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1

Introduction

With recent developments of two-dimensional and one-dimensional nano structured materials,
many limits of bulk (three-dimensional) material properties are being exceeded. Although many
research works have been done in this field recently, there is still a need for a better understand-
ing of thermal phenomena in reduced dimension systems. Typically, there are two types of
interest: at a technological level, the design of novel structures with desirable thermal proper-
ties is highly required for different applications. Away from the technological considerations,
the study of thermal properties at the nanoscale presents fundamental questions about the inter-
action of heat transfer and microstructure at these small length scales.

Thermal properties are essential to optimize the performance of many low temperature
and/or nanostructure devices. Moreover, multi-domain coupling (electrical, mechanical and
thermal) is an essential feature of micro and nanoscale devices. These devices are commonly
fabricated out of thin film materials. While electro-mechanical coupling is commonly exploited
in microelectronic and other small-scale systems, the thermal domain must also be consid-
ered in these applications. Thermo-mechanical coupling in thin films is typically studied in
terms of temperature effects on mechanical properties, and not from a thermal transport per-
spective. Furthermore, measuring the thermal properties of these nanostructured materials can
prove challenging because of their small size and potentially large aspect ratios.

In this thesis work, we have been interested in studying the thermal properties of silicon
nitride thin films and the effects of intrinsic stress on its thermal properties. Therefore, thermal
properties of both silicon nitride low stress and high stress are measured respectively. These
measurements have been performed with 50 nm and 100 nm membrane thick of both SiN low
stress and high stress from low temperature (300 mK) up to room temperature. To attain this
objective, we have developed a system designed to measure with a very high sensitivity both the
thermal conductance and the heat capacity of suspended membrane. This is a versatile method
based on the 3ω method coupled to the Völklein geometry (suspended membrane) and can
cover a wide temperature range. Finally, we propose that the SiN membranes that have been
characterized can be used as a highly sensitive sensor to measure thermal properties of another
material deposited on the backside of the membrane.

In Chapter 1 we provide an overview of phonon transfer at the nanoscale, especially in mem-
brane and amorphous materials and thus gives the necessary background for this thesis. We will
discuss the size effect on the characteristic lengths of phonon carriers and the particularities of
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the glasses and some of possible applications of nanostructures. Then, we will introduce our
material of interest studied in this thesis, which is a typical amorphous material based on silicon
nitride membrane of low and high stress. Finally, we will discuss the experimental techniques
specific for the measurement of thermal properties of thin film.
In chapter 2 we introduce the 3ω-Völklein method. We explain how by using a specific Wheat-
stone bridge we can detect the weak 3ω voltage. We then study the possible effect of the
electrical capacities which can be present in the measurement chain.
In chapter 3 we present the heat transfer model specific to the suspended membrane geometry.
In order to determine the exact temperature solution, the heat conduction with the 2-dimensional
model is first derived. Then to simplify, the 1-dimensional solution is derived using some as-
sumptions. The difference between the two models on the extracted thermal properties will then
be presented. Afterwards, the effect of a finite transducer width will be discussed. Finally in
order to validate the 3ω-Völklein method, we present experimental measurements fitted by the
theoretical model, the sensitivity of this method will be discussed.
In chapter 4 we present experimental results of thermal propertie measurements for 50 nm and
100 nm suspended SiN membranes, in the two cases of low stress and high stress. In order
to predict any possible effect of stress on thermal properties, the thermal conductivity and the
specific heat will be fitted using a theoretical model. Moreover the phonon diffusion in such
system will be discussed in term of temperature, phonon mean free path and roughness. Finally,
we present experimental results at low temperature (300 mK - 10 K) of 50 nm and 100 nm high
stress silicon nitride membrane.
In chapter 5 we demonstrate the application of the SiN sensor (constituted by a 100 nm SiN
membrane and the deposited NbN thermometer on topside), to the measurement of thermal
conductance and heat capacity of 200 nm Bi2Te3 film. The Bi2Te3 film is deposited on the
backside of the SiN membrane by magnetron sputtering technique.
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Chapter 1

Nanoscale heat transfer

1.1 Characteristic of nanoscale heat transfer

Heat transfer across solid state materials is limited by diffusion of different heat carrier’s types,
such as electrons, photons and phonons which can vary according to the materials nature. At
the nanometer scale, heat transfer diverges significantly from that at the macro and microscales.
The size effects become more important when the mean free path and/or wavelength of heat
carriers become comparable to the device length scales. Moreover, at that scale the relaxation
time of the heat carries is on the same order of the time of interest (for example: heating,
thermalization, and diffusion time). At these limits, classical laws become no longer valid
[1–3]. For instance, thermal conductivities are often described following the models developed
by Klemens [4], Callaway [5] based on Boltzmann equation applied to phonon transfer, and
Debye approximation for phonon dispersion. The extracted properties from such model lead to
qualitative understanding of phonon transport.

Although many research works have been done in this field recently, there is still a need for
a better understanding of thermal phenomena in reduced dimension systems. Typically, there
are two types of interest:

• at a technological level, the concern is to increase the performance of thermoelectric and
energy conversion devices, where the particular properties of a material at nanoscale can
be very useful [6, 7]. Moreover, concern is to maintain best conditions of functionality
and reliability of integrated circuits [8].

• away from the technological considerations, the study of thermal properties at nanoscale
presents fundamental questions about the interaction of heat transfer and microstructure
at these small length scales that need to be addressed.

Moreover, the accurate measurement and characterization of the thermal properties of nanos-
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tructures materials poses many challenges in term of technique and require the fabrication of
very small sample. Fig. 1.1 shows an example of suspended membrane and nanowire geometry
usually used to study heat transfer at nanoscale.

This chapter will provide an overview of phonon transfer at the nanoscale, especially in
membrane and amorphous materials and thus gives the necessary background for this thesis. In
the following sections, we will discuss the size effect on the characteristic lengths of phonon
carriers and the particularities of the glasses and some of possible applications of nanostruc-
tures. Then, we will introduce our material of interest studied in this thesis, which is a typical
amorphous material based on silicon nitride membrane of low and high stress. Finally, we will
discuss the experimental techniques specific for the measurement of thermal properties of thin
film.

Figure 1.1: SEM images of (a) suspended silicon membrane, (b) and suspended silicon
nanowire fabricated at the Institut Néel [9]. (c) Top: topside view of a chip with heater/sensor
strip on silicon nitride membrane and contacts pads; bottom: schematics shows the cross section
of suspended membrane geometry.

1.1.1 Notion of phonon

The heat carriers in solids are represented by electrons and by quantized lattice vibrations called
"phonons". A phonon is a quasi-particle that transports a quantum of vibrational energy. In the
study of phonon transfer in nanostructure, it is essential to compare these characteristic lengths
to the dimensions of devices.

The vibrational modes of phonon are treated like waves, where the mean free path l is the
average distance traveled by the wave before undergoing an inelastic collision and losing its
phase coherence. In bulk crystalline materials, at low temperature this distance can be very
large and may reach the order of centimeters. In nanostructures, collision with rough surfaces
can reduce the average mean free path.

The phonons transport a quantum of energy equal to ~ω, with ω the wave frequency in
rad/s and ~ = h

/
2π where h = 6.6260695 10−34 J.s is the Planck constant. The vibration is
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also defined by the wave vector of propagation given by k = 2π
/

λ , λ is the wavelength of
oscillation. The wave vector direction indicates the direction of the wave propagation in the
lattice. Phonons can propagate in all directions, therefore kx, ky and kz define the wave space or
phase space.

In three dimensional lattice, acoustic waves have three possible polarizations, one longitu-
dinal polarization and two transverse polarizations. The longitudinal polarization corresponds
to vibrations of atoms in the same direction of the wave propagation. Atoms can also vibrate
perpendicularly to the wave propagation, this is the transverse polarization. Fig. 1.2 shows the
polarization in the simplest system represented by a linear chain of atoms.

Figure 1.2: Schematics showing the vibration of atoms inside a lattice as function of the wave
polarization (a) longitudinal polarization, (b) transverse polarization.

To describe the lattice vibration in term of wave characteristics (such as its frequency, wave
length), the simplest system representing an infinite periodic lattice with periodic boundary
conditions is introduced. This corresponds to the one dimensional chain of atoms with similar
masses and spring constants as shown by Fig. 1.3.

The aim of this section is to derive the dispersion relation that provides the relation between
the angular frequency ω and the wave vector k. As shown in Fig. 1.3, mono-atomic crystal
has one atom in the primitive cell. When the atoms vibrate, they move from their equilibrium
positions. Then, the vibration can be described as a wave propagation through the material.

Due to the connections between atoms, the displacement of one atom will affect all the
others. In Fig. 1.3, due to the displacement u, of atoms at position s±1, the resultant force on
atom at position s is proportional to the difference us±1− us. The force F is given by Hook’s
law, F =−Cs(us+1−us)−Cs−1(us−us−1), where Cs =Cs−1. Therefore, Newton’s second law
yields:

M
∂2us

∂t2 =C (us+1 +us−1−2us) (1.1)
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Figure 1.3: Schematic shows linear atomic chain with an atomic mass M, lattice constant a, and
spring constant Cs where s depicts the position of atom.

Let us assume that all displacements have the same frequency dependency (exp(−iωt)). In
this case, we look for a solution as a sum of plane waves:

−Mω
2us =C (us+1 +us−1−2us) (1.2)

This differential equation can be solved by assuming a solution with the form: us = uexp(iska),
with k the wave vector, a is the lattice constant, and s is the plane locations of the atoms. Here
we are considering a simple cubic lattice, this means that a fixed phase relationship exists be-
tween any two neighbouring planes. Thus Eq. 1.2 becomes:

−ω
2Mueiska =C(uei(s+1)ka +uei(s−1)ka−2ueiska) (1.3)

Which may be simplified using the exponential definition of the cosine: ω2 = 4C
M sin2 ka

2 .
This is the dispersion relation for an elastic wave of wave vector k and frequency ω. As shown
in Fig. 1.4, dispersion relation relates the frequency ω to the wave vector k. υg = ∂ω

/
∂k 6= 0,

where υg is the group velocity, then this is an acoustic propagation modes.

As expected ω is a periodic function of k and symmetric with respect to k and -k. The first
period that lies between k = −π/a and k = π/a is the first Brillouin zone.1

The wave vectors k that are physically relevant are contained within the first Brillouin zone.
The wave vectors outside the first Brillouin zone are always the reproduction of values within
the first Brillouin zone, and can always be transformed back into the first Brillouin zone. Ther-
mal waves have group velocities represented by the velocity of energy propagation in the solid,
∂ω

∂k = a
√

C
M cos ka

2 .

1The Brillouin zone is the Wigner-Seitz cell in the reciprocal lattice. The Wigner-Seitz cell is the smallest
volume enclosure that preserves the symmetries of the Bravais lattice (the primitive unit cell).
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Figure 1.4: Illustration of the dispersion relation of an infinite one dimensional chain of atoms.

This permits the determination of elastic mode energy of frequency ω within the lattice.
Thus, this is an essential point which allows the determination of the thermal properties of a
solid.

1.1.2 Nanoscale size effect on the mean free path

The research in nanoscale heat transfer attracts significant attention since more than one decade.
The most intensive research is the measurement and modeling the thermal conductivity of thin
film, nanowires and superlattices due to their importance for nanoelectronics, thermoelectric
devices and phononics in general [10]. It has been shown experimentally, that the thermal
conductivity of low dimensional nanostructures is one or two orders of magnitude lower than
the thermal conductivity values of the original bulk materials [11].

The characteristic lengths of phonon can be given by the mean free path and the phonon
wavelength. The mean free path corresponds to the average distance that phonons travel be-
tween successive collisions. The corresponding average time is the collision free time, which is
referred to as relaxation time. Generally, the mean free path is difficult to estimate from direct
calculation, especially for electron and phonon transport in solid. The experimental thermal
properties can be used to calculate the mean free path according to the kinetic theory:

κ =
1
3

Cτυ
2 =

1
3

Clυ (1.4)

κ =
1
3

∫
ωmax

0
Cωτωυ

2
ω dω =

1
3

∫
ωmax

0
Cωlωυω dω (1.5)
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where C the volumetric specific heat, τ the relaxation time and υ the velocity of carries. Eq.
1.4 show the integration over all the phonon frequency, with Cω, υω and τω are the volumetric
specific heat, the velocity and the relaxation time at each frequency respectively. While this
simple model groups the contribution of all phonons, the thermal conductivity integral in Eq.
1.5 includes the impact of the phonon dispersion relations.

The phonon wavelength in a crystal varies in a wide range. Moreover, they do not contribute
equally to the thermal transport. As the phonon is given by the quantum of vibration energy,
the actual probability of excitation for a specific state depends on the energy of state and the
temperature. Phonons are governed by the Bose-Einstein distribution as function of the wave-
length, thus the energy can be given by the Planck relation E = hν. The average energy of one
quantum state is kBT

/
2 where kB = 1.38 10−23 J/K is the Boltzmann constant. Moreover, the

dominant phonon wavelength is given by λdom = hυs
4.25kBT [12], which is around 0.4 nm at 300 K

in silicon nitride.

Figure 1.5: Measured thermal conductivity of different diameter Si nanowires. The number
beside each curve denotes the corresponding wire diameter. [13].

A reduced system such as a quasi one dimensional (nanowire), or two dimensional material
(membrane), shows a thermal conductivity which is significantly lower than a three dimensional
bulk material. Fig. 1.5 shows experimental measurements of thermal conductivity for silicon
nanowires with different diameters. This measurement shows a strong diameter dependence
of thermal conductivity in nanowires. The thermal conductivity observed was more than two
orders of magnitude lower than the bulk value. This effect is ascribed to increased phonon
boundary scattering, a size effect is imposed to the phonon transport due to the small cross
section area. This effect has also been observed in thin films [14].

It is widely accepted from several theoretical and computational studies [15], that the main
reasons that lead to reduction in thermal conductivity, is the enhancement of the boundary
phonon scattering at the nanowire surfaces, which significantly lowers the mean free path of
phonon. This effect of reduced thermal conductivity has inspired the idea of using silicon
nanowire for thermoelectrics applications [16].
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Phonon transport in a system depends on the phonon ability to scatter, which can be either
ballistic or diffusive. At low temperature, phonon mean free path may be larger than the sam-
ple dimensions, therefore surface scattering starts to play an important role [9, 17, 18]. This
limit was studied by Casimir [19]. Casimir’s model suggests that the heat flow through a sys-
tem can be described by a model analogue to Planck’s black-body radiation theory and Stefan
Boltzmann radiation law.

Radiative phonon transport has been suggested as transport mechanism [20,21]. The power
flow with this model of phonon radiative transfer has the form Prad = AσξT 4, where A is the
cross sectional area of the system perpendicular to the direction of heat flow, σ is the Stefan-
Boltzmann constant for phonons and is given by,

σ =
π2k4

B
120~3 (

2
c2

t
+

1
c2

l
) (1.6)

where ct and cl are the transverse and longitudinal speeds of sound, respectively.

The factor ξ describes the transport efficiency and thus defines if the scattering is diffusive
or specular [21]. For ξ=1, the phonon transport is ballistic with specular reflections from the
surface. A lower limit of ξ, known as the Casimir limit, is obtained for the case of complete
diffuse surface scattering [19].

The experimental measurements may be performed using different techniques, such as the
3ω [22–24] and optical thermoreflectance methods [25, 26]. The experimental data shows that
thermal conductance of nanostructure is lower than its bulk counterpart. Similar trend has also
been studied by theoretical works [27, 28].

1.1.3 Application of nanostructures

The design of novel structures with desirable properties is highly required for different ap-
plications. Understanding the physical properties at nanoscale becomes crucial to attain this
objective. For example, carbon nanotubes could make excellent materials for application in
cars, aircraft or other systems where the strength is important and the weight needs to be con-
trolled. Thus, studies of the mechanical and chemical properties of these nanotubes are required
to optimize the performance.

In addition to engineered materials that exploit nanoscale structures to reach desirable macro-
scopic properties, miniaturization continues to provide devices at nanometer scale in electronics
and sensors. In this case, the thermal management of microelectronics becomes a challenging
issue [29,30]. Currently integrated circuits are available with transistors with small feature size
around 65 nm and thin material film below 2 nm. For example, industries like ST microelec-
tronics is working on a 28 nm road map. Such miniaturization leads to enormous integration
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levels, where several transistors with more functionality are assembled together on a small area.
However, operating power of the miniaturized device cannot be reduced below a certain level.
The power problem, the heat generation and chip temperature increment reach a level that will
impede the optimized operation of the integrated circuits.

Prevent the hot spots at a localized functional region on the chip is a main question today
for the integrated circuit designers. Thus, understanding the heat generation and manipula-
tion of heat transport at the nanoscale have significant implication for reliable functionality of
nanoelectronic devices.

On the other hand, energy conversion domain can greatly benefit from energy transport
phenomena at the nanoscale. For example, the effect of lower thermal conductivity at nanoscale
can improve significantly the thermoelectric phenomena. A thermoelectric component converts
the thermal energy into electric energy and vice versa. Thermoelectric phenomena are mainly
based on the fact that electrical carries are also heat carriers at the same time. Therefore, the
electron mouvement can be driven by a thermal gradient and not only by the electrical potential.
The basic effects in thermoelectricity are the Seebeck and the Peltier effects [6]. The Seebeck
effect is defined by how much of an electromotive force is generated when the two ends of
a material are maintained under a temperature gradient. The Peltier effect is a temperature
difference created by applying a current between two electrodes connected to a sample.

A key requirement to improve the energy conversion efficiency is to optimize the material
thermoelectric figure of merit ZT given by:

ZT =
S2σ

κe +κL
T (1.7)

related to the reduced efficiency [31] through:

ηr =

√
1+ZT −1√
1+ZT +1

(1.8)

with, S is the Seebeck coefficient, σ is the electrical conductivity, κe and κL are the electron
and lattice thermal conductivity respectively. If ZT → ∞, η→ 1 close to a Carnot cycle.

Thus, increasing Seebeck coefficient S and the electrical conductivity σ, while reducing κL
are highly required. The special properties of heat transport at nanoscale leads to perform some
success in the reduction of lattice thermal conductivity with the concurrent maintenance of good
electrical conductivity [32, 33] .
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1.2 Thermal properties

In the study of thermal properties of solids, both phonons and electrons contribute to heat capac-
ity and thermal conductance. To extract thermal properties, phonon dispersion relations along
with phonon and electronic density of states are important parameters. Moreover, the energy
of phonon and electron is related to the dispersion relation through the introduction of the den-
sity of states. This section presents a theoretical illustration of the thermal properties, and then
describes the specificity of the thermal properties of amorphous materials.

1.2.1 Specific heat

The heat capacity C, of a solid is defined by the temperature derivative of the internal energy U :

Cα =

(
∂U
∂T

)
α

(1.9)

where the index α indicates the parameter which is held constant (volume or pressure).
Usually, volume is held constant for solid specific heat measurement. The heat capacity of solid
at constant volume is constituted by a phonon term and electron term:

Cv =Cph +Cel (1.10)

moreover, specific heat corresponds to the ratio of the amount of energy required to raise
the temperature by one Kelvin for one gram of a material.

1.2.1.1 Phonon specific heat

There is different theoretical model to describe the heat capacity within a solid. It was Einstein
who developed the first reasonably satisfactory theory of specific heat of a solid. He assumed
that the crystal lattice structure of a solid comprising N atoms can be treated as an assembly
of 3N undistinguishable one-dimensional oscillators (three oscillators for each atom since the
atoms of a solid are free to move in three dimensions). Further, internal energy of solids can
be seen as a sum of quantum harmonic oscillator at energy less than kBT. All oscillators are
assumed to have the same and constant frequency, Einstein’s model works well at high temper-
ature. Consequently, this theory is in good agreement with the experiment at room temperature,
but provides a poor description of observations made at low temperature.

A more realistic model was given by Debye, by treating elastic vibration as a continuum
with a high frequency cutoff corresponding to the interatomic distance. Indeed, at higher tem-
peratures, higher energy levels will be excited, but one cannot excite modes whose wavelengths
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are shorter than the interatomic distance. This limit implies a maximal wave vector (the Debye
wave vector) kmax

D = 2π/λmax, where λmax
D is the interatomic distance.

According to this model, the T3 temperature dependence of the specific heat of insulator
materials is well described at low temperature.

Assuming that the internal energy is a sum of quantum harmonic oscillators satisfying Bose-
Einstein statistics, U for a material is given by:

U = ∑
k

(
~ω(k)

2
+

~ω(k)

e
~ω(k)
kBT −1

)
(1.11)

using the continuum hypothesis, the sum of the internal energy becomes an integral:

U =
∫

BZ

~ω(k)(
e
~ω(k)
kBT −1

) dk
(2π)3 =

∫ ~ω(
e

~ω

kBT −1
)D(ω)dω (1.12)

the first term in Eq. 1.11 corresponds to what is known as the zero point energy. It has
no temperature dependence, and thus plays no role in the specific heat. D(ω) = dk

dω
is the

density of state of phonon. At low temperature kBT is small, only the long wavelengths are
excited. Consequently, the integral over the first Brillouin zone (BZ) can be extended over the
whole k space in three dimensions (dk= 4πk2dk infinitesimal volume element). Optical modes
are not populated at low temperature, then only the acoustic modes (two transverses and one
longitudinal modes) contribute to the internal energy. These modes are assumed to have an
average sound velocity υs and a dispersion relation of the form ω(k) = υsk, thus:

U =
6
π2

∫
∞

0

~υsk3

e
~υsk
kBT −1

dk (1.13)

assuming x = ~ω

kBT , Eq. 1.13 becomes:

U =
3

2π2
(kBT )4

(~υs)3

∫
∞

0

x3

ex−1
dx (1.14)

therefore, the well known Debye 3D (bulk) equation of phonon heat capacity is:

Cph =
2π2

5
k4

BT 3

(~υs)3 (1.15)
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note that the velocity of sound is the only physical characteristic of the material, where is
often represented as the Debye temperature, θD = 2π~υs(3N

/
4πV )1/3 , with N

/
V represents

the number of phonons per cubic meter (density of phonons). Substituting these definitions into
Eq. 1.14, with xD = θD

/
T the general expression of the phonon specific heat becomes:

Cph = 9NkB

(
T
θD

)3∫ xD

0

x4ex

(ex−1)2 dx (1.16)

we note that the Debye temperature is a characteristic parameter related to the materials of
interest.

1.2.1.2 Electronic specific heat

According to the assumptions of free electron model, there is no interaction between electrons
or between electrons and lattice. These approximations can be very accurate in the simplest
case of a metal. The electrons can be treated as a free electron gas. The electronic specific heat
of a metal is given by:

Cel =
π2

2
NkB

T
TF

(1.17)

where, N the total number of occupied states, thus number of electrons in the system. TF=
EF
/

KB is the temperature equivalent to the energy of the electrons in the highest energy state.

At low temperature (below 1 K), because of the linear power law (opposed to the T3 law for
phonon gas), electronic heat capacity becomes dominant in a metal.

1.2.1.3 Specific heat of glasses

Glass specific heat follows well the Debye model until a few tens of Kelvins, where it presents
an unexpected behavior. According to the Debye model at low temperature, the specific heat of
an amorphous material should be proportional to T3. However, a linear behavior of the specific
heat is shown below 1 K [34]. A similar behavior was observed for all amorphous materials with
a variation within an order of magnitude for different glasses [35]. At low temperature limit,
only the lowest branch of each polarization is populated. This large specific heat proves the
existence of a new type of low energy state which is specific to the disorder in glasses and does
not exist in pure crystals. The linear behavior of the specific heat is explained by a model taking
into account the presence of two level systems (TLS) [36,37]. TLS in amorphous material is an
atom or a group of atoms, which can tunnel between two minima in the configuration space.
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1.2.1.4 Specific heat of nano-structured material

In thin film, when the phonon dominant wavelength becomes comparable to the thickness of
the film (at very low temperature), there is a transition from 3D to a 2D phonon gas [28, 38],
The heat capacity is evaluated as:

Cph =
3kBS
2π

(
kBT
υs~

)2

×

[∫
∞

0

x3ex

(ex−1)2 dx+
∞

∑
n=1

∫
∞

nx0

x3ex

(ex−1)2 dx

]
(1.18)

where S is the surface area of the membrane and x0 = π~υs
/

kBTt , where t is the film thickness.

The first integral corresponds to the 2D phonon gas:

C2D =
9k3

BST 2

2π~2υ2
s

(1.19)

the transition between 2D at low temperature to 3D to recover the bulk limit, is defined as
a change of power law in heat capacity from T3 for 3D to T2 for 2D. Note that this is relevant
only where t� λdom.

1.2.2 Thermal conductivity

In the simplest case of a one dimensional heat flow along the x axis, thermal conductivity is
related to heat flow by the Fourier’s law:

φ =−κph
dT
dx

(1.20)

where φ is the heat flow (in W/m2) and κph the thermal conductivity (in W/m.K). According
to the Boltzmann equation and using the Fourier’s law, phonon thermal conductivity is given
by:

κph =
∫

ωmax

0
dω

∫ 2π

0
dϕ

∫
π

0
dθsin(θ)cos2(θ)~τυ

2
x

df0

dT
D(ω)

4π
(1.21)

with f0 is the equilibrium distribution function and τ is the characteristic scattering time,
and (∂ f

/
∂t )coll = −( f − f0)

/
τ , is given by the relaxation time approximation. Eq. 1.21 is

used to demonstrate a direct relation between the thermal conductivity and the specific heat as
given by kinetic theories in Eq. 1.4.
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1.2.2.1 Thermal conductivity of glasses

Amorphous solid exhibit properties that differ from the well known crystalline solid properties.
The long range crystalline order does not exist in amorphous solids. The disorder destroys the
coherence of lattice vibrations and thus the mean free path of phonon should be limited to a
few lattice spacing at most. Consequently, the thermal conductivity in amorphous solid be-
comes extremely low and is often referred to as the amorphous limit2. Typically, the thermal
conductivity of amorphous oxydes fall in the range 1.3 W/mK < k < 3.0 W/mK at room tem-
perature [39,40]. These properties can be very useful for technological application and presents
fundamental questions about the interaction of heat transfer and microstructure in this sort of
material.

In general, the major distinctions between thermal conductivities of glasses and crystalline
solids can be simplified in terms of lower thermal conductivities with positive temperature coef-
ficients (dκ

/
dT ) for glasses and negative for crystalline solids. This is in sharp contrast with the

Umklapp processes3, where the thermal conductivity for crystals decreases as 1/T due the dom-
inant phonon-phonon Umklapp process. Whereas, in amorphous solids Umklapp processes are
not allowed due to the lack of long range periodic structure. For example, at room temperature
the thermal conductivity of crystalline SiO2 is about 10 W/m.K, while that of amorphous SiO2
is about 1 W/m.K [41]. (This is a general simplification, in some cases crystalline materials can
have low thermal conductivities with positive coefficients dκ

/
dT ).

It has been shown that the thermal conductivity κ exhibits a universal temperature depen-
dence in several glasses (see Fig. 1.6). At low temperature (T < 1 K), κ have a positive slope,
and then a plateau between 1 K and 20 K, followed by a region of positive dκ

/
dT above 20 K.

Below the plateau, the thermal conductivity varies as Tn, with n∼ 2 associated to the scattering
of phonons from low lying energy states [36, 37]. In this limit, only the lowest branch of each
polarization is populated. This behavior is explained by the presence of the TLS.

1.2.2.2 Thermal conductivity of nano-structured material

Thermal properties of silicon nitride membrane have been measured in various geometries by
different groups [20, 43–45]. The heat flux along the SiNx membrane depends on the quality
(technique of deposition, roughness, etc..), the dimensions of the samples, and the temperature
range in which the measurement is done. Thus, the phonon transport can be either diffusive
or ballistic. Moreover, the measurement method plays an important role in terms of sensitivity
and temperature range. For the SiN suspended membrane, there is still no measurement with
high sensitivity extended from low temperature to room temperature, to describe the different
diffusion regimes of phonon as function of temperature within the membrane. In the following

2The amorphous limit (or alloy limit) corresponds to a mean free path on the order of the atomic distance thus
below 1 nm.

3If k3= k1 + k2 the resultant wave vector of phonon-phonon scattering ends up in other BZ, then the process is
called "Umklapp process".
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Figure 1.6: Thermal conductivity of several amorphous solids. The conductivities of all glasses
measured to date below 1 K lie in the range spanned by the two dashed straight lines shown
here, separated by the double arrow, which we call the glassy range [42].

section, we discuss the different diffusion limits as function of the temperature and the dimen-
sion of the sample.

1.2.3 Phonon diffusion limits in thin membrane

The heat carriers may have different behavior according to the spatial and temporal regimes in
materials, which can be subdivided into four cases:

• Macroscale;

• Mesoscale;

• Microscale;

• Nanoscale.

There are two major areas in heat conduction that can be distinguished, namely:
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1. The macroscale: in this regime, thermal properties are given by the bulk behavior, there
is no effects linked to the surface or the size.

2. The microscale: where all the thermal properties are affected by reduced size effects.

In the study of phonons transport in finite thickness membrane, the temperature of interest
has a big importance. At highly enough temperature, phonons behave like a three dimensional
(3D) phonon gas. At low temperature, the phonon gas becomes quasi two dimensional (2D).
The dimensionality of the phonon gas has a high influence on the properties. For example,
in isotropic 3D bulk systems the phonon dispersion relation is a linear relation, ω = ck. At
enough low temperature, the thermal properties of the system are determined only by the acous-
tic phonons, where the optical modes are not excited. In this case, at low temperature (T� θD),
the heat capacity CV follows the Debye model and is proportional to T3. However, in 2D system
where the mobility is restricted into a plane, only one transversal and one longitudinal mode ex-
ist and thus CV would be proportional to T2. In this microscopic regime, heat conduction can
be governed by two important characteristic lengths. The phonon mean free path l, and the
characteristic dimension to the material [46].

The phonon gas is confined in a lower dimensions than 3D, when the dominant phonon
wavelength λdom becomes smaller than the system size, in the limit of very small size or low
temperature. In the case of the membrane, phonon gas behaves like 3D, if λdom is much shorter
than the membrane thickness. However in the opposite case, where λdom is much larger than
the membrane thickness, the phonon gas becomes 2D. This change in dimensionality has direct
influence on the thermal properties, it can be seen in the temperature dependence of the thermal
conductance and the heat capacity.

In the following, the different limits in term of phonon mean free path are discussed, (see
Fig. 1.7). When the characteristic dimension of the material is much larger than the mean
phonon free path (l � L), the heat transport regime is macroscopic and is purely diffusive.
Then, Fourier law is accurately applicable. When the characteristic dimension of the material is
on the order or much lower than the phonon mean free path (l ∼ L or l� L), the heat transport
regime becomes microscopic. At this limits, Fourier law breaks down and the heat transport
change from a partially diffusive - ballistic to purely ballistic nature.

In the purely ballistic regime, the temperature gradient cannot be defined within the film
[15]. It is impossible to describe the thermal conductivity according to the Fourier law. It
was observed that the temperature at the boundaries governs the heat transport, and not the
temperature gradient within the film. The heat conduction is suggested to be similar to photons,
since the thermodynamic equilibrium is reestablished due to the scattering of phonon from the
boundaries. Thus, they can be analyzed as a radiative transfer model where the heat flux across
the film can be described by:

q = σ
(
T 4

1 −T 4
2
)

(1.22)
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Figure 1.7: Schematic diagram showing qualitatively the steady-state temperature profiles un-
der diffusive and ballistic phonon transport. Diffusive-Ballistic model of transport is given by
Majumdar [47]

where σ is the phononic Stefan-Boltzmann constant, T1 and T2 are the boundaries temper-
ature of a thin film. This is commonly referred to as the Casimir limit.

At this limit, the surface roughness plays an important role, it defines if the scattering is
diffusive or specular. The effective boundary mean free path, is defined as:

lCasimir =
3

4πSc

∫ ∫
| r− rB | cosθdΩdSc (1.23)

where Sc is the cross sectional area, | r− rB | is the distance between a point r and a surface
point rB, and θ is the angle between | r− rB | and OT . lCasimir depends on the geometry of the
studied system. For example, lCasimir = 2R for a long circular rod of radius R and lCasimir = 1.12
A for a long square rod of cross section A [21].

In the case of 3D ballistic phonon in a thin membrane, the radiated power has a form [27,48]:

P3D =
2ldπ5

15h3

(
2
c2

t
+

1
c2

l

)(
kBT
~

)4

(1.24)
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where d is the thickness of the membrane, ct and cl are speeds of sound of transverse and
longitudinal phonon modes. As expected from the phonon radiative model discussed above,
P ∝ T 4.

However, there is a big difference to the usual 3D bulk phonons that the purely longitudinal
and transverse modes couple due to the presence of boundaries. Thus forming a new set of
eigenmodes: horizontal shear modes (h) and symmetric (s) and antisymmetric (a) Lamb modes
[49]. In thin membranes, the three lowest branches are dominant at low temperatures, giving
the following dispersion relations [27]:

ωh,0 = ctk||

ωs,0 = 2 ct
cl

√
c2

l − c2
t k|| ≡ csk||

ωa,0 =
~

2m∗ k
2
||

m∗ = ~
[
2ctd

√
(c2

l − c2
t )
/

3c2
l

]−1

with d the thickness of the membrane and k|| the component of the wave vector pointing
along the membrane surfaces. Note that the lowest a–mode behaves like a particle with an ef-
fective mass m∗ which means the particle-like behavior becomes stronger, when the membrane
thickness decreases.

For even lower temperature or thinner membrane, phonons reach the 2D limit and the radi-
ated power has the following form [27, 48]:
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(1.25)

in the low temperature limit, the second term starts to dominate, and P2D ∝

(
1
/√

d
)

T 5/2 ,
because the effective mass depends on the membrane thickness.

The pure P ∝ T 4 dependence predicted by the theory in 3D limit is not observed in sus-
pended SiNx membranes [44,50]. The value of the exponent of T is systematically lower. Note
that in the previous experimental studies, phonons are in the 3D limit, and no trend to reach
the 2D limit have been reported. Thus, the experimental observations cannot be explained
exhaustively by the radiative model, and this indicates the contribution of another scattering
mechanism partly of dominantly to the heat transport.
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1.3 Amorphous silicon nitride

Amorphous silicon nitride (Si3N4) is a material of great technological importance because of
its chemical and mechanical properties. This make it very useful for several applications. It is
widely used in Micro-electro-mechanical systems (MEMS) [51], bolometric millimeter wave
dectectors [52] and microcalorimeters [53]. It is also often used as an etch stop in multilay-
ered devices due to its magnificent chemical resistance. Since it is very resilient, Si3N4 is
an ideal material for thin film growth support. Silicon micro-machining combined with nano-
lithography provides great possibilities for applications in calorimetry and thermometry on mi-
cron and even submicron scale. Silicon nitride allows an essential function used as thin amor-
phous membrane. Thus, present an excellent chance to study the phonon gas in two dimensional
reduced systems, which is attracting lots of attention today.

There are different ways for the deposition of silicon nitride films, with which the properties
of films can differ significantly. Current production technologies use the low pressure chemical
vapor deposition (LPCVD) at temperatures > 700 ◦C or plasma enhanced chemical vapor de-
position (PECVD) at temperatures below 450 ◦C. In this work, the thermal properties of silicon
nitride having high and low stress deposited by (LPCVD) has been studied. In the following
sections we explain the different properties specific to this kind of films.

1.3.1 Physical properties of silicon nitride

The basic atomic structure of stoichiometric amorphous silicon nitride (Si3N4) is a silicon-
nitrogen tetrahedron in which a silicon atom lies at the centre of a tetrahedron, and four nitrogen
atoms at each corner (see Fig. 1.8). The silicon atom is linked by a covalent bonds to the
nitrogen atoms at the corners.

Figure 1.8: Schematic of microscopic structure of silicon nitride.

The different tetrahedrons are joined by sharing the nitogen atoms in such a way that each
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one is common to three tetrahedrons. Thus, each silicon atom has four nitrogen atoms as nearest
neighbours, and each nitrogen has three silicon atoms as neighbours.

Silicon nitride films properties depend essentially on the details of the fabrication process
or geometry (e.g., film thickness) and measurement procedure, thus we cannot define a unique
physical properties. To give an idea, Table. 1.1 shows a comparative properties of silicon nitride
deposited by LPCVD and PECVD techniques. The indicated values give an order of magnitude
of measured values and not necessary the maximal or minimal limits.

Table 1.1: Physical properties of Si3N4 LPCVD [54] and PECVD [55]

Properties Si3N4 LPCVD Si3N4 PECVD

Density [g.Cm−3] 2.7/3.1 2/2.8
Hydrogen Concentration [1022 atom.Cm−3] 0 1.1/3.3
Mechanical Stress [GPa] 1.2/1.8 -3/+2
Young’s Modulus, E [GPa] 285 90/230

where the mechanical stress (σ) is the force per unit area that is acting on a surface of a
solid, more commonly expressed in Pascals (Pa) or (N/m2), and Young’s Modulus (E) tells us
how much a material is elongated under a given load. The density of PECVD SiN film is always
lower than that of LPCVD (in relation with the hydrogen ratio) with a lower Young’s modulus,
therefore the mechanical stress can be positive or negative, contrary to LPCVD SiN which have
always a positive values.

1.3.2 Technique of deposition (LPCVD)

The physical properties of silicon nitride films depend essentially on the process of deposition.
LPCVD is performed at high temperature (700 - 800 K) and low pressure (∼ 200 mTorr),
under these conditions, a combination of volatile compounds (ammonia and dichlorosilane) are
exposed to a silicon wafer. The volatiles reaction near the silicon wafer yield to create the
silicon nitride film. According to the conditions of process such as, the temperature and the
ratio of the volatile chemicals, the absolute magnitude of the tension can be controlled.

In this work, we study the thermal properties of silicon nitride thin film having high and
low stresses. Controlling the stress into SiN film depends on the deposition process. Low
stress film is produced using LPCVD recipe which dopes the film with extra nitride. Whereas,
high stress silicon nitride is accomplished using a slightly modified recipe [56] which results
in a stoichiometric Si3N4 chemistry. A tensile stress of ∼ 100 MPa is presented in the low
stress films, whereas high stress stoichiometric films exhibit a tensile stress of ∼ 1.2 GPa. The
included stress in our commercial high stress films is closer to ∼ 900 MPa.
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1.4 Amorphous thin films

With recent developments of nano-structured materials such as the two-dimensional and one
dimensional systems, many limits of bulk material (three dimensional) properties has been ex-
ceeded. Therefore, the measurement with high accuracy of the thermal properties becomes
highly required to study the phonon transport at this reduced scale. Hence, to determine what
contribution they can allow to the advancement of technology applications. In addition, amor-
phous solid exhibits thermal properties behaviors different than that usually seen in crystal solid,
given a major asset to study this kind of materials represented here by the silicon nitride.

Typically, two dimensional structures are fabricated by depositing a thin film with the ma-
terial of interest onto a thick bulk substrate. Determining the thermal properties of this film can
be a challenge due to its small thickness. The substrate provides often mechanical strength for
the film, consequently the film cannot be removed. Therefore, the film and the substrate must
be measured together in order to extract the thermal properties of the film. In the following sec-
tion, we give an overview of the challenges of the in-plane and cross-plane thermal conductivity
measurements.

1.4.1 Experimental techniques

Experimental techniques to measure heat transport in thin film have improved significantly in
recent years. Although there are significant advances, thermal properties measurement of thin
films remains a challenging task [57].

Figure 1.9: Schematic of typical sample configuration using hot strip and present challenges by
the thermal conductivity measurement of thin films.

In general, for a direct measurement of the thermal conductivity, the determination of the
heat flux and the temperature gradient between two points of the sample are needed. Fig. 1.9
shows the geometry typically used for the thin film thermal transport characterization. The
source heater can be electrical by applying a current through a metal strip deposited on the
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sample surface, and hence the Joule heating. The other method is to use an optical source to
heat the film. Thus, the measurement techniques, based on heating and sensing methods can be
divided on three categories: electrical heating and sensing using hot strip, optical heating and
sensing methods, and combined electrical/optical methods.

According to experimental requirements, the thermal conductivity measurement can be in
plane or out of plane. In general, the in plane measurement is more popular due to the assump-
tion that the transport of heat should be more efficient when parallel to the layers. Further,
advantages and limitations of used technique depend on different parameters. For instance, if
a steady state method is used to measure the in-plane thermal conductivity, errors can be intro-
duced by the parasitic heat flow through the substrate (or heat leakage). In the case where the
thermal conductivity of the substrate is relatively high, heat flow through the substrate will be
large as compared to the heat flow through the film. Thus, subtraction of the contribution of the
substrate to the heat conduction will significantly increase the measurement errors. In addition,
the thermal resistance at the interface between the film and the substrate should be taken into
account. However this resistance is not easy to measure and it depends significantly on the
material. Whereas, for the cross plane thermal conductivity measurement, the difficulties are
exhibit by creating an adjusted temperature gradient across the film without a large increase of
the substrate temperature.

To overcome these difficulties, several methods have been developed allowing the measure-
ment of thermal properties in the different directions of the film. Fig. 1.9 shows the geometry
typically used to measure thermal properties of thin films. For instance, for the cross plane
measurement, by minimizing the width of the heater source, the heat flux through the film
becomes large, and this reduces significantly the temperature gradient inside the substrate. An-
other technique consists to limit the heating to a small region within the film by using transient
or modulated heating. However for the in plane direction, to minimize the heat leakage, the
films can be deposited on thin and low thermal conductivity substrate. The most used technique
in this case is to remove the substrate. The obtained membrane is suspended between the edges
by a massive frame, which also plays the role of heat sink. Therefore, the heat flux passes only
through the film. Thus, using a suspended membrane geometry is the best choice for a very
sensitive experiment.

In this work we study the heat transport in amorphous silicon nitride by coupling the 3ω

method to the Völklein geometry (suspended membrane). This method allows the measurement
of both thermal conductance and specific heat of suspended membrane. This method will be
explained in details in the next chapters 2 and 3.
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Chapter 2

Implementation of the 3ω-Völklein method

In this thesis, we have been interested in studying the thermal properties of silicon nitride thin
film. To attain this objective, we have developed a system designed to measure with a high
sensitivity both the thermal conductance and the heat capacity of suspended membrane. This
method is based on the 3ω method coupled to the Völklein geometry (suspended membrane).
In order to implement this method, the transducers are connected to a Wheatstone bridge to
detect the weak 3ω voltage. A lock-in amplifier is used to measure the voltage at the output of
the bridge. The whole system is controlled by a computer using a LabVIEW program. In the
following sections we discuss in details this method.

2.1 Principle of the 3ω method

Originally, the 3ω technique has been proposed and developed in 1910 by O. Corbino to mea-
sure the thermal diffusivity of metal filaments for use in light bulbs [58, 59]. In 1987, it was
used by O. Birge and Nagel to measure frequency-dependent specific heat of a liquid [60]. It
was later in 1990 [10], that Cahill has used the 3ω method to measure the thermal conductivity
of dielectric solid film. Although it was initially developed to measure the thermal conductiv-
ity of bulk materials, the 3ω method has been extended later to the measurement of thin films
down to 20 nm thick [14]. Further, the 3ω method has been adapted to measure the thermal
conductivity of the in plane and cross plane (it is one of the most used methods) of anisotropic
films [61, 62], nanowire and carbon nanotube [63, 64], liquid and gases [65], and free standing
membrane geometry [24].

In principle, the 3ω method requires a thin metallic strip to be deposited onto the dielectric
sample surface which serves both as a heater and thermometer as shown in Fig. 2.1. For a small
temperature changes ∆T , the resistance R of the strip varies with temperature as
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Figure 2.1: Schematic shows (a) cross-sectional view and (b) top view of the
heater/thermometer deposited on the film on substrate sample in the 3ω method.

R = R0(1+α∆T ) (2.1)

where α is the temperature coefficient of resistance (TCR) for the metallic heater, R0 and
R are the resistances at temperatures T0 and T0 +∆T , respectively. Moreover, R0 is the initial
resistance where there is no heating effect. The expression of TCR is given by:

α =− 1
R0

dR
dT

. (2.2)

An ac current,
I = I0cos(ωt) (2.3)

with angular frequency ω and amplitude I0 passes through the strip, generates a heating
source with power:

P = R0I2
0 cos2(ωt) =

(
R0I2

0
2

)
DC

+

(
R0I2

0cos(2ωt)
2

)
AC

(2.4)

therefore, the corresponding temperature rise in the sample is also the addition of a DC
component and an AC component with angular frequency 2ω, which can be given by:

∆T = ∆TDC+ | ∆TAC | cos(2ωt +ϕ) (2.5)

where | ∆TAC | is the amplitude of the AC temperature rise and ϕ is the thermal phase. ∆TDC

is the steady-state temperature increase due to the power dissipated by the strip.
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As the resistance of the heater depends strongly on temperature, the AC temperature oscil-
lations in the metal filament produces harmonic variations in the resistance given by

R = R0 [1+α∆TDC +α | ∆TAC | cos(2ωt +ϕ)]

= R0(1+α∆TDC)DC +(R0α | ∆TAC | cos(2ωt +ϕ))AC

(2.6)

The expression of the voltage across the heater can be calculated using the current from Eq.
2.3 and the resistance from Eq. 2.6:

V = RI =R0I0(1+αTDC)cos(ωt)

+

(
R0I0α | ∆TAC |

2
cos(ωt +ϕ)

)
1ω

+

(
R0I0α | ∆TAC |

2
cos(3ωt +ϕ)

)
3ω

(2.7)

According to this expression, the measured voltage across the heater contains the voltage
based on the DC resistance of the heater and two components proportional to the amplitude of
the temperature oscillation in the heater, at 1ω and 3ω frequencies respectively.

The 3ω voltage can be measured by a lock in amplifier and is used to determine the ampli-
tude of the temperature of the heater:

| ∆T2ω |=
2V3ω

R0I0α
' 2V3ω

V1ωα
(2.8)

where, V1ω is the applied voltage across the heater. Usually, the 3ω voltage is very small as
compared to the 1ω voltage. The challenge of the 3ω method is to measure the small 3ω signal.

Moreover, to link the temperature oscillation | ∆T2ω | of the sample to the measured 3ω

voltage, a heat model specific to the geometry of the sample is required. In this thesis, we
used a suspended membrane geometry. Specimen preparation is explained in details in the next
sections.

2.2 Specimen preparation

In this section, the fabrication methods and the measurement setup used in this work are pre-
sented. With the exception of silicon nitride film deposition which is a commercial product, all
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the other steps have been done at the laboratory using clean room techniques. The suspended
silicon nitride membranes, are fabricated by using optical and laser lithography. The transduc-
ers used in this work are in NbN (niobium nitride), which presents a high sensitivity; its TCR
can be tailored over a wide temperature range.

2.2.1 SiN membrane preparation

The silicon nitride membranes used in this work are fabricated by using positive photolithog-
raphy and anisotropic chemical etching on [100] oriented silicon wafers (of 300 or 500 µm
thick) with aqueous KOH solution. In Fig. 2.2, the main steps of the fabrication process are
shown. On both sides of the wafer, high or low-stress silicon nitride (Si3N4 thickness is 50 or
100 nm) was grown by Low Pressure Chemical Vapor Deposition (LPCVD) at LioniX BV1.
The wafer of 4 inches is undercut on sample of 15×15 mm2. Before spreading the resist, the
chip is cleaned by acetone, alcohol and deionized water and finally dried by nitrogen gas. The
used photoresist is the S1818 and it was usually spun at a speed of ∼ 4000 rpm and baked at
150 ◦C for 1 minute. Firstly, exposure was done by using a mask aligner with an UV-lamp and a
plastic photomask, which has 12 rectangular windows with 1.5 mm long and 300 µm large (see
Fig. 2.3). Afterward, we used Maskless Laser Lithography technology to create high quality
microstructures. After exposure, the photoresist is developed with Microposit developer. Next,
silicon nitride is removed from the developed areas by plasma etching in RIE using the SF6
Gas, with a etching rate∼ 50 nm/min. Crystalline silicon is then wet etched in 40 % KOH at 80
◦C with an etching rate of 40 µm/h, after which, the chips are cleaned in hot, deionized water,
and lastly, rinsed with acetone/alcohol and dried with nitrogen gas.

2.2.2 NbN transducer deposition

The transducers are fabricated by using negative photolithography with the UV-lamp mask
aligner; the transducer width was set to 15 µm. For thermometer width less than 15 µm, pho-
tolithography with photomask broke down. Thus, we used the laser photolithography for the
next where the thermometer width was set to 5 µm. The measurement is performed using two
transducers, the first one is centred on the membrane and is used to create an oscillation of the
heat flux as well to measure the voltage oscillation at the third harmonic. The other thermome-
ter is deposited on the bulk region of the chip; it has the same geometry and is deposited in
the same run. Fig 2.3 shows two transducers used during the measurement. The transducer
deposited on the bulk part of the wafer is used as a simple dependent temperature resistor in the
measurement chain based on a Wheatstone bridge.

The transducers consist of niobium nitride and are grown using a dc-pulsed magnetron sput-
tering from a high purity (99%) Nb target in a mixture of Ar/N2 [66]. Hence, depending on the

1Micro/Nano Technology company.
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Figure 2.2: Schematic of the SiN (a) membrane fabrication. (a) (1) The patterns of the mem-
branes are created by photolithography. (2) The nonprotected SiN is removed by SF6 RIE. (3)
The silicon is anisotropically etched in a KOH solution. (4) The thermometers are obtained by
a lift-off process; the area is patterned by photolithography. (5) NbN is deposited by reactive
sputtering. (6) The resist and NbN layer is removed using a wet procedure. (b) A photograph of
the sample is shown: the NbN is grey and the membrane is yellow (1.5 mm long, 300 µm wide
and 40 nm thick).

Figure 2.3: (a) Photograph shows the total chip 15x15 mm2 with the 12 SiN suspended mem-
branes and the reference transducers which are deposited on the same run onto the bulk region.
(b) Photograph shows an example of two transducers used to perform the measurement of the
thermal properties of SiN membranes.
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stoichiometry, the electrical properties (electrical resistance) of the NbN can vary a lot. For the
SiN thermal measurement, the thermometers have been designed for the 10 K - 300 K temper-
ature range.

2.2.3 Specimen setup

Fig. 2.3 (a) shows an example of the chip used for the measurement. Firstly, the chip is fixed
onto the sample holder (see Fig. 2.4) using photoresist and cryogenic grease to ensure a good
thermal contact with the sample. Then, the transducers are connected to the sample holder
pads using a micro wire bonding. Then, the sample holder is fixed on the cryostat. Lastly,
a cryogenic vacuum up to 10−5 Torr is performed inside the cryostat to avoid any parasitic
convective heat transfer with the sample. Moreover, the device is protected by a thermal copper
shield maintained at the regulated temperature to limit thermal transfer by heat radiation. The
thermal gradient between the thermal shield and the sample has been estimated to be much less
than 1K, it is given by the temperature oscillation ∆T of the transducer. The equivalent parasitic
thermal conductivity is calculated using the Stefan-Boltzmann law is less than 10−7W/m.K.

Figure 2.4: (a) Schematic shows the cryostat used to perform the measurement, A: Feed through
for the electric leads; B: stainless steel tube; C: connection wires; D: sample holder; E: the chip
of 15x15 mm; F: wires of bonding; G: regulated stage; H: thermal copper shield; I: external
shield. (b) Photograph shows the sample holder. (c) Photograph shows the chip fixed on the
sample holder.
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2.3 Electrical setup

In order to link up the transducers to the measurement chain, contact pads are patterned at both
ends of the strip. The transducer is patterned is such manner to have four pads in order to
disjoint the current and voltage leads, and then to reduce the connection wire contribution. The
ac current through the transducer deposited on the membrane, induces temperature oscillations
of the membrane with an angular frequency 2ω. Consequently, the thermometer resistance
varies with the same angular frequency. Therefore due to the thermal oscillations, the measured
voltage contains a new "thermal" AC component which varies with an angular frequency 3ω.
This V3ω voltage depends on the geometry, the thermal conductance, and the heat capacity of
the membrane. However, the V1ω signal is still present and is much larger than the V3ω signal
by a factor of 103 to 105. In the following, we explain how by using a specific Wheatstone
bridge [60], we strongly reduce the component of the measured voltage at angular frequency
1ω.

Figure 2.5: Schematic of the electrical measurement system including HF filter, preamplifier,
and lock-in amplifier. A, B, C, and D represent the nodes of the Wheatstone bridge. The V3ω is
measured between C and D. The transducer is referred to as Re and the reference resistance as
Rref. The inset presents a schematic of the membrane fixed on the temperature regulated stage
covered by the thermal copper shield.

The Wheatstone bridge consists of the measured sample with a resistance Re, which is the
NbN thermometer on the SiN membrane, the reference thermometer Rref, an adjustable resistor
Rv, and an equivalent nonadjustable resistor R1 = 50 KΩ as schematized in Fig. 2.5. The ad-
justable resistor is an IET-488 programmable resistor with a resolution of 1mΩ, an accuracy of
0.1% and it can be controlled by an Labview program. During the experiment, the Wheatstone
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bridge is balanced at each temperature of measurement via Rv.

The heating current is generated by applying an alternative voltage Vac between A and
B with the oscillation output of the DS 360 low distortion generator. The measured voltage
is frequency filtered (for f ≥ 50 kHz) and preamplified by a factor of 100 with a low noise
preamplifier EPC-1B2.

The reference thermometer (or reference transducer) has the same geometry and is deposited
in the same run as the transducer on the membrane. The two resistors Rv and R1 are positioned
outside the cryogenic system. If Re = Rref and R1 = Rv, the electrical potential at angular fre-
quency 1ω is the same in C and D. Consequently, there is no voltage at the angular frequency of
1ω between C and D. Since the reference thermometer is not on the membrane, its temperature
remains at Tb (bath temperature) and therefore, its resistance does not change. The elevation
of temperature of the reference transducer has been estimated to be less than 10−6K for a dis-
sipated power in the order of 1µW at room temperature [67]. Thus this elevation is neglected,
thanks to the infinite reservoir of the bulk silicon as compared to the membrane.

In that geometry, the voltage at 1ω (V1ω) has been reduced by a factor of 103. For instance,
with a thermometer of resistance Re ∼ 70 KΩ at room temperature, an applied ac voltage Vac =
0.39 V of a frequency f = 4.67 Hz, the measured 1ω and 3ω voltage on the Wheatstone bridge
output are respectively V1ω = 0.14 mV and V3ω = 0.03 mV. However, without the Wheatstone
bridge, the measured voltage equal to the applied voltage, V1ω = 0.39 V. Therefore, the 1ω is
reduced by a factor more than 2×103 in the presence of the Wheatstone bridge. Note that the
3ω voltage is directly proportional to the TCR, thus it is very small at room temperature. The
balancing of the Wheatstone bridge will be explained in details in section 2.4.2.

2.3.1 Lock in amplifier

Lock-in amplifier is designed to detect and measure (in the presence of large amount of noise)
a very small AC signals in the range down to a few nanovolts. Since the 3ω voltage is much
smaller than the fundamental 1ω voltage, lock-in amplifier is used to detect and measure both
the amplitude and the phase. Here, the Ametek 7124 is used to measure simultaneously the dual
harmonics 1ω and 3ω.

The technique commonly used to attain this objective is called phase-sensitive detection
(PSD), which separates the components of the input signal at a specific reference frequency and
phase. Phase-sensitive detectors (PSD) requires a frequency reference to which it "locks-in".
The reference signal can be generated either internally by the lock-in internal oscillator, or ex-
ternally through a function generator. As the 3ω voltage is very small and is proportional to V3

ac
as we will see later, the input current should be as perfect as possible. In these measurements,
the DS 360 low distortion function generator was used as external generator. The DS 360 deliv-

2EPC-1B is a preamplifier developed at the Institut Néel with an input noise around 1 nV/
√

Hz between 1 Hz
and 1 kHz
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ers signals with total harmonic distortion (THD) less than 0.001 % with a frequency accuracy of
25 ppm. Note that the Wheatstone bridge have the advantage to remove the different harmonics
which do not have a thermal origin, this is true when it is well balanced.

If the sine output from the function generator with the frequency ωr is used to excite the
experiment, thus the response is defined as followed:

Vsigsin(ωrt +θsig) (2.9)

where, Vsig and θsig are the signal amplitude and the signal phase respectively. Due to
orthogonality of sinusoidal signals of different frequencies to each other, the average of the
product of two signal components is zero unless their frequencies are the same. Thus, by multi-
plying a noisy signal from the experiment by a reference signal at given frequency ωL generated
by the lock-in amplifier as sin(ωLt +θre f ), the product is proportional to the noisy signal at that
frequency and is given by:

Vpsd =Vsigsin(ωrt +θsig)sin(ωLt +θre f ) (2.10)

where, Vpsd is the phase sensitive detection output. Using product to sum trigonometric
identities, the product can be given by:

Vpsd =
1
2

Vsig
[
cos[(ωr−ωL)t +(θsig−θre f )]− cos[(ωr +ωL)t +(θsig +θre f )]

]
(2.11)

as shown in equation 2.11, by adjusting the lock-in frequency to be same as the reference
one (ωL = ωsig), and by applying a low pass filter to the PSD output, the AC signals will be
removed. As a result, the output of the PSD yields a DC signal as follows:

Vpsd =
1
2

Vsigcos(θsig−θre f ). (2.12)

However, to determine the magnitude of the signal, the out of phase component of the
signal with the reference will be measured. To attain this objective, a second DSP is used with
a reference signal phase angle of π/2 from the first. Then by combining the two components,
the magnitude and phase angle can be obtained:

Vpsd2 =
1
2

Vsigcos[θsig− (θre f +π/2)] =
1
2

Vsigsin(θsig−θre f ) (2.13)
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and then,

R =
√

V 2
psd +V 2

psd2

θ = θsig−θre f = tan−1
(

Vpsd

Vpsd2

)
Vpsd ≡Vx

Vpsd2 ≡Vy

(2.14)

where R is the magnitude of the signal, and θ defines the phase between the signal and the
lock-in reference.

2.4 Experimental procedure

In order to extract thermal properties of silicon nitride membrane, there are different indepen-
dent measurements that need to be achieved. First of all, the calibration of transducers versus
temperature, which leads to determine the law of variation of the resistance with temperature,
and permits to calculate the temperature coefficient of resistance of thermometer. Then the 3ω

voltage is measured to estimate the temperature oscillation at 2ω of the thermometer as shown
in Eq. 2.8. This measurement is realized in two steps. One at low frequency and another by
a scan with the frequency at a given temperature, to finally reach the value of the thermal con-
ductivity and the specific heat respectively. In the following we show a detailed explanation of
these measurements.

2.4.1 Thermometer calibration and TCR measurement

The thermometer constitutes the key element in thermal measurement. The accuracy of the
measured thermal properties depends essentially on the temperature sensitivity and stability
of this element. By definition, a thermometer has some physical properties which depends
strongly on the temperature. In the case of resistive thermometry used in these experiments, the
physical property is the electrical resistance of the thermometer. The temperature coefficient of
resistance TCR in K−1 expresses the sensitivity of the resistive thermometer, and symbolizes
the resistance change factor per degree of temperature change as mentioned by Eq. 2.2.

The TCR is principally related to the intrinsic properties of the transducer. Metals have pos-
itive TCR, where the resistance varies linearly with temperature and generally saturates around
30 K, so metals cannot be used at low temperatures. However, semiconductors and materials
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with a Mott-Anderson transition have negative temperature coefficients, making them partic-
ularly effective at low temperatures. At low enough temperature, the Mott-Anderson material
(e.g NbN [66], NbSi [68, 69]) becomes insulating, with an exponential increase in their resis-
tance. Therefore, the Mott-Anderson insulator materials are the most useful for low temperature
thermometric applications.

As mentioned above, the NbN transducers are used in these experiments. This kind of
transducers has a big advantage, where its TCR reaches 10−1 K−1 at low temperature and 10−2

K−1 at room temperature, a high values as compared to regular thermometer like platinum
(∼ 0.4×10−2 K−1 at room temperature). Moreover, it can be tailored over a wide temperature
range, from low temperature [9] to high temperature [70]; this cannot be done with NbSi, a less
versatile material.

In order to get access to the TCR of thermometer, the resistance of the thermometer should
be measured versus temperature. This calibration will serve also to calculate the thermal proper-
ties. To attain this objective, the resistance of the thermometer is calibrated using a standard four
probe technique between 4 K and 330 K in a 4He cryostat. This connection configuration allows
spatial separation of the current and voltage leads, so that one can extract only the resistance of
the thermometer, without including the contribution of the connecting wires in the final value
of the resistance. This configuration is very widely used in thermometry because it provides a
highly reliable and reproducible low noise measurement. Fig. 2.6 shows an experimental data
of a thermometer calibration, and the respective TCR versus temperature.
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Figure 2.6: Evolution of the resistance (a) and the temperature coefficient of resistance (b) of
the thermometer Re versus temperature.

2.4.2 Wheatstone bridge balance and V3ω expression

The two NbN thermometers have practically the same temperature behavior as they have been
deposited simultaneously on the SiN substrate. However, due to the presence of inhomogeneity
in the deposition process, there is a slight difference of resistance. Thus, the Rv resistor is used
to balance the bridge. However, the measured V1ω between C and D will never be equal to zero
after balancing the bridge. As shown in Fig. 2.7, Vmin 6= 0. Note that this voltage depends on
temperature, corresponds to the thermal 1ω signal generated by the thermometer as given by
Eq. 2.7, to the parasitic voltage corresponding to the resistance of contacts and to the electrical
capacities by the terms R1C

′
4, RvC

′
3 as given by Eq. 2.15.
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Figure 2.7: V1ω versus Rv measured between C and D. This measurement is performed at T=
150 K, with Vac = 1 V and f = 7.56 Hz.

The heating current is generated by applying an alternative voltage Vac between A and B
with the oscillation output, Vace jωt . As the distance between the thermometer and the resistances
Rv and R1 is not negligible, we assume that there is line electrical capacities (Cl) in parallel, as
schematized on the Fig. 2.8. We assume also that the two thermometers present an electrical
capacity: C

′
3 = 2Cl +C3 for the reference and C

′
4 = 2Cl +C4 for the sample. Following the

schemes given in Fig. 2.8, the absolute value of V1ω between C and D can be written as follows:

|V1ω(ω)|=
Vac

[
ε2 +R2

eR2
re f ω2(R1C

′
4−RvC

′
3)

2
]1/2

[
(Rv +Re)2 +(RvReC

′
3ω)2

]1/2 [
(Rre f +R1)2 +(R1Rre fC

′
4ω)2

]1/2 (2.15)

with ε = Rre f R1−ReRv and the phase ϕV 1w(ω) given by ϕV 1w(ω) = ϕ3−ϕ4−ϕ5 where :

tgϕ3 =
Rre f Re(R1C

′
4−RvC

′
3)ω

R1Rre f −ReRv
tgϕ4 =

RvRre fC
′
3ω

Rre f +Rv
tgϕ5 =

R1ReC
′
4ω

Re +R1
(2.16)

Moreover, the measured voltage between C and D can be given by:

VCD(t) =VAD(t)−VAC(t) (2.17)

As the temperature elevation of the reference thermometer is neglected, thanks to the infinite
reservoir of the bulk silicon as compared to the membrane; thus there is no term at 3ω coming
from VAD(t).
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Figure 2.8: Electrical schematic of the Wheatstone bridge. VCD is the output measured voltage.

The expression of the voltage drop across the thermometer, VAC(ω) is given by:

VAC(ω) = ZeI (2.18)

with Ze = R
′
e/(1+ jR

′
eC
′
4ω), R

′
e = Re [1+α |4T2ω|cos(2ωt +ϕ)]

|4T2ω| is the average of temperature oscillation at 2ω of the membrane, I the current coming
through the impedance Ze, and Ze represents the ac impedance of the thermometer including the
electrical leads.

|4T2ω| depends on the geometry of the membrane and its thermal properties, it will be
calculated later by an appropriate thermal transfer model.

Using the relations between the currents in the Wheatstone bridge, we can obtain the fol-
lowing equation:

I =
Vac

(
1+ jReC

′
4ω

)
(
R1 +Re + jReR1C′4ω

) (2.19)

Then, the general expression of the voltage, between A and C, can be written as follows:
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VAC(t) =

√
2V rms

ac Re [1+α |4T2ω|cos(2ωt +ϕ)]cos(ωt−ϕ5)

([R1 +Re [1+α |4T2ω|cos(2ωt +ϕ)]2 +[R1ReC
′
4ω]2)1/2

(2.20)

with V rms
ac the voltage put on the Wheatstone bridge (between A and B),ϕ the thermal phase,

Cl the line capacity, C3 and C4 being the electric capacity of the reference thermometer and of
the thermometer on the membrane respectively.

After development in Taylor expansion of the denominator of Eq. 2.20, the rms value of the
3ω voltage V rms

3ω
is given by:

V rms
3ω (ω) =

V rms
ac αRe |4T2ω|

2

[
1[

(R1 +Re)2 +(R1ReC
′
4ω)2

]1/2 −
Re

(R1 +Re)2

]
(2.21)

Fig. 2.9 shows an experimental measurements of both the voltage and the phase of the 1ω

voltage, and their respecting fits using Eqs. 2.15 and 2.16 to determine C
′
3 and C

′
4. An electrical

cutoff frequency is observed at 1 kHz, whereas the thermal cutoff frequency is observed around
100 Hz which is much lower than the electrical cutoff frequency.

Figure 2.9: Absolute value and phase of V1ω signal as a function of the frequency and their
respecting fits (solid lines) using the following parameters: V rms

ac = 0.06 V, Rv = 70.5 KΩ, Re =
267.81 KΩ Rre f = 390.77 KΩ, C

′
3 = 185 pF, and C

′
4 = 450 pF.

Therefore, the electrical capacities of the thermometers are negligible as compared to the
thermal effects. Thus, in order to give a clearer and more physical description of the method,
we can consider that C

′
3=C

′
4=Cl=0. Then the expression of V3ω becomes:
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V rms
3ω (ω) =

V rms
ac αRe |4T2ω|

2
R1

(R1 +Re)2 (2.22)

After the specimen reaches thermal equilibrium and the Wheatstone bridge is balanced, the
magnitude and phase of the 3ω voltage are measured between C and D by the lock-in amplifier.
As shown in Eq. 2.22, the magnitude of the 3ω voltage depends on the temperature oscillation
of the membrane |4T2ω|. Moreover, the expression of |4T2ω| depends on the geometry of the
membrane and contains its thermal properties such as the thermal conductance and the heat
capacity.

In the following chapter, we present the thermal model of heat transfer across the membrane
used to calculate |4T2ω|. Then we explain how through an approximation of Eq. 2.22 at low
and high frequency one can extract the thermal conductance and the heat capacity respectively.



41

Chapter 3

Heat transfer model and data treatment

The thermal properties of the membrane are related to the 3ω voltage through the temperature
oscillation as shown by Eq. 2.22. In this chapter, we will provide the heat transfer model specific
to the suspended membrane geometry. The analytical solution of the temperature oscillation
for a 2-dimensional model is first derived. Then to simplify, the 1-dimensional solution is
derived using some assumptions. The difference between the two models on the extracted
thermal properties will then be presented. Afterwards, the effect of a finite transducer width
will be discussed. Finally in order to validate the 3ω-Völklein method, we present experimental
measurements fitted by the theoretical model, the sensitivity of this method will be discussed.

3.1 Two dimensional model

Consider the geometry shown in Fig. 3.1. The thin membrane is supported by the substrate.
The geometry of the membrane is assumed to be rectangular with the dimensions 2` and L. The
thickness of the membrane is e. The heater/thermometer of width w and height h is patterned
in the centre of the membrane. The heater width w is small as compared to membrane width
(on the order of 1

/
60), and the heat transfer within the heater may be neglected (which can be

calculated using the Wiedmann-Franz law). Thus, the heater may be treated as a line source of
heat. A sinusoidal electric current of amplitude I and frequency ω passes through the heater.
The electrical resistance of the metal heater is R. As the measurement is performed under a
cryogenic vacuum and the sample is protected by a thermal shield, convection and radiation are
negligible compared to conduction in the membrane plane. Further, the out of plane thermal
resistance is assumed to be small compared to the in plane thermal resistance, thus the mem-
brane may be treated as isothermal is the z-direction. This will be confirmed by a numerical
simulation of the system by finite element analysis (see Fig. 3.5).
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Figure 3.1: Schematic showing the geometry of the freestanding thin film installed on the con-
trolled temperature stage.

3.1.1 General equation of heat transfer

Under these assumptions, the equation of heat transfer through the membrane may be written
as:

∂2T
∂x2 +

∂2T
∂y2 =

1
D

∂T
∂t

(3.1)

where D = κ

ρc is the thermal diffusivity, κ is the thermal conductivity, ρ is the density and c
is the specific heat.

The initial and boundary conditions for Eq. (3.1) may be written as:


T (x,y,0) = 0
T (0,y, t) = T (L,y, t) = T (x,0, t) = 0
∂T
∂y

∣∣∣
y=`

= RI2sin2(ωt)
2κs = RI2

4κs [1− cos(2ωt)]
(3.2)

where s = eL is the cross section of the membrane.
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In order to solve this differential equation, we assume that the solution is the sum of a
steady-state component Uss(x,y) corresponding to the steady component of Joule heating due
to sinusoidal current, and a transient component Vtr(x,y, t) that consists of the time dependent
and sinusoidal terms.

Thus, the general solution of Eq. 3.1 can given by:

T (x,y, t) =Uss(x,y)+Vtr(x,y, t) (3.3)

for the next, we will use U and V instead Uss and Vtr respectively. The initial and boundary
conditions can be written as:



V (x,y,0) = 0
U(0,y)+V (0,y, t) = 0
U(x,0)+V (x,0, t) = 0
U(L,y)+V (L,y, t) = 0
∂U
∂y

∣∣∣
y=`

+ ∂V
∂y

∣∣∣
y=`

= RI2

4κs −
RI2

4κscos(2ωt)

(3.4)

⇒



V (x,y,0) = 0
U(0,y) = 0, V (0,y, t) = 0
U(x,0) = 0, V (x,0, t) = 0
U(L,y) = 0, V (L,y, t) = 0
∂U
∂y

∣∣∣
y=`

= RI2

4κs , ∂V
∂y

∣∣∣
y=`

=−RI2

4κscos(2ωt)

(3.5)

moreover, Eq. 3.1 becomes:

∂2U
∂x2 +

∂2U
∂y2 = 0 steady state (ss)

∂2V
∂x2 +

∂2V
∂y2 =

1
D

∂V
∂t

transient (tr)
(3.6)

3.1.1.1 General solution of steady-state equation

The solution of the steady-state component can be determined using the method of separation
of variables. We can assume that the solution is given by:

U(x,y) = X(x)Y (y) (3.7)
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by substituting Eq. 3.7 into the steady-state part of Eq. 3.6 we obtain:

X ′′Y +XY ′′ = 0
X ′′

X
+

Y ′′

Y
=±λ

2
(3.8)

where λ is a constant.

the solution of Eq. 3.8 can be given by:

{
X(x) = Acos(λx)+Bsin(λx)
Y (y) =Ccosh(λy)+Dsinh(λy) (3.9)

where, A, B, C and D are constant coefficients which are determined using the boundary
conditions given by Eq. 3.4. Thus we find:

{
A =C = 0
Bsin(λL) = 0⇒ λL = nπ⇒ λn =

nπ

L
(3.10)

with n an integer number. The steady-state solution becomes:

U(x,y) =
∞

∑
n=0

Ensin(λnx)sinh(λny) (3.11)

with En a constant coefficient to be determined, ∂U
∂y

∣∣∣
y=`

= RI2

4κs implies:

∞

∑
n=0

Enλnsin(λnx)cosh(λn`) =
RI2

4κs
(3.12)

by multiplying the two sides of Eq. 3.12 by:∫ L
0 sin(λmx)dx one obtains:

∫ L

0
Enλnsin(λnx)sin(λmx)cosh(λn`)dx =

∫ L

0

RI2

4κs
sin(λmx)dx (3.13)

the left side of Eq. 3.13 is different of zero only if n = m, thus:
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∫ L

0
Enλnsin2(λnx)cosh(λn`)dx =

∫ L

0

RI2

4κs
sin(λnx)dx (3.14)

En =
RI2[1− cos(λnL)]

2κe(nπ)2cosh(λn`)
(3.15)

then the solution of the steady-state equation becomes:

Uss(x,y) =
∞

∑
n=1

RI2[1− cos(nπ)]

2κe(nπ)2cosh(nπ`
L )

sin(
nπ

L
x)sinh(

nπ

L
y). (3.16)

Uss represents the average heater temperature rise due to Joule heating. Note that this equa-
tion can be used to determine the thermal conductivity of the membrane, as κ is the only un-
known parameter. Here we will use it to determine the profile of the steady state temperature
elevation of the membrane. This is a convergent series, we find that the first tens orders are
sufficient and do not need to go to higher orders. Fig. 3.2 shows Uss at room temperature for a
dissipated power of 1 µW, the temperature elevation on the centre of the membrane is ∆T ∼ 40
mK.

Figure 3.2: Schematic shows the steady state temperature profile on half of the membrane, at
room temperature for a dissipated power of 1 µW and thermal conductivity κ∼ 3 W/m.K. The
temperature elevation on the centre of the membrane is ∆T ∼ 40 mK.
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3.1.1.2 General solution of transient equation

To derive the solution for the transient equation, the method of integral transforms [71] is used.
This method consists to solve firstly the homogeneous equation, thus with:

∂V
∂y

∣∣∣
y=`

= 0

and then to calculate the dependence of time coefficient using:

∂V
∂y

∣∣∣
y=`

=−RI2

4κscos(2ωt).

Using the first assumption, all the boundary conditions are homogeneous, thus the transient
equation can be solved by the method of separation of variables. We can assume that the solution
is given by:

V (x,y, t) = X(x)Y (y)Z(t) (3.17)

by substituting Eq. 3.17 into the transient part of Eq. 3.6 we obtain:

X ′′

X
+

Y ′′

Y
=

1
D

Z′

Z
=±(λ2 +β

2) (3.18)

where λ and β are two constants to be determined. Eq. 3.18 can be written as a system of
two differential equations:

{
X ′′+λ2X = 0
Y ′′+β2Y = 0

(3.19)

the solutions can be written as:

{
X(x) = Acos(λx)+Bsin(λx)
Y (y) =Ccos(βy)+Dsin(βy) (3.20)

where, A, B, C and D are constant coefficients which are determined using the boundary
conditions given by Eq. 3.4. Thus we find:



3.1. TWO DIMENSIONAL MODEL 47


X(0) = Y (0) = 0
X(L) = 0
∂Y
∂y

∣∣∣
y=`

= 0
(3.21)

⇒


A =C = 0
Bsin(λL) = 0⇒ λn =

nπ

L
Dβcos(β`) = 0⇒ βm = (m+ 1

2)
π

`

(3.22)

then the solution of V (x,y, t) becomes:

V (x,y, t) =
∞

∑
m=0

∞

∑
n=1

Zmn(t)sin(
nπ

L
x)sin

[
(m+

1
2
)
π

`
y
]

(3.23)

the next step is to calculate Zmn(t) using the boundary and initial conditions:

∂V
∂y

∣∣∣∣
y=`

=−RI2

4κs
cos(2ωt)

V (x,y,0) = 0
(3.24)

by multiplying the two sides of Eq. 3.23 by:∫ `
0
∫ L

0 sin(n′π
L x)sin

[
(m′+ 1

2)
π

` y
]

dxdy

one obtains:

∫ `

0

∫ L

0
V (x,y, t)sin(

n′π
L

x)sin
[
(m′+

1
2
)
π

`
y
]

dxdy =∫ `

0

∫ L

0

∞

∑
m=0

∞

∑
n=1

Zmn(t)sin(
nπ

L
x)sin(

n′π
L

x)sin
[
(m+

1
2
)
π

`
y
]

sin
[
(m′+

1
2
)
π

`
y
]

dxdy
(3.25)

where
∫ L

0
sin(

nπ

L
x)sin(

n′π
L

x)dx =

{
L
2 if n = n′

0 otherwise

and
∫ `

0
sin
[
(m+

1
2
)
π

`
y
]

sin
[
(m′+

1
2
)
π

`
y
]

dy =

{
`
2 if m = m′

0 otherwise
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thus,

Zmn(t) =
4
`L

∫ `

0

∫ L

0
V (x,y, t)sin(λnx)sin(βmy)dxdy (3.26)

dZmn

dt
=

4
`L

∫ `

0

∫ L

0

∂V
∂t

sin(λnx)sin(βmy)dxdy

=
4D
`L

∫ `

0

∫ L

0

[
∂2V
∂x2 +

∂2V
∂y2

]
sin(λnx)sin(βmy)dxdy

=
4D
`L

[∫ `

0

∫ L

0

∂2V
∂x2 sin(λnx)sin(βmy)dxdy+

∫ `

0

∫ L

0

∂2V
∂y2 sin(λnx)sin(βmy)dxdy

]
=

4D
`L

[I + J]

(3.27)

by the first integration by parts of I according to x one obtains:

I =

{[
∂V
∂x

sin(λnx)
]L

0
−

∫ L

0
λn

∂V
∂x

cos(λnx)dx

}∫ `

0
sin(βmy)dy

=−
∫ L

0
λn

∂V
∂x

cos(λnx)dx
∫ `

0
sin(βmy)dy

(3.28)

the second integration by parts according to x of I yields:

I =
{
−λn [V cos(λnx)]L0−

∫ L

0
λ

2
nV sin(λnx)dx

}∫ `

0
sin(βmy)dy

=−λ
2
n

∫ `

0

∫ L

0
V (x,y, t)sin(λnx)sin(βmy)dxdy

=−λ
2
n
`L
4

Zmn(t)

(3.29)

and by the first integration by parts of J according to y one obtains:

J =

{[
∂V
∂y

sin(βmy)
]`

0
−

∫ `

0
βm

∂V
∂y

cos(βmy)dy

}∫ L

0
sin(λnx)dx

=

{
−RI2

4κs
sin(βm`)cos(2ωt)−

∫ `

0
βm

∂V
∂y

cos(βmy)dy
}∫ L

0
sin(λnx)dx

(3.30)
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the second integration by parts according to y of J yields:

J =

{
−RI2

4κs
sin(βm`)cos(2ωt)−βm [V cos(βmy)]`0−β

2
m

∫ `

0
V sin(βmy)dy

}∫ L

0
sin(λnx)dx

=− RI2

4κs
sin(βm`)cos(2ωt)

∫ L

0
sin(λnx)dx−β

2
m

∫ `

0

∫ L

0
V sin(λnx)sin(βmy)dxdy

=− RI2

4κs
sin
[
(m+

1
2
)π

][
−cos(nπ)−1

λn

]
cos(2ωt)−β

2
m
`L
4

Zmn(t)

=
RI2L

4κsnπ
(−1)m+1 [1− (−1)n]cos(2ωt)−β

2
m
`L
4

Zmn(t)

(3.31)

therefore, Eq. 3.27 becomes:

dZmn

dt
=

4D
`L

[I + J]

=−D(λ2
n +β

2
m)Zmn(t)+

RI2D
πκns`

(−1)m+1 [1− (−1)n]cos(2ωt)

=− γmnZmn(t)+ξmncos(2ωt)

(3.32)

where,

γmn = Dπ
2

(n
L

)2
+

(
m+ 1

2
`

)2


ξmn =
RI2D
πκns`

(−1)m+1 [1− (−1)n] .

Consequently, we obtain the differential equation which permits to calculate the coefficient
Zmn(t):

dZmn

dt
+ γmnZmn(t)−ξmncos(2ωt) = 0 (3.33)

the general solution of Eq. 3.33 can be written as the sum of the general solution of the
equation without the second term and a particular solution of the entire equation,
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Zmn(t) =
[
He−γmnt]

general solution

+[Mcos(2ωt)+Nsin(2ωt)]particular solution
(3.34)

where, H, M and N are constants to be calculated. By substituting this solution into Eq.
3.33 one obtains:

−2ωMsin(2ωt)+2ωNcos(2ωt)+ γmn[Mcos(2ωt)+Nsin(2ωt)] = ξmncos(2ωt) (3.35)

⇒
{

2ωN + γmnM = ξmn
−2ωM+ γmnN = 0 (3.36)

therefore,

Mmn =
γmnξmn

4ω2 + γ2
mn

Nmn =
2ωξmn

4ω2 + γ2
mn

using the initial condition, V (x,y,0) = X(x)Y (y)Z(0) = 0⇒ Z(0) = 0

⇒ Hmn =−Mmn.

The general solution of Zmn(t) becomes:

Znm(t) =−
γmnξmn

4ω2 + γ2
mn

e−γmnt +
γmnξmn

4ω2 + γ2
mn

cos(2ωt)+
2ωξmn

4ω2 + γ2
mn

sin(2ωt) (3.37)

3.1.1.3 Periodic solution at 2ω

By plugging the terms oscillating at 2ω in Eq. 3.37 into Eq. 3.23, the expression of the temper-
ature solution at 2ω becomes:

V (x,y, t)2ω =
∞

∑
m=0

∞

∑
n=1

[Mmncos(2ωt)+Nmnsin(2ωt)]sin
(nπ

L
x
)

sin
[
(m+

1
2
)
π

`
y
]

(3.38)
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then the average of the temperature oscillation at 2ω in the middle of membrane (y = `) is
given by:

4T2ω =
1
L

∫ L

0

∞

∑
m=0

∞

∑
n=1

[Mmncos(2ωt)+Nmnsin(2ωt)]sin
(nπ

L
x
)

sin
[
(m+

1
2
)π

]
dx (3.39)

4T2ω =
∞

∑
m=0

∞

∑
n=1

[Mmncos(2ωt)+Nmnsin(2ωt)]Smn (3.40)

where Smn =
−(−1)n+1

nπ
(−1)m.

The expression of4T2ω can be written as:

4T2ω =
∞

∑
m=0

∞

∑
n=1

[
(MmnSmn)

2 +(NmnSmn)
2]1/2

sin(2ωt +ϕmn) =| 4T2ω | sin(2ωt +ϕmn)

(3.41)

where,

ϕmn = arctan
[

∑
∞
m=0 ∑

∞
n=1 MmnSmn

∑
∞
m=0 ∑

∞
n=1 NmnSmn

]
. (3.42)

While | 4T2ω | represents the amplitude of the temperature oscillation at 2ω frequency due
to the sinusoidal nature of heating, the measurement of this quantity will provide the thermal
properties of the membrane, namely thermal conductivity and heat capacity. | 4T2ω | is deter-
mined indirectly by the measure of the 3ω voltage. Then the Eq. 2.22 is used to provide the
relation between the two quantities.

At very low frequency, Eq. 3.40 becomes:

| 4T2ω |=
∞

∑
m=0

∞

∑
n=1

SmnRI2(−1)m+1[1− (−1)n]

π3nκs`
[( n

L

)2
+
(

m+1/2
`

)2
] (3.43)

Note that from Eq. 3.40:

| 4T2ω |−→ 0 as ω−→ ∞, d|4T2ω|
dω

−→ 0 as ω−→ 0
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at low frequency, the temperature oscillation becomes independent of the frequency which
lead to the appearance of a plateau at low frequency, while at high frequency, it becomes too
small to be measured. Physically, the low frequency behavior is explained by the fact that the
temperature of the membrane has sufficient time to equilibrate, and thus the sinusoidal effect
of the heating current is lost. This regime is called quasi-static. On the other hand, at high

frequency the thermal penetration depth λ =
√

2D
ω

(with D the thermal diffusivity) becomes
comparable to the membrane thickness, then the boundary condition at the other side of the thin
film begins to play an important role in the heat transfer problem. As the length of the membrane
is sufficiently long as compared to the width, and in order to simplify the heat transfer model,
the 1-dimensional model is then developed using some assumptions. In the next sections we
show this model and then a comparison between the two models.

3.2 One dimensional model

For simplification, as the membrane is thin (e ∼ 100 nm), we assume that the part of the mem-
brane just beyond the NbN transducer is heated like the thermometer. The membrane is repre-
sented in Fig. 3.3. As there is a symmetric axis coming through the middle of the transducer,
the thermal system can be modeled using half the membrane and half the heating power. As
the membrane is suspended in vacuum, we assume that the heat can only diffuse through the
membrane toward the silicon substrate which is at constant temperature Tb. Thus, we consider
a one dimensional model, where the heat flow is diffused from the center of the membrane to-
ward the edges according to the x axis. The radiative heat loss is neglected as a thermal shield
is put between the sample and the calorimeter wall. Therefore, the system can be modeled as a
volume of matter with a total specific heat C

′
and bonded to the thermal bath by the membrane

with a thermal conductivity κ. The thermal system is schematized in Fig. 3.3. The total specific
heat C

′
takes into account both the NbN thermometer and the part of the membrane below the

transducer. C
′
can be written as

C
′
= ρNbNcNbNLe′

b
2
+ cρ

b
2

Le (3.44)

with c the specific heat and ρ the density of the SiN membrane.

To determine the temperature gradient in the membrane, we solve the one dimensional ther-
mal diffusion equation for the temperature profile in the membrane:

∂2T (x, t)
∂x2 =

1
D

∂T (x, t)
∂t

(3.45)

with D the thermal diffusivity of the membrane. In order to calculate the solution of Eq.
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Figure 3.3: Photograph of the two NbN thermometers deposited on the membrane and on the
bulk region; below, the schematic of the measurement device installed on the controlled tem-
perature stage.

3.45, we need initial and boundary conditions. Therefore, we assume that at t=0, the temper-
ature of the membrane is Tb since the transducer is not heated. Moreover, we assume that the
membrane edge is always at T =Tb. The total dissipated power P(t) is used to heat both the ther-
mometer and the part of the membrane under the thermometer, and the rest of the membrane.
Thus, the initial and boundary conditions can be written as:


T (x, t = 0) = Tb

C
′
(T ) ∂T (x,t)

∂t

∣∣∣
x=`

= P(t)− sκ
∂T
∂x

∣∣∣
x=`

T (x = 0, t) = Tb

(3.46)

with s = eL the cross section of the membrane. As shown in Fig. 2.5, the thermometer
deposited on the membrane is located between A and C, the ac current passed through this
thermometer can be expressed as:

I = I0sin(ωt) =
(

Vac

Re +R1

)
sin(ωt) (3.47)

thus, the expression of the total dissipated power in one half of the membrane is given by:
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P(t) =
1
2

ReI2 =
Re

4

(
Vac

Re +R1

)2

(1− cos(2ωt)) (3.48)

for simplification the ac power at 2ω can be written as:

P2ω(t) =
Re

4

(
Vac

Re +R1

)2

e j2ωt =
Re

2

(
V rms

ac
Re +R1

)2

e j2ωt = P0e j2ωt (3.49)

using separation of variables, we look for solution at 2ω of Eq. 3.45 with the form:

T (x, t) = T (x)e j2ωt (3.50)

where T (x) is the spatial evolution of the temperature oscillations.

By substituting Eq. 3.50 into Eq. 3.45 we obtain:

d2T (x)
dx2 =

j2ω

D
T (x) (3.51)

this is a second order of ordinary differential equation, the general solution being:

T (x) = Aeσx +Be−σx (3.52)

with σ =
√

j2ω

D = (1+ j)
√

ω

D = (1+ j)ω′. A and B are two constant coefficients to be
calculated using the boundary conditions. Therefore:

T (x, t) = (Aeσx +Be−σx)e j2ωt (3.53)

using the first boundary condition:

T (0, t) = 0⇒ A =−B

Eq. 3.53 becomes:

T (x, t) = 2Ash(σx)e j2ωt (3.54)
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using the second boundary condition:

C
′
(T ) ∂T (x,t)

∂t

∣∣∣
x=`

= P(t)− sκ
∂T
∂x

∣∣∣
x=`
⇒

C
′
(2Ash(σ`)) j2ω = P0− sκ(2Aσch(σ`)) (3.55)

A =
P0

j4ωC′sh(σ`)+2sκσch(σ`)
(3.56)

thus the general solution of Eq. 3.45 is given by:

T (x, t) =
P0sh [(1+ j)ω′x]e j2ωt

j2ωC′sh [(1+ j)ω′`]+ sκ(1+ j)ω′ch [(1+ j)ω′`]
(3.57)

T (x, t) =
P0

D1/2
0

[
sin2(ω′x)+ sh2(ω′x)

]1/2
e j(2ωt+ϕ) (3.58)

with D1/2
0 the modulus of the denominator of Eq. 3.57 and ϕ the phase is given by:


ϕ(ω) = ϕ1 +ϕ2

tgϕ1 =−
ω
′
`
[
ch(ω

′
`)cos(ω

′
`)+sh(ω

′
`)sin(ω

′
`)
]
+2ωτsh(ω

′
`)cos(ω

′
`)

ω
′
`[ch(ω′`)cos(ω′`)−sh(ω′`)sin(ω′`)]−2ωτch(ω′`)sin(ω′`)

tgϕ2 =
tg(ω

′
`)

th(ω′`)

(3.59)

after development in Taylor expansion in first order in ω, the expression of the modulus of
the temperature at the center of the membrane T2ω(`) can be written as followed:

| T2ω |=
P0

Kp

[
1+ω2

(
4τ2 + 2`4

3D2 +
4τ`2

3D

)]1/2 (3.60)

with Kp=κs
` , τ= C

′

Kp
and D the thermal diffusivity.

By substituting the expression of P0 into Eq. 3.60 we obtain:

| T2ω |=
Re(V rms

ac )2

2(Re +R1)2Kp

[
1+ω2

(
4τ2 + 2`4

3D2 +
4τ`2

3D

)]1/2 (3.61)
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3.2.1 Thermal conductivity and specific heat measurement

At low frequency, the ω term in Eq. 3.61 becomes negligible, thus the expression of | T2ω | can
be written as:

| T2ω |=
Re(V rms

ac )2

2(Re +R1)2Kp
(3.62)

by substituting the expression of | T2ω | into Eq. 2.22 the expression V3ω in its simplest form
becomes:

|V rms
3ω |=

αR2
eR1(V rms

ac )3

4(Re +R1)4Kp
(3.63)

as the 3ω voltage is measured at fixed temperature and balanced Wheatstone bridge, all the
parameters of Eq. 3.63 are constant. Moreover, at low frequency V3ω is independent of the
frequency and depends on the thermal conductance KP of the membrane. Thus, the measure-
ment of V3ω at low frequency can allow the calculation of the thermal conductance KP using
Eq. 3.63.

By using Eq. 3.61 and Eq. 2.22 the general expression of V3ω becomes:

|V rms
3ω (ω)|= αR2

eR1(V rms
ac )3

4(Re +R1)4Kp

[
1+ω2

(
4τ2 + 2`4

3D2 +
4τ`2

3D

)]1/2 (3.64)

at fixed temperature, the specific heat of the membrane is extracted by fitting the 3ω voltage
data versus frequency using Eq. 3.64.

Fig. 3.4 shows an example of experimental measurement of V3ω versus frequency and its
respective theoretical fit. This measurement is performed at T = 250 K for a SiN membrane
of 100 nm thick. Using the thermal conductivity value determined from Eq. 3.63, fitting the
experimental data with Eq. 3.64 yields the value of heat capacity of the SiN membrane.
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Figure 3.4: 3ω voltage measurement as function of frequency of the heater current. Experimen-
tal data agree well with the theoretical model. This measurement is performed at T = 250 K for
a membrane 100 nm thick, the extracted values from the fit are κ = 3.19 W/m.K and c = 0.68
J/g.K.

3.3 Comparison between the one and two dimensional model

To summarize, the difference between the two models comes from the fact that the two-dimensional
model takes into account the part of heat flow in the direction parallel to the thermometer,
whereas just the perpendicular direction to the thermometer of heat flow is taken by the one-
dimensional model. However, as the membrane is sufficiently thin, it is assumed that the ther-
mometer and the region of the membrane just underside are at the same temperature. Finite
element simulations have been performed to confirm this assumption using the ANSYS plat-
form1. Results are displayed on Fig. 3.5. Heat flows from the thermometer to the quasi-infinite
reservoir of the bulk silicon. Except at the edges of the membrane, the temperature along the
heater is nearly the same. We can also verify on the Fig. 3.5 that the temperature is uniform over
the membrane thickness confirming the assumption made for analytical calculations. Moreover,
this is in good agreement with the order of magnitude of Uss for the same dissipated power at
room temperature as shown in Section. 3.1.1.1.

Fig. 3.6 shows the amplitude of the temperature oscillations at 2ω corresponds to the 1-
dimensional and 2-dimensional models, presents in Eq. 3.61 and Eq. 3.41 respectively. A
difference of 15% is shown at low frequency, however the two curves are very close at high
frequency. Therefore, in the following the 2D model is used to extract thermal conductivity and
the 1D model to extract specific heat.

1multiphysics engineering calculation platform.
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Figure 3.5: Finite element simulation of a 100 nm thick SiN membrane (width 300 µm and
length 1.5 mm) including NbN thermometer with a dissipated power of 1 µW: (a) Top view of
the membrane. The isotherm lines lie along the thermometer except at the edge of the mem-
brane; (b) temperature profile of the cross-section of the membrane. The NbN thermometer
(width 5 µm) and the membrane are at the same temperature; this temperature is constant over
the entire thickness of the membrane.

Figure 3.6: Amplitude of temperature oscillation at 2ω calculated using the 1-dimensional and
2-dimensional models. These curves are plotted using theoretical formulas of the two models
and with the same fixed parameters.



3.4. VALIDATION OF THE 3ω-VöLKLEIN METHOD 59

3.4 Validation of the 3ω-Völklein method

The 3ω-Völklein method has been checked using two different measurements. According to
Eq. 3.63, the V3ω signal depends on the cube of the Wheatstone bridge voltage Vac. Thus, the
V3ω signal has been measured at different temperatures to check this behaviour. As an example,
the 250 K measurement is shown in Fig. 3.7. The linear fit gives a slope very close to 3 which
confirms the cubic behaviour of the V3ω signal versus the applied voltage Vac. The second way
of verification needs a frequency scan measurement. According to Eq. 3.64, the V3ω signal
depends strongly on the angular frequency ω. At low frequency, the square root term tends to
1 and consequently, the V3ω signal becomes constant. An example of frequency scan of the
3ω voltage is presented at the Fig. 3.4. As predicted by the theory, a plateau is observed at
low frequency for the V3ω signal. The thermal conductivity κ can be extracted from the low
frequency plateau using Eq. 3.63.

Figure 3.7: 3ω voltage measurement as a function of the voltage applied across the Wheatstone
bridge Vac in logarithmic scales (T = 270 K, Re = 200 KΩ, α =0.0063 K−1). The slope of
the linear fit is very close to 3 confirms the cubic behavior of the V3ω signal versus the applied
voltage Vac.
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3.4.1 Effect of a finite transducer width

The effect of a finite thermometer width has been studied by the measurement of the 3ω voltage
at fixed temperature using different thermometer width. Fig. 3.8 shows experimental measure-
ments of the 3ω voltage as function of frequency of three distinct samples, these measurements
are performed at T = 250 K for SiN membrane 100 nm thick. Fig. 3.8 exhibits a large difference
in thermal frequency cut-off of the 3ω voltage.

Table 3.1: Thermal propertie parameters at 250 K obtained from the theoretical fit of the mea-
sured 3ω voltage using different thermometer widths b.

Sample# b(µm) k(W/(m.K)) C(J/(g.K))
1 5 3.190 0.698
2 20 2.980 0.710
3 30 3.230 0.786
4 40 3.470 1.155

The thermal properties obtained from the theoretical fit are mentioned in Table. 3.1. The
length L of the thermometer is 1500 µm. The extracted thermal conductivity values present a
small variation when the thermometer width increases. When the thermometer width is multi-
plied by a factor of eight, the extracted thermal conductance varies at most by 10 %, which is
a weak effect. This effect can be explained by the fact that when the width of the thermometer
becomes large as compared to the width of the membrane, a gradient of temperature appears
between the center and the extremities of the thermometer, and thus it cannot be considered like
a finite line oscillating at the same temperature to solve the heat transfer equation.

On the other hand, a significant effect of the thermometer width on the specific heat values is
observed. An increase of 65 % is observed when the thermometer width is multiplied by a factor
of eight. This observation is discussed in terms of the thermal penetration depth dependence
with the frequency. At low frequency, the temperature oscillation at 2ω is the same for all the
membrane, where the thermal penetration depth is larger than the dimension of the membrane.
When the frequency increases, λ begins to decrease affecting the overall temperature oscillation
of the membrane. At sufficient high frequency, λ becomes comparable to thermometer width
and then the 3ω voltage becomes sensitive to the specific heat of the thermometer and the SiN
membrane underneath (see Table. 3.1). At 100 Hz, the thermal penetration depth is estimated
to be around 55 µm.

In the following, the measurements are performed with a thermometer having a width of
5 µm; the extracted specific heat values are in perfect agreement with the ones extracted from
the experiment done with a thermometer having a width of 20 µm. As a conclusion for this part
of the study, in order to do a safe experiment, a ratio of at least ten between the width of the
membrane and the width of the thermometer has to be respected.
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Figure 3.8: 3ω voltage measurements as function of frequency of three different samples. The
measurements are performed at T = 250 K, of 100 nm SiN membrane. b denotes the half width
of the thermometer, where the length is the same and close to 1500 µm.

3.4.2 Noise measurement, sensitivity

For high sensitivity experiment, low noise measurement chain is required. The noise has been
evaluated by measuring the V3ω signal during 500 s. The measurement at 300 K, obtained on
a 50 nm thick membrane and a thermometer resistance Re ∼ 75 KΩ, is presented in Fig. 3.9.
According to this measure, the noise is about 40 nV/

√
Hz which is the expected Johnson noise.

The noise/signal ratio (resolution) is about 6×10−3. Thus, the smaller thermal conductance that
can be measured is below 10−8 W/K, close to the nanoWatt per Kelvin. These measurements
have been obtained with an oscillation of the temperature of the membrane of 150 - 200 mK,
so it means that the setup can measure energies far below the nanoWatt. The accuracy of the
method is estimated to be less than 1%.
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Figure 3.9: Measure of the 3ω voltage as a function of time on an 50 nm thick SiN membrane.
The inset shows the signal distribution. The full width at half maximum corresponds to the
noise of the measurement. In this case, the noise is evaluated to be around 40 nV/

√
Hz.
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Chapter 4

Thermal properties of silicon nitride
membrane

Thermal properties are essential to optimize the performance of many low temperature and/or
nanostructure devices. Moreover, multi-domain coupling (electrical, mechanical and thermal)
is an essential feature of micro and nanoscale devices [72]. These devices are commonly fabri-
cated out of thin film materials. While electro-mechanical coupling is commonly exploited in
microelectronic and other small-scale systems, the thermal domain must also be considered in
these applications. Thermo-mechanical coupling in thin films is typically studied in terms of
temperature effects on mechanical properties [73], and not from a thermal transport perspective.
However, in this study we focus on the influence of mechanical stress on thermal properties of
silicon nitride thin film.

According to the type of the material, there is different types of defects which can affect their
thermal properties. In pure crystalline solids, the lattice vibrations are described as collective
excitations or waves as explained by Debye. Thermal phonons can be scattered by different kind
of lattice defects, like impurities, dislocations, vacancies. These defects lead to local changes in
lattice vibrations, referred to as defect modes, which are specific to the type and concentration
of the defects. Their influence on thermal conductivity and specific heat can be seen at low
temperatures (T < 0.1 θD).

In amorphous solids such as the silicon nitride, a different kind of defect mode referred to
as a "two-level system" exists. Thus, characteristic changes in their low temperature thermal
conductivity and specific heat are shown to be universal. These changes include short and long-
term thermal relaxation, and also in their time dependent elastic and dielectric functions. These
properties have been first reported by Zeller and Pohl [34], and have been successfully described
by a phenomenological model which takes into account the contribution from impurity modes
[36, 37]. These tunneling states lead to a low temperature plateau in thermal conductivity and
acoustic dissipation. In general, the spectral distribution of tunneling states and their coupling
energy to the lattice depends on several material parameters, preparation conditions, and nature
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of the defects themselves [42,74]. It was observed that stress can affect the universal behavior of
mechanical dissipation in silicon nitride [74,75]. According to the tunneling model, the thermal
conductivity can be given in term of mechanical dissipation and acoustic attenuation [42]. Thus
the fundamental question, is if the stress can affect the tunneling states and then the thermal
properties of the silicon nitride.

In this chapter, we present experimental results of thermal properties measurements for 50
nm and 100 nm suspended SiN membranes, in the two cases of low stress and high stress. In
order to predict any possible effect of stress on thermal properties, the thermal conductivity and
the specific heat will be fitted using the model developed by Wu and Yu [75]. Moreover the
phonon diffusion in such system will be discussed in term of temperature, phonon mean free
path and roughness. Finally, we present experimental results at low temperature (300 mK - 10
K) of 50 nm and 100 nm high stress silicon nitride membrane.

4.1 Origin of stress

Stress σ is defined by a force per unit area that is acting on a surface of a solid, more commonly
expressed in Pascals Pa or N/m2. Stress can be the result of external applied force. In this
case, after the load is removed, the stress is expected to vanish. In the absence of any external
mechanical stress, thin films can be still stressed; this stress is called as residual or internal [76].
The residual stress can be compressive or tensile. By convention, stress in first case is expressed
with a minus sign and in second case, with a positive sign. The intrinsic stress reflects the
internal structure of a material during its deposition. It depends on deposition rate, deposition
temperature, pressure in the deposition chamber, incorporation of impurities during growth,
grain structure, fabrication process defects, etc [77]. The intrinsic stress within the film can
sometimes be annealed out completely. However the anneal temperatures are quite high and
may not be practical for the production of micromechanical devices.

The average stress σ of a deposited film can be calculated using Stoney’s formula [78]:

σ =− 1
6R

E
(1−ν)

D2

d
(4.1)

where (1/R) is wafer curvature shift. E, ν, D and d are the Young modulus, the Poisson
ratio, the substrate thickness and the film thickness respectively.
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4.2 Dissipation in glass

Dissipation in mechanical resonators has many physical origins. Generally, these can be clas-
sified as being of either intrinsic or extrinsic origin. Clamping losses (irreversible energy flow
from resonator to resonator support) is an example of extrinsic losses. Loss mechanisms due to
the intrinsic dissipation mechanisms include thermoelastic dissipation, dissipation at surfaces
and interfaces [79], coupling between acoustic and thermal phonons, and most importantly for
this study, stress influence on relaxation of defects (TLS) and consequently the thermal proper-
ties. Measuring thermal properties in modified intrinsic dissipation glass can be very useful to
understanding the universal behaviors (thermal properties, dissipation) in glass.

Dissipation in oscillatory mechanical systems is frequently characterized by a dimensionless
quality factor Q. The quality factor is defined as follows:

Q = 2π
total energy of system

energy loss per cycle of oscillation
(4.2)

the quality factor measures the dampness of a mechanical system, or how long it takes a
resonator to decay in amplitude. There are multiple ways of defining Q that are equivalent.
Such as,

Q =
ω0

∆ω
(4.3)

where ω0 is the resonant frequency of the oscillator, ∆ω is the bandwidth of the peak re-
sponse at half the peak value. When discussed as a physical quantity, the terms "dissipation"
or "internal friction" specifically refers to the quantity Q−1. The resultant overall dissipation
for a resonator structure is a summation of contributions from individual factors as follows:
1/Q = 1/Qintrinsic + 1/Qextrinsic. In this study, we shall concentrate on the effect of intrinsic
dissipation on thermal properties.

Fig. 4.1 shows the internal friction as a function of temperature in many amorphous solids.
Interestingly, the intrinsic friction Q−1 plateau falls within a factor of 20 for most of the amor-
phous materials including some amorphous metal, quasi crystals, polymers, and materials with
significant proportion of defects [42]. Again this is the same factor as that found in thermal
conductivity. The two dashed lines and the double arrow marking the range of the height of the
plateau observed in several amorphous solids in which attenuation has been studied. Hence, the
dissipation behavior is referred to as "universal" in glass. Moreover it was seen experimentally
that the plateau in both thermal conductivity and acoustic dissipation starts at ∼ 1 K.

The dropoff at the lowest temperature depends on the frequency of measurement. The dom-
inant phonons which contribute to thermal conductivity at 1 K have frequencies in the THz
range, whereas acoustic dissipation in glasses has been measured in low frequency resonators
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Figure 4.1: Internal friction in different glasses as a function of temperature. At low tempera-
tures most of the amorphous and some crystalline materials with defects show a characteristic
plateau which falls within the 10−3 and 10−4 [42].

down to few hundred Hz. Hence, disorder in the material influences the measured properties
up to 10 orders magnitude of frequency. This dropoff are successfully described by the phe-
nomenological tunneling model [36, 37] which takes into account the presence of two level
system TLS. In this so-called tunneling model, it is postulated that some atoms or groups of
atoms have two equilibrium positions between which they can tunnel. Above 10 K, the internal
friction depends strongly on the chemical composition. Below that temperature, it approaches a
temperature independent value. Moreover the magnitude of the internal friction plateau is very
little affected by the frequency of the measurement.

As the dissipation in glass seems to be universal, the effect of stress on thermal properties
of silicon nitride can be treated in term of mechanical dissipation. A phenomenological model
was developed by Clare and Freeman [80] to fit both the thermal conductivity and the specific
heat of glasses. This model is based on the total expression of mean free path by introducing
terms corresponding to TLS, Einstein oscillators. As given above, glasses have a universal
behavior concerning mechanical dissipation. Moreover, internal friction is in sharp relation
with the mean free path within glass, as given by Pohl [42]: Q−1 = λ

/
2πl where l is the mean

free path and λ is the phonon wavelength. Further, in order to determine the influence of stress
on thermal properties, a model is given by Wu and Yu, where the stress is treated as source
of acoustic attenuation. In the following section we explain this model, and then we use it to
interpret our experimental results.
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4.3 Theoretical model for glass thermal properties

Since the new experimental evidences of glass was highlighted by Zeller and Pohl (1971) [34]
until today, the study of glass thermal properties attracts considerable theoretical efforts. This
leads to understand the properties of glasses, especially at low temperature where they present
different behaviors as compared to that of crystals and seems to be universal. The most success-
ful model is known as "tunneling state" or "two level systems" model TLS, and it was proposed
independently by Anderson [37] and Phillips [36]. This model remains today by far the most
used for the interpretation of the measurements on glasses. However subsequent experiments
showed the necessity of more refinement.

4.3.1 Two-level systems and low-temperature heat capacity

The two level system model1 takes the assumption that, in a glassy system, a certain number of
atoms (or groups of atoms) can sit on one of two local equilibrium positions. Such as shown in
Fig. 4.2, the atoms can tunnel between these positions and then move within a double well po-
tential. The abscissa describes the position of the "particle" with the mass m or, more generally,
reflects its configurational coordinate d.

In general, such a potential will be asymmetric, characterized by a barrier height V , and an
asymmetry energy ∆. The energy difference E between the two lowest states E0 and E1 of the
double well (its excitation energy) is given by:

E2 = ∆
2 +∆

2
0 (4.4)

where ∆0, is the barrier strength which is related to the parameters of the well by:

∆0 = ~ω0exp(−λ), with λ = d
(

2mV
~2

)(1/2)

(4.5)

Here ω0 is the frequency of oscillation in an individual well. The factor exp(-λ) represents
the overlap between the wave functions for the two potential wells. ∆ and λ are distributed
randomly over an interval, their distribution being described by:

P(∆,λ)d∆dλ = P̄d∆dλ, for | ∆ |≤ ∆max, and λmin ≤ λ≤ λmax (4.6)

1Note that the "two level system" describes a particular case of tunneling state.
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with this distribution, the density of states for the TLS exhibits a logarithmic dependence on
energy, and it can be often considered as uniform:

n(E) = P̄ln
(

2E
∆0min

)
, with ∆0min = ~ω0exp(−λmax). (4.7)

If the only present vibrational modes in a solid are TLSs, it can be shown that the specific
heat is given by the following integration over them:

cv =
∫

∞

0
n(E)

(
E2

kBT 2

)
sech2

(
E

kBT

)
dE (4.8)

For the range of energies of interest (10−5 < E < 10−4 eV), n(E) can be taken to be a
constant n0. Therefore Eq. 4.8 becomes [36]:

cv =
π2

12
k2

Bn0T (4.9)

which accounts naturally for the linear variation of the specific heat of glasses at very low
temperatures (T < 1 K), (note that this expression of the specific heat is two times lower than
that given by Anderson [37]: π2k2

Bn0T
/

6). Therefore according to this model, the atoms of
interest for the specific heat will be those for which the energy barrier is sufficiently large so
that "resonant tunnelling" between the two local minima does not occur, but sufficiently small
so that "tunnelling" between the two levels can take place and thermal equilibration can occur
during the time span of the specific heat experiment.

4.3.2 Thermal conductivity and sound transport

To obtain the thermal conductivity and the acoustic absorption in glass, interaction of TLSs
with phonons must be taken into account. This interaction results in a scattering of propagating
phonons by the localized TLSs and limits the mean free path l. Hence phonons with energy
~ω can be scattered by a process of excitation from the ground state (absorption of a phonon)
followed by an emission of an incoherent phonon. Such a process is called "resonant scattering"
[36, 37] and the resulting mean free path is given by:

l−1
res (T,ω) = αω tanh

[
~ω

2kBT

]
(4.10)

where
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Figure 4.2: Schematic illustration of the double-well potential characterizing a two-level system
plotted as a function of a suitable generalized coordinate.

α =
πP̄γ2

ρυ3 (4.11)

and P̄ is the density of TLS states associated with thermal conductivity. In general n0/P̄∼10
[80]. The average coupling between TLS and the strain field is γ, ρ is the mass density and υ is
the velocity of sound.

Since ~ω = kBT for thermal phonons, the mean free path is proportional to T−1 at low
temperatures: lres ∝ T−1. At low temperature the specific heat includes large contributions
from local excitations that do not carry heat, thus it is approximated by the Debye specific
heat CD ∝ T 3. Substituting this relation into the equation for thermal conductivity given by
kinetic theory, we get the temperature dependence κ∼ T 2 in accordance with the experimental
results below 1 K both in respect of temperature dependence and magnitude. Thus κ can be
approximated by [81]:

κ(T ) =
ρk3

BT 2

6π~2P̄ ∑
i

υi

γi
(4.12)

with i indicating their polarization, transverse (t) and longitudinal (l).

Therefore the resonant scattering mechanism is able to explain the initial growth of κ as a
function of temperature, but not the subsequent plateau. For this, another non-resonant scatter-
ing is defined. Initially it was considered by Jäckle [82], is due to TLS relaxation. This arises
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because phonons perturb the energy-level separation, and as a result the level population must
readjust to a new equilibrium, which is given by [83]:

l−1
rel,TLS(T,ω) =

γ2ω

ρυ3

∫
∞

0

∫
∞

0
P(E,τ)

[
∆

E

]2 1
kBT

sech2
[

E
2kBT

]
ωτ

1+ω2τ2 dEdτ (4.13)

at low temperature (T < 100K), using the assumption ∆2ωτ

E2kBT = 1, this expression is approx-
imated by [80]:

l−1
rel,TLS(T,ω) =

α

π
ω

∫
∞

0

exdx
(ex +1)2

[
π

2
− tan−1(ωτm(x))

]
(4.14)

where x = E/kBT ,

τ
−1
m (x) =

[
1
υ5

l
+

2
υ5

t

]
γ2k3

BT 3

2πρ~4 x3coth
[x

2

]
=Ax3coth

[x
2

] (4.15)

where τm is the minimum relaxation time for a TLS with energy E at temperature T .

For ωτm� 1, l−1
rel,TLS = α

4 ω

For ωτm� 1, l−1
rel,TLS = π3

16αAT 3.

Therefore, the relaxation of the levels takes place at a rate τ, moreover this process yields
a relaxational mean free path lrel,TLS ∝ T−3. Therefore, the net mean free path is given by
l−1
TLS = l−1

res + l−1
rel . It explains qualitatively, that when included in the thermal conductivity ex-

pression given by the kinetic theory, a plateau in thermal conductivity appears. For quantitative
agreement, more sophisticated models are required, including non uniform distributions of the
parameters ∆, V , and τ.

A phenomenological model was given by Yu and Freeman [80] able to fits both the specific
heat and thermal conductivity data from low temperature to about 100 K. In order to explain
the plateau, it is viewed as a crossover from a low-frequency region (ν . 1011 Hz) with a long
mean free path (l ∼ 150λ) to a high frequency region (ν & 1012 Hz) with a short mean free
path (l ∼ λ), where λ is the phonon wavelength. Moreover, in the crossover region l ∝ λ4 as
for Rayleigh scattering [84]. According to this model, the decrease in mean free path at high
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frequency is explained by a sharp increase at energy E0 in the density of states n(E) of local
excitations which scatter phonons. Therefore, this enhancement accounts for both the rise in κ

above the plateau and the anomalous specific heat.

These local modes are described by Einstein oscillators (EO) of energy E, and a density of
state n(E) given by:

n(E) = n0[1+SΘ(E−E0)] =

{
n0 if E < E0

n0(1+S) if E > E0
(4.16)

where S is the step height, n0 is the constant TLS density of states which contribute to the
specific heat. Therefore the specific heat has contribution from TLS, local modes and Debye
phonons. Einstein oscillators give linear rise to the specific heat in temperature, so like the TLS
but with a different coefficient. Thus the maximum in C/T 3 may be viewed as a crossover from
one to the other.

The Rayleigh scattering was included below the step in the form:

l−1
Rayleigh = Bω

4 (4.17)

where B is a constant. Rayleigh scattering is only valid in the region ka . 1 where k is the
phonon wave vector and a is the "size" of a scatter. For convenience, the cut off of the Rayleigh
scattering is taken at E0.

Consequently, the total mean free path is given by the following expression:

l−1(T,ω) =

{
l−1
res,TLS(T,ω)+ l−1

rel,TLS(T,ω)+ l−1
Rayleigh(T,ω) for ~ω < E0,

l−1
res,TLS(T,ω)+ l−1

rel,TLS(T,ω)+ l−1
res,EO(T,ω) for ~ω > E0.

(4.18)

4.4 Impact of stress on silicon nitride thermal properties

As stress can affect the mechanical properties of the SiN, its impact on thermal properties should
be treated in terms of Q factor. Dissipation in amorphous solids seems to be universal, as we
showed in the section 4.2. In addition, Q factor is in sharp relation with the phonon mean free
path as given by Pohl [42]:

Q−1 =
υ

2πν
α =

υ

ω

1
l
=

1
2π

λ

l
=

1
kl

(4.19)
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where α is the the ultrasonic (energy) attenuation. Moreover, Pohl found that the ratio of the
phonon wavelength λ to the phonon mean free path l, lie between 10−3 and 10−2 in almost all
cases independent of chemical composition and frequency (wavelength) of the elastic waves,
which varied by more than nine orders of magnitude in the different experiments.

However, there are exceptions such as in amorphous silicon where doping with 1% of hy-
drogen reduces the low temperature internal friction plateau by about a factor of 200 [85].

In addition, it was observed recently that the silicon nitride exhibits a remarkable Q factor.
As shown in Fig. 4.3, high stress silicon nitride exhibits a dissipation Q−1 with two to three
orders of magnitude lower than that of amorphous SiO2 from 4 K up to room temperature.
Moreover, dissipation in stress relieved has a Q−1 that is about an order of magnitude lower
than typical amorphous solids [74].

Figure 4.3: Temperature dependent internal friction measured for same high-stress LPCVD
Si3N4 membrane structures. This is contrasted with the behavior of a-SiO2 (solid blue line) and
single crystal Si (solid red line) [74, 85].

The studied silicon nitride films shows no long-range order in x-ray diffraction and e-beam
consistent with a disordered state, thus it is shown that stress alters the dissipation Q−1.

This remarkable large effect of stress was seen experimentally. However, up to now there
is not so many theoretical explanation for these results. In this sense, a theoretical model was
provided recently by Wu and Yu [75], proposes that stress (whether internal or external) can
reduce the dissipation in glasses. However, this cannot be explained by one physical effect,
where impurities, dopants, and internal bond constraints can produce internal stress. According
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to this model, the stress effect may be justified either by increasing TLS barrier heights or by
decreasing the coupling between phonons and TLS.

In this study, we shall concentrate on thermal properties of silicon nitride and ignore mea-
surements of mechanical dissipation. Since low dissipation implies a long phonon mean free
path and a high thermal conductivity, this model predicts that the thermal conductivity of high
stress Si3N4 (if there is no dissipation dilution) could be higher than stress relieved Si3N4, which
is an order of magnitude higher than amorphous SiO2 from 4 K up to room temperature.

Just as the model of Yu and Freeman explained above, this model cut off Rayleigh scatter-
ing at E0. The thermal activation is included as well as direct phonon relaxation in the TLS
relaxation processes, and the relaxation attenuation from Einstein oscillators is assumed to be
negligible [83].

The internal friction is related to the Q factor by:

Q−1 = Aφ (4.20)

where φ is the internal friction, and A is due to the dissipation dilution and is a function of
macroscopic parameters, e.g., elastic moduli [86]. The dissipation dilution is the phenomenon
with which a mechanical oscillator made from elastic elements with a given loss angle can have
a quality factor rather greater than the expected value.

In this model, it is assumed that A = 1 in Eq. 4.20, thus Q−1 is used in place of the internal
friction φ. Therefore, the total mean free path given by Eq. 4.18 can be written in term of Q−1

as:

Q−1 =

{
Q−1

res,TLS +Q−1
rel,TLS +Q−1

Rayleigh for E < E0,

Q−1
res,TLS +Q−1

rel,TLS +Q−1
res,EO for E > E0.

(4.21)

The attenuation due to TLS relaxation is given by:

Q−1
rel,TLS(T,ω) =

2Q−1
0

πkBT

∫
V,∆

[
∆

E

]2

sech2
[

E
2kBT

]
ωτ

1+(ωτ)2 . (4.22)

At low temperature (0.1 < T < 10 K) and low frequency (ν < 1 THz), Q−1 is given by Q−1
0

which is a temperature-independent constant [83]:

Q−1
0 =

πP̄γ2

2ρυ2 (4.23)
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and
∫

V,∆ ≡
∫ Vmax

0 dV
∫ 2V

0 d∆P(∆,V )/P̄ with Vmax =V0 +6σ0.

P(∆,V ) is the TLS distribution of ∆ and V . ∆ is the energy asymmetry between the potential
energy wells, V is the height of the energy barrier. It assumed that ∆ has a uniform distribution
and V a Gaussian distribution with an average V0 and a variance σ0 [82]:

P(∆,V ) =
2P̄
~Ω0

exp
[
−(V −V0)

2

2σ2
0

]
. (4.24)

τ−1 is the TLS relaxation rate given by the sum of the direct phonon relaxation rate τd in
which the excited TLS decays to the ground state by emitting a phonon, and the rate τ

−1
Arr of

Arrhenius activation over the barrier:

τ
−1 = τ

−1
d + τ

−1
Arr (4.25)

τ
−1
d = ∑

a=`,t

(
γ2

a

υ5
a

)
E∆2

0
2πρ~4 coth

(
E

2kBT

)
(4.26)

τ
−1
Arr = τ

−1
0 cosh

(
∆

2kBT

)
e−

V
kBT (4.27)

where the sum is over the longitudinal and transverse phonon modes and τ = 2/Ω0.

The tunneling matrix element ∆0 is given by [83]:

∆0 =
~Ω0

π
(
√

Λ+1+
√

Λ)exp(−
√

Λ2 +Λ), (4.28)

where Λ = 2V/~Ω0, and ~Ω0 is the energy spacing level between the harmonic oscillator
wells.

At low temperature and low frequency, TLS relaxation dominates Q−1 where the plateau in
Q−1 is given by:

Q−1
plat = Q−1

0 exp
[
−

V2
0

2σ2
0

]
(4.29)

and therefore this replaces Eq. 4.23 which presents the limit of Q−1
rel,TLS for ωτm� 1 [80].
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The Rayleigh, Einstein oscillator, and resonant phonon scattering Q−1 terms are given by:

Q−1
ray = Bυω

3

Q−1
EO = Q−1

0
2Sk

π

Q−1
res,TLS ' Q−1

0 tanh
(

~ω

2kBT

) (4.30)

where Sk is the step height in the density of states of the Einstein oscillators that is used to
fit the thermal conductivity and B is a constant.

To summarize, according to this model, there is two possible ways in which stress can
reduce dissipation:

• either by increasing the barrier height of microscopic fluctuating V (by increasing the
average height V0 and decreasing the variance σ0 in P(∆,V ),

• or by decreasing the coupling (deformation potential) γ between phonons and TLS.

In the following sections, we will present the theoretical predictions of thermal conductiv-
ity and specific heat using the two assumptions explained above. Then we will discuss our
experimental results in term of this model.

4.4.1 Specific heat

The specific heat C(T ) in glass has contributions from the phonons which is approximated with
the Debye specific heat CD, from TLS CTLS, and from local modes which is modeled with
Einstein oscillators CEO [80]:

C(T ) =CD(T )+CTLS(T )+CEO(T ), (4.31)

where
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CD = 9
N
V

kB

(
T

ΘD

)3∫ xD

0
dx4x4 ex

(ex−1)2 , (4.32)

CTLS = kBP̄
∫

V,∆
x2 ex

(ex +1)2 =
π2

6
n0k2

BT, (4.33)

CEO = n0Sck2
BT

∫ xD

x0

dx
x2ex

(ex−1)2 , (4.34)

where x = E
/

kBT , x0 = ~Ω0
/

kBT , xD = ΘD
/

T . With N
/

V is the number density of
formula units and ΘD is the Debye temperature. n0 is the TLS density of states that contribute
to the specific heat, and Sc is the size of the step in the density of states due to the Einstein
oscillations that contribute to C(T ).

In order to study a possible effect of stress on the specific heat, we have used Eq. 4.31 to fit
our experimental data on specific heat for both low stress and high stress SiN membrane (50 nm
and 100 nm). As we don’t know the stoichiometry of the SiN low stress, N

/
V is determined

by comparing the 50 nm specific heat data to a fitted data of the same thickness of SiN1.15 low
stress [87]. As shown in Fig. 4.4, there is a slight difference between the two data. According
to theoretical fit, it was found that the ratio of n0 to N

/
V for SiN1.15 is given by [75]:

n0×10K
(N/V )10−3 = 5.6 (4.35)

Therefore, as n0 presents the TLS density of states that contribute to the specific heat, and
as the two experimental data are very similar, we assume that the SiN low stress has the same
ratio of n0 to N

/
V . Using Eq. 4.35 one can make N

/
V as function of n0 into Eq. 4.32. Finally

the data is fitted by Eq. 4.31 to determine n0, P̄, ΘD, and Sc.

Once n0 is known from the fit, N
/

V can be calculated through Eq. 4.35. This value can be
then used to fit the specific heat of 100 nm SiN low stress. The high stress SiN is a stoichiometric
LPCVD silicon nitride, thus N

/
V is well known.

Fig. 4.5 shows experimental data of 50 nm SiN low stress along with theoretical fit using
Eq. 4.31. The other data are fitted using the same model with the parameters given in Table.
4.1. A comparison between the different measurements is shown in Fig. 4.6. The curves of
high stress (50 nm and 100 nm) and low stress (100 nm) are very close to each other. This is
consistent with the prediction of the barrier height model V and the γ model, where the high
stress and stress relieved Si3N4 lie on top each other [75].

From Table. 4.1 we see that the TLS density of state n0 of both 50 nm low stress and
high stress: n0 = 644× 1045/J m3 and n0 = 770× 1045/J m3 are respectively much higher
than n0 of their 100 nm counterpart low stress and high stress: n0 = 172× 1045/J m3 and
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Figure 4.4: Experimental data measurements are shown for 50 nm SiN1.15 [87], and 50 nm SiNx
measured by our method.

n0 = 481×1045/J m3. This will account for the high specific heat at low temperature as shown
in the inset of Fig. 4.6. For the 50 nm SiN low stress which is slightly higher than the other
curves at high temperature, we suggest that this behavior comes probably from the measurement
conditions.

To summarize, we have demonstrated experimentally that stress has no effect on the specific
heat of silicon nitride. This is consistent with the predictions of the V and γ models where it
is assumed that stress increases the TLS barrier heights or decreases the coupling between
phonons and TLS respectively.
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Table 4.1: Parameters of fits for, A (50 nm low stress), B (100 nm low stress), C (50 nm high
stress) and D (100 nm high stress).

Low stress High stress
Quantities A(50 nm) B(100 nm) C(50 nm) D(100 nm)

ρ (103 Kg.m3) 2.7 2.7 3.1 3.1
υL (103 m/s) 11.7 11.7 11.17 11.17
Sc 5 4 7 9
ΘD (K) 649 620 630 650
n0 (1045/J m3) 644.9 172.75 770 481.7
~Ω0/kB (K) 150 150 130 130
n0×10K/(N/V )(10−3) 5.6 1.8 8 5

Figure 4.5: Specific heat measurement of 50 nm low stress SiNx. The red solid line is the
theoretical fit to experimental data C(T ), is given by the sum of CD(T ), CEO(T ) and CTLS(T ).
The parameters of the fit are given in Table 4.1.

4.4.1.1 Low temperature behaviors

Fig. 4.7 shows the measured heat capacity of 50 nm Si3N4 high stress along with both calculated
heat capacities using the Deybe model CD and C(T ) given by Eq. 4.31. The measured heat
capacity is apparently much higher than what is expected from the Debye phonon heat capacity.
This is especially significant below 100 K when the heat capacity deviates significantly from
the T 3 Debye law.

As shown in Fig. 4.7, below 3 K this deviation is well explained by the TLS model, where
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Figure 4.6: Specific heat measurement of 50 nm and 100 nm thick of both SiN low stress and
high stress along with their respective fit using Eq. 4.31. The parameters of fits are given in
Table 4.1.

TLS dominates the contribution to the specific heat, thus C varies linearly with temperature.

Above 3 K, C still deviates strongly from the expected CD ∝ T 3 dependence, exhibiting a
bump in C/T 3 at about ∼ 10 K as shown Fig. 4.8. This bump reflects the presence of an excess
of modes in the vibrational density of states, and could be related to the so-called boson peak
observed by neutron or Raman vibrational spectroscopies [88]. Moreover, in the same temper-
ature range the thermal conductivity shows a plateau. The boson peak is an universal behavior
of glasses and supercooled liquid and it is responsible for the low temperature anomalies in the
thermodynamic properties. Fig. 4.9 shows experimental data of amorphous materials at low
temperature which show boson peak around 10 K.

It has been shown that a consistent description of these additional anomalous features is
possible in terms of the soft potential model [89, 90]. The soft potential model assumes the
existence of additional quasi-local vibrations that interact with the sound waves, giving rise to
the boson peak. This model can be considered as an extension at higher temperature of the two
level system model TLS, describing the thermal anomalies of glasses below 1 K. The quasi-local
vibrations are additional non acoustic modes characterized by a large vibrational amplitude of
some group of atoms. In terms of the vibrational density of states g(ω) and the frequency ω, the
boson peak is due to a maximum in g(ω)/ω2. Whereas the Debye vibrational density of state
which is proportional to ω2 give a constant.

According to the soft potential model, the boson peak energy depends on the interaction
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Figure 4.7: Specific heat measurement of 50 nm Si3N4 membrane from low temperature up
to room temperature. The solid blue and red lines show theoretical predictions according to
Debye’s model and the model given by Eq. 4.31 respectively.

Figure 4.8: Specific heat measurement of 50 nm Si3N4 membrane divided by T 3. The solid line
is the theoretical fit.

among the different harmonic oscillators (the quasi-local vibrations can be described as low
frequency harmonic oscillators which weakly couple to the sound waves). Therefore, the en-
ergy of the boson peak is maximum where the interaction is stronger. On the other hand, the
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Figure 4.9: Experimental specific heat data divided by T 3 for different glasses, the solid lines
are theoretical fits to the experimental data [80].

weak coupling between quasi-local vibrations and acoustic modes indicate no influence on the
acoustic properties of the system. Moreover, it was recently shown that the same physical mech-
anism is fundamental for the formation of two-level systems and the boson peak. The raising of
a peak in the reduced vibrational density of states seems to necessarily lead to the creation of
two-level systems and vice versa [91].

The TLS density of state in SiN is around three orders of magnitude larger than values for
amorphous SiO2 [75,80]. However, the energy of boson peak in SiO2 seems to be much higher
than that of SiN. This is provided predominately by a weak coupling between the quasi-local
vibrations and acoustic modes in SiN.

4.4.2 Thermal conductivity

In glasses the thermal transport is due to propagating phonons [92], the thermal conductivity
κ(T ) may be written as
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κ(T ) =
1
3

∫
ωD

0
CD(T,ω)υl(T,ω)dω (4.36)

where ωD is the Debye frequency, and υ is given by a weighted average of longitudinal and
transverse sound velocities,

3
υ3 =

1
υ3

l
+

2
υ3

t
. (4.37)

The specific heat is approximated by the Debye specific heat CD as given by Eq. 4.32, and
l(T,ω) is given by l(T,ω) = Q(T,ω)υ/ω.

Fig. 4.10 shows the predicted thermal conductivity for high stress and stress relieved Si3N4
according to the two assumptions V and γ, and the experimental data of 50 nm, 200 SiN low
stress and SiO2 [75]. Both the prediction of SiN high stress and theoretical fits of experimental
data are performed using Eq. 4.36. Note that with the γ approach, the average barrier height is
taken as V0 = 0.

As shown in Fig. 4.10, this model fits the thermal conductivity of SiN low stress and SiO2
very well. The required parameters to perform the fits such as V0 σ0 are obtained from the fit of
the mechanical dissipation of low stress silicon nitride using Eq. 4.23 and Eq. 4.29. However,
the both theoretical predictions V and γ of Si3N4 high stress are much higher than that of low
stress with a thermal conductivity at room temperature around 35 W/m.K and 21×103 W/m.K,
respectively. Moreover according to V and γ assumption for the Si3N4 low stress, the thermal
conductivity is around 16 W/m.K and 170 W/m.K, respectively.

According to this model, the predicted thermal conductivity is surprisingly much higher
than the experimental data. This was seen in all cases and especially for the high stress Si3N4.

In order to study any possible effects of stress on silicon nitride thermal conductivity, we
have used this model to fit our data. We have applied V approach, because with γ approach the
predicted curve at room temperature shows a thermal conductivity with three order of magnitude
higher than the experimental data as shown in Fig. 4.10.

Fig. 4.11 shows the thermal conductivity measurement of 100 nm SiNx along with the
theoretical fit using Eq. 4.36. To perform the fit, the parameters V0 and σ0 are determined from
the fit of the mechanical dissipation. Therefore, we follow the authors in Ref. [75], where the
experimental data of dissipation shown in Fig. 4.3 for LPCVD silicon nitride high stress and
low stress are fitted through Eq. 4.29.
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Figure 4.10: κ(T ) vs T for amorphous SiO2 and silicon nitride. Experimental data points
are shown for 50- and 200-nm-thick SiN1.15 and SiO2. The solid lines through the points are
theoretical fits. Predictions where stress affects V or γ are indicated in the legend by (V) and
(γ), respectively [75].

The other parameters P̄, γ are determined from the fit of the thermal conductivity in such
way that these conditions are satisfied [74],

Q−1
plat =

πP̄γ2

2ρυ2 exp
[
−

V2
0

2σ2
0

]
∼

{
10−4−10−3 for SiN low stress,
10−7−10−6 for SiN high stress.

(4.38)

The parameters of the fits of 50 nm high stress and 100 nm low stress are shown in Ta-
ble. 4.2.

As shown in Fig. 4.12, by using the condition of Eq. 4.38 we find that the theoretical fit is
much higher than the experimental data. Moreover we find that the fits of SiN high stress works
only if we multiply Q−1

plat by a factor of ∼ 10−3. Thus if we take the condition of low stress,
however the fitted data are for SiN high stress. This is consistent with the experimental data
which shows a slight difference between the different measurement of SiN high stress and low
stress as shown in Fig. 4.13.

Thus, we presume that the initial assumption A = 1 is not true, and A∼ 10−3. Consequently,
we can conclude that stress does not affect the dissipation in silicon nitride. Therefore, the
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Figure 4.11: Thermal conductivity measurement of 100 nm high stress membrane along with
the theoretical fits using Eq. 4.36.

Figure 4.12: Thermal conductivity measurement of 50 nm high stress membrane along with the
theoretical fits using Eq. 4.36.

dissipation dilution seems to be the cause of the reduction of dissipation by an applied stress
in high stress silicon nitride. In addition stress should not affect thermal conductivity of silicon
nitride as it is seen experimentally.
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Table 4.2: Parameters of fits for thermal conductivity of 50 nm Si3N4 high stress and 100 nm
SiNx low stress.

Low stress High stress 50 nm
Quantities 100 nm red line blue line

Sk 0.8 3 3
P̄(1045/J.m3) 1.16 5.17 5.17
γ (eV) 8.7 50 0.83
σ0(×103 K) 9 7.5 7.5
V0(×104 K) 2.3 3.05 3.05

Figure 4.13: Thermal conductivity measurement of 50 nm and 100 nm thick membrane for both
SiN low stress and high stress. The 100 nm curves of low stress and high stress show nearly no
difference. The 50 nm curves show more difference at high temperature.

Fig. 4.13 shows results of thermal conductivity measurement of 50 nm and 100 nm mem-
brane for both silicon nitride high stress and low stress. At low temperature T < 20 K, the curves
are very close to each others, where the characteristic plateau is expected in the same tempera-
ture range. For T > 20 K, κ(T ) curves for high stress and low stress 100 nm membrane lie on
top of each other, with the exception at room temperature where they show a slight difference.
Whereas, κ(T ) curves for high stress and low stress 50 nm membrane show a difference up to
25 % at room temperature.

Fig. 4.14 shows the phonon mean free path in the membranes determined from l = 3κ/Cυ.
At high T all curves (with the exception of 50 nm low stress) approach the same limit at room
temperature which is two times higher than the inter-atomic spacing (≈ 2.5 A◦ for amorphous
SiN). As the temperature decreases, the mean free path increase rapidly to reach an order of
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ten nanometers at 20 K. This is surprisingly small and cannot explain the sensitivity to the
reduced dimension. Moreover, this can be explained by the fact that the measured C includes
large contributions from local excitations that do not carry heat.

Figure 4.14: Mean free path of measured samples calculated using experimental data. The
dashed line shows the estimation of the mean free path using CD.

Therefore the mean free path is estimated using CD, with the common model of disordered
insulator [34, 45]. Below 30 K, l exceeds the 50 nm membrane thickness. Whereas for the 100
nm membrane l is still lower than the membrane thickness.

We return towards the behavior at room temperature. In most materials l saturates closer to
the interatomic spacing near room temperature. The ∼ 2-3 times higher saturation may be an
evidence for phonon transport due to far larger than expected contribution from long wavelength
modes [93]. It was shown recently that a very small population of phonons with mean free path
on the order of 1 µm and wavelength much longer than the expected thermal wavelengths carry
up to 50 % of the heat in SiN at room temperature [93].

Therefore, if long l phonons carry a significant amount of heat in SiN a higher T , reduced
system such as suspended membrane should show evidence of surface scattering effects even
at room temperature. This possible effect in our samples are highlighted through an AFM
measurements. Fig. 4.15 shows AFM scan results on four samples similar to those measured
before. The rms height roughness for all samples shows a comparable values. One find 0.7
nm, 0.55 nm, 0.57 nm, and 0.48 nm for 50 nm high stress, 50 nm low stress, 100 nm high
stress, and 100 nm low stress, respectively. At given temperature, the dominant phonon wave
length is given by λdom = υ

/
νmax . Here υ≈ 6.5×103 m/s is the average velocity of sound and

νmax = 4.25kBT/h∼ 90 GHZ×T is the dominant frequency. This gives λdom = 0.24 nm at 300
K. This shows no evidence of surface scattering effects at room temperature in our samples.



4.4. IMPACT OF STRESS ON SILICON NITRIDE THERMAL PROPERTIES 87

Figure 4.15: AFM micrographs for 50 nm and 100 nm of both SiN low stress and high stress.
The rms height roughness shows a comparable values.

4.4.2.1 Low temperature behavior

The 50 nm and 100 nm membrane thick of SiN high stress are measured at low temperature, 30
mK < T < 10 K using the same measurement chain. The thermal conductivity measurements
are shown in Fig. 4.16 along with the theoretical fits using Eq. 4.36.

The 50 nm curve is in good agreement with the fit, where a T 2 rise is shown as it is ex-
pected in this range of temperature. However this plateau is extended until 2 K where another
unexpected rise in temperature is shown. Whereas the 100 nm curve shows a plateau with a rise
slightly higher that T 2, and as κ(T ) of 50 nm, another unexpected rise in temperature is starting
at 1 K.

At 2 K the dominant phonon wave length is given by λdom = 36 nm. While this is still
significantly less than the membrane thickness, the number of allowed modes in the thickness
direction will be substantially reduced from the 3D limit. Thus we suggest that the difference
in κ is due to enhancement of the boundary scattering at the membrane surfaces, which is more
enhanced in the 50 nm than the 100 nm membrane thick.

At T = 2 K, the phonon mean free path exceed the 1µm. Thus this behavior of κ(T ) for
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T < 2 K indicates that specular scattering occurs at the surfaces and dominate the phonon
transport. Therefore, we assume that the second unexpected rise at T < 2 K can be explained
by the fact that one attains the limits of applicability of the 3ω method.

The main limitation of this method lies in the need to define the local temperature on each
point of the membrane. Moreover, the 3ω voltage is related to the thermal conductance of the
membrane through Fourier’s law. However, when the transport is ballistic, the notion of local
temperature disappears. At very low temperatures, the phonons mean free path is much larger
than the membrane thickness, thus the temperature can no longer be defined at the membrane
surfaces. However, to solve the equation of heat transfer, we consider that the membrane have
the same temperature in cross plane. We assume that this assumption becomes no longer valid
in this temperature range.

Figure 4.16: Thermal conductivity measurement of 50 nm and 100 nm high stress membrane at
low temperature 300 mK < T < 300 K, along with the theoretical fits.

Fig. 4.17 shows the thermal conductivity measurement from 300 mK to 300 K of 50 nm and
100 nm high stress SiN membrane. The curves deviate at low temperature (T < 1 K and T < 2
K for 100 nm and 50 nm, respectively) from the T 2 rise as we have explained above. Then the
curves show the expected plateau upto ∼ 20 K and the second rise in temperature as predicted
for amorphous materials.
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Figure 4.17: Thermal conductivity of several amorphous solids [42, 94]. The blue line and red
line are our experimental measurement for 50 nm and 100 nm SiN high stress respectively.
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Chapter 5

3ω-Völklein method application

Since 1990, the 3ω technique is used to characterize thermal properties of materials from
nanoscale to bulk. Moreover, it is adapted to measure thermal properties of materials with
different forms; solid, liquid, gas and powder [65]. However, there is still some deficiencies
which limits its practical applications, the lack in sensitivity in some cases. In addition, for the
electrically conductive specimen, an insulating layer about tens of nanometers thick, SiO2 or
SiNx in most cases should be deposited on the measured surface to prevent electrical conduction
through the specimen. However, in the case of porous or relatively rough surface, the deposited
layer for insulation can become easily ineffective.

Here we propose that the earlier characterized SiN membrane can be used as a highly sen-
sitive sensor to measure thermal properties of another material deposited on the backside of the
membrane. The mechanical properties of silicon nitride, the fact that it is an insulating mate-
rial, the stability with temperature, and its low thermal conductivity, all this makes it a perfect
candidate to play this role; demonstrating the high versitability of the 3ω method on membrane
for the thermal characterisation of thin films.

5.1 Thermal model

We demonstrate in this section the application of the SiN sensor (constituted by a 100 nm SiN
membrane and the deposited NbN thermometer on topside), to the measurements of thermal
conductance and heat capacity of 200 nm Bi2Te3 thermoelectric film. The Bi2Te3 film is de-
posited on the backside of the SiN membrane by magnetron sputtering technique. The main idea
in this model is that if we have the thermal properties of the suspended SiN membrane mea-
sured by 3ω-Völklein method, we can extract thermal properties of another material deposited
on backside of membrane by measuring the two films together.

As the Bi2Te3 film is sufficiently thin (∼ 200nm), we assume that the part of films (SiN
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and Bi2Te3) just beyond the NbN transducer are heated like the thermometer. Thus, there is no
gradient of temperature in the cross plane direction. Consider the geometry shown in Fig. 5.1,
the 100 nm SiN membrane is supported by the silicon substrate and the Bi2Te3 film is deposited
on the backside of the membrane. The aim of this experiment was to validate the assumption
that the SiN membrane can be used to measure another material. Thus, in order to simplify, the
resistance of contact between SiN and Bi2Te3 film it not taken into account at the initial stage.
According to the assumptions given above, the equation of heat transfer of the system given by
the two films is given by Eq. 3.45,

∂2T (x, t)
∂x2 =

1
D

∂T (x, t)
∂t

where D the total thermal diffusivity is given by,

D =
κSiN +κBi2Te3

ρSiNCSiN +ρBi2Te3
CBi2Te3

(5.1)

where κSiN , CSiN , ρSiN , and κBi2Te3
, CBi2Te3

, ρBi2Te3
are the thermal conductivity, specific heat

and density of SiN and Bi2Te3 respectively.

Figure 5.1: Schematic of SiN membrane shows the thermoelectric material deposited on the
backside. e is the thickness of the membrane and e1 the thickness of the thermoelectric film.

The heat capacity C′ defined in Eq. 3.44 by the heat capacity of the half NbN thermometer
and the part of SiN membrane beyond it, becomes,

C
′
= ρNbNcNbNLe′

b
2
+ cρ

b
2

Le+ρBi2Te3
cBi2Te3

Le1

b
2

(5.2)

where e1 is the thickness of Bi2Te3 film. As the heat is transferred in plane by the two layers,
the thermal conductance Kp becomes,

Kp = KSiN +KBi2Te3
. (5.3)
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Therefore, the thermal conductivity of Bi2Te3 film at low frequency can be calculated by,

V3ω =
1
2

αR
∞

∑
m=0

∞

∑
n=1

SmnRI2(−1)m+1[1− (−1)n]

nπ3`2(KSiN +KBi2Te3
)

[( n
L

)2
+
(

m+1/2
`

)2
] (5.4)

Once the thermal conductivity of the Bi2Te3 film is calculated using Eq. 5.4, the specific
heat can be determined by fitting the 3ω voltage versus frequency through,

|V rms
3ω (ω)|= αR2

eR1(V rms
ac )3

4(Re +R1)4
(

KSiN +KBi2Te3

)[
1+ω2

(
4τ2 + 2`4

3D2 +
4τ`2

3D

)]1/2 (5.5)

where τ = C′
/

Kp . C′ and D are given by Eq. 5.2 and Eq. 5.1 respectively.

5.1.1 Experimental results

Fig. 5.2 and Fig. 5.3 show respectively the thermal conductivity and specific heat of a 200
nm thick Bi2Te3 film. The measurement has been performed between 100 and 300 K. The
general behaviors is an decrease of the thermal conductivity and increase of the specific heat
respectively as the temperature increases, a usual trends reported in the literature for Bi2Te3. A
value close to 1 W/m.K and 0.3 J/g.K are obtained at room temperature for thermal conductivity
and specific heat, respectively. These results are in good agreement with previous measurements
[32, 95], confirming a very low thermal conductivity for this thermoelectric materials.
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Figure 5.2: Thermal conductivity of 200 nm thick Bi2Te3 film as a function of temperature.

Figure 5.3: Specific heat of 200 nm thick Bi2Te3 film as a function of temperature.

5.2 Advantages and limits of the 3ω-Völklein method

Among the different methods dedicated to measure thermal properties, these measurements can
be performed either by a steady state or a time dependent heat flow method. Both types have ad-
vantages and disadvantages and the best choice depends on the requirements of the experiment.
Most of steady state experiments lead to obtain in-plane thermal conductivity. This method uses
a heat source-sink principle and the temperature is measured using thermocouples positioning
at two or more separate locations along the film. Thus when the film is ultra thin, the out of
plane measurement becomes very difficult. On the other hand, time dependent methods are
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widely used to obtain out of plane thermal conductivities, especially for layered systems. These
methods can overcome most difficulties provided by the steady state techniques. However, the
thermal penetration depths should carefully considered to be larger than the substrate thickness.

Furthermore, the different techniques can be categorized according to the heating and tem-
perature sensing methods by: electrical heating and sensing, optical heating and sensing, and
combined electrical/optical methods [57]. Although the optical techniques can eliminate in-
fluences of pads on a temperature field measurement, since they do note require contact with
sample, the overlapping of the optics and probe light at the region of excitation can reduce the
accuracy of this method. Therefore, the electrical techniques are the most popular, due to their
simple experimental setups and their superior measuring ability.

In this study, we have coupled the 3ω method to suspended membrane geometry to obtain
a specific thermal sensor able to characterize another material deposited on the backside of
the membrane. We have tested this model to measure thermal properties of Bi2Te3 film and the
results are in excellent agreement with literature. As the SiN is an insulator, this model is able to
measure very thin film whatever its nature, insulator, semi-conductor or metallic. The only limit
of this method can be at very low temperature, where the transport of phonon becomes ballistic
and the thermal decoupling between the different layers; thermometer, SiN and measured film
influences the measurement.
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Conclusion

We have proposed and experimentally demonstrated a new technique to measure thermal prop-
erties of very thin membranes. This technique consists in coupling the 3ω method to the
Völklein geometry (elongated suspended membrane). A NbN transducer is deposited on the
center of the membrane which serves both as heater and thermometer. The sample of interest
is then implemented into a specific Wheatstone bridge in order to eliminate the electrical 1ω

signal. This technique allows the measurement with very high sensitivity of the 3ω thermal
signal. Moreover, this measurement chain has the advantage to remove the different harmonics
which do not have a thermal origin. Silicon nitride membranes studied in this work constitute
a typical amorphous materials. We have been interested in the study of the thermal transport in
such system of reduced dimensions as function of temperature and intrinsic modified stress. In
order to accomplish this goal, silicon nitride membranes of high stress and low stress have been
measured respectively with the thickness 50 nm and 100 nm.

The overall behaviour of the measured thermal conductivity is an increase as the temperature
is increased, a trend commonly found for amorphous material. The data of 100 nm thick SiN
membrane of low stress and high stress show a very comparable curves, whereas the 50 nm
curves of low stress and high stress deviate at high temperature. The 50 nm data show thermal
conductivity less than that of the 100 nm, this is consistent of the effect of reduced dimensions.
The expected plateau are seen for temperature T < 20 K, down to 2 K and 1 K for SiN 50 nm
and 100 nm membrane thick respectively. The plateau of the 50 nm curve is in good agreement
with T2 rise, whereas the 100 nm curve shows a plateau with a rise slightly higher than T2. At
T = 2 K, the phonon mean free path exceed the 1µm. Thus this behavior of κ(T) for T < 2 K
indicates that specular scattering occurs at the surfaces of the membranes and dominates the
phonon transport. Therefore, we assume that the second unexpected rise for T < 2 K could be
explained by the fact that one attains the limits of applicability of the 3ω method.

The measured heat capacity is apparently higher than what is expected from the Debye
phonon heat capacity. This is especially significant below 100 K where the heat capacity de-
viates significantly from the T3 Debye law. Below 1 K this deviation is well explained by the
TLS model, where TLS dominates the contribution to the specific heat, thus C varies linearly
with temperature. Above 1 K, C still deviates strongly from the expected CD ∝ T3 dependence,
exhibiting a bump in C/T3 at about ∼ 10 K. This bump reflects the presence of an excess of
modes in the vibrational density of states, and could be related to the so-called boson peak. It
has been shown that a consistent description of these additional anomalous features is possible
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in terms of the soft potential model. The soft potential model assumes the existence of addi-
tional quasi-local vibrations that interact with the sound waves, giving rise to the boson peak.
The TLS density of state in SiN is around three orders of magnitude larger than that of amor-
phous SiO2. However, the amplitude of boson peak in SiN seems to be much smaller than that
of SiO2. This is provided predominately by a weak coupling between the quasi-local vibrations
and acoustic modes in SiN.

It was seen experimentally that stress has no effect on the specific heat of silicon nitride.
Moreover, we have demonstrated that stress does not affect the dissipation in silicon nitride, and
the dissipation dilution seems to be the sole cause of the reduction of dissipation by an applied
stress in high stress silicon nitride. Therefore, stress should not affect thermal conductivity of
silicon nitride, and this is consistent with the experimental results.

As application for this method, we have demonstrated that the SiN membrane can be used
as specific thermal sensor to characterize another material deposited on the backside of the
membrane. We have tested this model to measure thermal properties of Bi2Te3 film and the
results are in excellent agreement with literature. As the SiN is an insulator, this model is able
to measure very thin film whatever its nature, insulator, semi conductor or metallic. The only
limit of this method can be at very low temperature, where the transport of phonon becomes
ballistic at the surfaces of the membranes, and the thermal decoupling between the different
layers starts to influence the measurement.
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[48] T. Kühn and I.J. Maasilta. Ballistic phonon transport in dielectric membranes. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 559:724 – 726, 2006.

[49] B.A. Auld. Acoustic Fields and Waves in Solids, volume II. Robert E. Krieger Publishing
Company, second edition, 1990.

[50] H. F. C. Hoevers, M. L. Ridder, A. Germeau, M. P. Bruijn, P. A. J. de Korte, and R. J.
Wiegerink. Radiative ballistic phonon transport in silicon-nitride membranes at low tem-
peratures. Applied Physics Letters, 86:251903, 2005.

[51] A Kaushik, H Kahn, and AH Heuer. Wafer-level mechanical characterization of silicon
nitride MEMS. Journal of microelectromechanical systemes, 14:359–367, Apr 2005.

[52] DP Osterman, R Patt, R Hunt, and JB Peterson. Antenna-coupled bolometer with a
micromachined-beam thermal link. Applied physics letters, 71:2361–2363, 1997.

[53] D. W. Denlinger, E. N. Abarra, Kimberly Allen, P. W. Rooney, M. T. Messer, S. K. Watson,
and F. Hellman. Thin film microcalorimeter for heat capacity measurements from 1.5 to
800 K. Review of Scientific Instruments, 65:946–959, 1994.

[54] Wen-Hsien Chuang, Thomas Luger, Rainer K. Fettig, and R. Ghodssi. Mechanical prop-
erty characterization of lpcvd silicon nitride thin films at cryogenic temperatures. Micro-
electromechanical Systems, Journal of, 13:870–879, 2004.

[55] A. Suvorova B.R. Lawn Y. Liu X.Z. Hu J.M. Dell L. Faraone H. Huang, K.J. Winchester.
Effect of deposition conditions on mechanical properties of low-temperature PECVD sil-
icon nitride films. Materials Science and Engineering A, pages 453–459, 2006.



BIBLIOGRAPHY 103

[56] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead,
and J. M. Parpia. Stress and Silicon Nitride: A Crack in the Universal Dissipation of
Glasses. Physical Review Letters, 102, 2009.

[57] Terry M. Tritt. Thermal Conductivity: Theory, Properties, and Applications. Kluwer
Academic / Plenum Publishers, 2004.

[58] O. M. Corbino. Phys. Z., 11:413, 1910.

[59] O. M. Corbino. Phys. Z., 12:292, 1911.

[60] Norman O. Birge and Sidney R. Nagel. Wide-frequency specific heat spectrometer. Review
of Scientific Instruments, 58:1464–1470, 1987.

[61] Jung Hun Kim, Albert Feldman, and Donald Novotny. Application of the three omega
thermal conductivity measurement method to a film on a substrate of finite thickness.
Journal of Applied Physics, 86:3959–3963, 1999.

[62] Jiezhu Jin, Mohan P. Manoharan, Qing Wang, and M. A. Haque. In-plane thermal con-
ductivity of nanoscale polyaniline thin films. Applied Physics Letters, 95:033113, 2009.

[63] Olivier Bourgeois, Thierry Fournier, and Jacques Chaussy. Measurement of the ther-
mal conductance of silicon nanowires at low temperature. Journal of Applied Physics,
101:016104, 2007.

[64] X. Jack Hu, Antonio A. Padilla, Jun Xu, Timothy S. Fisher, and Kenneth E. Goodson.
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon. Journal of
Heat Transfer, 128:1109–1113, 2006.

[65] Scott N. Schiffres and Jonathan A. Malen. Improved 3-omega measurement of thermal
conductivity in liquid, gases, and powders using a metal-coated optical fiber, volume 82.
Review of Scientific Instruments, 2011.

[66] Olivier Bourgeois, Emmanuel Andre, Cristina Macovei, and Jacques Chaussy. Liquid
nitrogen to room-temperature thermometry using niobium nitride thin films. Review of
Scientific Instruments, 77:126108, 2006.

[67] David G. Cahill, M. Katiyar, and J. R. Abelson. Thermal conductivity of a -si:h thin films.
Phys. Rev. B, 50:6077–6081, 1994.

[68] L. Dumoulin, L. Bergé, J. Lesueur, H. Bernas, and M. Chapellier. Nb-si thin films as ther-
mometers for low temperature bolometers. Journal of Low Temperature Physics, 93:301–
306, 1993.

[69] D. Querlioz, E. Helgren, D. R. Queen, F. Hellman, R. Islam, and David. J. Smith. Bene-
ficial effects of annealing on amorphous Nb–Si thin-film thermometers. Applied Physics
Letters, 87:221901, 2005.



104 BIBLIOGRAPHY

[70] A. F. Lopeandia, E. Andre, J.-L. Garden, D. Givord, and O. Bourgeois. Highly sensitive
parylene membrane-based ac-calorimeter for small mass magnetic samples. Review of
Scientific Instruments, 81:053901, 2010.

[71] Myers G. E. Analytical Methods in Conduction Heat Transfer. AMCHT, Madison, WI,
2nd edition, 1998.

[72] D.L. DeVoe. Thermal issues in MEMS and microscale systems. Components and Pack-
aging Technologies, IEEE Transactions on, 25:576–583, 2002.

[73] M.A. Haque and M.T.A. Saif. Thermo-mechanical properties of nano-scale freestanding
aluminum films. Thin Solid Films, 484:364 – 368, 2005.

[74] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G. Craighead,
and J. M. Parpia. Stress and silicon nitride: A crack in the universal dissipation of glasses.
Phys. Rev. Lett., 102:225503, Jun 2009.

[75] Jiansheng Wu and Clare C. Yu. How stress can reduce dissipation in glasses. Physical
Review B, 84:174109, 2011.

[76] P. Temple-Boyer, C. Rossi, E. Saint-Etienne, and E. Scheid. Residual stress in low pressure
chemical vapor deposition sinx films deposited from silane and ammonia. Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16:2003–2007, 1998.

[77] W. D. Nix M. F. Doerner. Stresses and deformation processes in thin films on substrates.
Critical Review in Solid state and Material Science, 14, 1988.

[78] G. Gerald Stoney. The tension of metallic films deposited by electrolysis. Proceedings of
the Royal Society of London. Series A, 82:172–175, 1909.

[79] C. Seoánez, F. Guinea, and A. H. Castro Neto. Surface dissipation in nanoelectromechani-
cal systems: Unified description with the standard tunneling model and effects of metallic
electrodes. Phys. Rev. B, 77:125107, Mar 2008.

[80] Clare C. Yu and J. J. Freeman. Thermal conductivity and specific heat of glasses. Phys.
Rev. B, 36:7620–7624, Nov 1987.

[81] S. Hunklinger and A.K. Raychaudhuri. Chapter 3: Thermal and elastic anomalies in
glasses at low temperatures. volume 9 of Progress in Low Temperature Physics, pages
265 – 344. Elsevier, 1986.
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RESUME

Les matériaux amorphes possèdent des propriétés thermiques très différentes de celles des matériaux
cristallins. Autant L’effet de dimensions spatiales réduites sur le transport thermique a été observé dans
les matériaux cristallins qu’il est mal connu pour les systèmes amorphes. Dans ce travail de thèse,
nous avons étudié les propriétés thermiques des membranes très minces de SiN amorphe (système 2D).
Afin d’atteindre cet objectif nous avons proposé et validé expérimentalement une nouvelle technique
de mesure ultra-sensible (3ω-Völklein) des propriétés thermiques des membranes suspendues. Cette
méthode unique permet de mesurer sur le même dispositif à la fois la conductivité thermique et la chaleur
spécifique sur une plage de température allant de 4 K à 300 K. Nous avons utilisé cette méthode pour
étudier l’effet de stress interne sur la conductivité thermique dans le SiN amorphe, ainsi que la variation
des libres parcours moyens des phonons dans ces systèmes de basses dimensionnalités.

ABSTRACT

Amorphous materials have very different thermal properties of their crystalline counterparts. The
effect of the reduced spatial dimensions on heat transport was extensively studied and observed in crys-
talline materials, which is not the case for amorphous. In this thesis, we study the thermal properties
of thin amorphous SiN membranes (2D system). To achieve this goal, we have proposed and experi-
mentally validated a new ultra-sensitive technique (3ω-Völklein) to measure the thermal properties of
suspended membranes. This specific technique allows the measurement of both the thermal conductivity
and the specific heat over a temperature range 4 K-300 K using the same device. We used this method to
investigate the effect of internal stress on the thermal conductivity in amorphous SiN membrane, as well
as the variation of phonons mean free path in such low dimensions systems.
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