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Résumé

Les images et vidéos sont devenues omniprésentes dans notre monde, en raison

d’Internet et de la généralisation des appareils de capture à bas coût. Ce déluge de

données visuelles requiert le développement de méthodes permettant de les gérer et

de rendre leur exploitation possible pour des usages tant personnels que professionnels.

La compréhension automatique des images et vidéos permet de faciliter l’accès à ce type

de contenu au travers d’information de haut niveau, appartenant au langage humain.

Par exemple, une image peut être décrite par l’ensemble des objets qui y apparais-

sent, leur relations, et pour les vidéos par les actions des personnes qui s’y meuvent.

Il est préférable, voire nécessaire, d’obtenir cette annotation de manière automatique,

car l’annotation manuelle est limitée et coûteuse. Une autre contrainte est de pouvoir

obtenir cette annotation de manière efficace, afin de pouvoir traiter les gros volumes de

données générés par des ensembles importants d’utilisateurs.

La reconnaissance visuelle offre une variété d’applications dans plusieurs contextes, de

l’intelligence artificielle à la recherche d’information. La reconnaissance efficace des im-

ages et/ou de leur contenu peut être utilisée pour organiser des collections de photos,

pour identifier des lieux, rechercher des photos similaires, reconnaı̂tre des produits tels

que des CD ou du vin, d’effectuer des recherches ciblées dans des vidéos, ou de per-

mettre à des robots d’identifier des objets dans des contextes industriels. Un exemple

d’une application populaire et utilisée massivement est Google Goggles, disponible sur

téléphones mobiles pour la reconnaissance d’objets, de lieux, de code-bars, etc.

En vidéo, la reconnaissance et la localisation d’actions ou d’événements permet

d’assister les systèmes de vidéo-surveillance, l’analyse automatique de séquences

sportives, la recherche ciblée de lieux ou d’objets dans la vidéo, le résumé automatique,

ou encore la reconnaissance gestuelle dans des contextes d’interface homme-machine.

Plus largement, une meilleure compréhension du contenu des images et des vidéos peut

être vue comme un pas capital, voire un pré-requis, vers la reconnaissance intelligente de

l’environnement basée sur la vision, avec des applications en particulier sur l’interaction

homme-robot et la conduite automatique.
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Enhanced image and video representation for visual recognition

Motivation et objectifs

La compréhension du contenu visuel est le but fondamental de la vision par ordinateur.

Plusieurs tâches types participent à cet objectif. Chacune de ces tâches prises individu-

ellement est aussi associée à des applications.

En image, les tâches usuelles sont la recherche d’image, la classification d’objet, de

catégorie d’objets ou de scènes, la détection d’objet et la segmentation d’image. De

la même manière, on distingue en vidéo la reconnaissance de copies, la classification

d’action et la localisation (temporelle et/ou spatio-temporelle) de ces actions.

L’objectif de cette thèse est d’améliorer les représentations des images et des vidéos, dans

le but d’obtenir une reconnaissance visuelle élaborée, tant pour des entités spécifiques

que pour des catégories plus génériques. Les contributions de cette thèse portent, pour

l’essentiel, sur les méthodes de génération de représentations abstraites du contenu vi-

suel, à même d’améliorer l’état de l’art sur les tâches de reconnaissance suivantes :

• Recherche d’image : L’objectif de cette tâche est de retourner les images qui ressem-

blent le plus à une requête donnée, ou qui contiennent des objets ou lieux visuelle-

ment similaires. L’image requête est comparée efficacement aux images d’une

grande collection. Un score de similarité est produit qui permet d’ordonner les

images de la collection selon leur pertinence attendue. Un exemple est montré à la

figure 1(a).

• Classification d’image : La tâche vise à déterminer si une scène ou un objet d’un

certain type est présent dans une image. Un classifieur est appris par catégorie (ou

un classifieur multi-classe) afin d’estimer si l’image contient un objet de la classe

visée. La figure 1(b) illustre cette tâche. Sur cet exemple, le classifieur associé à la

classe ≪personne≫ doit retourner un bon score tandis que la classe ≪vache≫ doit

recevoir un score faible.

• Classification d’action en vidéo : De manière analogue à la classification d’image,

l’objectif est de déterminer si une action d’un certain type apparaı̂t ou non dans

une vidéo donnée, comme sur l’exemple de la figure 1(c).

• Localisation d’action en vidéos : Cette tâche vise à identifier et à localiser une action

d’intérêt. Elle s’apparente à la classification d’action, mais doit déterminer en plus

où et quand l’action apparaı̂t. La figure 1(c) est un exemple pour l’action ≪répondre

au téléphone≫, où l’action est localisée par une boı̂te englobante verte (où) et où la

flèche verte indique la localisation temporelle (quand).

La représentation des images et des vidéos est souvent très liée : si l’on exclut le canal au-

dio, les vidéos peuvent être vues comme des suites d’images, et il n’est donc pas étonnant

que de nombreuses méthodes ont été étendues à la vidéo après avoir été introduites en

image.

2 Resumé



Enhanced image and video representation for visual recognition

Systeme de 

recherche 

d'image 

Grande collection d'images  

Liste ordonnée des résultats 

. . . 

Image requête 

(a) Recherche d’image : un système type.

Personne :  présent 

Vélo :    présent 

Télévision :   présent 

… 

Vache :   absent 

Train :   absent 

… 

(b) Classification d’image : exemple pour la classification multi-classe.

Action: Répondre au téléphone 
Classification d'action 

Localisation d'action 

(c) Classification et localisation d’action : en haut, l’action ≪répondre au téléphone≫ est reconnue,

tandis qu’en bas elle est de plus localisée par une boı̂te englobante verte (elle représente en fait

une suite temporelle de boı̂tes englobantes, qui n’est pas illustrée ici). Remarquez que la sortie a

un nombre d’images plus faible, indiquant une restriction temporelle de la longueur de l’action.

Figure 1: Tâches de reconnaissance visuelle.
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Dans ce manuscrit, nous commençons par considérer le problème le plus élémentaire,

à savoir la recherche d’image, avant de considérer la classification d’image. Nous

traiterons ensuite le cas des vidéos, en proposant en particulier plusieurs contributions

visant à mieux exploiter le mouvement pour la classification d’action. Finalement, le

dernier chapitre s’intéresse à la localisation d’actions au sein de vidéos.

Défis

Quelle que soit la tâche visuelle abordée, un des principaux défis consiste à décrire le

contenu visuel de manière à ce que les caractéristiques importantes soient encodées

et permettent de discriminer le contenu d’intérêt du contenu non pertinent. Parmi les

autres étapes, on peut citer le besoin de méthodes d’appariement rapides ou de classifi-

cation. Ci-dessous, nous détaillons quelques points relatifs à la description du contenu,

principal objet de cette thèse.

Reconnaissance visuelle dans les images : De nombreux aspects rendent la recherche

d’image difficile. Ils peuvent être catégorisés en deux types :

• Les variations d’apparence : la robustesse aux changements d’apparence des ob-

jets est requise tant pour la recherche que pour la classification d’image. De nom-

breuses sources de variation existent pour un type ou une classe d’objets, telles que

les variations d’illumination, les changements d’échelle et de taille, les autres ob-

jets qui apparaissent dans les images, les changements de point de vue ou encore

les occultations.

• Rapidité et passage à l’échelle : La recherche d’images similaires au sein d’une très

grande base contenant des millions d’images est souvent associée à un contexte ap-

plicatif où les résultats doivent être présentés dans un délai très court à l’utilisateur.

Cela requiert des solutions très rapides, mais aussi très précises afin de limiter le

risque de retourner des faux positifs. L’efficacité est aussi critique pour la classi-

fication d’image, par exemple dans le cas d’une application de recherche par le

contenu sémantique à partir d’une requête textuelle. La classification d’images de-

vient coûteuse en ressources lorsque le nombre de classes devient important.

Reconnaissance d’actions dans les vidéos : Les variations d’apparence mentionnées ci-

dessus sont également présentes pour les tâches de reconnaissance d’action. Sur des pro-

priétés purement vidéos et liées à l’aspect temporel, mentionnons que les occultations

changent en fonction du temps, par exemple des piétons qui se croisent ou occultent

l’action d’intérêt pendant un certain laps de temps. Plus généralement, les changements

de point de vue (ou changements de plan), d’échelle, d’éclairage et de fond peuvent

apparaı̂tre au cours du temps. À cela s’ajoutent les mouvements de caméra, qui com-

plexifient généralement à la description des actions.

4 Resumé
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Enfin, dans un contexte de détection, l’espace de recherche requis pour la localisation

des actions est encore plus grand que dans un contexte de détection d’image, dans la

mesure où il s’agit de déterminer à la fois où et quand l’action d’intérêt apparaı̂t.

Les variations d’apparence au sein d’une classe d’objet ou d’action compliquent plus

encore la classification. Si les facteurs de variations mentionnés ci-dessus causent des

changements d’apparence, une difficulté encore plus grande vient de la variabilité au

sein d’une classe. Par exemple, l’une des difficultés inhérente à la classification d’actions

dans les vidéos est le fait que qu’il peut y avoir différentes manières d’opérer la même

action ou activité humaine. À l’inverse, des classes différentes peuvent avoir des ap-

parences similaires, comme deux races de chien, ou les actions ≪courir≫ et ≪marcher≫.

Contributions

Les contributions de cette thèse sont organisées en quatre chapitres, chacun traitant

d’une tâche de reconnaissance visuelle différente. Nous les résumons ci-dessous.

Recherche d’image (Chapitre 3). Ce chapitre présente une méthode de plongement de

Hamming asymétrique pour la recherche d’image à grande échelle à partir de descrip-

teurs locaux. La comparaison de deux descripteurs repose sur une mesure vecteur-à-

code, ce qui permet de limiter l’erreur de quantification associée à la requête par rapport

à la méthode de plongement de Hamming originale (symétrique). L’approche est utilisée

en combinaison avec une structure de fichier inversé qui lui offre une grande efficacité,

comparable à celle d’un système à base de sacs de mots.

La comparaison avec l’état de l’art est effectuée sur deux jeux de données, et montre

que l’approche proposée améliore la qualité de la recherche par rapport à la version

symétrique. Le compromis mémoire-qualité est evalué, et montre que la méthode est

particulièrement utile pour des signatures courtes, offrant une amélioration de 4% de

précision moyenne.

Classification d’image (Chapitre 4). Ce chapitre décrit un nouveau cadre de classifi-

cation d’image à partir d’appariement de descripteurs locaux. Plus précisément, nous

adaptons la méthode de plongement de Hamming, introduite initialement dans un con-

texte de recherche d’image, à un contexte de classification. La technique d’appariement

repose sur la comparaison rapide des signatures binaires associées aux descripteurs

locaux. Ces vecteurs binaires permettent de raffiner la recherche par rapport à une

méthode utilisant uniquement des mots visuels, ce qui limite le bruit de quantification.

Ensuite, afin de permettre l’utilisation de noyaux linéaires efficaces de type machine à

vecteur support, nous proposons un plongement des votes dans un espace de scores,

alimenté par les appariements produits par le plongement de Hamming.
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Des expériences effectuées sur les jeux d’évaluation PASCAL VOC’2007 et Caltech 256

montrent l’intérêt de notre approche, qui obtient de meilleurs résultats que toutes

les méthodes à base d’appariement de descripteurs locaux, et produit des résultats

compétitifs par rapport aux approches de l’état de l’art à base de techniques d’encodage.

Classification d’action (Chapitre 5). Plusieurs travaux récents sur la reconnaissance

d’action ont montré l’importance d’intégrer explicitement les caractéristiques de mouve-

ment dans la description des vidéos. Ce chapitre montre l’intérêt d’une décomposition

adéquate du mouvement visuel en un mouvement dominant et un mouvement résiduel,

c’est-à-dire essentiellement entre un mouvement de caméra et le mouvement des

éléments mobiles de la scène. Cette décomposition est utile tant lors de l’extraction de

trajectoires spatio-temporelles que pour le calcul des descripteurs associés au mouve-

ment, et offre un gain de performance conséquent pour la reconnaissance d’action.

Ensuite, nous introduisons un nouveau descripteur de mouvement, le descripteur DCS,

qui exploite les quantités scalaires différentielles de mouvement, à savoir les propriétés

de divergence, de vorticité et de cisaillement. Ces informations ne sont pas capturées par

les descripteurs de mouvement de l’état de l’art et notre descripteur apporte donc une

complémentarité qui, en combinaison avec les descripteurs usuels, améliore les résultats.

Finalement, pour la première fois, nous utilisons la méthode de codage VLAD initiale-

ment introduite en recherche d’image dans un contexte de reconnaissance d’action.

Ces trois contributions offrent des gains complémentaires et apportent un gain sub-

stantiel à l’état de l’art sur les jeux de données Hollywood 2, HMDB51 et Olympic Sports.

Localisation d’action (Chapitre 6). Ce chapitre considère le problème de la localisation

d’action, où l’objectif est de déterminer où et quand une action d’intérêt apparaı̂t dans la

vidéo. Nous introduisons une stratégie d’échantillonnage de volumes spatio-temporels,

sous la forme de séquences de boı̂tes englobantes 2D+t, appelées tubelettes. Par rapport

aux stratégies de l’état de l’art, cela réduit drastiquement le nombre d’hypothèses à tester

lors de la phase de classification des zones spatio-temporelles.

Notre méthode s’inspire d’une technique récente d’échantillonnage introduite en local-

isation d’image. Notre contribution ne se limite pas à l’adapter pour la reconnaissance

d’actions. D’une part, nous utilisons une partition de la vidéo en super-voxels. D’autre

part, nous introduisons un critère d’échantillonnage utilisant le mouvement et perme-

ttant d’identifier comment le mouvement lié à l’action dévie du mouvement du fond

associé à la caméra.

L’intérêt de notre approche est démontré par des expériences effectuées sur deux jeux

importants d’évaluation pour cette tâche, à savoir UCF Sports et MSR-II. Notre approche

améliore nettement l’état de l’art, tout en limitant la recherche des actions à une fraction

des séquences de boı̂tes englobantes possibles.

6 Resumé



Abstract

The objective of this work is to improve image and video representation for visual recog-

nition, where high level information such as objects contained in the images or actions

in the videos are automatically extracted. There are many visual recognition tasks that

can lead to better management of and systematic access to visual data. This manuscript,

specifically investigates (i) Image Search (for both image and textual query) and (ii) Ac-

tion Recognition (both classification and localization).

In image retrieval, images similar to the query image are searched from a large dataset,

typically with more than a million images. On this front, we propose an asymmetric

version of Hamming Embedding method, where the comparison of query and database

descriptors relies on a vector-to-binary code comparison. This limits the quantization

error on the query side while having a limited impact on efficiency. Then we consider

image search with textual query, i.e., image classification, where the task is to identify if

an image contains any instance of the queried category. Our contribution is to propose

a novel approach based on match kernel between images, more specifically based on

Hamming Embedding similarity. As a secondary contribution we present an effective

variant of the SIFT descriptor, which leads to a better classification accuracy.

Handling camera motion and using flow information is a crucial aspect of video rep-

resentation for action recognition. We improve action classification by proposing the

following methods: (i) dominant motion compensation, which generates improved tra-

jectories and better motion descriptors; (ii) a novel descriptor based on kinematic fea-

tures of flow, namely diversion, curl and shear. We depart from Bag-of-words and for the

first time in action recognition use other higher-order encoding, namely VLAD.

The last contribution and chapter is devoted to action localization. The objective is to de-

termine where and when the action of interest appears in the video. Most of the current

methods localize actions as a cuboid, while we do it spatio-temporally, i.e., as a sequence

of bounding boxes, which is more precise. We propose a selective sampling strategy to

produce 2D+t sequences of bounding boxes, which drastically reduces the candidate lo-

cations. Our sampling strategy advantageously exploits a criterion that takes in account

how motion related to actions deviates from the background motion.

7
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We thoroughly evaluated all the proposed methods on real world images and videos

from challenging benchmarks. Our methods outperform the previously published re-

lated state of the art and at least remain competitive with the subsequently proposed

methods.

8 Abstract



CHAPTER

ONE

Introduction

Visual data in form of images and videos have become ubiquitous, thanks to Internet and

improved accessibility to an exploding amount of video and image data, which in due, in

particular, to the proliferation of cheap digital cameras and smartphones. Be it a holiday

trip or a party or an event, loads of pictures are taken and instantly shared through social

networking sites such as Facebook, Flickr, Pinterest, Instagram etc. Recently Facebook

revealed that users have uploaded more than 250 billion photos to the site, and currently,

on an average 350 million photos are uploaded per day. Instagram in its 3rd year has

reached over 150 million users and 16 billion photos shared. A billion likes happen each

day on just Instagram, which gives an idea of how widely these images are viewed.

Video sharing sites are not lagging behind with over 60 hours of videos uploaded each

minute on YouTube. These are disseminated at an amazing rate: 700 YouTube videos

are shared on Twitter every minute and 500 years of YouTube videos are watched on

Facebook every day. The omnipresence of photos and videos on the internet is evident

from these statistics. This explosion of visual data naturally calls for methods to manage

and make it usable. Image and video understanding methods can make images and

videos searchable, explorable by extracting high-level information from them. It could

be recognizing objects or scenes contained in the images or actions performed in the

videos. This has to be based on visual content to avoid expensive and manual tagging.

It is also very important to do these visual recognition tasks efficiently, in order to deal

with the large volumes and to meet the user demands.

Visual recognition has a variety of potential applications with scope in areas of artificial

intelligence and information retrieval. Efficient recognition of image and its content can

be used for organizing photo collections, identification of places on maps, content-based

image search, finding similar products (e.g.Google Goggle), video data mining, object

identification for mobile robots. Video-based action recognition, event detection and lo-

cating actions and events can further assist in video surveillance, sports play analysis,

web-based video retrieval, video summarization, gesture-based human computer inter-

faces and vision-based intelligent environments. Better understanding of both images

and videos would advance towards human-robot interaction and assisted driving.

9
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1.1 Motivation and objectives

Understanding visual content of images and videos is the fundamental goal of Computer

Vision. Several tasks contribute and facilitate this goal, while being themselves useful

in various applications. In images, typical tasks are image retrieval, image (scene or

object) classification, object detection, image segmentation. Image retrieval or image

search aims at finding from a large set of images the ones that best resemble the query

image. The task of image classification is to find if a particular scene or object is present

in the given image. Object detection or localization additionally requires to localizing

the identified object it with a bounding box. In semantic segmentation, the given image

is divided into coherent regions, which are categorized simultaneously.

Similarly in videos, typical tasks are video copy detection, action classification and action

localization (temporal or spatio-temporal). Object classification and detection can also

be done in videos. Content-based Copy Detection methods match duplicates (i.e., exact

copies) or near-duplicates (i.e., some noise or a few changes) to the original image or

video. The goal of action classification is to determine which action appears in the video,

while action localization additionally finds when and where action of interest appears.

The aforementioned tasks are regarded as standard in visual recognition, and may be

categorized in two types. The first is specific instance recognition, in which the aim is to

identify instances of a particular object or entity; for example the Eiffel Tower or a given

painting. Some sample tasks in this category are image retrieval, content based copy

detection, etc. Typically, these tasks rely on matching of images, frames or local features.

The second is generic category recognition, where the objective is to recognize different

instances belonging to a given conceptual class, such as ’car’, ’table’, ’hug’ or ’diving’. In

such cases, models for categories are learned from training examples. In all of the recog-

nition tasks of either case, one very important aspect is the representation of images or

videos. Our objective in this dissertation is to enhance image and video representations

to achieve improved visual recognition of both specific entities and generic categories.

Conforming to this goal, we contribute mainly towards how to produce abstract rep-

resentations of the visual content amenable to improve the following four recognition

tasks:

• Image retrieval: A query image is efficiently matched with a large database of more

than a million images to obtain a list of similar images ranked according to simi-

larity score. An example is shown in Figure 1.1(a).

• Image classification: A classifier is learned for each category (or a multi-class clas-

sifier is learned), given an image it identifies if the object is present or not. For

example in Figure 1.1(b), a classifier for ’person’ should find it or have a high clas-

sification score while the one for ’cow’ should have a low score.

• Action classification in videos: Similar to image classification, the goal is to find if

10 Chapter 1. Introduction
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Image 

Retrieval 

system 

Large Image dataset 

Result as a ranked List 

. . . 

Query image 

(a) Image retrieval, a typical setup.

Person:  present 

Bicycle:  present 

TV monitor:  present 

… 

Cow:  not present 

Train:  not present 

… 

(b) Image classification, an illustration of multi-class classification.

Action: Answering phone 
Action Classification 

Action Localization 

(c) Action classification and localization: On top action “answering phone“ is recognized while

in the bottom it is shown to be localized by a green box (actually sequence of boxes which is not

shown). Not that the output has less number of frames and green arrow highlighting temporal

localization.

Figure 1.1: Visual recognition tasks.

1.1. Motivation and objectives 11
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the action of interest is present in the given video or not (Figure 1.1(c)).

• Action localization in videos: Identify the action of interest and then locate where

and when it happens. Figure 1.1(c), shows the action “answering phone“ is lo-

cated by a green bounding box (where) along with green arrow to signify temporal

localization (when).

Representing images and videos are very connected operations. Videos are sequences

of images so it is not surprising that many methods are analyzed and adapted from

images to videos. We start with the most fundamental problem of these four, image

retrieval and then move to recognizing object categories in images, image classification.

Then we proceed to videos and enhance the motion descriptors for action classification,

in particular by better exploiting the motion. Finally, we go a step further to localize

actions in videos.

1.2 Challenges

Take any of the visual recognition tasks, the challenge lies often in describing the visual

content adequately such that the characteristics are encoded and the representation is

discriminative. Definitely other stages such as matching, classification are also critically

involved. We here mention some of the prominent types of challenges for visual recog-

nition in images and videos.

Visual recognition in images:

First we discuss factors that make image search and classification challenging problems.

• Variations in Appearance: Robustness to object appearance changes is key to both

image search and classification. Some examples of appearance variations are shown

in Figure 1.2, and are briefly described here:

• Illumination variation: Change in lightening condition causes large variation in

intensity values of pixels and thus has a major influence on the appearance.

• Scale and size variation: Such variations can significantly influence the inter and

intra class similarity. Also when the size of the object of interest is very small it

becomes difficult to recognize it as its share to the image representation can be

severely limited.

• Background clutter / Environment variations: Highly complex background

leads to confusion between foreground objects and the background and thus

to false positives in both in image search and classification.

• Occlusion and truncation: Visibility of the object of interest is hampered when

occluded by some other objects or truncated by image borders. This obviously

12 Chapter 1. Introduction
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Reference

Scale / View point
Occlusion / View point /

Clutter / Truncation

Illumination

Truncation / View point

Figure 1.2: Examples of variations in appearance

affects the recognition task as the representation or the model learned has to be

sufficiently robust to handle such cases.

• Viewpoint variations: Viewpoint position of camera relative to the object and

the objects appearing in various poses can significantly change the appearance.

• Speed and scalability: Searching for similar images in a huge database containing

millions of images needs to be near real time, so that user can browse the result at

the same time. This requires highly efficient solutions and not to mention accurate

also to limit the false positives. As accessing hard drive is slow, with compact rep-

resentation [59, 64] of images, it is possible to load the database in RAM and search

can be carried on a single machine for millions of images. Speed helps for scalability,

but apart from that, searching a large number of database images means searching a

needle in a haystack. The method needs to be robust to such distractors. The speed

is also critical for image classification, for instance in the case of search based on se-

mantic using textual query. For example, finding instances of “boat” from the image

database. Classification of images gets more demanding as number of classes in-

creases. The image representation needs to be rich enough to encode the relevant

visual information to distinguish between all possible classes.

Visual recognition in videos:

The above variations in appearance also affect videos at the frame level. With the addi-

tional dimension of time, the occlusions change their positions, e.g., pedestrians walking

and occluding action of interest. Similarly, viewpoint (shot change), scale, lightening

condition, background can vary over time. Another source of variation is the diverse

ways of performing the same type of action. We now discuss the challenges inherent

1.2. Challenges 13
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(a) Camera motion: Only person is moving but there is motion induced due to camera motion,

which can be seen as optical flow in the background.

(b) Different ways of ’situps’ and ’brushing-hair’.

(c) Different types of human activities (from left to right): ’smile’ is subtle while ’cartwheel’

involves lot of movement, ’kiss’ could be of either type. Action of ’kicking’ here involves inter-

action with an object, ball.

Figure 1.3: Challenges in action recognition (frames are from Hollywood2 [89], HMDB51 [75]

and UCF Sports [118] datasets)

to the complexity of both actions and videos that are faced by action recognition under

uncontrolled conditions.

• Camera motion:

Motion is at the core of video representation for action recognition, however very of-

ten it includes motion induced by moving camera when dealing with uncontrolled

and realistic situations. An example of motion induced by camera is shown in Fig-

ure 1.3(a). It does not necessarily mean that the camera motion is nuisance, it gives

useful information in many scenarios such as in sports videos. Appropriately sep-

arating the motion from the camera and that related to the action improves action

recognition, as shown in Chapter 5.

• Articulation and actor movement variations:

Different actors perform actions at different speed and with varying execution style.

Action representation and learned models need to be robust to such variations. Fig-

ure 1.3(b) gives two examples of actors performing same action in different ways.

14 Chapter 1. Introduction
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• Types of human activities:

Some human activities can be distinguished with subtle difference, e.g., eating, smiling,

smoking, etc. These are gesture like actions and involve little movement. Other actions

are more evident in the video, such as running, cartwheeling, riding horse etc. There are

actions that vary a lot in execution style, such as kissing, hugging, which can be very

subtle and at times more animated. Then, there are activities involving interactions

among humans, objects, and scenes. Figure 1.3(c) gives examples of types of human

activities. Certain activities (sports actions) are sequential, but more often actions are

set of atomic actions rather than a sequence, that is why Bag-of-Words like approaches

have done better.

• Huge search space when localizing actions:

Action localization is much more difficult task than action classification, simply be-

cause it involves finding where and when action happens in the video addition to

classifying it. Typically localization is done by determining a cuboid or subvol-

ume [19, 129, 160] containing the action. The search space here is huge, in O(h2w2n2),

where the video size is h × w × n. Another way adopted recently is to localize action

as a sequence of bounding boxes, also called spatio-temporal localization [77, 132].

In this case the search space for possible spatio-temporal paths in the video space is

exponential [132]. This motivates the need for sampling the potential spatio-temporal

paths in a different manner. We propose one such an approach in Chapter 6.

Intra class variations and inter class similarity complicate the classification and there-

fore recognition. Above factors do cause intra class variation because of appearance

changes. But apart from that, some instances of same class look very different, for ex-

ample two breeds of dog. Similarly high inter class similarity is also observed, ’walk-

ing’/’running’ is an example of instances of different classes that can look very similar.

1.3 Contributions

The contributions of this dissertation are organized into four main chapters, each focused

on a different recognition task. Here, we briefly describe each of them.

Image retrieval (Chapter 3). This chapter presents an asymmetric Hamming Embed-

ding scheme for large scale image search based on local descriptors. The comparison of

two descriptors relies on a vector-to-binary code comparison, which limits the quantiza-

tion error associated with the query compared with the original Hamming Embedding

method. The approach is used in combination with an inverted file structure that offers

high efficiency, comparable to that of a regular bag-of-features retrieval systems. The

comparison is performed on two popular datasets. Our method consistently improves

the search quality over the symmetric version. The trade-off between memory usage

1.3. Contributions 15
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and precision is evaluated, showing that the method is especially useful for short binary

signatures, typically giving improvement of 4% of mean average precsion (mAP). This

work was published in [57].

Image classification (Chapter 4). In this chapter, we present a novel image classification

framework based on patch matching. More precisely, we adapt the Hamming Embed-

ding technique, first introduced for image search to improve the bag-of-words represen-

tation. This matching technique allows the fast comparison of descriptors based on their

binary signatures, which refines the matching rule based on visual words and thereby

limits the quantization error. Then, in order to allow the use of efficient and suitable

linear kernel-based SVM classification, we propose a mapping method to cast the scores

output by the Hamming Embedding matching technique into a proper similarity space.

Comparative experiments of our proposed approach and other existing encoding meth-

ods on two challenging datasets PASCAL VOC 2007 and Caltech-256, report the interest

of the proposed scheme, which outperforms all methods based on patch matching and

even provides competitive results compared with the state-of-the-art coding techniques.

This work was published in [55].

Action classification (Chapter 5). Several recent works on action classification have at-

tested the importance of explicitly integrating motion characteristics in the video de-

scription. This chapter establishes that adequately decomposing visual motion into

dominant and residual motions, i.e., into camera and scene motion, both in the ex-

traction of the space-time trajectories and for the computation of descriptors, signifi-

cantly improves action recognition algorithms. Then, we design a new motion descrip-

tor, the DCS descriptor, based on differential motion scalar quantities, divergence, curl

and shear features. It captures additional information on the local motion patterns en-

hancing results. Finally, applying the recent VLAD coding technique proposed in image

retrieval provides a substantial improvement for action recognition. Our three contri-

butions are complementary and lead to outperform all the previously reported results

by a significant margin on three challenging datasets, namely Hollywood 2, HMDB51

and Olympic Sports. Our work was published in [56]. More recently, some of the ap-

proaches [103, 147, 164] further improved the results, one of the main reasons being use

of the Fisher vector encoding. Therefore, in this chapter we also employ Fisher vector.

Additionally, we further enhance our approach by combining trajectories from both op-

tical flow and compensated flow.

Action localization (Chapter 6). This chapter considers the problem of action localiza-

tion, where the objective is to determine when and where certain actions appear. We

introduce a sampling strategy to produce 2D+t sequences of bounding boxes, called

tubelets. Compared to state-of-the-art techniques, this drastically reduces the number

of hypotheses that are likely to include the action of interest. Our method is inspired
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by a recent technique introduced in a context of image localization. Beyond considering

this technique for the first time for videos, we revisit this strategy for 2D+t sequences

obtained from super-voxels. Our sampling strategy advantageously exploits a criterion

that reflects how action-related motion deviates from background motion.

We demonstrate the interest of our approach by extensive experiments on two public

datasets: UCF Sports and MSR-II. Our approach significantly outperforms the state-of-

the-art on both datasets, while restricting the search of actions to a fraction of possible

bounding box sequences. This work has been accepted to be published in [58].

1.3. Contributions 17
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CHAPTER

TWO

Visual representation methods

In this chapter, we discuss image and video representation methods for visual recogni-

tion. The purpose is to provide the pre-requisites related to the core contributions of

this thesis. The literature reviews for the specific visual recognition tasks we address are

covered separately in the respective chapters. We do not use any supervised learning for

optimizing visual representation in this thesis. K-means clustering is employed for un-

supervised learning. For classification tasks, we use support vector machine (SVM) [23].

We give more details in the related chapters.

The goal of visual representation is to convert image or video into a mathematical rep-

resentation such that “similar” images (or videos) have similar representation and “dis-

similar” images have dissimilar representations, with respect to some comparison met-

rics. The representation has to be informative and robust to different types of variations

as discussed in Section 1.2. At the same time, its computation, storing and processing

have to be efficient. These are three conflicting requirements and the trade-off is ap-

plication dependent. One way is to compute a single global descriptor per image or

video. This approach, though highly scalable, is sensitive to background clutter, trun-

cation/occlusion, scale or viewpoint change, camera motion, duration variations of ac-

tions. To handle these variations more local approach is adopted, i.e., many local regions

are extract and descriptors are computed for them.

There are primarily two ways to use such collections of local descriptors for recognition.

The first is to match local descriptors to compute a similarity score between two images

or videos, for instance by counting the number of inliers. Another way aggregating

the local descriptors of an image to produce a global representation as a single vector.

Section 2.1 briefly discusses the methods for extracting and describing local features from

images and videos. In subsequent sections, we discuss various methods for matching

and aggregating descriptors.
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2.1 Local features from images and videos

2.1.1 Local features for image search

Selecting image patches and describing them in a meaningful way is a cornerstone of

most image representations. In general, this is carried out in two steps: (i) detecting

interest points/regions in the image; (ii) extracting a local descriptor for each region.

Since only a subset of image regions are represented by these feature descriptors, this

provides a sparse representation of the image.

Feature detectors

The detectors basically locate stable keypoints (and their supporting regions), which al-

lows matching the same image-region found in two images despite variations in view-

point or scale. Some of the popular feature detectors include Harris-Affine and Hessian-

Affine [93], Difference of Gaussians (DoG) [85], Laplacian-of-Gaussian (LoG) [85, 93],

Maximally Stable Extremal Regions (MSER) [90]. The interest point detectors can be cat-

egorized as: corner detector, blob detector and region detector. Details and comparisons

can be found in survey by Mikolajczyk et al. [95].

Another option is to densely sample feature points from a regular grid instead of interest

point detection. This has been mainly shown useful in classification [68, 21, 81, 83, 100],

where almost always better results are obtained with dense sampling. It is somewhat

equivalent to giving more data to the classifier and letting it decide what is more dis-

criminative and informative. Recently dense sampling has been also shown to be useful

in image/scene/object retrieval [46].

Feature descriptors

Once a set of feature points is obtained, the next step is to choose a region around each

point and compute a vector that describes it. These descriptors characterize the visual

pattern of the local patches supporting the feature points, hence also known as local

descriptors. They must be distinctive and robust to image transformations to ensure

that similar local patches extracted from different images with different transformations

are similarly represented. Arguably the most popular feature descriptor is SIFT (scale

invariant feature transform) [85] and then there are its variants SURF [11], Daisy [130],

GLOH [94] that are also prominent among local descriptors. Since SIFT is the only type

of descriptor used in this thesis, we review it in more details.

SIFT describes a feature point by a ”histogram”1 of image gradient orientation and lo-

cation. For each keypoint an orientation histogram with 36 bins weighted by magnitude

1Formally, it is not a histogram because the accumulation is done with gradient magnitudes and not by

counting occurrences.
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Figure 2.1: Detected spatio-time interest points (the ellipsoids on right) for a walking person

correspond to the upside-down level surface of a leg pattern (left). Image courtesy of [78].

and Gaussian-mask is computed. The dominant gradient orientation is detected and

assigned for each keypoint. Before the descriptor computation, the local patch around

each keypoint is rotated to its dominant orientation. This alignment gives rotation in-

variance. To compute descriptor the local patch is partitioned into a grid, [85] reports

4 × 4 partitioning. The gradient orientations are quantized into 8 bins for each spatial

cell, which leads to 16 8-bin histogram; i.e., a 128 dimensional SIFT descriptor. As gradi-

ents are used, the descriptor is invariant to additive intensity changes. Also due to the

use of spatial binning, the descriptor is robust to some level of geometric distortion and

noise. In [95], the SIFT descriptor has been shown to outperform other descriptors and

always offers satisfactory performance under different contexts. Recently, two variants

of SIFT descriptor were proposed in [6, 55] that yield superior performance for many

visual recognition tasks. Both are similar and involve component wise square-rooting of

each descriptor.

2.1.2 Local features for action recognition

Most of the state-of-the-art action recognition methods represent video as a collection of

local space-time features. These features and their local descriptors capture shape and

motion information for a local region in a video. Local features provide a representation

that is robust to background clutter, multiple motions, spatio-temporal shifts of actions

and are useful for action recognition under uncontrolled video conditions. In the last few
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years, action recognition methods based on local features have shown excellent results

on a wide range of challenging data [45, 89, 98, 118, 145, 148].

In videos, there are two types of “interesting locations” which can be used for local de-

scription: (i) spatio-temporal features and (ii) point trajectories. In the following, we first

discuss these two and then we briefly review popular descriptors computed around the

feature points or along the trajectories.

Spatio-temporal feature detectors

Similar to images, feature detectors select characteristic locations both in space and time.

These spatio-temporal features are efficiently extracted to represent the visual content

of local sub-volumes of video. Many of the detectors are 3-D generalizations of im-

age feature detectors. One of the most popular ones is the space-time interest points

(STIP) detector proposed in Laptev et al. [78] as an extension of the Harris cornerness

criterion. Figure 2.1 illustrates an example of STIPs. Dollár et al. [30] noted that true

spatio-temporal corner points are relatively rare in some cases and proposed their inter-

est point detector to yield denser coverage in videos. Another instance is the Hessian3D

detector proposed by Willems et al. [151], which is a spatio-temporal extension of the

Hessian blob detector.

Trajectories

It is more intuitive to treat 2D space domain and 1D time domain in video individually

as they have different characteristics. A straightforward alternative to detecting features

in a joint 3D space is to track the spatial feature points through the video. This is an

efficient way to encode the local motion consistent with actions. There are methods em-

ploying long-term trajectories in literature that aim to associate every scene entity to the

same motion track. Approaches based on long term trajectories , e.g., [3, 67, 92, 115]

have shown to recognize certain actions using only trajectory and velocity information.

But tracking a feature point [18, 82] for many frames is very challenging and faces diffi-

culties due to occlusion, fast and articulated human motion, appearance variations, etc.

Problem of drifting while tracking is another factor in long range trajectories.

Another way is to extract shorter trajectories of fixed length less than 15–20 frames.

These are more like local features as they combine advantages of both long-term trajecto-

ries and local spatio-temporal features. Similar to local features, (short-term) trajectories

can be extracted easily and reliably [145], for instance by tracking points in optical flow

field computed using dependable algorithms such as proposed by Farnebäck [40]. Due

to the limited and fixed durations of the trajectories, many methods designed for spatio-

temporal features have been easily adapted for trajectories. Trajectons of Matikainen et

al. [91], motion trajectories of Wang et al. [145] and tracklets of Gaidon et al. [44] are some

examples.
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Dense Sampling of features or trajectories at regular positions in space and time is an-

other option. Analogous to images, in videos dense sampling has been shown to perform

better than interest points [146, 148]. Wang et al. [148] show that dense sampling out-

performs state-of-the-art spatio-temporal interest point detectors. Wang et al. [145, 146]

sample feature points on a dense grid and track them to obtain dense trajectories, which

perform significantly better than sparse tracking techniques, such as the KLT tracker.

They report excellent results on many action recognition datasets. A dense representa-

tion better captures surrounding context along with foreground motion.

Feature descriptors

Spatio-temporal features and trajectories are described by robust feature descriptors.

The descriptors capture the motion and shape information in the local neighborhood

of the feature points and trajectories. An image feature point is simply a location at

a certain scale, whereas a video feature point = (x , y , t,σ, τ)T is located at (x , y , t)T in

the video sequence with σ and τ as the spatial and temporal scales, respectively. The

support region is now a cuboid instead of a rectangle, which is subdivided into a set

of M × M × N cells. Each cell is represented by a histogram to encode some types of

visual information such as gradient orientation, optical flow, etc. Not surprisingly and

analogous to feature detectors, many feature descriptors are spatio-temporal extensions

of their 2D counterparts. For instance, an extension of image SIFT descriptors to 3D was

proposed by Scovanner et al. [122]. Each pixel from 3D patch based on its gradient ori-

entation votes into M × M × M grid of local histograms. Similarly, an extended SURF

(ESURF) was proposed by Willems et al. [151].

Kläser et al. [70] proposed histograms of 3D gradient orientations, HOG3D, an extension

of Histograms of Oriented Gradients (HOG) [25] to the space-time domain. They de-

veloped a quantization method for 3D orientation based on regular polyhedrons. The

number of bins of the cell histogram depends on the type of polyhedron chosen. The

descriptor for a feature point concatenates 3D gradient histograms of all cells which are

normalized separately. Laptev et al. [79] also introduced HOG for videos, which differs

from HOG3D. The main difference is that it uses 2D gradient orientations, but since the

histograms are computed for 3D cells, the temporal information is also included in the

descriptor. They also proposed Histograms of Optical Flow (HOF) to capture local mo-

tion. The authors [79] used 4 bins for HOG histograms and 5 bins for HOF histograms.

This parameter can vary depending on the application or dataset.

Trajectory shape and velocities have also been used as descriptors [44, 66, 145] for

action recognition with impressive results especially with trajectory shape descrip-

tors. Recently, Motion boundary histogram (MBH) of Dalal et al. [26] was extended

for action recognition by Wang et al. [145]. Since then it has come out as one of

the best descriptors contributing to the state-of-the-art performances of many meth-

ods [5, 44, 56, 66, 146, 147].
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Figure 2.2: On left trajectories are shown passing through frames, supporting region for a trajec-

tory and its cell histogram computation are displayed on the right. Image courtesy of [145].

Trajectories are also used like local features and descriptors such as HOG, HOF and

MBH are computed along them. Support region of a trajectory (sequence of points) was

defined as sequence of 2D patches in [145] and followed in many other works [44, 56, 66,

145, 147]. Figure 2.2 illustrates how a descriptor is computed for the supporting region

of a trajectory.

2.2 Image and video representation for recognition

Any visual recognition task typically involves either matching or learning a classifier or

sometimes both. Matching could be between local descriptors or global vectors, leading

to a similarity score. Such an approach is often called matching-based method. On the

other hand, a global representation is preferred for learning a classifier. The choice of

matching or learning is made typically based on the application and the visual represen-

tation used. In this section, we discuss the representations based on local features that

are employed for recognition. The two possible types of such representations are: (i)

Global Representation (Aggregated) and (ii) Set of local features (Non-aggregated).

Global representation (aggregated) are obtained by first encoding and then aggregat-

ing local descriptors into a single vector. It is convenient to use such a representation

for classification [24, 109, 139] as many classifiers, such as SVM, can be trained to dis-

criminate the positive and negative vectors. A global representation is also suitable for

retrieval [64, 65] as images/videos can be directly compared. It improves the scalability

as there is no need to save information related to descriptor matches.

Set of local features (non-aggregated): In voting-based approaches, the local descrip-

tors are matched to compute the similarity scores between two images or videos. Here,
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instead of aggregating the local features to produce the representation, it is the matching

scores that are aggregated for similarity computation. It is a natural choice for retrieval

and many of the state-of-the-art methods [123, 60] can be seen as voting-based. Although

this choice is more prevalent in retrieval area [22, 60, 62, 63, 111, 123], it has also been

used for image classification [14, 33, 69] and action recognition [116]. With such a repre-

sentation, usually matching-based approach is used. Of course, a global representation

can also be obtained, e.g., from matching scores.

First, we discuss the global representation Bag of Words (BOW) [24, 123] in Section 2.3;

Vector of locally aggregated descriptors (VLAD) [64] and Fisher Vector [107, 109] in Sec-

tion 2.4. These have been used for classification as well as retrieval. Then, voting-based

or non-aggregated representations are reviewed in Section 2.5. This includes Hamming

Embedding [60] and a few matching-based methods for classification.

2.3 Bag of visual words

Bag of visual words was introduced in retrieval by Sivic and Zisserman in their sem-

inal “Video-Google” [123] work, where they presented image/video retrieval system

inspired by text retrieval. Concurrently, Csurka et al. [24] showed the interest of this ap-

proach for image classification. Since then, over the years it has been one of the most

popular and successful approaches proposed in the field of visual recognition, which

has been extended and improved in many ways for image retrieval [60, 64] and clas-

sification [107, 163]. It has been also employed by many methods for object localiza-

tion [76, 137, 142] and action classification [34, 44, 79, 146].

From local descriptors to global representation is a 3-step process: (1) Visual Codebook

Creation, (2) Encoding and (3) Aggregation. These are common for BOW and other

related global representations. To our knowledge, the NeTra toolbox [86] is the first

work to follow this pipeline.

Visual vocabulary creation: The first step is to build a codebook or a visual vocabulary.

It consists of a set of reference vectors known as “visual words”. These are created from

a large set of local descriptors often using an unsupervised clustering approach to parti-

tion the descriptor space into, say, K clusters. They are associated with K representative

vectors (µ1,µ2, ...,µK ), referred to as visual words. A visual vocabulary or codebook

was initially built by using k-means clustering [24, 123, 152]. Later its variants were in-

troduced such as more efficient hierarchical k-means [99] or Gaussian Mixture Model

(GMM) [107] to obtain a probabilistic interpretation of the clustering. It is well known

that the classification accuracy improves when increasing the size of the codebook, as

experimentally shown in some works [21, 140]. There are other approaches to learn

a codebook such as meanshift-clustering [68] and sparse dictionary learning [87, 149].
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Also methods with supervised dictionary learning have been proposed [73, 96, 108, 152].

Encoding local descriptors: The local descriptors are encoded using the visual vocabu-

lary. The simplest way is hard assignment where each descriptor is assigned to its near-

est visual word. This vector quantization (VQ) is the simplest and probably the most

popular encoding. Though this representation is very compact, VQ is lossy and leads to

quantization errors. Choosing the vocabulary size (K ) is a trade-off between quantiza-

tion noise and descriptor noise. Depending on the size (for large K or small clusters) we

may have very similar descriptors assigned to different visual words. Conversely, with

larger clusters very different descriptors may get assigned to the same cluster.

Several better encoding techniques have been proposed to limit quantization errors. For

instance, coding techniques based on soft assignment such as [108, 152], Kernel code-

book [112, 141] or sparse-coding [15, 87, 149, 158]. In Kernel codebook, each descriptor

is softly assigned to all the visual words with weights proportional to exp(− d2

2σ2 ), where

d is the distance between cluster center and descriptor. Soft-assignment has also been

used with a sparsity constraint on the reconstruction weight in Mairal et al. [87] and

Yang et al. [158]. Locality-constrained linear coding by Wang et al. [149] reconstructs a

local descriptor by using a soft-assignment over a few of the nearest visual words from

the codebook. Another coding technique, namely Super-vector coding [163], is similar

to Fisher and VLAD, which we discuss in the next sub-sections.

Aggregating local descriptors: The final step is to aggregate the encoded features into a

global vector representation. The features are pooled in one of the two ways: sum pool-

ing or max pooling. In sum-pooling, the encoded features are additively combined into

a bin or a part of the final vector. For example, in case of BOW histogram it is simply

adding the count of features belonging to bin corresponding to each visual word. For

max pooling, the highest value across the features is assigned for each bin, as done in

Yang et al. [158]. Avila et al. [9] propose an improved pooling approach called BOSSA

(Bag Of Statistical Sampling Analysis). In this work, the local descriptors are pooled

(sum pooling) per cluster based on their distances from the cluster center and the result-

ing histograms from all the clusters are concatenated. Recently, this approach is further

improved in an approach coined BossaNova [8].

The bag-of-words is an order-less representation and thus invariant to the layout of the

given image or video. A standard way of incorporating weak geometry is to divide the

image into spatial grid (or spatio-temporal in case of video) and aggregate each spa-

tial cell separately. This was first introduced by Lazebnik et al. [81] as spatial pyramids

consisting of several layers, where in layer l the image is divided in 2l × 2l , each such

cell being described by a histogram. Since then, many different types of spatial grids

have been used, e.g., 3 × 1 and various spatio-temporal grids for videos. The concept

can be used for any of the encodings mentioned here, including VLAD and Fisher, by
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computing one encoding for each spatial region and then stacking the results.

In the case of image classification, the aforementioned global vectors are used to train a

model. For retrieval with BOW, the following process is followed.

BOW in retrieval: matching with Visual Words

BOW histogram or a vector of visual words frequencies is L2 normalized. The rare visual

words are assumed to be more discriminative and are assigned higher weights; this is

done according to the tf-idf (term frequency–inverse document frequency) scheme [123].

The similarity measure between two BOW vectors is, most often, cosine similarity. Vo-

cabulary size (K ) is a parameter which is usually very large for image retrieval (typically

20, 000 or larger). With around few thousand descriptors per image the BOW histograms

are very sparse, which enables very efficient retrieval, thanks to inverted file indexing.

Inverted file is a set of inverted lists, where each list is associated with a visual word. All

the local descriptors corresponding to the same visual word are stored in the same list

with their image ids. Another option is to store image id and number of descriptors in

the image belonging to that particular visual word.

2.4 Higher-order representations

BOW only counts the number of local descriptors assigned to each visual word or a

set of visual words (in case of soft-assignment). Including higher-order statistics, that

is mean and covariance of local descriptors, lead to much improved representations.

The objective is to model the approximate distribution of descriptors in each cluster and

aggregate these higher-order statistics.

2.4.1 Fisher vectors

Perronnin et al. [107] introduced the Fisher Vector for image representation that employs

Gaussian Mixture Model (GMM) for vocabulary building. Fisher encoding captures

both first and second order statistics by aggregating all residuals (vector differences be-

tween descriptors and Gaussian means), normalized by the variance of the correspond-

ing Gaussian component. The key idea is based on the Fisher kernel of Jaakkola et al. [54].

Fisher kernel: The Fisher kernel is based on the gradient of the log-likelihood of

a generative probabilistic model with respect to its parameters. Given a likelihood

function uλ with parameters λ, the score function of a sample with T observations,

X = {xt , t = 1...T}, is given by:

GX
λ = ▽λ log uλ(X ) (2.1)
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Intuitively, this gives the direction in which the parameters λ should be moved to better

fit the data. As the gradient is with respect to the model parameters, the dimension of

GX
λ does not depend on the dimension of xt or T and is equal to the dimension of λ. The

Fisher kernel is given by the normalized inner product of two Fisher score vectors:

KFK (X , Y ) = GX
λ I−1

F GY
λ (2.2)

where IF = Ex∼uλ
[GX
λ GX

λ ] denotes the Fisher information matrix. As IF is positive-semi-

definite, so is its inverse, which can be decomposed as: I−1
F = L′

λLλ. Now the Fisher

Kernel can be rewritten as a dot product between two Fisher Vectors, which for sample

X is given as:

GX
λ = LλG

X
λ = Lλ ▽λ log uλ(X ) (2.3)

Fisher Vector for visual representation: To represent visual data, a Gaussian Mix-

ture Model (GMM) is used as the probabilistic generative model of the local descrip-

tors [107, 109]. The GMM defines the visual vocabulary, whose parameters are λ =

{αk ,µk , Σk}K
k=1, i.e., the mixture weights, means and covariances (diagonal). Assuming

that the local descriptors are independent, we can write:

GX
λ =

1

T

T
∑

t=1

▽λ log uλ(xt) (2.4)

where uλ(xt) is a GMM of K Gaussians.

For the weight parameters, the soft-max formalism of Krapac et al. [74] can be used,

πk = exp(αk )
P

j exp(αj )
. The posterior probability of Gaussian k for descriptor xt is given as:

qtk =
p(xt |µk , Σk)πk

∑K
j=1 p(xt |µj , Σj)πj

and with the new mixing weights πk , GMM uλ(xt) is given by:

uλ(x) =

K
∑

k=1

πkuk(x) (2.5)

To compute the Fisher Vector, an analytically closed-form approximation of the Fisher

information matrix is proposed [107]. In this case, the normalization of the gradient by

Lλ is simply a whitening w.r.t. mixture weights, means and covariance. The gradients

are given by:

▽αk
GX
λ =

1

T
√
πk

∑

t

(qtk − πk), (2.6)

▽µk
GX
λ =

1

T
√
πk

∑

t

qtkΣ
−

1
2

k (xt − µk), (2.7)

▽Σk
GX
λ =

1

T
√

2πk

∑

t

qtk(Σ−1
k (xt − µk)2 − 1). (2.8)
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Perronnin et al. [109] observe that derivatives w.r.t. mixture weights (αk ) do not add

much information and can be safely discarded. Consequently, the final Fisher Vector

is obtained as the concatenation of the whitened gradients for the mean and standard

deviation, GX
FK

= [(▽µk
GX
λ ) (▽Σk

GX
λ )]. Therefore the final dimension is 2KD , where D

is the dimension of local descriptor.

Power Normalization: It was noted in [109] that as the number of Gaussians increases,

Fisher Vectors become more and more sparse. This is because descriptors xt are assigned

with a significant weight qtk to each Gaussian. To unsparsify the Fisher Vector, a power

normalization [61, 109] is applied on each element of the vector:

f (z) = sign(z)|z |α (2.9)

where 0 ≤ α ≤ 1. This is followed by L2 normalization. A commonly used value for α

is 0.5 [65, 109], though in some cases cross-validating it on train data can boost results as

we observe in Sections 4.2.4 and 5.5.

Fisher vector representation has not only been used in image classification but also in

image retrieval [65, 110] and recently for action recognition [104, 147]. For each of these

tasks, Fisher vector has been shown as one of the best global representations.

2.4.2 VLAD: Vector of locally aggregated descriptors

VLAD was introduced by Jégou et al. [64] as a compact image representation for re-

trieval. It encodes the descriptor positions in each cluster by computing their differ-

ences from the centroid. The residuals are aggregated per cluster to obtain the corre-

sponding sub-vectors. Finally, all the sub-vectors are concatenated and the resulting

vector is L2 normalized. Given a codebook, {µi , i = 1...K} and a set of local descriptors

X = {xt , t = 1...T}, VLAD is computed as follows:

1. Assign to nearest visual word: NN(xt) = arg minµi
||xt − µi ||

2. Compute the sub-vector: vi =
∑

xt :NN(xt)=µi
xt − µi

3. Concatenate vi ’s (i = 1...K ) to obtain the D ×K dimensional VLAD, where D is the

dimension of local descriptor.

The VLAD can be seen as a special case of the Fisher Vector with only first order moments

and hard assignments of local descriptors. Due to its simplicity and hard-assignment,

VLAD is faster to compute than FV. For image retrieval, it was found [64, 65] that in

Fisher Vector, the gradients with respect to the variances also do not provide much in-

formation. So, being more efficient VLAD is a popular choice in image retrieval. In [59],

Jégou et al. introduced power normalization for VLAD and since, there have been a few

other extensions or variants [7, 27, 162]. Though originally proposed for image retrieval,

this representation is general and can be used for classification also. It has been used for
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Figure 2.3: Top: BOW with K = 20, 000 has many matches with the non-corresponding image.

Bottom: Hamming Embedding with K = 20, 000 has 10 times more matches for corresponding

image. Image courtesy of [62].

video retrieval [117] and its extension VLAT for image classification [97]. We use it for

the first time in action recognition in Section 5.5.

2.5 Voting based representations

2.5.1 Hamming Embedding

Hamming Embedding (HE) was introduced by Jégou et al. [60] as an extension of BOW.

In this approach, the descriptor space is also partitioned by k-means, but in addition

a binary code is also computed for each descriptor. This signature refines the descrip-

tor representation based on the visual word, and therefore leads to an improved image

representation. In BOW, the descriptors belonging to the same cluster are assumed to

match. With HE, the matching is made more selective: Two descriptors x and y are as-

sumed to match if they belong to the same cluster and if the Hamming distance between
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Figure 2.4: Features assigned to the most bursty visual words highlighted. Courtesy of [61].

their binary signature is less than a predefined threshold. Figure 2.3 illustrates how the

descriptor matching is drastically improved by limiting the quantization error in this

manner. There are many more true matches and only few false matches with HE in com-

parison to BOW. We provide more details about HE, i.e., the process of binary signature

generation and computation of image matching score, in Section 3.2.2. Now we discuss

in brief the burstiness phenomenon and how it is handled, in particular in conjunction

with HE.

Visual burstiness handling: Jégou et al. [61] observed that when a visual word appears

in an image, it is more likely that it will appear again. In other words, a given visual

element appears more times than a statistically independent model, such as tf-idf would

predict. Figure 2.4 illustrates this phenomenon: many detected features belong to the

same visual word. This means every added feature to the same visual word adds pro-

gressively less information. By not taking this effect into account, bursty instances con-

tribute equally to the match scores, which corrupts the similarity measure.

Three strategies were proposed to handle the burstiness. The first is to remove multiple

matches, i.e., only the best match is considered, in case of HE it is the one with minimum

Hamming distance. The Second is to handle intra-image burstiness, if there are several

descriptors in the query image assigned to the same visual word, their scores are pe-

nalized. Similarly to handle inter-image burstiness, the match scores of descriptors that

vote for many images in the database are penalized.

2.5.2 Matching for classification

Matching approaches have not only been employed for image retrieval but also for im-

age classification. Boiman et al. [14] proposed a NBNN (Naive-Bayes Nearest-Neighbor)

classifier, which does not require any training. NBNN employs NN-distances in the

space of the local image descriptor instead of in the space of images. It computes di-

rect ‘Image-to-Class’ distances without descriptor quantization. Tuytelaars et al. [135]

introduced a kernelized version of NBNN which allows learning the classifier in a dis-

criminative setting. It also becomes easy to combine it with other kernels as they did
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by combining with bag-of-features based kernels. Kim et al. [69] proposed a region-to-

image matching scheme that involves matching features from segmented region of one

image to another unsegmented image. The final matching score between two images is

computed as a summation of match scores between all their corresponding points ob-

tained from each region-to-image match. A graph based matching between images for

classification is proposed by Duchenne et al. [33]. They model an image as a graph with

a dense set of regions as nodes and the underlying grid structure of the image as edges.

A fast approximate algorithm is presented to match these graphs associated with two

images.
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CHAPTER

THREE

Asymmetric Hamming Embedding

Large scale image search is still a very active domain. The task consists in finding in

a large set of images the ones that best resemble the query image. Typical applications

include finding searching images on web [154], location [111] or particular object [99]

recognition, or copy detection [80].

Earlier approaches were based on global descriptors such as color histograms or

GIST [102]. These are sufficient in some contexts [32], such as copy detection, where

most of the illegal copies are very similar to the original image. However, global de-

scription suffer from well-known limitations, in particular they are not invariant to sig-

nificant geometrical transformations such as cropping. That is why we focus here on the

bag-of-words (BOW) framework [123] and its extension [61], where local descriptors are

extracted from each image [85] and used to compare images.

The BOW representation of images was proved be very discriminant and efficient for

image search on millions of images [60, 99]. Different strategies have been proposed to

improve it. For instance, [99] improves the efficiency in two ways. Firstly, the assignment

of local descriptors to the so-called visual words is much faster thanks to the use of a

hierarchical vocabulary. Secondly, by considering large vocabularies (up to 1 million

visual words), the size of the inverted lists used for indexing is significantly reduced.

Accuracy is improved by a re-ranking stage performing spatial verification [85], and

by query expansion [22], which exploits the interaction between the relevant database

images.

Another way to improve accuracy consists in incorporating additional information on

descriptors directly in the inverted file. This idea was first explored in [60], where a

richer descriptor representation is obtained by Hamming Embedding (HE) and weak

geometrical consistency [60]. HE, in particular, was shown successful in different con-

texts [154], and improved in [61, 62]. However, this technique has a drawback: each local

descriptor is represented by relatively large signatures, typically ranging from 32 [154]

to 64 bits [61].

In this chapter, we propose to improve HE in order to better exploit the information con-
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veyed by the binary signature. This is done by exploiting the observation, first made

in [31], that the query should not be approximated. We therefore adapt the voting

method to better exploit the precise query location instead of the binarized query vector.

This requires, in particular, two regularization steps used to adjust the dynamic of the

local query distribution. This leads to an improvement over the reference symmetric HE

scheme. As a complementary contribution, we evaluate how our approach trades accu-

racy against memory with smaller number of bits. The work presented in this chapter

was published in [57].

The chapter is organized as follows. The datasets representing the application cases

and the evaluation protocol are introduced in Section 3.1. Section 3.2 briefly describes

the most related works: BOW and HE. Our asymmetric method is introduced in Sec-

tion 3.3. Finally, experiments in Section 3.4 compare the performance of our asymmetri-

cal method with the original HE, and provides a comparison with the state of the art on

image search. It shows a significant improvement: we obtain a mean average precision

of 70.4% on the Oxford5K Building dataset before spatial verification, i.e., +4% compared

with the best concurrent method.

3.1 Evaluation datasets

This section introduces the datasets used in our experiments, as well as the measures of

accuracy used to evaluate the different methods. These datasets reflect two application

use-cases for which our method is relevant, namely place and object recognition. They

are widely used to evaluate image search systems.

Oxford5K and Paris These two datasets of famous building in Oxford and Paris contain

5,062 and 6,412 images, respectively. We use Paris as an independent learning set to

estimate the parameters used by our method. The quality is measured on Oxford5K

by mean average precision (mAP), as defined in [111]: for each query image we obtain

a precision/recall curve, and compute its average precision (the area under the curve).

The mAP is then the mean for a set of queries.

INRIA Holidays This dataset contains 1491 images of personal holiday photos, parti-

tioned into 500 groups, each of which represents a distinct scene, location or object. The

first image of each group is the query image and the correct retrieval results are the other

images of the group. Again, the search quality is measured by the mAP, see [111, 60] for

details. A set of images from Flickr is used for learning the vocabulary, as done in [60].

Flickr1M In order to evaluate the behavior of our method on a large scale, we have

used a set of up to one million images. More precisely, we have used the descriptors
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shared online1 by Jégou et al., which were downloaded from Flickr and described by the

same local descriptor generation procedure as the one used for Holidays. This dataset is

therefore merged with Holidays and the mAP is measured using the Holidays ground-

truth, as in [62].

The recall@R measure is used for this large scale experiment. It measures, at a particular

rank R , the ratio of relevant images ranked in top R positions. [32] states that it is a good

measure to evaluate the filtering capability of an image search system, in particular if the

large scale image search is followed by a precise spatial geometrical stage, as classically

done in the literature.

3.2 Related work

3.2.1 Bag-of-features representation

The BOW framework [123] is based on local invariant descriptors [93, 85] extracted from

covariant regions of interest [93]. It matches small parts of images and can cope with

many transformations, such as scaling, local changes in illumination and cropping.

The feature extraction is performed in two steps: detecting regions of interest with the

Hessian-Affine detector [93], and computing SIFT descriptors for these regions [85]. We

have used the features provided by the authors for all the aforementioned datasets. For

Holidays and Flickr1M, the features are rotation-invariant, while for Oxford5K and Paris

they are not because the images are all in up-right orientation.

The fingerprint of an image is obtained by quantizing the local descriptors using a

nearest-neighbor quantizer, produced the so-called visual words (VW). The image is rep-

resented by the histogram of VW occurrences normalized with the L2 norm. A tf-idf

weighting scheme is applied [123] to the k components of the resulting vector. The sim-

ilarity measure between two BOW vectors is, most often, cosine similarity. The visual

vocabulary of the quantizer is produced using k-means. It contains a large number k

of visual words. In this work, we set k = 20, 000 for the sake of consistency with [60]

and [61]. Therefore, the fingerprint histograms are sparse, making queries in the inverted

file efficient.

3.2.2 Hamming Embedding

The Hamming Embedding method of [60] is a state of the art method extension of BOF,

where a better representation of the images is obtained by adding a short signature that

refines the representation of each local descriptor. In this approach, a descriptor x is

1http://lear.inrialpes.fr/people/jegou/data.php
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id bVW1

VWk

Figure 3.1: Overview of the HE indexing structure: it is a modified inverted file. Each inverted

list is associated with a visual word. Each local descriptor is stored in a cell containing both the

image identifier and a binary signature (from 4 to 64 bits in our work). This indexing structure is

also used in our AHE method: only the score similarity is modified.

represented by a tuple (q(x), b(x)), where q(x) is the visual word and b(.) is a binary

signature of length m computed from the descriptors to refine the information provided

by q(x). Two descriptors are assumed to match if
{

q(x) = q(y)

h (b(x), b(y)) =
∑

i=1..m |bi (x) − bi (y)| ≤ ht

, (3.1)

where h(b, b′) is the Hamming distance between binary vectors b = [b1, .., bm] and b′ =

[b′
1, .., b

′
m], and ht is a fixed threshold. The image score is obtained as the sum [60] or

weighted sum [62] of the distances of the matches satisfying (3.1), then normalized as in

BOF.

Similar to that in BOF, the method uses an inverted file structure, which is modified to

incorporate the binary signature, as illustrated by Figure 3.1. The matches associated

with the query local descriptors are retrieved from the structure and used as follows.

• Find the nearest centroid of the query descriptor x , producing quantized indexes q(x),

i.e., the visual word (VW). The entries of the inverted list associated with q(x) are

visited.

• A given descriptor x is projected by a rotation matrix to an m-dimensional feature

space: Q × x = b∗ = [b∗
1(x), ... , b∗

m(x)]⊤. To generate Q, a matrix of Gaussian values

is randomly drawn and QR factorization is applied on it. The first m rows of the

orthogonal matrix obtained by this decomposition form the matrix Q.

• The binary signature is obtained by comparing each component b∗
i , i = 1..m with a

threshold τq(x),i . This amounts to selecting bi = 1 if b∗
i − τq(x),i > 0, else bi = 0. The

thresholds τc,i are the median values of b∗
i measured on an independent learning set

for all VWs c and all bit components i .

• Only the database descriptors satisfying Equation 3.1 make a vote for the correspond-

ing image, i.e., they vote only if their Hamming distance is below a pre-defined
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 0  5  10  15  20  25

σc

Figure 3.2: Empirical probability distribution function of σc measured for all visual words. The

large variation of density across cells shows the need for a per-cell variance regularization.

threshold ht . The vote’s score is 1 in [60]. Scoring with a function of the distance

improves the results [61]. We therefore adopt this choice.

• All images scores are finally normalized.

Additionally, we consider two techniques [61] that improve the results. First, multiple

assignment (MA) reduces the number of matches that are missed due to incorrect quan-

tization indexes. Second, the so-called burstiness (denoted by “burst”) handling method

regularizes the score associated with each match, to compensate the bursty statistics of

regular patterns in images.

3.3 Asymmetric Hamming Embedding

This section introduces our approach. It is inspired by the work of [31], where the use

of asymmetric distances was investigated in the context of Locality Sensitive hashing.

This method has to be significantly adapted in our context. Using the distance to hy-

perplanes may suffice for pure nearest neighbor search, where the objective is the find

the Euclidean k-nearest neighbor of a given query [31]. However, in our case, this is not

sufficient, because computed distances are used as match quality measurements. Our

goal is therefore to provide a soft weighting strategy that better exploits the confidence

measures of all matches to produce the aggregated image scores.

Intra-cell distance regularization We first adapt the local distances so that they become

more comparable for different visual words. This is done, in our AHE scheme, by com-

puting the standard deviation σc of the distance b∗
i − τc,i for each visual word c , i.e., the

distance from the separating hyperplanes. This estimation is carried out using a large

set of vectors from an independent learning set. We used 50M Flickr descriptors for Hol-

idays and all the descriptors from Paris for Oxford5K. The standard deviation is either

computed component-wise (one per bit dimension) of for the whole cell. In our case
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Figure 3.3: Illustration of HE and AHE for binary signatures of length 2. In the symmetric case,

only three distances are possible (0, 1 or 2) between query and database descriptor y . AHE gives

a continuous distance (reflected by the intensity of blue).

we chose the simple choice of estimating a single parameter per cell used for all bits

(isotropic assumption).

As observed in Figure 3.2, the standard deviations significantly vary from one cell to

another. It is then worth obtaining more comparable values when using distances as

quality measurements.

Distance to hyperplanes In the symmetric version, the query projected by Q is binarized

and compared with the database descriptors. We instead compute the distance between

the projected query (b∗(x) = Q × x) and the database binary vectors that lie in the same

cell (associated with q(x)). The “distance” between the i th component of b∗(x) and the

binary vector b(y) is given by

d i
a (b∗

i (x), bi (y)) = |b∗
i (x) − τq(x),i | × |bi (x) − bi (y)| . (3.2)

This quantity is zero when x is on the same side of the hyperplane associated with the

i th component. The distances are added for all the m components to get an asymmetric

“distance” between a query descriptor x and a database descriptor y , defined as

ha (b∗(x), b(y)) =
1

σq(x)
×
∑

i=1..m

d i
a (b∗

i (x), bi (y)) . (3.3)

The descriptors are assumed to match if ha (b∗(x), b(y)) ≤ ht , as for the symmetric ver-

sion. For a given query x , the values |b∗
i (x) − τq(x),i | are precomputed before being com-

pared to the database vectors. The similarity is penalized according to the distance from

the hyperplane in the embedded Hamming space, providing improved measurements,

as illustrated by Figure 3.3. In the symmetric case, it does not matter how far b∗
i lies from

τq(x),i . In contrast, the distance is a continuous function in our method.

38 Chapter 3. Asymmetric Hamming Embedding



Enhanced image and video representation for visual recognition

Score weighting Similar to what is done in [61] for the symmetric case, the distance

obtained by Equation 3.3 is used to weight the voting score. In [61] weights are obtained

as a Gaussian function of Hamming distance. Here the weights are simply the difference

ht −ha (b∗(x), b(y)) between the threshold and the normalized “distance”. We also apply

the burstiness regularization method of [61]. As we will show in Section 3.4, its impact is

very important in our case because the aforementioned variance regularization does not

sufficiently balance the amount of score received by the different query vectors, leading

individual descriptors from the query image to have a very different impact in the final

score. The burstiness regularization effectively addresses this issue.

3.4 Experiments

Search quality: HE vs AHE Figure 3.4 evaluates our AHE method introduced in Sec-

tion 3.3 against the original HE one, for varying numbers of bits. For both HE and AHE,

we report the results obtained with the best threshold. As shown by Figure 3.5, the

performance is stable around this best value.

Using the asymmetric version significantly improves the results, especially for short sig-

natures. As stated in Section 3.3, the burstiness regularization of [61] is important in our

case: without it AHE only achieves a slight improvement for short signatures.

Observe the important trade-off between the search accuracy and the signature length:

using more bits clearly helps. However it is important to keep this signature short so

that database images remain indexed in memory. Multiple Assignment helps in both

cases, at the cost of increased query time. As advocated by a previous work [61], we

perform MA on the query side only, with 5 or 10 nearest visual words, denoted by MA5

and MA10 respectively.

Comparison with the state of the art

Table 3.1 compares our results with, to our knowledge, the best ones reported in the

literature. We also report the thresholds (ht) used to obtain the results. Our approach

clearly outperforms the state of the art on both Holidays and Oxford5K. Interestingly, for

symmetric HE, our results (in italics) on Oxford5K are better than those reported in [61]

with a geometry check. This is because the rotation invariant features used in [112]

are more discriminative for these datasets (only images in upright orientation) without

spatial verification. We only include in our comparison the results reported with learning

done on an independent dataset itself. Some papers show that learning on the test set

itself improves the results, as to be expected. But as stated in [62] such results do not

properly reflect the expected accuracy when using the system on a large scale. Some

visual examples of results are shown for Oxford5K in Figure 3.7 and for Holidays in

Figure 3.8.
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Figure 3.4: HE vs AHE: Trade-off between memory usage (per descriptor) and search quality.
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Figure 3.5: Impact of the threshold on accuracy (m = 32 bits): Note that the ranges for ht differ

for HE (Hamming distance) and AHE (derived from normalized distance to hyperplanes).
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Oxford5K ht Holidays ht

BOF [112] 40.3 - - -

BOF+soft MA [112] 49.3 - - -

HE+MA5 [62] 61.5 - 77.5 -

HE+burst [61] 64.5 31 78.0 21

HE+burst+MA5 [61] 67.4 22 82.4 23

AHE+burst 66.0 18.5 79.4 15.5

AHE+burst+MA5 69.8 17 83.0 17

AHE+burst+MA10 70.4 16 83.4 16.5

Table 3.1: Comparison with the state of the art: For [61], we report in italics the results obtained by

our implementation, [61] reports inferior results with different descriptors and with geometrical

information only. Results are shown for 64 bits.
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Figure 3.6: Search quality on a large scale (1 million images): Holidays merged with Flickr1M.

Large scale experiments As shown in Figure 3.6, the filtering capability of AHE is better

than HE: the recall@R measure is almost as good for AHE with 16 bits as HE with 32

bits. Equivalently, the performance is much better for a given memory usage.

The complexity of the method is increased compared to the original symmetric method.

In both HE and AHE, the vector has to be projected. The main difference appears in the

similarity computation, which is a simple XOR operation following by a bit count in HE,

while we need to add pre-computed floating point values to get ha in Equation 3.3. As a

result, on 1 million images the search speed is roughly 1.7 times slower in the asymmetric

case, on average, compared to [61]: on average searching in one million images (using

64 bits) with AHE it takes 2.9s on one processor core, against 1.7s for HE.
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Queries Retrieved results

Figure 3.7: Results on Oxford5K dataset: Each row shows a query and the top three retrieved

images from the dataset. True-positives and false-positives are shown with green and red borders

respectively.
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Queries Retrieved results

Figure 3.8: Results on INRIA Holidays dataset: Each row shows a query and the top three re-

trieved images from the dataset. True-positives and false-positives are shown with green and red

borders respectively.
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3.5 Conclusion

This chapter shows that a vector-to-binary code comparison significantly improves the

state-of-the-art Hamming Embedding technique by reducing the approximation made

on the query. This is done by exploiting the vector-to-hyperplane distances. The im-

provement is obtained at no additional cost in terms of memory. As a result, we improve

the best results ever reported on two popular image search benchmarks before geomet-

rical verification.
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CHAPTER

FOUR

Hamming Embedding similarity-based image

classification

Image classification is a challenging problem and the key technology for many existing

and potential mining applications. It has attracted a large interest from the Multimedia

and Computer Vision communities in the past few decades, due to the ever increasing

digital image data generated around the world. It is defined as the task of assigning one

or multiple labels corresponding to the presence of a category in the image.

Recently, machine learning tools have been widely used to classify images into seman-

tic categories. Local features combined with the bag-of-visual-words representation of

images demonstrate decent performance on classification tasks [161]. The idea is to char-

acterize an image with the number of occurrences of each visual word [123]. However,

it is generally admitted that this setup is sub-optimal, as the discriminative power of the

local descriptors is considerably reduced due to the coarse quantization [14] operated

by the use of a pre-defined visual vocabulary. To address this problem, several encod-

ings have been proposed such as locality-constrained linear [149], super vector [64, 163],

kernel codebook [141], and the Fisher Kernel [107, 109]. These coding schemes are com-

pared by Chatfield et al. [21] on the popular PASCAL’07 and Caltech-101 benchmarks.

Considering dense SIFT sampling, which are shown to outperform interest points for

classification, they use a linear classifier for better efficiency and confirm that these new

coding schemes indeed achieve better classification accuracy than the spatial histogram

of visual-words baseline. The superiority of the improved Fisher Kernel [109] is evi-

denced among all these schemes.

Another way to limit the quantization error introduced by the use of visual words in-

stead of full descriptors consists in adopting a matching approach [14, 135]. These

schemes require the use of full raw descriptors, which is not feasible when considering

large learning sets such as those considered in large image databases like ImageNet [28].

Moreover, to our knowledge these methods have not been shown to exhibit a classifica-

tion accuracy as good as those reported with the aforementioned new coding schemes.

Besides, in the context of image search, some solutions have been proposed to dramati-
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cally improve the matching quality while keeping a decent efficiency and memory usage.

In particular, improved accuracy is achieved by incorporating additional information,

jointly with the descriptors, directly in the inverted file. This idea was first explored by

Jégou et al. [60] for image search, where a richer descriptor representation is obtained by

using binary codes in addition to visual words and weak geometrical consistency. In our

work, we will mainly focus on the interest of the complementary information provided

by the binary vectors, using the so-called Hamming Embedding method [62, 61]. We

push this idea further in Chapter 3 and show that a vector-to-binary code comparison

improves the Hamming Embedding baseline by limiting the approximation made on the

query, leading to state-of-the-art results for the image search problem.

In this chapter, in the spirit of recent works that have shown the interest of patch-based

techniques for classification, we propose to adopt the state-of-the-art Hamming Embed-

ding method for category-level recognition. This produces a representation which is

more efficient and compact in memory than the solutions based on exact patch match-

ing. However, the original Hamming Embedding technique can not be used off-the-

shelf, since the similarity output by this technique is not a Mercer Kernel. A naive op-

tion would be to adopt instead a k-nearest neighbor classifier, but from our preliminary

experiments the resulting classification accuracy is then low. To address this problem,

we adopt a kernelization technique on top of our matching-based solution, which en-

ables the use of support vector machines and thereby allows good generalization prop-

erties even when using a linear classifier. As a result, Hamming Embedding classifi-

cation is efficient in both training and testing stages, and provides better performance

and efficiency than the recently proposed concurrent matching-based classification tech-

niques [14, 135].

Last but not least, the proposed approach is shown to outperform the most recent coding

schemes benchmarked in [21]. The only noticeable exception is the latest improvement

of the Fisher Kernel [109], which still remains competitive. Beside, we show that the

combination of Hamming Embedding similarity with Fisher Kernel is complementary

and achieves the current state-of-the-art performance. Most importantly and as noticed

in [135], the high flexibility offered by a matching-based framework is likely to pave the

way to several extensions. The work presented in this chapter was published in [55].

The rest of the chapter is organized as follows: Section 2 describes the most related

works. Section 3 presents our system architecture. It includes the feature extraction

procedure, where an improved SIFT descriptor is introduced, and the Hamming Em-

bedding similarity-based representation. Section 4 reports the experimental results con-

ducted on the PASCAL VOC 2007 and Caltech-256 collections and compare them to the

main state-of-the-art methods discussed in Section 2. Section 5 concludes the chapter.
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4.1 Related work

The bag of visual-words (BOW) is one of the most popular image representations, due

to its conceptual simplicity, computational efficiency and discriminative power stem-

ming for the use of local image information. It represents each local feature with the

closest visual word and counts the occurrence frequencies in the image. The length of

the histogram is given by the number of visual words of a codebook dictionary. Van

Gemert et al. [141] introduced an uncertainty model based on kernel density estimation

to smooth the hard assignment of image features to codewords. However, BOW discards

the spatial order of local descriptors, which severely limits the descriptive power of the

image representation. To take into account the rough geometry of a scene, the spatial

pyramid matching (SPM) proposed by Lazebnik et al. [81] divides the image into blocks

and concatenates all the histograms to form a vector descriptor which incorporates the

spatial layout of the visual word. The BOW and this SPM extension are generally used

in conjunction with non-linear classifiers. In this case, the computational complexity is

O(N3) and the memory complexity is O(N2) in the training phase, where N is the size

of the training dataset. This complexity limits the scalability of BOW- and SPM-based

non-linear SVM methods.

In order to limit the quantization error, Yang et al. [158] propose a linear spatial pyramid

matching method based on sparse coding (ScSPM). A max pooling spatial pooling re-

places the average pooling method for improved robustness to local spatial translations.

A very successful method is the improved Fisher Kernel (FK) proposed by Perronnin et

al. [109] in the context of image categorization. The idea of FK [53, 107] is to character-

ize an image with the gradient vector of the parameters associated with a pre-defined

generative probability model (a gaussian mixture in [107]). This representation is subse-

quently fed to a linear discriminative classifier and can be used jointly with other tech-

niques such as the SPM representation, power-law [109] and L2 normalizations. The FK

boosts the classification accuracy, at the cost of a high descriptor dimensionality, which

is two orders of magnitude larger than BOW for the same vocabulary size. However,

the FK is classified using a linear SVM, which counter-balance the higher cost of the

non-linear classifiers involved in BOW-based classification. Other improvements are

achieved by combining different types of local descriptors or by integrating objects lo-

calization task [50].

This chapter follows another line of research on building a kernelized efficient match-

ing system. Various similarity matching methods are proposed in the literature. Some

of these use feature correspondences to construct an image comparison kernel which is

compatible with SVM-based classification [20]. Pyramid match kernel [48] represents a

bag of features as a distribution of prototypes of points of interest, whereas Gosselin et

al. [47] work with regions. Bo and Sminchisescu [13] propose an effective kernel com-

putation through low-dimensional projection. Duchenne et al. [33] extend the region-to-
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Figure 4.1: Proposed image classification system architecture.

image matching method of Kim et al. [69], and formulate image graph matching as an

energy optimization problem, whose nodes and edges represent the regions associated

with a coarse image grid and their adjacency relationships.

A very simple matching-based method is the one proposed by Boiman et al. [14], who

use a Nearest Neighbor (NN) as a nonparametric model, with does not require any train-

ing phase. Two approaches are considered: NN Images-to-Images and NN Images-to-

Classes. For the first approach, each test image is compared to all known images and

the class of the closest image is chosen and assigned to queried image. The second ap-

proach pools all descriptors of all the images belonging to each class to form a single

representation of that class. A given image is then compared to all the classes. NN

Images-to-Classes achieves good results on standard benchmarking datasets. Tuytelaars

et al. [135] exploited the kernel complementarity by combining NN and BOW. However,

as shown in our experimental section, our matching-based method is the first to report

competitive results against the best encoding method, namely the FK.

4.2 Proposed approach

Figure 4.1 gives an overview of our method. We first extract local features on a dense

grid. For this purpose, we propose an improved variant of the SIFT [85] descriptor. It bet-

ter takes into account the contrast information than the original one. These descriptors

are individually encoded using the Hamming Embedding technique [62], which repre-

sents each descriptor by a visual word and a short binary signature. This binary vector

is shown to integrate some residual information about the class which is not captured by

the visual word. At this stage, the similarity between two images is done by computing

the score produced by HE. More precisely, we used the extended HE method [61] by

Jégou et al., which integrates a regularization technique to address the visual burstiness

phenomenon encountered in images. The images are then described in a similarity space,

which amounts to constructing a vector whose components correspond to a similarity to
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Figure 4.2: Proposed variant of SIFT

a fixed set of training images. A linear SVM classifier is then learned in this similarity

space.

4.2.1 Feature extraction

We extract SIFT [85] descriptors from a dense grid. More precisely, we adopt the same

grid parameters as used in [21], i.e., a spatial stride of 3 pixels with multiple resolutions.

These extracted patches are described using a local descriptor derived from the original

SIFT descriptor [85]. The proposed variant of SIFT aims at addressing the following

issues:

• A strong gradient, such as generated by a boundary, gives an overwhelming im-

portance to a few components in the SIFT descriptor. Lowe proposes a solution [85]

to address this problem by clipping the components whose value is larger than 20%

of the whole energy. However, this solution is not satisfactory since it does not cor-

rect the components which magnitude is lower than this threshold.

• The SIFT descriptor are L2-normalized1, in order to ensure invariance to intensity

changes. However, this solution completely discards the absolute value of the gra-

dient, which is a meaningful information.

• Dense patch sampling produces many uniform patches which are not very infor-

1In typical implementations, they are finally multiplied by a constant such that the components lie in the

range [0..255], in order to encode each component with 1 byte.
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mative. Worst, uniform patches have a low signal to noise ratio. Consequently,

the normalization that is performed to achieve intensity-invariance magnifies the

noise.

To address these issues, the SIFT generation procedure is modified as follows. Starting

with the SIFT descriptor before clipping and normalization,

1. The descriptors with zero norm are filtered out, which amounts to removing the

uniform patches.

2. Instead of the clipping procedure, each component is square rooted. This power-

law component-wise regularization is similar to the one performed in the im-

proved Fisher Kernel [109], but here applied directly on the local descriptor.

3. Finally, instead of using the L2 normalization, the final vector is normalized by the

square root of the L2 norm of the transformed descriptor. This gives a better trade-

off between full invariance to intensity change and keeping the information about

the absolute intensity measure.

The above explained SIFT variant is compared with SIFT in Figure 4.2. We have evalu-

ated the interest of this SIFT variant on the PASCAL VOC 2007 classification benchmark.

For this we use our proposed approach described in Section 4.2.4 as well as the improved

FK method [109]. We observe gain of around 2% of mAP when this SIFT variant is used

with our approach for classification. Fisher Kernel with this variant achieves an mAP

of 59.8% and 62.2% without and with spatial grid, respectively. These results are 0.5 to

1.5% better than the regular SIFT descriptor in the same setup.

4.2.2 Hamming Embedding

The Hamming Embedding method of [60] is a state of the art method for image retrieval.

It provides an accurate way of computing the similarity between two images based on

the distance between their local descriptors. It can be seen as an extension of BOW,

where a better representation of the images is obtained by adding, to the visual word, a

short binary signature that refines the representation of each local descriptor.

To generate the binary signature, each descriptor is first projected onto a m-dimensional

space by a fixed random rotation matrix. Each projected component is compared with a

median value learned, in an unsupervised way, on an independent dataset. This compar-

ison produces either a 0 or a 1 per component, producing a bit-vector of length m. This

binary signature gives a better localization of the local descriptor in the Voronoi cell asso-

ciated with the visual word. Figure 4.3 illustrates this method for a 2-dimensional feature

space (m = 2). Each red dot shows a descriptor. The cluster centers (visual words) are

represented by the blue dots. For a given cell, the hyperplanes or axes (shown in dashed

lines) represent the decision boundaries associated with the comparison of the projected
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Figure 4.3: Hamming Embedding matching: In case of bag of words, being in the same cluster

descriptors x and y match. While with HE matching depends on the relative location of the

descriptors.

components with the median values. As a result, the cell is partitioned into 2m sub-cells,

each of which being associated with a given binary signature.

Two descriptors assigned to the same visual word are compared with the Hamming

distance between their binary signatures. They are said to be matched only if the distance

is less than a fixed threshold ht . This provides a more accurate comparison between

descriptors than in the BOW model, where the descriptors are assumed to match if they

are assigned to the same visual word. In the example of Figure 4.3, the descriptors x and

y belong to the same cluster, but have binary signatures 00 and 11, respectively, which

means that they are not similar.

Each successful matching pair votes, which increases the similarity score by a quantity

that depends on the Hamming distance between the binary vectors. The final image sim-

ilarity score is computed as the sum of voting scores and then normalized as in BOW.

For the sake of efficiency, the method uses a modified inverted file structure which incor-

porates the binary signature. As in the original work of Jegou et al. [60] we use m = 64,

and consider Hamming thresholds between ht = 20 and ht = 24.

Score weighting As mentioned above, the Hamming distance between two descriptors

is used to weight the voting score. This was first done by considering a Gaussian func-
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Figure 4.4: Empirical distribution of true matches and false matches as a function of the Ham-

ming distance (hdist). We only show a zoomed version for hdist = 0 to 22. Measurements are

performed on PASCAL VOC 2007 dataset (category boat).

tion [61] of this distance. In this work, we adopt a more simple choice in order to remove

the parameter σ associated with the Gaussian function. More precisely, we use the lin-

ear scoring function ht−h
ht

, where h is the Hamming distance between the binary signa-

tures. From our preliminary experiments, the results obtained by this linear weighting

scheme are comparable to the original Gaussian weighting function, which requires to

optimize σ by cross-validation.

Burstiness Regularization In [61], a Burstiness regularization procedure is proposed to

achieve improved results in image search. The so-called burstiness handling method

regularizes the score associated with each match, to compensate the bursty statistics of

regular patterns in images. Following these guidelines, we also apply this regularization

to obtain better similarity scores.

4.2.3 HE for classification: motivation

Compared to the BOW representation, the main interest of HE is the additional infor-

mation provided by the binary signature. We have conducted an analysis to evidence
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that the Hamming distances between local descriptors provide a complementary and

discriminative information for image classification. This analysis is performed on the

PASCAL VOC 2007 dataset. SIFT descriptors are extracted from a dense grid as well as

from the Hessian Laplace interest points. Any pair of descriptors is referred to as a true

match if the two descriptors come from same object category, otherwise it is considered

as a false match.

Figure 4.4 gives the empirical distribution, zoomed on small distances, of the true and

false matches, as a function of the Hamming distance hdist, for the category boat. One

can observe that the Hamming distance provides a strong prior about the class: the

expectation of false matches grows faster than that of true matches with hdist, which

confirms that low Hamming distances are more often related to true matches.

Note that all the false matches are accepted in the case of the BOW framework, that

only uses vector quantization. Hamming Embedding based matching is able to filter

out many false matches by choosing a proper threshold ht . Moreover, the contribution

of the matches are advantageously weighted based on the Hamming distance, in order

to reflect the true/false match prior, and therefore to achieve better image classification.

Note that setting a high threshold ht would allow many false-matches to vote (as in

BOW). On the other hand, a very low value is not satisfactory because too few matches

are kept. It is therefore important to choose a threshold in an appropriate range, which

is done by cross validation for a given dataset, see Section 4.3.1.

4.2.4 Hamming Embedding similarity space

We propose to apply HE to represent images in a similarity space. The idea is to represent

an image by its similarity, as output by a strong matching system, to a set of sample

images. There are few methods in the literature that employ such a similarity space for

classification. These include nearest neighbors based approaches like NBNN [14] and

its variations [12, 135] or graph based matching methods [33], see Section 4.1 for a short

survey. However, none of these works is able to compete with the state-of-the-art Fisher

kernel [109].

Similarity space image representation Unlike NBNN, which relies on pure NN classifi-

cation, our motivation is to produce an image representation that can be fed to a strong

classifier such as an SVM. This is more similar to [135] and [33], which use NBNN and

graph-matching in their matching system. In our case, the HE similarity between a given

image and the training images is obtained as the sum of voting scores, with burstiness

regularization. Based on the analysis in Section 4.2.3, such a similarity space embedding

is expected to be more discriminative than BOW. The image is represented by an N di-

mensional vector, where N is the number of training images. Each of its component is a

similarity score to one of the training images. A given image I is therefore represented
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Figure 4.5: Distribution of similarity scores (a) before and (b) after power normalization (with

α = 0.3). Note the change in the scales. The scores are obtained for trainval set of PASCAL VOC

2007 dataset.

as:

IHE = [HEsim(I , I1) HEsim(I , I2) ... HEsim(I , IN)] (4.1)

where HEsim(I , Ii ) is the similarity computed by HE between images I and Ii .

Remark: One of the key advantage of HE over NBNN based methods [14, 135] is that it

does not need to compute the Euclidean nearest neighbors of the descriptors, which is

costly both in terms of memory (to store the raw SIFT descriptors) and efficiency. In con-

trast, HE efficiently achieves accurate matching based on the binary signatures, which in

addition are compact in memory (8 bytes per descriptor).

Normalization of similarity scores Figure 4.5 (top) shows the distribution of the scores

produced by HE. One can observe that most of the scores are low, while few are high,

due to the high discriminative power of this matching method. A similar observation

was done for the Fisher Kernel [109]. Such a score distribution is not desirable for clas-

sification, because large values may generate some artifacts. In order to distribute the

scores more evenly, we therefore adopt the power normalization method proposed to

improve the Fisher Kernel [109]. It consists in applying the following component-wise

function: f (x) = xα. Note that, in our case, the scores are all non-negative.
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When optimizing the parameter α by cross-validation, we consistently obtain a value be-

tween 0.2 and 0.35. The values in this range provide comparable results, which suggests

that this parameter can be set to a constant, e.g., α = 0.3. Figure 4.5 (bottom) shows the

distribution of images scores after power normalization with α = 0.3, again computed

on PASCAL VOC 2007 dataset. As one may observe, the power-law emphasizes the rel-

ative importance of low scores. Finally and similar to the Fisher Kernel, the vector is

L2-normalized, producing the following final image representation:

ÎHE =
[HEsim(I , I1)

α HEsim(I , I2)
α ... HEsim(I , IN)α]

√

ΣN
i=1HEsim(I , Ii )2α

, (4.2)

where the denominator is computed such that the Euclidean norm of the final vector is

1.

Spatial Grid The spatial pyramid matching proposed in [81] is a standard way to intro-

duce some partial geometrical information in a bag-of-words representation. It consists

in subdividing the image in a spatial grid and in computing histograms separately for

each of the spatial regions thus defined. These spatial histograms are weighted accord-

ing to the size of the region, normalized separately and then concatenated together to

produce the final representation.

This idea is adapted to our HE-based representation. It is done by computing the HE

similarities between each of the spatial regions and the training images. A noticeable

difference is that the full training images are used to compute the similarity and not

just the associated regions, because we observed that larger region gives slightly better

results. The image is represented as 1 × 1 and 1 × 3 (three horizontal stripes) grids, that

is 4 regions in total. Other methods usually draw 8 or 21 regions (add 2 × 2 or 4 × 4).

Another difference w.r.t. the method of [81] is that we train a linear SVM separately

for each grid. Two SVMs are trained, one for 1 × 1 grid and another for 1 × 3 grid.

The similarity scores of the three regions of 1 × 3 grid are stacked together to make 3N

dimensional representation for training. The final classification scores are obtained as a

weighted sum of the scores from both the classifiers. These weights are learned by cross-

validating on the validation data. With the proposed image representation, training a

SVM separately for each grid performs better than one SVM for both the grids.

4.3 Experiments and results

In this section, we first present some implementation details and then evaluate the

proposed method on two challenging datasets for image classification: PASCAL VOC

2007 [37] and Caltech-256 [49].
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Figure 4.6: Impact of HE threshold (ht) and α on mAP for test set of PASCAL VOC 2007.

4.3.1 Implementation Details

Only one type of feature is used in all our experiments, namely the SIFT descriptor com-

puted on a dense grid. The descriptors are extracted from patches densely located with

a spatial stride of 3 pixels on the image, under five scales. In [21], it is observed that such

a dense sampling has a positive impact on classification accuracy. Also, it allows us to

provide a consistent comparison of our method with several recent encodings evaluated

in [21], and shows the interest of the variant of the SIFT descriptor introduced in Sec-

tion 4.2.1. As we use dense features, burstiness handling [61] becomes more important as

visual burst increases. Therefore in all the experiments we use burstiness regularization.

For the sake of consistency, the vocabulary size is set K = 4096 for all our experiments

with BOW and HE.

Key parameters There are two important parameters in our method, namely the HE

threshold (ht) and the parameter α involved in the power-law component-wise normal-

ization. The impact of these parameters on the performance is shown in Figure 4.6, on

the PASCAL VOC 2007 benchmark. The best choice of ht , as obtained by cross-validation

for binary signatures of length 64, is a threshold between 20 to 24. Interestingly, these

values are consistent with those used with HE [62] in an image retrieval context. As sug-

gested in Section 4.2, the parameter α is not very sensitive in the range [0.2,0.35], and is

therefore set to the constant α = 0.3 for all the experiments.
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Train Horse, Person Chair, DinnigTable, PottedPlant

Person

TVmonitor, Chair Aeroplane Sheep Car, Bicycle

Cat, Sofa Bus, Car Bird Bottle, Dog

Figure 4.7: Examples from VOC-Pascal 2007 [37] dataset.

4.3.2 PASCAL VOC 2007

Evaluation protocol The PASCAL VOC 2007 [37] dataset contains about 10,000 images

split into train, validation and test sets. It has 20 object categories and is considered a chal-

lenging dataset because of significant variations in appearances and poses with frequent

occlusions. Some examples are shown in Figure 4.7, many images in the dataset contain

objects of more than one class. For classification, a 1-versus-rest linear SVM classifier is

trained for each category and the performance is evaluated in terms of average precision

(AP) for each class. The overall performance is measured as the average of these APs,

i.e., it is the mean average precision (mAP). We follow the standard practice of training

on train+validation and testing on test. The cross-validation of the different parameters,

in particular the threshold ht and the C parameter of the SVM (regularization-loss trade

off), is performed by training on the train set and testing on the validation set. The C

parameter is validated for each class whereas ht is validated for the dataset and finally

fixed to ht = 22.
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Methods Codebook Spat grid SVM mAP

FK 256 yes Lin 61.69

FK* 256 yes Lin 62.22

SV 1k yes Lin 58.13

BOW 4k yes Lin 46.54

BOW 4k yes Chi 53.42

LLC 4k yes Lin 53.79

LLC 4k yes Chi 53.47

LLC-F 4k yes Lin 55.87

KCB 4k yes Chi 54.60

HE 4k no Lin 53.98

HE 4k yes Lin 56.68

HE* 4k no Lin 56.31

HE* 4k yes Lin 58.34

HE* + FK* 4k, 256 no Lin 60.84

HE* + FK* 4k, 256 yes Lin 62.78

Table 4.1: Image classification results using PASCAL VOC 2007 [37] dataset with consistent set-

ting of parameters. [FK: Fisher Kernel, FK*: Fisher Kernel with our SIFT variant, SV: super vec-

tor coding, BOW: bag of words, LLC: locally constrained linear coding, LLC-F: LLC with with

original+left-right flipped training images, KCB: Kernel codebook, HE: Hamming Embedding

similarity, HE*: HE with our SIFT variant; Lin/Chi: linear/χ2 Kernel map ].

The state of the art The best results reported on this dataset using only the SIFT feature

were obtained with the Fisher Kernel [109]. They report 58.3% with grid and 55.3%

without grid. Their descriptor dimensionality is typically about 32K (or more) without

spatial grid, and 8 times more with it. In our case, the final representation is equal to

the number of training images (i.e., 5011 here) and 4 times more when using the spatial

grid. Classification results are boosted by improved pooling of Avila et al. [8] (58.5%)

and Krapac et al. [74] (56.7%).

Better results have been reported using more than one feature channel. For instance, the

best classification method (by INRIA) in the original competition [37] obtained 59.4%

using multiple feature channels and costly non-linear classifiers. Similarly, Kernel Code-

book [141] and Yang et al [157] use many channels with soft assignment or sophisticated

multiple Kernel learning to achieve mAP=60.5% and 62.2% respectively. The best results

on this dataset have been obtained either by using costly object localization [35, 50, 126]

or by using extra data [105].

Since different methods employ varying experimental settings (single/multiple feature,

various sampling density and codebook sizes), it is difficult to have a consistent com-

parison. This issue is addressed by Chatfield et al. [21], who perform an independent

evaluation of the recent encoding methods. With a consistent setting of parameters for

all methods, the Fisher Kernel improves to 61.69% and the super vector coding [163]
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Method/Class HE* FK FK* HE* + FK*

Aeroplane 76.50 78.97 80.92 80.75

Bicycle 62.70 57.43 67.39 67.70

Bird 50.23 51.94 57.10 56.77

Boat 68.62 70.92 69.01 69.86

Bottle 28.40 30.79 33.17 33.77

Bus 63.35 72.18 69.08 69.68

Car 79.37 79.94 80.42 81.27

Cat 61.20 61.35 61.51 62.71

Chair 52.52 55.98 55.43 56.26

Cow 45.24 49.61 49.89 51.67

DiningTable 52.85 58.40 58.71 59.22

Dog 47.11 44.77 48.98 49.96

Horse 77.06 78.84 79.56 80.12

Motorbike 64.27 70.81 70.02 70.27

Person 83.18 84.96 84.56 85.20

PottedPlant 32.46 31.72 34.65 37.00

Sheep 41.29 51.00 49.80 46.71

Sofa 50.15 56.41 55.08 55.54

Train 77.02 80.24 81.36 81.81

TVmonitor 53.24 57.46 57.76 57.80

mAP 58.34 61.69 62.22 62.78

Table 4.2: Image classification results per class using PASCAL VOC 2007 [37] dataset. Again,

recall that FK* is the improved Fisher Kernel [109] combined with our better SIFT variant.

achieves a score of 58.13% (reported 64.0%). In Table 4.1, we refer to those results for a

fair comparison. All the results reported in this table are, except for HE, HE* and FK*,

from this paper [21]. Other elements like vocabulary size, classifiers used, spatial grid

are mentioned in the table.

Impact of our SIFT’s variant The method denoted by HE* is our Hamming Embedding

similarity approach combined with the proposed SIFT variant detailed in Section 4.2.1.

Similarly, FK* represents the Fisher Kernel combined with our SIFT variant. A consid-

erable improvement of around 2% is observed by using HE* over HE both with and

without spatial grid. The difference is only that HE uses original SIFT descriptors. As

one can observe the variant also improves in case of Fisher Kernel, FK (original SIFT)

and FK* use exactly the same parameters otherwise.

HE classification Our method, HE* with spatial grid, performs better than all the meth-

ods except the improved Fisher Kernel. With original sift descriptors (HE) mAP of

56.68% is obtained, which again compares favorably to most of the methods. Even with-

out spatial grid HE* achieves a competitive mAP of 56.31%, while relying on a matching-

based method. To our knowledge, it is the first method of that kind that approaches the
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Figure 4.8: Examples from Caltech-256 [49] dataset.

best coding method FK on the PASCAL VOC 2007 benchmark.

Moreover, one would expect such a matching based method to be complementary with

the coding based methods, even by using the same local descriptors in input. To con-

firm this, we combine our Hamming Embedding method (HE*) with the Fisher Kernel

(FK*), using a late fusion of confidence scores. Doing so, we obtain an mAP of 60.84%

and 62.78% without and with spatial grid respectively. Class-wise APs are reported in

Table 4.2 for our approach and its combination with the Fisher Kernel. This combination

improves the results for most of the categories.

4.3.3 Caltech-256

Evaluation protocol The Caltech-256 [49] dataset contains approximately 30K images

falling into 256 categories. Each category contains at least 80 images. Figure 4.8 shows a

few examples from the dataset. There is no provided division of dataset into train and

test though. However, the standard practice is to split the dataset into train and test sets

and repeat each experiment multiple times with different splits. We run experiments
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Methods/ntrain 15 30 45 60

Coding methods

Baseline [49] - 34.10 - -

Kernel Codebook [141] - 27.17 - -

EMK [13] 23.20 30.50 34.40 37.60

SCSPM [158] 27.70 34.02 37.50 40.14

Standard FK [107] 25.60 29.00 34.90 38.50

Improved FK [109] 34.70 40.80 45.00 47.90

LLC [149] - 41.19 - 47.68

Matching-based

Kim et al. [69] - 36.30 - -

NBNN [14] - 38.00 - -

Duchenne et al. [33] - 38.10 - -

HE* 32.49 41.80 46.69 49.83

Table 4.3: Comparison of HE similarity-based representation with the state-of-the-art on Caltech-

256 [49].

with different numbers of training images per category: ntrain = 15, 30, 45, 60. The

remaining images are used for testing. Validation is done on 5 images from train set

by training on ntrain − 5 images. The validated ht is equal to 20 for this dataset. We

run experiments for five random splits for each ntrain. Again a 1-vs-rest linear SVM is

trained for each class. We report the average classification accuracy (standard practice)

across all classes.

Results Table 4.3 compares our results with the best reported ones. We divide the

methods as matching or coding based, all of them use only SIFT feature. Com-

pared to PASCAL VOC, matching-based methods perform comparatively better on

Caltech-256, outperforming many coding approaches such as Kernel-Codebook [141],

Sparse-Coding [158], Standard FK [107] and the baseline by the authors of Caltech 256

dataset [49]. Overall, our method outperforms all the matching and coding based ap-

proaches. Only the improved Fisher Kernel [109] and LLC [149] perform better in the

case of 15 training images. This is not surprising, because in our case the dimensionality

of the final representation is equal to the number of training images. With more training

images, the dimensionality of our descriptor increases and leads to the best results.

4.4 Conclusions

In this chapter, we have presented a novel approach to image classification based on a

matching technique. It consists in combining the Hamming-Embedding similarity-based

matching method with a similarity space encoding, which subsequently allows the use of

a linear SVM. This method is efficient and achieves state-of-the-art classification results

on two reference image classification benchmarks: the PASCAL VOC 2007 and Caltech-

256 datasets. Our approach is one of the very few methods that obtain best results on
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both these datasets. To our knowledge, this method is the first matching-based approach

to provide such competitive results. Furthermore, it is shown to be complementary with

the other best classification method, namely the Fisher kernel.

We believe that the flexibility offered by this framework is likely to be extended, in partic-

ular for a better integration of the geometrical constraints. As a secondary contribution,

we have proposed an effective variant of the SIFT descriptor, which gives a slight yet

consistent improvement on classification accuracy. Its interest has been validated with

the proposed Hamming-Embedding similarity-based matching as well as the Fisher Ker-

nel.
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FIVE

Improved motion description for action

classification

Human actions often convey the essential meaningful content in videos. Yet, recog-

nizing human actions in unconstrained videos is a challenging problem in Computer

Vision which receives a sustained attention due to the potential applications. In partic-

ular, there is a large interest in designing video-surveillance systems, providing some

automatic annotation of video archives as well as improving human-computer interac-

tion. The solutions proposed to address this problem inherit, to a large extent, from

the techniques first designed for the goal of image search and classification. The suc-

cessful local features developed to describe image patches [85, 121] have been trans-

lated in the 2D+t domain as spatio-temporal local descriptors [79, 148] and now include

motion clues [145]. These descriptors are often extracted from spatial-temporal inter-

est points [78, 151]. More recent techniques assume some underlying temporal motion

model involving trajectories [18, 44, 51, 91, 92, 128, 145, 147, 153].

Most of these approaches produce large set of local descriptors which are in turn ag-

gregated to produce a single vector representing the video, in order to enable the use

of powerful discriminative classifiers such as support vector machines (SVMs). This is

usually done with the bag-of-words technique [123], which quantizes the local features

using a k-means codebook. Thanks to the successful combination of this encoding tech-

nique with the aforementioned local descriptors, the state of the art in action recognition

is able to go beyond the toy problems of classifying simple human actions in controlled

environment and considers the detection of actions in real movies or video clips [75, 89].

Despite these progresses, the existing descriptors suffer from an uncompleted handling

of motion in the video sequence.

Motion is arguably the most reliable source of information for action recognition, as

often related to the actions of interest. However, it inevitably involves the back-

ground or camera motion when dealing with uncontrolled and realistic situations.

Although some attempts have been made to compensate camera motion in several

ways [72, 113, 136, 145, 153], how to separate action motion from that caused by the

camera, and how to reflect it in the video description remains an open issue. The motion
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Optical flow vectors Compensated flow vectors

Figure 5.1: Optical flow field vectors (green vectors with red end points) before and after domi-

nant motion compensation. Most of the flow vectors due to camera motion are suppressed after

compensation. One of the contributions of this work is to show that compensating for the domi-

nant motion is beneficial for most of the existing descriptors used for action recognition.

compensation mechanism employed in [72] is tailor-made to the Motion Interchange Pat-

tern encoding technique. The Motion Boundary Histogram (MBH) [145] is a recent ap-

pealing approach to suppress the constant motion by considering the flow gradient. It is

robust to some extent to the presence of camera motion, yet it does not explicitly handle

the camera motion. Another approach [136] uses a sophisticated and robust (RANSAC)

estimation of camera motion. It first segments the color image into regions correspond-

ing to planar parts in the scene and estimates the (three) dominant homographies to

update the motion associated with local features. A rather different view is adopted

in [153] where the motion decomposition is performed at the trajectory level. All these

works support the potential of motion compensation.

As the first contribution of this chapter, we address the problem in a way that departs

from these works by considering the compensation of the dominant motion in both the

tracking stages and encoding stages involved in the computation of action recognition

descriptors. We rely on the pioneering works on motion compensation such as the tech-

nique proposed in [101], that considers 2D polynomial affine motion models for estimat-

ing the dominant image motion. We consider this particular model for its robustness and
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its low computational cost. It was already used in [113] to separate the dominant motion

(assumed to be due to the camera motion) and the residual motion (corresponding to

the independent scene motions) for dynamic event recognition in videos. However, the

statistical modeling of both motion components was global (over the entire image) and

only the normal flow was computed for the latter.

Figure 5.1 shows the vectors of optical flow before and after applying the proposed mo-

tion compensation. Our method successfully suppresses most of the background motion

and reinforces the focus towards the action of interest. We exploit this compensated mo-

tion both for descriptor computation and for extracting trajectories. However, we also

show that the camera motion should not be thrown as it contains complementary infor-

mation that is worth using to recognize certain action categories. The most similar to

our dominant motion compensation approach [56] is the very recently proposed method

of Wang et al. [147]. They also adopt this idea of handling camera motion for improving

motion trajectories and descriptors, but propose different means to achieve it. We further

discuss and compare with their approach in Section 5.6.

Then, we introduce the Divergence-Curl-Shear (DCS) descriptor, which encodes scalar

first-order motion features, namely the motion divergence, curl and shear. It captures

physical properties of the flow pattern that are not involved in the best existing descrip-

tors for action recognition, except in the work of [4] which exploits divergence and vor-

ticity among a set of eleven kinematic features computed from the optical flow. Our DCS

descriptor provides a good performance recognition performance on its own. Most im-

portantly, it conveys some information which is not captured by existing descriptors and

further improves the recognition performance when combined with the other descrip-

tors.

As a last contribution, we bring an encoding technique known as VLAD (vector of lo-

cal aggregated descriptors) [65] to the field of action recognition. This technique is

shown to be better than the bag-of-words representation for combining all the local

video descriptors we have considered. We also employ another higher-order encoding

technique, Fisher vector, which has been used in many recent works on action recogni-

tion [5, 103, 125, 127, 147]. The work presented in this chapter was published in [56].

Here we have also added a few minor extensions to the paper.

The organization of the chapter is as follows. Section 5.1 introduces the motion prop-

erties that we will consider through this chapter. Section 5.2 presents the datasets and

classification scheme used in our different evaluations. Section 5.3 details how we revisit

several popular descriptors of the literature by the means of dominant motion compen-

sation. Our DCS descriptor based on kinematic properties is introduced in Section 5.4. In

Section 5.5, VLAD and Fisher encoding techniques are presented that lead to improved

performance. Section 5.6 provides a comparison with the state-of-the-art. Finally, Sec-

tion 5.7 concludes the chapter.
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5.1 Motion Separation and Kinematic Features

In this section, we describe the motion clues we incorporate in our action recognition

framework. We separate the dominant motion and the residual motion. In most cases,

this will account to distinguishing the impact of camera movement and independent

actions. Note that we do not aim at recovering the 3D camera motion: The 2D parametric

motion model describes the global (or dominant) motion between successive frames.

We first explain how we estimate the dominant motion and employ it to separate the

dominant flow from the optical flow. Then, we will introduce kinematic features, namely

divergence, curl and shear for a more comprehensive description of the visual motion.

5.1.1 Affine motion for compensating camera motion

Among polynomial motion models, we consider the 2D affine motion model. Simplest

motion models such as the 4-parameter model formed by the combination of 2D trans-

lation, 2D rotation and scaling, or more complex ones such as the 8-parameter quadratic

model (equivalent to a homography), could be selected as well. The affine model is a

good trade-off between accuracy and efficiency which is of primary importance when

processing a huge video database. It does have limitations since strictly speaking it im-

plies a single plane assumption for the static background. However, this is not that

penalizing (especially for outdoor scenes) if differences in depth remain moderated with

respect to the distance to the camera. The affine flow vector at point p = (x , y) and at

time t, is defined as

waff(pt) =

[

c1(t)

c2(t)

]

+

[

a1(t) a2(t)

a3(t) a4(t)

][

xt

yt

]

. (5.1)

uaff(pt) = c1(t) + a1(t)xt + a2(t)yt and vaff(pt) = c2(t) + a3(t)xt + a4(t)yt are horizontal

and vertical components of waff(pt) respectively. Let us denote the optical flow vector at

point p at time t as w(pt) = (u(pt), v(pt)). We introduce the flow vector ω(pt) obtained

by removing the affine flow vector from the optical flow vector

ω(pt) = w(pt) − waff(pt). (5.2)

The dominant motion (estimated as waff(pt)) is usually due to the camera motion. In this

case, Equation 5.2 amounts to canceling (or compensating) the camera motion. Note that

this is not always true. For example in case of moving camera with close-up on a moving

actor, the dominant motion will be the affine estimation of the combination of the appar-

ent actor motion and the camera motion. The interpretation of the motion compensation

output will not be that straightforward in this case. However, the resulting ω-field will

still exhibit different patterns for the foreground action part and the background part.

Even when the camera is static, the affine model cannot completely account for actor’s
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complex motion, so there is no major depletion of the action of interest in the residual

or compensated motion. In the remainder, we will refer to the “compensated” flow as

ω-flow.

Figure 5.1 displays the computed optical flow and the ω-flow. We compute the affine

flow with the publicly available Motion2D software1 [101] which implements a real-time

robust multiresolution incremental estimation framework. The affine motion model has

correctly accounted for the motion induced by the camera movement which corresponds

to the dominant motion in the image pair. Indeed, we observe that the compensated flow

vectors in the background are close to null and the compensated flow in the foreground,

i.e., corresponding to the actors, is conversely inflated. The experiments presented along

this chapter will show that effective separation of dominant motion from the residual

motions is beneficial for action recognition. As explained in Section 5.3, we will compute

local motion descriptors, such as HOF, on both the optical flow and the compensated

flow (ω-flow), which allows us to explicitly and directly characterize the scene motion.

5.1.2 Local kinematic features

By kinematic features, we mean local first-order differential scalar quantities computed

on the flow field. We consider the divergence, the curl (or vorticity) and the hyperbolic

terms. They inform on the physical pattern of the flow so that they convey useful infor-

mation on actions in videos. They can be computed from the first-order derivatives of

the flow at every point p at every frame t as























div(pt) = ∂u(pt)
∂x

+ ∂v(pt)
∂y

curl(pt) = −∂u(pt)
∂y

+ ∂v(pt)
∂x

hyp1(pt) = ∂u(pt)
∂x

− ∂v(pt)
∂y

hyp2(pt) = ∂u(pt)
∂y

+ ∂v(pt)
∂x

(5.3)

The divergence is related to axial motion, expansion and scaling effects, the curl to ro-

tation in the image plane. The hyperbolic terms express the shear of the visual flow

corresponding to more complex configuration. We take into account the shear quantity

only:

shear(pt) =

√

hyp2
1(pt) + hyp2

2(pt). (5.4)

In Section 5.4, we propose the DCS descriptor that is based on the kinematic features

(divergence, curl and shear) of the visual motion discussed in this subsection. It is com-

puted on either the optical or the compensated flow, ω-flow.

1http://www.irisa.fr/vista/Motion2D/
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AnswerPhone DriveCar Eat FightPerson

GetOutCar HandShake HugPerson Kiss

Run SitDown SitUp StandUp

Figure 5.2: Examples from Hollywood2 [89] dataset, one for each of the twelve classes.

5.2 Datasets and evaluation

This section first introduces the datasets used for the evaluation. Then, we briefly present

the bag-of-feature model and the classification scheme used to encode the descriptors

which will be introduced in Section 5.3.

Hollywood2. The Hollywood2 [89] dataset contains 1,707 video clips from 69 movies

representing 12 action classes. In Figure 5.2, one example is shown for each class. The

dataset is divided into train set and test set of 823 and 884 samples respectively. Follow-

ing the standard evaluation protocol of this benchmark, we use average precision (AP)

for each class and the mean of APs (mAP) for evaluation.

HMDB51. The HMDB51 [75] dataset is a large dataset containing 6,766 video clips ex-

tracted from various sources, ranging from movies to YouTube. It consists of 51 action

classes, each having at least 101 samples. Many action categories of different types are

covered including the regular day-to-day actions, sports activities and the subtle ones

with very less amount of motion. Some of examples are shown in Figure 5.3. We follow

the evaluation protocol of [75] and use three train/test splits, each with 70 training and

30 testing samples per class. The average classification accuracy is computed over all

classes. Out of the two released sets, we use the original set as it is more challenging and

used by most of the works reporting results in action recognition.

Olympic Sports. The third dataset we use is Olympic Sports [98], which again is ob-

tained from YouTube. This dataset contains 783 samples with 16 sports action classes.
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Catch Draw sword Fall-floor Fencing

Flicflac Laugh Pullup Swing baseball

Pour Smoke Turn Wave

Figure 5.3: Examples from HMDB51 [75] dataset for a few of 51 classes.

Basket-ball Bowling Clean and jerk Discuss-throw

Diving-platform Diving-springboard Hammer-throw High-jump

Javelin-throw Long-jump Pole-vault Shot-put

Snatch Tennis-serve Triple-jump Vault

Figure 5.4: Examples from Olympic Sports [98] dataset, one for each of the sixteen classes.
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One example from each class is shown in Figure 5.4. We use the provided2 train/test

split, there are 17 to 56 training samples and 4 to 11 test samples per class. Mean AP is

used for the evaluation, which is the standard choice.

Bag of features and classification setup. We first adopt the standard BOF [123] ap-

proach to encode all kinds of descriptors. It produces a vector that serves as the video

representation. The codebook is constructed for each type of descriptor separately by

the k-means algorithm. Following a common practice in the literature [138, 145, 148], the

codebook size is set to k=4,000 elements. Note that Section 5.5 will consider encoding

technique for descriptors.

For the classification, we use a non-linear SVM with χ2-kernel. When combining differ-

ent descriptors, we simply add the kernel matrices, as done in [138]:

K (xi , xj) = exp

(

−
∑

c

1

γc
D(xc

i , xc
j )

)

, (5.5)

where D(xc
i , xc

j ) is χ2 distance between video xc
i and xc

j with respect to c-th channel, cor-

responding to c-th descriptor. The quantity γc is the mean value of χ2 distances between

the training samples for the c-th channel. The multi-class classification problem that we

consider is addressed by applying a one-against-rest approach.

5.3 Compensated descriptors

This section describes how the compensation of the dominant motion is exploited to im-

prove the quality of descriptors encoding the motion and the appearance around spatio-

temporal positions, hence the term “compensated descriptors”. First, we briefly review

the local descriptors [30, 79, 89, 145, 148] used here along with dense trajectories [145].

Second, we analyze the impact of motion flow compensation when used in two different

stages of the descriptor computation, namely in the tracking and the description part.

5.3.1 Dense trajectories and local descriptors

Employing dense trajectories to compute local descriptors is one of the state-of-the-art

approaches for action recognition. It has been shown [145] that when local descriptors

are computed over dense trajectories the performance improves considerably compared

to when computed over spatio temporal features [148].

Dense Trajectories [145]: The trajectories are obtained by densely tracking sampled

points using optical flow fields. For optical flow computation an efficient algorithm by

2http://vision.stanford.edu/Datasets/OlympicSports/
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Farnebäck [40] is used. First, feature points are sampled from a dense grid, with step size

of 5 pixels and over 8 scales. Each feature point pt = (xt , yt) at frame t is then tracked to

the next frame by median filtering in a dense optical flow field F = (ut , vt) as follows:

pt+1 = (xt+1, yt+1) = (xt , yt) + (M ∗ F )|(x̄t ,ȳt), (5.6)

where M is the kernel of median filtering and (x̄t , ȳt) is the rounded position of (xt , yt).

The tracking is limited to L (=15) frames to avoid any drifting effect. Excessively short

trajectories and trajectories exhibiting sudden large displacements are removed as they

induce some artifacts. Trajectories must be understood here as tracks in the space-time

volume of the video.

Local descriptors: The descriptors are computed within a space-time volume centered

around each trajectory. Four types of descriptors are computed to encode the shape of

the trajectory, local motion pattern and appearance, namely Trajectory [145], HOF (his-

tograms of optical flow) [79], MBH [26] and HOG (histograms of oriented gradients) [25].

All these descriptors depend on the flow field used for the tracking and as input of the

descriptor computation:

1. The Trajectory descriptor encodes the shape of the trajectory represented by the

normalized relative coordinates of the successive points forming the trajectory. It

directly depends on the dense flow used for tracking points.

2. HOF is computed using the orientations and magnitudes of the flow field.

3. MBH is designed to capture the gradient of horizontal and vertical components of

the flow. The motion boundaries encode the relative pixel motion and therefore

suppress camera motion, but only to some extent.

4. HOG encodes the appearance by using the intensity gradient orientations and

magnitudes. It is formally not a motion descriptor. Yet the position where the

descriptor is computed depends on the trajectory shape.

As in [145], volume around a feature point is divided into a 2×2×3 space-time grid. The

orientations are quantized into 8 bins for HOG and 9 bins for HOF (with one additional

zero bin). The horizontal and vertical components of MBH are separately quantized into

8 bins each.

5.3.2 Impact of motion compensation

The optical flow is simply referred to as flow in the following, while the compensated

flow (see subsection 5.1.1) is denoted by ω-flow. Both of them are considered in the

tracking and descriptor computation stages. The trajectories obtained by tracking with

the ω-flow are called ω-trajectories. Figure 5.5 comparatively illustrates the ω-trajectories

and the trajectories obtained using the flow. The input video shows a man moving away

from the car. In this video excerpt, the camera is following the man walking to the
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(a) Consecutive frames (b) Optical flow trajectories (c) ω-trajectories

Figure 5.5: Trajectories obtained from optical and compensated flows. The green tail is the trajec-

tory over 15 frames with red dot indicating the current frame. The trajectories are sub-sampled

for the sake of clarity. The frames are shown at an interval of 5 frames.

right, thus inducing a global motion to the left in the video. When using the flow, the

computed trajectories reflect the combination of these two motion components (camera

and scene motion) as depicted by Subfigure 5.5(b), which hampers the characterization

of the current action. In contrast, the ω-trajectories plotted in Subfigure 5.5(c) are more

active on the actor moving on the foreground, while those localized in the background

are now parallel to the time axis enhancing static parts of the scene. The ω-trajectories are

therefore more relevant for action recognition, since they are more regularly and more

exclusively following the actor’s motion.

Another example is shown in Figure 5.6, a sequence of HandShake action. Camera is fol-

lowing the person on the left (in black dress), who is moving towards another person

on the right. This induces global motion towards left as displayed by the trajectories

from affine flow in the center of the figure. As a result, there are many trajectories from

flow between the two persons shaking hands, i.e., in the background. After motion com-

pensation, most of the trajectories in the background are suppressed and the resulting

ω-trajectories are more exclusively following the action of interest.

Impact on Trajectory and HOG descriptors. Table 5.1 reports the impact of ω-trajectories

on Trajectory and HOG descriptors, which are both significantly improved by 3%-4% of

mAP on the two datasets. When improved by ω-flow, these descriptors will be respec-

tively referred to as ω-Trajdesc and ω-HOG in the rest of the chapter.

Although the better performance of ω-Trajdesc versus the original Trajectory descriptor

was expected, the one achieved by ω-HOG might be surprising. Our interpretation is

that HOG captures more context with the modified trajectories. More precisely, the orig-
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(a) Optical flow trajectories (b) Affine flow trajectories (c) ω-trajectories

Figure 5.6: Frame sequence of action HandShake is shown with trajectories obtained from optical,

affine and compensated flows. The green tail is the trajectory over 15 frames with red dot indi-

cating the current frame. The trajectories are sub-sampled for the sake of clarity. The frames are

shown at an interval of 5 frames. Note the many trajectories in the background from optical flow

are suppressed in ω-trajectories.
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Descriptor Hollywood2 HMDB51

Trajectory [145] 47.7% –

Baseline (reproduced) 47.7% 28.8%

ω-Trajdesc 51.4% 32.9%

HOG [145] 41.5% –

Baseline (reproduced) 41.8% 26.3%

ω-HOG 45.6% 29.1%

Table 5.1: ω-Trajdesc and ω-HOG: Impact of compensating flow on Trajectory descriptor and

HOG descriptors.

Method Hollywood2 HMDB51

HOF [145] 50.8% –

HOF flow 50.8% 30.8%

(Tracking ω-flow 52.4% 36.8%

flow) both 54.1% 37.7%

HOF flow 50.2% 33.0%

(Tracking ω-flow 52.5% 37.1%

ω-flow) both: ω-HOF 53.9% 38.6%

Table 5.2: Impact of using ω-flow on HOF descriptors: mAP for Hollywood2 and average accu-

racy for HMDB51. The ω-HOF is used in subsequent evaluations.

inal HOG descriptor is computed from a 2D+t sub-volume aligned with the correspond-

ing trajectory and hence represents the appearance along the trajectory shape. When

using ω-flow, we do not align the video sequence. As a result, the ω-HOG descriptor is

no more computed around the very same tracked physical point in the space-time vol-

ume but around points lying in a patch of the initial feature point, whose size depends

on the affine flow magnitude. ω-HOG can be viewed as a “patch-based” computation

capturing more information about the appearance of the background or of the moving

foreground. As for ω-trajectories, they are closer to the real trajectories of the moving

actors as they usually cancel the camera movement, and so, more easier to train and

recognize.

Impact on HOF. The ω-flow impacts both the trajectory computation used as an input

to HOF and the descriptor computation itself. Therefore, HOF can be computed along

both types of trajectories (ω-trajectories or those extracted from flow) and can encode

both kinds of flows (ω-flow or flow). For the sake of completeness, we evaluate all the

variants as well as the combination of both flows in the descriptor computation stage.

The results are presented in Table 5.2 and demonstrate the significant improvement ob-

tained by computing the HOF descriptor with the ω-flow instead of the optical flow.

Note that the type of trajectories which is used, either “Tracking flow” or “Tracking ω-

flow”, has a limited impact in this case. From now on, we only consider the “Tracking
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Method Hollywood2 HMDB51

MBH [145] 54.2% –

MBH flow 54.2% 39.7%

(Tracking flow) ω-flow 54.0% 39.3%

MBH flow 52.7% 40.9%

(Tracking ω-flow) ω-flow 52.5% 40.6%

Table 5.3: Impact of using ω-flow MBH descriptors: mAP for Hollywood2 and average accuracy

for HMDB51.

ω-flow” case where HOF is computed along ω-trajectories.

Interestingly, combining the HOF computed from the flow and the ω-flow further im-

proves the results. This suggests that the two flow fields are complementary and the

affine flow that was subtracted from ω-flow brings in additional information. For the

sake of brevity, the combination of the two kinds of HOF, i.e., computed from the flow

and the ω-flow using ω-trajectories, is referred to as the ω-HOF descriptor in the rest of

this chapter. Compared to the HOF baseline, the ω-HOF descriptor achieves a gain of

+3.1% of mAP on Hollywood 2 and of +7.8% on HMDB51.

Impact on MBH. Since MBH is computed from gradient of flow and cancels the constant

motion, there is practically no benefit in using the ω-flow to compute the MBH descrip-

tors, as shown in Table 5.3. However, by tracking ω-flow, the performance improves

by around 1.3% for HMDB51 dataset and drops by around 1.5% for Hollywood2. This

relative performance depends on the encoding technique. We will come back on this

descriptor when considering higher-order encoding schemes in Section 5.5.

5.3.3 Summary of compensated descriptors

Table 5.4 summarizes the refined versions of the descriptors obtained by exploiting the

ω-flow, and both ω-flow and the optical flow in the case of HOF. The revisited descrip-

tors considerably improve the results compared to the original ones, with the noticeable

exception of ω-MBH which gives mixed performance with a bag-of-features encoding

scheme.

Another advantage of tracking the compensated flow is that fewer trajectories are pro-

duced. For instance, the total number of trajectories decreases by about 9.16% and

22.81% on the Hollywood2 and HMDB51 datasets, respectively. Note that exploiting

both the flow and the ω-flow do not induce much computational overhead, as the latter

is obtained from the flow and the affine flow which is computed in real-time and already

used to get the ω-trajectories. The only additional computational cost that we introduce

by using the descriptors summarized in Table 5.4 is the computation of a second HOF
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Descriptor Tracking Computing ω-flow

with descriptor with descriptor

Trajectory ω-flow N/A ω-Trajdesc

HOG ω-flow N/A ω-HOG

HOF ω-flow ω-flow + flow ω-HOF

MBH ω-flow ω-flow ω-MBH

Table 5.4: Summary of the updated ω-flow descriptors

descriptor, but this stage is relatively efficient and not the bottleneck of the extraction

procedure.

5.4 Divergence-Curl-Shear descriptor

This section introduces a new descriptor encoding the kinematic properties of motion

discussed in Section 5.1.2. It is denoted by DCS in the rest of this chapter.

Combining kinematic features. The spatial derivatives are computed for the horizontal

and vertical components of the flow field, which are actually horizontal (MBHx) and

vertical (MBHy) parts of MBH descriptor. The input frame and the computed optical

flow are shown with these two gradients in Figure 5.7(a). These gradients are in turn

used to compute the divergence, curl and shear scalar values as given by Equation 5.3.

Figure 5.7(b) shows these three kinematic features computed for the input frame.

We consider all possible pairs of kinematic features, namely (div, curl), (div, shear) and

(curl, shear). At each pixel, we compute the orientation and magnitude of the 2-D vector

corresponding to each of these pairs. Figure 5.7(c) illustrates the information captured

by these three pairs. The orientation is quantized into histograms and the magnitude is

used for weighting, similar to SIFT. Our motivation for encoding pairs is that the joint

distribution of kinematic features conveys more information than exploiting them inde-

pendently. Another example is shown in Figure 5.8 to illustrate the information captured

by our descriptor.

Implementation details. The descriptor computation and parameters are similar to

HOG and other popular descriptors such as MBH, HOF. We obtain 8-bin histograms

for each of the three feature pairs or components of DCS. The range of possible angles is

2π for the (div,curl) pair and π for the other pairs, because the shear is always positive.

The DCS descriptor is computed for a space-time volume aligned with a trajectory, as

done with the four descriptors mentioned in the previous section. In order to capture the

spatio-temporal structure of kinematic features, the volume (32 × 32 pixels and L = 15

frames) is subdivided into a spatio-temporal grid of size nx × ny × nt , with nx = ny = 2
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Frame Optical flow

Horizontal gradient Vertical gradient

(a) Input frame, optical flow and the horizontal (MBHx) and vertical (MBHy) gra-

dients of the optical flow.

Divergence Curl Shear

(b) Divergence, curl and shear computed from the same optical flow above.

Div-curl Div-shear Curl-shear

(c) Joint information captured by each of the 3 possible pairs of kinematic features.

Figure 5.7: Illustration of the information captured by the kinematic features and their 3 possible

pair combinations. Divergence, curl and shear are scalar quantities, for rest, flow/orientation is

indicated by color and magnitude by saturation. The example (wave action) is from HMDB51 [75].
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Frame Optical flow

Divergence Div-curl

Curl Div-shear

Shear Curl-shear

Figure 5.8: An example of pullup action from HMDB51 [75] to illustrate DCS. Divergence, curl

and shear are scalar quantities, for images in the right column, flow/orientation is indicated by

color and magnitude by saturation.
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and nt = 3. These parameters have been fixed for the sake of consistency with the

other descriptors. For each pair of kinematic features, each cell in the grid is represented

by a histogram. The resulting local descriptors have a dimensionality equal to 288 =

nx × ny × nt × 8× 3. At the video level, these descriptors are encoded into a single vector

representation using either BOF or the higher-order encoding schemes introduced in the

next section.

5.5 Higher-order representations: VLAD and Fisher Vector

In this section, we employ two higher-order encodings for aggregation of local features:

VLAD [65] and Fisher vector [107, 109]. Below, we briefly introduce them and give the

performance achieved for all the descriptors introduced along the previous sections.

VLAD. It is a descriptor encoding technique that aggregates the descriptors based on

a locality criterion in the feature space. To our knowledge, this technique is first time

considered for action recognition in our work [56]. Similar to BOF, VLAD relies on a

codebook C = {c1, c2, ...ck} of k centroids learned by k-means. The representation is

obtained by summing, for each visual word ci , the differences x − ci of the vectors x

assigned to ci , thereby producing a vector representation of length d × k , where d is the

dimension of the local descriptors. We use the codebook size, k = 256.

Fisher vector. This encoding uses Gaussian Mixture Models (GMM) for vocabulary

building. It captures the first and second order differences between the image descrip-

tors and the centers of a GMM. We use the same codebook size as used for VLAD, i.e.,

256 Gaussians. We apply Principal Component Analysis (PCA) on the local descriptors

and reduce the dimensionality by factor of two, as done in [109] . Fisher has extra d di-

mensions per Gaussian to add second order moments, therefore, the final representation

is of 2 × d/2 × k dimensions.

Despite this large dimensionality, these representations are efficient because they are

effectively compared with a linear kernel. Both of them are post-processed us-

ing a component-wise power normalization, which dramatically improves its perfor-

mance [65]. While cross validating the parameter α involved in this power normal-

ization, we consistently observe, for all the descriptors, a value between 0.15 and 0.3.

Therefore, this parameter is set to α = 0.2 in all our experiments. For classification, we

use a linear SVM and one-against-rest approach everywhere, unless stated otherwise.

Impact on existing descriptors. These higher-order representations encode more infor-

mation and hence are less sensitive to quantization parameters. This property is inter-

esting in our case, because the quantization parameters involved in the local descriptors

have been used unchanged in Section 5.3 for the sake of direct comparison. They might
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Descriptor Hollywood2 HMDB51

Fisher VLAD BOF Fisher VLAD BOF

ω-Trajdesc 50.3% 45.5% 51.4% 33.0% 27.8% 32.9%

ω-HOG 50.5% 44.1% 45.6% 37.4% 28.9% 29.1%

ω-HOF 57.7% 53.9% 53.9% 47.1% 41.3% 38.6%

ω-MBH 59.0% 55.5% 52.5% 48.0% 43.3% 40.6%

ω-DCS 56.5% 52.5% 50.2% 42.3% 39.1% 35.8%

ω-DCS + ω-MBH 59.3% 56.1% 53.1% 49.7% 45.1% 41.2%

ω-Trajdesc + ω-HOG + ω-HOF 61.9% 59.6% 58.5% 52.6% 47.7% 45.6%

Table 5.5: Performance of VLAD with ω-Trajdesc, ω-HOG, ω-HOF, ω-DCS and ω-MBH descrip-

tors and their combinations.

be suboptimal when using the ω-flow instead of the optical flow on which they have

initially been optimized [145].

In Table 5.5, we compare these encodings with BOF. For all the descriptors VLAD im-

proves over BOF and Fisher further improves over VLAD, with exception of ω-Trajdesc

and ω-HOG. BOF performs better than VLAD for these two descriptors on both the

datasets, while it just exceeds Fisher for ω-Trajdesc on Hollywood2. For all other cases,

these encodings significantly outdo BOF, especially Fisher with boost of up to 7%.

Another thing to observe is that the gain is more for the descriptors having larger di-

mensionality. This is beneficial when combining different descriptors. Consequently,

for the two combinations considered: (a) ω-MBH + ω-DCS and (b) ω-Trajdesc + ω-HOG

+ ω-HOF, VLAD beats BOF, even though BOF did better individually with lower di-

mensional descriptors. Improvement obtained by Fisher for these combinations is even

larger, ranging +7-9% over BOF and around +4-5% over VLAD on HMDB51. We also ob-

serve that ω-DCS is complementary to ω-MBH and adds to the performance. Still DCS

is probably not best utilized in the current setting of parameters.

5.5.1 Combining Trajectories

We have seen that with ω-descriptors results are boosted, this is due to effective sepa-

ration of dominant motion and residual motion, i.e., camera motion and action-related

motion. However, as we already mentioned before, the camera motion also contains

useful information and should not be thrown away. Here, we use this complementary

information by combining trajectories from optical flow with ω-trajectories. Table 5.6

reports the results for Hollywood2 when: (i) optical flow is used for trajectory extrac-

tion and descriptor computation, (ii) ω-flow is used for description along ω-trajectories

and (iii) the combination of the two. The results are reported for both VLAD and Fisher

vector; Table 5.7 reports the same for HMDB51. The performance for each descriptor im-

proves by combining the two types of trajectories, with both the encodings and on both
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Descriptor flow trajectories + flow ω-trajectories + ω-flow Combination

VLAD Fisher VLAD Fisher VLAD Fisher

Trajectory 40.2% 44.5% 45.5% 50.3% 48.2% 52.7%

HOG 40.2% 48.4% 44.1% 50.5% 44.5% 51.8%

HOF 47.8% 52.2% 51.8% 56.3% 54.2% 58.1%

MBH 55.1% 58.5% 55.5% 59.0% 56.8% 59.6%

DCS 53.1% 55.3% 52.5% 56.5% 54.7% 57.3%

All five 59.6% 60.6% 62.0% 63.9% 62.9% 64.6%

Table 5.6: Combination of trajectories from optical flow and ω-trajectories with VLAD and Fisher

aggreagation on Hollywood2 dataset.

Descriptor flow trajectories + flow ω-trajectories + ω-flow Combination

VLAD Fisher VLAD Fisher VLAD Fisher

Trajectory 24.6% 27.7% 27.8% 33.0% 31.6% 35.6%

HOG 27.0% 37.9% 28.9% 37.4% 31.2% 41.4%

HOF 33.7% 41.8% 38.5% 46.4% 40.5% 47.8%

MBH 43.4% 49.3% 43.3% 48.0% 47.0% 50.6%

DCS 39.0% 44.4% 39.1% 42.7% 41.9% 45.6%

All five 49.2% 52.9% 52.0% 55.4% 52.6% 56.0%

Table 5.7: Combination of trajectories from optical flow and ω-trajectories with VLAD and Fisher

aggreagation on HMDB51 dataset.

the datasets. This shows the importance of the camera motion that is integrated with the

optical flow.

5.6 Comparison with the state of the art

This section reports our results with all descriptors combined and compares our method

with the state of the art.

Descriptor combination. Table 5.8 reports the results obtained when the descriptors are

combined. Since we use Fisher, our baseline is updated that is combination of Trajec-

tory, HOG, HOF and MBH with Fisher vector representation. When DCS is added to

the baseline there is an improvement of 0.6% and 1.1% for Hollywood2 and HMDB51

respectively. With combination of all five compensated descriptors we obtain 63.8% and

54.8% on the two datasets. This is a large improvement even over the updated base-

line, which shows that the proposed motion compensation and the way we exploit it are

significantly important for action recognition. When descriptors computed using both

types of trajectories are combined as explained in the subsection 5.5.1, there is further

increase. Finally, we reach 64.6% and 56.0% with all five descriptors (64.2% and 55.4%

without DCS descriptor).
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Combination Hollywood2 HMDB51

Trajectory+HOG+HOF+MBH 60.0% 51.8%

Trajectory+HOG+HOF+MBH+DCS 60.6% 52.9%

ω-Trajdesc +ω-HOG +ω-HOF +ω-MBH +ω-DCS 63.8% 54.8%

All but DCS descriptor with combination of trajectories 64.2% 55.4%

All 5 descriptors with combination of trajectories 64.6% 56.0%

Table 5.8: Different combinations descriptors and trajectories using Fisher representation.

The comparison with the state of the art is shown in Table 5.9. In Jain et al. [56], our

approach outperformed all the previously reported results in the literature. In par-

ticular, on the HMDB51 dataset, the improvement over the best reported results till

then was more than 11% in average accuracy. More recently, new methods were pro-

posed [103, 147, 164], which yielded even better results. Approach of Wang et al. [147] is

based on the same notion as our ω-trajectories and ω-flow, i.e., to compensate for cam-

era motion. Their camera motion estimation is based on estimating homography using

RANSAC between two consecutive frames. To match feature points they use SURF de-

scriptors in addition to dense optical flow. The inconsistent matches due to human mo-

tion are removed by human detection for better camera motion estimation. They use

Fisher vector to aggregate local descriptors.

In this chapter, with Fisher vector representation and combination of both optical flow

trajectories and ω-trajectories, we have further improved our results. Both these addi-

tions to our approach [56] have boosted our results to match the best published result till

date of Wang et al. [147] on this two datasets. We include one extra descriptor, DCS and at

the same time do not use human detection. So if we compare our approach without DCS

and method in [147] without human detection, there is not much difference between the

two. Our method leads by 1.2% on Hollywood and trails by 0.5% on HMDB51.

On Olympic Sports dataset we obtain mAP of 85.2%. The best reported mAPs on this

dataset are by Liu et al. [84] (74.4%), Jiang et al. [66] (80.6%) and recently by Wang et

al. [147] (91.1%). Brendel et al. [17] and Gaidon et al. [44] obtained average accuracy of

77.3% and 82.7% respectively. Our method performs better than all these methods with

notable exception of improved trajectories of Wang et al. [147]. The main reason is that

their motion compensation involves warping the second frame according to the camera

motion estimation and then recomputing the optical flow for each pair of consecutive

frames. This is better suited for MBH descriptor as it is computed from gradient of flow

where the constant motion is canceled. As a result, our approach of direct canceling

of dominant motion is not as effective though it is more efficient as we do not have to

compute optical flow again.
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Hollywood2 HMDB51

Ullah et al. [138] 55.7% Kuehne et al. [75] 22.8%

Wang et al. [145] 58.3% Sadanand et al. [120] 26.9%

*Vig et al. [143] 60.0% Orit et al. [72] 29.2%

Jiang et al. [66] 59.5% *Jiang et al. [66] 40.7%

Jain et al. [56] 62.5% Jain et al. [56] 52.1%

Zhu et al. [164] 61.4% Zhu et al. [164] 54.0%

Oneata et al. [103] 63.3% Oneata et al. [103] 54.8%

Wang (w/o HD) et al. [147] 63.0% Wang (w/o HD) et al. [147] 55.9%

Wang (with HD) et al. [147] 64.3% Wang (with HD) et al. [147] 57.2%

Our Method (w/o DCS) 64.2% Our Method (w/o DCS) 55.4%

Our Method (with DCS) 64.6% Our Method (with DCS) 56.0%

Table 5.9: Comparison with the state of the art on Hollywood2 and HMDB51 datasets. *Vig et

al. [143] gets 61.9% by using external eye movements data. *Jiang et al. [66] used one-vs-one multi

class SVM while our and other methods use one-vs-rest SVMs. With one-against-one multi class

SVM we obtain 45.1% for HMDB51. ’HD’ is for human detection.

5.7 Conclusions

This chapter first demonstrates the interest of canceling the dominant motion (predom-

inantly camera motion) to make the computed image motion truly related to actions,

for both the trajectory extraction and descriptor computation stages. It produces signif-

icantly better versions (called compensated descriptors) of several state-of-the-art local

descriptors for action recognition. The simplicity, efficiency and effectiveness of this

motion compensation approach make it applicable to any action recognition framework

based on motion descriptors and trajectories. The second contribution is the new DCS

descriptor derived from the first-order scalar motion quantities specifying the local mo-

tion patterns. It captures additional information which is proved complementary to the

other descriptors. Finally, we show that VLAD and Fisher encoding techniques instead

of bag-of-words boost action descriptors, and overall exhibit a significantly better perfor-

mance when combining different types of descriptors and trajectories. Our contributions

are all complementary and lead to the state-of-the-art results when combined, as demon-

strated by our extensive experiments on the Hollywood 2, HMDB51 and Olympic Sports

datasets.
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CHAPTER

SIX

Action localization with tubelets from motion

Recognizing actions in videos is an active area of research in computer vision. Because

of the many fine grained spatio-temporal variations in action appearance the recognition

performance of existing systems is far from that achieved in other visual tasks such as

image search, face detection, or object recognition. The goal of action classification is

to determine which action appears in the video. Temporal action detection estimates,

additionally, when it occurs by providing a temporal interval. This chapter specifically

considers the problem of action localization: the objective is to detect when and where

action of interest occurs.

The expected output of such an action localization system is typically a subvolume en-

compassing the action of interest. This task can be seen as the counterpart of detection in

images. Since a localized action only covers a fraction of the spatio-temporal volume in a

video, the task is considerably more challenging than action classification and temporal

detection.

One application of action localization is video surveillance, which considers controlled

environments such as the airport videos considered in the Trecvid video-surveillance

task [124]. In contrast, we consider action localization in uncontrolled environments as

in sports videos, sitcoms, etc.

Making the parallel with object detection in images, we notice that there is a large body of

literature that aims at bypassing the costly sliding window approach [144]. The general

strategy is to limit the set of tested windows to an acceptable number by varying opti-

mization strategies such as efficient sub-window search [76] (branch and bound search),

objectness [2] and, more recently, a “Selective Search” strategy [137]. The latter generates

a set of category-independent candidate windows by iteratively agglomerating super-

pixels based on various similarity criterions. It achieves, on average, a similar accuracy

as that obtained by Deformable Part Models [41] (DPM), while drastically reducing the

number of box hypotheses to be tested.

Most action localization systems are inspired by the aforementioned object detection

strategies. For instance, Yuan et al. have extended the branch and bound approach to

85



Enhanced image and video representation for visual recognition

Video 

Segmentation 

Initial 

Segmentation 
Input  

Video 

Tubelets by Selective search 

Figure 6.1: Overview of tubelets from motion: From an initial spatio-temporal segmentation in

super-voxel, such as the one we propose based on motion, we produce additional super-voxels

by merging them based on a criterion capturing the motion similarity. This produces a small set

of tubelets, which is fed to a classifier.

videos [160], while Tian et al. [129] have proposed spatial-temporal DPM (SDPM). A

noticeable exception is selective search [137]: To the best of our knowledge and despite

its amenability to handle varying aspect ratios (in this respect, better than DPM), it has

never been explored for videos.

Our first contribution is to investigate the selective search sampling strategy for videos.

We adopt the general principle and extend it. First, we consider super-voxels instead

of super-pixels to produce spatio-temporal shapes. This directly gives us 2D+t se-

quences of bounding boxes, referred to as tubelets in this chapter, without the need to

address the problem of linking boxes from one frame to another, as required in other

approaches [131, 132].

Our second contribution is explicitly incorporating motion information in various stages

of the analysis. We introduce independent motion evidence as a feature to characterize how

the action motion deviates from the background motion. By analogy to image descrip-

tors such as the Fisher vector [107], we encode the singularity of the motion in a feature
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vector associated with each super-voxel. First, motion is used as a merging criterion in

the agglomerative stage of our sampling strategy. Second, motion is used as an indepen-

dent cue to produce super-voxels partitioning the video.

Our approach offers several advantages. Firstly, we produce a small set of candidate

tubelets. For a given complexity, this allows us to describe them with more expensive

representations. Secondly, the bounding boxes are tailored to super-voxel shapes, which

tends to improve the spatio-temporal adjustment of our bounding box sequences. As a

result, we observe a consistent and significant gain over concurrent approaches for ac-

tion localization. This is not surprising, as the image detection counterpart was recently

shown to outperform DPM, as demonstrated in the VOC’2012 challenge [38]. However,

our motion-based adaptation brings a large benefit, as shown by a comparison with a

more naive adaptation of “selective search” to videos. The work presented in this chap-

ter has been accepted to be published in [58].

This chapter is organized as follows. First, we give more details about the scientific

context in Section 6.1. Section 6.2 describes the general principle of our tubelet sampling,

while Section 6.3 describes how we incorporate motion. The experiments are reported in

Section 6.4, and demonstrate the interest of our method on two public datasets, namely

UCF Sports and MSR-II.

6.1 Related work

In this section, we present existing works into more details, in order to position our

method with respect to the literature. Most references address recognition tasks in

videos, but our work is also related to papers on object recognition, in particular object

localization.

Action classification and localization. Current action recognition methods determine

which action occurs in a video with good accuracy [17, 39, 56, 120, 145]. The task of

localization is more demanding as it also requires to specify where the action happens in

the video. This “location” is often expressed as a cuboid referred to as ‘subvolume’ [19,

129, 160]. Subvolume-based detection is inadequate in the case of complex actions, when

the actor moves spatially or when the aspect ratio varies a lot like the one in Figure 6.2.

Recently, “location” is more precisely defined as a sequence of bounding boxes [77, 132,

133]. The corresponding 2D+t volume, which we refer to as tubelet, tightly bounds the

actions in the video space and provides a more accurate spatio-temporal localization of

actions. However, the method considering this definition are more costly: The search

space is significantly larger [132] than in subvolume-based localization. Therefore, it is

critical to have a sub-sampling strategy for tubelets, as we propose in this chapter.

We have recently witnessed a trend for methods aiming at providing a more precise
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localization, for instance for obtaining generic spatio-temporal human tracks [71] using

a human detector and tracker. In another work [77], the detector and tracker are avoided

by treating the actor location as a latent variable. Raptis et al. [116] selects trajectory

groups that serve as candidates for the parts of an action. This localizes only parts of

actions but this mid-level representation assists classification. In [131, 132], candidate

bounding boxes are generated for each frame separately and then the optimal spatio-

temporal path is found by Max-Path Search. One disadvantage of this approach is that

it requires training a sliding window object detector, which is not only impractical on

larger video datasets but is also unsuitable for very articulated poses with varying aspect

ratios. Rather than considering a video as a set of images, we prefer to consider it as a

spatio-temporal source from the very beginning.

The only methods we are aware of that uses representation similar to tubelets are by

Trichet et al. [134] and Wang et al. [150]. Spatio-temporal tubes are proposed for video

segmentation in [134]. Wang et al. [150] presented a representation for action localization

based on the mutual information of feature trajectories towards the action class. They

modeled human action as spatio-temporal tube of maximum mutual information.

Extensions from object localization. Many action localization approaches are inspired

by box sampling strategies adapted from the object detection literature. The most pop-

ular is the sliding-window approach, extended to sliding-subvolume for actions [129].

Due to its considerable computational cost in object localization, not to mention its

temporal extension to video, many works have attempted to circumvent sliding win-

dows: Efficient subwindow search [76] finds the optimal bounding box in an image by a

branch-and-bound strategy. It has inspired a spatio-temporal variant for action localiza-

tion [160]. DPM [41] is another state-of-art approach that is extended to spatio-temporal

action localization [129]. All these approaches or extensions only detect subvolumes and

are not as precise as the tubelets considered here in our work. Moreover, these samplings

need to be repeated for every new action considered in the video.

Rather than reducing the number of sliding windows, category-independent object de-

tection has been proposed for object localization [1, 36, 88, 114]. The ”proposals” pro-

duced by these methods are 2D-locations likely to contain an object. This class of ap-

proaches was shown successful for salient object detection [42], weakly supervised ob-

ject localization [29], and fully supervised object detection [137]. Category-independent

proposals generate high-quality object proposals on static images. Finally and relatively

different from the aforementioned methods, the object localization technique by Uijlings

et al. [137] is suited for object categories with many articulated poses. It outperforms

DPM for flexible categories such as cat, cow, dog, etc.

In this work, the goal is to generate flexible tubelets that are independent of the action

category. Our approach is inspired by the object sampling of Uijlings [137], yet specif-

ically considers the context of spatio-temporal localization in videos, i.e., of action se-
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quences (and not objects). In this context and as shown in later in the chapter, motion is

a key feature and our method explicitly takes it into account when generating tubelets.

Since actions are highly non-rigid, we use a flexible over-segmentation of the video into

super-voxels. Super-voxels give excellent boundary recall [16, 155, 156] for nonrigid

objects. Thus, in analogy of the 2D super-pixel methods used for static object propos-

als [1, 88, 137], we use super-voxels as the main mechanism to build video tubelets.

6.2 Action sequence hypotheses: Tubelets

This section describes our approach for iteratively sampling a set of candidate box se-

quences or tubelets. We generalize the Selective search [137] method from images to

videos to delineate spatio-temporal action sequences. This generalization from 2D to

2D+t is not straight forward and involves updating certain aspects of the image-based

techniques, such as relying on super-voxels instead of super-pixels. The extra dimension

brings its own challenges, e.g., due to camera-motion, scalability issues etc.

We first give a brief overview of the action localization pipeline. Then, we describe

how tubelets are sampled iteratively. Finally, we focus on an important aspect of the

technique, i.e., the merging criteria and the video features upon which they are built.

Later in Section 6.3, we further extend this approach by incorporating motion in two

stages of the processing pipeline.

6.2.1 Overview of the action localization pipeline

1. Super-voxel segmentation. To generate the initial set of super-voxels, we first rely

on a third-party Graph-based (GB) video segmentation method [155]. We choose

GB over other segmentation methods in [155] because it is more efficient w.r.t. time

and memory, i.e., about 13 times faster than a slightly more accurate hierarchical

version (GBH) [155]. This step produces n super-voxels, to which we associate n

initial tubelets, obtained as the sequences of bounding boxes that tightly encom-

pass the super-voxels.

2. Iterative generation of additional tubelets. This critical stage is detailed in Sub-

section 6.2.2. It consists of n − 1 iterations. Each merges two super-voxels into

a new one. The choice of the two super-voxels to be merged in a given iteration

depends on a similarity criterion that is specifically discussed in Subsection 6.2.3.

3. Descriptor computation. This step computes a bag-of-words (BOW) representa-

tion for each tubelet produced by the previous steps. As local descriptor we em-

ploy MBH [26] computed along the ω-trajectories [56].

4. Classification step. BOW histograms of tubelets are used for training a classifier

per class.
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6.2.2 Hierarchical sampling of tubelets

In this section, our objective is to produce additional tubelets from successive mergings

of the super-voxels produced by the initial spatio-temporal segmentation. The algorithm

is inspired by the selective search method proposed for image localization [137].

Super-voxel generation. We iteratively merge super-voxels in an agglomerative manner.

Starting from the initial set of super-voxels, we hierarchically group them until the video

becomes a single super-voxel. At each iteration, a new super-voxel is produced from

two super-voxels, which are then not considered anymore in subsequent iterations.

Formally, we produce a hierarchy of super-voxels that are represented as a tree: The

leaves correspond to the initial super-voxels while the internal nodes are produced by

the merge operations. The root node is the whole video and the corresponding super-

voxel is produced in the last iteration. Since this hierarchy of super-voxels is organized

as a binary tree, it is straightforward to show that n − 1 additional super-voxels are

produced by the algorithm.

Tubelets. In each frame where it appears, a super-voxel is tightly bounded by a rect-

angle. The temporal sequence of bounding boxes forms a tubelet. The hierarchical al-

gorithm samples tubelets with spatial boxes at all scales and sequences of all possible

lengths in time. Note that a tubelet is a more general shape than the cuboids considered

in earlier works on action localization [77, 132, 133]. As the output of the algorithm, we

have 2n − 1 tubelets, n − 1 of which obtained from the new super-voxels and n from the

initial segmentation.

The merge operation starts by selecting the two super-voxels to be merged. For this

purpose, we rely on similarities computed between all the neighboring super-voxels that

are still active. The similarity measure is discussed in Subsection 6.2.3. After the merge,

we compute the new similarities between the resulting super-voxel and its neighbors.

Figure 6.2 illustrates the method on a sample video. Each color represents a super-voxel

and after every iteration a new entry is added and two are removed. After 1000 it-

erations, observe that two tubelets (blue and dark green) emerge around the action of

interest in the beginning and the end of the video, respectively. At iteration 1720, the

two corresponding super-voxels are merged. The novel tubelet (dark green) resembles

the ground-truth yellow tubelet. This exhibits the ability of our method to group tubelets

both spatially and temporally. As importantly, it shows the capability to sample a tubelet

with boxes having very different aspect ratios. This is unlikely to be coped by sliding-

subvolumes or even approaches based on efficient sub-window search.

Figure 6.3 depicts another example, with a single frame considered at different stages of

the algorithm. Here the initial super-voxels (second image) are spatially more decom-
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Figure 6.2: Illustration of hierarchical sampling of tubelets. Left most. A sampled sequence of

frames (1st, 15th, 25th, 35th, 50th) associated with action ’diving’ from UCF-Sports dataset. The

yellow bounding boxes represent the ground-truth tubelet. Column 2 shows the initial video seg-

mentation used as input to our method. The last two columns show two stages of the hierarchical

grouping algorithm. A tubelet close to the action is also represented by bounding boxes in each

column. Observe how close it is to the ground-truth tubelet in the last column despite the varying

aspect ratios in different frames.
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posed because the background is cluttered both in appearance and in motion (spectators

cheering). Even in such a challenging case our method is able to group the super-voxels

related to the action of interest.

6.2.3 Merging criteria: Similarity measures

We employ five complementary similarity measures to compare super-voxels, in order

to select which should be merged. They are fast to compute. Four of these measures are

adapted from selective search in image: The measures based on Color, Texture, Size and

Fill were computed for super-pixels [137]. We revise them for super-voxels. As our ob-

jective is not to segment the objects but to delineate the action or actors, we additionally

employ a motion-based similarity measure, encoding independent motion evidence (IME)

to characterize a super-voxel.

Merging with color, texture and motion: sC, sT, sM. These three similarity measures are

computed in a similar manner: They describe each super-voxel with a histogram and

for comparison between two super-voxels histogram intersection is used. Though the

method of similarity computation is the same, they differ in the way the histograms are

computed from different characteristics of a given super-voxel:

• The color histogram hC captures the HSV components of the pixels included in a

super-voxel;

• hT encodes the texture or gradient information of a given super-voxel;

• The motion histogram hM is computed from our IME feature, which is detailed in

Section 6.3 devoted to motion.

Apart from being computed on super-voxels instead of super-pixels, hC and hT are iden-

tical to the histograms considered for selective search in images [137]. Please refer to this

prior work for details.

As the process of merging is the same for the histograms, let us generically denote one of

them by h. We compute a ℓ1-normalized histogram hi for each super-voxel ri in the video.

Two histograms hi and hj are compared with histogram intersection, s = δ1(hi , hj). The

histograms are efficiently propagated through the hierarchy of super-voxels. Denoting

rt = ri ∪ rj , the super-voxel obtained by merging the super-voxels ri and rj , we have

ht =
Γ(ri ) × hi + Γ(rj) × hj

Γ(ri ) + Γ(rj)
(6.1)

where Γ(r) denotes the number of pixels in super-voxel r . The size of the new super-

voxel rt is Γ(rt) = Γ(ri ) + Γ(rj).
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Figure 6.3: Example from action ‘Running’: The two images on the top depict a video frame

and the initial super-voxel segmentation used as input of our approach. The next four images

represent the segmentation after a varying number of merge operations.
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Merging criterions based on size and fill: sΓ, sF. The similarity sΓ(ri , rj) aims at merging

smaller super-voxels first:

sΓ(ri , rj) = 1 − Γ(ri ) + Γ(rj)

Γ(video)
(6.2)

where Γ(video) is the size of the video (in pixels). This tends to produce super-voxels

and therefore tubelets of varying sizes in all parts of the video (recall that we only merge

contiguous super-voxels).

The last merging criterion sF measures how well super-voxels ri and rj fit into each other.

We define Bi ,j to be the tight bounding cuboid enveloping ri and rj . The similarity is

given by

sF(ri , rj) =
Γ(ri ) + Γ(rj)

Γ(Bi ,j)
. (6.3)

Merging strategies

Merging strategy can be one of the above discussed merging criteria (or similarity mea-

sures) or it can be a combination of them. For instance, merging can be done based on

only color similarity (sC) or motion similarity (sM); or it can be done using sum of color,

motion and fill similarities (sC + sM + sF). Each merging strategy has a corresponding

hierarchy, starting from n super-voxels, it leads to a set of new n − 1 super-voxels. In

Section 6.4.1, we experiment with various strategies, i.e., combinations of the merging

criteria discussed. The best strategies that yield quality hypotheses using reasonable

number of tubelets are selected. The combined hierarchies of tubelets from these strate-

gies are used as the final hypotheses.

6.3 Motion features

Different ways of exploiting motion information could be envisaged. Since we are con-

cerned with action localization, we need to aggregate super-voxels corresponding to the

action of interest, i.e., points that deviate from the background motion due to camera

motion. We can assume that usually later is dominant motion in the image frame. The

dominant (or global) image motion can be represented by a 2D parametric motion model.

Typically, an affine motion model of parameters θ = (ai ), i = 1...6, or a quadratic model

(equivalent to homography) with 8 parameters can be used, depending on the type of

camera motion and of the scene layout likely to occur:

wθ(p) =(a1 + a2x + a3y , a4 + a5x + a6y)

or wθ(p) =(a1 + a2x + a3y + a7x
2 + a8xy ,

a4 + a5x + a6y + a7xy + a8y
2),

where wθ(p) is the velocity vector supplied by the motion model at point p = (x , y) in

the image domain Ω. In this chapter, we use affine motion model for all the experiments.
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6.3.1 Evidence of independent motion

First, we formulate the evidence that a point p ∈ Ω undergoes an independent mo-

tion (i.e., an actor related motion) at time step t. Let us introduce the displaced frame

difference at point p and at time step t for the motion model of parameter θ : rθ(p, t) =

I (p+wθ(p), t+1)−I (p, t). Here, rθ(p, t) represents the background motion due to camera

motion. To simplify notation, we drop t when there is no ambiguity. At every time step

t, the global parametric motion model can be estimated with a robust penalty function

as

θ̂ = arg min
θ

∑

p∈Ω

ρ(rθ(p, t)), (6.4)

where ρ is the robust function. To solve (6.4), we use the publicly available software

Motion2D [101], where ρ(.) is defined as the Tukey function. ρ(rθ) produces a max-

imum likelihood type estimate: the so-called M-estimate [52]. Indeed, if we write

ρ(rθ) = − log f (rθ) for a given function f , ρ(rθ) supplies the usual maximum likelihood

(ML) estimate. Since we are looking for action related moving points in the image, we

want to measure the deviation to the global (background) motion. This is in spirit of the

Fisher vectors [107], where the deviation of local descriptors from a background GMM

model is encoded to produce an image representation.

Let us consider the derivative of the robust function ρ(.). It is usually denoted as ψ(.) and

corresponds to the influence function [52]. More precisely, the ratio ψ(rθ)/rθ accounts for

the influence of the residual rθ in the robust estimation of the model parameters. The

higher the influence, the more likely the point conforms to the global motion. Con-

versely, the lower the influence, the less likely the point approves to the global motion.

This leads to define the independent motion evidence (IME) as

ξ(p, t) = 1 −̟(p), (6.5)

where ̟(p) is the ratio
ψ(r

θ̂
(p,t))

r
θ̂
(p,t) normalized within [0, 1].

6.3.2 Motion for segmentation

Each frame can be represented with the IME of pixels, ξ(p, t). Figure 6.4(b) shows IMEs

of frames in Figure 6.4(a). In practice, we scale the range of values from [0, 1] to [0, 255]

and quantize the values into integer values. We post-process these IMEs of frames by

applying morphological operations to obtain binary images. These binary images are

applied as masks on the corresponding IME frames to obtain denoised IME maps, dis-

played in Figure 6.4(c). Applying GB video segmentation on sequences of these denoised

maps partitions the video into super-voxels with independent motion. Therefore, we use

it as an alternative for producing our initial super-voxels (Step 1 in Section 6.2). A few

examples of results obtained by applying GB on IME maps are shown in Figure 6.4(d).
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(a) Video frames.

(b) IMEs of frames.

(c) IME maps

(d) IME segmentation (using GB)

Figure 6.4: IME maps for motion feature and segmentation: First two rows show the original

frames and their IMEs. The IME maps and the result of applying GB video segmentation on

them are shown in third and fourth rows.
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Thus resulting tubelets are more adapted to the action sequences than the ones obtained

by applying GB on the original frames, as evaluated in Section 6.4.1.

Figure 6.4 illustrates the process with three examples of different types of action from

UCF-Sports and MSR-II datasets. The first column shows a frame from action “Swing-

Bench”. Here the action of interest is highlighted by IME map itself and then clearly

delineated by segmenting IME maps. Second column shows an example from action

“Running”, though the segmentation does not give an ideal set of initial super-voxels

but the IME map has useful information to be exploited by our motion feature based

merging criterion. An example of “HandWaving” from MSR-II dataset is shown in the

last column. In spite of clutter and illumination variations IME map successfully high-

lights the action.

6.3.3 Motion feature as merging criterion

In this subsection, we define a super-voxel representation for IME maps capturing the

relevant information and efficient enough. This representation is the histogram hM in-

volved in the merging criterion sM mentioned in Section 6.2. We consider the binarized

version of IME maps, i.e., the binary images that resulted from morphological operations.

At every point p, we evaluate the number of points q (including p) in its 3D neighbor-

hood that are set to one. In a subvolume of 5× 5× 3 pixels, this count value ranges from

0 to 75. The motion histogram hMi of these values is computed over the super-voxel

ri . Intuitively, this histogram captures both the density and the compactness of a given

region with respect to the number of points belonging to independently moving objects.

6.4 Experiments

We evaluate our approach on benchmarks: UCF-Sports [118] and MSR-II [19]. The first

dataset consists of sports broadcasts with realistic actions captured in dynamic and clut-

tered environments. This dataset is challenging due to many actions with large displace-

ment and intra-class variability. MSR-II contains videos of actors performing actions

(handwaving, handclapping and boxing) in complex environments. It is suitable for

cross-dataset experiment. As a standard practice, we use the KTH dataset for training.

We first evaluate the quality of tubelet hypotheses generated by our approach. Then,

Section 6.4.2 details our localization pipeline and compares our results with the state-of-

the-art methods on the two datasets.
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Video Segmentation IME Segmentation

Merging Strategy MABO MaxRecall # Tubelet MABO MaxRecall # Tubelet

(σ = 0.6) (σ = 0.6)

Initial voxels 0.362 0.044 862 0.486 0.280 118

M (sM) 0.562 0.432 299 0.529 0.357 90

C (sC) 0.473 0.2428 483 0.511 0.351 93

T (sT) 0.446 0.2336 381 0.512 0.388 81

S (sΓ) 0.478 0.2352 918 0.522 0.352 158

F (sF) 0.509 0.3073 908 0.527 0.388 155

M+S+F 0.572 0.4979 719 0.542 0.403 129

T+S+F 0.526 0.3402 770 0.539 0.463 145

C+T+S+F 0.534 0.3844 672 0.545 0.452 127

M+C+T+S+F 0.581 0.4860 656 0.551 0.415 122

Strategy set I 0.615 0.5821 2346 0.566 0.483 469

Strategy set II 0.620 0.5888 3253 0.568 0.495 625

Table 6.1: Mean Average Best Overlap for tubelet hypotheses using variety of segmentation

strategies from UCF-Sports train set. [M:Independent motion evidence, C: Color, T: Texture, S:

Size, F: 3D Fill, Strategy set I: {M, M+S+F, C+T+S+F, M+C+T+S+F}, Strategy set II: {M, F, M+S+F,

C+T+S+F, M+C+T+S+F}].

6.4.1 Evaluation of tubelet quality

To evaluate the quality of our tubelet hypotheses, we compute the upper bound on

the localization accuracy, as previously done to evaluate the quality of object hypothe-

ses [137], by the Mean Average Best Overlap (MABO) and maximum possible recall. In

this subsection, we extend these measures to videos. This requires measuring the over-

lap between two sequences of boxes instead of boxes.

Localization score. In a given video V of F frames comprising m instances of different

actions, the i th groundtruth sequence of bounding boxes is given by gt i = (B i
1,B

i
2, ...B

i
F ).

If there is no action of i th instance in frame f , then B i
1 = ∅. From the tubelet hy-

potheses, the j th tubelet formed by a sequence of bounding boxes is denoted as, dt j =

(D j
1,D

j
2, ...D

j
F ). Let OVi ,j(f ) be the overlap between the two bounding boxes in frame,

f , which is computed as “intersection-over-union”. The localization score between

groundtruth tubelet gt i and a tubelet dt j is given by:

S(gt i , dt j) =
1

|Γ|
∑

f ∈Γ

OVi ,j(f ), (6.6)

where Γ is the set of frames where at least one of B i
f , D

j
f is not empty. This criterion

generalizes the one proposed by Lan et al. [77] by taking into account the temporal axis.

An instance is considered as localized or detected if the action is correctly predicted by

the classifier and also the localization score is enough, i.e., S(gt i , dt j) > σ, the threshold

for localization score.
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Mean Average Best Overlap (MABO). The Average best overlap (ABO) for a given class

c is obtained by computing, for each groundtruth annotation gt i ∈ G c , the best localiza-

tion from the set of tubelet hypotheses T = {dt j |j = 1 ...m}:

ABO =
1

|G c |
∑

gt i∈G c

max
dt j∈T

S(gt i , dt j). (6.7)

The mean ABO (MABO) synthesizes the performance over all the classes. Note how-

ever that adding more hypotheses necessarily increases this score. So, MABO must be

considered jointly with the number of hypotheses.

Maximum possible recall (MaxRecall). Another measure for quality of localization

used for images is maximum possible recall. It is an upper bound on the recall with

the given tubelet hypotheses. Along with MABO, we also compare different merging

strategies using MaxRecall with a very stringent localization threshold, σ = 0.6.

Table 6.1 reports the MABO, MaxRecall (at σ = 0.6) and the average number of tubelets

for the train-set of UCF-Sports dataset. Different strategies are compared for the two

methods considered for initial segmentation (regular GB, and GB on IME). With regular

GB segmentation, the best hypotheses are clearly produced by the strategies that include

our sM merging criterion: they attain the highest MABO and MaxRecall with the small

number of tubelets. Many combinations of strategies were tried and the two best sets

of strategies were chosen (described in Table 6.1). For the first chosen set, we achieve

MABO=0.615 and MaxRecall=58% with only 2346 tubelets per video. Considering that

the localization score threshold (σ) used in literature is 0.2, these MABO values are very

promising.

The GB segmentation applied on our IME de-noised maps (See Section 6.3) generates

a very good initial set (MABO = 0.486). The MABO and specially MaxRecall further

improve for all the strategies. Although the best values obtained, MABO=0.568 and

MaxRecall=0.495, are lower than those for the original video segmentation, the number

of tubelets is only 625 on an average. This is very useful for large videos where the num-

ber of samples, by sliding-subvolume or even by segmentation, is substantially higher.

The combinations considered in the rest of this section are following. For regular GB

segmentation, MABO and MaxRecall are similar for both the sets, so we choose strategy

set I as it needs lesser number of tubelets. With segmentation of IME maps, we choose

strategy set II for its higher MaxRecall.

6.4.2 Action localization

We, now, evaluate our tubelet hypotheses for action localization. With a relatively small

number of candidate locations, our approach enables the use of expensive and pow-

erful Bag-of-words based representation with large vocabulary sizes. We first extract
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(a) Comparison with concurrent techniques [77, 129] on UCF-Sports. Left: ROC at σ=0.2, Right:

AUC for σ from 0.1 to 0.6.
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(b) Left: complete ROCs are shown for σ from 0.1 to 0.6. Right: class-wise performance for each

class of UCF-Sports is shown, solid green curve shows AUC on an average.

Figure 6.5: Evaluation of UCF-Sports dataset.

state-of-art MBH and HOF descriptors computed along ω-trajectories [56]1. Recently

proposed, ω-flow is obtained by compensating dominant motion from optical flow, and

ω-trajectories are computed using ω-flow. We prefer using ω-trajectories over trajecto-

ries from optical flow [145] because they are more active on the actors, and also fewer

trajectories are produced with ω-flow. To represent a tubelet, we aggregate all the vi-

sual words corresponding to the trajectories that pass through it. For training, we use a

one-vs-rest SVM classifier with Hellinger (square-rooting+linear) kernel.

Experiments on UCF-Sports. This dataset consists of 150 videos with actions extracted

from sports broadcasts. 10 action categories are represented, for instance “diving”,

“swinging-bench”, “horse-riding”, etc. We use the disjoint train-test split suggested by

1We use the code available online:

http://www.irisa.fr/texmex/people/jain/w-Flow
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Lan et al. in [77]. The ground truth is provided as sequences of bounding boxes enclos-

ing the actors. For training, we use the groundtruth tubelets and the tubelets provided

by our method that have localization score greater than 0.7 with the groundtruth. Nega-

tive samples are randomly selected by considering tubelets whose overlap with ground

truth is less than 0.2. We set the vocabulary size to K = 500 for Bag-of-words and use

spatial pyramid [81] with five cells (1x1+2x2). Initial super-voxels are obtained by the

GB segmentation performed on the original videos and strategy set I is used (Table 6.1).

For evaluating the quality of action localization, we follow the criteria explained in [77]

and described in Section 6.4.1. Following previous works, we compare using the ROC

curves and its AUC in Figure 6.5(a). On the left, we plot the ROC curve with σ = 0.2.

In order to be consistent with SDPM and Lan et al., we stop at FPR=0.6 and compute the

AUC only for this part. We report AUCs for thresholds ranging from 0.1 to 0.6 on right

of Figure 6.5(a).

As can be seen from these figures, our approach significantly outperforms both the meth-

ods. Figure 6.5(b), on left, shows the complete ROC curves with different thresholds. We

have almost total recall for σ ≤ 0.2 and even for σ = 0.5 (a more strict criterion com-

monly used for object localization), our recall is around 50%. We also report AUC for

each action class from UCF-Sports on the right of Figure 6.5(b).

Method Boxing Handclapping Handwaving

Cao et al. [19] 0.1748 0.1316 0.2671

SDPM [129] 0.3886 0.2391 0.4470

Tubelets 0.4600 0.3141 0.8579

Table 6.2: Average precisions for MSR-II

Experiments on MSR-II. This dataset consists of 54 videos recorded in crowded envi-

ronment, with many people moving in the background. Each video may contain one

or more of three types of actions: boxing, handclapping and handwaving. An actor

appears, performs one of these actions, and walks away. A single video has multiple ac-

tions (5-10) of different types, making the temporal localization challenging. Bounding

subvolumes or cuboids are provided in the ground-truth. Since the actors do not change

their location, it is as good as a sequence of bounding boxes. The localization criterion

is subvolume-based, so we follow Cao et al. [19] and use the tight subvolume or cuboid

enveloping tubelet. Precision-recall curves and average precision (AP) is used for eval-

uation [19]. Since MSR-II videos are much larger than UCF-Sports videos, to keep the

number of tubelets low, we use the initial super-voxels from the GB segmentation of the

IME maps along with strategy set II.

This dataset is designed for cross-dataset evaluation. Following standard practice, we

train on KTH dataset and test on MSR-II. While training for one class, the videos

from other two classes are used as negative set. We compare with Cao et al. [19] and
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Figure 6.6: Precision/recall: Comparison [19, 129] for the 3 classes on MSR-II.
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Figure 6.7: Motion Vs Color+Texture+Size+Fill (UCF-Sports): Comparison using MBH and HOF

descriptors, performance measured by AUC for σ from 0.1 to 0.6.

Strategy (Descriptor) Boxing Handclapping Handwaving

Motion (MBH) 0.3738 0.2579 0.8759

C+T+S+F (MBH) 0.3953 0.2402 0.8416

Motion (HOF) 0.4046 0.3280 0.8077

C+T+S+F (HOF) 0.4033 0.4320 0.7907

Table 6.3: Motion Vs Color+Texture+Size+Fill (MSR-II): Comparison using MBH and HOF de-

scriptors, and average precision as measure. Note since MSR videos are much larger compared

to UCF-Sports, IME maps are used for segmentation which involve motion information also. The

average number of tubelets per video for Motion and C+T+S+F are 402 and 506 respectively.

SDPM [129] in Figure 6.6. Table 6.2 shows that our tubelets significantly outperform the

two other methods for the three classes.

Impact of sampling strategies and descriptors

Quality of tubelets from various strategies is evaluated using MABO measure in Ta-

ble 6.1. Here we compare, for localization performance, strategy with only mo-

tion as a merging criterion against strategy that combines the other four criteria:

Color+Texture+Size+Fill. We also use HOF descriptors along with MBH to show that

the conclusions drawn with MBH descriptors are also valid with HOF. The results for

UCF-Sports are shown in Figure 6.7 and for MSR-II in Table 6.3 and Figure 6.8. Motion

based criterion performs better than the other 4 combined for UCF-Sports (Figure 6.7). In

case of MSR-II, motion-based strategy is not better, this is because for MSR-II IME maps

are used for segmentation and hence motion information is already included.
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Figure 6.8: Motion Vs Color+Texture+Size+Fill (MSR-II): Precision/recall curves for the three

classes.

Localization Examples

In Figures 6.9 and 6.10, several examples of localizations from UCF-Sports and MSR-

II datasets are shown in diverse challenging settings. As we localize actions spatio-

temporally, i.e., as tubelets, we express them as bounding boxes from an ordered sub-

sequence of 3 frames from the videos rather than showing just one frame.

6.5 Conclusions

We show, for the first time, the effectiveness of selective sampling for action localization

in videos. To this end, we have revisited this concept for videos, by employing motion

for producing super-voxels. Such hierarchical sampling produces category-independent

proposals for action localization (not per class) and implicitly covers variable aspect ra-

tios and temporal lengths. Our independent motion evidence (IME) based representa-

tion of video provides a more efficient alternative for segmentation. The IME motion
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(a) Diving (b) Riding-Horse (c) Golf (d) Swinging-Bar

(e) Kicking (f) Skating (g) Swinging-Bench (h) Skating

Figure 6.9: Localization results shown as a sequence of bounding boxes (UCF-Sports):

Groundtruth is shown in yellow, correctly localized tubelets in green and false positives, missed

detections (or poorly localized ones) in red. Caption below each sequence reports the class de-

tected.
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(a) Boxing (b) HandClapping (c) HandWaving (d) HandClapping

(e) Boxing (f) HandClapping (g) HandWaving (h) Boxing

Figure 6.10: Localization results shown as a sequence of bounding boxes (MSR-II): Groundtruth

is shown in yellow, correctly localized tubelets in green and false positives, missed detections (or

poorly localized ones) in red. Caption below each sequence reports the class detected.
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feature expresses both the individual density and the compactness of the action-related

moving points in the super-voxel. It allows us to build a histogram-based motion simi-

larity for merging super-voxels, supplying a parsimonious tubelet hierarchy. An analysis

shows that the proposed tubelet sampling method heavily benefits from our motion fea-

tures. Overall, our approach outperforms the state of the art for action localization on

two public benchmarks.

Importantly, our method considers a relatively small number of candidate volumes at

test time, i.e., orders of magnitude smaller than in other concurrent approaches. For this

reason, we believe that our method will enable the use of more effective but also more

costly representations of spatio-temporal volumes in future works.
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CHAPTER

SEVEN

Conclusions

This thesis has investigated different aspects of image and video representations, and

contributed in many ways to improve the state-of-the-art performance for several recog-

nition tasks. In images, we improved the matching of local descriptors, and presented

a representation based on Hamming Embedding similarities amenable to classification.

In videos, we have considered the importance of better utilization of motion. With this

notion, we proposed methods to properly distinguish between camera motion and scene

motion for action modeling. First, by improving the description of trajectories and sec-

ond, by revisiting existing descriptors and introducing a new descriptor for action classi-

fication. Lastly, we proposed a hierarchical sampling of videos as super-voxels for action

localization.

In the following, we summarize the main achievements of this thesis and discuss possi-

ble future research directions.

7.1 Summary of contributions

Asymmetric (vector-to-binary code) matching

Our asymmetric version of Hamming Embedding compares the query descriptor, not

binarized, to the binary descriptors coded on the database side. Such an approach leads

to more accurate comparison because the query does not suffer any quantization loss,

while keeping the storage requirements identical since the database vectors are still bi-

narized. This strategy only slightly increases the query processing time.

Hamming Embedding similarity based image representation

A novel image representation based on Hamming Embedding similarities between the

given image and the training images is presented. This is the first time that Hamming

Embedding is used, as a matching-based approach, in the context of image classification.

In contrast to most approaches based on matching, such as NBNN, this approach offers

competing results on PASCAL VOC 2007 benchmark, along with Caltech-256.

109



Enhanced image and video representation for visual recognition

Sub-normalized variant of SIFT

A variant of SIFT is proposed that handles the dominance of strong gradients by square

rooting the descriptors component-wise. This is followed by mild normalization, with

square root of L2 norm, which offers a trade-off between (i) the invariance to intensity

changes and (ii) preserving some information about the absolute values of gradients. A

similar variant of SIFT, RootSIFT, was concurrently proposed by Arandjelvoić et al. [6].

Dominant motion compensation

The dominant motion is approximated using an affine motion model estimated for each

pair of consecutive frames in the video. Cancelling this camera-induced motion com-

ponent from optical flow significantly improves the description for action recognition.

This is because the resulting trajectories and motion descriptors better capture the action-

related motion when using the residual motion or ω-flow. Our results were much ahead

of the state-of-the-art for the three used benchmark datasets at the time of publication.

This approach was later followed by Wang et al. [147], who realized it differently and ad-

ditionally employed human detection to further improve the camera motion estimation

and hence the results.

Divergence-Curl-Shear (DCS) descriptor

A new descriptor that captures kinematic features of motion, namely divergence, curl

and shear, is introduced. Since it encodes the local properties of motion not captured

by other popular descriptors, it is complementary to other descriptors and leads to im-

proved accuracy when combined with them.

Selective sampling of super-voxels

We presented a selective sampling strategy of super-voxels by hierarchical grouping. It

is the first time that category-independent sampling is proposed for action localization.

Apart from generating hypotheses for all classes at once, it implicitly covers variable

aspect ratios and temporal lengths and samples relatively small number of candidate

locations, thereby drastically reducing the computational cost compared to traditional

video localization approaches.

Independent motion evidence (IME)

A novel evidence measure of action-related motion is presented. It is based on IME

maps, which provide a faster alternative for generating initial super-voxels from video.

A new motion feature computed from neighborhoods in the IME map expresses both the

individual density and the compactness of the action-related moving points in the super-

voxel. It allows us to build a histogram-based motion similarity for merging super-

voxels, supplying a parsimonious tubelet hierarchy.
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7.2 Future research

In this section we detail potentially promising directions for future research inspired by

our experiments and the recent progress in the field of computer vision.

Hamming Embedding for classification

Robust descriptor matching of Hamming Embedding has been proved very effective in

image retrieval. We employed Hamming Embedding similarity for image classification;

it can be further explored for other visual classification tasks in images as well as in

videos. Relatively very few matching-based approaches have been proposed for clas-

sification and Hamming Embedding can potentially change this. A possible direction

could be to extend this representation for matching not only descriptors or low-level

features but also mid-level features such as super-pixels in images and super-voxels or

3D regions in videos.

Improving motion compensation for action recognition

In Chapter 5, our dominant motion compensation produced significantly better versions

of several state-of-the-art local descriptors computed along the ω-trajectories that are

more related to actions. Though the performance was good, we observed that certain

aspects of our method can be improved. First, the motion estimation does not conform

to camera motion when there is close-up on the actors. By detecting whenever there is

close-up by using, e.g., face or human detection, such cases can be handled differently.

Second, we choose the affine motion model as it is a good trade-off between accuracy

and efficiency. But there are many other promising options to be considered, such as

quadratic motion model or using multiple motion models, that may be better adapted

to action recognition. Similarly, there are other advanced algorithms [10] for optical flow

computation.

Another important aspect that needs to be analyzed is the use of dominant motion or

camera motion. We mentioned before that the camera motion is not a nuisance and can

add important information in certain scenarios such as sports videos. We observed that

when trajectories from the optical flow are also used along with ω-trajectories, the results

are boosted. This confirms the utility of camera motion. However, we did not use the

camera motion explicitly, which could provide additional information. For instance, sep-

arating it to create exclusive representations such as affine trajectories and then combine

it with ω-trajectories.

Divergence-Curl-Shear descriptor for action recognition

Our DCS descriptor encodes kinematic properties of motion and is complementary to

other descriptors. For the sake of comparison, we presented it with a representation
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similar to MBH with same parameters. We believe that it can be expressed in a bet-

ter way by optimizing the design parameters or even by reconsidering the descriptor

computation procedure. For instance, instead of encoding three pairs separately, there

may be a way to exploit the joint distribution of all three - divergence, curl and shear.

The quantization strategy, mainly inherited from HOG and SIFT, could be probably ex-

tended with the quantization of 3D orientations using regular polyhedrons by Kläser et

al. [70]. It would also be interesting to see the impact of the way in which gradients are

computed, as these kinematic features rely upon the gradients of the flow field.

Improving tubelets for action recognition

The tubelets obtained from our hierarchical grouping of super-voxels cover many spatio-

temporal scales and aspect ratios, and is therefore able to locate very flexible actions

with few hypotheses. However, we found that the temporal localization needs to be

enhanced. To handle partial temporal overlaps, top detected tubelets can be merged and

appraised collectively to obtain a more compact tubelet. For this reassessment, ideas can

be drawn from temporal localization methods like Actom Sequence Models (ASM) of

Gaidon et al. [43].

Tubelets are also a kind of mid-level representation that could be used for action clas-

sification or semi-supervised action localization. One obvious direction is to use it for

classification-by-detection, which is often done in images for object localization [50, 126].

Video as a collection of tubelets can be a promising catalyst for semi-supervised lo-

calization. Again, some inspiration can be drawn from the object localization litera-

ture [119, 159].

Towards efficient action localization

Current methods for action localization are not efficient, as the task is only an emerging

one: The researchers have mainly focused on improving the accuracy. Action classifi-

cation, albeit not real-time, is relatively more efficient and scalable. It has been applied

on large datasets of TRECVID [106] for Multimedia Event Detection (MED) [5, 125] by

resizing videos and sampling frames. This is expected as localization is always more

computationally intensive than classification because large number of possible locations

are evaluated.

Our selective sampling approach, which results in a small number of tubelets, certainly

provides an alternative that can limit the complexity. Nevertheless, the video segmenta-

tion (GB) used to obtain initial super-voxels is the bottleneck. By applying GB on IME

maps, we achieved to make it faster. However, we believe that there is still room for

improvement on this front.
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Résumé en Francais. L’objectif de cette thèse est d’améliorer les représentations des im-

ages et des vidéos dans le but d’obtenir une reconnaissance visuelle accrue, tant pour des

entités spécifiques que pour des catégories plus génériques. Les contributions de cette thèse

portent, pour l’essentiel, sur des méthodes de description du contenu visuel. Nous proposons

des méthodes pour la recherche d’image par le contenu ou par des requêtes textuelles, ainsi que

des méthodes pour la reconnaissance et la localisation d’action dans des vidéos.

En recherche d’image, les contributions se fondent sur des méthodes à base de plongements

de Hamming. Tout d’abord, une méthode de comparaison asymétrique vecteur-à-code est

proposée pour améliorer la méthode originale, symétrique et utilisant une comparaison code-à-

code. Une méthode de classification fondée sur l’appariement de descripteurs locaux est ensuite

proposée. Elle s’appuie sur une classification opérée dans un espace de similarités associées au

plongement de Hamming.

En reconnaissance d’action, les contributions portent essentiellement sur des meilleures

manières d’exploiter et de représenter le mouvement. Finalement, une méthode de localisa-

tion est proposée. Elle utilise une partition de la vidéo en super-voxels, qui permet d’effectuer

un échantillonnage 2D+t de suites de bôıtes englobantes autour de zones spatio-temporelles

d’intérêt. Elle s’appuie en particulier sur un critère de similarité associé au mouvement.

Toutes les méthodes proposées sont évaluées sur des jeux de données publics. Ces expériences

montrent que les méthodes proposées dans cette thèse améliorent l’état de l’art au moment de

leur publication.

Résumé en Anglais. The subject of this thesis is about image and video representations for

visual recognition. This thesis first focuses on image search, both for image and textual queries,

and then considers the classification and the localization of actions in videos.

In image retrieval, images similar to the query image are retrieved from a large dataset.

On this front, we propose an asymmetric version of the Hamming Embedding method, where

the comparison of query and database descriptors relies on a vector-to-binary code comparison.

For image classification, where the task is to identify if an image contains any instance of the

queried category, we propose a novel approach based on a match kernel between images, more

specifically based on Hamming Embedding similarity. We also present an effective variant of

the SIFT descriptor, which leads to a better classification accuracy.

Action classification is improved by several methods to better employ the motion inherent to

videos. This is done by dominant motion compensation, and by introducing a novel descriptor

based on kinematic features of the visual flow. The last contribution is devoted to action

localization, whose objective is to determine where and when the action of interest appears in

the video. A selective sampling strategy produces 2D+t sequences of bounding boxes, which

drastically reduces the candidate locations. The method advantageously exploits a criterion

that takes in account how motion related to actions deviates from the background motion.

We thoroughly evaluated all the proposed methods on real world images and videos from

challenging benchmarks. Our methods outperform the previously published related state of the

art and remains competitive with the subsequently proposed methods.


