Q. Size and .. , Photoluminescence as a Function of, p.107

]. R. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, 1964.
DOI : 10.1063/1.1753975

O. Landre, R. Songmuang, J. Renard, E. Bellet-amalric, H. Renvier et al., Plasmaassisted molecular beam epitaxy growth of GaN nanowires using indium-enhenced diffusion

F. Glas, J. Harmand, and G. Patriarche, Why Does Wurtzite From in Nanowires of III-V Zinc Blende Semiconductors?, Phys. Rev. Lett, p.99, 2007.

K. A. Dick, C. Thelander, L. Samuelson, and P. Caroff, Crystal Phase Engineering in Single InAs Nanowires, Nano Letters, vol.10, issue.9, pp.3494-3499, 2010.
DOI : 10.1021/nl101632a

URL : https://hal.archives-ouvertes.fr/hal-00548711

M. S. Gudiksen, J. Wang, and C. M. Lieber, Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires, The Journal of Physical Chemistry B, vol.105, issue.19, pp.4062-4064, 2001.
DOI : 10.1021/jp010540y

Y. Cai, T. L. Wong, S. K. Chan, I. K. Sou, D. S. Su et al., Growth Behavior of Ultrathin ZnSe Nanowires by Au-Catalysed Molecular Beam Epitaxy, Appl. Phys. Lett, p.93, 2008.

U. Philipose, T. Xu, S. Yang, P. Sun, and H. E. Ruda, Enhancement of band edge luminescence in ZnSe nanowires, Journal of Applied Physics, vol.100, issue.8, 2006.
DOI : 10.1063/1.2362930

U. Philipose, S. Yang, T. Xu, and H. E. Ruda, Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires, Applied Physics Letters, vol.90, issue.6, p.90, 2007.
DOI : 10.1063/1.2457190

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip et al., Size-Dependent Periodically Twinned ZnSe Nanowires, Advanced Materials, vol.16, issue.16, pp.1436-1440, 2004.
DOI : 10.1002/adma.200306648

X. T. Zhang, Z. Liu, K. M. Ip, Y. P. Leung, Q. Li et al., Luminescence of ZnSe nanowires grown by metalorganic vapor phase deposition under different pressures, Journal of Applied Physics, vol.95, issue.10, pp.955752-5755, 2004.
DOI : 10.1063/1.1699497

Y. C. Zhu and Y. Bando, Preparation and photoluminescence of single-crystal zinc selenide nanowires, Chemical Physics Letters, vol.377, issue.3-4, pp.367-370, 2003.
DOI : 10.1016/S0009-2614(03)01197-7

C. X. Shan, Z. Liu, X. T. Zhang, C. C. Wong, and S. K. Hark, Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties, Nanotechnology, vol.17, issue.22, pp.5561-5564, 2006.
DOI : 10.1088/0957-4484/17/22/006

I. C. Robin, R. Andre, C. Bougerol, T. Aichele, and S. Tatarenko, Elastic and surface energies: Two key parameters for CdSe quantum dot formation, Applied Physics Letters, vol.88, issue.23, p.88, 2006.
DOI : 10.1063/1.2209202

F. Tinjod, I. C. Robin, R. Andre, K. Kheng, and H. Mariette, Key parameters for the formation of II???VI self-assembled quantum dots, Journal of Alloys and Compounds, vol.371, issue.1-2, pp.63-66, 2004.
DOI : 10.1016/j.jallcom.2003.05.006

I. C. Robin, R. Andre, and J. M. Gerard, Relation between growth procedure and confinement properties of CdSe/ZnSe quantum dots, Phys. Rev. B, p.74, 2006.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, Highly efficient triggered emission of single photons by colloidal CdSe???ZnS nanocrystals, Applied Physics Letters, vol.85, issue.5, 2004.
DOI : 10.1063/1.1775280

T. Aichele, A. Tribu, C. Bougerol, K. Kheng, R. Andre et al., Defect-free ZnSe nanowire and nanoneedle nanostructures, Applied Physics Letters, vol.93, issue.14, p.143106, 2008.
DOI : 10.1063/1.2991298

URL : http://arxiv.org/abs/0805.1818

A. Tribu, G. Sallen, T. Aichele, R. Andre, J. Poizat et al., A High-Temperature Single-Photon Source from Nanowire Quantum Dots, Nano Letters, vol.8, issue.12, pp.4326-4329, 2008.
DOI : 10.1021/nl802160z

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang et al., ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy, Applied Physics Letters, vol.83, issue.13, pp.2665-2667, 2003.
DOI : 10.1063/1.1615293

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su et al., Temperature-Dependent Growth Direction of Ultrathin ZnSe Nanowires, Small, vol.29, issue.1, pp.111-115, 2006.
DOI : 10.1002/smll.200600266

A. Colli, S. Hofmann, A. C. Ferrari, C. Ducati, F. Martelli et al., Low-temperature synthesis of ZnSe nanowires and nanosaws by catalystassisted molecular-beam epitaxy, Appl. Phys. Lett, p.86, 2005.

Y. Ohno, T. Shirahama, and S. Takeda, Fe-catalytic growth of ZnSe nanowires on a ZnSe(001) surface at low temperatures by molecular-beam epitaxy, Applied Physics Letters, vol.87, issue.4, 2005.
DOI : 10.1063/1.1997275

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto et al., A gallium nitride single-photon source operating at 200???K, Nature Materials, vol.95, issue.11, pp.887-892, 2006.
DOI : 10.1038/nmat1763

K. Sebald and P. Michler, Single-photon emission of CdSe quantum dots at temperatures up to 200 K, Applied Physics Letters, vol.81, issue.16, pp.2920-2922, 2002.
DOI : 10.1063/1.1515364

B. Legrand, J. P. Nys, B. Grandidier, D. Stievenard, A. Lemaitre et al., Quantum box size effect on vertical self-alignment studied using cross-sectional scanning tunneling microscopy, Applied Physics Letters, vol.74, issue.18, p.74, 1999.
DOI : 10.1063/1.123912

M. Benyoucef, M. Ulrich, P. Michler, and J. Wiersig, Enhanced correlated photon pair emission from a pillar microcavity, New Journal of Physics, vol.6, 2004.
DOI : 10.1088/1367-2630/6/1/091

URL : http://doi.org/10.1088/1367-2630/6/1/091

O. Fedorych, C. Druse, A. Ruban, D. Hommel, G. Bacher et al., Room temperature single photon emission from an epitaxially grown quantum dot, Applied Physics Letters, vol.100, issue.6, p.2012, 61114.
DOI : 10.1063/1.3683498

C. Bockler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler et al., Electrically driven high-Q quantum dot-micropillar cavities, Applied Physics Letters, vol.92, issue.9, p.92, 2010.
DOI : 10.1063/1.2890166

I. C. Robin, Croissance et controle de l'emission spontanee de boites quantiques semiconductrices CdSe/ZnSe placees en microcavites optiques, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00011126

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.74, issue.12, p.121302, 2006.
DOI : 10.1103/PhysRevB.74.121302

M. Tchernycheva, G. E. Cirlin, G. Patriarche, L. Travers, V. Zwiller et al., Growth and Characterization of InP Nanowires with InAsP Insertions, Nano Letters, vol.7, issue.6, pp.1500-1504, 2007.
DOI : 10.1021/nl070228l

P. Wojnar, E. Janik, L. T. Vaczewski, S. Kret, G. Karczewski et al., Growth and optical properties of CdTe quantum dots in ZnTe nanowires, Applied Physics Letters, vol.99, issue.11, p.99, 2011.
DOI : 10.1063/1.3630004

J. Wang, M. S. Gudksen, X. Duan, Y. Cui, and C. M. Lieber, Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science, vol.293, issue.5534, pp.1455-1457, 2001.
DOI : 10.1126/science.1062340

J. Heinrich, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Hofling et al., Single photon emission from positioned GaAs/AlGaAs photonic nanowires, Applied Physics Letters, vol.96, issue.21, p.96, 2010.
DOI : 10.1063/1.3440967

S. N. Dorenbos, H. Sasakura, M. P. Van-kouwen, S. Akopian, N. Adachi et al., Position controlled nanowires for infrared single photon emission, Applied Physics Letters, vol.97, issue.17, pp.97-2012, 171106.
DOI : 10.1063/1.3506499

URL : http://authors.library.caltech.edu/65307/1/Position_controlled.pdf

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, Sharp exciton emission from single InAs quantum dots in GaAs nanowires, Applied Physics Letters, vol.83, issue.11, pp.2238-2240, 2003.
DOI : 10.1063/1.1611261

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, Optically Bright Quantum Dots in Single Nanowires, Nano Letters, vol.5, issue.7, pp.1439-1443, 2005.
DOI : 10.1021/nl050802y

S. Bounouar, M. Elouneg-jamroz, M. Den-hertog, C. Morchutt, E. Bellet-amalric et al., Ultrafast Room Temperature Single-Photon Source from Nanowire-Quantum Dots, Ultrafast Room Temperature Single-Photon Source from Nanowire Quantum Dots, pp.2977-2981, 2012.
DOI : 10.1021/nl300733f

URL : https://hal.archives-ouvertes.fr/hal-00855923

J. Rouviere, The Use of the Geometrical Phase Analysis to Measure Strain in Nearly Periodic Images, Microscopy of Semiconducting Materials -Springer Proceedings in Physics, pp.199-202, 2008.
DOI : 10.1007/978-1-4020-8615-1_43

M. Den-hertog, M. Elouneg-jamroz, E. Bellet-amalric, S. Bounouar, C. Bougerol et al., Insertion of CdSe quantum dots in ZnSe nanowires: MBE growth and microstructure analysis, Journal of Crystal Growth, vol.323, issue.1, pp.330-333, 2011.
DOI : 10.1016/j.jcrysgro.2010.11.159

A. I. Persson, L. E. Froberg, S. Jeppesen, M. T. Bjork, and L. Samuelson, Surface diffusion effects on growth of nanowires by chemical beam epitaxy, Journal of Applied Physics, vol.101, issue.3, 2007.
DOI : 10.1063/1.2435800

M. T. Borgstrom, G. Immink, B. Ketelaars, R. Algra, E. P. Bakkers et al., Synergetic nanowire growth, Nature Nanotechnology, vol.101, issue.9, pp.541-544, 2008.
DOI : 10.1038/nnano.2007.263

G. Wang, S. K. Lok, and I. K. Sou, ZnSe nanotrenches: formation mechanism and its role as a 1D template, Nanoscale Research Letters, vol.6, issue.1, 2011.
DOI : 10.1016/j.scriptamat.2008.01.012

URL : http://doi.org/10.1186/1556-276x-6-272

J. B. Smathers, E. Kneedler, B. R. Bennett, and B. T. Jonker, Nanometer scale surface clustering on ZnSe epilayers, Applied Physics Letters, vol.72, issue.10, p.72, 1998.
DOI : 10.1063/1.121025

J. Kleiman, R. M. Park, and S. B. Qadri, Determination of the onset of plastic deformation in ZnSe layers grown on (100) GaAs by molecular???beam epitaxy, Journal of Applied Physics, vol.61, issue.5, p.2067, 1987.
DOI : 10.1063/1.338007

I. C. Robin, T. Aichele, C. Bougerol, R. Andre, S. Tatarenko et al., CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions, Nanotechnology, vol.18, issue.26, p.18, 2007.
DOI : 10.1088/0957-4484/18/26/265701

G. Wang, S. K. Lok, S. K. Chang, C. Wang, G. K. Wong et al., The formation of an aligned 1D nanostructure on annealed Fe/ZnSe bilayers, Nanotechnology, vol.20, issue.21, p.20, 2009.
DOI : 10.1088/0957-4484/20/21/215607

S. C. Ghosh, P. Kruse, and R. R. Lapierre, The effect of GaAs(001) surface preparation on the growth of nanowires, Nanotechnology, p.20, 2009.

T. B. Massalski, Binary Alloy Phase Diagrams, 1986.

R. Daudin, T. Nogaret, T. U. Schulli, N. Jakse, A. Pasturel et al., Epitaxial orientation changes in a dewetting gold film on Si(111), Physical Review B, vol.86, issue.9, pp.86-2012
DOI : 10.1103/PhysRevB.86.094103

URL : https://hal.archives-ouvertes.fr/hal-00781320

J. Johansson, C. P. Svensson, T. Martensson, L. Samuelson, and W. Seifert, Mass Transport Model for Semiconductor Nanowire Growth, The Journal of Physical Chemistry B, vol.109, issue.28, pp.13567-13571, 2005.
DOI : 10.1021/jp051702j

L. E. Jensen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson et al., Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires, Nano Letters, vol.4, issue.10, pp.1961-1964, 2004.
DOI : 10.1021/nl048825k

J. M. Gains, In-situ characterization of II/VI molecular beam epitaxy growth using reflection high-energy electron diffraction oscillations, Journal of Crystal Growth, vol.137, issue.1-2, pp.187-194, 1994.
DOI : 10.1016/0022-0248(94)91270-X

J. Riley, D. Wolfframm, D. Westwood, and A. Evans, Studies in the growth of ZnSe on GaAs(001), Journal of Crystal Growth, vol.160, issue.3-4, pp.193-200, 1996.
DOI : 10.1016/0022-0248(95)00926-4

W. Seifert, M. Borgstrom, K. Deppert, K. A. Dick, J. Johansson et al., Growth of one-dimensional nanostructures in MOVPE, Journal of Crystal Growth, vol.272, issue.1-4, pp.211-220, 2004.
DOI : 10.1016/j.jcrysgro.2004.09.023

N. Wang, Y. Cai, and R. Q. Zhang, Growth of nanowires, Materials Science and Engineering: R: Reports, vol.60, issue.1-6, pp.1-51, 2008.
DOI : 10.1016/j.mser.2008.01.001

URL : https://hal.archives-ouvertes.fr/in2p3-01100533

M. Tchernycheva, J. C. Harmand, G. Patriarche, L. Travers, and G. E. Cirlin, Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy, Nanotechnology, vol.17, issue.16, p.4025, 2006.
DOI : 10.1088/0957-4484/17/16/005

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, Control of growth orientation for epitaxially grown ZnSe nanowires, Applied Physics Letters, vol.88, issue.1, p.88, 2006.
DOI : 10.1063/1.2161397

E. Bellet-amalric, M. Elouneg-jamroz, P. Rueda-fonseca, S. Bounouar, M. D. Hertog et al., Growth of II???VI ZnSe/CdSe nanowires for quantum dot luminescence, Journal of Crystal Growth, vol.378, 2013.
DOI : 10.1016/j.jcrysgro.2012.10.010

J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli et al., Structure and growth mechanism of ZnSe nanowires, Journal of Applied Physics, vol.104, issue.6, 2008.
DOI : 10.1063/1.2977722

C. Wen, J. Tersoff, M. C. Reuter, E. A. Stach, and F. M. Ross, Step-Flow Kinetics in Nanowire Growth, Physical Review Letters, vol.105, issue.19, p.195502, 2010.
DOI : 10.1103/PhysRevLett.105.195502

S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-sodi, C. Ducati et al., Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth, Nature Materials, vol.91, issue.2, p.372, 2008.
DOI : 10.1038/nmat2140

J. C. Harmand, M. Tcherniycheva, G. Patriarche, L. Travers, F. Glas et al., GaAs nanowires formed by Au-assisted molecular beam epitaxy: Effect of growth temperature, Journal of Crystal Growth, vol.301, issue.302, pp.301-302853, 2007.
DOI : 10.1016/j.jcrysgro.2006.11.106

J. C. Harmand, G. Patriarche, N. Pere-leperne, M. Merat-combes, L. Travers et al., Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth, Applied Physics Letters, vol.87, issue.20, p.3, 2005.
DOI : 10.1063/1.2128487

A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson et al., Solid-phase diffusion mechanism for GaAs nanowire growth, Nature Materials, vol.3, issue.10, pp.677-681, 2004.
DOI : 10.1021/ja0299102

P. Buffat and J. Borel, Size effect on the melting temperature of gold particles, Physical Review A, vol.13, issue.6, p.2287, 1976.
DOI : 10.1103/PhysRevA.13.2287

F. S. Gard, J. D. Riley, R. Leckey, and B. Usher, Reflection high-energy electron diffraction (RHEED) study of MBE growth of ZnSe on GaAs(1 1 1)B surfaces, Applied Surface Science, vol.181, issue.1-2, pp.94-102, 2001.
DOI : 10.1016/S0169-4332(01)00380-4

C. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka et al., Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires, Science, vol.326, issue.5957, p.1247, 2009.
DOI : 10.1126/science.1178606

T. E. Clark, P. Nimmatoori, K. Lew, L. Pan, J. M. Redwing et al., Heterostructure Nanowires, Nano Letters, vol.8, issue.4, pp.1246-1252, 2008.
DOI : 10.1021/nl072849k

M. T. Bjork, B. J. Olsson, T. Sass, A. Persson-adn, C. Thelander et al., One-dimensional Steeplechase for Electrons Realized, Nano Letters, vol.2, issue.2, pp.87-89, 2002.
DOI : 10.1021/nl010099n

Y. M. Niquet, C. Priester, and H. Mariette, Influence of the inhomogeneous strain relaxation on the optical properties of etched quantum wires, Physical Review B, vol.55, issue.12, pp.7387-7390, 1997.
DOI : 10.1103/PhysRevB.55.R7387

S. Bounouar, C. Morchutt, M. Elouneg-jamroz, L. Besombes, R. Andre et al., Exciton-phonon coupling efficiency in CdSe quantum dots embedded in ZnSe nanowires, Ph. Poizat. Exciton-Phonon Coupling Efficiency in CdSe Quantum Dots Embedded in ZnSe Nanowires, p.35428, 2012.
DOI : 10.1103/PhysRevB.85.035428

URL : https://hal.archives-ouvertes.fr/hal-00998966

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science, vol.293, issue.5534, pp.1455-1457, 2001.
DOI : 10.1126/science.1062340

P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, Optical properties of ZnSe doped with Ag and Au, Physical Review B, vol.26, issue.4, pp.2016-2033, 1982.
DOI : 10.1103/PhysRevB.26.2016

R. Hanbury-brown and R. W. Twiss, Correlation between Photons in two Coherent Beams of Light, Nature, vol.45, issue.4497, pp.27-29, 1956.
DOI : 10.1038/177027a0

R. Brouri, A. Beveratos, J. Ph, P. Poizat, and . Grangier, Photon antibunching in the fluorescence of individual color centers in diamond, Optics Letters, vol.25, issue.17, pp.1294-1296, 2000.
DOI : 10.1364/OL.25.001294

URL : https://hal.archives-ouvertes.fr/hal-00509140

L. Besombes, K. Kheng, L. , and H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, p.155307, 2001.
DOI : 10.1103/PhysRevB.63.155307

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze et al., A diamond nanowire single-photon source, Nature Nanotechnology, vol.5, issue.3, pp.195-199, 2010.
DOI : 10.1103/PhysRevB.74.104303

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse et al., Quantum correlation among photons from a single quantum dot at room temperature, Nature, vol.406, pp.968-970, 2000.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermer et al., Towards non-blinking colloidal quantum??dots, Nature Materials, vol.85, issue.8, pp.659-664, 2008.
DOI : 10.1038/nmat2222

F. Pisanello, L. Martiradonna, G. Lemenager, P. Spinicelli, A. Fiore et al., Room temperaturedipolelike single photon source with a colloidal dot-in-rod, Appl. Phys. Lett, issue.033101, p.96, 2010.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes et al., Subnanosecond spectral diffusion of a single quantum dot in a nanowire, Physical Review B, vol.84, issue.4, 2010.
DOI : 10.1103/PhysRevB.84.041405

URL : https://hal.archives-ouvertes.fr/hal-00998974

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Physical Review B, vol.50, issue.15, p.10780, 1994.
DOI : 10.1103/PhysRevB.50.10780

N. Samarth, H. Luo, J. K. Furdyna, R. G. Alonso, Y. R. Lee et al., Se superlattices, Applied Physics Letters, vol.56, issue.12, p.1163, 1990.
DOI : 10.1063/1.102550

C. H. Hsiao, S. J. Chang, S. C. Hung, Y. C. Cheng, B. R. Huang et al., ZnSe/ZnCdSe heterostructure nanowires, Journal of Crystal Growth, vol.312, issue.10, pp.1670-1675, 2010.
DOI : 10.1016/j.jcrysgro.2010.02.008

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photonics, vol.103, p.174, 2010.
DOI : 10.1038/nphoton.2009.287