Automated evaluation of three dimensional ultrasonic datasets

Résumé : Le contrôle non destructif est devenu nécessaire pour assurer la qualité des matériaux et des composants soit en service ou à l'étape de la production. Ceci nécessite l'utilisation d'une technique d’inspection rapide, robuste et fiable. En tant que technique de contrôle principale, la technologie des ultrasons a des capacités uniques pour évaluer la position, la taille et la forme des discontinuités. Ces informations ont un rôle essentiel dans les critères d'acceptation qui sont fondés sur la sécurité et les exigences de qualité des composants fabriqués. Par conséquent, un usage intensif de la technique des ultrasons apparaît notamment dans l'inspection des composites fabriqués à grande échelle dans l'industrie aérospatiale. D'importants progrès techniques ont contribué à l'optimisation des techniques d'acquisition par ultrasons telles que la technique de "Sampling Phased Array". Cependant, les systèmes d'acquisition doivent être complétés par une procédure d'analyse automatisée de données afin d'éviter l'interprétation manuelle fastidieuse de toutes les données produites. Un tel complément permet d'accélérer le processus d'inspection et d'améliorer sa fiabilité. L'objectif de cette thèse est de proposer une chaîne d’analyse dédiée au traitement automatique des volumes échographiques 3D obtenus en utilisant la technique Sampling Phased Array. Tout d'abord, une étude détaillée du bruit de speckle affectant les données échographiques a été effectuée, puisque ce type de bruit réduit la qualité des données échographiques. Ensuite, une chaîne d’analyse complète a été développée, constituée d'une procédure de segmentation suivie d'un processus de classification. La méthodologie de segmentation proposée est adaptée aux données ultrasonores 3D et a pour objectif de détecter tous les défauts potentiels à l'intérieur du volume d'entrée 3D. La procédure de segmentation étant en priorité dédiée à la détection des défauts qui est vitale, une difficulté principale est le taux élevé de fausses alarmes qui peuvent être détectées également. La classification correcte des fausses alarmes est nécessaire afin de réduire le taux de rejet des pièces saines. Cela doit être fait sans risquer la perte des vrais défauts. Par conséquent, la segmentation doit être suivie d'un processus de classification efficace qui doit distinguer les défauts réels des fausses alarmes. Ceci a été réalisé en utilisant une approche de classification spécifique basée sur une approche de fusion de données. La chaîne complète d'analyse a été testée sur plusieurs mesures ultrasonores volumiques de composites plastiques à renfort fibre de carbone. Les résultats expérimentaux de la chaîne ont révélé une grande précision ainsi qu'une très bonne fiabilité de détection, de caractérisation et de classification des défauts avec un taux très faible de fausses alarmes.
Type de document :
Thèse
Other. INSA de Lyon, 2013. English. 〈NNT : 2013ISAL0037〉
Liste complète des métadonnées

Littérature citée [198 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00995119
Contributeur : Abes Star <>
Soumis le : jeudi 22 mai 2014 - 17:13:39
Dernière modification le : mardi 27 mars 2018 - 04:28:19
Document(s) archivé(s) le : vendredi 22 août 2014 - 13:25:10

Fichier

these.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00995119, version 1

Collections

Citation

Ahmad Osman. Automated evaluation of three dimensional ultrasonic datasets. Other. INSA de Lyon, 2013. English. 〈NNT : 2013ISAL0037〉. 〈tel-00995119〉

Partager

Métriques

Consultations de la notice

692

Téléchargements de fichiers

900