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Chapter 1

Introduction

In this chapter, we give a general introduction of the manuscript. First, we describe the context
and the motivation of the thesis. Second, we highlight the approach, the sucture and the main

contributions of this work.

1.1 Context and Motivation

A call center is a service system. It is a facility designed to suport the delivery of some interactive
service via telephone communications, email, chat, etc. The de rtion of a call center is continuously
changing with technological development, but the core fundamentals of a&ustomer making a call
(via a phone, email, web site, fax or Interactive Voice Response) to aenter (collection of resources)
will remain constant. This thesis focuses on operations management iges for multi-skill and multi-
channel call centers. In what follows, we rst present the contextof the call center industry and
the related operations management issues. Second, we focus on the matien of this work, and
present our collaboration with the French consulting company Interactiv, which was at the origin

of most of the addressed problems in this thesis.



Context.  Call centers make up a large and growing part of the global economy. They are we
labor-intensive operations, employing millions of persons across thglobe. Call centers serve as
the public face in various areas and industries: insurance companiegmergency centers, banks,
information centers, help-desks, tele-marketing, etc. The suass of call centers is due to the
technological advances in information and communications systems, seeri@do et al. (1999). The
most important call centers equipments are the Interactive Voice Rgponse (IVR), the Automated
Call Distributor (ACD), and the Computer Telephone Integration (CTI ). These technologies have
grown cheaper, more reliable, and more sophisticated. Moreover, thesadvances enabled various
call center tasks which requires multiple skills and channels.

In multi-skill call centers, the call assignment strategy of SkillsBased Routing (SBR), is used
to assign incoming calls to the most suitable agent. The report of Holman et al(2007) made on
2500 call centers in 17 countries with 475,000 employees points out that 56% of talenters use
SBR strategies. These strategies are an enhancement to ACD systems.

Next, the development of alternative channels goes together with an adagition to impatient
customers with higher expectations. The recent report of ICMI (2013), lased on the analysis of 361
large contact centers, presents the increasing use of new channelsdathe related research issues.
In particular, they point out that outbound tasks require intensive i ntegration with inbound ones
in most call centers. Although the inbound calls remain present in mostcall centers (98%), emails
are also widely used (89%). Moreover, outbound calls (76%), Web (70%) and els (40%) are
important and developing channels. We refer the reader to the desgstion of the general context
of multi-channel call centers management in Chapter 7 of Koole (2013).

Due to the operational di culties to nd better solutions than intui tive ones, managers have
a continuous interest in the related research disciplines. Theiterature on operations management
in call centers has focused on the following issues: demand forecist, quality of service, capacity

planning, queueing, call routing, sta ng and agents scheduling. The rehted main academical dis-



ciplines are Mathematics and Statistics, Operations Research, Indstrial Engineering, Information
Technology, Human Resource Management, as well as Psychology and Sociology. Tinerall pur-
pose of this literature is helping the manager in improving the managerant of their call centers.
We refer the reader to the complete surveys of the academic literate on call center operations
management by Gans et al. (2003) and Aksin et al. (2007).

The goal of the present thesis is to contribute to the operations managenm research in multi-
skill and multi-channel call centers. The purpose is to enhance ouunderstanding of such complex

systems, so as we obtain useful guidelines for the practitioners.

Motivation. In what follows, we want to motivate the problems under consideration. These are
related to exibility in multi-skill call centers and also to the routing issues in multi-channel call
centers.

The concept of exibility is related to the ability of a company to e ¢ iently match its capacity
to an uncertain demand with multiple types. A wide literature has focused on the distribution of
skills par agent. Increasing the number of skills per agent goes togethavith a better use of the
resources but also with more costly resources. A well known studieand e cient con guration is
chaining, rst pointed out by Jordan and Graves (1995) in the context of manufacturing systems.
In this con guration each agent has only two skills and the distribution of the skills corresponds
to a chain. A precise de nition of the chaining architecture will b e given in Chapter 2. Developing
intelligent con gurations such as chaining is very interesting for practitioners. The value of these
con gurations is that they capture the benets of pooling by only havin g a limited exibility.
However, the robustness of chaining fails in the case of asymmetric pameters (Sheikhzadeh et al.
(1998)). The situations with asymmetric parameters arise in practice. The typical example is that
of an European multilingual call center where customers call from seve countries. For instance in
Bluelink (a service provider of Air France KLM), each agent speaks twolanguages: her own native

language and English. The workload is unbalanced ranging from only some few calfrom a given



country to several thousand of calls from another country. For such casesipractice, it is important
to develop new architectures that allow on the one hand to account for demnd asymmetry, and
on the other hand to capture the bene ts of pooling with only a limited exibility.

Call centers require a very accurate match of demand and supply. Sircthe volatility of call
arrival patterns is high, there is often a mismatch between demand andhe scheduled number of
inbound agents. Moreover, even if the demand is accurately forecasted considerable overcapacity
should be scheduled to be able to deal with the random Poisson uctuatins of the demand. To
prevent idle overcapacity and to limit the necessity to have extemely accurate forecast, inbound
calls are sometimes mixed with other types of channels which have a$s strict allowable delay,
such as emails or outbound calls. This is referred to agcall) blending. It arises in the context of
multi-channel call centers. Next, we describe some motivational exaples for blended operations
issues.

In practice, we may nd situations where a conversation between an agenand a customer
contains anatural break. For example, an agent of an internet hotline asks the customer to reboot
her modem or her computer which may take some time where no interaans can take place. It is
also often the case that a call center agent of an electricity supplierampany asks the customer for
the serial number of her electricity meter box. Another example isthat of commercial call centers
with a nancial transaction during the call conversation. Inside an underway conversation, the
agent is then free to do another task if needed. For an e cient use of theagent time, there might
be an opportunity to route the less urgent jobs (emails) to agents, not ony when the system is
empty of calls, but also during the call conversations. An interestirg research question here is how
should be the routing rules as a function of the system parameters.

Even in the classical case of a single stage call conversation, the ACD pramming is still
a complex task for a blending situation. Bhulai and Koole (2003) and Gans and Zbu (2003b)

show that e cient assignment policies are those with agent reservationfor inbound calls. The



main complexity comes from the uctuation of the system parameters, inparticular those of the
jobs arrival processes. For instance from the statistical analysis of aall center data provided
by Interact-iv, we observe that during a given period the arrival volume can triple from one day
to another. The reasons of the uctuations is hard to determine and an obsevation can hardy
be duplicated on a future period. Given this fact, one could focus ordeveloping routing policies
with a continuous adaptation of the agent reservation threshold, while uing at a minimal level the
forecasted system parameters.

In the context of highly congested call centers, the use of a callback ofin can be proposed to
customers so as to balance workload and avoid excessive abandonments. c@ira callback option
transforms an inbound call into an outbound one, the issue in the managemérof this option is
somewhat similar to that of a blended situation. Some practical speci cproblem can be pointed
out: What should be the routing rules of the jobs in the ACD, in order to optimize the system
performance in terms of the waiting times of inbound and outbound jobs?

This work is done, in its major part, under a collaboration with the Fren ch consulting company
Interact-iv. Interact-iv sells software, advice and methods to cal centers. The customers of Interact-
iv are for a large part small multi-channel call centers. Through the colhboration, the purpose
of Interact-iv is to provide to its customers (call center managers)solutions that are thoroughly
supported quantitatively. We had the opportunity to work on various issues of multi-channel call
centers and had access to real call center data. This collaboration o ered avealth of learning

opportunities.

1.2 Structure and Main Contributions

In this section, we describe the structure and the main contribuions of the manuscript. We brie y
describe the di erent chapters separately and give their correspoding submitted or working papers.

The current thesis can be divided into two parts. The topic of the rst part is the design of



multi-skill call center architectures. It corresponds to Chapter 2. The topic of the second part is
the optimal routing in multi-channel call centers. It corresponds to Chapters 3, 4 and 5.

In Chapter 2, we focus on architectures with limited exibility f or multi-skill call centers. The
context is that of call centers with asymmetric parameters: unbalancd workload, di erent service
requirements, a predominant customer type, unbalanced abandonmeatand high costs of cross-
training. The well known architectures with limited exibilit y such as chaining fail against such
asymmetry. We propose a new architecture referred to as single poalj with only two skills per
agent. We provide a comparison framework between chaining and single pbng and demonstrate
the e ciency of single pooling under various situations of asymmetry. We also develop analytical
results for particular single pooling models, in order to get some sex® on the e ect of arrival
asymmetry on performance. This Chapter is based on Legros et al. (2012) (undesecond round
revision in International Journal of Production Economics).

In the second part, we focus on routing problems in multi-channel cdlcenters. In Chapter 3,
we consider a blended call center with calls arriving over time andan in nitely backlogged queue of
emails. The call service is characterized by three successiveagies where the second one is a break.
We de ne parameters of control for the routing of emails between or insi@ calls treatment. Next,
we develop a method based on the analysis of Markov chains in order to dee the performance
measures of interest for calls and for emails. We focus on optimizing gnemail routing parameters.
In addition, we develop an approximation method for the system perfornance evaluation under
the light-tra c regime. We also propose an approximation method to extend the results to the
multi-server case. We derive various structural results and concide that all the time at least one
of the two email routing parameters has an extreme value. This chapterd based on Legros et al.
(2013c) (submitted to Stochatic System§.

In Chapter 4, we examine a threshold policy that reserves agents for intund calls. We study a

general non-stationary model where the call arrival follows a non-homogermeis Poisson process. The



optimization problem consists of maximizing the throughput of outbound tasks under a constraint
on the waiting time of inbound calls. We propose an e cient adaptive threshold policy easy to
implement in the Automatic Call Distributor (ACD). This scheduli ng policy is evaluated through
a comparison with the optimal performance measures found in the case of aoustant stationary
arrival rate, and also a comparison with other intuitive adaptive threshold policies in the general
non-stationary case. This chapter is based on Legros et al. (2013a) (submitteat|E Transactions ).
In Chapter 5, we consider a call center model with a callback option, wkch allows to transform
an inbound call into an outbound one. The optimization problem consists of nnimizing the
expected waiting time of the outbound calls while respecting a setice level constraint on the
inbound ones. We propose a routing policy with two thresholds, one on th reservation of the
agents for inbound calls, and another on the number of waiting outbound calls A curve relating
the two thresholds is determined. This chapter is based on the ongompaper Legros et al. (2013b).
In Chapter 6, we close the thesis by giving general concluding remarkand highlighting direc-

tions for future research.



Chapter 2

A Flexible Architecture for Call

Centers with Skill-Based Routing

We focus on architectures with limited exibility for multi-sk ill call centers. The context is that of
call centers with asymmetric parameters: unbalanced workload, di eent service requirements, a
predominant customer type, unbalanced abandonments and high costs of credraining. The most
knowing architectures with limited exibility such as chainin g fail against such asymmetry. In this
paper, we propose a new architecture referred to as single pooling tionly two skills per agent
and we demonstrate its e ciency. We conduct a comprehensive compagon between this novel
architecture and chaining. As a function of the various system parametes, we delimit the regions
where either chaining or single pooling is the best. Single poolingeads to a better performance
than chaining while being less costly under various situations of asymetry: asymmetry in the
number of arrivals, in the service durations, in the variability of service times, or in the service
level requirements. It is also shown that these observations are merapparent for situations with

a large number of skills, or for those with a large call center size.



2.1 Introduction

Context and Motivation. The concept of exibility is related to the ability of a company to

e ciently match its capacity to an uncertain demand with multiple t ypes. The need for exibility
arises in a wide range of manufacturing systems. It also extends to sgce systems, such as call
centers, where di erent types of customers ask for a quasi-instartneous processing. Resource ex-
ibility in call centers reduces to cross-training agents, which dbws to improve both the utilization
and the performance. Since cross-training agents is achieved with dffier operating costs, resource
exibility could result in a trade-o0 between performance and cost. The performance is measured
through operational indicators such as the expected waiting time, the pobability of waiting, and
the waiting time distribution, or also through human resource aspectsthat result in a higher e -
ciency of the agents. Cross-training may improve the agent motivation ad provides a career path.
In this chapter, we only focus on the operational indicators.

The process exibility problem have been studied in di erent directions, such as machine shar-
ing, multi-stage supply chains, queueing systems and exible worforce scheduling. Here we con-
sider exibility questions in the context of queueing models for call centers. A wide literature has
focused on contrasting two extreme situations. Thefull exible architecture (FF) versus the the
full dedicated (FD) one. In the FF model, each agent is fully cross-trained for all calltypes. In
most situations in which call types have similar service duration reuirements, FF would require
less agents than any other architecture, in order to reach a given predeed service level. The
reason is that it bene ts from the economies of scale, which absorb stoastic variability (Borst
et al. (2004)). However the agents in FF are too costly and even sometimes jpossible to nd.
As commented by Marengo (2004), the multilingual Compaq call center certaity could not nd or
train agents to speak eleven languages! In the other extreme situation ofhe FD model, an agent
is only trained to handle a single call type. Agents are then less costjybut FD would require a

larger sta ng level to reach the same service level as in FF or any other achitecture.



Full exibility and full dedication, however, are only two extrem e situations. A well known and
studied intermediate con guration is chaining, rst pointed out by Jordan and Graves (1995). In the
chaining model, each call type can be assigned to one of two adjacent agemams, and each agent
can handle calls from two adjacent types. Sheikhzadeh et al. (1998), Guruorthi and Benjaafar
(2004), and Jordan et al. (2004) prove that chaining, with an appropriate linkage betveen demand
and resource types, behaves just as well as full exibility. In the context of Constant Work in
Process (CONWIP) serial production lines, Hopp et al. (2004) showed thathe impact of forming a
complete chain of skill sets can be substantial in increasing throughgt. Wallace and Whitt (2005)
consider the problem of routing and sta ng in multi-skill call cente rs. They again con rm the
principal that a little exibility has the potential to achieve the performance of total exibility.
Using simulation they demonstrate that the performance, with an appropiate and limited cross-
training of agents (two skills per agent) such as in chaining, is almost as gmd as when each agent
has all skills.

Developing intelligent con gurations such as chaining is very interesting for practitioners. The
value of these con gurations is that they capture the bene ts of pooling by only having a limited
exibility. However, the robustness of chaining fails in the case ofasymmetric demand (Sheikhzadeh
et al. (1998)). By asymmetric demand, we mean di erent workload intensiies and service time
requirements, and also di erent variabilities in inter-arrival an d service times. For such cases in
practice, it is important to develop new architectures that allows from the one hand to account for
demand asymmetry, and from the other hand to capture the bene ts of pooing with only a limited
exibility.

In this chapter, we consider skill-based routing (SBR) call centes with two particular features:
demand asymmetry and costly/di cult agent training. The typical exampl e is that of an European
multilingual call center where customers call from several countris. It is di cult for managers to

nd agents speaking more than two languages. For instance in Bluelink (tke service provider of Air

10



France KLM), each agent speaks two languages: her own native language and EndlisNote that
Bluelink is more interested in agents speaking two languages than thosspeaking three or more
languages. The reason is that the latter often feel themselves over-glied. They are therefore
likely to leave the company faster than the others, which increaseshe turnover. The workload
is also unbalanced ranging from only some few calls from a given country toeseral thousand of
calls from another country. Another example is that of post-sales serviceall centers of retailers
such as Darty and Fnac which are French distributors of white goods, teecommunications products,
information technology, but also internet services, photo servicesr travel services. We also give the
example of retail banking call centers where questions are with regartb savings or stock exchange
for examples. The main characteristics in the previous examples ard)(the demand is unbalanced,
(ii) the nature of the required agent skills can be very di erent which make di cult or too costly
the agent training, and (iii) one may nd a predominant and \easy" type of qu estions that could
be handled by most of the agents without any particular training, for example the English task in
a multilingual call center, account information and simple bank tasks in banking, order tracking
and payment for retailers, etc.

Main ndings. Motivated by this prevalence in practice, we propose in this chaptera new call
center architecture that can be used instead of chaining. For such casgapplying chaining is too
costly and di cult to implement (many combinations of two tasks per agent are even hard to
obtain). Moreover, existing literature have shown that chaining is not appropriate for such demand
situations: unbalanced workload of the \di cult" tasks and a predominant \e asy task". As proven
in Bassamboo et al. (2010), the tailored pairing architecture is e cient for small systems including
those with asymmetries. However, this architecture requires anmportant number of cross-trained
teams which might be again di cult to implement in practice. We propos e a new organizational
model, referred to assingle pooling where we dedicate a team of agents to each di cult type of

calls, and the easy type of calls have access to all agents from all teams. Bakting the workload
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among the agents in this way captures the bene ts of pooling without reuiring every agent to
process every call type.

A concise de nition of our model will be given later. We do not claim that our model is better
than chaining in all cases, but only in the particular range of parameters asshown in the call
center examples above. The value of our architecture is that it has a b degree of exibility (each
agent handles one di cult type and the easy task) while behaving in terms of performance as a
fully exible call center. This is important in practice since add itional exibility often comes at
the cost of high operating overhead. Hence, the results of our analysis fx@ signi cant managerial
implications.

Using simulation, we conduct a comprehensive comparison between thinovel architecture and
chaining. As a function of the various system parameters, we delimit tie regions where either
chaining or single pooling is the best. Our key ndings are highlightal next. Single pooling leads
to better performance while being less costly than chaining undewarious situations of asymmetry
between the customer types: asymmetry in the number of arrivals,n the service duration, in the
variability of service times, or in the service level requiremets. Moreover, we conclude that these
observations are more apparent for situations with a large number of skillsor for those with a
large call center size. In practice, the issue of limiting the exbility appears more in large call
centers, rather than in small ones with a few number of agents. In smaltall centers, the number
of customer types is often very limited or they are very similar in terms of the required agent skills,
so that the agents are usually full- exible. Hence, there is often noneed for managers to deal with
cross-training questions. These insights show that there might beopportunities for managers of
call centers to improve performance using the single pooling arctecture.

The rest of the chapter is organized as follows. In Section 2.2 we reviesome of the literature
related to this chapter. In Section 2.3 we describe chaining and sile pooling models, and provide

the comparison framework. In Section 2.4, we develop analytical resultsf particular single pooling
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models, in order to get some sense on the e ect of arrival asymmetry on prmance. In Section
2.5, we use simulation to compare between the two call center modelsnder various situations of
asymmetry on the system parameters. Section 2.6 concludes the chaptend highlights some future

research.

2.2 Literature Review

There is an extensive and growing literature on call centers. We reir the reader to Gans et al.
(2003) and Alksin et al. (2007) for an overview. We review in what follows some of he literature
related to this work.

Impact of Pooling. The value of pooling comes from the creation of exibility. The general
known intuition is that pooled systems are more e ective than independent ones. The impact of
pooling has been rst studied in Smith and Whitt (1981). They show that pooling always leads
to a better performance in terms of the expected delay in queue. Ain and Karaesmen (2007)
investigate the impact of the call center size on the opportunity to add exibility. They demonstrate
that a small call center will bene t more from adding exibility than a large one.

Benjaafar (1995) studies the impact of pooling for a variety of manufacturing,telecommunica-
tion and computer systems. He considers a multi-processing systeconsisting of several facilities
and shows that in some situations of heterogeneity in the workloads, in@asing exibility can dete-
riorate performance. Mandelbaum and Reiman (1998) consider stochastic sgce systems modeled
as queueing networks. The service of a customer amounts to a collegti of tasks. They show
that adding exibility does not automatically improve performance. T hey point out that adding a
partial exibility could be devastating for a queueing network. Recently, van Dijk and van Der Sluis
(2008) show in the context of SBR call centers that without any clever rouing rules and under
a high variability in the call types and the resources, pooling could e@teriorate the performance

in terms of the average waiting time. In their work, Tekin et al. (2009) investigate the e ciency
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bene ts achievable via cross-training in SBR call centers. They onclude that under rst come,
rst served (FCFS), the pooling of the dedicated teams is appropriae for heavy workloaded teams.
However, it is not necessarily the case for teams with light workloads. ey then use the di erence
between the arrival rates of the customers as a choice parameter based orhish the decision of
pooling would be taken or not. Inspired by the results of Smith and Whit (1981), they also con-
clude that pooling teams could be counterproductive if servicesitne means are very di erent from
one customer type to another (for example when one is six times highethan the other ones).
Flexible Architectures. The most fundamental work on exibility is that by Jordan and Graves
(1995) for the automobile assembly plants, but it can be also applied to broademanufacturing
system settings. They conduct an extensive simulation study and cociude that \a little exibility
can achieve almost all the bene ts of total exibility” under a con gurat ion referred to as chaining,
with two product types per plant. They demonstrate that the expected shortfall and capacity
utilization of chaining resources are close to those under a full exile con guration. Garavelli
(2001) considers the setting of job shop cellular manufacturing systemsised to perform batch
production. He nds similar results to those by Jordan and Graves (1995) hrough a comparison
between the performance of a full dedicated system, a full exibé one and chaining. Similar results
are found by Garavelli (2003) in a complex supply chain environment, reqgiring the coordination of
many plants producing good to customers located in di erent places Again in the context of cellular
manufacturing systems, Albino and Garavelli (1999) analyze the bene tsof a limited exibility.
Starting from two industrial case studies concerning in-house metlworking shops, Nomden and
van der Zee (2008) nd by simulation that a chained distribution of routes behave very well.

For queueing systems, Gurumurthi and Benjaafar (2004) compare di erentscenarios of adding
exibility under di erent routing policies. They prove that th e value of chaining decreases for an
asymmetric demand. Hopp and van Oyen (2004) consider the question of how taass-train a worker

to two skills in the context of serial production lines. They conclude that a novel strategy called skill
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chaining strategy is more robust against variability than a cherry-picking strategy (a team is full
exible) when demand is symmetric. The cherry-picking strategy in a serial production line can be
seen as similar to single pooling, where the customers are the machsjend the bottleneck machine
represents the easy type of calls. Tomlin and Wang (2005) consider the coxtt of unreliable supply
chains that produce multiple products. They study four canonical supply chain design strategies,
where one of them, referred to as dual-source exible, has been alrepgroposed by Chevalier et al.
(2004) in the context of call centers. They re ne the prevailing intuition that a exible network
is preferable to a dedicated network by proving that this intuiti on is valid if either the resource
investments are perfectly reliable or the rm is risk neutral. In a similar setting to ours, Robbins
and Harrison (2010) introduce an SBR call center queueing model with tw@ustomer types, referred
to as partial pooling. They consider two dedicated agent teams for each ctsmer type, and one
cross-trained team for both types. They show that cross-training a small humber of agents can
deliver a substantial bene t. They also nd the level of cross-training that minimizes sta ng costs,
while satisfying a service level constraint. Bassamboo et al. (2010) stly the exibility problem
with a newsvendor network model of resource portfolio investment. They conduct a comparison
between chaining and tailored pairing. They show that a system that conbines dedicated and
cross-trained agents is asymptotically optimal. They also show usingisilation experiments that
the \tailored pairing" design is superior for small systems, including systems with asymmetries.
The tailored pairing architecture might be one of the best propositionsin the literature to deal
with the asymmetric parameters. However as already mentioned above, @vcan not retain this
architecture as a reference in our project. The reason is that for caltenters with many skills,
working under tailored pairing may lead to non-realizable situations. In such a case, the number
of two-skills combinations could be very high.

Garnett and Mandelbaum (2001) argue on the importance of adapting the system atutecture

to the asymmetry in the customer arrival rates. In summary, chaining is robust according to its
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ability to support variability. It however fails when demand is asymmetric. It can be also too
expensive to train agents on various combinations of two skills. For thes situations, we propose
and analyze in this project a new e cient con guration of a queueing call center model.

Agent Skills, Sta ng and Routing. In an SBR call center, agents can often only be trained
for a subset of skills. One key management issue is to determine theubset of skills that will be
considered, and the number of agents for each subset of skills. Pinkand Shumsky (2000) build
a learning model where the quality of service is related to the empyee experience. According to
their model, the bene ts of exibility are not guaranteed. It is tru e that a exible agent can treat
more customers, but the quality of service would not be as good as it woulthe with a dedicated
agent. They also compare between di erent system sizes and show thapecialization is preferred
in large systems and complete pooling is preferred in small systemd-or medium size systems, a
mix of exibility and specialization would be appropriate. In a call center context, Wallace and
Whitt (2005) conclude using an extensive simulation study that, when you add skills to an agent,
most of the bene ts is taken going from one skill per agent to two skills r agent. These results
tend to support the idea of limiting the number of skills per agent.

As for the problems of sta ng and routing, we refer the reader to the survey by Gans et al.
(2003), where the authors present the square-root stang rule. Borst etal. (2004) revisited the
square-root rule by including principles of routing based on agent cds. To optimize the sta ng
level in an SBR call center, Henderson and Mason (1998) combine simulation aridteger program-
ming with cutting plane methods. Atlason et al. (2008) provide interesting properties of a cutting
plane method for sta ng and prove that it outperforms traditional stang  heuristics which are
based on analytical queueing methods. Some other works have investigat the impact of the type
of the agent contract on the required sta ng level in order to reach a given service level: Ren and
Zhou (2008) consider piece-meal and pay-per-call-resolved contracts amtopose other contracts

that coordinate both sta ng and e ort.
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Borst and Seri (2000) present a routing heuristic that assigns customerto the available agent
with the most specialized set of skills which is a generalization of th \specialist- rst" principle.
Chevalier et al. (2004) show that in terms of performance a 20/80 model (20% of geralists and
80% of specialists) performs almost as good as a full exible model, moreer, it has lower operating
costs. In a manufacturing setting, Sheikhzadeh et al. (1998) evaluate thdi erence in performance
between strict priority, longest queue rst and random priority in a comparison between chaining
and full exibility. They remark that the longest queue rst policy is the best one. In order to
perform a coherent comparison between chaining and our model, we rsthoose the appropriate

routing rules and also sta ng levels.

2.3 Problem Setting

We consider call center models withn + 1 call types (types 0O, 1, ..., n). Customer types 1, 2, ...,
n, referred to as also regular types are those requiring speci c agenkals 1, 2, ..., n, respectively,
while customers 0 can be handled by any agent without a particular \sophiicated” training as
required for the regular types. In other words, skill 0 is an easy skil The mean arrival, service
and abandonment rates of customers typa are ;, ; and i, respectively ( = 0;1;:::;n). The
agents are organized in homogeneous teams, i.e., all agents from a given team ddkie same set of
skills. In this chapter we only consider agent teams with at most two skls per agent. We de ne
an economic framework as follows. We assume that skill O costs 1, and that $ki costs 1+t; (for
i=1; ;n). Fortwo skills i and j, the cost is 1+tj; (for i;j 2f0; ;ng). Since skill 0 is the
easy skill, we assume thatjo tij (fori;j 2f0; ;ng).

We are interested in the performance in terms of the expected waitig time in the queue of
each customer typei taken in service, denoted byWw;, fori =0, 1, ..., n. We denote the objective
service level for a typei by W, , fori =0, 1, ..., n. In what follows, we describe the two models

that we compare in this chapter: chaining and single pooling. We do not cosider the architectures
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developed by Borst and Seri (2000), and Bassamboo et al. (2010), because in our text they are
too costly or even very hard to implement by a call center manager dued the speci city of the
agent skills.

Chaining and single pooling models are shown in Figures 2.1(a) and 2.1(byespectively. In
the chaining model, the skills of the teams are such that they form a leain. The value of the well
known chaining model comes from its capability to smooth the workload wer the agent teams.
In the single pooling model, customers type 0 benet from a complet pooling, whereas the other
types have only access to one dedicated team. The value of this archiwure is that it allows to
appropriately handle situations of asymmetry in demand as we will showdter. Single pooling can
be seen as a dual of the architecture proposed by Chevalier et al. (2004), thidedicated single skill

agent teams and one team of agents with all skills.

jEWQ

(a) Chaining (b) Single pooling

Figure 2.1: Call center con gurations

The functioning we consider for chaining and single pooling is intuive and easy to implement
in practice. Under chaining, a customer upon her arrival has access to agenfrom two teams. If at
least an agent is available in one of them, then the customer is routed tohe team with the higher
proportion of idle agents (number of idle agents in a team over the total nunber of agents in that
team). If this proportion is the same for the two teams, then she is eqiprobably routed to one of

the two teams. Otherwise if all agents from the two teams are busy upon ér arrival, the customer
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waits in her queue (each customer type has its own queue). An agent camahdle customers from
two queues. Within each queue, the discipline of service is FCE. When an agent becomes idle,
she selects to service one of the customers that are waiting in the tivqueues, if any. The priority

is given to the customer with the longest waiting time.

For single pooling, the routing rules are as shown in Figure 2.1(b). The cipline of service in
each one of then + 1 queues is FCFS. A customer typei (for i = 1;:::n) can be served by only
an agent from its associated team. A customer type 0 however can be sen/dy any agent of any
one of then + 1 teams. Upon arrival, a customer type 0 is in priority handled by an idle agent
from team O, if any. If not, she is handled by an idle agent from one of the team®f the regular
customer types, if any. If more than one of those have at least one idle agenthen customer 0 is
routed to the team with the higher proportion of idle agents. If many teams have the same highest
proportion, then customer 0 is equiprobably routed to one of these teamslf all agents of all teams
are busy, then customer 0 is placed in her queue. When an agent from one tife teams of the
regular customers becomes free, it can serve either a regular customa a customer 0. However
a regular customer has a non-preemptive priority over a customer 0. Tis means that the idle
agent deals with a call from her regular queue rst (the rstin line). If the queue of the associated
regular type is empty, this agent provides service to a customer Otfle rstin line). We assume in
our models that the queues are in nite.

In this project, we compare between the two models chaining and sgle pooling through sim-
ulations. In order to have a coherent comparison we optimize their totalsta ng cost under the
constraints Wi W; , fori =0;1;::;;n. We use greedy heuristics for the simulation based opti-
mization step. We refer the reader to the details in Section A.1 of theappendix. For the sta ng
optimization of SP, we use an increasing greedy algorithm. Starting from arunder-sta ed situation
(a full dedicated model with customers 0), we increase step by spethe arrival rate of customers

0. In each iteration, we increment the number of agents in the various tams such that we strictly
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reach the service level constraints. For chaining, we develop a desasing greedy algorithm. The
algorithm starts with an over-sta ed situation using a full dedicated model, which is the worst for
chaining since it ignores the links between the teams. We then usan e cient method suggested

by Wallace and Whitt (2005) in order to correct the sta ng levels to the ch aining setting.

2.4 Particular Single Pooling Cases

The analytical analysis of the general case of single pooling is too compleXVe consider in this
section two particular Markovian cases of single pooling, for which, we evelop exact and approxi-
mate results. The objective of this analysis is to obtain some sense oing e ect of the parameters
asymmetry on performance. A more comprehensive analysis of the e ect aisymmetry is then

conducted in Section 2.5 using simulation.

2.4.1 Three Customer Types

Consider a single pooling model with three customer types 0, 1 and 2. fie arrival process of types
0, 1 and 2 is Poisson with rates ¢, 1 and », respectively. There two agent teams 1 and 2 with
sizess; and s, respectively. The service rate, denoted by , is identical for all customer types.
Using a Markov chain approach, we compute in what follows the expected aiting times for all

customer types.

Let us de ne the stochastic processf (x(t);y(t);z(t))t 0g, where x(t) and y(t) denote the
number of busy agents in teami plus the number of waiting customers in queue (i = 1;2), and
z(t) denotes the number of waiting customers in queue 0, for an instant 0. Since inter-arrival
and service times are Markovian,f (x(t);y(t);z(t))t Og is a Markov chain. Let us denote the
system steady-state probabilities by yy.,, for X, y, z 2 N. Note that we can havez 1 only
whenx s;andy sp. From the Markov chain, one may write the following set of equations.

We have (1+ 2+ 0) 000= ( 100+ o10). Forx =0andy >0, ( 1+ 2+ o) oyo =
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min(y +1;sz) oy+1,0* 10t 2 oy 10- Forx>0andy=0,( 1+ 2+ o) x00=min(Xx+
1;s1) x+#1;00t x10t 1 x 1y0- ForO<x<s,orO<y<s thereare5cases: Iy 1> g—ix,
( 1+ 2+ o+tmin(x;s1) +min(y;s2) ) X;y;O:min(X"'l;Sl) x+1;y;0+min(y+1;32) xy+1;0F
(1+ o) «x Ly.0t 2 xy 10 If y = %Xs( 1+ 2+ o+min(x;s1) +min(y;sy) ) xy;0 =
min(X+1;s1) x+1y.0tMiN(y+1;s2)  xy+1;0t( 1+ 0) x wny;0t( 2+ 072) xy 0. Ify 1< :—ix
andy > Z(x 1), ( 1+ 2+ o+min(x;s1) +min(y;sz) ) xy;0 = MIN(X+1;S1) 410+
min(y + 1;sp) x;y+1;0+( 1+ 0) x 1;y;0+( 2+ o) Xy 1;0- Ify = %(X 1), (1+ 2+
o+min(x;s1) +min(y;s2) ) xy;0 = MiN(X+1;81) xsryyo+Min(y+1;82) xy+10+( 1+
0=2) x 1y:0*t( 2+ 0) xy 1o fy< E&(x 1),( 1+ 2+ o+min(x;s1) +min(y;s2) ) xy:o0 =
min(x + 1;s;) x+1;y;0 T min(y + 1;sp) xy+1;0 T 1 x 1y;0 +( 2+ o) xy 10. FOr x = s,
y=s2andz =0, ( 1+ 2+ o0+(S1+ S2) ) si50 = S1 s+1:50F S2 spspr10+ (1 F
0) s 1s0t( 2% 0) sps; 10+ (S1+ S2) sy FOrx = spandy >sp (1+ 2+ ot
(S1+S2) ) siyio0 = S1 si+1y;0t S2 spy+10+t( 1+ 0) s 1y0t 2 sy 1.0+ S1 osuy1. FOr
X>spandy= s, (1+ 2+ 0+(S1+S2) ) x5,0= S1 x+1350F S2 xs,+1;0F 1 x Lsp0
(2% 0) xs2 1,0+ S2 xsp1- FOrx>s3,y>spandz=0,( 1+ 2+ o+(S1+S2) ) xyo0=
S1 x+1;y;0+ S2 x;y+1;0+ 1 x l;y;0+ 2 xy 10- For z > O,( 1+ oF 0+(Sl+ 52) ) S1;82;Z —
S1 s;+1szt S2 sysptlzt 0 spspz 1H(S1+S2)  spispze1. FOrX=si,y>spandz> 0, ( 1+
2+ ot(s1tS2) ) siyiz = S1 si+liyizt S22 spy+lizt 0 spyz 117 S1 spyiz+l. FOrX>S1,y=Sp
andz > 0, ( 1+ 2+ 0+(S1+S2) ) xss,2 = S1 x#lispizt S2 xsptlizt 0 xsoz 1152 xspiz+1-
Forx>sj,y>szandz> 0, ( 1+ 2+ o+(S1+S2) ) xyz = S1 x+lyz+S2 xy+lzt 0 xyz 1.
One may intuitively see from the Markov chain how the asymmetry in arrivals increases the
performance of single pooling. The counterproductive states are thoseith waiting customers and
idle agents at the same time, i,e.x >s;and 0 y <sj, ory>s,and 0 x <sji. When

being in one of these two \bad" cases, the probabilities to take the diection of leaving them are

ot 2+$1
1+ 2+ O+( Sl+y)

ot 1+S2

and 1+ 2+ o*(s1ty)

, respectively. This shows for example that increasing the

21



proportion of customers 0 (one form of asymmetry) increases the performar in single pooling.
A further illustration is given next. The expected waiting times as a function of the steady-state

probabilities are given by

0 1
1 XXt XL X1 X1
W= — @ (X s1) xyot (x  s1) x;y;zA ;
1 X=351y=0 X=81y=S2z=1 |
1 XU xt X1 Xt xt '
W= — (Y S2) xyo* (Y s2) xyz
y=5s2x=0 Yy=SpXx=51z=1
1 Xt Xt xt
WO = — Z X;y:Z

0 z=0 X=S1yY=S2

The performance measures above are computed numerically. We solvedlsteady-state equations
relating the state probabilities using a state space truncation, wih a su ciently high precision (six
digits beyond the decimal point). Let us now denote byp the proportion of customers 0 among all
arriving customers, p = Pnio_. Figure 2.2 shows howwW; and Wq considerably improve inp.

i=0 !

——
-

P
Figure 2.2: Impact of p on SP performance (1= 2= ¢=0:2, i2:0 i=4, 1= 92,81=5=
12)

2.4.2 A Fixed Point Approximation

We consider here a Markovian single pooling case with an arbitrary numbr of skills. There are
n + 1 customer types (type O, and types % 2;:::;n), n teams (no team 0),n 1. The arrival rates
are gand ;= fori =1;::;n, and the service rates are = fori = 0;1;::;;n. Since the

con guration is symmetric, we consider the same sta ng level s in each team. In what follows, we
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develop an approximation to compute the expected waiting time of regulr customers typei, for
i =1;::;n. The approximation is based on a Markov chain approach and a xed point algoritim.

One can see that our model can be divided inta identical sub-systems. It su ces then to focus
on the performance analysis of one of these sub-systems. A sub-syst#sra simple queueing system
with s servers and an in nite queue. Two types of customers arrive to thissub-system: customers
type i with a Poisson process with rate and customers type 0 with a general arrival process with
mean arrival rate <. (The arrival process of customers 0 to the whole system is Poisson. Mever,
it becomes a general process at each sub-system because of the routinbes.)

Recall that customers 0 wait in their own queue before being routeda one of the sub-systems
for an immediate processing. Because of the routing rule, customersdan be routed to a sub-system
only if the number of customers in the sub-system is less or equal te8 1. Also since we route
customers 0 to the one of the less busiest sub-systems (with an eguobable choice), the arrival
rate of customers 0 is decreasing in the number of busy servers in alssystem and it becomes 0
when all the s servers become busy.

Let us now de ne, for a sub-system, the stochastic proces6E (t);t  0g, where E(t) denotes
the number of customers in the system (queue + service). Note thatlte customers in the queue
are only the regular customers, and those in service can be both regular oype 0 customers. We
approximate customers 0 inter-arrival times by an exponential distibution with state-dependent
rates. Since inter-arrival and service times are Markovianf E(t);t  Ogis a Markov chain as shown
in Figure 2.3. The arrival rate  denotes the state-dependent arrival rate of customers 0 when
the number of customers in the sub-system ik, for k = 0;::;;s 1 (no customers 0 arrive at the
sub-system fork s).

Assume that exactly s customers are in the sub-system and that a service completion occsir
rst before the next arrival epoch of a regular customer at this sub-sytem (Figure 2.3). Therefore,

two possibilities may happen. The rst possibility corresponds to the case of an empty queue 0.
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Figure 2.3: Markov chain associated to a sub-system of single pooling

We then move to states 1. The second one corresponds to the case of a non-empty queue 0. We

then stay in state s, because the server who just became idle immediately takes the stomer 0O in
the head of queue 0 into service. Let us denote by the probability that queue 0 is not empty.
Then the rate to move from state s to sates 1 in the Markov chainiss (1 ).

Let us now assume that the stability condition of a sub-system holds, .e., + <s ,and

_0
n

denote the stationary probabilities of the system states by , for k 0. We may then write

Qy 1 _
R (2.1)
forl k s 1,and
Qs 1 .
o= (g 22)

for k 0. Since all probabilities sum up to one, we obtain

1
0= P Qk 1 Qs 1 : (23)
1 "o (* i) im0 (* i) 1
1+ i:l (I)<! K + s! Os(1 ) 1 —

The di culty to compute the stationary probabilities is that we do not have the values of g
(k=0;:3s 1l)and . We use a xed point algorithm to jointly compute them with the station ary
probabilities. Let us now write g, the arrival rate of customers 0 at a given sub-system when this
sub-system is empty, as a function of the stationary probabilities of his sub-system. We use here

a second approximation. We indeed assume that the states of the sub-stems are independent,
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which is not true. Assume that our sub-system is the only one that is emty, i.e., each one of the
other n 1 sub-systems have at least one customer in the system (queue + s@e). Using the
approximation this occurs with probability (1 o)" 1, then ¢is simply ¢ in that case. Assume
now that our sub-system and only another one are empty. Then g is - (equiprobable routing of
customers O to one of the less busiest sub-systems). This occunsth probability (1 o 2

n 1

and there are ", combinations (where E = k,(nni'k), for0 k n). Continuing with the same

reasoning and averaging over all possibilities, we obtain

Xt 1 n o1 |

_ 1.
0= 0 @ ot (2.4)
i=o +1 ]
Since#r ", * = %I, , Equation (2.4) becomes
X 1 : X _
-0 n i n1j_ 0 n j nj.
0— — . 0(1 O) - 0(1 0) )
n.o | +1 No,, |
which leads to
1 (1 n
0= O(nOO)3 (2.5)
In the same way, we obtain
Py om Py n
1 i=1 ] 1 j=1
K= o n X (26)

forl k s 1. Letus now give the expression of as a function of the stationary probabilities

k, K 0. Since the mean arrival rate of customers 0 at our sub-system i$fl, we have

X1 0
kkt S = F; (2.7)
k=0
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which implies

s : (2.8)

In summary, from the one hand, Equations (2.1)-(2.3) give the stationary prolabilities ¢

(k 0)asafunctionof « (0 k s 1)and . From the other hand, Equations (2.5), (2.6)
and (2.8) give « (0O k s 1)and as afunctionof  (k 0). As a consequence, we have a
xed point. We propose the following xed point algorithm to compute it . In the rst iteration,
we choose o = {2, ¢ =0forl k s 1,and =0. Then we compute ¢ (k 0) using
Equations (2.1)-(2.3). From these ,, we next compute the new values ofy (0 k s 1) and

using Equations (2.5), (2.6) and (2.8). In the second iteration, we use thdatter values of
and to compute . From these new g, we compute the new values of xk and . We do the
same in the third iteration, and so on. We stop the algorithm when the values of ¢ (k 0), «
(0O k s 1)and converge to their limits with a given prede ned precision (we haw chosen
a precision of 10 © in the numerical experiments below). Proposition 1 proves the covergence of

the xed point algorithm.
Proposition 1  The xed point algorithm always converges.

Proof. We use the Brouwer's theorem to prove the convergence. The Brouwsartheorem states
that any continuous function from a convex compact subsetK of an Euclidean space to itself has
at least one xed point. In what follows, we prove that the conditions of the Brouwer's theorem
hold in our context.

After k iterations, the xed point algorithm gives the vector ( o; 1; 2; ; c)k belonging to
a convex compact, [0; 13", that is included in an Euclidean space,RS*!. From Equations (2.1)-
(2.8), it is obvious to see that the function that allows to calculate ( o; 1; 2; ; c)k+1 (iteration

k + 1) as a function of ( o; 1; 2; ; ¢)k IS continuous (combination of continuous functions),
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for 60 (k=0;::;s 1). Inwhat follows, we prove that this function is continuous in ¢ =0

(k=0;::;s 1) by prolongation. From Equations (2.5) and (2.6), we have

P n P n P nO P nl
1 J!(:11 j 1 jk=1 i 1 jkzl1 j 1 Jk=ll j
= = @1 A -
k 0 n 0 n 1 Py "

j=1 ]

fork =0;::;s 1, where by convention an empty sum is equal to 0. Calculating furtherwe obtain

1Pk1J” Fo!

=1

k= o0 1 14Pi—1 ;
Nk =t

for k =0;:::;s 1. The Taylor expansion of y as a function of , in the neighborhood of 0 is

Py 1 0 Ln
_ 1 j=1 | - @ ! A )
k= 0 - 1 @ no(W)= o®1 i~ o(1);
=1

where o(1) is a function that converges to a nite limit as ¢ goes to 0, fork = 0;::;;s 1. Since
P n
o 1 }‘zll i is nite,  is continuous by prolongation in y =0, for k =0;::;;s 1.
It remains now to focus on the issue for =1 in Equation (2.3). This case of =1 can not hap-

P
pen. The proof is as follows. Assume that = 1. Equation (2.7) thus leadstos = -2 E:& K k-

n
Since yand ¢ (0 k s 1)are positive,s = . As a consequence the sub-system is unstable,

which is absurd. This completes the proof of the convergence of the &d point algorithm. 2

Having in hand the stationary probabilities, we next compute for the regular customers the
expected waiting time in the queue and the probability of delay. Resall that all sub-systems are
identical because of the symmetry in the parameters. Using Little'slaw, the expected waiting time

of a regular customer typei (i = 1;:::;n) is given by

Wi = — K srk; (2.9)
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Table 2.1: Fixed point approximation, =0:2

Wi Po
0 S (gﬂ Simulation  Approximation Simulation  Approximation

035 035 5 70% 0.581 0.581 37.78% 37.78%

0475 0475 5 95% 1.672 1.672 87.78% 87.78%

n=1 14 14 20 70% 0.035 0.035 9.36% 9.36%
19 19 20 95% 0.359 0.359 75.54% 75.54%

3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 0.7 5 70% 0.436 0.435 29.74% 28.28%

0.475 0.95 5 95% 1.623 1.623 87.51% 85.23%

n=2 14 28 20 70% 0.003 0.0027 0.74% 0.72%
1.9 38 20 95% 0.320 0.290 61.03% 60.98%

3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 175 5 70% 0.290 0.288 19.06% 18.76%

0.475 2375 5 95% 1.556 1.550 81.84% 81.38%

n=>5 14 7 20 70% 0.001 0.001 0.28% 0.27%
1.9 95 20 95% 0.205 0.204 42.99% 42.97%

3.8 0 20 95% 3.777 3.777 75.54% 75.54%

0.35 35 5 70% 0.259 0.252 17.21% 16.39%

0.475 4.75 5 95% 1.516 1.504 79.07% 78.96%

n =10 14 14 20 70% 0.0001 0.0001 0.23% 0.23%
19 19 20 95% 0.167 0.167 35.23% 35.21%

3.8 0 20 95% 3.777 3.777 75.54% 75.54%

for i = 1;::;n, and its probability of delay denoted by Pp;; is

Pp; = s+ks (2.10)

for i =1;:::;n. The approximation for both W; and Pp;; works very well for the regular customer
types, however it does not for customers 0 because of their complexouting. The comparison
between the approximate results using the xed point algorithm and the exact ones using simulation
are given in Table 2.1. Note that in the extreme situations ofn =1 or ¢ = 0, our method gives
the exact results.

Table 2.1 reveals that our approximation yields very accurate estimateswhile slightly over-
estimating the performance. It gives lower values forW; and Pp; than those from simulation.
An explanation would be as follows. In our approximation, we assume that all gab-systems are
independent one of another. In reality, the routing rule leads to a far sharing of customers between
the sub-systems. Therefore, when a given sub-system is almost &y the other ones are likely to

be almost busy. Thus, the arrival rates  (for high values ofk close tos 1) should be in reality
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higher than those in the approximation, which implies that the latter would give better performance
(lower waiting and lower probability of delay) than simulation does.
Using the above approximate analysis, we illustrate in Figure 2.4 howle asymmetry in arrivals

(by increasing p) improves performance (expected waiting timeW; for i =1;:::;n).

Figure 2.4: Impact of p on SP performance (=4, = =02, 7, =8, i= j,8=12
fori;j =1;:54)

2.5 E ect of the Parameters Asymmetry

In this section, we present the results of the comparison betweenhaining and single pooling. We
use simulation experiments to optimize the call center sta ng. In using simulation for call center
operations management, we are following longstanding practice, see for axple Wallace and Whitt
(2005).

We simplify the cost model such that the SP cost is upper bounded andhat of chaining is
lower bounded. All the numerical comparisons are based on the lower andpper bounds values.
This makes the results pessimistic for SP and optimistic for chaimg, i.e., the performance of SP is
in reality better than what we present. The cost of single pooling isp "o (1+ ti.0)si. This is upper
bounded by (P i”:O si) max;(1+ ti.0). The cost of chaining is (1+top.1)So+(1+ t12)si+  (1+ th.0)Sn
and is lower bounded by (1 +tg;1)Sp + (1 + min j; (1 + tj; ))(P i”:ll Si)+(1+ tno)Sn. Let us now
simplify the problem as follows. An agent with skills 0 andi (i = 1;::;n) costs 1. An agent

with skills i andj (i;j = 1;:;nandi 6 j)costs 1+t,t 0. In this simpli cation, we have
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maxi(1+ tio) =1 and min; (1+ t;;) =1+ t (i;j =1;:;5nandi 6 j). The parametert is then

the incremental cost of an agent with two regular skills compared to that wth a regular skill and

skill 0.

Design of Experiments.  As we are interested in the e ect of asymmetry of the parameters on
performance, we propose various forms of asymmetry. For customers 0, we de the parameters

p and p®to measure the relative importance in arrivals and service durationsrespectively. They

1
are given by p = &ng— and p®= P2. We measure the asymmetry between the arrival rates
i=0 ! i=0

of regular customers byV = - = 2= = “nl, and that between service durations by
U= =*= if 2= = 1=1_7"1 We also consider for customers 0 the asymmetry in the variability
-2 = 3 = n

of service times, measured by the coe cient of variation of its distribution and denoted by cvs.

We consider other forms of asymmetry in terms of the required servie level and also the time to
abandon for customers 0 relatively to those for the regular customers. Tése e ects are studied in
the settings of small and large call centers, and also in the settings of sall and large number of
skills. Although the considered forms of asymmetries do not cover all pssibilities, they allow to

obtain the main useful conclusions.

The approach to conduct the simulation experiments is as follows. Dudo the high number

of parameters, we rst run experiments by separately treating one paameter at a time. In a
systematic way, we vary one parameter while holding all the others cortant. Second to see the
possible interaction e ects, we simultaneously vary the values of mog than one of them at a time.
For the values of the parameters, we choose wide ranges that allow to cavenost of call center
situations in practice. For the rest of the chapter, inter-arrival are assumed to be Markovian.
Service times are also assumed to be Markovian, except in Section 25.The abandonment rates

are assumed to be equal to zero, except for Section 2.5.4.
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2.5.1 Asymmetry in Arrival Rates

We want to understand the e ect of the asymmetry in the demand. We separate the study into
two steps. First, we construct the asymmetry only on the arrival rate of customers 0. Second, we

construct it by di erentiating between all the arrival rates of all cu stomer types.

Asymmetry on Customers O

To isolate the impact of p = l%, we assume that all customer types have the same expected
i=0 |

service time, and all the arrival rates of the regular customers are theame, = fori=1;::;n

(V =1). In particular, we are interested to know, for the di erent range s of p, which one of the

models would be preferred to the other. We choose call center exartgs with n = 4, i.e., 5 agent

teams and 5 skills including skill 0. The results are shown in Table2.2 and Figures 2.5(a) and

2.5(b).
P 4 .
Table 2.2: Impactofp( = 0=0:2,Wg =W, =0:2, [, i=8i=1;:;4 U=V =1,
p’=20%, n = 4)
Chaining SP Crossing value
p | t=0% t=5% t=10% t=25% t=50% t=100% (Chaining = SP)
0% 49 5095 529 5875 685 88 | 60 t=28.21%
10% | 49 50.7 524 57.5 66 83 | 56 t=20.58%
25% 48 49.3 50.6 54.5 61 74 52 t=15.38%
50% | 49 49.9 508 53.5 58 67 | 52 t=16.67%
75% | 51 5155 521 5375  56.5 62 | 51 t=0%
90% | 51 513 516 52.5 54 57 | 51 t=0%
100% | 47 47 47 47 47 47 | 47 t=0%

Since any agent in SP has skills 0 and (i.e., costs 1), the sta ng cost of SP does not depend on
t. In Table 2.2, the column Crossing value gives the value oft for which the two models chaining
and SP are equivalent. Below this threshold chaining is better thanSP and viceversa (see Figure
2.5(a)). Consider small values oft. Table 2.2 reveals that chaining performs well for small values
of p. The best situation for chaining is reached in the symmetric case @lentical arrival rates). The
performance of SP improves a9 increases. For small values op, SP approaches FD which has
the worst performance. For high values ofp, customers 0 are rst preponderant and second bene t
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Figure 2.5: Comparing single pooling and chaining (i = 0=0:2, Wy = W; =0:2, i4=0 i =8,
i=1;:54,U=V =1 p’=20%, n=4)

from pooling, which highly improves the performance of SP. Witht = 0, SP and chaining become
equivalent for values ofp  75%.

For higher values oft, SP goes ahead of chaining. The reason is related to the increase of
the costs of the agents with two skillsi andj (i;j = 1;:::;4). It suces to have t = 15:38% to
outperform the best performance of chaining (the symmetric case). & any t beyond 30%, SP is
systematically better than chaining whatever is p.

We also measure the relative bene ts between SP and chaining. Figur@.5(b) provides, for
various values of the relative bene ts, the associated curve of as a function of p. We observe
that the sensitivity of the relative bene t as a function of t decreases irp. The reason is that the
number of customers 0 increases ip, which decreases the number of agents with two regular skills
in chaining (i.e., decreases the cost sensitivity irt).

The main conclusion here is that SP can be better than chaining when te demand for skill O
is important and/or when skill 0 is less costly than the other ones. The nain idea is that as type
0 dominates, they prot in SP from a total pooling from all teams, while chaining, they do prot

from a partial pooling from only two teams.
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Asymmetry on the other Arrival Rates

The parameter p, that is de ned on customers 0, is one way of measuring asymmetry in arvals.
Here, we focus on the asymmetry between regular customer types, measd by V = —4=-2=3

The simulation results for the casesV =2 and 5 are shown in Table 2.3. The experiments for the

caseV =1 reduces to those given in Table 2.2.

P
Table 2.3: ImpactofV ( = 0=0:2,Wy; =W, =0:2, i4:0 i=8,i=1;:1;4,U=1, p’=20%,
n=4)
Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 50 51.8 53.6 59 68 | 57 t=19.44%
10% 50 5155 53.1 57.75 65.5 | 56 t=19.35%
25% 49 50.3 51.6 55.5 62 53 t=15.38%
V=2 |50% | 48 48.8 49.6 52 56 | 51 t=18.75%
75% 50 5055 51.1 52.75 55.5 | 52 t=18.18%
90% 52 52.3 52.6 53.5 55 51 t=0.00%
100% | 47 47 47 a7 47 | 47 t=0.00%
0% 50 51.8 53.6 59 68 56 t=16.67%
10% 50 5145 529 57.25 64.5 | 55 t=17.24%
25% | 49 5025 515 55.25 61.5 | 52 t=12.00%
V=3 |50% | 49 50 51 54 59 | 52 t=15.00%
75% 50 50.75 515 53.75 575 | 52 t=13.33%
90% 52 52.2 52.4 53 54 | 51 t=0.00%
100% | 47 47 47 a7 47 | 47 t=0.00%
0% 49 5105 53.1 59.25 69.5 | 54 t=12.20%
10% 50 51.5 53 57.5 65 | 54 t=13.33%
25% 50 5125 525 56.25 62.5 | 52 t=8.00%
V=5 | 50% 50 50.7 51.4 53.5 57 | 52 t=14.29%
75% 51 51.4 51.8 53 55 | 52 t=12.50%
90% 52 5225 525 53.25 545 | 51 t=0.00%
100% | 47 47 47 a7 47 | 47 t=0.00%

40%
35% Single Pooling —=—V=2
30% —a—V=3
25% —m-V=5
20%
15%
10%

5%

0%

Chaining

T T T T u

0% 20% 40% 60% 80% 100%

Figure 2.6: Preference zone (= ¢=0:2, Wy =W, =0:2, L, i=8,i=1;254,U=1,
p®=20%, n = 4)
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Table 2.3 and Figure 2.6 reveal that the performance of SP increases M. An intuitive ex-
planation is as follows. Remark that the team sizes; = s( ;) is increasing and concave in i,
for i = 1;:::;n. Applying then the Jensen inequality leads toX] s(i) n s @ . In this

i=1
inequality, the left hand side corresponds to the overall sta ngI level for an arbitrary situation, i.e.,
with arbitrary values of s. As for the right hand side, it gives the overall sta ng level for a sym-
metric situation, i.e., all the ;s are identical. We also observe from Table 2.3 that the performance
of chaining is however relatively insensitive toV. Note that we change each time the con guration

of chaining such that the large teams are close to each others in order to €ate more pooling e ect.

This is better than having small teams each of which connected to a lage team.

2.5.2 Asymmetry in Service Rates

In this section, we focus on the comparison between chaining and SP thiregard to the asymmetry
in the customer service times. We rst de ne the asymmetry only on customers 0, and second on

all customer types.

Asymmetry on Customers 0

1
We measure the asymmetry on customers 0 bp®= P2 . The asymmetry here is de ned by
i=0

the di erence between the value of the mean service time of custorme 0 and that of the regular

types. The results are shown in Table 2.4 and Figure 2.7(a).

P
Table 2.4: Impact of p°( ; = ¢ = 2, f‘zo il =25 Wo =W, =0:2,i =1;:;4, p=20%,
U=V =1 n=4)
Chaining SP Crossing value
p’ | t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 60 62.45  64.9 72.25 845 | 72 t=24.49%
10% | 59 60.95  62.9 68.75 785 | 67 t=20.51%
25% | 58 59.65  61.3 66.25 745 | 62 t=12.12%
50% | 60 61.05  62.1 65.25 705 | 65 t=23.81%
75% | 61 61.6 62.2 64 67 | 68 t=58.33%
90% | 65 65.25  65.5 66.25 67.5 | 69 t=80.00%
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0= =02, Wo=W,; =0:2,i=1;::4,p=25%, Wo = W; = 0:2,i = 1;::4, p=25%, p° = 20%,
p°=20%, U=V =1, n=4) U=V =1 n=4)

Figure 2.7: Preference zone

From Table 2.4, we observe that the performance of both models chaining an8P improves inp®
(from O until the symmetric case for p®= 25%). The reason is that for chaining we are approaching
the symmetric case where it behaves well, and for SP we are pro tingoetter from the pooling
e ect when all service times are statistically identical. Howeverthe performance of the two models
deteriorates in p° (for p® above 25%), and no model performs well for a high asymmetry in service
times. The explanation is related to a phenomenon referred to as thélocking e ect. The blocking
e ect is the situation where the agents are excessively blocked bgustomers 0 (who are in need of
large service times) which deteriorates the waiting time of the reglar customers. This phenomenon
is more apparent for single pooling since in the latter customers 0 havaccess to all teams, whereas
in chaining they do only have access to two teams. We refer the readdo Tekin et al. (2009)
for more details on how pooling could be counterproductive when sefge times are very di erent.

Recall that this situation with a slow service rate for customers O isout of our context. In our
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context, customers O are in need of an easy skill, and are therefore liketo be served within a

short duration. We also measure the relative bene ts between SP andhaining as a function of p°

(see Figure 2.7(a)). Similarly to the e ect of p, we again observe that the sensitivity of the relative
bene t as a function of t decreases ip®. The reason is that the service time duration of customers
0 increases inp®, which decreases the number of agents with two regular skills in chaing (i.e.,

decreases the cost sensitivity irt).

In what follows, we go further by de ning the asymmetry on the variability of customers 0
service times. We choose to measure this variability by the coe ¢ent of variation (ratio of standard
deviation over expected value), denoted bycvs. We consider a log-normal distribution for the
service times of customers 0 (inter-arrival times of all types, and srvice times of all regular types
are Markovian). The choice of the log-normal distribution is based on the all center statistical
analysis in Brown et al. (2005). The results are shown in Table 2.5 and Figwe 2.7(c). We draw the
same conclusions as those for service rates. Due to the blocking ete®oth models do not behave
well as the variability is increasing. Figure 2.7(d) reveals that the rdative bene t as a function of
t is not sensitive to the variation of cvs. To the contrary to the case for p and p° the arrival and

service rates of regular types do not vary here.

Table 2.5: Impact of variability [51 service times ( { = 0=0:22,Wo =W, =0:2,i =1;::;4,
p=25%, p°=20%, U=V =1, L, =8 n=4)

cvs | 0% 5% 10% 25% 50%| | value of t

0O | 49 503 516 555 62|52| 11.54%

05| 49 5025 515 5525 615 52| 12.00%

1 |5 513 526 565 63|53| 11.54%

2 | 54 553 566 605 67|56 7.69%

3 | 62 6345 649 6925 76.5 63| 3.45%

5 | 64 6545 669 7125 785 66| 6.90%

Asymmetry on the Other Service Rates

We examine the impact of asymmetry by de ning it on all service times The service times can
be now dierent from one regular customer to another. Recall that the ratio U is de ned by
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We also consider cases with a high proportion of customers @ = 50%.

This can be seen as a worst case for SP, since the blocking e ect is neoapparent in such a case.

The simulation results are shown in Table 2.6, and Figures 2.8(a) and 2.8(b).

Table 2.6: Impactof U ( ¢ =0:2, 0=4, =1 Wo=W, =0:2,i=1;:54, 1 =25,
p°=20%, p=50%, V =1, n =4)

Chaining SP Crossing value
U | t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
1 49 50.25 51.5 55.25 61.5 | 52 t=12.00%
2 49 49.75 50.5 52.75 56.5 | 53 t=26.67%
3 50 51.65 52.3 54.25 57.5 | 53 t=9.09%
5 52 52.65 53.3 55.25 58.5 | 52 t=0.00%
10 55 55.75 56.5 58.75 62.5 | 55 t=0.00%

] AN -
(a) Preference zone (b) Relative bene ts
; ; P4 1 0
Figure 2.8: Preference zone (o = 0:2, o=4, j=1fori=1;:34, = = 25, p” = 20%,

p=50%, V =1, n=4)

From the numerical results we observe that SP is preferred to chaimg for a wide range of
parameters. The performance of SP is quite insensitive to the asymetry de ned by U. The
reason is that whatever isU, the agent teams in SP are divided to two types. One rst type with
two teams where customers 0 are served faster than regular customensdsitive e ect), and a second
type with two teams where customer 0 are served slower than regularustomers (negative e ect
of blocking). The performance of chaining is however decreasing in wsymetry. In chaining, each
team receives two customer types with di erent service times,which creates a negative blocking
e ect in all teams and deteriorates as a consequence the performancen beneral for both single

pooling and chaining with U 6 1, regular customers require di erent mean service times. We tha
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have regular customers that are served faster than others. The slowlgerved ones block the teams
in which they are routed to. This is more apparent in chaining because egular customers are
routed to two teams (and to only one in SP). We also measure the relativdene ts between SP and
chaining. Figure 2.8(b) reveals that this bene t as a function of t is not sensitive to the variation
of U. The reason is that although the service rates of regular types do vary, th total sta ng level

for the regular types do not.

2.5.3 Asymmetry in the Service Level Constraints

We de ne the asymmetry on the service level of customers OW,. The results are shown in Table

2.7 and Figure 2.9(a).

Table 2.7: Impact of Wy ( 0=4, i=1, = o=0:2andW; =0:2fori=1;::4, p=50%,
p°=20%, U=V =1, n=4)

Chaining SP Crossing value

Wo ‘ t=0% t=5% t=10% t=25% ‘ (Chaining = SP)
0.01 58 59 60 63 56 t=-10.00%
0.1 51 51.9 52.8 555 | 52 t=5.56%
0.2 49 49.9 50.8 53.5 | 52 t=16.67%
1 48 48.9 49.8 525 | 52 t=22.22%

We observe as expected that SP behaves better than chaining in thease of a high asymmetry
in the service levels. Chaining is requiring higher sta ng levels than needed for some customer
types. The agent teams are less correlated in SP than in chaining. This gés more exibility under
SP to adjust the size of the teams as required. However, the strongrlk between the chains in
chaining forces the size of the teams to be adjusted with regard to thdigh requirement of some
customer types while it is not needed for other types. As for the relaive bene ts between SP and
chaining, we observe from Figure 2.9(b) that it is not sensitive to the \ariation of W,. Since the
parameters related to the regular types do not vary, the associated stang levels do not change

also.
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2.5.4 Asymmetry in Abandonments

We allow in this section customers to abandon. After entering the quae, a customer will wait a
random length of time for service to begin. If service has not begun by tis time she will abandon
and be lost. Abandonment is an important feature in call centers. We rst investigate the impact of
abandonment on the performance of single pooling and chaining. We then imstigate the e ect of
the asymmetry in the abandonment rate of customers 0. Recall that that ; denotes the abandon
rate of customersi, for i = 0; n. In the experiments below, times before abandonment are
assumed to be exponentially distributed. Note that with customer abardonment, new performance
measures do appear for waiting times. Since the sojourn time in queumay end up with a start of
service or an abandonment, we distinguish the conditional waiting timegiven service, that given
abandonment, and the unconditional one. We focus here on the conditional arting time given

service.

Impact of Abandonment. We investigate the impact of abandonment on the performance of
SP and chaining in various situations of asymmetries. We consider homogenus abandonments for
all customer types, = fori =0; n. The results are shown in Figures 2.10(a)-2.10(d). Further
results are also given in Tables A.6-A.9 in Section A.3 of the appendix. Anmportant observation

here is that the e ect of the parameters asymmetry changes in the presnce of abandonment. For
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example, to the contrary to the results with no abandonment, the peformance of SP deteriorates
in p, but improves in p® The reason is that the abandonment of customers reduces the arrivals
to service, which in turn reduces the asymmetry. This can be saefrom Table 2.8, where the the

probability to abandon of customers 0 increases irp.

Single Pooling 60% - Single Pooling

Chaining

20% -
10% 4 .
Chaining >
0% P

0% 8% 20% 30% 40% 50% 60% 70% 80% 90% 0% 10% 20% 30% 20% 50% 60% 70% 80% 90%

(@) Impactof p( i = 0=0:2, 2, =8 = j,(b)Impactof p°( = o =2 o = =25 Wp =
Wo =W, =0:2,fori;j =1;:54,p°=20%, U=V =1, W, =0:2,i=1;::4,p=20%, U=V =1, n=4)
n =4)

40% ¢ —e— =0 40% ¢ —e— =0

35% Single Pooling —=— =01 35% Single Pooling —m— =01

. Chaining v

P 4
(¢) Impactof V ( 0 =2, o= .—02 izo .=8()mpactofU(Po—02 0=4, i=1, Wo=W, =
Wo= W, =0:2,i=1;:54,p=25%, p°=20%, U=1, 02,1 = 1;:54, [, L =25 p’=20%, p = 50%,
n =4) V=1 n=4)
Figure 2.10: Impact of abandonment
Asymmetry in Abandonment. Consider the asymmetry in the abandonment rates measured

by the relative di erence between the abandonment rate of customer®) compared to those of the
regular customers. The results are shown in Figures 2.11(a)-2.11(d). Fthrer results are also given
in Tables A.10-A.13 in Section A.3 of the appendix. We again observe an importanimpact of
the abandonment on the performance of SP and chaining. This impact mainly dpend on how
the abandonment a ects the asymmetry. For example, we observe from Figre 2.11(a) that when
regular customers have higher abandonment rates than customers 0, the asynetry in terms of
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=]
Table 2.8: Probability of abandonment ( = ¢ =0:2, i2=0 i=8, i= j,Wy =W, =0:2,
i= o= fori;j =1;:54,p°=20%, U=V =1, n=4)

=0:1 =0:2
Single Pooling Chaining Single Pooling Chaining
p Typei TypeO | Typei TypeO | Typei TypeO | Typei TypeO
0% 3.04% 1.68% 7.00% 3.20%

10% | 2.05%  0.00% | 2.24%  1.95% | 5.00%  0.03% | 3.58%  3.13%
25% | 1.84% 0.01% | 1.52% 1.79% | 4.30% 0.07% | 4.44% 4.24%
50% | 1.73% 0.08% | 1.69% 2.11% | 4.18% 0.40% | 3.82% 4.13%
75% | 1.70%  0.53% | 1.09% 1.27% | 4.12% 1.45% | 3.80% 3.47%
90% | 1.68% 1.14% | 0.29%  1.13% | 4.10% 2.62% | 4.63% 3.33%
100% 1.67% 1.67% 4.25% 4.25%

p is accentuated (which further improves SP performance). In the oposite case however, the

asymmetry in p reduces because of the abandonment of customers 0.

—— —-—
— — . — — . 0 — — . P4 1 -
@)4Impact of_ p(i= 0= 0:2, Wo = W; = 0:2, (b) Impact of p° (Wo = W; =0:2, [ == 25, i =
g 1=8,1=1;:54,p=20%, U=V =1, n=4) 1;::;4,p=50%, U=V =1, n=4)
—— B —r—
(¢) Impactof V (0 =2, Wo =W, =0:2, i = o= (d)Impactof U( o=4, Wog =W, =0:2, o=0:2,
i

0:2,i=1;::4,p=25%, p°=20%, U =1, n=4) =1;::4,p=50%, pP°=20%, V =1, n=4)

Figure 2.11: Impact of the asymmetry in abandonment
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Table 2.9: Impact of the Call Center Size (i = 0=0:2,W, = W, =0:2fori =1;::;4, p°=20%,
U=V =1 n=4)

\ Small Call Center ( te i=1) | Large Call Center ( t, i =100)
Chaining SP Crossing value Chaining SP Crossing value
p t=0% t=5% t=10% (Chaining = SP) t=0% t=5% t=10% (Chaining = SP)
0% 12 12.4 12.8 16 t =50% 513 534.6 556.2 | 536 t=5:32%
10% 12 12.4 12.8 16 t = 50% 513 531.15 549.3 | 518 t=1:38%
25% 11 11.3 11.6 16 t = 83:33% 513 527.2 541.4 | 513 t=0%
50% 12 12.25 125 15 t = 60% 513 522.1 531.2 | 513 t=0%
75% 13 13.25 135 13 t=0% 515 519.45 523.9 | 513 t= 2:25%
90% 12 12.15 12.3 11 t= 3333% 517 519 521 513 t=10:00%
100% 9 9 9 9 t =0% 513 513 513 513 t =0%

2.5.5 Impact of the Call Center Size

We focus in this section on the impact of the size of the call center ontte comparison between
the two models. Aksin and Karaesmen (2007) showed that a small call centebene ts more from

a exible architecture than a larger one. From the simulation experiments conducted here, we
con rm this conclusion. The results are shown in Table 2.9 and Figure 212. In Table 2.10 provides

the achieved expected waiting times for the optimal sta ng levels.

Table 2.10: Expected waiting times (i = 0 =0:2, W, = W, =0:2 fori = 1;::;4, p° = 20%,
U=V =1 n=4)
P4 4
| Small Call Center (' ;_, i =1) | large Call Center ( |, i =100)
‘ Single Pooling ‘ Chaining ‘ Single Pooling Chaining
p Wi Wo Wi Wo i Wo Wi Wo
0% | 0.08 0.06 0.18 0.20

10% | 0.07 0.00 0.06 0.06 0.15 0.20 0.19 0.19
25% | 0.05 0.00 0.09 0.08 0.08 0.19 0.19 0.20
50% | 0.04 0.00 0.07 0.05 0.05 0.17 0.18 0.20
75% | 0.19 0.01 0.07 0.02 0.04 0.20 0.17 0.19
90% | 0.19 0.03 0.06 0.05 0.02 0.19 0.15 0.18
100% 0.10 0.10 0.17 0.17

Because of the small teams, the lack of the pooling e ect in small call agers makes the threshold
values oft higher than those in large call centers. However in large call centershe team sizes are
quite large in the sense that we have a less need to the chains. Thisakes SP better than chaining
even under the symmetric case of arrival rates. From Table 2.10 we obses\that to the contrary

to small call centers, the service level constraints are saturatedof large call centers. Because of
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Figure 2.12: Preference zone (= ¢0=0:2,W;, = W, =0:2fori =1;::;4, pO: 20%, U=V =1,
n=4)

the discrete nature of sta ng levels, the impact of adding or removing an agent on performance
is higher in small call centers. For the same reason, the sta ng levelf the regular teams do not
vary much in small call centers. This makes the relative bene ts béween SP and chaining not
sensitive to the variation of p in small call centers, while the opposite is true for large call centes

(see Figures 2.12(b) and 2.12(d)).

2.5.6 Impact of the Number of Skills

In this section, we investigate the e ect of the number of skills (denoted by N = n +1). For two
cases with di erent number of skills, it is not possible to keep at the same time a constant workload

on each team and a constant overall workload. We choose to separately treat dasituation.

Constant Workload per Team. We consider identical service rates for all customer types. In

P,
the experiments below, the ratio —5— is then hold constant. The results are presented in Table

2.11 and Figure 2.13(a). We observe that SP behaves much better than chaimy as the number of
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skills increases. Figure 2.13(a) shows that foN = 10, the crossing value oft should be negative for
high values ofp (this means that SP is better in all cases). Single pooling behavesuch better than
chaining for the following two reasons. First asN increases, the exibility in chaining decreases. A
customer type in the chaining con guration has access to a fewer propoitn of agent asN increases
(the gap with the full exible model increases). The second reasons related to the impact of the

P n
constant ratio —5>—, which increases the overall size of the call center al increases. Having

large call centers makes SP more e cient (see Section 2.5.5).

P
Table 2.11: Impact of the number of skills (i = o =0:2, Wy = W, =0:2, i”:O i=N = 2,
i=1;:;n, U=V =1)
Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 36 37.8 39.6 45 54 40 t=11.11%
10% 37 38.05 39.1 42.25 475 | 40 t=14.29%
25% 37 37.75 38.5 40.75 445 | 39 t=13.33%
N =3 50% 37 37.4 37.8 39 41 37 t=0.00%
75% 36 36.15 36.3 36.75 375 | 36 t=0.00%
90% 36 36.05 36.1 36.25 36.5 | 36 t=0.00%
100% | 36 36 36 36 36 36 t=0.00%
0% 48 49.95 51.9 57.75 67.5 | 54 t=15.38%
10% 48 49.45 50.9 55.25 62.5 | 52 t=13.79%
25% 47 48.15 49.3 52.75 58.5 | 50 t=13.04%
N=4 | 50% 48 48.8 49.6 52 56 48 t=0.00%
75% 48 485 49 50.5 53 48 t=0.00%
90% 47 47.25 475 48.25 495 | 47 t=0.00%
100% | 47 47 47 47 47 47 t=0.00%
0% 60 62.55 65.1 72.75 85.5 | 68 t=15.69%
10% 59 61 63 69 79 67 t=20.00%
25% 58 59.6 61.2 66 74 64 t=18.75%
N =5 50% 59 60.1 61.2 64.5 70 61 t=9.09%
75% 60 60.75 61.5 63.75 67.5 | 61 t=6.67%
90% 61 61.3 61.6 62.5 64 61 t=0.00%
100% | 57 57 57 57 57 57 t=0.00%
0% 116 121 126 141 166 | 144 t=28.00%
10% | 115 119.6  124.2 138 161 | 135 t=21.74%
25% | 115 118.8  122.6 134 153 | 126 t=14.47%
N =10 | 50% | 117 119.75 1225 130.75 144.5| 117 t=0.00%
75% | 120 121.65 123.3 128.25 136.5| 114 t=-18.18%
90% | 122 12295 1239 126.75 131.5| 110 t=-63.16%
100% | 109 109 109 109 109 | 109 t=0.00%
Constant Overall Workload. We again consider identical service rates for all customer types.

P
The summation  {L, ; is then hold constant. The results are presented in Table 2.12 and Figer
2.13(b). We distinguish two e ects depending onp. For small values ofp, the preference zone for
SP reduces. The opposite is true for large values gf. The reason is related to the decreasing of
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the size of each team ad\ increases. Since we keep constant the overall workload, increasinget
number of skills implies a lower demand per skill, which requies less agents per team. This makes
the e ect of pooling predominant. For the case of largep, the large number of customers 0 bene ts
from pooling under SP. For the case of smalp, the system contains more regular customers, each

of which bene ts in chaining from the pooling of two adjacent teams.

P
Table 2.12: Impact ofp, t and N onthestangcost( = ¢=0:2,Wy =W, =0:2, i”:O i =8,
i=1;:;n U=V =1)
Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 47 4935 517 58.75 70.5 | 52 t=10.64%
10% 47 48.45 499 54.25 61.5 | 49 t=6.90%
25% 47 47.95 489 51.75 56.5 | 48 t=5.26%
N =3 50% 47 475 48 495 52 | 47 t=0.00%
75% 47 47.2 47.4 48 49 | 47 t=0.00%
90% 47 47.05  47.1 47.25 475 | 47 t=0.00%
100% | 47 47 47 47 47 47 t=0.00%
0% 48 4995 519 57.75 67.5 | 54 t=15.38%
10% 48 4945 509 55.25 62.5 | 52 t=13.79%
25% 47 48.15  49.3 52.75 58.5 | 50 t=13.04%
N=4 | 50% 48 48.8 49.6 52 56 | 48 t=0.00%
75% 48 48.5 49 50.5 53 | 48 t=0.00%
90% 47 4725 475 48.25 495 | 47 t=0.00%
100% | 47 47 47 47 47 47 t=0.00%
0% 49 51.3 53.6 60.5 72 | 60 t=23.91%
10% 49 50.7 52.4 57.5 66 | 56 t=20.59%
25% 48 49.3 50.6 54.5 61 | 52 t=15.38%
N =5 50% 49 49.9 50.8 53.5 58 | 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 | 51 t=0.00%
90% 51 51.3 51.6 52.5 54 | 51 t=0.00%
100% | 47 47 47 47 47 47 t=0.00%
0% 58 60.65  63.3 71.25 845 | 72 t=26.42%
10% 55 57.2 59.4 66 77 | 72 t=38.64%
25% 55 56.85  58.7 64.25 735 | 63 t=21.62%
N =10 | 50% 56 57.45  58.9 63.25 70.5 | 60 t=13.79%
75% 57 57.95 58.9 61.75 66.5 | 56 t=-5.26%
90% 56 56.6 57.2 59 62 | 55 t=-8.33%
100% | 47 47 47 47 47 47 t=0.00%

2.5.7 Mix of Asymmetry

In this section we mix the e ects of more than a parameter at a time. We popose to interact
the eects of pand p® U and p, U and p U and V, and also all of them. The results are
presented in Tables 2.13-2.17 and Figures 2.14(a)-2.14(d). From the numericadsults, we observe

that the individual e ects are still present, but they may accumu late or make up for one another.
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Figure 2.13: Preference zone
One important observation is that two asymmetries may lead to a bad perbrmance for SP. For

example SP behaves well in each one of the asymmetric situation®dJ(=2 and V =1) and (U =1

and V

1=3) in isolation. However, it does not behave well for the mixed situaton (U = 2

and V = 1=3). In such a situation, the customers types with large arrival rates arethe faster

to be served, and viceversa. Therefore, the di erent customer tpes workloads are likely to be
symmetric. For the same reason, SP behaves well in the situationl{ =2 and V = 3) because the
mix of asymmetries further accentuates the asymmetry in workloads.

Tables 2.14 and 2.15 reveal also that the most predominant e ects are those qf (because of
pooling) and p° (because of blocking). Various scenarios of mixed asymmetries are codeied in
Table 2.17. We nd again that SP behaves well in large call centers (the rg four scenarios).
Scenarios 3 and 7 are similar in terms of the values gb and p° (high values for the two param-
eters). This means that the e ect of pooling and blocking are highly present in both scenarios.
An important observation here is that scenario 3 is the best among scenavs 1-4, while scenario 7
is the worst among scenarios 5-8. This gives an indication on the direct congtition between the
e ects of p and p®. In large call centers, the pooling e ect created by customers 0 is edominant

over the blocking e ect, and the opposite is true in small call ceners.

Main Conclusions.  In summary, the numerical analysis of this section con rms that singlepooling
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P
Ta}ple213 Impactofpandp (i= jand j= jfori;j =1;:54, Wy =W, =0:2, i4=0 i =

8 fol=25i=1;u54U=V=1)
Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 52 53.95 55.9 61.75 715 | 64 t=30.77%
10% 51 52.7 54.4 59.5 68 60 t=26.47%
25% 46 47.45 48.9 53.25 60.5 | 52 t=20.69%
p°=10% | 50% 39 39.9 40.8 435 48 43 t=22.22%
75% 35 35.6 36.2 38 41 35 t=0.00%
90% 31 31.3 31.6 32.5 34 31 t=0.00%
100% 24 24 24 24 24 24 t=0.00%
0% 49 50.95 52.9 58.75 68.5 | 60 t=28.21%
10% 49 50.7 52.4 57.5 66 56 t=20.58%
25% 48 49.3 50.6 54.5 61 52 t=15.38%
p°=20% | 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 | 51 t=0.00%
90% 51 51.3 51.6 52.5 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%
0% 24 24.95 25.9 28.75 335 | 40 t=84.21%
10% 40 41.05 42.1 45.25 50.5 | 53 t=61.90%
25% 53 53.85 54.7 57.25 61.5 | 63 t=58.82%
p°=50% | 50% 75 75.6 76.2 78 81 82 t=58.33%
75% 97 97.4 97.8 99 101 | 100 t=37.50%
90% 111 111.2 111.4 112 113 | 112 t=25.00%
100% | 112 112 112 112 112 | 112 t=0.00%

performs better than chaining for various cases of asymmetry in the syem parameters. In the
case of a predominance of customers 0 and/or an important asymmetry in the aival rates of the
regular types (captured by V), SP is more robust than chaining even for small di erences between
the costs of a regular skill and that of skill 0. Because of the blocking eect, the performance of both
chaining and SP deteriorates in the asymmetry de ned by the servie time duration of customers 0
relatively to that of regular customers. This is more apparent in singlepooling because customers
0 have access to all teams, while in chaining they do only have access two teams. We have
also observed that SP is more robust than chaining against an increasing asymetry between the
service times of regular types. Since the teams under SP are lesstandependent than under
chaining, SP is again preferred in the case of an asymmetry between the @ttive service levels.
We therefore avoid over-sta ng situations that may happen in chainin g. Another important feature
is that of abandonment, because it may a ect the asymmetry of the parametes. Finally, all above

conclusions are more apparent for the situations with a large number of sks, or for those with a
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T@blf 2.14: Impact ofpand U ( ;= j fori;j =1;:54, 90=0:2,Wy =W, =0:2, %, ;=
8, o ==25i=1;u54,p°=20%, V =1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 49 50.8 52.6 58 67 57 t=22.22%

10% 49 50.6 52.2 57 65 55 t=18.75%

25% 49 50.15 51.3 54.75 60.5 | 53 t=17.39%

Uu=2 | 50% 49 49.75 50.5 52.75 56.5 | 53 t=26.67%
75% 51 51.5 52 53.5 56 53 t=20.00%

90% 53 53.35 53.7 54.75 56.5 | 53 t=0.00%

100% 47 47 47 47 47 47 t=0.00%

0% 51 52.4 53.8 58 65 55 t=14.29%

10% 50 51.4 52.8 57 64 53 t=10.71%

25% 50 51.5 53 57.5 65 53 t=10.00%

U=3 | 50% 50 51.3 52.6 56.5 63 52 t=7.69%
75% 51 52.3 53.6 57.5 64 52 t=3.85%

90% 52 53.35 54.7 58.75 65.5 | 52 t=0.00%

100% 47 47 47 47 47 47 t=0.00%

0% 52 53.2 54.4 58 64 55 t=12.50%

10% 51 51.95 52.9 55.75 60.5 | 53 t=10.53%

25% 52 53.2 54.4 58 64 53 t=4.17%

U=5 | 50% 52 52.05 52.1 52.25 52.5 | 52 t=0.00%
75% 52 52.05 52.1 52.25 525 | 52 t=0.00%

90% 52 52.15 52.3 52.75 53.5 | 52 t=0.00%

100% 47 47 47 47 47 47 t=0.00%

large call center size.

2.6 Concluding Remarks

We focused on a fundamental problem in the design and management of SBR talenters, for
which it is important to choose an intelligent architecture. We consdered the context of call
centers with unbalanced workload, di erent service requiremens, a predominant customer type
and high costs of cross-training. With these asymmetry in the parametes, the well known existing
architectures such as chaining lose their robustness. For those pacular cases, we proposed a new
call center architecture (single pooling) and demonstrated its e ciency. SP allows to balance the
workload among the agents in a way that captures the bene ts of pooling, wihout requiring every
agent to process every type of call. The results of the comparison betren SP and chaining have
signi cant managerial implications. We showed that SP behaves well inmost cases of asymmetry

in the parameters. There might be then opportunities for managers of callcenters to improve
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"F;able 215 Impact of pand U ( j = ; =15 fori;j =1;:54, 0=2, Wy = W, =0:2,
o L =25i=1;u54,p=25%, V _1)

Chaining SP Crossing value
p° | t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
0% 51 52.15 53.3 56.75 62.5 | 55 t=17.39%
10% 50 51.2 52.4 56 62 54 t=16.67%
25% 51 52.25 53.5 57.25 63.5 | 54 t=12.00%
U=2 | 50% 51 52.25 53.5 57.25 63.5 | 56 t=20.00%
75% 52 53.25 54.5 58.25 64.5 | 62 t=40.00%
90% 52 53.25 545 58.25 64.5 | 68 t=64.00%
0% 52 53.15 54.3 57.75 63.5 | 54 t=8.70%
10% 51 52.2 53.4 57 63 53 t=8.33%
25% 51 52.25 53.5 57.25 63.5 | 53 t=8.00%
U=3 | 50% 51 52.25 53.5 57.25 63.5 | 56 t=20.00%
75% 54 55.25 56.5 60.25 66.5 | 61 t=28.00%
90% 56 57.3 58.6 62.5 69 67 t=42.31%
0% 52 53.2 54.4 58 64 53 1=4.17%
10% 51 52.25 53.5 57.25 63.5 | 52 t=4.00%
25% 51 52.3 53.6 57.5 64 52 t=3.85%
U=5 | 50% 52 53.3 54.6 58.5 65 54 t=7.69%
75% 55 56.25 57.5 61.25 67.5 | 60 t=20.00%
90% 58 59.3 60.6 64.5 71 66 t=30.77%

performance using the single pooling architecture.

In a future research, it would be useful to extend the use of the »ed point algorithm to evaluate
the performance measures of customers 0. Another interesting work i®tgeneralize the functioning
of single pooling in order to avoid the blocking e ect in the case of log service times for customers

0.
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'IP'abIe 2.16: Impact of U and V ( o = 0:8, o =02, W, = W, =0:2, % = 25 and
4 1=8, p=10%, p°= 20%)

Chaining SP Crossing value
U| V | t=0% t=5% t=10% t=25% t=50% (Chaining = SP)
1/3 50 51.45 52.9 57.25 64.5 | 55 t=17.24%
1/2 50 51.55 53.1 57.75 65.5 | 56 t=19.35%
1 1 49 50.7 52.4 57.5 66 56 t=20.58%
2 50 51.55 53.1 57.75 65.5 | 56 t=19.35%
3 50 51.45 52.9 57.25 64.5 | 55 t=17.24%
1/3 26 26.8 27.6 30 34 34 t=50.00%
1/2 31 32 33 36 41 37 t=30.00%
2 1 49 50.6 52.2 57 65 55 t=18.75%
2 71 72.6 74.2 79 87 76 t=15.63%
3 81 82.3 83.6 87.5 94 84 t=11.54%
1/3 20 20.55 21.1 22.75 255 | 26 t=54.55%
1/2 24 24.65 25.3 27.25 305 | 31 t=53.85%
3 1 50 51.4 52.8 57 64 53 t=10.71%
2 79 80.65 82.3 87.25 955 | 82 t=9.09%
3 93 94.35 95.7 99.75 106.5| 95 t=7.41%

Table 2.17: Impact ofp, p® U and V (W, =0:2fori =0; 4)

Scenarios Chaining SP | Crossing value

‘ 1 2 3 4 0 1 2 3 4 0 ‘ t=0% t=10% t=20% (Chaining=SP)
Scl| 1 2 3 4 5 005 01 02 05 1 78 83.5 89 87 16.36%
Sc2| 2 3 4 5 1 005 01 02 05 1 115 122.6 130.2 | 127 15.79%
Sc3| 1 2 3 4 5 1 05 02 01 0.05 179 184.9 190.8 | 184 8.47%
Sc4| 2 3 4 5 1 1 05 02 01 0.05 111 116.9 122.8 | 119 13.56%
Sc5/01 02 03 04 05 005 01 02 05 1 14 15 16 18 40.00%
Sc6(02 03 04 05 01 005 01 02 05 1 18 19.4 20.8 24 42.86%
Sc7|/01 02 03 04 05 1 05 02 01 0.0 26 26.7 27.4 30 57.14%
Sc8|02 03 04 05 01 1 05 02 01 0.0 18 18.7 19.4 21 42.86%
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Chapter 3

Optimal Email routing in a

Multi-Channel Call Center

Motivated by the call center practice, we consider a blended call aater with calls arriving over time
and an in nitely backlogged queue of emails. Calls have a hon-preempti priority over emails. The
call service is characterized by three successive stages wherethecond one is a break, i.e., there
is no required interaction between the customer and the agent for a nomegligible duration. This
leads to a new opportunity to e ciently split the agent time betwee n calls and emails.

We focus on the optimization of the email routing to agents. Our objective is to maximize
the throughput of emails subject to a constraint on the call waiting time. We develop a general
framework with two parameters for the email routing to agents. One paraméer controls the routing
between calls, and the other does the control inside a call. We thenative various structural results
with regard to the optimization problem and numerically illustrate th em. Various guidelines to call
center managers are provided. In particular, we prove for the optimal outing that all the time at

least one of the two email routing parameters has an extreme value.
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3.1 Introduction

Context and Motivation: Call centers are an important part of customers' service in many
organizations. New technology-driven innovations are multiplying the ogortunities to make more
e cient use of an agent as she can handle di erent types of work ow, including inbound calls, out-
bound calls, email, chat, etc. However, several issues on the managenef call center operations
emerged also as a result of advanced technology. In this chapter, we codsr a call center with
two types of jobs, inbound calls and emails. We focus on how to e cienty share the agent time
between the two types of jobs in order to improve the call center pgformance.

In practice, we encountered call center situations where inboundalls and emails are combined.
This is called blending The key distinction of problems with blending comes from the fact tat
emails are less urgent and can be inventoried to some extent, relativi® incoming calls. Therefore
managers are likely to give a strict priority to calls over emails. An important question here is what
should be the best way of routing of emails (or the non-urgent job) to ager, i.e., as a function of
the systems parameters and the service level constraints (on calls dremails) when should we ask
the agent to treat emails between the call conversations (Bernett et al 2002; Bhulai and Koole,
2003; Legros et al., 2013a). The email routing question is further important in tre context of
the call center applications we consider here. We encountered exarngs where a call conversation
between an agent and a customer contains aatural break We mean by this a time interval with
no interaction between the agent and the customer. During the convesation, the agent asks the
customer to do some necessary operations in her own (without the neeaf the agent availability).
After nishing those operations, the conversation between the two paties can start again. Inside
an underway conversation, the agent is then free to do another task if reded. For an e cient use
of the agent time, one would think about the routing of the less urgent jobs(emails) not only when
the system is empty of calls, but also during call conversations. In gactice, such a situation often

occurs. For example, an agent in an internet hotline call center asks tb customer to reboot her
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modem or her computer which may take some time where no interactionsan take place. It is also
often the case that a call center agent of an electricity supplier compay asks the customer for the
serial number of her electricity meter box. This box is usually bcated outside of the house and is
locked, so, the customer needs some non-negligible time to get theqred information. Another
example is that of commercial call centers with a nancial transaction during the call conversation.
After some time from the start of the call conversation, the customer is aked to do an online
payment on a website before coming back to the same agent in order to sh the conversation.
The online paiement needs that the customer looks for her credit cardthen she enters the credit
card numbers, then she goes through the automated safety check with hdank (using SMS, etc.),
which may take some minutes.

In the call center examples we encountered, the back o ce job could be&a con rmation email of
subscription or unsubscription, simple answers for various customerequests, etc. The answers to
these emails usually consist on a set of preprepared text blocks thahe agent should mix/adapt
with the customer case. Some minutes are then enough for the agent to hatedmore than one email.
For such situations, it is natural that call center managers think about using the opportunity to
route emails to an agent during the break of an undergoing call conversationand not only when
no calls are waiting in the queue. The main advantages ar@ an e cient use of the agent time and
therefore better call center performanceji) also, agents become less bored because of the diversity

of activities, and therefore they are kept from falling into a rut.

Main Contributions: In this chapter, we consider a call center with an in nite amount of out-
bound jobs (emails), and inbound jobs (calls) arriving over time for whch a break is required in the
middle of the call conversation. Given this type of call centers, we a interested in optimizing its
functioning by controlling how the resource is shared between théwo types of jobs. Calls are more

important than emails in the sense that calls request a quasi-instardneous answer (waiting time in
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the order of some minutes), however emails are more exible and couldddelayed for several tens
of hours. An appropriate functioning is therefore that the agent works on cals as long as there is
work to do for calls. The agent can then work on emails when she becomes é&drom calls, i.e.,
after a service completion when no calls are waiting in the queue, oruting the call conversation
break. We assume that calls have a non-preemptive priority over emés, which means that if a
call is busy with an email (that has started after a service completion orduring the break), the
agent will nish rst the email before turning to a new arrived call t o the queue or a call that
has accomplished the requested operations and wants to start again the coessation to nish her
service. The non-preemption priority rule is coherent with the operations in practice and also to
the call center literature (Bhulai and Koole, 2003; Deslauriers et al., 2007) It is not appropriate to
stop the service of a low priority customer, and it is not e cient for t he agent to stop the treatment
of an email or to group emails for a simultaneous treatment. In Appendix in fction B.1 we prove
that the simultaneous treatment is not an interesting opportunity in a call center.

We focus on the research question: when should the agent treat email€etween calls, or inside
a call conversation, or in both situations? Given the nature of the job types, a call center manager
in practice would be interested in maximizing the number of treated emails while respecting some
service level objective on the call waiting time (Bhulai and Koole, 2003) For calls, we are interested
in the steady-state performance measures in terms of the expectedaiting time, the probability
that the waiting time is less than a given threshold, and the probability of delay. We do not consider
the call waiting after the break because it is not perceived as badly ashiat before entering the rst
stage of service (less uncertainty for the customer because she hasebealready connected to an
agent). For emails, we are interested in the steady-state performancien terms of the throughput
of emails, i.e., the number of treated emails per unit of time.

The email routing problem considered in this chapter is a part of a coliboration between the

authors and the French consulting company Interact-iv.com. In the snall call center customers of
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Interact-iv.com, an e cient control of the agent time is important. For t hose call centers, Interact-
iv.com wants to implement, in the email dispatcher, an intelligent email routing algorithm adapted
to the call system load.

Despite its prevalence, there are no papers in the call center irature addressing such a ques-
tion. Most of the related papers only focus on the email routing betweercall conversations but
not inside a call conversation. To answer this question, we develop a geral framework with two
parameters for the email routing to agents. One parameter controls the roting between calls, and
the other does the control inside a call conversation. For the tractabiity of the analysis, we rst
focus on the single server case. We then discuss the extension oéthesults to the multi-server case.
For the single server modeling, we rst evaluate the performance meases using a Markov chain
analysis. Second, we propose an optimization method of the routing paramets for the problem of
maximizing the email throughput under a constraint on the service level of the call waiting time.
As a function of the system parameters (the server utilization, the enail service time, the severity
of the call service level constraint, etc.), we derive various guidaes to managers. In particular, we
prove for the optimal routing that all the time at least one of the two email routing parameters has
an extreme value. As detailed later in this chapter, an extreme value reans that the agent should
do all the time emails inside a call (or between calls) or not at all. In other cases the parameters
lead to randomized policies. We also solve our optimization problem by pyposing 4 particular
cases corresponding to the extreme values of the probabilistic parartexs. We analytically derive
the conditions under which one particular case would be preferred tanother one. The interest
from these particular cases is that they are easy to understand for agentand managers. Several
numerical experiments are used to illustrate the analysis. To simlify the Markov chain analysis,

we further propose an approximation method under the light-tra c regi me.

The rest of the chapter is organized as follows. In Section 3.2 we reviesome of the related
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literature. In Section 3.3, we describe the blended call center maeling and the optimization
problem. In Section 3.4, we develop a method based on the analysis of Markahains in order
to derive the performance measures of interest for calls and for emailsin Section 3.5, we focus
on optimizing the email routing parameters. We also provide various nunerical illustrations and
discuss the results. In Section 3.6, we develop an approximation metid for the system performance
evaluation under the light-tra c regime. We also propose an approximation method to extend the
results to the multi-server case. Finally in Section 3.7, we prowde some concluding remarks and

directions for future research.

3.2 Literature Review

There are three related streams of literature to this chapter. The rst one deals with blended call
centers. The second one is the Markov chain analysis for queueing $gms with phase type service
time distributions. The third one is related to the cognitive analysis, or in other words the ability
for an agent to treat and switch between di erent job types.

The literature on blended call centers consists on developing pesfmance evaluation and optimal
blending policies. Deslauriers et al. (2007) develop a Markov chain fotte modeling of a Bell Canada
blended call center with inbound and outbound calls. The performancemeasures of interest are
the rate of outbound calls and the waiting time of inbound calls. Through smulation experiments
they prove the e ciency of their Markov chain model to re ect real ity. Brandt and Brandt (1999)
develop an approximation method to evaluate the performance of a call cear model with impatient
inbound calls and in nitely patient outbound calls of lower priority t han the inbound tra c. Bhulai
and Koole (2003) consider a similar model to the one analyzed in this chapteexpect that the call
service is done in a single stage without a possible break. The modebmsists on inbound and
outbound jobs where the inbound jobs have a non-preemptive priorityover the outbound ones. For

the special case of identically distributed service times for théwo jobs, they optimize the outbound
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jobs routing subject to a constraint on the expected waiting time of nbound jobs. Gans and Zhou
(2003a) study a call center with two job types where one of the jobs is an innitely backlogged
gueue. They develop a routing policy consisting on the reservation oervers in order to maximize
the throughput on the jobs of the in nitely backlogged queue. Armony and Maglaras (2004a)
analyze a similar model with a callback option for incoming customers. Tie customer behavior
is captured through a probabilistic choice model. Other reference include (Bernett et al., 2002;
Keblis and Chen, 2006; Pichitlamken et al., 2003).

The analysis in this chapter is also related to the analysis of queuein systems with phase type
service time distributions. We model the call service time thiough three successive exponentially
distributed stages, where the second stage may also overlap with theervice of one or several emails
with an exponential time duration for each. The performance evaluation of sich systems involves
the stationary analysis of Markov chains and is usually addressed usingumerical methods. We refer
the reader to Kleinrock (1975) for simple models with Erlang serviceime distributions. For more
complex systems, see Neuts (1982); Sze (1984); Bolotin (1994); Brown et al. (2005)u&and Zipkin
(2008). Our approach to derive the performance measures is based on rst deing the stationary
system state probabilities for two-dimension and semi-in nite continuous time Markov chains. One
may nd in the literature three methods for solving such models. The rst one is to truncate the
state space, see for example Seelen (1986) and Keilson et al. (1987). The secamethod is called
spectral expansion (Daigle and Lucantoni, 1991; Mitrani and Chakka, 1995; Choudhuryet al.,
1995). It is based on expressing the invariant vector of the process in tms of the eigenvalues and
the eigenvectors of a matrix polynomial. The third one is the matrix-geonetric method, see Neuts
(1981). The approach relies on determining the minimal positive solutionof a non-linear matrix
equation. The invariant vector is then expressed in terms of power®f itself. In our analysis, we
reduce the problem to solving cubic and quartic equations, for whichwe use the method of Cardan

and Ferrari (Gourdon, 1994).
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Finally, we brie y mention some studies on human multi-tasking, as it is the case for the agents
in our setting. Gladstones et al. (1989) show that a simultaneous treatmenbf tasks is not e cient
even with two easy tasks because of the possible interferences. dar models, we are not considering
successive tasks in the sense that an agent can not talk to a customer and #te same time treats
an email. More interestingly, Charron and Koechlin (2010) studied the cagcity of the frontal lobe
to deal with di erent tasks by alternation (as here for calls and emails). They develop the notion of
branching: capacity of the brain to remember information while doing something ése. They show
that the number of tasks done alternatively has to be limited to two to avoid loss of information.
Dux et al. (2009) showed that training and experience can improve multitasking performance.
The risk from alternating between two tasks is the loss of e ciency because of switching times.
An important aspect to avoid ine ciency as pointed out by Dux et al. (2009) and Charron and
Koechlin (2010) is that the alternation should be at most between two tasksquite dierent in

nature (like inbound and outbound jobs).

3.3 Problem Description and Modeling

For tractability and a better understanding of the results, we rst focus on a single server queueing
model. We then extend the analysis to the multi-server case in Sgion 3.6.2 using simulation.
We consider a single server queue with two types of jobs: calls and exifs. The arrival process
of customers is assumed to be Poisson with mean arrival rate. We assume to have an in nite
amount of emails that are waiting to be treated in a dedicated rst come, rst served (FCFS) queue
with an in nite capacity. One can think of a call center that stores a su ciently large number of
emails of a given day and handles them the next one.

Upon arrival, a call is immediately handled by the agent, if available. If not, the call waits for
service in an in nite FCFS dedicated queue. Calls have a non-premptive priority over emails. This

means that the idle agent deals with a call rst (the rstin line). If the queue of calls is empty,
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this agent can handle an email (the rstin line) from the queue of emails Non-preemption priority
is a natural assumption for our application. An agents in practice prefers b nish answering an
underway email rather than starting it over later on. This is also preferred from an e ciency
perspective. We assume in our models that there is no call abandonmeor retrial.

As mentioned in Section 3.1, we consider call center applications wherthe communication
between the agent and the customer includes a break (the customer ds not need the agent
availability). We model the service time of a call by 3 successivestages. The rst stage is a
conversation between the two parties. The second stage is the breakgi, no interactions between
the two parties. The third and nal step is a again a conversation betweea the two parties. The
service completion occurs as soon as the third stage nishes. We moldeach stage duration as an
exponentially distributed random variable. The service rates of the rst, second and third stages
are denoted by 1, 2 and 3, respectively. This Markovian assumption, which is common in
modeling in service operations, is reasonable for systems with higresvice time variability where
service times are typically small but there are occasionally long serce times. An agent handle
an email within one single step without interruption. The time durat ion of an email treatment is
random and assumed to be exponentially distributed with rate g.

We are interested in an e cient use of the agent time between calls ancemails. More concretely,
we want to answer the question when should we treat emails for the follwing optimization problem

8

< Maximize the throughput of emails
(3.1)

subject to a service level constraint on the call waiting time in the queue

To solve Problem (3.1), we propose a general model for the routing of email® the agent.
It is refereed to asprobabilistic model or Model PM and is described below. Recall that the call
center has an in nite number of emails. Then de ning the routing of emails consists of determining
whether or not to start an email each time the agent becomes idle inside eall conversation, or after

a call service completion with no waiting calls in the queue. Note thatwhen the agent becomes idle
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during the second service stage of a currently served call, she caminstart to serve a new waiting
call from the queue, if any. Such an overlap between two or more di erat call treatments would

necessarily disturb the agent, which leads to errors and work ine ciency (Gladstones et al., 1989).

Probabilistic Model (Model PM): We distinguish the two situations when the agent is available
to handle emails between two call conversations, or inside a call conkgation.

Between two calls just after a call service completion (as soon as the third stage nishg) and no
waiting calls are in the queue, the agent treats one or more emails with mbability p (independently
of any other event), or does not work on emails at all with probability 1 p. In the latter case, the
agent simply remains idle and waits for a new call arrival to handle it. In the former case (with
probability p), she selects a rst email to work on. After nishing the treatment of this email, there
are two cases: either a new call has already arrived and it is now waitingh the queue, or the queue
of calls is still empty. If a call has arrived, the agent handles that call If not, she selects another
email, and so on. At some point in time, a new call would arrive while theagent is working on an
email. The agent will then handle the call as soon as she nishes the emareatment.

Inside a call: Just after the end of the rst stage of an underway call service (regartess wether there
are other waiting calls in the queue or not), the agent treats one or more emés with probability g
(independently of any other event), or does not work on emails at all withprobability 1 g. In the
latter case, the agent simply remain idle and waits for the currently £rved customer to nish her
operations on her own (corresponding to the second call service stagee., the agent break). As
soon as the customer nishes on herself her second service stage, #igent starts the third and last
service stage. In the former case (with probabilityq), she selects a rst email to work on. After
nishing the treatment of this email, there are two cases: either the currently served customer has
already nished her second service stage, or not yet. If she does, thagent starts the third stage of

the customer call service. If not, she selects another email, and so o\t some point in time, the
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Table 3.1: Particular cases of Model PM

Model | Description

Model 1 | p= q=0, no treatment of emails

Model 2 | p=1 and q= 0, systematic treatment of emails only between two calls

Model 3 | p=0 and q= 1, systematic treatment of emails only during the break

Model 4 | p= q= 1, systematic treatment of emails between two calls and during the beak

currently served call would nish her second service while the aget is working on an email. The
agent will then handle the call as soon as she nishes the the email treatent.

We further consider next 4 particular cases of Model PM as shown in Tale 3.1. Although
these models might appear to be too restrictive to solve Problem (), we show later their merit
in Section 3.5.2 when we focus on the optimization op and g in Model PM. Moreover, they have
the advantage of being easy to implement in practice, easy to understahby managers, and easy
to follows by agents. Note that in Model 1, the throughput of emails is zero. The interest from
Model 1 is in the extreme case of a very high workload of calls or a very ragctive constraint on

the call waiting time.

3.4 Performance Analysis

In this section we provide an exact method to characterize the call witing time in the queue
and the email throughput for Model PM (Section 3.4.1) and its extreme case (Section 3.4.2).
Our approach consists on using a Markov chain model to describe the stem states and compute
their steady-state probabilities. The computation of some of the steadystate probabilities involves
the resolution of cubic (third degree) or quartic (fourth degree) equations for which we use the

Cardan-Ferrari method.

3.4.1 Model PM

Let us de ne the random processf (x(t);y(t));t 0g where x(t) and y(t) denote the state of the

agent and the number of waiting calls in the queue at a given timet 0, respectively. We have
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y(t) 20;1;2;:::9, fort 0. The possible values ofk(t) (corresponding to the possible states of
the agent), fort 0, are

- \Agent working on the rst stage of a call service" denoted by x(t) = A,

- \Idle agent that is waiting for the call to nish her second stage of service" denoted by x(t) = B,

- \Agent working on an email while an underway call has already nished her ®cond stage of
service and is waiting for the agent to start her third stage of service"denoted by x(t) = B

- \Agent working on the third stage of a call service" denoted by x(t) = C,

- \Agent working on an email between two call conversations" denoted byx(t) = M,

- \Agent idle between two call conversations" denoted byx(t) = 0.

Since call inter-arrival times, call service times in each stage, anémail service times are exponen-

tially distributed, f(x(t);y(t));t 0Ogis a Markov chain (Figure 3.1).

Figure 3.1: Markov chain for Model PM

For ease of exposition, we denote byPy the probability to be in state (0;0), and forn 0
we denote byay,, by, B, ¢, and m, the probabilities to be in state (A;n), (B;n), (B%n), (C;n)
and (M;n), respectively. We also dene ; = — fori 2f0;1;2;3g. In Proposition 2, we give the
probability of delay of a call (probability of waiting) denoted by Pp and the throughput of emails

denoted by T. Note that the stability condition of Model PM is < % + il + iz + %
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Proposition 2  For Model PM, we have

1 p .
Po = 1+IOO( 1 2 Qo 3);
T= o 25 % )+ o 2+ o)
_01+pop 1 2 Qo 3 al 2 0

Proof. From the Markov chain of Model PM, we have

Co = 3(Po+ mo);

Ch= 3@ 1+by 1+ j+c 1+ mp);
forn 1. Then
Ch= 3 Po+ mg+ antbhh++cy + my (3.2)

. - . P
Since all system state probabilities sum up to 1, i.e.,Pg + ﬁ:o (an + by + lﬁ +c+my) =1,

Equation (3.2) becomes

Ch = 3 (3.3)

For the state (M; 0), we havep 3cp = m g, or equivalently ¢g = 3%. Therefore ¢y = 31'3—%. We

then may write

. P P P
From the Markov chain, we alsohave > _obh= 3 ;0C = 0 po0 P+(1 g » n=o b =
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P
1 ﬁzo an. Using Equation (3.3), we then obtain

bh= 22 B=qgo a= (3.5)

P
For state (M;n), n 1, we havem, = (1+°0)”m0. Therefore  m; = mg(1+ o). Using now
i=0

Equation (3.5) together with the normalization condition implies mg = ﬁ(l 1 2 3 Qo)

and Equation (3.4) then becomes

1T 1 2 9o 3):

A new call enters service immediately upon arrival, if and only if the system is in state (Q0).
Since the call arrival process is Poison, we use the PASTA property tstate that the steady-state
probabilities seen by a new call arrival coincide with those seen at an &itrary instant. Thus
Pob =1 Po,or

1 p
l+po

Pob=1 @ 1 2 3 Qgo)

| o P, P, . P, |
As for the email throughput, it is given by T = o(q o b+ o P+ iy mi), which may be

also written as T = ¢ 11++p°0p(1 1 2 3 Qo)+ q(z2+ o) . This nishes the proof of

the proposition. 2

Let us now de ne W, a random variable, as the call waiting time in the queue, and PWV <t)

as its cumulative distribution function (cdf) for t 0. Conditioning on a state seen by a new call
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arrival and averaging over all possibilities, we state using PASTA that

Xl
P(W<t)= Py 1+ (P(W <t (A;n)) a,+P(W <t (B;n)) by +P(W <t (B%n)) H)
n=0

+P(W <t (Cin)) ¢ +P(W <t (M;n)) mp): (3.6)

For n 0, the quantities P(W <t; (A;n)), P(W <t; (B;n)), P(W <t; (B%n)), P(W <t; (C;n))
and P(W <t; (M;n)) are the cdf of the conditional call waiting times in the queue, giventhat a
new arriving call nds the system in states (A;n), (B;n), (B%n), (C;n) and (M;n), respectively.
In the Markov chain of Model PM, these conditional random variables correspond to rst passage
times to state (0; 0) starting from the system state upon a new call arrival. They are convoldions of
independent exponential random variables with arbitrarily rates, not necessarily all equal (Erlang
random variable) or all distinct. Using the results in Amari and Misra (1997), we can explicitly
derive the expressions of PV < t; (A;n)), P(W <t; (B;n)), P(W <t; (B%n)), P(W <t; (C;n))
and P(W <t; (M;n)), for n 0, as shown in Section B.2 of the Appendix.

It remains now to compute the probabilities a,, b, tﬂ ¢, and my in n, forn 0. From the

Markov chain of Model PM, we can write the following iterative equations

X n 1= AXnp; (3.7)
forn 1, where 0 1
an
bn
Xn = étﬂg
Cn
Mn

66



for n 0 is the vector of probabilities to be computed and

0 1
1
1 + 2 0 0 0
A= 0 g2 + 0 0 0
0 1 92 0 + 3 0
0 0 0 0 + 0

The rst step to solve Equation (3.7) is to nd the eigenvalues of the matrix tA. These are
solutions of the equation det@A yl) = 0 with y as variable. One obvious eigenvalue is 1 4%)
(see the last line ofA), and the remaining ones are those of a 4 4 matrix (derived from 1A by

removing the last line and the last column) and they are solutions of thefollowing quadric equation

' (B at YPHB 42 3+ 2y (a4t 3+ 2+ )y+l+ ol @ =0; (3.8)
with y as variable, 1 = o+ 1+ 2+ 3, 2= 01+ 02+ 03+ 12+ 13+ 23 3=
012+ 013+t 023+ 123 and 4= o1 2 3 Since the constant term 1+ o(1 Q)
in Equation (3.8) is strictly positive, zero cannot be a solution of that equation. Then, %A is

invertible. Therefore the eigenvalues of A ! are solutions of

L+ o g)x* (a+ 3+ 2+ )X3+(@B 4+2 3+ )X (B 4+ 3x+ 42=0; (3.9

where x = % We solve the quadric Equation (3.9) using the Cardan-Ferrari method. In Section
B.4 of the Appendix, we describe the details of this method.

The explicit expressions of the probability components of the vectorX,, for n 0, can be de-
rived, however they are too cumbersome for Model PM. We go furtheim providing their expressions
for the extreme cases of Model PM in Section 3.4.2 and also using a ligta ¢ approximation in

Section 3.6.1. In all cases, an exact numerical method is straightforward aheasy to implement.
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Numerical illustrations are shown later in Section 3.5.

Let us now compute the expected call waiting time in Model PM, denotd by E(W). Consider
rst a model similar to Model PM except that emails can only be treated inside a call conversation.
We denote this model by Model PM'. With a little thought, one can see that the expected call
waiting time in Model PM is that of Model PM' plus % This can be easily proven using the
memoryless property of the email service duration and sample path argunms. The main idea of
the proof is as follows. Consider each rst call of the busy periods of Mdel PM'. The same calls
arrive also at Model PM but not necessarily enter immediately servee as in Model PM'. Each one
of these calls in Model PM, will arrive either at a system that is empy of calls, or not. In the rst
case and with probability p, she will be delayed compared to Model PM' by the residual durationof
an email treatment (exponential with rate ). All the calls arriving after her (and seeing a system
non-empty of calls) will be delayed by the same amount of time. In the scond case, if the call
arrives at a system non-empty of calls, then this means that the prewius busy period of calls in
Model PM has been delayed by an amount of time corresponding to the rédual time of an email
treatment. Then this call and all of those who arrive after her and see agstem non-empty of calls
will be delayed with the same amount of time, and so on and so forth.

Let us now compute the expected waiting time in Model PM', denotedby E (W9. We use the
Pollaczeck-Kinchin result for an M/G/1 queue. From Pollaczeck (1930), we taveE (W9 = %
where cv is the coe cient of variation of the service distribution (its stand ard deviation over
its expected value) and is the equivalent workload. Because of the possibility to do emails
between calls, the random variable representing the service timduration, say S, can be written as
S= S+ S+ US+ Sz, where S, a random variable, follows an exponential distribution with rate

i, fori =0;::;3, and U follows a binomial distribution with parameter g. We denote byE (Z) and

V(Z) the expected ( rst moment) and variance of a given random variableZ. The rst moment
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of S is given by

E(S) = i+ i-}- g+ i;
1 2 0 3

and its variance can be written as (using the independence betwee® and S; fori 6 j 2 0;:::; 3g)

V(S)= V(S1) + V(S2) + V(USp) + V(Sg) = i2+ i2+ -+ iz;
1 2 3

Then

After some algebra, we obtain

(1+ 2+ 3)%+ %+ 2+ 3+2qo( ot 1+ 2+ 3),
21 (1% 2tqot+ 3) '

E(W9 =

which leads to

_p, (1* 2+ 3)%+ §+ 3+ Z+2qo( ot 1t 2% 3)
E(W) = —0+ @ (1% 2500+ 3) ; (3.10)

This closes the performance measure analysis of Model PM.

3.4.2 Extreme Cases

We consider the 4 extreme cases of Model PM; Models 1,...,4. To dege the expressions of the
email throughput, the call probability of delay, and the call expected waiting time, we simply apply
the analysis of Section 3.4.1 and state the results as shown in Table 3.2.

One can derive the cdf of the call waiting time PW < t) using Equation (3.6). Forn O,
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Table 3.2: Expressions ofl, E(W) and Pp for Models 1,...,4

| Model 1 | Model 2
T | 0 | o 1 2 3)
(1% 2+ 3)2%(1+ —z+ —37)
E(W) 2 (1 1 2l g2 %+ E(Wl)
Po | 1+ 2+ 3 \ 1
| Model 3 | Model 4
T | ol ot 2) \ ol 1 3
2+
(1% 2+ 3+ 0)2(1+ ﬁ)
E(W) PRI e -+ E(Ws)
Po | ot 1+ 2+ 3 | 1

the quantities P(W < t; (A;n)), P(W < t; (B;n)), P(W < t; (B%n)), P(W < t; (C;n)) and
P(W < t; (M;n)) can be derived using again the results of Amari and Misra (1997) as shown
in Section B.2 of the appendix. Fortunately, the computation of the probabilities an, by, B, ¢,
and m,, for n 0, simpli es further. In what follows, we avoid the matrix analysis (as developed
in Section 3.4.1) by providing for each model the expression of each one tife latter probabilities
as a function ofu,, whereu, = a, + by + q&’ + ¢y, for n 0. We then show thatu,, forn 0,
satis es a recurrent cubic or quartic linear equation that we solve uing the Cardan-Ferrari method.
Another method to compute P(W < t) is this case (service in three exponential stages) based on

the Dunford decomposition is developed in Section B.3 of the Appendix

Model 1: The Markov chain associated to Model 1 is given in Figure 3.2. For this mdel, we have
Uy =an+ bh+cy, forn O

From the Markov chain of Model 1, we may write c,( + 3)= c, 1+ 2B, forn 1, and
Ch = 3Un 1forn 1. Thisleads toly, = 2((1+ 3)un 1 3uUpn 2) for n 2. From the Markov
chain, we also may writeb,( + 2)= b, 1+ ia, forn 1. Combining the last two equations

yieldstoa, = 1((1+ 3) 2+ 3+1uy 1 (2(1+2 3)+ 3)uy 2+ 3up 3)forn 3. The

70



Figure 3.2: Markov chain for Model 1

equationu, = a, + b, + ¢, for n 0 is then equivalent to

Un+z = (1+ 1)1+ 2)(I+ 3) Lun+2 (1 2+ 13+ 23+2 12 3)Un+s1 + 1 2 3Un;

which leads to

Un+3 =( 1+ 2+ 3)Un+2  ( 2+2 3)Un+1 + 3Un; (3.11)

where 1= 1+ 2+ 3, 2= 12+ 13+ 2 3,and 3= ; » 3. The cubic equation associated
to the recurrent Equation (3.11) isx3=( 1+ 2+ 3)x® ( 2+2 3)Xx+ 3, with x as variable. It
remains now to apply the Cardan-Ferrari method in order computeu,, for n 0. The type of the

solutions depends on the discriminant of the cubic equation (see Setion B.4 of the Appendix).

If > 0, the cubic equation has one real solution denoted by, and two complex solutions
X2 and its conjugate. We denote byjx»,j the module of x, and its argument. Sinceu, is

real, it can be written as

Un = X7 + sjxpj"cogn ) + tjxzj"sin(n );

for n 0, where the parametersr;s;t 2 R. These parameters are easily computed using the

initial conditions given by ug, u; and us.
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If < 0, the cubic equation has three real solutions denoted byxi, X, and x3. Thus

Up = rx] + sxb + tx§;

for n 0, where again the parameters, s and t are computed from the initial conditions.

If =0, the cubic equation has a simple solution denoted by x; and a double one denoted

by x2. We then have

Up = IX] +(sn+ t)x3;

for n 0, and the real parametersr, s and t are again given by the initial conditions.

Model 2: The Markov chain associated to Model 2 is given in Figure 3.3. For this mdel, we have

Up = an+ by + ¢y, for n 0. Following the same reasoning as that for Model 1, we obtain

Figure 3.3: Markov chain for Model 2

Up+3 =[ 1+ 2+ 3luns2 [ 2+2 3lups1 + 3un + K 1+0 ; : (3.12)

with the constant K 2 R. Since Equation (3.12) is similar to Equation (3.11) in the sense that the

n
former has just an additional term proportional to ﬁ , We again use the solutions of Equation
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(3.11) to easily obtain those of Equation (3.12).

Model 3: The Markov chain associated to Model 3 is given in Figure 3.4. For this mdel, we have

Figure 3.4: Markov chain for Model 3

From the Markov chain of Model 3, we may write c,( + 3)= Ccp 1+ otﬂ forn 1, and
Ch = 3up 1forn 1. So,l0 = o1+ 3)upn 1 o 3uUn 2forn 2. We also have from the
Markov chain }( + o) = b9 ;+ b, forn 1. Therefore,b, = 2(1+ o)1+ 3)up 1
201+ o) 3uUn 2 2 0(l+ 3)uy 2+ 2 0 3up 3, forn 3. From a state B;n) forn 1, we

may write b,( + 2)= by 1+ ia5, which leads to

an= 11+ 2)(1+ o)A+ 3)un 1 11+ )L+ o) 3un 2 11+ 2) o1+ 3uy 2
+ 1(1+ 2) o3un 3 1200+ o)A+ 3un 2+ 1 21+ o) 3un 3+ 12 o1+ 3)un 3

12 0 3Un 4,
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forn 4. Fromu, = a, + b, + tﬁ + ¢, we then state that

Un+a =( o+ 1+ 2+ 3+ g1+ 02+ 03+t 12% 13+ 23+ 012
+ 013% 023+ 123% 0123)Un+3 (o01+ 02+ 03+ 12
+ 13+t 23+3(012% 013% 023+ 123)+3 01 2 3)Un+2

+(o012% 013% 023+ 123%+2 01 2 3)Un+1 0 1 2 3Up;

forn 0, or equivalently

Un+4=[ 1+ 2t 3+ 4]Un+3 [2+2 3+3 4]Un+2+[ 3+3 4]Un+1 4Un; (3-13)
for n 0, where 1 = o+ 1+ 2+ 3, 2= 01+ 02+ 03+ 12+ 13+ 23
3= g12% 013% 023*t 123and 4= o1 2 3. Inorder to compute u, we then

solve the associated quadric equation using the Cardan-Ferrari methw and the initial conditions

Ug; U1; Uz and us.

Model 4: The Markov chain associated to Model 4 is given in Figure 3.5. For this mdel, we have

Figure 3.5: Markov chain for Model 4
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Following the same reasoning as that for Model 3, we obtain

0
1+ ¢

Un+s =[ 1+ 2+ 3+ 4lunsz [ 242 3+3 4luns2 +[ 3+3 4lun+ 4up + K

(3.14)

with the constant K 2 R. Since Equation (3.14) is similar to Equation (3.13) in the sense that the
n

former has just an additional term proportional to ﬁ , We again use the solution of Equation

(3.13) to easily obtain those of Equation (3.14). This closes the characterizabin of the performance

measures for the special cases Models 1,...,4.

3.5 Comparison Analysis and Insights

We start in Section 3.5.1 by a comparison analysis between the extremeases Models 1,...,4. The
comparison is based on the optimization problem (3.1). We derive various stictural results and
properties for this comparison. In particular, we investigate the impact of the mean arrival rate
intensity of calls on the comparison between Models 1,...,4. One coulthink of a call center manager
that adjusts the job routing schema as a function of the call arriving woikload over the day. In
Section 3.5.2 we focus on the general case Model PM. We prove that the dptization of the
parameters of Model PM lead to extreme situations in the sense of a si@matic email treatment
of emails either between calls or inside a call conversation, which g&s an interest in practice for

Models 1,...,4.

3.5.1 Comparison between the Extreme Cases

We rst compare between Models 1,...,4 based on their performance iterms of the email through-
put, denoted by Ti,..., T4, respectively. It is obvious that Model 4 is the best and Model 1 isthe

worst (no emails at all). Let us now compare between Models 2 and 3. From Tdb 3.2 we have
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To= o1 1 2 zg)and T3 = o o+ 2). Thus T3 > T, is equivalent to

1
> 1, 1
2

wherel = L+ L+ 1+ L since the stability condition for Model 3is < , Model 3 is better
than Model 2 if

1

T, T < < (3.15)
2

Denoting the left term in Inequality (3.15) by R, the condition under which T3 > T is then

1
= < . .
R - < (3.16)

I, 1,142
0 1 3 2

From Inequality (3.16), we rst see that treating emails only inside a call conversation (Model
3) becomes better that treating them only between calls (Model 2) isikely the case for high arrival
workloads (in such a case, busy period durations are reduced). We alsge that%e > Qfor > 0,
% > 0 for o> 0, % > 0for ;> 0, and %f > 0 for 3> 0. This means that decreasing the
expected duration of the call service second stage €1,) relative to the expected durations of the
other call service stages or the email service duration & 1, 1= 3 and 1= o) increases the range of
arrival workloads where it is preferred to use Model 2 instead of Mode3. In other word, there is
no su cient time to treat emails inside the call conversation.
Comparison with a constraint on E(W)
As a function of the mean call arrival rate, we want to answer the question wen should we treat
emails (which model among Models 1 to 4 should a manger choose?) for thalowing problem

8

< Maximize T
(3.17)

subject to E(W) w ;
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where w is the service level for the expected waiting timew > 0. Let W;, a random variable,
denote the expected call waiting time in Modeli, i = 1;:::;4. It is clear that for some periods of
a working day with a very high call arrival rate , the manager is likely to choose Model 1 (no
emails), and for other periods with a very low , she is likely to choose Model 4 (emails between
calls and inside a call). However for intermediate values of , the optimal choice is not clear. This
is what we analytically analyze in what follows.

Under the condition of stability of Model i, E (W;) is continuous and strictly increasing in  (see

Table 3.1), fori = 1;:::;4. The constraint E(W;) w is then equivalent to y,fori=1;:4,
where
— 2w
1= > ; (318)
P P Py
2w 1 4 1 4 =
i=1 i=1 i=1 !
2w L
_ 5 .
2= 2 )
PR R R
2w L Lo+ Lo+
O =g i=1 ! =1 |
- 2w
3 - 2 )
R R R
2w 14 Lo+ 5
E E i=0 |
2w X
— 0
4= 2
R R R
2w 1 L+ L+ 5
° =0 ' i=0 i=0 |

For a given and under the condition of stability of Model i (i = 1;:::;4), the choice of Modeli
happens if i and Ti =max;y ..., - (Tj)- When 4, the choice is obviously for Model
4. When “pand > | fori=2;3;4 the only possibility is Model 1. Proposition 3 provides

the conditions under which an optimal choice of Model 2 or Model 3 may hapen.
Proposition 3  The following holds:

1. For < il + % + % it exists some values of for which Model 2 is optimal if and only if

2> 0.
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2
gor

3. We have ,< jsifandonlyif + <w < w , where

v
u
a4 11 1 4 X X 1 1.1
w=-t 5+ —+—+ - —+5 S+6 T =
2 5 3 2 1 0 i qetiej | 3 2 1
Proof. See Section C.2 of the appendix. 2

Using Equation (3.18), the condition in the rst statement of Proposition 3 may be rewritten

=
N

we< o o= =
0

as

(3.19)

.
The second inequality in Relation (3.19) impliesw < % Since at least the expected waiting time
in Model 2 is strictly higher than io (any new call has at least to wait for the residual time of
an email treatment), this second inequality is impossible. Roughly peaking, the condition for the
optimality of Model 2 (for some values of ) holds when the service level on the call waiting is
higher than the expected email service time.

In what follows, we numerically illustrate the analysis above. For vaious system parameters,

Figure 3.6 gives the optimal model choice as a function of the mean arrivalate of calls, . An
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intuitive reasoning of a manager would choose the ordering Model 4 (emisibetween calls and inside
a call), then 2 (emails only between calls), then 3 (emails only ingle a call), then 1 (no emails) as

increases.

i

—h—
-

@ o0=2, 1= 3=1, 2=3, w =1 (o) i=2fori=0;:;3,w =1

e
; v | -
: (i |
i | v b
- [ ' [
; P P

Sosk A . ' b ' :," ':}I

(C) 0=1, 1= 3=5 ,=0:8,w =5 (d) 0=08, 1= 3=10, »,=05,w =5

Figure 3.6: Comparison between Models 1 to 4 with a constraint ork (W)

The ordering Model 2 then Model 3 is not always appropriate, and some 8iations may require
to consider some counterintuitive ordering. For instance, Model 3$ better than Model 2 for small
values of if R 4 and 3 < ,, see Figure 3.6(c). In other words, this happens when the
constraint on E(W) is not too restrictive and when the expected second stage serviaguration is
long. Another more surprising ordering, as increases, is Model 2, then Model 3, then again Model
2 (see Figure 3.6(d)) which happens for system parameters such that; <R < 3< ».
Comparison with a constraint on P(W<AWT)

In the constraint of Problem (3.1), we want that the probability that a call waits less than a given
threshold, de ned asAWT is at least a given service level, de ned a§L, i.e., P(W <AWT ) SL.
Note that a special case of this constraint is that onPp, the call probability of waiting. The
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expressions involved in the analysis oP (W < AWT ) are quite complicate to allow an analytical
comparison between the models as we have done for a constraint &@{W). We have then conducted
a numerical comparison analysis (not totaly illustrated here). The mainqualitative conclusions are
similar to those for the case of a constraint onE (W). As increases, it is not always true as one
would intuitively expect that a manager should choose rst Model 2 and then at some point of
she shifts to Model 3 (Figure 3.7(a)). The optimal choice may change wh the system parameters

and we may have the ordering Model 3 then Model 2 (Figure 3.7(b)).

¥
)

‘N - ‘j_ 1
. * He—Kk—
(@ i=2fori=0;:;3and =80% (b) o=1, 1=5= 3 ,=0:8and =20%

Figure 3.7: Comparison between Models 1 to 4 with the constraint on P{V < 1))

3.5.2 Optimization of Model PM

In this section we focus on the general case, Model PM. We are intertesl in the optimization of
the parametersp and g in Model PM for Problem (3.1). Concretely, we want to nd the optimal
routing parameters of Model PM that allows the manager to maximize the enail throughput
while respecting a call service level constraint. Recall that thestability condition of Model PM is
< 9414141
0 1 2 3
The expression of the email throughputT for Model PM is given in Proposition 2. It is
straightforward to prove that for p;q 2 [0;1] the maximum of T (best situation) is reached for
p= q=1. The proof is then omitted. Also, the expected call waiting time of Model PM (given in
Equation (3.10)) is maximized (worst) for p = q = 1. Therefore in order to solve Problem (3.1),
one would be interested analyzing the sensitivity of T with respect to p and g. In Lemma 1 we
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prove a sensitivity result for T. The result will be used later in our analysis.

Lemma 1 We have @p> @qlf and only if 0< ¢ < 7, where

_ (P g 1 2 32 4> p 9@ 1 2 3) g+p (1+ 2% 3).
2(q p?+p) '

Proof. See Section B.6 of the appendix. 2

In what follows we address the question: starting fromp = g =1, in which direction should we

decreasel ? Should we decrease or q rst?

For p= q =1, we have |, = 3 p(1+ o+ 3)2+4(1 1 2 3) (1t 2% 3) . Let

us now prove (forp = q = 1) that =5 > (. From the one hand, proving /, > o is equivalent

to proving P (1+ 2+ 3)2+4(1 1 2 3) > 29+ ( 1+ 2+ 3)or equivalently (2,+
ol 1+ 2+ 3 (1 (1+ 2+ 3g)<O0oralso(o+1)( 0o (I (1+ 2+ 3) <0. From
the other hand, we have o+ 1 > 0. Also, the stability condition of Model 4 (Model PM with
p=q=1)is o+ 1+ 2+ 3<1.Then g<1 ( 1+ 2+ 3). Asa conclusion the inequality
"o > olistrue, for p= gq= 1. Using Lemma 1, this means that starting from p = q = 1, we
have %L > %E > 0. As a consequence, when we need to modify the values pfand q in order
to decrease the expected call waiting time (the constraint in Probém (3.1)), the maximum of T
is guarantied by rst decreasing q (the email throughput is less sensitive to the variation of g
than that of p). The question now is: which direction to use next? In other wordswhenp =1
and some value ofg such that 0 < g < 1, is it possible that it is better to decreasep instead of

g? The answer is no and the proof is as follows. Fop = 1, let us try to nd a value of q for
p

(1 g 1 2 3)32%+491 1 2 3) gl 1 2 3
29 0-

which we have™; . This is equivalent to

Thus, # 3+qo (I 1 2 3)(1+ o) > 0. This trinomial in g has two real solutions;

p P
| = -2 4(21: 2t o) and g = 20t A L2 oY) Obviously ¢ < 0. We

also haveq, > 1 because: provingp 1> 0 is equivalent to proving (2)+( 1+ 2+ 3) o+1>0.
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The discriminant of this latter trinomial in ¢ is negative and it is equal to (1+ 2+ 3)?> 4. So
@ > 1 forany o> 0. Therefore it is impossible to nd a value of g between 0 and 1 for which
0< %{f %L In conclusion starting from p = q= 1, when we need to change the values gb and
g, the best direction to maximize T is to rst decrease g until g =0 and only then start to decrease
p from p = 1.

Consider now Problem (3.1) with a constraint on E(W). From the one hand, the constraint

E(W) w implies

b, (ot 2+ 3)°+ §+ 5+ 3+2qo0( ot 1+ 2+ 3)
0 21 (1+ 2+qo+ 3)

for p; g2 [0;1], or equivalently

21 1 2 3w p=q (1+ 2+ 32 % 2 2
20( 0+t 1+ 2+ 3+ (W p=y))

q : (3.20)

for p;q2 [0; 1]. From the other hand, the condition in Lemma 1, 0< o< 7, iS equivalent to

1 (1+ 2+ 3)1+ o). 1 o 0
+ + ; 3.21
o1+ o) 1+ op P (3.21)

g<

for p;q2 [0; 1]. Let us denote the right hand sides of Inequalities (3.20) and (3.21) by théunctions
in p2 [0; 1] f (p) and g(p), respectively. lllustrations of these functions are given in Figue 3.8.

In what follows we prove an interesting result on the optimal values ofp and g. Consider for
example Figure 3.8(a) and assume that the agent is in a situation such thatg; g belongs to Zone
1 or 2. Then the constraint on E(W) is respected, butT can be improved. Using Lemma 1, we
should increasep rst ( g rst) for Zone 1 (Zone 2). From Figure 3.8(a), we also see that we should
decreasep rst ( g rst) for Zone 3 (Zone 4). It is clear that the optimal couple ( p; g will be on

the curve of f . Moreover, we prove in Theorem 1 that the optimal point is such thatp 2 f 0; 1g or
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(¢ =0:1, 0=0:1, 1= 2= 3=2,w =5

Figure 3.8: Behavior off (p) and g(p)
g2f0;1g.

Theorem 1 For p;q2 [0; 1], the optimal values ofp and g of the optimization problem

8

< Maximize T
(3.22)
subject toE(W) w ;

are always extreme values (0 or 1) for at leasp or g.

Proof. We want to maximize the email throughput T (p; g while respecting a constraint on the
expected call waiting time (E(W)(p;9 w ). We use the method of Lagrange multipliers to
nd the optimal point ( p;qg. Let us denote the Lagrange multiplier by ( is real). Then

and the extremum (p;g) of our optimization problem are solutions of the set of the 3 equations

D(T+ (W w))=0, where D is the di erential applicator in , p and g. These 3 equations are

@+ W w)_ (@ 1 2 g0 I+ o, 1 _,
0

@p 0 1+ p o)
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@+ W w)_ (@ po

@q “1+po
. 1 0@Co* 1+ 2+ )@ (1t ot H( 1t 2+ 3P+ F+ 3+ %=0'
2 L (1% 2% 3+Q0)? '
@+ W w)_ p, (1% 2% g)°+ F+ 5+ 5+2qo( o+ 1+ 2+ 3) ..

@ 0 21 (1+ 2+qo+ 3)

Solving this set of 3 equations leads to two couples of solutiong(; g1) and (p2; ). The expressions
of these solutions are too long (see for example Section B.7 of the apperdor the expression of
), but we show for any case of system parameters; (i = 0;:::; 3) under the condition of stability

that all the values of p1, a1, p2 and ¢ are out of the interval [0; 1]. We then deduce for the optimal
values ofp and g that at least one them has an extremum value (0 or 1). This nishes the prmf of

the theorem. 2

(@ o0=2, 1=1= 3, 2=3

Figure 3.9: Optimal pand gwith w =1

Figure 3.9 provides a numerical illustration of Theorem 1. We observe as function of the
system parameters that at least one of the routing parameters is either @r 1. This gives the merit
to the study of the extreme cases Models 1,...,4. Moreover they areagy to implement and easy to
understand for both managers and agents. Note that the same observation holds ador Problem
(3.1) with a constraint on P(W < AWT ). This is based on several numerical examples (a rigorous
proof as that for E(W) is too complex to develop). An illustration is given in Figure 3.10.
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@ o0=2, 1= 3=1, =3 (b) i=2for i=0;:;3

Figure 3.10: Optimal p and q with P(W < 1)  80%)

3.6 Approximations

In this section, we develop two approximation methods. In Section 3.1 we focus on a light-
tra ¢ approximation for Model PM in the case of a single server. In Section 3.6.2, we propose an

approximation method to extend our email routing optimization problem to the multi-server case.

3.6.1 Light-Tra c Approximation for Model PM

Although the analysis in Section 3.4.1 provides an exact method to derie the system steady-state
probabilities of Model PM, the expressions involved are cumbersomeln this section, we develop
an approximate analysis that allows to obtain simpler expressions for tbse quantities under the
light-tra c regime.

Under the light-tra c regime, we have ; << 1 and alsoﬁ " 4, fori =0;::;3. Equation

(3.9) can be then rewritten asx*  1x3+ 2x?2 3x+ 4=0, or equivalently

(x o)(x 1)(x 2(x 3)=0:

85



Also, the matrix 1A becomes

0 1
1=, 0 0 0 0
1= 1 = 0 0 0
Az g o =2 1==o¢ 0 0&;
0 1 Q=2 1=¢ 1=3 O
0 0 0 0 ZFo
which easily leads to 0 1
1 0 0 0 O
2 2 0 0 O
A *=Bqo qo o 0 O&:
3 3 3 0
0O 0 0 0 o

The computation of the steady-state probabilities simpli es as follows. We havePyo =1 p, mg = p,

a= 1,0= 2 B=qgoandc = 3. Using Equation (3.7), we obtain a, = 2*1, forn 0.

P
Also, by = a5, 1+ 2B, 1 forn 1. Therefore, if 1 6 »,, we haveb, = > '{ 2 k =
k=0
n+1 n+1
p2—i—forn 0, andif ;= » wehavely = (n+1) " forn 0. From Equation

(3.7), we may write bz = goanh 1+ 9oy 1+ otﬂ 1, for n 1. Thusif 1 6 5, we have

n+1 n+1
bﬂ = q 02271+ otﬁ 1, forn 1. Therefore if { 6  fori 6 j 2 f0;1;,29 we have

1

0 -
b= 52— ) i (1§, or equivalently

n+2 n+2 n+2

0 _ 0 1 2 .
hﬁ_qo(o (o 2)+(1 (1 2)+(2 (2 1)

forn 0.1f = jand ;6 | fordistinctive i;j;k 2f0;1;2g, then

0 (n+2) Mt R
= + ;
% =do ik (k)2
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forn O0.If 1= 2= ¢, we have

0 + 1 2
t%:qgl(n-'- );n+ ),

forn 0. From Equation (3.7), we also may writech, = 3(an 1+ by 1+ tﬂ 1+ Cyg), forn 1

Thus,if 6 fori6j 2f0;1;2; 39, we have

2(0 ol Q) N 201 ok Q)
(o 2o 2o 3 (1 o(1 201 3)

2202 ol Q) N 203 ol Q)
(2 o(2 (2 3 (3 oz D3 2

Ch = 3(

+

);

for n 0. The expression ofc,, for n 0, can be also easily derived in closed form in the other
remaining cases for j and ; fori 6 j 2f0;1;2;3g. Finally, we deduce from Equation (3.7) that
mn = p g, for n 0. Because of the light-tra ¢ approximation in the above computations, th e
system steady-state probabilities do not sum up to one. We then normate them by dividing each
one of them by the summation of all the steady-state probabilities. In Tade 3.3 we evaluate the
light-tra ¢ approximation. The comparison of the approximate results w ith those from the exact
numerical analysis show that the approximation is appropriate under the light-tra c regime. Note
that the probabilities for n 4 are too close to zero for both the exact and the approximation

methods.

3.6.2 Multi-Server Case

In this section, we focus on the email routing problem for the multiserver case. The modeling is
the same as described in Section 3.3, expect that instead of one servérere ares identical, parallel
servers. As previously, we consider a call center manager that wants toptimize the email routing
as a function of the system parameters (Problem (3.1)). In other words, w want to either optimize

p and q for Model PM, or give the ordering of the extreme cases Models 1 to 4 ésier to use in
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Table 3.3: Validation of the light-tra ¢ approximation

-=28%, =0:2, -=20.83%, =0:1, =1, -=2.00%, =0:01
1= 2=5, 3= 0:2, 222, 323, o =4, i=2fori=0; ;3
p =10%, g=80% p=q9q=1 p=q=50%

| Exact Approximation | Exact Approximation | Exact Approximation

Po | 65.9406% 67.9873% 0,0000% 0,0000% 49,0025% 49.0093%
ay | 3.6157% 3.0217% 8,5896% 7,8955% 0,4962% 0.4901%
by | 3.4766% 3.0217% 4,0903% 3,9478% 0,4937% 0.4901%
B | 6.3211% 6.0433% 1,9953% 1,9739% 0,2456% 0.2450%
Co | 7.3267% 7.5541% 2,5745% 2,6318% 0,4900% 0.4901%

mo | 7.3267% 7.5541% 77,2358% 78,9551% | 49,0025% 49.0093%
a; | 0.3308% 0.1209% 1,2323% 0,7896% 0,0038% 0.0025%
b, | 0.4518% 0.2417% 0,7816% 0,5922% 0,0062% 0.0049%
B | 1.3961% 1.0878% 0,4299% 0,3454% 0,0043% 0.0037%
c1 | 2.1406% 1.9641% 0,6378% 0,5483% 0.0098% 0.0086%
m; | 0.6661% 0.7554% 1,8838% 1,9739% 0.2438% 0.2450%
a; | 0.0451% 0.0048% 0,1559% 0,0790% 0.0000% 0.0000%
b, | 0.0607% 0.0145% 0,1114% 0,0691% 0,0001% 0.0000%
B | 0.2374% 0.1378% 0,0648% 0,0432% 0.0000% 0.0000%
c; | 0.4380% 0.3414% 0,1042% 0,0758% 0,0001% 0.0001%
m, | 0.0606% 0.0755% 0,0459% 0,0493% 0,0012% 0.0012%
as | 0.0071% 0.0002% 0,0195% 0,0079% 0.0000% 0.0000%
b; | 0.0091% 0.0008% 0,0146% 0,0074% 0.0000% 0.0000%
B | 0.0382% 0.0153% 0,0087% 0,0048% 0.0000% 0.0000%
c3 | 0.0787% 0.0499% 0,0146% 0,0089% 0.0000% 0.0000%
m3 | 0.0055% 0.0076% 0,0011% 0,0012% 0.0000% 0.0000%
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Table 3.4: Comparison between approximation and simulation

\ Interval of the call arrival rate

|s=10, 0=2, 1= 3=1, =3 [s=10, o= 1= 2= 3=2

Constraint on calls | Model | Simulation Approximation | Simulation  Approximation
Model 4| 0 3:.04 0 296 0 444 0 442

E(WW) 1 Model 3 | 3:04 3:74 296 297 4:44 4:48 442 445

Model 2 | 3:04 3:74 297 3:66 4:48 6:05 445 6:.04

Model 1 | 3:74 3:85 366 3:69 6:05 6:07 604 6:06
Model 4 0 12 0 11 0 13 0 12
PW<1 08 |Model2| 1.2 19 1 17 1.3 20 12 1.8
Model 1| 1.9 23 17 21 20 25 18 24

practice and also e cient).

An exact analysis as that done for the single server case is too complex. Waropose an
approximation based on the single server results. It consists on reating the s servers by a single
super server. The service rates becomsg ¢ (for emails), s ; (rst stage of call service), s » (second
stage of call service),s 3 (third stage of call service). We have conducted an extensive simation
study in order to assess the quality of this approximation. Some of the amparison results between
approximation and simulation are given in Table 3.4.

In Table 3.4 we give as a function of the interval of the call arrival rate value the ordering of
Models 1 to 4 with respect to the optimization problem. The intervals are given using the single
server approximation and also using a combined simulation and optimizabn of the multi-server
system. The same intervals hold also when considering Model PM. Webserve from Table 3.4 that

the approximation provides an appropriate solution for the email routing optimization.

3.7 Conclusions

We considered a blended call center with calls and emails. The callesvice is characterized by
successive stages where one of them is a break for the agent in the setie# inside the conversation
there is no required interaction during a non-negligible time betveen the two parties. We addressed

an important question in the call center practice: how should managers rake use of this opportunity
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in order to better improve performance? We focused on the optimizabn of the email routing
given that calls have a non-preemptive priority over emails. Our obgctive was to maximize the
throughput of emails subject to a constraint on the call waiting time.

We developed a general framework (Model PM) with two probabilistic parameters for the email
routing to agents. One parameter controls the routing between calls, ad the other does the
control inside a call conversation. We have also considered 4 partical cases corresponding to the
extreme values of the probabilistic parameters. For these routing mdels, we have derived various
structural results with regard to the optimization problem. We have also numerically illustrated
and discussed the theoretical results in order to provide guideties to call center managers. In
particular, we proved for the optimal routing that all the time at least on e of the two email routing
parameters has an extreme value.

There are several avenues for future research. It would be interéiag to extend the structural
results to the multi-server case. It would also be useful but chdénging to extend the analysis to
cases with an additional channel, in particular the chat which is incrasingly used in call centers.
Using the chat channel, an agent may handle many customers at the same timevhich represent

an additional opportunity to e ciently use the agent time.
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Chapter 4

Adaptive Threshold Policies for

Multi-Channel Call Centers

In the context of multi-channel call centers with inbound and outbound calls, we consider a thresh-
old policy on the reservation of agents for the inbound calls. We study a gegral non-stationary
model where the call arrival follows a non-homogeneous Poisson proce§she optimization problem
consists on maximizing the throughput of outbound calls under a constrait on the waiting time of
inbound calls. We propose an e cient adaptive threshold policy easy to mplement in practice in
the Automatic Call Distribution (ACD). This scheduling policy is e valuated through a comparison
with the optimal performance measures found in the case of a constant stainary arrival rate, and
also a comparison with other intuitive adaptive threshold policies in the general non-stationary

case.
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4.1 Introduction

Call centers require a very accurate match of demand and supply. Thealay of the treatment of a
call, its waiting time, is usually not allowed to exceed 20 seconds. fius a very accurate prediction
of the demand is required. However, this can rarely be obtained, becae of the volatility of call
arrival patterns. Therefore there is often a mismatch between demad and the scheduled supply,
consisting of rostered call center employees (usually called ageftsMoreover, even if the demand
is accurately forecasted, a considerable overcapacity should be schded to be able to deal with
the random Poisson uctuations of the demand. Usually queueing models & used to quantify this
overcapacity, most often Erlang C.

To prevent idle overcapacity and to limit the necessity to have etremely accurate forecast
inbound calls are sometimes mixed with other types of customer contastwhich have a less strict
allowable delay, such as emails or outbound calls. This is calle¢call) blending. The amount of
capacity assigned to the other channels is supposed to adapt to the nung of inbound calls, giving
at the same time a good service level for the inbound calls and a good ageancy of the call center
agents.

Because of the strict waiting time requirement on inbound calls it s best to give them priority
over the other channels. To maximize agent productivity it would be best to assign an email to
every idle agent where there are no inbound calls in queue. This wodllead to a 100% productivity.
There are two objections against this policy: a 100% occupancy is not sustaable over a longer
period because of agent fatigue, and it would lead to long waiting times foinbound calls because
never an agent is waiting for an inbound call to arrive. For these reasons a ore sophisticated
assignment policy is required.

In Bhulai and Koole (2003) and Gans and Zhou (2003b) it is shown that the optimal asginment
policy is of the following form: outbound calls should only be schedul@ when there are no waiting

inbound calls and when the number of idle agents exceeds a certain thshold. Thus the problem of
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controlling our blended call center reduces to determining the ight threshold level. This threshold
however depends on all the parameters of the system. But these paranegs, especially the arrival
rate, are often hard to determine. This calls for a policy in which the threshold is adapted to
the current situation without using explicitly the parameters of t he system. In this chapter such
adaptive policies are studied, both for systems with a constant (but unknown) arrival rate and for
the more realistic situation of a uctuating arrival rate. The parameter that is used to update the
threshold is the service level up to that moment, a number which $ always available in call centers.
The overall objective is to reach a certain service level by the e of the day, while maximizing the

number of emails or outbound calls that are done.

We discuss the relevant literature. There is a rich literature onplanning and scheduling in call
centers, see Gans et al. (2003); Aksin et al. (2007). However, few papers fax on blending. The
general context of multi-channel call centers is described in Kool¢2013), Chapter 7.

Deslauriers et al. (2007) extend the earlier mentioned papers by havindi erent types of agents.
outbound calls are served only by blend agents, whereas inbound calls cédre served by either
inbound-only or blend agents. Inbound callers may balk or abandon. They esduate several per-
formance measures of interest, including the rate of outbound calls anthe proportion of inbound
calls waiting more than some xed number of seconds. A collection of contiuous-time Markov
chain (CTMC) models which capture many real-world characteristicswhile maintaining parsimony
that results in fast computation are presented. They discuss and exXpre the tradeo s between
model delity and e cacy and compare di erent CTMC models with a re alistic simulation model
of a Bell Canada call center.

Armony and Ward (2010) present an optimization problem; the objective is to minimize steady-
state expected customer wait time subject to a fairness constrainbn the workload division. They
show in such a problem, which is close to ours, that a threshold polic outperforms a common

routing policy used in call centers (that routes to the agent that has ben idle the longest).
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Milner and Olsen (2008) consider a call center with contract and non contratcustomers. They
explore the use to give priority to contract customers only in o peaks. They show that this choice
is a good one under classical assumptions (steady-states) and the samerfprmance measure as
ours and present also examples when it is not. This result is importansince we found an insight
arguing that the service level for inbound calls has to be very stricly respected during o peaks.

This chapter is organized as follows. Section 4.2 presents our model. e&ions 4.3 and 4.4
contain our results, rst for a constant arrival rate in Section 4.3 and then in Section 4.4 with a

uctuating arrival rate. We end with a short conclusion.

4.2 Model

We consider a call center modeled as a multi-server queuing syah with two types of jobs, fore-
ground jobs (inbound calls) and background jobs (outbound calls, emails, ). We use the terms
foreground jobs and calls (background jobs and emails) interchangeably. Tharrival process of calls
is assumed to be a non-homogeneous Poisson process with rat@), for t 0. Calls arrive at a
dedicated rst come, rst served (FCFS) queue with in nite capac ity. There is an in nite supply of
background jobs, waiting for treatment in a dedicated FCFS queue. Thee are s identical, parallel
servers (agents in call center parlance). Each agent can handle both tygeof jobs. We assume that
the service times of foreground and background jobs are exponentially disbuted with rates  and
0, respectively. Neither abandonment nor retrials are modeled.

Foreground jobs are more important than background ones in the sense that théormer request
a quasi-instantaneous answer (waiting time in the order of seconds or mutes), while the latter
are more exible and could be delayed for several (tens of) hours. The gbctive of the call center
manager over a working day is to maximize the email throughput while saisfying a constraint on
the call waiting time in the queue.

Since the model is transient, we can not de ne the waiting time of an abitrary customer as a
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unique random variable. There is a random number of served customersuding the working period

W,. We want that the expected proportion of calls that wait less than a predened threshold is

at least equal to , i.e., S E Fsll fWp g , for Oand 0 1. Note that we do not
n=

consider arriving customers at the end of the working period which an not be served.

We then aim to nd the best routing rules in terms of e ciency for th e considered problem and
easiness of implementation in call center software. We assume that peenption of jobs in service
is not allowed. This is a quite natural assumption. An agent usually preérs to nish answering
an underway email rather than starting it over later on. This is also preferred from an e ciency
perspective. Evidently, when the background jobs are outbound callsthen it is neither acceptable
to preempt.

For a similar model but with a constant arrival rate and equal service requirements for the two
job types, Bhulai and Koole (2003) prove that the optimal policy is a threshold policy with the
priority given to calls (some servers reserved for calls). Their rsult is mainly based on the fact that
it is optimal to handle calls as long as the queue of calls is not empty. For augeneral modeling, the
analysis is more complicated. Even for a constant arrival rate but di erent service requirements, the
optimal policy is hard to obtain, and might not be useful in practice (for software implementation
for example). For simplicity and usefulness of the results in pradce, we then restrict ourselves
to the case of threshold policies. Moreover, Bhulai and Koole (2003) numerally show, for more
general cases, that the appealing threshold policies are good approximahs of the optimal ones.
More concretely, the functioning of the call center under a threslld policy is as follows. Let us
denote the threshold byu, 0 u s. Upon arrival, a call is immediately handled by an available
agent, if any. If not, the call waits in the queue. When an agent becomes ig, she handles the
call at the head of the queue with calls, if any. If not, the agent may eitrer handle an email at

the head of the email queue, or she remains idle. If the number of idlagents (excluding her) is
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at least s u, then the agent in question handles an email. Otherwise, she remainidle. In other
words, there ares u agents that are reserved for callsu is the number of agents that are always
working.

In this chapter, we propose an adaptive threshold policy which adjuststhe threshold as a
function of the non-stationary arrival process of calls. We divide the working day into N identical
intervals, each with length . The total working duration inaday is L, L = N . At the beginning
of each intervali (i =1;:::;N), we de ne the threshold u;, 0 u; s, under which the job routing
policy works during interval i. Let T denote the expected throughput of emails over the whole
day, i.e., the ratio between the number of treated emails and.. Let also SL be the proportion, for
the whole day, of calls that have waited less than , SL = S 1g Isll fWh g. In summary, our

n=
optimization problem can be formulated as

8

< Maximize T
4.1)

subject to SL X

where the decision variables arey; with O  u; s, fori =1;:::;N. Itis clear that the best case
for calls is such thatu; = 0 for all i, which means that no email is treated andSL is maximized
(case of an M(t)/M/s with only calls). We therefore assume from now on that the parameters (t)

fort 0O, ands are such thatSL forui =0 (i =1;:5N).

4.3 Constant Arrival Rate

We consider a basic case with a constant arrival rate, (t) = fort 0 and a constant threshold,
u=ufori=1;:;Nand 0 u s. The purpose of the analysis in this section is to understand
the behavior of the performance measures as a function of the threshold order to build an e cient

method for the threshold adaptation rule (u; for i =1;:::;N) in the case of a non-constant arrival

rate. In Section 4.3.1 we propose a method to compute the performance rasures, then in Section
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4.3.2 we use them to provide a useful insight to construct our adaptie policy.

4.3.1 Performance Measures

In Section 4.3.1 we provide close form formula of the performance meass in the case of equal
service rates and study the form of these measures as a function of thareshold. Then in Section
4.3.1 we propose a numerical method to compute the performance measari the case of unequal
service rates. Since we consider a stationary model we can de ne a igme random variable for
the waiting time of an arbitrary customer W, and denote by P(W < ) the probability that an

arbitrary customer waits less than ( > 0).

Equal Service Rates

We consider the case = . First, we compute the performance measures of interest for calls and
emails for a given constant reservation threshold, denoted by, 0 u s. We then develop some
structural results that will be used in Section 4.3.2.

Let us de ne the stochastic process x(t);t  0g, wherex(t) 2 N is the number of jobs in service
plus the number of jobs in the queue of calls. Since = ¢, we need not distinguish between the
two job types in service. The procesd x(t);t Og is a birth-death process. The transition rate
from state x to state x 1 is minfx;sg , for x 1, and that from state x to state x +1 is
for x 0. Under the stability condition -, we denote bypy the steady-state probability to be in

state x 2 N, and by a the ratio —. In Theorem 2, we give the expression of the email throughput,

T(s;u; a), and that of the probability that the call waiting time is less than , SL = P(W < ).

Theorem 2 For 0 u s, we have

XU akyl a lul a XU akul as utly
T(s;u;a) = + u+ + ;
Ko (u+ k)! sl s a o1 (u+k 1! (s DY(s a)

(4.2)
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PW< )=1 C(s;u;ae ¢ ); (4.3)

with

as vul XY gkyr as Yul a
sli(1 a=9 _0(u+ k)! sl s a

C(s;u;a) = (4.4)

k

Proof. ForO0 x<u,wehavepy=0. ForO k s u,we havepy+x = (u"":—‘l‘(!)!pu. For k O,
we haveps:k = z—ﬁps. Since all probabilities sum up to one, we obtain

|
Iy
XU akyt as Yul a

k=O(U+ k)! sl s a

Pu = (4.5)

The email throughput can be seen as the overall throughput (of calls and euwils) minus the call

throughput. Thus

Xu 3
T(ssu;@)=  (U+rK)purktS  Psek
k=0 k=1
After some algebra, we deduce that
!
X% akul as u*lul

T(s;u;@)= py u+

Ltk D Ds @)

Note that the lower bound of T(s;u;a) is T(s;0;a) = 0, which corresponds to the case when all
servers are reserved to calls. As for the upper bound, it i§(s;s;a) = s , which corresponds
to the case of no server reservation for calls (the in nite amount of emds leads tos as a total
throughput for the two job types).

The call service level,P(W > ), is obtained using the PASTA property. We have P(W > )=
Ili Ps+nP(W > jx = n+ s), where P(W > jx = s+ n) is the conditional probability that the

n=0

waiting time of a new call exceeds , given that it nds all servers busy and n calls waiting ahead in
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the queue,n 0. It is easy to see that this conditional waiting time follows an Erlang dstribution

P
with n + 1 stages and a rate ofs per stage. Then,P(W > jx=s+n)= e s (Sk!)k, which

k=0
leads to
)4 an)@ S k
PW> )= psST] ( k')
n=0 k=0 ) |
X0 X (s ) a n
— i S
=ampe Kl s
k=0n=k
- p a n a k 1 . .
Observing that ) T T 5 T a= implies
n=
P(W> )= C(s;u;a)e © ) (4.6)
with
b
s uyl XU Skl S Uyl
C(s:u;a) = ps _ a “ul atul & ful a @7

1 a=s sli(1 a=y L, (u+K)! sl s a

k

Note that the upper bound of C(s; u; a) is C(s;s; @) = 1 (no server reservation for calls, then, any ar-

S Q S 1
riving call has to wait for service), and its lower bound isC(s;0; a) = 75,(1361:5) —(";‘(';, + 75,(1""6‘:5)
. oo KIS

(all servers are reserved to calls, which corresponds for calls to ¢hcase of an M/M/s queue with

no emails). This nishes the proof of the theorem. 2

In Section C.1 of the appendix, we prove some monotonicity results oftte performance measures
in the threshold. We prove that the email throughput is strictly in creasing and neither convex nor
concave inu, forO u s. However the end of the email throughput, fors 2 u sands 2,
is concave inu. The inbound service levelP(W < ) is strictly decreasing inu, forO u s.
We prove that it is concave in u, for the casesa < 1 and also fora u+1 (u<s). An extensive

numerical study for the remaining cases shows that the concavity $il holds.
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Unequal Service Rates

In this section we focus on the performance evaluation (email throughptuand call waiting time
distribution) for the case of unequal service rates, 6 4. In contrast to the case of equal service
rates, the performance expressions are here too cumbersome to alldhwe development of useful
structural results. The results of this section are however stil useful for the numerical experiments
in Section 4.3.2 in order to build the insights on the threshold policyfor the more general case with
a non-constant call arrival rate.

As in Bhulai and Koole (2003), our approach consists on using a Markov chain analysto derive
the steady-state probabilities of the system, from which the perfomance measures are characterized
thereafter. To simplify the presentation, we focus on the particdar caseu = s. The analysis for
the caseu = 0 is obvious, and that of the remaining cases, 0< u < s, is done similarly to the
caseu = s. It simply adds a nite number of additional equations but does not imp act the general
form of the steady-state probabilities. Consider the stochastic praessf (x(t);y(t));t  0g, where
x(t) is the number of waiting calls in the queue andy(t) is the number of emails being in service,
(x;y) 2 N2. This process is a Markov chain. Forx 0 andy 0, the transition rate from (x;y)
to(x+1;y)is . Forx 1landy 0, the transition rate from (x;y)to (x Ly)is(s y) . For
X landy 1 the transition rate from (x;y)to (x 1y 1)isy o. Fory 0, the transition
rate from (0;y) to (O;y +1)is (s y) . Under the stability condition .- < 1, we denote bypy.y

the steady-state probability that the system is in state (X;y).

Fory = sand x > 0, we havepxs( + S 0) = pPx 1s, then pys = " Pos. Using

+S o

X

Pos= Pos 1, We deduce thatpxs = — pos 1 forx 0. Fory=s 1andx> 0, we

+S o

may write ( + +(S 1) o)pxs 1= Px 1s 1+ Px+1:s 1+S oPx+1:s- The associated homogeneous

equation in the variable zis z2 ( + +(s 1) ¢)z+ =0, for z2 C. It has two solutions

denoted by z; and z, and are given byz; = Zl + +(s 1) o+ IO( + +(s 1) 9?2 4
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andz;= == + +(s 1) ¢ p( + +(s 1) ¢g)2 4 . Wededuce, forx 0, that

2

s 1= 1(z0)+ 2(z2) + :
Pxs 1= 1(z1) 2(22) 3 T3 s,

with 3= ﬁpo;S 1. From the boundariesx = 0 and x = 1, we obtain pps 1= 1+ 2

ﬁpo;s randpys 1= 1zt 222 ‘Z s s Pos 1, respectively, which implies

_2pos 2( +s(o )N+t Pos 1(z2 oS oSt S +2
(zz zn) ((o )s+ )

_2pos2( +s(o )+ Posa(zz oS oSt S +2z
(z2 z1) (o st )

Fory=k, 0 k<s,andx> 0we have
( +(s k) +k o)pxk = Px 1kt (s K)pxerk +(K+1) oPx+1ker: (4.8)
The homogeneous equation associated to Equation (4.8) is

(s Kz? ( +(s k) +koz+ =0;

with z as a variable, forz 2 C. It has two solutions denoted by z;.x and zp and are given by

zl;k=2(slk) w(s K *ko "(+(s K +KkoZ 46 K

Z= o t(s K tkot! ((s B TR A B

for 0 k <s. Because of the last term in the right hand side of Equation (4.8), one may wite,
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forO k sandx> 0,

><S X X
Pxk =  AikZy + Bikzay;
i=k

with z;.s and zo.s de ned as z;s =

= and z.s = 0, respectively, and Ajx;Bix 2 RforO k<s

andk i s. Using Equation (4.8), we can prove that

(s Kzg+( +(s k) +k o)z

Aik+1 = Ak k+1) ozZ, ;

for0 k<s andk<i s. Similarly, we have

(s Kz3+( +(s k) +k ozzi
(k+1) Ozg;i ’

Bik+1 = Bik

for0 k<s andk<i s. Fori= k, we can easily deriveAyx and By as a function of ppx and

p1k, for 0 k <s. The relation between p;.x and pox is given by

( +(s K)Jpok =(s K)pak+(k+1) oppksa +(s Kk D)pox 1;

for0 k <s. We also havezy;,p = 1 and z0 = 5. Since all probabilities sum up to one, we

obtain Ag.o = 0. In conclusion through the above analysis, we have characterized alltsady-state

probabilities, pix, fori 0and O k s. The email throughput T(;; o;S) may be written as
xR
T(:5 0:8)= o Kpik ;
k=1i=0

or equivalently

TGS 0i8)= + K obPok;
k=1
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fors 1. As for the call waiting performance, it is given by

X R _ _
PW> )= pik P(W > j(x;y) = (i;k));
k=1i=0

where P(W > j(x;y) = (i;k)) is the conditional probability that the waiting time of a new call
exceeds , given that it nds i emails in service,s i calls in service, andk calls waiting ahead in
the queue, forO i sandk 0. The computation of P(W > j(x;y)=(i;k)),for0 i sand
k O,isasfollows. Fork =0and 0 i s, the new call has to wait for a service completion of one
of the i emails, or one of thes i calls, so,P(W > j(x;y)=(i;0)=e @ ots )) Fork=1and
0 i s, the probability that the next service completion is that of an email is I()Jr'(isol) Thus,
the waiting time of the new call follows a hypoexponential distribution consisting of the summation
of two exponential random variables with ratesi ¢+(s i) and max(0;i 1) g+min(s;s i+1)
with probability M.Jr'(isol) and it follows an Erlang distribution with 2 phases andi o+ (s i)

as a rate per stage with probability 1 M.Jr'(isol) This leads to

POW > J06Y)= ()= (o

(i 1) og+(s i) )e (oxs D) (i g+(s i) )e (i Dorsi))
0

(s )

fras e LU Gox(s i) )

for O i s. One can continue in the same way to derive all the conditional waitingtime
probabilities for k > 1, which nishes the characterization of the performance measures (eail

throughput and call waiting time distribution) in the case of unequal service rates.

4.3.2 Construction of the Adaptative Threshold Policy

In this section, we use the previous results to nd an insight on howwe should adapt the threshold

as a function of the intensity of the call arrivals. The objective is to maximize the throughput
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of emails while reaching the constraint on the call waiting times for the whole day. We nd that
during the periods with low demand, the need of having a good seige level is more important
than during the periods with high demand. On the basis of this obseration, we build a method for

adapting the threshold. We then evaluate this method by comparing itwith the optimal threshold

policy.

Numerical Observations

For a given time interval long enough to reach the stationary regime, one caruse the results of
Section 4.3.1 to obtain the optimal threshold, denoted byu , for Problem (4.1). Consider now a
working day with two time intervals, each with a di erent call arri val rate, and on each of which
the stationary regime is reached. We want to nd the optimal couple of thresholds that answers
our optimization problem, where the call service level constraint isfor the whole day. We denote
the rst (second) time interval by 141 (12) and its arrival rate by 1 ( 2). Without loss of generality,
we consider cases where; 2.

In Table 4.1, we consider various scenarios of arrival rates, service rateand relative durations
between the two time intervals. We give the optimal threshold of eachinterval in isolation (i.e. the
highest threshold which veri es the service level constraint). They are denoted byu; and u, for I
and | ,, respectively. We also evaluate the couple of thresholds which an®ss Problem (4.1) on the
set of the two intervals. This couple is found by an exhaustive test ofall the possible values for the
couple (ui1,uz). We denote by (uz; up) this optimal couple. Remark that for this couple, Problem
(4.1) does not have to be answered on each interval but on the set of the twintervals. Finally, we
give the performance measures for each interval and for the set of the twimtervals for the couple
(ug;uz) .

We observe thatu, (respectively u,) is always higher or equal tou; (respectively lower or equal
to up) in the optimal couple (ug;uz) . An interesting insight here is that, while respecting the
global call service level, we should strictly respect the servickevel during the interval with a small
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Table 4.1: Optimal couples of thresholds ¢ = 10,

= 30 seconds, = 80%)

1 2 0 Iy I2 Up Uz | (Uusuz) | P(Wi< ) PW2< ) PW< )| T1 T2 T

1 1 0.2 02 50% 50% 8 8 (8,8) 84.04% 84.04% 84.04% | 0.758 0.758 0.758
1 1.3 02 02 50% 50% 8 6 (8,7) 84.04% 77.99% 80.62% | 0.758 0.401 0.580
05 15 0.2 0.2 50% 50% 9 (8,4) 96.81% 74.79% 80.30% | 1.169 0.055 0.611
1 1.3 02 02 67% 33% 8 6 (8,7) 84.04% 77.99% 81.66% | 0.758 0.401 0.639
1 1.3 02 02 80% 20% 8 6 (8,8) 84.04% 69.15% 80.39% | 0.758 0.552 0.711
05 15 0.2 02 90% 10% 9 (9,7) 88.19% 63.94% 82.13% | 1.350 0.277 1.243
1 1.5 0.2 0.2 50% 50% 8 (7,5) 90.92% 72.93% 80.13% | 0.604 0.111 0.357
1 1.5 0.2 1 50% 50% 10 (10,7) 89.34% 74.94% 80.70% | 5.191 0.961 3.076
1 1.5 0.2 1 80% 20% 10 (10,10) 89.34% 67.56% 83.40% | 5.191 2.908 4.734
1.3 14 0.2 1 50% 50% 9 8 (9,9) 83.51% 77.09% 80.18% | 2.863 2.440 2.652
1.3 14 0.2 1 80% 20% 9 8 (9,10) 83.51% 68.19% 80.26% | 2.863 3.621 3.014
1.3 1.4 1 0.2 50% 50% 9 9 (9,9) 88.63% 87.77% 88.18% | 1.616 1.598 1.601
1.3 1.4 1 0.2 80% 20% 9 9 (9,10) 88.63% 60.45% 82.10% | 1.616 1.794 1.742

arrival rate (1), and violate the constraint when the arrival rate is high (I,). The reason is related

to the sensitivity of the service level to an increase of the threlsold. When the workload increases

the sensitivity of the service level for a given threshold ( SL(u) = SL(u+1) SL(u)for0

rst increases and then decreases (except fon = s

be seen in Figure 4.1.

tltttdttd

u<s)

1, the sensitivity only decreases). This can

Figure 4.1: Evolution of the Sensitivity of the Service Level function of the Threshold and the

Workload (s = 10,

In practice the workload in call centers are usually higher than 80%.

= 30 seconds,

o=012)

low workload happens, the threshold would increase and reach its maximalalues U = s

If a guation with a

1 or

u = s). Since the last part of the curves { SL(u)j in function of the workload) and the whole

curve foru=s

1 are decreasing (see Figure 4.1) we mainly consider in practice situahs where
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the sensitivity of SL(u) is decreasing in the workload.
Proposition 4 proves that there is less waste for the service levelyhen increasing the threshold

in situations for which the sensitivity of the service level is dereasing in the workload.

Proposition 4 If 1< jand SL(u) is decreasing inthe workload then SL ,(u;)j j SL ,(u,)j.

Proof. If u; = u, then increasingu is less sensitive inSL,, than in SL;, since the sensitivity of SL
is decreasing in the workload. The other case isi; > u, becausea; < a. SinceSL is decreasing
and concave inu, SL;, is more sensitive to the increasing olu from u; than from u,. From u,,
SL,, is more sensitive to the increasing oti than SL,,, then SL, is less sensitive to the increasing

of u from u, than SL;, would be from uj;. 2

Yet the opposite seems to be more intuitive, since it would be hard @ compensate a very bad
service level during an interval with a high number of calls. Counteexamples can be found when
1 << . Forexample for 1 =0:1, =1, o= =0:2,s=10, I;=1,=50%, =80%, we

haveu; =9, u, =8 and (uz;uy) =(10;8).

Our Adaptive Threshold Policy (ATP)

We propose for Problem (4.1) an adaptive threshold policy which adjusts tle threshold as a function
of the call workload. The idea of the policy comes from the numerical obseations in Section
4.3.2. As mentioned in Section 4.2, the threshold is reevaluated at the begming of each interval i
(i =1;::;N). The threshold associated to intervali is denoted by u;. The global service level for
the whole day (all N intervals) is denoted by SL, and the global one from interval 1 to interval i
is denoted by SL;, fori =1;::;N.

If SL; is higher (lower) than at the beginning of an interval i (i = 2;:::;N) then the policy
increases (decreases) the threshold. To change the threshold, weeua real parameter denoted by
(i =1;::;N). The threshold u; is de ned as the closest integer toc;, fori =1;:::;N. Note that the
parameter ¢; is chosen to be real in order to smooth the change in the threshold;. We start with

106



ui=c =s. Fori 2, if we need to increase the threshold, then we take; = ¢ 1+1 ¢ 1=s If
not,then ¢, = ¢ 1 ¢ 1=s This policy is refereed to as ATP.

As the workload of calls decreases, ATP increases the threshold with aedreasing speed. This
decreasing speed allows a slow increase in the threshold and thervgs advantage to calls, which is
coherent with the insight of Section 4.3.2. The opposite is also true andaherent with the insight.
The advantages of ATP is that it is simple, easy to implement, and at the @me time e cient as

we will show later.

Evaluation of the Adaptative Threshold Policy

In this section, we evaluate the quality of the ATP policy by comparing it with the optimal one.

First we provide the optimal threshold policy. Because of the discete nature of the threshold, one
may intuitively see that the threshold should vary between two or more values. The reason is that
we need to satisfy exactly the constraint on calls in Problem (4.1) in orer to maximize the email
throughput. Both for cases = and ¢ 6 , Theorem 3 provides a weak condition under which

the optimal policy is a randomization of the threshold between two values.

Theorem 3 Consider0 uj;up s such that SL(uq) SL(uyp). If there exists 2 R for

which (uz;uz) 2 arg max T(u) + SL (u), then randomizing betweenu; and u, is optimal.
u

Proof. Let p 2 [0;1] be the parameter of randomization betweenu; and uy. Assume that we

can nd a couple (us;us) 6 (uz;u») and a parameter of randomization q 2 [0; 1] such that the

constraint on calls is also saturated andSL (u3) SL(ug). We have pT(up))+(1 p)T(up) +
pSL (up)+ (1 p)SL(uz) qT(ug)+(1 )T (us)+ gqSL(uz)+ (1 ) SL(us). Since pSL (u1)+
(1 p)SL(uz) = gSL(uz)+ (@ )SL(uq) = , we deduce thatpT(ui) + (1 p)T(up)

gT(u3)+(1 )T (ug). Then the couple (u1;u») is optimal, which completes the proof. 2

The randomization between two thresholds allows for the constraint on alls to be met exactly.
For our system with constant parameters, we believe that the randomizaibn is between two suc-
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Table 4.2: Comparison under steady-states assumption £15min)

Optimal ¢ Optimal T ATP T | Dierence
Scenario 1
( =4, = ¢=0:2,5s=28) 25.49 1.39 1.37 1.46%
Scenario 2
( =0:02, = ¢=0:2,5s=1) 0.13 0.02 0.02 0.00%
Scenario 3
( =18, = =0:2,5s=100) 93.91 1.65 1.58 4.43%
Scenario 4
( =4, =0:27, 90=0:15,s=28) 26.63 1.89 1.89 0.00%
Scenario 5
( =4, =0:17, 9g=1, s=28) 23.21 2.00 1.79 11.73%

cessive thresholds. Since the throughput is neither convex nor ceave it is di cult to rigorously

prove this result. However, if we denote byu (0 u s) the highest threshold that veri es

SL(u)> , we numerically checked that with = SIES :3 ;(L“(u)) (for 0 u <s), the expres-

sion T (u)+ SL(u) is strictly increasing from u =0to u = u , strictly decreasing fromu = u +1
tou=sandT(u)+ SL(u)=T(u +1)+ SL (u +1). Then for all the considered numerical
situations the optimal policy is a randomization between two adjacent vabes when 0 u < s.
When u = s, the optimal policy is to keep the threshold constant and equal tos.

In Table 4.2, we propose 5 representative scenarios with constant arrivabtes and compare the
optimal throughput with the one found with under ATP. A comprehensiv e numerical study can
be found in Section C.2 of the appendix. Although the ATP method is not ogimal, the di erence
with the optimum is quite small. This shows the advantage of ATP in the case of constant arrival
rates. Recall that our main purpose in this chapter is the analysis of thecase with a uctuating
arrival rate. In the next section, we consider the case of a uctuatingarrival rate and evaluate the

performance of ATP through a comparison with other intuitive methods.

4.4 Non-Constant Arrival Rates

In Section 4.4.1 we compare ATP with methods that use constant step s&s. Then in Section 4.4.2
we analyze the impact of the parameters on the choice of the method. In $&on 4.4.3 we propose

some other intuitive adaptive methods.
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