 0.

We are interested in an e�cient use of the agent time between calls andemails. More concretely,

we want to answer the question when should we treat emails for the following optimization problem

8
<

:

Maximize the throughput of emails

subject to a service level constraint on the call waiting time in the queue:
(3.1)

To solve Problem (3.1), we propose a general model for the routing of emailsto the agent.

It is refereed to asprobabilistic model or Model PM and is described below. Recall that the call

center has an in�nite number of emails. Then de�ning the routing of emails consists of determining

whether or not to start an email each time the agent becomes idle inside acall conversation, or after

a call service completion with no waiting calls in the queue. Note thatwhen the agent becomes idle
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during the second service stage of a currently served call, she cannot start to serve a new waiting

call from the queue, if any. Such an overlap between two or more di�erent call treatments would

necessarily disturb the agent, which leads to errors and work ine�ciency (Gladstones et al., 1989).

Probabilistic Model (Model PM): We distinguish the two situations when the agent is available

to handle emails between two call conversations, or inside a call conversation.

Between two calls: just after a call service completion (as soon as the third stage �nishes) and no

waiting calls are in the queue, the agent treats one or more emails with probability p (independently

of any other event), or does not work on emails at all with probability 1 � p. In the latter case, the

agent simply remains idle and waits for a new call arrival to handle it. In the former case (with

probability p), she selects a �rst email to work on. After �nishing the treatment of this email, there

are two cases: either a new call has already arrived and it is now waitingin the queue, or the queue

of calls is still empty. If a call has arrived, the agent handles that call. If not, she selects another

email, and so on. At some point in time, a new call would arrive while theagent is working on an

email. The agent will then handle the call as soon as she �nishes the email treatment.

Inside a call: Just after the end of the �rst stage of an underway call service (regardless wether there

are other waiting calls in the queue or not), the agent treats one or more emails with probability q

(independently of any other event), or does not work on emails at all withprobability 1 � q. In the

latter case, the agent simply remain idle and waits for the currently served customer to �nish her

operations on her own (corresponding to the second call service stage, i.e., the agent break). As

soon as the customer �nishes on herself her second service stage, theagent starts the third and last

service stage. In the former case (with probabilityq), she selects a �rst email to work on. After

�nishing the treatment of this email, there are two cases: either the currently served customer has

already �nished her second service stage, or not yet. If she does, theagent starts the third stage of

the customer call service. If not, she selects another email, and so on. At some point in time, the
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Table 3.1: Particular cases of Model PM
Model Description

Model 1 p = q = 0, no treatment of emails

Model 2 p = 1 and q = 0, systematic treatment of emails only between two calls

Model 3 p = 0 and q = 1, systematic treatment of emails only during the break

Model 4 p = q = 1, systematic treatment of emails between two calls and during the break

currently served call would �nish her second service while the agent is working on an email. The

agent will then handle the call as soon as she �nishes the the email treatment.

We further consider next 4 particular cases of Model PM as shown in Table 3.1. Although

these models might appear to be too restrictive to solve Problem (3.1), we show later their merit

in Section 3.5.2 when we focus on the optimization ofp and q in Model PM. Moreover, they have

the advantage of being easy to implement in practice, easy to understand by managers, and easy

to follows by agents. Note that in Model 1, the throughput of emails is zero. The interest from

Model 1 is in the extreme case of a very high workload of calls or a very restrictive constraint on

the call waiting time.

3.4 Performance Analysis

In this section we provide an exact method to characterize the call waiting time in the queue

and the email throughput for Model PM (Section 3.4.1) and its extreme cases (Section 3.4.2).

Our approach consists on using a Markov chain model to describe the system states and compute

their steady-state probabilities. The computation of some of the steady-state probabilities involves

the resolution of cubic (third degree) or quartic (fourth degree) equations for which we use the

Cardan-Ferrari method.

3.4.1 Model PM

Let us de�ne the random processf (x(t); y(t)) ; t � 0g where x(t) and y(t) denote the state of the

agent and the number of waiting calls in the queue at a given timet � 0, respectively. We have
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y(t) 2 f 0; 1; 2; :::g, for t � 0. The possible values ofx(t) (corresponding to the possible states of

the agent), for t � 0, are

- \Agent working on the �rst stage of a call service" denoted by x(t) = A,

- \Idle agent that is waiting for the call to �nish her second stage of service" denoted by x(t) = B ,

- \Agent working on an email while an underway call has already �nished her second stage of

service and is waiting for the agent to start her third stage of service"denoted by x(t) = B 0,

- \Agent working on the third stage of a call service" denoted by x(t) = C,

- \Agent working on an email between two call conversations" denoted byx(t) = M ,

- \Agent idle between two call conversations" denoted byx(t) = 0.

Since call inter-arrival times, call service times in each stage, andemail service times are exponen-

tially distributed, f (x(t); y(t)) ; t � 0g is a Markov chain (Figure 3.1).
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Figure 3.1: Markov chain for Model PM

For ease of exposition, we denote byP0 the probability to be in state (0 ; 0), and for n � 0

we denote byan , bn , b0
n , cn and mn the probabilities to be in state (A; n ), (B; n ), (B 0; n), (C; n)

and (M; n ), respectively. We also de�ne � i = �
� i

, for i 2 f 0; 1; 2; 3g. In Proposition 2, we give the

probability of delay of a call (probability of waiting) denoted by PD and the throughput of emails

denoted by T. Note that the stability condition of Model PM is � < q
� 0

+ 1
� 1

+ 1
� 2

+ 1
� 3

.
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Proposition 2 For Model PM, we have

PD = 1 �
1 � p

1 + p� 0
(1 � � 1 � � 2 � q� 0 � � 3);

T = � 0

�
1 + � 0

1 + p� 0
p(1 � � 1 � � 2 � q� 0 � � 3) + q(� 2 + � 0)

�
:

Proof. From the Markov chain of Model PM, we have

c0 = � 3(P0 + m0);

cn = � 3(an� 1 + bn� 1 + b0
n� 1 + cn� 1 + mn );

for n � 1. Then

1X

n=0

cn = � 3

(

P0 + m0 +
1X

n=0

�
an + bn + b0

n + cn
�

+
1X

n=1

mn

)

: (3.2)

Since all system state probabilities sum up to 1, i.e.,P0 +
P 1

n=0 (an + bn + b0
n + cn + mn ) = 1,

Equation (3.2) becomes

1X

n=0

cn = � 3: (3.3)

For the state (M; 0), we havep� 3c0 = �m 0, or equivalently c0 = � 3
m0
p . Therefore c0 = � 3

P0
1� p . We

then may write

P0 =
1 � p

p
m0: (3.4)

From the Markov chain, we also have� 2
P 1

n=0 bn = � 3
P 1

n=0 cn = � 0
P 1

n=0 b0
n +(1 � q)� 2

P 1
n=0 bn =
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� 1
P 1

n=0 an . Using Equation (3.3), we then obtain

1X

n=0

bn = � 2;
1X

n=0

b0
n = q� 0;

1X

n=0

an = � 1: (3.5)

For state (M; n ), n � 1, we havemn = ( � 0
1+ � 0

)nm0. Therefore
1P

i =0
mi = m0(1 + � 0). Using now

Equation (3.5) together with the normalization condition implies m0 = p
1+ p� 0

(1� � 1 � � 2 � � 3 � q� 0),

and Equation (3.4) then becomes

P0 =
1 � p

1 + p� 0
(1 � � 1 � � 2 � q� 0 � � 3)) :

A new call enters service immediately upon arrival, if and only if the system is in state (0; 0).

Since the call arrival process is Poison, we use the PASTA property tostate that the steady-state

probabilities seen by a new call arrival coincide with those seen at an arbitrary instant. Thus

PD = 1 � P0, or

PD = 1 �
1 � p

1 + p� 0
(1 � � 1 � � 2 � � 3 � q� 0):

As for the email throughput, it is given by T = � 0 (q
P 1

i =0 bi +
P 1

i =0 b0
i +

P 1
i =0 mi ), which may be

also written as T = � 0

�
1+ � 0
1+ p� 0

p(1 � � 1 � � 2 � � 3 � q� 0) + q(� 2 + � 0)
�

. This �nishes the proof of

the proposition. 2

Let us now de�ne W , a random variable, as the call waiting time in the queue, and P(W < t )

as its cumulative distribution function (cdf) for t � 0. Conditioning on a state seen by a new call
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arrival and averaging over all possibilities, we state using PASTA that

P(W < t ) = P0 � 1 +
+ 1X

n=0

(P(W < t; (A; n )) � an + P( W < t; (B; n )) � bn + P( W < t; (B 0; n)) � b0
n )

+ P( W < t; (C; n)) � cn + P( W < t; (M; n )) � mn ): (3.6)

For n � 0, the quantities P(W < t; (A; n )), P( W < t; (B; n )), P( W < t; (B 0; n)), P( W < t; (C; n))

and P(W < t; (M; n )) are the cdf of the conditional call waiting times in the queue, giventhat a

new arriving call �nds the system in states (A; n ), (B; n ), (B 0; n), (C; n) and (M; n ), respectively.

In the Markov chain of Model PM, these conditional random variables correspond to �rst passage

times to state (0; 0) starting from the system state upon a new call arrival. They are convolutions of

independent exponential random variables with arbitrarily rates, not necessarily all equal (Erlang

random variable) or all distinct. Using the results in Amari and Misra (1997), we can explicitly

derive the expressions of P(W < t; (A; n )), P( W < t; (B; n )), P( W < t; (B 0; n)), P( W < t; (C; n))

and P(W < t; (M; n )), for n � 0, as shown in Section B.2 of the Appendix.

It remains now to compute the probabilities an , bn , b0
n , cn and mn in n, for n � 0. From the

Markov chain of Model PM, we can write the following iterative equations

�X n� 1 = AX n ; (3.7)

for n � 1, where

X n =

0

B
B
B
B
B
B
B
B
B
@

an

bn

b0
n

cn

mn

1

C
C
C
C
C
C
C
C
C
A

;
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for n � 0 is the vector of probabilities to be computed and

A =

0

B
B
B
B
B
B
B
B
B
@

� 1 � � � � � � � �

� � 1 � + � 2 0 0 0

0 � q� 2 � + � 0 0 0

0 � (1 � q)� 2 � � 0 � + � 3 0

0 0 0 0 � + � 0

1

C
C
C
C
C
C
C
C
C
A

:

The �rst step to solve Equation (3.7) is to �nd the eigenvalues of the matrix 1
� A. These are

solutions of the equation det(1� A � yI ) = 0 with y as variable. One obvious eigenvalue is 1 +1
� 0

(see the last line ofA), and the remaining ones are those of a 4� 4 matrix (derived from 1
� A by

removing the last line and the last column) and they are solutions of thefollowing quadric equation

� 4y4 � (3� 4 + � 3)y3 + (3 � 4 + 2 � 3 + � 2)y2 � (� 4 + � 3 + � 2 + � 1)y + 1 + � 0(1 � q) = 0 ; (3.8)

with y as variable, � 1 = � 0 + � 1 + � 2 + � 3, � 2 = � 0� 1 + � 0� 2 + � 0� 3 + � 1� 2 + � 1� 3 + � 2� 3, � 3 =

� 0� 1� 2 + � 0� 1� 3 + � 0� 2� 3 + � 1� 2� 3, and � 4 = � 0� 1� 2� 3. Since the constant term 1 + � 0(1 � q)

in Equation (3.8) is strictly positive, zero cannot be a solution of that equation. Then, 1
� A is

invertible. Therefore the eigenvalues of�A � 1 are solutions of

(1 + � 0(1 � q))x4 � (� 4 + � 3 + � 2 + � 1)x3 + (3 � 4 + 2 � 3 + � 2)x2 � (3� 4 + � 3)x + � 4 = 0 ; (3.9)

where x = 1
y . We solve the quadric Equation (3.9) using the Cardan-Ferrari method. In Section

B.4 of the Appendix, we describe the details of this method.

The explicit expressions of the probability components of the vectorX n , for n � 0, can be de-

rived, however they are too cumbersome for Model PM. We go furtherin providing their expressions

for the extreme cases of Model PM in Section 3.4.2 and also using a light-tra�c approximation in

Section 3.6.1. In all cases, an exact numerical method is straightforward and easy to implement.
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Numerical illustrations are shown later in Section 3.5.

Let us now compute the expected call waiting time in Model PM, denoted by E(W). Consider

�rst a model similar to Model PM except that emails can only be treated inside a call conversation.

We denote this model by Model PM'. With a little thought, one can see that the expected call

waiting time in Model PM is that of Model PM' plus p
� 0

. This can be easily proven using the

memoryless property of the email service duration and sample path arguments. The main idea of

the proof is as follows. Consider each �rst call of the busy periods of Model PM'. The same calls

arrive also at Model PM but not necessarily enter immediately service as in Model PM'. Each one

of these calls in Model PM, will arrive either at a system that is empty of calls, or not. In the �rst

case and with probability p, she will be delayed compared to Model PM' by the residual durationof

an email treatment (exponential with rate � 0). All the calls arriving after her (and seeing a system

non-empty of calls) will be delayed by the same amount of time. In the second case, if the call

arrives at a system non-empty of calls, then this means that the previous busy period of calls in

Model PM has been delayed by an amount of time corresponding to the residual time of an email

treatment. Then this call and all of those who arrive after her and see a system non-empty of calls

will be delayed with the same amount of time, and so on and so forth.

Let us now compute the expected waiting time in Model PM', denotedby E(W 0). We use the

Pollaczeck-Kinchin result for an M/G/1 queue. From Pollaczeck (1930), we haveE(W 0) = � 2 (1+ cv2 )
2� (1� � ) ,

where cv is the coe�cient of variation of the service distribution (its stand ard deviation over

its expected value) and � is the equivalent workload. Because of the possibility to do emails

between calls, the random variable representing the service timeduration, say S, can be written as

S = S1 + S2 + US0 + S3, whereSi , a random variable, follows an exponential distribution with rate

� i , for i = 0 ; :::; 3, and U follows a binomial distribution with parameter q. We denote byE(Z ) and

V(Z ) the expected (�rst moment) and variance of a given random variableZ . The �rst moment
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of S is given by

E(S) =
1
� 1

+
1
� 2

+
q
� 0

+
1
� 3

;

and its variance can be written as (using the independence betweenSi and Sj for i 6= j 2 f 0; :::; 3g)

V (S) = V (S1) + V (S2) + V (US0) + V (S3) =
1
� 2

1
+

1
� 2

2
+

2q � q2

� 2
0

+
1
� 2

3
:

Then

cv2(S) =
1

� 2
1

+ 1
� 2

2
+ 2q� q2

� 2
0

+ 1
� 2

3�
1

� 1
+ 1

� 2
+ q

� 0
+ 1

� 3

� 2 :

After some algebra, we obtain

E(W 0) =
(� 1 + � 2 + � 3)2 + � 2

1 + � 2
2 + � 2

3 + 2q� 0(� 0 + � 1 + � 2 + � 3)
2� (1 � (� 1 + � 2 + q� 0 + � 3))

;

which leads to

E(W) =
p
� 0

+
(� 1 + � 2 + � 3)2 + � 2

1 + � 2
2 + � 2

3 + 2q� 0(� 0 + � 1 + � 2 + � 3)
2� (1 � (� 1 + � 2 + q� 0 + � 3))

: (3.10)

This closes the performance measure analysis of Model PM.

3.4.2 Extreme Cases

We consider the 4 extreme cases of Model PM; Models 1,...,4. To derive the expressions of the

email throughput, the call probability of delay, and the call expected waiting time, we simply apply

the analysis of Section 3.4.1 and state the results as shown in Table 3.2.

One can derive the cdf of the call waiting time P(W < t ) using Equation (3.6). For n � 0,
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Table 3.2: Expressions ofT, E(W ) and PD for Models 1,...,4

Model 1 Model 2
T 0 � 0(1 � � 1 � � 2 � � 3)

E (W )
(� 1+ � 2+ � 3 )2 (1+

� 2
1+ � 2

2+ � 2
3

( � 1+ � 2+ � 3 ) 2 )

2� (1� � 1 � � 2 � � 3 )
1

� 0
+ E(W1)

PD � 1 + � 2 + � 3 1

Model 3 Model 4
T � 0(� 0 + � 2) � 0(1 � � 1 � � 3)

E (W )
(� 1+ � 2+ � 3+ � 0 )2 (1+

� 2
1+ � 2

2+ � 2
3+ � 2

0
( � 1+ � 2+ � 3 + � 0 ) 2 )

2� (1� � 1 � � 2 � � 3 � � 0 )
1

� 0
+ E(W3)

PD � 0 + � 1 + � 2 + � 3 1

the quantities P(W < t; (A; n )), P( W < t; (B; n )), P( W < t; (B 0; n)), P( W < t; (C; n)) and

P(W < t; (M; n )) can be derived using again the results of Amari and Misra (1997) as shown

in Section B.2 of the appendix. Fortunately, the computation of the probabilities an , bn , b0
n , cn

and mn , for n � 0, simpli�es further. In what follows, we avoid the matrix analysis ( as developed

in Section 3.4.1) by providing for each model the expression of each one ofthe latter probabilities

as a function of un , where un = an + bn + b0
n + cn , for n � 0. We then show that un , for n � 0,

satis�es a recurrent cubic or quartic linear equation that we solve using the Cardan-Ferrari method.

Another method to compute P(W < t ) is this case (service in three exponential stages) based on

the Dunford decomposition is developed in Section B.3 of the Appendix.

Model 1: The Markov chain associated to Model 1 is given in Figure 3.2. For this model, we have

un = an + bn + cn , for n � 0.

From the Markov chain of Model 1, we may write cn (� + � 3) = �c n� 1 + � 2bn for n � 1, and

cn = � 3un� 1 for n � 1. This leads to bn = � 2 ((1 + � 3)un� 1 � � 3un� 2) for n � 2. From the Markov

chain, we also may writebn (� + � 2) = �b n� 1 + � 1an for n � 1. Combining the last two equations

yields to an = � 1(((1 + � 3)� 2 + � 3 + 1) un� 1 � (� 2(1 + 2 � 3) + � 3)un� 2 + � 3un� 3) for n � 3. The
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Figure 3.2: Markov chain for Model 1

equation un = an + bn + cn for n � 0 is then equivalent to

un+3 = ((1 + � 1)(1 + � 2)(1 + � 3) � 1) un+2 � (� 1� 2 + � 1� 3 + � 2� 3 + 2 � 1� 2� 3) un+1 + � 1� 2� 3un ;

which leads to

un+3 = ( � 1 + � 2 + � 3) un+2 � (� 2 + 2 � 3) un+1 + � 3un ; (3.11)

where � 1 = � 1 + � 2 + � 3, � 2 = � 1� 2 + � 1� 3 + � 2� 3, and � 3 = � 1� 2� 3. The cubic equation associated

to the recurrent Equation (3.11) is x3 = ( � 1 + � 2 + � 3) x2 � (� 2 + 2 � 3) x + � 3, with x as variable. It

remains now to apply the Cardan-Ferrari method in order computeun , for n � 0. The type of the

solutions depends on the discriminant � of the cubic equation (see Section B.4 of the Appendix).

� If � > 0, the cubic equation has one real solution denoted byx1 and two complex solutions

x2 and its conjugate. We denote byjx2j the module of x2 and � its argument. Since un is

real, it can be written as

un = rx n
1 + sjx2jncos(n� ) + tjx2jnsin (n� );

for n � 0, where the parametersr; s; t 2 R. These parameters are easily computed using the

initial conditions given by u0, u1 and u2.
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� If � < 0, the cubic equation has three real solutions denoted byx1, x2 and x3. Thus

un = rx n
1 + sxn

2 + tx n
3 ;

for n � 0, where again the parametersr , s and t are computed from the initial conditions.

� If � = 0, the cubic equation has a simple solution denoted by x1 and a double one denoted

by x2. We then have

un = rx n
1 + ( sn + t)xn

2 ;

for n � 0, and the real parametersr , s and t are again given by the initial conditions.

Model 2: The Markov chain associated to Model 2 is given in Figure 3.3. For this model, we have

un = an + bn + cn , for n � 0. Following the same reasoning as that for Model 1, we obtain

�

� ���� �

l �

� ���� � � ��� � � �

1m � 1m �
1m �

2m �

l �

0m �

� ���� �

� ���� �

� ���� �

� ���� � � ���� �

� ���� �

� ���� �
3m �

3m �

1m �

2m � 2m �

l �

l �

l �

� ���� � � ���� �

0m �

� ��� � � �

� ��� � � �

3m � 2m �

l �

l �

l �

0m � 0m �

l �

3m �

� ���� �� �� ���� � � �

3m �

� ���� �

� ���� �

Figure 3.3: Markov chain for Model 2

un+3 = [ � 1 + � 2 + � 3]un+2 � [� 2 + 2 � 3]un+1 + � 3un + K
�

� 0

1 + � 0

� n

; (3.12)

with the constant K 2 R. Since Equation (3.12) is similar to Equation (3.11) in the sense that the

former has just an additional term proportional to
�

� 0
1+ � 0

� n
, we again use the solutions of Equation
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(3.11) to easily obtain those of Equation (3.12).

Model 3: The Markov chain associated to Model 3 is given in Figure 3.4. For this model, we have

un = an + bn + b0
n + cn , for n � 0.
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Figure 3.4: Markov chain for Model 3

From the Markov chain of Model 3, we may write cn (� + � 3) = �c n� 1 + � 0b0
n for n � 1, and

cn = � 3un� 1 for n � 1. So, b0
n = � 0(1 + � 3)un� 1 � � 0� 3un� 2 for n � 2. We also have from the

Markov chain b0
n (� + � 0) = �b 0

n� 1 + � 2bn , for n � 1. Therefore, bn = � 2(1 + � 0)(1 + � 3)un� 1 �

� 2(1 + � 0)� 3un� 2 � � 2� 0(1 + � 3)un� 2 + � 2� 0� 3un� 3, for n � 3. From a state (B; n ) for n � 1, we

may write bn (� + � 2) = �b n� 1 + � 1an , which leads to

an = � 1(1 + � 2)(1 + � 0)(1 + � 3)un� 1 � � 1(1 + � 2)(1 + � 0)� 3un� 2 � � 1(1 + � 2)� 0(1 + � 3)un� 2

+ � 1(1 + � 2)� 0� 3un� 3 � � 1� 2(1 + � 0)(1 + � 3)un� 2 + � 1� 2(1 + � 0)� 3un� 3 + � 1� 2� 0(1 + � 3)un� 3

� � 1� 2� 0� 3un� 4;
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for n � 4. From un = an + bn + b0
n + cn we then state that

un+4 = ( � 0 + � 1 + � 2 + � 3 + � 0� 1 + � 0� 2 + � 0� 3 + � 1� 2 + � 1� 3 + � 2� 3 + � 0� 1� 2

+ � 0� 1� 3 + � 0� 2� 3 + � 1� 2� 3 + � 0� 1� 2� 3)un+3 � (� 0� 1 + � 0� 2 + � 0� 3 + � 1� 2

+ � 1� 3 + � 2� 3 + 3( � 0� 1� 2 + � 0� 1� 3 + � 0� 2� 3 + � 1� 2� 3) + 3 � 0� 1� 2� 3)un+2

+ ( � 0� 1� 2 + � 0� 1� 3 + � 0� 2� 3 + � 1� 2� 3 + 2 � 0� 1� 2� 3)un+1 � � 0� 1� 2� 3un ;

for n � 0, or equivalently

un+4 = [ � 1 + � 2 + � 3 + � 4]un+3 � [� 2 + 2 � 3 + 3 � 4]un+2 + [ � 3 + 3 � 4]un+1 � � 4un ; (3.13)

for n � 0, where � 1 = � 0 + � 1 + � 2 + � 3, � 2 = � 0� 1 + � 0� 2 + � 0� 3 + � 1� 2 + � 1� 3 + � 2� 3,

� 3 = � 0� 1� 2 + � 0� 1� 3 + � 0� 2� 3 + � 1� 2� 3 and � 4 = � 0� 1� 2� 3. In order to compute un we then

solve the associated quadric equation using the Cardan-Ferrari method and the initial conditions

u0; u1; u2 and u3.

Model 4: The Markov chain associated to Model 4 is given in Figure 3.5. For this model, we have

un = an + bn + b0
n + cn , for n � 0.
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Figure 3.5: Markov chain for Model 4
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Following the same reasoning as that for Model 3, we obtain

un+4 = [ � 1 + � 2 + � 3 + � 4] un+3 � [� 2 + 2 � 3 + 3 � 4]un+2 + [ � 3 + 3 � 4]un+1 � � 4un + K
�

� 0

1 + � 0

� n

;

(3.14)

with the constant K 2 R. Since Equation (3.14) is similar to Equation (3.13) in the sense that the

former has just an additional term proportional to
�

� 0
1+ � 0

� n
, we again use the solution of Equation

(3.13) to easily obtain those of Equation (3.14). This closes the characterization of the performance

measures for the special cases Models 1,...,4.

3.5 Comparison Analysis and Insights

We start in Section 3.5.1 by a comparison analysis between the extreme cases Models 1,...,4. The

comparison is based on the optimization problem (3.1). We derive various structural results and

properties for this comparison. In particular, we investigate the impact of the mean arrival rate

intensity of calls on the comparison between Models 1,...,4. One couldthink of a call center manager

that adjusts the job routing schema as a function of the call arriving workload over the day. In

Section 3.5.2 we focus on the general case Model PM. We prove that the optimization of the

parameters of Model PM lead to extreme situations in the sense of a systematic email treatment

of emails either between calls or inside a call conversation, which gives an interest in practice for

Models 1,...,4.

3.5.1 Comparison between the Extreme Cases

We �rst compare between Models 1,...,4 based on their performance interms of the email through-

put, denoted by T1,..., T4, respectively. It is obvious that Model 4 is the best and Model 1 isthe

worst (no emails at all). Let us now compare between Models 2 and 3. From Table 3.2 we have
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T2 = � 0(1 � � 1 � � 2 � � 3) and T3 = � 0(� 0 + � 2). Thus T3 > T 2 is equivalent to

� >
1

1
� + 1

� 2

;

where 1
� = 1

� 0
+ 1

� 1
+ 1

� 2
+ 1

� 3
. Since the stability condition for Model 3 is � < � , Model 3 is better

than Model 2 if

1
1
� + 1

� 2

< � < �: (3.15)

Denoting the left term in Inequality (3.15) by R, the condition under which T3 > T 2 is then

R =
1

1
� 0

+ 1
� 1

+ 1
� 3

+ 2
� 2

< � < �: (3.16)

From Inequality (3.16), we �rst see that treating emails only inside a call conversation (Model

3) becomes better that treating them only between calls (Model 2) is likely the case for high arrival

workloads (in such a case, busy period durations are reduced). We alsosee that @R
@�2

> 0 for � 2 > 0,

@R
@�0

> 0 for � 0 > 0, @R
@�1

> 0 for � 1 > 0, and @R
@�3

> 0 for � 3 > 0. This means that decreasing the

expected duration of the call service second stage (1=� 2) relative to the expected durations of the

other call service stages or the email service duration (1=� 1, 1=� 3 and 1=� 0) increases the range of

arrival workloads where it is preferred to use Model 2 instead of Model 3. In other word, there is

no su�cient time to treat emails inside the call conversation.

Comparison with a constraint on E(W )

As a function of the mean call arrival rate, we want to answer the question when should we treat

emails (which model among Models 1 to 4 should a manger choose?) for thefollowing problem

8
<

:

Maximize T

subject to E(W ) � w� ;
(3.17)
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where w� is the service level for the expected waiting time,w� > 0. Let Wi , a random variable,

denote the expected call waiting time in Model i , i = 1 ; :::; 4. It is clear that for some periods of

a working day with a very high call arrival rate � , the manager is likely to choose Model 1 (no

emails), and for other periods with a very low � , she is likely to choose Model 4 (emails between

calls and inside a call). However for intermediate values of� , the optimal choice is not clear. This

is what we analytically analyze in what follows.

Under the condition of stability of Model i , E (Wi ) is continuous and strictly increasing in � (see

Table 3.1), for i = 1 ; :::; 4. The constraint E (Wi ) � w� is then equivalent to � � � i , for i = 1 ; :::; 4,

where

� 1 =
2w�

2w�

�
3P

i =1

1
� i

�
+

�
3P

i =1

1
� i

� 2

+
3P

i =1

1
� 2

i

; (3.18)

� 2 =
2

�
w� � 1

� 0

�

2
�

w� � 1
� 0

� �
3P

i =1

1
� i

�
+

�
3P

i =1

1
� i

� 2

+
3P

i =1

1
� 2

i

;

� 3 =
2w�

2w�

�
3P

i =0

1
� i

�
+

�
3P

i =0

1
� i

� 2

+
3P

i =0

1
� 2

i

;

� 4 =
2

�
w� � 1

� 0

�

2
�

w� � 1
� 0

� �
3P

i =0

1
� i

�
+

�
3P

i =0

1
� i

� 2

+
3P

i =0

1
� 2

i

:

For a given � and under the condition of stability of Model i (i = 1 ; :::; 4), the choice of Modeli

happens if � � � i and Ti = max j 2f 1;:::;4g; � � � j
(Tj ). When � � � 4, the choice is obviously for Model

4. When � � � 1 and � > � i for i = 2 ; 3; 4 the only possibility is Model 1. Proposition 3 provides

the conditions under which an optimal choice of Model 2 or Model 3 may happen.

Proposition 3 The following holds:

1. For � < 1
� 1

+ 1
� 2

+ 1
� 3

, it exists some values of� for which Model 2 is optimal if and only if

� 2 > 0.

77



2. For � < 1
� 0

+ 1
� 1

+ 1
� 2

+ 1
� 3

, it exists some values of� for which Model 3 is optimal if and

only if 8
>>>>>>>>><

>>>>>>>>>:

R � � 3

or

� 2 < � 3:

3. We have� 2 < � 3 if and only if 1
� 0

< w � < w� , where

w� =
1
2

vu
u
t 4

� 2
0

+
�

1
� 3

+
1
� 2

+
1
� 1

�
4
� 0

+ 5
3X

i =1

1
� 2

i
+ 6

3X

i;j =1; i 6= j

1
� i � j

�
�

1
� 3

+
1
� 2

+
1
� 1

�
:

Proof. See Section C.2 of the appendix. 2

Using Equation (3.18), the condition in the �rst statement of Proposition 3 may be rewritten

as 8
>>>>>>>>>><

>>>>>>>>>>:

w� > 1
� 0

or

w� < 1
� 0

�

�
3P

i =1

1
� i

� 2

+
3P

i =1

1
� 2

i

2
�

3P

i =1

1
� i

� :

(3.19)

The second inequality in Relation (3.19) impliesw� < 1
� 0

. Since at least the expected waiting time

in Model 2 is strictly higher than 1
� 0

(any new call has at least to wait for the residual time of

an email treatment), this second inequality is impossible. Roughly speaking, the condition for the

optimality of Model 2 (for some values of � ) holds when the service level on the call waiting is

higher than the expected email service time.

In what follows, we numerically illustrate the analysis above. For various system parameters,

Figure 3.6 gives the optimal model choice as a function of the mean arrival rate of calls, � . An
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intuitive reasoning of a manager would choose the ordering Model 4 (emails between calls and inside

a call), then 2 (emails only between calls), then 3 (emails only inside a call), then 1 (no emails) as

� increases.
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(a) � 0 = 2, � 1 = � 3 = 1, � 2 = 3, w� = 1
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(b) � i = 2 for i = 0 ; :::; 3, w� = 1
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(c) � 0 = 1, � 1 = � 3 = 5, � 2 = 0 :8, w� = 5
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(d) � 0 = 0 :8, � 1 = � 3 = 10, � 2 = 0 :5, w� = 5

Figure 3.6: Comparison between Models 1 to 4 with a constraint onE(W)

The ordering Model 2 then Model 3 is not always appropriate, and some situations may require

to consider some counterintuitive ordering. For instance, Model 3 is better than Model 2 for small

values of � if R � � 4 and � 3 < � 2, see Figure 3.6(c). In other words, this happens when the

constraint on E(W ) is not too restrictive and when the expected second stage serviceduration is

long. Another more surprising ordering, as� increases, is Model 2, then Model 3, then again Model

2 (see Figure 3.6(d)) which happens for system parameters such that� 4 < R < � 3 < � 2.

Comparison with a constraint on P(W < AW T )

In the constraint of Problem (3.1), we want that the probability that a call waits less than a given

threshold, de�ned asAWT is at least a given service level, de�ned asSL, i.e., P(W < AWT ) � SL.

Note that a special case of this constraint is that onPD , the call probability of waiting. The

79



expressions involved in the analysis ofP(W < AW T ) are quite complicate to allow an analytical

comparison between the models as we have done for a constraint onE(W ). We have then conducted

a numerical comparison analysis (not totaly illustrated here). The mainqualitative conclusions are

similar to those for the case of a constraint onE(W ). As � increases, it is not always true as one

would intuitively expect that a manager should choose �rst Model 2 and then at some point of �

she shifts to Model 3 (Figure 3.7(a)). The optimal choice may change with the system parameters

and we may have the ordering Model 3 then Model 2 (Figure 3.7(b)).
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(a) � i = 2 for i = 0 ; :::; 3 and � � = 80%
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(b) � 0 = 1, � 1 = 5 = � 3 , � 2 = 0 :8 and � � = 20%

Figure 3.7: Comparison between Models 1 to 4 with the constraint on P(W < 1)) � � �

3.5.2 Optimization of Model PM

In this section we focus on the general case, Model PM. We are interested in the optimization of

the parameters p and q in Model PM for Problem (3.1). Concretely, we want to �nd the optimal

routing parameters of Model PM that allows the manager to maximize the email throughput

while respecting a call service level constraint. Recall that thestability condition of Model PM is

� < q
� 0

+ 1
� 1

+ 1
� 2

+ 1
� 3

.

The expression of the email throughput T for Model PM is given in Proposition 2. It is

straightforward to prove that for p; q 2 [0; 1] the maximum of T (best situation) is reached for

p = q = 1. The proof is then omitted. Also, the expected call waiting time of Model PM (given in

Equation (3.10)) is maximized (worst) for p = q = 1. Therefore in order to solve Problem (3.1),

one would be interested analyzing the sensitivity ofT with respect to p and q. In Lemma 1 we
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prove a sensitivity result for T. The result will be used later in our analysis.

Lemma 1 We have @T
@p > @T

@q if and only if 0 < � 0 < � 0, where

� 0 =

p
(p � q � � 1 � � 2 � � 3)2 � 4(p2 � p � q)(1 � � 1 � � 2 � � 3) � q + p � (� 1 + � 2 + � 3)

2(q � p2 + p)
:

Proof. See Section B.6 of the appendix. 2

In what follows we address the question: starting fromp = q = 1, in which direction should we

decreaseT? Should we decreasep or q �rst?

For p = q = 1, we have � 0 = 1
2

� p
(� 1 + � 2 + � 3)2 + 4(1 � � 1 � � 2 � � 3) � (� 1 + � 2 + � 3)

�
. Let

us now prove (for p = q = 1) that � 0 > � 0. From the one hand, proving � 0 > � 0 is equivalent

to proving
p

(� 1 + � 2 + � 3)2 + 4(1 � � 1 � � 2 � � 3) > 2� 0 + ( � 1 + � 2 + � 3) or equivalently � 2
0 +

� 0(� 1 + � 2 + � 3) � (1 � (� 1 + � 2 + � 3)) < 0 or also (� 0 + 1)( � 0 � (1 � (� 1 + � 2 + � 3)) < 0. From

the other hand, we have� 0 + 1 > 0. Also, the stability condition of Model 4 (Model PM with

p = q = 1) is � 0 + � 1 + � 2 + � 3 < 1. Then � 0 < 1 � (� 1 + � 2 + � 3). As a conclusion the inequality

� 0 > � 0 is true, for p = q = 1. Using Lemma 1, this means that starting from p = q = 1, we

have @T
@p > @T

@q > 0. As a consequence, when we need to modify the values ofp and q in order

to decrease the expected call waiting time (the constraint in Problem (3.1)), the maximum of T

is guarantied by �rst decreasing q (the email throughput is less sensitive to the variation of q

than that of p). The question now is: which direction to use next? In other wordswhen p = 1

and some value ofq such that 0 < q < 1, is it possible that it is better to decreasep instead of

q? The answer is no and the proof is as follows. Forp = 1, let us try to �nd a value of q for

which we have� 0 � � 0. This is equivalent to
p

(1� q� � 1 � � 2 � � 3 )2+4 q(1� � 1 � � 2 � � 3 )� q+1 � � 1 � � 2 � � 3

2q � � 0.

Thus, q2� 2
0 + q� 0 � (1 � � 1 � � 2 � � 3)(1 + � 0) > 0. This trinomial in q has two real solutions;

q1 = �
1+

p
4� 0+5 � 4(� 1+ � 2+ � 3 )( � 0+1)

2� 0
and q2 =

� 1+
p

4� 0+5 � 4(� 1+ � 2+ � 3 )( � 0+1)
2� 0

. Obviously q1 < 0. We

also haveq2 > 1 because: provingq2 � 1 > 0 is equivalent to proving � 2
0 + ( � 1 + � 2 + � 3)� 0 + 1 > 0.
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The discriminant of this latter trinomial in � 0 is negative and it is equal to (� 1 + � 2 + � 3)2 � 4. So

q2 > 1 for any � 0 > 0. Therefore it is impossible to �nd a value of q between 0 and 1 for which

0 < @T
@p < @T

@q. In conclusion starting from p = q = 1, when we need to change the values ofp and

q, the best direction to maximize T is to �rst decrease q until q = 0 and only then start to decrease

p from p = 1.

Consider now Problem (3.1) with a constraint on E(W ). From the one hand, the constraint

E (W ) � w� implies

p
� 0

+
(� 1 + � 2 + � 3)2 + � 2

1 + � 2
2 + � 2

3 + 2q� 0(� 0 + � 1 + � 2 + � 3)
2� (1 � (� 1 + � 2 + q� 0 + � 3))

� w� ;

for p; q 2 [0; 1], or equivalently

q �
2� (1 � � 1 � � 2 � � 3)(w� � p=� 0) � (� 1 + � 2 + � 3)2 � � 2

1 � � 2
2 � � 2

3

2� 0(� 0 + � 1 + � 2 + � 3 + � (w� � p=� 0))
; (3.20)

for p; q 2 [0; 1]. From the other hand, the condition in Lemma 1, 0< � 0 < � 0, is equivalent to

q <
1 � (� 1 + � 2 + � 3)(1 + � 0)

� 0(1 + � 0)
+

1 � � 0

1 + � 0
p +

� 0

1 + � 0
p2; (3.21)

for p; q 2 [0; 1]. Let us denote the right hand sides of Inequalities (3.20) and (3.21) by thefunctions

in p 2 [0; 1] f (p) and g(p), respectively. Illustrations of these functions are given in Figure 3.8.

In what follows we prove an interesting result on the optimal values ofp and q. Consider for

example Figure 3.8(a) and assume that the agent is in a situation such that (p; q) belongs to Zone

1 or 2. Then the constraint on E(W) is respected, but T can be improved. Using Lemma 1, we

should increasep �rst ( q �rst) for Zone 1 (Zone 2). From Figure 3.8(a), we also see that we should

decreasep �rst ( q �rst) for Zone 3 (Zone 4). It is clear that the optimal couple ( p; q) will be on

the curve of f . Moreover, we prove in Theorem 1 that the optimal point is such that p 2 f 0; 1g or
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(a) � = 0 :5, � 0 = � 1 = � 2 = � 3 = 2, w� = 5 (b) � = 0 :22, � 0 = � 1 = � 2 = � 3 = 2, w� = 1

(c) � = 0 :1, � 0 = 0 :1, � 1 = � 2 = � 3 = 2, w� = 5

Figure 3.8: Behavior of f (p) and g(p)

q 2 f 0; 1g.

Theorem 1 For p; q 2 [0; 1], the optimal values ofp and q of the optimization problem

8
<

:

Maximize T

subject toE(W ) � w� ;
(3.22)

are always extreme values (0 or 1) for at leastp or q.

Proof. We want to maximize the email throughput T(p; q) while respecting a constraint on the

expected call waiting time (E(W )(p; q) � w� ). We use the method of Lagrange multipliers to

�nd the optimal point ( p; q). Let us denote the Lagrange multiplier by � (� is real). Then �

and the extremum (p; q) of our optimization problem are solutions of the set of the 3 equations

D(T + � (W � w� )) = 0, where D is the di�erential applicator in � , p and q. These 3 equations are

@(T + � (W � w� ))
@p

= � 0
(1 � � 1 � � 2 � q� 0 � � 3)(1 + � 0)

(1 + p� 0)2 + �
1
� 0

= 0 ;
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@(T + � (W � w� ))
@q

= � 0
(1 � p)� 0

1 + p� 0

+ �
1

2�
� 0(2(� 0 + � 1 + � 2 + � 3)(1 � (� 1 + � 2 + � 3)) + ( � 1 + � 2 + � 3)2 + � 2

1 + � 2
2 + � 2

3

(1 � (� 1 + � 2 + � 3 + q� 0))2 = 0 ;

@(T + � (W � w� ))
@�

=
p
� 0

+
(� 1 + � 2 + � 3)2 + � 2

1 + � 2
2 + � 2

3 + 2q� 0(� 0 + � 1 + � 2 + � 3)
2� (1 � (� 1 + � 2 + q� 0 + � 3))

� w� = 0 :

Solving this set of 3 equations leads to two couples of solutions (p1; q1) and (p2; q2). The expressions

of these solutions are too long (see for example Section B.7 of the appendix for the expression of

q2), but we show for any case of system parameters� i (i = 0 ; :::; 3) under the condition of stability

that all the values of p1, q1, p2 and q2 are out of the interval [0; 1]. We then deduce for the optimal

values ofp and q that at least one them has an extremum value (0 or 1). This �nishes the proof of

the theorem. 2

�

���

�

���

�

���

� ���� ��� ����

�

�� ����
�� ����

�� ����
�� ����

�� ����
�� ��

(a) � 0 = 2, � 1 = 1 = � 3 , � 2 = 3
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(b) � i = 2 for i = 0 ; :::; 3

Figure 3.9: Optimal p and q with w� = 1

Figure 3.9 provides a numerical illustration of Theorem 1. We observe asa function of the

system parameters that at least one of the routing parameters is either 0or 1. This gives the merit

to the study of the extreme cases Models 1,...,4. Moreover they are easy to implement and easy to

understand for both managers and agents. Note that the same observation holds also for Problem

(3.1) with a constraint on P(W < AW T ). This is based on several numerical examples (a rigorous

proof as that for E(W ) is too complex to develop). An illustration is given in Figure 3.10.
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(a) � 0 = 2, � 1 = � 3 = 1, � 2 = 3
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(b) � i = 2 for i = 0 ; :::; 3

Figure 3.10: Optimal p and q with P( W < 1) � 80%)

3.6 Approximations

In this section, we develop two approximation methods. In Section 3.6.1 we focus on a light-

tra�c approximation for Model PM in the case of a single server. In Section 3.6.2, we propose an

approximation method to extend our email routing optimization problem to the multi-server case.

3.6.1 Light-Tra�c Approximation for Model PM

Although the analysis in Section 3.4.1 provides an exact method to derive the system steady-state

probabilities of Model PM, the expressions involved are cumbersome. In this section, we develop

an approximate analysis that allows to obtain simpler expressions for those quantities under the

light-tra�c regime.

Under the light-tra�c regime, we have � i << 1 and also � i
1+ � i

' � i , for i = 0 ; :::; 3. Equation

(3.9) can be then rewritten asx4 � � 1x3 + � 2x2 � � 3x + � 4 = 0, or equivalently

(x � � 0)(x � � 1)(x � � 2)(x � � 3) = 0 :
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Also, the matrix 1
� A becomes

1
�

A =

0

B
B
B
B
B
B
B
B
B
@

1=� 1 0 0 0 0

� 1=� 1 1=� 2 0 0 0

0 � q=�2 1=� 0 0 0

0 � (1 � q)=� 2 � 1=� 0 1=� 3 0

0 0 0 0 1=� 0

1

C
C
C
C
C
C
C
C
C
A

;

which easily leads to

�A � 1 =

0

B
B
B
B
B
B
B
B
B
@

� 1 0 0 0 0

� 2 � 2 0 0 0

q� 0 q� 0 � 0 0 0

� 3 � 3 � 3 � 3 0

0 0 0 0 � 0

1

C
C
C
C
C
C
C
C
C
A

:

The computation of the steady-state probabilities simpli�es as follows. We haveP0 = 1 � p, m0 = p,

a0 = � 1, b0 = � 2, b0
0 = q� 0 and c0 = � 3. Using Equation (3.7), we obtain an = � n+1

1 , for n � 0.

Also, bn = � 2an� 1 + � 2bn� 1 for n � 1. Therefore, if � 1 6= � 2, we have bn = � 2

nP

k=0
� k

1� n� k
2 =

� 2
� n +1

2 � � n +1
1

� 2 � � 1
for n � 0, and if � 1 = � 2, we have bn = ( n + 1) � n+1

1 for n � 0. From Equation

(3.7), we may write b
0

n = q� 0an� 1 + q� 0bn� 1 + � 0b0
n� 1, for n � 1. Thus if � 1 6= � 2, we have

b
0

n = q� 0
� n +1

2 � � n +1
1

� 2 � � 1
+ � 0b0

n� 1, for n � 1. Therefore if � i 6= � j for i 6= j 2 f 0; 1; 2g we have

b
0

n = q� 0 � 2
(� 2 � � 1 )( � 2 � � 0 ) (� n+1

2 � � n+1
0 ) � q� 0 � 1

(� 2 � � 1 )( � 1 � � 0 ) (� n+1
1 � � n+1

0 ), or equivalently

b
0

n = q� 0

�
� n+2

0

(� 0 � � 1)( � 0 � � 2)
+

� n+2
1

(� 1 � � 0)( � 1 � � 2)
+

� n+2
2

(� 2 � � 0)( � 2 � � 1)

�
;

for n � 0. If � i = � j and � i 6= � k for distinctive i; j; k 2 f 0; 1; 2g, then

b
0

n = q� 0

 
(n + 2) � n+1

i

� i � � k
+

� n+2
k

(� k � � i )2

!

;
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for n � 0. If � 1 = � 2 = � 0, we have

b
0

n = q� n+1
0

(n + 1)( n + 2)
2

;

for n � 0. From Equation (3.7), we also may write cn = � 3(an� 1 + bn� 1 + b0
n� 1 + cn� 1), for n � 1.

Thus, if � i 6= � j for i 6= j 2 f 0; 1; 2; 3g, we have

cn = � 3(
� n+2

0 (� 0 � � 0(1 � q))
(� 0 � � 1)( � 0 � � 2)( � 0 � � 3)

+
� n+2

1 (� 1 � � 0(1 � q))
(� 1 � � 0)( � 1 � � 2)( � 1 � � 3)

+
� n+2

2 (� 2 � � 0(1 � q))
(� 2 � � 0)( � 2 � � 1)( � 2 � � 3)

+
� n+2

3 (� 3 � � 0(1 � q))
(� 3 � � 0)( � 3 � � 1)( � 3 � � 2)

);

for n � 0. The expression ofcn , for n � 0, can be also easily derived in closed form in the other

remaining cases for� i and � j for i 6= j 2 f 0; 1; 2; 3g. Finally, we deduce from Equation (3.7) that

mn = p� n
0 , for n � 0. Because of the light-tra�c approximation in the above computations, th e

system steady-state probabilities do not sum up to one. We then normalize them by dividing each

one of them by the summation of all the steady-state probabilities. In Table 3.3 we evaluate the

light-tra�c approximation. The comparison of the approximate results w ith those from the exact

numerical analysis show that the approximation is appropriate under the light-tra�c regime. Note

that the probabilities for n � 4 are too close to zero for both the exact and the approximation

methods.

3.6.2 Multi-Server Case

In this section, we focus on the email routing problem for the multi-server case. The modeling is

the same as described in Section 3.3, expect that instead of one server,there ares identical, parallel

servers. As previously, we consider a call center manager that wants tooptimize the email routing

as a function of the system parameters (Problem (3.1)). In other words, we want to either optimize

p and q for Model PM, or give the ordering of the extreme cases Models 1 to 4 (easier to use in
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Table 3.3: Validation of the light-tra�c approximation

�
� =28%, � = 0 :2, �

� =20.83%, � = 0 :1, � 1 = 1, �
� =2.00%, � = 0 :01

� 1 = � 2 = 5, � 3 = � 0 = 2, � 2 = 2, � 3 = 3, � 0 = 4, � i = 2 for i = 0 ; � � � ; 3
p = 10%, q = 80% p = q = 1 p = q = 50%

Exact Approximation Exact Approximation Exact Approximation

P0 65.9406% 67.9873% 0,0000% 0,0000% 49,0025% 49.0093%
a0 3.6157% 3.0217% 8,5896% 7,8955% 0,4962% 0.4901%
b0 3.4766% 3.0217% 4,0903% 3,9478% 0,4937% 0.4901%
b0

0 6.3211% 6.0433% 1,9953% 1,9739% 0,2456% 0.2450%
c0 7.3267% 7.5541% 2,5745% 2,6318% 0,4900% 0.4901%
m0 7.3267% 7.5541% 77,2358% 78,9551% 49,0025% 49.0093%
a1 0.3308% 0.1209% 1,2323% 0,7896% 0,0038% 0.0025%
b1 0.4518% 0.2417% 0,7816% 0,5922% 0,0062% 0.0049%
b0

1 1.3961% 1.0878% 0,4299% 0,3454% 0,0043% 0.0037%
c1 2.1406% 1.9641% 0,6378% 0,5483% 0.0098% 0.0086%
m1 0.6661% 0.7554% 1,8838% 1,9739% 0.2438% 0.2450%
a2 0.0451% 0.0048% 0,1559% 0,0790% 0.0000% 0.0000%
b2 0.0607% 0.0145% 0,1114% 0,0691% 0,0001% 0.0000%
b0

2 0.2374% 0.1378% 0,0648% 0,0432% 0.0000% 0.0000%
c2 0.4380% 0.3414% 0,1042% 0,0758% 0,0001% 0.0001%
m2 0.0606% 0.0755% 0,0459% 0,0493% 0,0012% 0.0012%
a3 0.0071% 0.0002% 0,0195% 0,0079% 0.0000% 0.0000%
b3 0.0091% 0.0008% 0,0146% 0,0074% 0.0000% 0.0000%
b0

3 0.0382% 0.0153% 0,0087% 0,0048% 0.0000% 0.0000%
c3 0.0787% 0.0499% 0,0146% 0,0089% 0.0000% 0.0000%
m3 0.0055% 0.0076% 0,0011% 0,0012% 0.0000% 0.0000%
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Table 3.4: Comparison between approximation and simulation
Interval of the call arrival rate �

s = 10, � 0 = 2, � 1 = � 3 = 1, � 2 = 3 s = 10, � 0 = � 1 = � 2 = � 3 = 2

Constraint on calls Model Simulation Approximation Simulation Approximation

Model 4 0 � 3:04 0� 2:96 0 � 4:44 0� 4:42
E(W) � 1 Model 3 3:04� 3:74 2:96� 2:97 4:44� 4:48 4:42� 4:45

Model 2 3:04� 3:74 2:97� 3:66 4:48� 6:05 4:45� 6:04
Model 1 3:74� 3:85 3:66� 3:69 6:05� 6:07 6:04� 6:06

Model 4 0 � 1:2 0� 1:1 0 � 1:3 0� 1:2
P(W < 1) � 0:8 Model 2 1:2 � 1:9 1:1 � 1:7 1:3 � 2:0 1:2 � 1:8

Model 1 1:9 � 2:3 1:7 � 2:1 2:0 � 2:5 1:8 � 2:4

practice and also e�cient).

An exact analysis as that done for the single server case is too complex. Wepropose an

approximation based on the single server results. It consists on replacing the s servers by a single

super server. The service rates becomes� 0 (for emails), s� 1 (�rst stage of call service), s� 2 (second

stage of call service),s� 3 (third stage of call service). We have conducted an extensive simulation

study in order to assess the quality of this approximation. Some of the comparison results between

approximation and simulation are given in Table 3.4.

In Table 3.4 we give as a function of the interval of the call arrival rate value the ordering of

Models 1 to 4 with respect to the optimization problem. The intervals are given using the single

server approximation and also using a combined simulation and optimization of the multi-server

system. The same intervals hold also when considering Model PM. Weobserve from Table 3.4 that

the approximation provides an appropriate solution for the email routing optimization.

3.7 Conclusions

We considered a blended call center with calls and emails. The call service is characterized by

successive stages where one of them is a break for the agent in the sensethat inside the conversation

there is no required interaction during a non-negligible time between the two parties. We addressed

an important question in the call center practice: how should managers make use of this opportunity
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in order to better improve performance? We focused on the optimization of the email routing

given that calls have a non-preemptive priority over emails. Our objective was to maximize the

throughput of emails subject to a constraint on the call waiting time.

We developed a general framework (Model PM) with two probabilistic parameters for the email

routing to agents. One parameter controls the routing between calls, and the other does the

control inside a call conversation. We have also considered 4 particular cases corresponding to the

extreme values of the probabilistic parameters. For these routing models, we have derived various

structural results with regard to the optimization problem. We have also numerically illustrated

and discussed the theoretical results in order to provide guidelines to call center managers. In

particular, we proved for the optimal routing that all the time at least on e of the two email routing

parameters has an extreme value.

There are several avenues for future research. It would be interesting to extend the structural

results to the multi-server case. It would also be useful but challenging to extend the analysis to

cases with an additional channel, in particular the chat which is increasingly used in call centers.

Using the chat channel, an agent may handle many customers at the same time, which represent

an additional opportunity to e�ciently use the agent time.
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Chapter 4

Adaptive Threshold Policies for

Multi-Channel Call Centers

In the context of multi-channel call centers with inbound and outbound calls, we consider a thresh-

old policy on the reservation of agents for the inbound calls. We study a general non-stationary

model where the call arrival follows a non-homogeneous Poisson process.The optimization problem

consists on maximizing the throughput of outbound calls under a constraint on the waiting time of

inbound calls. We propose an e�cient adaptive threshold policy easy to implement in practice in

the Automatic Call Distribution (ACD). This scheduling policy is e valuated through a comparison

with the optimal performance measures found in the case of a constant stationary arrival rate, and

also a comparison with other intuitive adaptive threshold policies in the general non-stationary

case.
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4.1 Introduction

Call centers require a very accurate match of demand and supply. The delay of the treatment of a

call, its waiting time, is usually not allowed to exceed 20 seconds. Thus a very accurate prediction

of the demand is required. However, this can rarely be obtained, because of the volatility of call

arrival patterns. Therefore there is often a mismatch between demand and the scheduled supply,

consisting of rostered call center employees (usually called agents). Moreover, even if the demand

is accurately forecasted, a considerable overcapacity should be scheduled to be able to deal with

the random Poisson uctuations of the demand. Usually queueing models are used to quantify this

overcapacity, most often Erlang C.

To prevent idle overcapacity and to limit the necessity to have extremely accurate forecast

inbound calls are sometimes mixed with other types of customer contacts which have a less strict

allowable delay, such as emails or outbound calls. This is called(call) blending. The amount of

capacity assigned to the other channels is supposed to adapt to the number of inbound calls, giving

at the same time a good service level for the inbound calls and a good occupancy of the call center

agents.

Because of the strict waiting time requirement on inbound calls it is best to give them priority

over the other channels. To maximize agent productivity it would be best to assign an email to

every idle agent where there are no inbound calls in queue. This would lead to a 100% productivity.

There are two objections against this policy: a 100% occupancy is not sustainable over a longer

period because of agent fatigue, and it would lead to long waiting times forinbound calls because

never an agent is waiting for an inbound call to arrive. For these reasons a more sophisticated

assignment policy is required.

In Bhulai and Koole (2003) and Gans and Zhou (2003b) it is shown that the optimal assignment

policy is of the following form: outbound calls should only be scheduled when there are no waiting

inbound calls and when the number of idle agents exceeds a certain threshold. Thus the problem of
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controlling our blended call center reduces to determining the right threshold level. This threshold

however depends on all the parameters of the system. But these parameters, especially the arrival

rate, are often hard to determine. This calls for a policy in which the threshold is adapted to

the current situation without using explicitly the parameters of t he system. In this chapter such

adaptive policies are studied, both for systems with a constant (but unknown) arrival rate and for

the more realistic situation of a uctuating arrival rate. The parameter that is used to update the

threshold is the service level up to that moment, a number which is always available in call centers.

The overall objective is to reach a certain service level by the end of the day, while maximizing the

number of emails or outbound calls that are done.

We discuss the relevant literature. There is a rich literature onplanning and scheduling in call

centers, see Gans et al. (2003); Ak�sin et al. (2007). However, few papers focus on blending. The

general context of multi-channel call centers is described in Koole(2013), Chapter 7.

Deslauriers et al. (2007) extend the earlier mentioned papers by having di�erent types of agents.

outbound calls are served only by blend agents, whereas inbound calls canbe served by either

inbound-only or blend agents. Inbound callers may balk or abandon. They evaluate several per-

formance measures of interest, including the rate of outbound calls andthe proportion of inbound

calls waiting more than some �xed number of seconds. A collection of continuous-time Markov

chain (CTMC) models which capture many real-world characteristicswhile maintaining parsimony

that results in fast computation are presented. They discuss and explore the tradeo�s between

model �delity and e�cacy and compare di�erent CTMC models with a re alistic simulation model

of a Bell Canada call center.

Armony and Ward (2010) present an optimization problem; the objective is to minimize steady-

state expected customer wait time subject to a fairness constrainton the workload division. They

show in such a problem, which is close to ours, that a threshold policy outperforms a common

routing policy used in call centers (that routes to the agent that has been idle the longest).
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Milner and Olsen (2008) consider a call center with contract and non contract customers. They

explore the use to give priority to contract customers only in o� peaks. They show that this choice

is a good one under classical assumptions (steady-states) and the same performance measure as

ours and present also examples when it is not. This result is important since we found an insight

arguing that the service level for inbound calls has to be very strictly respected during o� peaks.

This chapter is organized as follows. Section 4.2 presents our model. Sections 4.3 and 4.4

contain our results, �rst for a constant arrival rate in Section 4.3 and then in Section 4.4 with a

uctuating arrival rate. We end with a short conclusion.

4.2 Model

We consider a call center modeled as a multi-server queuing system with two types of jobs, fore-

ground jobs (inbound calls) and background jobs (outbound calls, emails, etc.). We use the terms

foreground jobs and calls (background jobs and emails) interchangeably. Thearrival process of calls

is assumed to be a non-homogeneous Poisson process with rate� (t), for t � 0. Calls arrive at a

dedicated �rst come, �rst served (FCFS) queue with in�nite capac ity. There is an in�nite supply of

background jobs, waiting for treatment in a dedicated FCFS queue. There are s identical, parallel

servers (agents in call center parlance). Each agent can handle both types of jobs. We assume that

the service times of foreground and background jobs are exponentially distributed with rates � and

� 0, respectively. Neither abandonment nor retrials are modeled.

Foreground jobs are more important than background ones in the sense that theformer request

a quasi-instantaneous answer (waiting time in the order of seconds or minutes), while the latter

are more exible and could be delayed for several (tens of) hours. The objective of the call center

manager over a working day is to maximize the email throughput while satisfying a constraint on

the call waiting time in the queue.

Since the model is transient, we can not de�ne the waiting time of an arbitrary customer as a
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unique random variable. There is a random number of served customers during the working period

S, if S > 0 we de�ne the random variable for the waiting time of customer n for n 2 f 1; : : : ; Sg,

Wn . We want that the expected proportion of calls that wait less than a prede�ned threshold � is

at least equal to � , i.e., S� 1E
SP

n=1
I f Wn � � g � � , for � � 0 and 0 � � � 1. Note that we do not

consider arriving customers at the end of the working period which can not be served.

We then aim to �nd the best routing rules in terms of e�ciency for th e considered problem and

easiness of implementation in call center software. We assume that preemption of jobs in service

is not allowed. This is a quite natural assumption. An agent usually prefers to �nish answering

an underway email rather than starting it over later on. This is also preferred from an e�ciency

perspective. Evidently, when the background jobs are outbound calls, then it is neither acceptable

to preempt.

For a similar model but with a constant arrival rate and equal service requirements for the two

job types, Bhulai and Koole (2003) prove that the optimal policy is a threshold policy with the

priority given to calls (some servers reserved for calls). Their result is mainly based on the fact that

it is optimal to handle calls as long as the queue of calls is not empty. For our general modeling, the

analysis is more complicated. Even for a constant arrival rate but di�erent service requirements, the

optimal policy is hard to obtain, and might not be useful in practice (for software implementation

for example). For simplicity and usefulness of the results in practice, we then restrict ourselves

to the case of threshold policies. Moreover, Bhulai and Koole (2003) numerically show, for more

general cases, that the appealing threshold policies are good approximations of the optimal ones.

More concretely, the functioning of the call center under a threshold policy is as follows. Let us

denote the threshold by u, 0 � u � s. Upon arrival, a call is immediately handled by an available

agent, if any. If not, the call waits in the queue. When an agent becomes idle, she handles the

call at the head of the queue with calls, if any. If not, the agent may either handle an email at

the head of the email queue, or she remains idle. If the number of idleagents (excluding her) is
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at least s � u, then the agent in question handles an email. Otherwise, she remainsidle. In other

words, there ares � u agents that are reserved for calls,u is the number of agents that are always

working.

In this chapter, we propose an adaptive threshold policy which adjuststhe threshold as a

function of the non-stationary arrival process of calls. We divide the working day into N identical

intervals, each with length � . The total working duration in a day is L , L = N� . At the beginning

of each interval i (i = 1 ; :::; N ), we de�ne the threshold ui , 0 � ui � s, under which the job routing

policy works during interval i . Let T denote the expected throughput of emails over the whole

day, i.e., the ratio between the number of treated emails andL . Let also SL be the proportion, for

the whole day, of calls that have waited less than� , SL = S� 1E
SP

n=1
I f Wn � � g. In summary, our

optimization problem can be formulated as

8
<

:

Maximize T

subject to SL � �;
(4.1)

where the decision variables areui with 0 � ui � s, for i = 1 ; :::; N . It is clear that the best case

for calls is such that ui = 0 for all i , which means that no email is treated andSL is maximized

(case of an M(t)/M/s with only calls). We therefore assume from now on that t he parameters� (t)

for t � 0, � and s are such that SL � � for ui = 0 ( i = 1 ; :::; N ).

4.3 Constant Arrival Rate

We consider a basic case with a constant arrival rate,� (t) = � for t � 0 and a constant threshold,

ui = u for i = 1 ; :::; N and 0 � u � s. The purpose of the analysis in this section is to understand

the behavior of the performance measures as a function of the thresholdin order to build an e�cient

method for the threshold adaptation rule (ui for i = 1 ; :::; N ) in the case of a non-constant arrival

rate. In Section 4.3.1 we propose a method to compute the performance measures, then in Section
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4.3.2 we use them to provide a useful insight to construct our adaptive policy.

4.3.1 Performance Measures

In Section 4.3.1 we provide close form formula of the performance measures in the case of equal

service rates and study the form of these measures as a function of the threshold. Then in Section

4.3.1 we propose a numerical method to compute the performance measures in the case of unequal

service rates. Since we consider a stationary model we can de�ne a unique random variable for

the waiting time of an arbitrary customer W , and denote by P(W < � ) the probability that an

arbitrary customer waits less than � (� > 0).

Equal Service Rates

We consider the case� = � 0. First, we compute the performance measures of interest for calls and

emails for a given constant reservation threshold, denoted byu, 0 � u � s. We then develop some

structural results that will be used in Section 4.3.2.

Let us de�ne the stochastic processf x(t); t � 0g, wherex(t) 2 N is the number of jobs in service

plus the number of jobs in the queue of calls. Since� = � 0, we need not distinguish between the

two job types in service. The processf x(t); t � 0g is a birth-death process. The transition rate

from state x to state x � 1 is minf x; sg� , for x � 1, and that from state x to state x + 1 is � ,

for x � 0. Under the stability condition �
s� , we denote bypx the steady-state probability to be in

state x 2 N, and by a the ratio �
� . In Theorem 2, we give the expression of the email throughput,

T(s; u; a), and that of the probability that the call waiting time is less than � , SL = P(W < � ).

Theorem 2 For 0 � u � s, we have

T(s; u; a) = �

 
s� uX

k=0

aku!
(u + k)!

+
as� uu!

s!
a

s � a

! � 1  

u +
s� uX

k=1

aku!
(u + k � 1)!

+
as� u+1 u!

(s � 1)!(s � a)

!

� �;

(4.2)
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P(W < � ) = 1 � C(s; u; a)e� � (s� � � ) ; (4.3)

with

C(s; u; a) =
as� uu!

s!(1 � a=s)

 
s� uX

k=0

aku!
(u + k)!

+
as� uu!

s!
a

s � a

! � 1

: (4.4)

Proof. For 0 � x < u , we havepx = 0. For 0 � k � s � u, we havepu+ k = ak u!
(u+ k)! pu . For k � 0,

we haveps+ k = ak

sk ps. Since all probabilities sum up to one, we obtain

pu =

 
s� uX

k=0

aku!
(u + k)!

+
as� uu!

s!
a

s � a

! � 1

: (4.5)

The email throughput can be seen as the overall throughput (of calls and emails) minus the call

throughput. Thus

T(s; u; a) =
s� uX

k=0

(u + k)�p u+ k + s�
1X

k=1

ps+ k � �:

After some algebra, we deduce that

T(s; u; a) = �p u

 

u +
s� uX

k=1

aku!
(u + k � 1)!

+
as� u+1 u!

(s � 1)!(s � a)

!

� �:

Note that the lower bound of T(s; u; a) is T(s;0; a) = 0, which corresponds to the case when all

servers are reserved to calls. As for the upper bound, it isT(s; s; a) = s� � � , which corresponds

to the case of no server reservation for calls (the in�nite amount of emails leads to s� as a total

throughput for the two job types).

The call service level,P(W > � ), is obtained using the PASTA property. We have P(W > � ) =

1P

n=0
ps+ nP(W > � jx = n + s), where P(W > � jx = s + n) is the conditional probability that the

waiting time of a new call exceeds� , given that it �nds all servers busy and n calls waiting ahead in
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the queue,n � 0. It is easy to see that this conditional waiting time follows an Erlang distribution

with n + 1 stages and a rate ofs� per stage. Then,P(W > � jx = s + n) =
nP

k=0
e� s�� (s�� )k

k! , which

leads to

P(W > � ) =
1X

n=0

ps
an

sn

nX

k=0

e� s�� (s�� )k

k!

= lim
n!1

 

pse� s��
nX

k=0

1X

n= k

(s�� )k

k!

� a
s

� n
!

:

Observing that
1P

n= k

� a
s

� n =
� a

s

� k 1
1� a=s implies

P(W > � ) = C(s; u; a)e� � (s� � � ) ; (4.6)

with

C(s; u; a) =
ps

1 � a=s
=

as� uu!
s!(1 � a=s)

 
s� uX

k=0

aku!
(u + k)!

+
as� uu!

s!
a

s � a

! � 1

: (4.7)

Note that the upper bound of C(s; u; a) is C(s; s; a) = 1 (no server reservation for calls, then, any ar-

riving call has to wait for service), and its lower bound isC(s;0; a) = as

s!(1� a=s)

�
sP

k=0

ak

(k)! + as

s!(1� a=s)

� � 1

(all servers are reserved to calls, which corresponds for calls to the case of an M/M/s queue with

no emails). This �nishes the proof of the theorem. 2

In Section C.1 of the appendix, we prove some monotonicity results of the performance measures

in the threshold. We prove that the email throughput is strictly in creasing and neither convex nor

concave inu, for 0 � u � s. However the end of the email throughput, fors � 2 � u � s and s � 2,

is concave inu. The inbound service levelP(W < � ) is strictly decreasing in u, for 0 � u � s.

We prove that it is concave in u, for the casesa < 1 and also fora � u + 1 ( u < s ). An extensive

numerical study for the remaining cases shows that the concavity still holds.
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Unequal Service Rates

In this section we focus on the performance evaluation (email throughput and call waiting time

distribution) for the case of unequal service rates,� 6= � 0. In contrast to the case of equal service

rates, the performance expressions are here too cumbersome to allowthe development of useful

structural results. The results of this section are however still useful for the numerical experiments

in Section 4.3.2 in order to build the insights on the threshold policyfor the more general case with

a non-constant call arrival rate.

As in Bhulai and Koole (2003), our approach consists on using a Markov chain analysis to derive

the steady-state probabilities of the system, from which the performance measures are characterized

thereafter. To simplify the presentation, we focus on the particular caseu = s. The analysis for

the caseu = 0 is obvious, and that of the remaining cases, 0< u < s , is done similarly to the

caseu = s. It simply adds a �nite number of additional equations but does not impact the general

form of the steady-state probabilities. Consider the stochastic processf (x(t); y(t)) ; t � 0g, where

x(t) is the number of waiting calls in the queue andy(t) is the number of emails being in service,

(x; y) 2 N2. This process is a Markov chain. Forx � 0 and y � 0, the transition rate from ( x; y)

to (x + 1 ; y) is � . For x � 1 and y � 0, the transition rate from ( x; y) to ( x � 1; y) is (s � y)� . For

x � 1 and y � 1 the transition rate from ( x; y) to ( x � 1; y � 1) is y� 0. For y � 0, the transition

rate from (0; y) to (0; y + 1) is ( s � y)� . Under the stability condition �
s� < 1, we denote bypx;y

the steady-state probability that the system is in state (x; y).

For y = s and x > 0, we have px;s (� + s� 0) = �p x� 1;s, then px;s =
�

�
� + s� 0

� x
p0;s. Using

�p 0;s = �p 0;s� 1, we deduce thatpx;s = �
�

�
�

� + s� 0

� x
p0;s� 1 for x � 0. For y = s � 1 and x > 0, we

may write ( � + � +( s� 1)� 0)px;s � 1 = �p x� 1;s� 1+ �p x+1 ;s� 1+ s� 0px+1 ;s. The associated homogeneous

equation in the variable z is �z 2 � (� + � + ( s � 1)� 0)z + � = 0, for z 2 C. It has two solutions

denoted byz1 and z2 and are given byz1 = 1
2�

�
� + � + ( s � 1)� 0 +

p
(� + � + ( s � 1)� 0)2 � 4��

�
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and z2 = 1
2�

�
� + � + ( s � 1)� 0 �

p
(� + � + ( s � 1)� 0)2 � 4��

�
. We deduce, forx � 0, that

px;s � 1 = � 1(z1)x + � 2(z2)x + � 3

�
�

� + s� 0

� x

;

with � 3 = � �s
� +( � 0 � � )sp0;s� 1. From the boundaries x = 0 and x = 1, we obtain p0;s� 1 = � 1 + � 2 �

�s
� +( � 0 � � )sp0;s� 1 and p1;s� 1 = � 1z1 + � 2z2 � �s

� +( � 0 � � )s

�
�

� + s� 0

�
p0;s� 1, respectively, which implies

� 1 =
2�p 0;s� 2(� + s(� 0 � � )) + p0;s� 1(z2�� 0s � �� 0s + ��s + z2�� � �� � � 2

(z2 � z1) � (( � 0 � � )s + � )
;

� 2 =
2�p 0;s� 2(� + s(� 0 � � )) + p0;s� 1(z1�� 0s � �� 0s + ��s + z1�� � �� � � 2

(z2 � z1) � (( � 0 � � )s + � )
:

For y = k, 0 � k < s , and x > 0 we have

(� + ( s � k)� + k� 0)px;k = �p x� 1;k + ( s � k)�p x+1 ;k + ( k + 1) � 0px+1 ;k+1 : (4.8)

The homogeneous equation associated to Equation (4.8) is

(s � k)�z 2 � (� + ( s � k)� + k� 0)z + � = 0 ;

with z as a variable, forz 2 C. It has two solutions denoted by z1;k and z2;k and are given by

z1;k =
1

2(s � k)�

�
� + ( s � k)� + k� 0 �

p
(� + ( s � k)� + k� 0)2 � 4(s � k)��

�
;

z2;k =
1

2(s � k)�

�
� + ( s � k)� + k� 0 +

p
(� + ( s � k)� + k� 0)2 � 4(s � k)��

�
;

for 0 � k < s . Because of the last term in the right hand side of Equation (4.8), one may write,

101



for 0 � k � s and x > 0,

px;k =
sX

i = k

A i;k zx
1;i + B i;k zx

2;i ;

with z1;s and z2;s de�ned as z1;s = �
� + s� 0

and z2;s = 0, respectively, and A i;k ; B i;k 2 R for 0 � k < s

and k � i � s. Using Equation (4.8), we can prove that

A i;k +1 = A i;k
� (s � k)�z 2

1;i + ( � + ( s � k)� + k� 0)z1;i � �

(k + 1) � 0z2
1;i

;

for 0 � k < s and k < i � s. Similarly, we have

B i;k +1 = B i;k
� (s � k)�z 2

2;i + ( � + ( s � k)� + k� 0)z2;i � �

(k + 1) � 0z2
2;i

;

for 0 � k < s and k < i � s. For i = k, we can easily deriveAk;k and Bk;k as a function ofp0;k and

p1;k , for 0 � k < s . The relation between p1;k and p0;k is given by

(� + ( s � k)� )p0;k = ( s � k)�p 1;k + ( k + 1) � 0p1;k+1 + ( s � k � 1)p0;k� 1;

for 0 � k < s . We also havez1;0 = 1 and z2;0 = �
s� . Since all probabilities sum up to one, we

obtain A0;0 = 0. In conclusion through the above analysis, we have characterized all steady-state

probabilities, pi;k , for i � 0 and 0� k � s. The email throughput T(�; �; � 0; s) may be written as

T(�; �; � 0; s) = � 0

sX

k=1

1X

i =0

kpi;k ;

or equivalently

T(�; �; � 0; s) = � +
sX

k=1

k� 0p0;k ;
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for s � 1. As for the call waiting performance, it is given by

P(W > � ) =
sX

k=1

1X

i =0

pi;k P(W > � j(x; y) = ( i; k )) ;

where P(W > � j(x; y) = ( i; k )) is the conditional probability that the waiting time of a new call

exceeds� , given that it �nds i emails in service,s � i calls in service, andk calls waiting ahead in

the queue, for 0� i � s and k � 0. The computation of P(W > � j(x; y) = ( i; k )), for 0 � i � s and

k � 0, is as follows. Fork = 0 and 0 � i � s, the new call has to wait for a service completion of one

of the i emails, or one of thes� i calls, so,P(W > � j(x; y) = ( i; 0)) = e� � ( i� 0+( s� i )� ) . For k = 1 and

0 � i � s, the probability that the next service completion is that of an email is i� 0
i� 0+( s� i )� . Thus,

the waiting time of the new call follows a hypoexponential distribution consisting of the summation

of two exponential random variables with ratesi� 0 +( s� i )� and max(0; i � 1)� 0 +min( s; s� i +1) �

with probability i� 0
i� 0+( s� i )� , and it follows an Erlang distribution with 2 phases and i� 0 + ( s � i )�

as a rate per stage with probability 1� i� 0
i� 0+( s� i )� . This leads to

P(W > � j(x; y) = ( i; 1)) =
i� 0

i� 0 + ( s � i )�

�
(( i � 1)� 0 + ( s � i )� )e� � ( i� 0+( s� i )� ) � (i� 0 + ( s � i )� )e� � (( i � 1)� 0+( s� i )� )

� � � 0

+
(s � i )�

i� 0 + ( s � i )�
e� � ( i� 0+( s� i +1) � ) (1 + � (i� 0 + ( s � i )� )) ;

for 0 � i � s. One can continue in the same way to derive all the conditional waitingtime

probabilities for k > 1, which �nishes the characterization of the performance measures (email

throughput and call waiting time distribution) in the case of unequal service rates.

4.3.2 Construction of the Adaptative Threshold Policy

In this section, we use the previous results to �nd an insight on howwe should adapt the threshold

as a function of the intensity of the call arrivals. The objective is to maximize the throughput
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of emails while reaching the constraint on the call waiting times for the whole day. We �nd that

during the periods with low demand, the need of having a good service level is more important

than during the periods with high demand. On the basis of this observation, we build a method for

adapting the threshold. We then evaluate this method by comparing it with the optimal threshold

policy.

Numerical Observations

For a given time interval long enough to reach the stationary regime, one canuse the results of

Section 4.3.1 to obtain the optimal threshold, denoted byu� , for Problem (4.1). Consider now a

working day with two time intervals, each with a di�erent call arri val rate, and on each of which

the stationary regime is reached. We want to �nd the optimal couple of thresholds that answers

our optimization problem, where the call service level constraint isfor the whole day. We denote

the �rst (second) time interval by I 1 (I 2) and its arrival rate by � 1 (� 2). Without loss of generality,

we consider cases where� 1 � � 2.

In Table 4.1, we consider various scenarios of arrival rates, service rates, and relative durations

between the two time intervals. We give the optimal threshold of eachinterval in isolation (i.e. the

highest threshold which veri�es the service level constraint). They are denoted byu�
1 and u�

2 for I 1

and I 2, respectively. We also evaluate the couple of thresholds which answers Problem (4.1) on the

set of the two intervals. This couple is found by an exhaustive test ofall the possible values for the

couple (u1,u2). We denote by (u1; u2) � this optimal couple. Remark that for this couple, Problem

(4.1) does not have to be answered on each interval but on the set of the two intervals. Finally, we

give the performance measures for each interval and for the set of the twointervals for the couple

(u1; u2) � .

We observe thatu�
1 (respectively u�

2) is always higher or equal tou1 (respectively lower or equal

to u2) in the optimal couple (u1; u2) � . An interesting insight here is that, while respecting the

global call service level, we should strictly respect the servicelevel during the interval with a small
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Table 4.1: Optimal couples of thresholds (s = 10, � = 30 seconds,� = 80%)
� 1 � 2 � � 0 I 1 I 2 u�

1 u�
2 (u1 ; u2) � P(W1 < � ) P (W2 < � ) P (W < � ) T1 T2 T

1 1 0.2 0.2 50% 50% 8 8 (8,8) 84.04% 84.04% 84.04% 0.758 0.758 0.758
1 1.3 0.2 0.2 50% 50% 8 6 (8,7) 84.04% 77.99% 80.62% 0.758 0.401 0.580

0.5 1.5 0.2 0.2 50% 50% 9 � (8,4) 96.81% 74.79% 80.30% 1.169 0.055 0.611
1 1.3 0.2 0.2 67% 33% 8 6 (8,7) 84.04% 77.99% 81.66% 0.758 0.401 0.639
1 1.3 0.2 0.2 80% 20% 8 6 (8,8) 84.04% 69.15% 80.39% 0.758 0.552 0.711

0.5 1.5 0.2 0.2 90% 10% 9 � (9,7) 88.19% 63.94% 82.13% 1.350 0.277 1.243
1 1.5 0.2 0.2 50% 50% 8 � (7,5) 90.92% 72.93% 80.13% 0.604 0.111 0.357
1 1.5 0.2 1 50% 50% 10 � (10,7) 89.34% 74.94% 80.70% 5.191 0.961 3.076
1 1.5 0.2 1 80% 20% 10 � (10,10) 89.34% 67.56% 83.40% 5.191 2.908 4.734

1.3 1.4 0.2 1 50% 50% 9 8 (9,9) 83.51% 77.09% 80.18% 2.863 2.440 2.652
1.3 1.4 0.2 1 80% 20% 9 8 (9,10) 83.51% 68.19% 80.26% 2.863 3.621 3.014
1.3 1.4 1 0.2 50% 50% 9 9 (9,9) 88.63% 87.77% 88.18% 1.616 1.598 1.601
1.3 1.4 1 0.2 80% 20% 9 9 (9,10) 88.63% 60.45% 82.10% 1.616 1.794 1.742

arrival rate ( I 1), and violate the constraint when the arrival rate is high (I 2). The reason is related

to the sensitivity of the service level to an increase of the threshold. When the workload increases

the sensitivity of the service level for a given threshold (� SL(u) = SL(u+1) � SL(u) for 0 � u < s )

�rst increases and then decreases (except foru = s � 1, the sensitivity only decreases). This can

be seen in Figure 4.1.
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Figure 4.1: Evolution of the Sensitivity of the Service Level function of the Threshold and the
Workload (s = 10, � = 30 seconds,� = � 0 = 0 :2)

In practice the workload in call centers are usually higher than 80%. If a situation with a

low workload happens, the threshold would increase and reach its maximalvalues (u = s � 1 or

u = s). Since the last part of the curves (j� SL(u)j in function of the workload) and the whole

curve for u = s � 1 are decreasing (see Figure 4.1) we mainly consider in practice situations where
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the sensitivity of SL(u) is decreasing in the workload.

Proposition 4 proves that there is less waste for the service level,when increasing the threshold

in situations for which the sensitivity of the service level is decreasing in the workload.

Proposition 4 If � 1 < � 2 and � SL(u) is decreasing in the workload thenj� SL � 1 (u�
1)j � j � SL � 2 (u�

2)j.

Proof. If u�
1 = u�

2 then increasingu is less sensitive inSL l2 than in SL l1 since the sensitivity of SL

is decreasing in the workload. The other case isu�
1 > u �

2 becausea1 < a 2. SinceSL is decreasing

and concave inu, SL l1 is more sensitive to the increasing ofu from u�
1 than from u�

2. From u�
2,

SL l1 is more sensitive to the increasing ofu than SL l2 , then SL l2 is less sensitive to the increasing

of u from u�
2 than SL l1 would be from u�

1. 2

Yet the opposite seems to be more intuitive, since it would be hard to compensate a very bad

service level during an interval with a high number of calls. Counterexamples can be found when

� 1 << � 2. For example for � 1 = 0 :1, � 2 = 1, � 0 = � = 0 :2, s = 10, I 1 = I 2 = 50%, � = 80%, we

have u�
1 = 9, u�

2 = 8 and (u1; u2) � = (10 ; 8).

Our Adaptive Threshold Policy (ATP)

We propose for Problem (4.1) an adaptive threshold policy which adjusts the threshold as a function

of the call workload. The idea of the policy comes from the numerical observations in Section

4.3.2. As mentioned in Section 4.2, the threshold is reevaluated at the beginning of each interval i

(i = 1 ; :::; N ). The threshold associated to interval i is denoted by ui . The global service level for

the whole day (all N intervals) is denoted by SL, and the global one from interval 1 to interval i

is denoted bySL i , for i = 1 ; :::; N .

If SL i is higher (lower) than � at the beginning of an interval i (i = 2 ; :::; N ) then the policy

increases (decreases) the threshold. To change the threshold, we use a real parameter denoted byci

(i = 1 ; :::; N ). The threshold ui is de�ned as the closest integer toci , for i = 1 ; :::; N . Note that the

parameter ci is chosen to be real in order to smooth the change in the thresholdui . We start with
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u1 = c1 = s. For i � 2, if we need to increase the threshold, then we takeci = ci � 1 + 1 � ci � 1=s. If

not, then ci = ci � 1 � ci � 1=s. This policy is refereed to as ATP.

As the workload of calls decreases, ATP increases the threshold with a decreasing speed. This

decreasing speed allows a slow increase in the threshold and then gives advantage to calls, which is

coherent with the insight of Section 4.3.2. The opposite is also true and coherent with the insight.

The advantages of ATP is that it is simple, easy to implement, and at the same time e�cient as

we will show later.

Evaluation of the Adaptative Threshold Policy

In this section, we evaluate the quality of the ATP policy by comparing it with the optimal one.

First we provide the optimal threshold policy. Because of the discrete nature of the threshold, one

may intuitively see that the threshold should vary between two or more values. The reason is that

we need to satisfy exactly the constraint on calls in Problem (4.1) in order to maximize the email

throughput. Both for cases � 0 = � and � 0 6= � , Theorem 3 provides a weak condition under which

the optimal policy is a randomization of the threshold between two values.

Theorem 3 Consider 0 � u1; u2 � s such that SL(u1) � � � SL(u2). If there exists  2 R for

which (u1; u2) 2 arg max
u

T(u) + SL (u), then randomizing betweenu1 and u2 is optimal.

Proof. Let p 2 [0; 1] be the parameter of randomization betweenu1 and u2. Assume that we

can �nd a couple (u3; u4) 6= ( u1; u2) and a parameter of randomization q 2 [0; 1] such that the

constraint on calls is also saturated andSL(u3) � � � SL(u4). We have pT(u1) + (1 � p)T(u2) +

pSL (u1)+  (1� p)SL(u2) � qT(u3)+(1 � q)T(u4)+ qSL (u3)+  (1� q)SL(u4). SincepSL (u1)+

 (1 � p)SL(u2) = qSL (u3) +  (1 � q)SL(u4) = � , we deduce that pT(u1) + (1 � p)T(u2) �

qT(u3) + (1 � q)T(u4). Then the couple (u1; u2) is optimal, which completes the proof. 2

The randomization between two thresholds allows for the constraint on calls to be met exactly.

For our system with constant parameters, we believe that the randomization is between two suc-
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Table 4.2: Comparison under steady-states assumption (� =15min)
Optimal c Optimal T ATP T Di�erence

Scenario 1
(� = 4, � = � 0 = 0 :2, s = 28) 25.49 1.39 1.37 1.46%

Scenario 2
(� = 0 :02, � = � 0 = 0 :2, s = 1) 0.13 0.02 0.02 0.00%

Scenario 3
(� = 18, � = � 0 = 0 :2, s = 100) 93.91 1.65 1.58 4.43%

Scenario 4
(� = 4, � = 0 :27, � 0 = 0 :15, s = 28) 26.63 1.89 1.89 0.00%

Scenario 5
(� = 4, � = 0 :17, � 0 = 1, s = 28) 23.21 2.00 1.79 11.73%

cessive thresholds. Since the throughput is neither convex nor concave it is di�cult to rigorously

prove this result. However, if we denote byu� (0 � u� � s) the highest threshold that veri�es

SL(u� ) > � , we numerically checked that with  = � T (u � +1) � T (u � )
SL (u � +1) � SL (u � ) (for 0 � u� < s ), the expres-

sion T(u)+  � SL(u) is strictly increasing from u = 0 to u = u� , strictly decreasing from u = u� +1

to u = s and T(u� ) + SL (u� ) = T(u� + 1) + SL (u� + 1). Then for all the considered numerical

situations the optimal policy is a randomization between two adjacent values when 0� u� < s .

When u� = s, the optimal policy is to keep the threshold constant and equal tos.

In Table 4.2, we propose 5 representative scenarios with constant arrivalrates and compare the

optimal throughput with the one found with under ATP. A comprehensiv e numerical study can

be found in Section C.2 of the appendix. Although the ATP method is not optimal, the di�erence

with the optimum is quite small. This shows the advantage of ATP in the case of constant arrival

rates. Recall that our main purpose in this chapter is the analysis of thecase with a uctuating

arrival rate. In the next section, we consider the case of a uctuatingarrival rate and evaluate the

performance of ATP through a comparison with other intuitive methods.

4.4 Non-Constant Arrival Rates

In Section 4.4.1 we compare ATP with methods that use constant step sizes. Then in Section 4.4.2

we analyze the impact of the parameters on the choice of the method. In Section 4.4.3 we propose

some other intuitive adaptive methods.
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