A. Osman, V. Kaftandjian, U. Hassler, and J. Hornegger, An automated data processing method dedicated to 3D ultrasonic non destructive testing of composite pieces, International Symposium on Ultrasound in the Control of Industrial Processes, pp.18-20
DOI : 10.1088/1757-899X/42/1/012005

URL : https://hal.archives-ouvertes.fr/hal-00904901

A. Osman, V. Kaftandjian, and U. Hassler, Automatic classification of 3D segmented CT data using data fusion and support vector machine, Journal of Electronic Imaging of Spie, vol.21, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00904876

A. Osman and V. Kaftandjian, Improvement of X-ray castings inspection reliability by using Dempster???Shafer data fusion theory, Pattern Recognition Letters, vol.32, issue.2, pp.168-180, 2011.
DOI : 10.1016/j.patrec.2010.10.004

URL : https://hal.archives-ouvertes.fr/hal-00878528

A. Osman and V. Kaftandjian, Ulf Hassler: Interest of data fusion for improvement of classification in X-ray inspection, International Symposium on Digital Industrial Radiology and Computed Tomography, pp.20-22, 2011.

A. Osman, U. Hassler, M. Rehak, and R. Hanke, Steps towards automated 3D-evaluation of ultrasonic data, International Symposium on NDT in Aerospace, pp.22-24, 2010.

A. Osman, V. Kaftandjian, and U. Hassler, Application of data fusion theory and support vector machine to X-ray castings in- spection, Proceedings of 10th European Conference on Non-Destructive Testing (ECNDT), pp.7-11, 2010.

A. Osman and V. Kaftandjian, Ulf Hassler: Use of Dempster-Shafer theory for defects features combination in X-ray images of castings

. Insa-de-lyon, S. Tous-droits-réservés, S. Array, and T. True, Synthetic Aperture Focusing Technique SAR Synthetic Aperture Radar SPA Sampling Phased Synthetic Focusing-Sampling Phased Array Three-dimensional ultrasound imaging, Time Compensation Gain Phys. Med. Biol, vol.46, pp.67-99, 2001.

A. Fenster and D. B. Downey, 3-D ultrasound imaging: a review, IEEE Engineering in Medicine and Biology Magazine, vol.15, issue.6, pp.41-51, 1996.
DOI : 10.1109/51.544511

A. Bulavinov, R. Pinchuk, S. Pudovikov, and C. Boller, Ultrasonic Sampling Phased Array Testing as a Replacement for X-ray Testing of Weld Joints in Ship Construction, Proceedings of the 9th International Navigational Symposium on Marine Navigation and Safety of Sea Transportation, pp.91-94, 2011.
DOI : 10.1201/b11346-16

R. W. Prager, W. Z. Ijaz, A. H. Gee, and G. M. Treece, Three-dimensional ultrasound imaging, Proceedings of the Institution of Mechanical Engineers, pp.193-224, 2010.
DOI : 10.1243/09544119JEIM586

W. Liu, J. A. Zagzebski, T. J. Hall, E. L. Madsen, T. Varghese et al., Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer, Physics in Medicine and Biology, vol.53, issue.15, pp.4169-4183, 2008.
DOI : 10.1088/0031-9155/53/15/011

C. Daft, D. Brueske, P. Wagner, and D. Liu, 5F-3 A Matrix Transducer Design with Improved Image Quality and Acquisition Rate, 2007 IEEE Ultrasonics Symposium Proceedings, pp.411-415, 2007.
DOI : 10.1109/ULTSYM.2007.112

Q. Duan, S. Homma, and A. F. Laine, P2A-9 Analysis of 4D Ultrasound for Dynamic Measures of Cardiac Function, 2007 IEEE Ultrasonics Symposium Proceedings, pp.1492-1495, 2007.
DOI : 10.1109/ULTSYM.2007.375

A. H. Gee, R. W. Prager, G. M. Treece, and L. H. Berman, Engineering a freehand 3D ultrasound system, Pattern Recognition Letters, vol.24, issue.4-5, pp.4-5, 2003.
DOI : 10.1016/S0167-8655(02)00180-0

H. Yu, M. S. Pattichis1, C. Agurto, and M. B. Goens, A 3d freehand ultrasound system for multi-view reconstructions from sparse 2d scanning planes Der getaktete gruppenstrahler, BioMedical Engineering Online, vol.107, 2005.

R. A. Smith, L. J. Nelson, M. J. Mienczakowski, and R. E. Challis, Automated non-destructive analysis and advanced 3d defect characterisation from ultrasonic scans of composites, proceedings of the 17th International

G. S. Passi, Y. Shoef, and M. V. Kritsky, Reducing the influence of human factors on the reliability of manual ultrasonic weld inspection, pp.788-791, 1995.

E. C. Weiss, P. Anastasiadis, G. Pilarczyk, M. R. Lemor, and P. V. Zinin, Mechanical Properties of Single Cells by High-Frequency Time-Resolved Acoustic Microscopy, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, issue.11, pp.2257-2271, 2007.
DOI : 10.1109/TUFFC.2007.530

M. Kröning, A. Bulavinov, K. Reddy, and V. B. , Verfahren zur zerstörungsfreien untersuchung eines prüfkörpers mittels ultraschall Deutsche Patentanmeldung Nr, pp.59-856, 2004.

J. C. Somer, Electronic sector scanning for ultrasonic diagnosis, Ultrasonics, vol.6, issue.3, pp.153-159, 1968.
DOI : 10.1016/0041-624X(68)90277-1

W. Gebhardt, F. Bonitz, and H. Woll, Defect reconstruction and classification by phased arrays, Materials Evaluation, vol.4, issue.1, pp.90-95, 1982.

O. T. Von-ramm and S. W. Smith, Beam Steering with Linear Arrays, IEEE Transactions on Biomedical Engineering, vol.30, issue.8, pp.438-452, 1983.
DOI : 10.1109/TBME.1983.325149

S. Wooh and Y. Shi, Optimum beam steering of linear phased arrays, Wave Motion, vol.29, issue.3, pp.245-265, 1999.
DOI : 10.1016/S0165-2125(98)00039-0

A. D. Armitage, N. R. Scales, P. P. Hicks, P. J. , Q. X. Chen et al., An integrated array transducer receiver for ultrasound imaging, Sensors and Actuators A: Physical, vol.47, issue.1-3, pp.542-546, 1995.
DOI : 10.1016/0924-4247(94)00959-L

H. Wüstenberg and G. Schenk, Entwicklungen und trends bei der anwendung von steuerba-ren schallfeldern in der zfp mit ultraschall, DGZfP-Jahrestagung, pp.26-28, 2003.

H. Wüstenberg, A. Erhard, and G. Schenk, Some characteristic parameters of ultrasonic phased array probes and equipments, NDT.net, vol.4, issue.4, 1999.

E. Brunner, Ultrasound system considerations and their impact on front-end components, log Devices, Inc, 2002.

T. Armitt, Phased arrays not the answer to every application, Proceedings of the 9th European Congress on Non-Destructive Testing, 2006.

S. R. Doctor, L. J. Busse, and H. D. Collins, The saft-ut technology evolution, Proc. 6th Inter. Conf. on NDE in the Nuclear Industry, 1983.

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, Some early developments in synthetic aperture radar systems Synthetic aperture radars, IRE Transactions Military Electronics IEEE Transactions on Aerospace and Electronic Systems, vol.21, issue.3, pp.440-443, 1985.

S. R. Doctor, T. E. Hall, and L. D. Reid, SAFT ??? the evolution of a signal processing technology for ultrasonic testing, NDT International, vol.19, issue.3, pp.163-167, 1986.
DOI : 10.1016/0308-9126(86)90105-7

K. Mayer, R. Marklein, K. Langenberg, and T. Kreutter, Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique, Ultrasonics, vol.28, issue.4, pp.241-255, 1990.
DOI : 10.1016/0041-624X(90)90091-2

A. W. Elbern and L. Guimaraes, Synthetic aperture focusing technique for image restauration, NDT.net, vol.5, issue.8, 2000.

S. Nikolov, Synthetic aperture tissue and flow ultrasonic imaging, 2001.

A. Bulavinov, M. Kröning, K. Reddy, J. Gabriel, and H. Ribeiro, Real-time quantitative ultrasonic inspection, IV Conferencia Panamericana de END, 2007.

L. V. Bernus, A. Bulavinov, D. Joneit, M. Kröning, M. Dalichov et al., Sampling phased array ? a new technique for signal processing and ultrasonic imaging, Proceedings of the 9th European Conf. Non-Destructive Testing (ECNDT), 2006.
DOI : 10.1784/insi.2006.48.9.545

P. Fellinger, R. Marklein, K. J. Langenberg, and S. Klaholz, Numerical modeling of elastic wave propagation and scattering with EFIT ??? elastodynamic finite integration technique, Wave Motion, vol.21, issue.1, pp.47-66, 1995.
DOI : 10.1016/0165-2125(94)00040-C

M. Kröning, A. Bulavinov, and K. Reddy, Verfahren zur zerstörungsfreien untersuchung eines wenigstens akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers Deutsche Patentanmeldung Nr, 2006.

S. V. Ramanan, A. Bulavinov, S. Pudovikov, C. Boller, and T. Wenzel, Quantitative non-destructive evaluation of cfrp components by sampling phased array, Proceedings of the International Symposium on NDT in Aerospace, 2010.

O. N. Tech, Inspection of composite radii Retrived: Octobre 2012 Application Notes, http://www.olympus-ims.com/en, Date of access, 2012.

P. Balaguru, P. N. Balaguru, A. Nanni, and J. Giancaspro, Frp composites for reinforced and prestressed concrete structures: A guide to fundamentals and design for repair and retrofit Publisher: Tayler and Francis Group, 2009.

M. K. Feldman, S. Katyal, and M. S. Blackwood, US Artifacts, RadioGraphics, vol.29, issue.4, pp.1179-1189, 2009.
DOI : 10.1148/rg.294085199

J. Huang, J. K. Triedman, N. V. Vasilyev, Y. Suematsu, R. O. Cleveland et al., Imaging Artifacts of Medical Instruments in Ultrasound-Guided Interventions, Journal of Ultrasound in Medicine, vol.26, issue.10, pp.1303-1322, 2007.
DOI : 10.7863/jum.2007.26.10.1303

F. W. Kremkau and K. J. Taylor, Artifacts in ultrasound imaging., Journal of Ultrasound in Medicine, vol.5, issue.4, pp.227-237, 1986.
DOI : 10.7863/jum.1986.5.4.227

S. H. Contreras-ortiz, T. Chiu, and M. D. Fox, Ultrasound image enhancement: A review, Biomedical Signal Processing and Control, vol.7, issue.5, 2012.
DOI : 10.1016/j.bspc.2012.02.002

F. Laing and A. Kurtz, The importance of ultrasonic side-lobe artifacts., Radiology, vol.145, issue.3, pp.763-768, 1982.
DOI : 10.1148/radiology.145.3.7146410

J. A. Noble, Ultrasound image segmentation and tissue characterization, Proc. IMechE, pp.307-316, 2009.
DOI : 10.1243/09544119JEIM604

J. A. Noble and D. Boukerroui, Ultrasound image segmentation: a survey, IEEE Transactions on Medical Imaging, vol.25, issue.8, pp.987-1010, 2006.
DOI : 10.1109/TMI.2006.877092

URL : https://hal.archives-ouvertes.fr/hal-00338658

F. Destrempes, J. Meunier, M. F. Giroux, G. Soulez, and G. Cloutier, Segmentation in Ultrasonic <emphasis emphasistype="italic">B</emphasis>-Mode Images of Healthy Carotid Arteries Using Mixtures of Nakagami Distributions and Stochastic Optimization, IEEE Transactions on Medical Imaging, vol.28, issue.2, pp.215-229, 2009.
DOI : 10.1109/TMI.2008.929098

Z. Tao, H. D. Tagare, and J. D. Beaty, Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images, IEEE Trans

C. Kotropoulos and I. Pitas, Segmentation of ultrasonic images using Support Vector Machines, Pattern Recognition Letters, vol.24, issue.4-5, pp.715-727, 2009.
DOI : 10.1016/S0167-8655(02)00177-0

J. Huang and X. Yang, A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation, Inverse Problems and Imaging, vol.5, issue.3, pp.645-657, 2011.
DOI : 10.3934/ipi.2011.5.645

A. Sarti, C. Corsi, E. Mazzini, and C. Lamberti, Maximum likelihood segmentation of ultrasound images with Rayleigh distribution, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.52, issue.6, pp.329-332, 2004.
DOI : 10.1109/TUFFC.2005.1504017

M. R. Cardinal, J. Meunier, G. Soulez, R. L. Maurice, E. Therasse et al., Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions, IEEE Transactions on Medical Imaging, vol.25, issue.5, pp.590-601, 2006.
DOI : 10.1109/TMI.2006.872142

W. Zhang, C. Li, J. A. Noble, M. M. Brady56-]-c, H. S. Chen et al., Spatio-temporal segmentation of left ventricle in real-time 3d echocardiographic images using phase information A textural approach based on gabor functions for texture edge detection in ultrasound images, Ultrasound Med. Biol, vol.27, issue.4, pp.515-534, 2001.

D. Shen, Y. Zhan, and C. Davatzikos, Segmentation of prostate boundaries from ultrasound images using statistical shape model, IEEE Transactions on Medical Imaging, vol.22, issue.4, pp.539-551, 2003.
DOI : 10.1109/TMI.2003.809057

J. Shan, H. D. Cheng, and Y. Wang, Completely Automated Segmentation Approach for Breast Ultrasound Images Using Multiple-Domain Features, Ultrasound in Medicine & Biology, vol.38, issue.2, pp.262-275, 2012.
DOI : 10.1016/j.ultrasmedbio.2011.10.022

D. Shen, Z. Lao, J. Zeng, W. Zhang, I. A. Sesterhenn et al., Optimized prostate biopsy via a statistical atlas of cancer spatial distribution, Medical Image Analysis, vol.8, issue.2, pp.139-150, 2004.
DOI : 10.1016/j.media.2003.11.002

L. X. Gong, S. D. Pathak, D. R. Haynor, P. S. Cho, and Y. Kim, Parametric Shape Modeling Using Deformable Superellipses for Prostate Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.3, pp.340-349, 2004.
DOI : 10.1109/TMI.2004.824237

J. Xie, Y. Jiang, and H. Tsui, Segmentation of kidney from ultrasound images based on texture and shape priors, IEEE Trans. on Medical Imaging, vol.24, issue.1, pp.45-57, 2005.

P. Yan, S. Xu, B. Turkbey, and J. Kruecker, Discrete deformable model guided by partial active shape model for trus image segmentation, IEEE Trans. Biomed. Eng, vol.57, issue.5, pp.1158-1166, 2010.

P. Yan, S. Xu, B. Turkbey, and J. Kruecker, Adaptively learning local shape statistics for prostate segmentation in ultrasound, IEEE Trans. Biomed. Eng, vol.58, issue.3, pp.633-641, 2011.

E. C. Kyriacou, C. Pattichis, M. Pattichis, C. Loizou, C. Christodoulou et al., A Review of Noninvasive Ultrasound Image Processing Methods in the Analysis of Carotid Plaque Morphology for the Assessment of Stroke Risk, IEEE Transactions on Information Technology in Biomedicine, vol.14, issue.4, pp.1027-1038, 2010.
DOI : 10.1109/TITB.2010.2047649

E. Brusseau, C. De-korte, F. Mastik, J. Schaar, and A. Van-der-steen, Fully Automatic Luminal Contour Segmentation in Intracoronary Ultrasound Imaging??? A Statistical Approach, IEEE Transactions on Medical Imaging, vol.23, issue.5, pp.554-566, 2004.
DOI : 10.1109/TMI.2004.825602

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

B. Liu, H. D. Cheng, H. Huang, J. Jianhua, X. Tian et al., Probability density difference-based active contour for ultrasound image segmentation, Pattern Recognition, vol.43, issue.6, pp.2028-2042, 2010.
DOI : 10.1016/j.patcog.2010.01.002

E. Kollorz, D. Hahn, R. Linke, T. Goecke, J. Hornegger et al., Quantification of Thyroid Volume Using 3-D Ultrasound Imaging, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.457-466, 2008.
DOI : 10.1109/TMI.2007.907328

R. Y. Wu, K. V. Ling, and W. Ng, Automatic prostate boundary recognition in sonographic images using feature model and genetic algorithm., Journal of Ultrasound in Medicine, vol.19, issue.11, pp.771-782, 2000.
DOI : 10.7863/jum.2000.19.11.771

D. R. Chen, R. F. Chang, W. J. Kuo, M. C. Chen, and Y. L. Huang, Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks, Ultrasound in Medicine & Biology, vol.28, issue.10, pp.1301-1310, 2002.
DOI : 10.1016/S0301-5629(02)00620-8

O. Pujol, M. Rosales, P. Radeva, and E. Nofrerias-fernandez, Intravascular Ultrasound Images Vessel Characterization Using AdaBoost, Proc. Functional imaging and modelling of the heart, pp.242-251
DOI : 10.1007/3-540-44883-7_25

M. Yaqub, P. Mahon, M. K. Javaid, C. Cooper, and J. A. Noble, Weighted voting in 3d random forest segmentation, Proc. Medical Image Understanding and Analysis, pp.261-266, 2010.

L. Breiman, Random forests, Machine Learning, pp.5-32, 2001.

V. Matz, M. Kreidl, and R. Smid, Classification of ultrasonic signals, Proceedings of the 8th International Conference of the Slovenian Society for Non Destructive Testing, pp.27-33, 2005.
DOI : 10.1504/IJMPT.2006.011267

R. Otero, C. Correia, C. Ruiz, and J. Michinaux, Statistical characterization from ultrasonic signals using time-frequency representation, NDT.net, vol.8, issue.5, 2003.

C. Shitole, O. Zahran, and W. Nuaimy, Combining fuzzy logic and neural networks in classification of weld defects using ultrasonic time-of-flight diffraction, Insight - Non-Destructive Testing and Condition Monitoring, vol.49, issue.2, 2006.
DOI : 10.1784/insi.2007.49.2.79

O. Zahran and W. Nuaimy, Automatic classification of defects in time-of-flight diffraction data, 2004.

C. Correia, R. Otero, and G. Sulbaran, Classification of real flaws using ultrasonic signals, 2007.

R. Polikar, S. Satish, and T. Taylor, Frequency invariant classification of ultrasonic weld inspection signals, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.45, issue.3, pp.614-625, 1998.
DOI : 10.1109/58.677606

J. Spanner, L. Udpa, R. Polikar, and P. Ramuhalli, Neural networks for ultrasonic detection of intergranular stress corrosion cracking Application of statistical pattern recognizing classifiers in identifying defects in frp composites, Proc. National Seminar on Non Destructive Evaluation, 2000.

H. Kieckhoefer, J. Baan, A. Mast, and W. F. Volker, Image processing techniques for ultrasonic inspection, Proc. 17th World Conference on Nondestructive Testing, 2008.

I. Cornwell and A. Mcnab, Towards automated interpretation of ultrasonic NDT data, NDT & E International, vol.32, issue.2, pp.101-107, 1999.
DOI : 10.1016/S0963-8695(98)00016-4

K. Y. Leung, M. Stralen, G. Van-burken, N. D. Van-jong, and J. G. Bosch, Automatic active appearance model segmentation of 3D echocardiograms, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.320-323, 2010.
DOI : 10.1109/ISBI.2010.5490344

A. Nemes, K. Y. Leung, G. Burken, M. Van-stralen, J. Van-bosch et al., Side-by-Side Viewing of Anatomically Aligned Left Ventricular Segments in Three-Dimensional Stress Echocardiography, Echocardiography, vol.12, issue.2, pp.189-195, 2009.
DOI : 10.1111/j.1540-8175.2008.00796.x

J. Hansegard, S. Urheim, K. Lunde, S. Malm, and S. Rabben, Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography, Cardiovascular Ultrasound, vol.48, issue.3, p.18, 2009.
DOI : 10.1080/02841850601182154

T. Eltoft, Modeling the amplitude statistics of ultrasonic images, IEEE Transactions on Medical Imaging, vol.25, issue.2, pp.229-240, 2006.
DOI : 10.1109/TMI.2005.862664

M. Duan, F. Xie, X. Wang, Y. Li, L. He et al., Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging, Cardiovascular Ultrasound, vol.11, issue.5, 2012.
DOI : 10.1093/ejechocard/jep226

J. Crosby, B. H. Amundsen, T. Hergum, R. E. , S. Langeland et al., 3-D Speckle Tracking for Assessment of Regional Left Ventricular Function, Ultrasound in Medicine & Biology, vol.35, issue.3, pp.458-471, 2009.
DOI : 10.1016/j.ultrasmedbio.2008.09.011

J. A. Noble, N. Navab, and H. Becher, Ultrasonic image analysis and imageguided interventions, Interface Focus, 2011.

P. E. Duda, R. O. , and D. G. Stork, Pattern classification, 2001.

T. Yamaguchi, S. Zenbutsu, Y. Igarashi, N. Kamiyama, J. Mamou et al., Echo envelope analysis method for quantifying heterogeneity of scatterer distribution for tissue characterization of liver fibrosis, 2010 IEEE International Ultrasonics Symposium, pp.1412-1415, 2010.
DOI : 10.1109/ULTSYM.2010.5935634

P. M. Shankar, Ultrasonic tissue characterization using a generalized Nakagami model, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.48, issue.6, pp.1716-1720, 2001.
DOI : 10.1109/58.971725

S. B. Serpico, L. Bruzzone, and F. Roli, An experimental comparison of neural and statistical nonparametric algorithms for supervised classification of remote sensing images, Pattern Recognition Letters, Special Issue on Non-conventional Pattern Analysis in Remote Sensing, vol.17, issue.13, pp.1331-1341, 1996.

C. Burckhardt, Speckle in ultrasound B-mode scans, IEEE Transactions on Sonics and Ultrasonics, vol.25, issue.1, pp.1-6, 1978.
DOI : 10.1109/T-SU.1978.30978

P. M. Shankar, A general statistical model for ultrasonic backscattering from tissues, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.47, issue.3, pp.727-736, 2000.
DOI : 10.1109/58.842062

G. Moser, J. Zerubia, and S. B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model, IEEE Transactions on Image Processing, vol.15, issue.6, pp.1429-1442, 2006.
DOI : 10.1109/TIP.2006.871124

URL : https://hal.archives-ouvertes.fr/inria-00071430

B. J. Oosterveld, J. M. Thijssen, and W. A. Verhoef, Texture of B-Mode Echograms: 3-D Simulations and Experiments of the Effects of Diffraction and Scatterer Density, Ultrasonic Imaging, vol.8, issue.2, pp.142-160, 1985.
DOI : 10.1177/016173468500700204

C. J. Oliver and S. Quegan, Understanding synthetic aperture images, 1998.

J. W. Goodman, Some fundamental properties of speckle*, Journal of the Optical Society of America, vol.66, issue.11, pp.1145-1150, 1976.
DOI : 10.1364/JOSA.66.001145

E. E. Kuruoglu and J. Zerubia, Modeling SAR Images With a Generalization of the Rayleigh Distribution, IEEE Transactions on Image Processing, vol.13, issue.4, pp.527-533, 2004.
DOI : 10.1109/TIP.2003.818017

V. Dutt and J. Greenleaf, Statistics of the log???compressed echo envelope, The Journal of the Acoustical Society of America, vol.99, issue.6, pp.3817-3825, 1996.
DOI : 10.1121/1.414999

A. Papoulis, A. probability, random variables, and stochastic processed, 1991.

P. M. Shankar, V. A. Dumane, and G. T. , Classification of breast masses in ultrasonic B scans using Nakagami and K distributions, Physics in Medicine and Biology, vol.48, issue.14, pp.2229-2240, 1993.
DOI : 10.1088/0031-9155/48/14/313

J. W. Goodman, Laser speckle and related phenomenon, 1975.

J. M. Thijssen, Ultrasonic speckle formation, analysis and processing applied to tissue characterization, Pattern Recognition Letters, vol.24, issue.4-5, pp.659-675, 2003.
DOI : 10.1016/S0167-8655(02)00173-3

D. Nicholas, Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements, Ultrasound in Medicine & Biology, vol.8, issue.1, pp.17-28, 1982.
DOI : 10.1016/0301-5629(82)90065-5

E. Jakeman and R. J. Tough, Generalized K distribution: a statistical model for weak scattering, Journal of the Optical Society of America A, vol.4, issue.9, pp.1764-1772, 1987.
DOI : 10.1364/JOSAA.4.001764

V. and J. Greenleaf, Ultrasound echo envelope analysis using homodyned k distribution signal model, Ultrason Imaging, vol.16, issue.4, pp.265-87, 1994.

T. Eltoft, A new model for the amplitude statistics of SAR imagery, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 1993.
DOI : 10.1109/IGARSS.2003.1294317

V. Anastassopoulos, G. A. Lampropoulos, A. Drosopoulos, and M. Rey, High resolution radar clutter statistics, IEEE Transactions on Aerospace and Electronic Systems, vol.35, issue.1, pp.43-59, 1999.
DOI : 10.1109/7.745679

URL : http://dspace.lib.ntua.gr/handle/123456789/25388

E. W. Stacy, A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1187-1192, 1962.
DOI : 10.1214/aoms/1177704481

E. W. Stacy and G. A. Mihram, Parameter Estimation for a Generalized Gamma Distribution, Technometrics, vol.33, issue.3, pp.349-358, 1965.
DOI : 10.1080/00401706.1965.10490268

R. D. Pierce, RCS characterization using the alpha-stable distribution, Proceedings of the 1996 IEEE National Radar Conference, pp.394-419, 1996.
DOI : 10.1109/NRC.1996.510673

E. E. Kuruoglu, Density parameter estimation of skewed ??-stable distributions, IEEE Transactions on Signal Processing, vol.49, issue.10, pp.2192-2201, 2001.
DOI : 10.1109/78.950775

E. E. Kuruoglu and J. Zerubia, Skewed ??-stable distributions for modelling textures, Pattern Recognition Letters, vol.24, issue.1-3, pp.339-348, 2003.
DOI : 10.1016/S0167-8655(02)00247-7

R. Kappor, UWB radar detection of targets in foliage using alpha-stable clutter models, IEEE Transactions on Aerospace and Electronic Systems, vol.35, issue.3, pp.819-833, 1999.
DOI : 10.1109/7.784054

A. Banerjee, P. Burlina, and R. Chellappa, Adaptive target detection in foliage-penetrating SAR images using alpha-stable models, IEEE Transactions on Image Processing, vol.8, issue.12, pp.1823-1831, 1999.
DOI : 10.1109/83.806628

G. Vegas-sanchez-ferrero, D. Martín-martinéz, S. Aja-fernández, and C. Palencia, On the influence of interpolation on probabilistic models for ultrasound images, International Symposium on Biomedical Imaging: From Nano to Macro, pp.292-295, 2010.

I. B. Ayed, A. Mitchie, and Z. Belhadj, Multiregion level-set partitioning of synthetic aperture radar images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.5, pp.793-800, 2005.
DOI : 10.1109/TPAMI.2005.106

C. J. Oliver, Optimum texture estimators for SAR clutter, Journal of Physics D: Applied Physics, vol.26, issue.11, pp.1824-1835, 1993.
DOI : 10.1088/0022-3727/26/11/002

C. Tison, J. M. Nicolas, F. Tupin, and H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.10, pp.2046-2057, 2004.
DOI : 10.1109/TGRS.2004.834630

URL : https://hal.archives-ouvertes.fr/hal-00556167

W. Szajnowski, Estimators of Log-Normal Distribution Parameters, IEEE Transactions on Aerospace and Electronic Systems, vol.13, issue.5, pp.533-536, 1977.
DOI : 10.1109/TAES.1977.308418

S. George, The detection of non fluctuating targets in log-normal clutter, NRL Report, vol.6796, 1968.

Y. Zimmer, R. Tepper, and S. Akselrod, A lognormal approximation for the gray level statistics in ultrasound images, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143), pp.2656-2661, 2000.
DOI : 10.1109/IEMBS.2000.901405

G. Xiao, M. Brady, J. A. Noble, and Y. Zhang, Segmentation of ultrasound B-mode images with intensity inhomogeneity correction, IEEE Transactions on Medical Imaging, vol.21, issue.1, pp.48-57, 2002.
DOI : 10.1109/42.981233

R. B. Agostino and M. A. Stephens, Goodness-of-fit techniques, 1986.

O. Michailovich and D. Adam, Robust estimation of ultrasound pulses using outlier-resistant de-noising, IEEE Transactions on Medical Imaging, vol.22, issue.3, pp.368-392, 2003.
DOI : 10.1109/TMI.2003.809603

H. C. Li, W. Hong, Y. R. Wu, and P. Z. Fan, On the empirical-statistical modeling of sar images with generalized gamma distribution, IEEE Journal of selected topics in signal processing, vol.5, issue.3, pp.386-397, 2011.

C. Tison, J. Nicolas, and F. Tupin, Accuracy of fisher distributions and logmoment estimation to describe histograms of high-resolution sar images over urban areas, Proceedings of IGARSS, 1999.

C. J. Oliver, I. Mcconnell, and R. G. White, Optimum edge detection in SAR, IEE Proceedings Radar, Sonar and Navigation, pp.31-40, 1996.
DOI : 10.1049/ip-rsn:19960219

O. Germain and P. Réfrégier, Edge location in SAR images: performance of the likelihood ratio filter and accuracy improvement with an active contour approach, IEEE Transactions on Image Processing, vol.10, issue.1, pp.72-77, 2001.
DOI : 10.1109/83.892444

F. Galland, N. Bertaux, and P. Réfrégier, Minimum description length synthetic aperture radar image segmentation, IEEE Transactions on Image Processing, vol.12, issue.9, pp.995-1006, 2003.
DOI : 10.1109/TIP.2003.816005

URL : https://hal.archives-ouvertes.fr/hal-00079440

G. Slabaugh, U. Gozde, T. Rang, and M. Wels, Ultrasound-specificsegmentation via decorrelation and statistical region-based active contours, Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.45-53, 2006.
DOI : 10.1109/cvpr.2006.318

URL : http://openaccess.city.ac.uk/6079/1/Ultrasound%20specific.pdf

K. Kokkinakis and A. K. Nandi, Generalized gamma density-based score functions for fast and flexible ICA, Signal Processing, vol.87, issue.5, pp.1156-1162, 2006.
DOI : 10.1016/j.sigpro.2006.09.012

V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation, IEEE Transactions on Image Processing, vol.22, issue.10
DOI : 10.1109/TIP.2013.2262285

URL : https://hal.archives-ouvertes.fr/inria-00605274

M. Technologies, Easyfit 5 Software available at http://www.mathwave. com/help/easyfit/index.html. Date of access, 2012.

B. I. Raju and M. A. Srinivasan, Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.49, issue.7, pp.871-882, 2002.
DOI : 10.1109/TUFFC.2002.1020157

M. M. Nillesen, R. G. Lopata, I. H. Gerrits, L. Kapusta, J. M. Thijssen et al., Modeling Envelope Statistics of Blood and Myocardium for Segmentation of Echocardiographic Images, Ultrasound in Medicine & Biology, vol.34, issue.4, pp.674-680, 2008.
DOI : 10.1016/j.ultrasmedbio.2007.10.008

A. K. Jain, Fundamental of digital image possessing, 1988.

X. Zong, A. F. Laine, and E. A. Geiser, Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing, IEEE Transactions on Medical Imaging, vol.17, issue.4, pp.532-540, 1998.
DOI : 10.1109/42.730398

C. Sheng, Y. Xin, Y. Liping, and S. Kun, Total Variation-Based Speckle Reduction Using Multi-grid Algorithm for Ultrasound Images, 2005.
DOI : 10.1007/11553595_30

X. Hao, S. Gao, and X. Gao, A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing, IEEE Trans. Med. Imag, vol.18, issue.9, pp.787-794, 1999.

K. Krissian, K. Vosburgh, R. Kikinis, and C. Westin, Speckle-Constrained Filtering of Ultrasound Images, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.547-552, 2005.
DOI : 10.1109/CVPR.2005.331

F. Argenti and G. Torricelli, Speckle Suppression in Ultrasonic Images Based on Undecimated Wavelets, EURASIP Journal on Advances in Signal Processing, vol.2003, issue.5, pp.470-478, 2003.
DOI : 10.1155/S1110865703211136

M. P. Wachowiak, A. S. Elmaghraby, R. Smolikova, and J. M. Zurada, Classification and estimation of ultrasound speckle noise with neural networks, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, pp.245-252, 2000.
DOI : 10.1109/BIBE.2000.889614

P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, Nonlocal Means-Based Speckle Filtering for Ultrasound Images, IEEE Transactions on Image Processing, vol.18, issue.10, pp.2221-2229, 2009.
DOI : 10.1109/TIP.2009.2024064

J. S. Lee, Digital Image Enhancement and Noise Filtering by Use of Local Statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.2, issue.2, pp.165-168, 1980.
DOI : 10.1109/TPAMI.1980.4766994

D. Kuan, A. Sawchuck, T. Strand, and P. Chavel, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell, vol.7, issue.2, pp.165-177, 1985.

V. Frost, J. Stiles, K. Shanmugan, and J. Holtzman, A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.4, issue.2
DOI : 10.1109/TPAMI.1982.4767223

T. Loupas, W. Mcdicken, and P. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images, IEEE Transactions on Circuits and Systems, vol.36, issue.1, pp.129-135, 1989.
DOI : 10.1109/31.16577

M. Karaman, M. A. Kutay, and G. Bozdagi, An adaptive speckle suppression filter for medical ultrasonic imaging, IEEE Transactions on Medical Imaging, vol.14, issue.2, pp.283-292, 1995.
DOI : 10.1109/42.387710

S. J. Heims, J. V. Neumann, and N. Wiener, From mathematics to the technologies of life and death, 1980.

Y. Yu and S. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. on Image Processing, vol.11, issue.11, pp.1260-1270, 2002.

C. Aja-fernandez and S. Lopez, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering, IEEE Transactions on Image Processing, vol.15, issue.9, pp.2694-2701, 2005.
DOI : 10.1109/TIP.2006.877360

K. Krissian, C. F. Westin, R. Kikinis, and K. Vosburgh, Oriented Speckle Reducing Anisotropic Diffusion, IEEE Transactions on Image Processing, vol.16, issue.5, 2007.
DOI : 10.1109/TIP.2007.891803

P. C. Tay, S. T. Acton, and J. A. Hossack, A Stochastic Approach to Ultrasound Despeckling, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.221-224, 2006.
DOI : 10.1109/ISBI.2006.1624892

K. Thangavel, R. Manavalan, and I. Aroquiaraj, Removal of speckle noise from ultrasound medical image based on special filters: comparative study, ICGST International Journal on Graphics, Vision and Image Processing, vol.9, issue.III, 2009.

A. Buades, B. Coll, and J. M. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

C. Kervrann and J. Boulanger, Unsupervised Patch-Based Image Regularization and Representation, Proc. Eur. Conf. Comp. Vis. (ECCV'06, pp.555-567, 2006.
DOI : 10.1007/11744085_43

M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, vol.12, issue.12, pp.839-842, 2005.
DOI : 10.1109/LSP.2005.859509

P. Coupé, P. Yger, and C. Barillot, Fast Non Local Means Denoising for 3D MR Images, Med Image Comput Comput Assist Interv, pp.33-40, 2006.
DOI : 10.1007/11866763_5

G. Gilboa and S. Osher, Nonlocal Linear Image Regularization and Supervised Segmentation, Multiscale Modeling & Simulation, vol.6, issue.2, pp.595-630, 2007.
DOI : 10.1137/060669358

F. Fontes, G. A. Barroso, and P. Hellier, Real time ultrasound image denoising, Author manuscript published in Journal of Real-Time Image Processing, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00476122

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

Y. Yue, M. M. Croitoru, A. Bidani, and J. B. Zwischenberger, Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images, IEEE Trans. on Medical Imaging, vol.25, issue.3, pp.297-311, 2006.

I. Daubechies, Ten lectures on wavelets, Philadelphia: SIAM, 1992.

S. Mallat, A wavelet tour of signal processing, 1998.

N. Gupta, M. N. Swamy, and E. Plotkin, Despeckling of medical ultrasound images using data and rate adaptive lossy compression, IEEE Transactions on Medical Imaging, vol.24, issue.6, pp.743-754, 2005.
DOI : 10.1109/TMI.2005.847401

C. P. Loizou, C. S. Pattichis, C. I. Christodoulou, R. S. Istepanian, M. Pantziaris et al., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.52, issue.10, pp.1653-1669, 2005.
DOI : 10.1109/TUFFC.2005.1561621

A. Campilho and M. Kamel, Image analysis and recognition, Proceedings of the 5th International Conference, pp.171-172, 2008.

R. N. Czerwinski, D. L. Jones, and W. D. O-'brien, Ultrasound speckle reduction by directional median filtering, Proceedings., International Conference on Image Processing, pp.358-361, 1995.
DOI : 10.1109/ICIP.1995.529720

N. H. Mahmood, M. R. Razif, and M. T. Gany, Comparison between median, unsharp and wiener filter and its effect on ultrasound stomach tissue image segmentation for pyloric stenosis, International Journal of Applied Science and Technology, vol.1, issue.5, pp.218-226, 2011.

N. Devillard, Fast median search: an ansi c implementation, 1998.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

L. P. Swiler, T. L. Paez, and M. R. , Epistemic Uncertainty in the Calculation of Margins, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009.
DOI : 10.2514/6.2009-2249

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, vol.100, issue.0, pp.9-34, 1999.
DOI : 10.1016/S0165-0114(99)80004-9

A. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.447-458, 1990.
DOI : 10.1109/34.55104

P. Smets, Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning, vol.9, issue.1, pp.1-35, 1993.
DOI : 10.1016/0888-613X(93)90005-X

P. Smets, The canonical decomposition of a weighted belief, proceedings of the 14th international joint conference on Artificial intelligence, pp.1896-1901, 1995.

Z. L. Cherfi, L. Oukhellou, E. Côme, T. Denoeux, and P. Akinin, Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis, Soft Computing, vol.41, issue.2, pp.741-754, 2012.
DOI : 10.1007/s00500-011-0766-4

URL : https://hal.archives-ouvertes.fr/hal-00688783

T. Denoeux, Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, Artificial Intelligence, vol.172, issue.2-3, pp.234-264, 2008.
DOI : 10.1016/j.artint.2007.05.008

A. Osman, V. Kaftandjian, and U. Hassler, Improvement of X-ray castings inspection reliability by using Dempster???Shafer data fusion theory, Pattern Recognition Letters, vol.32, issue.2, pp.160-180, 2011.
DOI : 10.1016/j.patrec.2010.10.004

URL : https://hal.archives-ouvertes.fr/hal-00878528

K. A. Spackman, SIGNAL DETECTION THEORY: VALUABLE TOOLS FOR EVALUATING INDUCTIVE LEARNING, Proc. Sixth Internat. Workshop on Machine Learning, pp.160-163, 1989.
DOI : 10.1016/B978-1-55860-036-2.50047-3

T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, vol.27, issue.8, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

A. Osman, V. Kaftandjian, and U. Hassler, Automatic classification of 3d segmented ct data using data fusion and support vector machine, Journal of Electronic Imaging of Spie, vol.21, issue.021111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00904876

T. Fuchs, U. Hassler, U. Huetten, and T. Wenzel, A new system for fully automatic inspection of digital flat-panel detector radiographs of aluminium castings, Proceedings of the 9th European Conf. Non-Destructive Testing (ECNDT), 2006.

A. Osman, Improvement of casting defects detection and classification reliability by using the dempster-shafer data fusion theory, 2008.

A. Osman, V. Kaftandjian, and U. Hassler, Application of data fusion theory and support vector machine to x-ray castings inspection, Proceedings of 10th European Conference on Non-Destructive Testing (ECNDT), pp.7-11, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00904791

A. Osman, V. Kaftandjian, and U. Hassler, Interest of data fusion for improvement of classification in x-ray inspection, Proceedings of International Symposium on Digital Industrial Radiology and Computed Tomography, pp.20-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00904886

A. Osman, V. Kaftandjian, U. Hassler, and J. Hornegger, An automated data processing method dedicated to 3D ultrasonic non destructive testing of composite pieces, International Symposium on Ultrasound in the Control of Industrial Processes, 2012.
DOI : 10.1088/1757-899X/42/1/012005

URL : https://hal.archives-ouvertes.fr/hal-00904901

P. Smets, Belief functions: the disjunctive rule of combination and the generalized bayesian theorem, Classic Works of the Dempster-Shafer Theory of Belief Functions, pp.633-664, 2005.

N. Cristianini and J. Shawe-taylor, An introduction to support vector machines and other kernel-based learning methods, pp.0-521, 2000.
DOI : 10.1017/CBO9780511801389

H. Niemann, Klassifikation von mustern, p.3540126422, 1983.
DOI : 10.1007/978-3-642-47517-7

C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-27, 2011.
DOI : 10.1145/1961189.1961199

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, pp.29-36, 1982.
DOI : 10.1148/radiology.143.1.7063747