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Chapter 1

Introduction

Graph theory is an important field of mathematics and computer science. Originally,

it started in 1735 with the problem of the Seven Bridges of Königsberg. The city

of Königsberg in Prussia (modern Kaliningrad, Russia) was set on both sides of the

Pregel River, and included two islands connected to each other and the mainland

by seven bridges. The problem was to find a continuous tour through the city that

would cross each bridge exactly once, ending up at the point from which it began.

The Swiss mathematician, Leonard Euler, demonstrated that no such tour was pos-

sible. This result is often referred to as the first theorem in graph theory [Eul41].

Graphs are useful mathematical tools for modeling the relationships among objects,

which are represented by vertices. In their turn, relationships between vertices are

represented by edges. In this context, graph theory received considerable atten-

tion, not only from the mathematical community, but also from the whole scientific

community. Over the years, there have been a large number of significant and au-

thoritative publications in biochemistry, computer science, genetics or in sociology

where there is an interesting connection with graph theory.

These problems are most often modeled by finding an optimal structure in a

graph, generally a structure that must satisfy some constraints. For example, some

problems can be modeled by finding a maximum matching (i.e., a largest set of

edges without common vertices), a maximum stable set (i.e., a largest set of ver-

tices such that no two of them are linked by an edge), or a minimum coloring (i.e.,
a minimum-cardinality partition of the vertices of a graph into stable sets).

Some problems can be solved efficiently, i.e., with a polynomial-time algorithm

(an algorithm is polynomial if its running time is bounded by a polynomial func-

tion according to the number and size of the inputs). For example, the problem of

computing a maximum matching can be solved using very efficient polynomial-time

algorithms. Unfortunately, many graph problems are hard in the sense that there

is (probably) no polynomial algorithm which solves these problems. More formally,

these problems are proved to be NP-hard (this is the case for minimum coloring and

maximum stable set problem). Another class of problems concerns those that have

not been classified yet as either polynomial or NP-hard. Isomorphism between two

graphs is one of the very few natural problems in this class. We say that two graphs

are isomorphic if there exists a permutation of the vertices that makes both graphs

identical.
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Recently, graph theoretical concepts were widely used to study and model various

computer applications such as image segmentation, information retrieval, network-

ing, clustering, etc. For example in XML information retrieval, XML document

and query data can be represented by a graph model, and hence, retrieving XML

documents can be considered as a graph matching problem between the query tree

and the document trees (i.e., document/query isomorphism).

The three major problems considered in this thesis are the graph coloring prob-
lem, the graph packing problem and the tree pattern matching. The common point

between these three problems is that they deal with labeled graphs. We thus di-

vided the thesis into three main parts, each containing two chapters, numbered from

3 to 8, where Chapter two is devoted to some basic graph theory concepts and

preliminary definitions, that are needed for the understanding of the results exposed

in this document.

Part 1: Graph coloring problem

Born with the famous Four Color Problem in 1852, the field of graph coloring has

become one of the most popular areas of graph theory. Graph coloring problems

come in many varieties but in general they consist in partitioning the objects (ver-

tices, edges, faces, etc.) of a graph into different classes so that given constraints are

satisfied. In its basic form, graph coloring is a way of coloring the vertices of a given

graph such that adjacent vertices get different colors; this is called the proper vertex
coloring problem. Similarly, a proper edge coloring problem assigns a color to each

edge so that every two adjacent edges receive different colors. About forty years ago,

many researchers considered the problem of assigning colors to the edges of a graph

G such that any two vertices of G are uniquely identified either by sets, multisets

or sums of their incident colors. The literature about these variants is reviewed in

Chapter three. Chapter four is intended to define a new graph coloring param-

eter called the gap vertex distinguishing edge coloring number, that combines many

features of the previously introduced methods. It consists in an edge-coloring of

a graph G which induces a vertex distinguishing labeling of G such that the label

of each vertex is given by the difference between the highest and the lowest colors

of its adjacent edges. In particular, we will study this problem for various families

of graphs and we will also show how this new parameter is strongly correlated to

the vertex distinguishing problem by sets and multisets. As a consequence, we will

provide bounds on these two problems.

Part 2: Graph packing problem

Graphs G1, G2, . . . , Gk (on n vertices each) pack, if there exists an edge disjoint

placement of them into the complete graph Kn. This problem is a classical one

in graph theory and has been extensively studied since the early 70’s. However,

the majority of existing works focuses on unlabeled graphs. In Chapter five, we
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introduce for the first time the packing problem for a vertex labeled graph. Roughly

speaking, it consists in a classical graph packing which preserves the labels of the

vertices. Then, we study the corresponding optimization parameter for k copies of

cycles. In Chapter six, we study the labeled packing of two copies of trees and of

all graphs of order n and size n− 2. As an application, we will show that this new

problem can be used to solve the matching problem between two labeled graphs.

Part 3: XML Tree Pattern Matching Problem

With the increasing number of available XML documents, numerous approaches for

retrieval have been proposed in the literature. They usually use the tree repre-

sentation of documents and queries to process them in an implicit or explicit way.

Although retrieving XML documents can be considered as a tree matching prob-

lem between the query tree and the document trees, we consider in this part the

matching problem from an exact point of view. In Chapter seven, we outline

and compare the various features of different tree pattern algorithms. Most of these

algorithms find twig pattern matching in two steps. In the first one, a query tree is

decomposed into a set of binary patterns or single paths and then search for matches

for these individual patterns/paths. Finally, these matches are stitched together to

form the answers to the twig query. In Chapter eight, we propose a novel holistic

twig join algorithm, called TwigStack++, which features two main improvements

in the decomposition and matching phase. The proposed solutions are shown to be

efficient and scalable, and should be helpful for the future research on efficient query

processing in a large XML database.

Finally, in chapter nine, we summarize the results presented in this thesis, and

we give some remarks and directions for further research.
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Chapter 2

Preliminaries

Contents

2.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Some graph operations . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Some families of graphs . . . . . . . . . . . . . . . . . . . . . . 7

We assume the reader is familiar with basic concepts of graph theory and the-

oretical computer science. We will thus give a short overview of the terminology

used in this thesis. More background information can be found in [CZ05], [Har69]

and [Wes96].

2.1 Basic notations

Graph: a graph G = (V (G), E(G)) consists of two finite sets: V (G), the vertex set
of G, which is a non-empty set of elements called vertices and E(G) ⊆ V (G)×V (G)

is called set of edges. The cardinality of the vertex set V (G) is called the order of G,

commonly denoted by |V (G)|. The cardinality of the edge set E(G) is the size of G,

denoted by |E(G)|. A graph of order n and size m is often called an (n,m)-graph.

Two distinct vertices u and v are adjacent (or neighbors) if there exists an edge

uv that connects them. An edge uv is said to be incident to the vertices u and v.

Two edges are adjacent if they are incident to a same vertex. A graph is simple if

there is at most one edge between every two vertices. In this document, unless it is

specified, the graphs which are considered will be finite simple graphs.

Degree and Neighborhood: the set of all neighbors of a vertex v in a graph G is

denoted by N(v). The number of neighbors of v is called the degree of v in G, de-

noted by d(v). If d(v) = 0, it means that v is not adjacent to any other vertex, then v

is called an isolated vertex. A vertex of degree one is called an endpoint or a pendant
vertex or a leaf. The minimum degree of a graph G is δ(G) = min{d(v) : v ∈ V (G)}

and the maximum degree of a graph G is denoted by△(G) = max{d(v) : v ∈ V (G)}.

Independent sets and Cliques: an independent set of G is a subset of vertices

U ⊆ V , such that no two vertices in U are adjacent. An independent set is said

to be maximal if no independent set properly contains it. An independent set of

maximum cardinality is called a maximum independent set. A clique in a graph G
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is a subset C of V (G) such that every two vertices in C are adjacent in G. The

clique number ω(G) is the order of a maximum clique of G.

Distance and Connectivity: a path in an undirected graph G is a sequence of

vertices (v1, v2, . . . , vk) such that each pair vi, vi+1 is an edge in E(G). A path is

called simple if all its vertices are distinct. A graph G is connected if there exists

a path between any two distinct vertices of G. Otherwise, the graph G is discon-

nected. The distance between two vertices u, v in G, denoted by dist(u, v), is the

minimum number of edges in a path connecting them. The diameter of G is the

maximum distance between any two vertices of G. A graph is k-edge-connected if

there are k edge-disjoint paths between each pair of vertices or, equivalently, no two

vertices can be separated by removing less than k edges.

Isomorphism of graphs: two graphs G and H are said to be isomorphic (written

G ∼= H) if there is a one-to-one correspondence between their vertex-sets which

preserves the adjacency of vertices. We provide an example in Figure 2.1.

u
4

u
2

u
3

u
1

u
5

(a)

v
4

v
2

v
3

v
1

v
5

(b)

Figure 2.1: Example of isomorphic graphs: f(u1) = v1, f(u2) = v3, f(u3) = v5,

f(u4) = v2 and f(u5) = v4.

Subgraphs: a graph H is a subgraph of G, written H ⊆ G, if every vertex of H is a

vertex of G and every edge of H is an edge of G. In other words, V (H) ⊆ V (G) and

E(H) ⊆ E(G). We say that a subgraph H is a spanning subgraph, or a factor, of G

if H contains all the vertices of G. Given V ′ ⊆ V , the subgraph G[V ′] = (V ′, E′)

denotes the subgraph of G induced by V ′, i.e., E′ contains all the edges of E which

have both endpoints in V ′.

2.2 Some graph operations

In the following definitions, we detail some well known graph operations.

Complement graph: if G is a simple graph with vertex set V (G), its complement

G is the simple graph with vertex set V (G) in which two vertices are adjacent if and

only if they are not adjacent in G. Figure 2.2 shows a graph and its complement.
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v

w x

y z

(a)

v

w x

y z

(b)

Figure 2.2: (a) G, (b) G.

Power of graph: the k-th power Gk of a graph G is the supergraph of G formed

by adding an edge between all pairs of vertices of G with distance at most k. The

second power of a graph is also called its square.

Vertex removal: if v is a vertex of the graph G = (V,E), then G − v is the sub-

graph of G induced by the vertex set V \ {v}.

Edge removal: similarly to the previous operation, if e is an edge of the graph

G = (V,E), then G − e is the graph (V,E′), where E′ is obtained by removing e

from E. Note that the endpoints of e are not removed from G.

Graph union: the union G = G1∪G2 of graphs G1 and G2 with disjoint vertex sets

V1 and V2 and edge sets E1 and E2 is the graph with V = V1∪V2 and E = E1∪E2.

This operation is sometimes also known explicitly as the graph disjoint union.

Cartesian product of graphs: the Cartesian product of two graphs G1 and G2,

denoted by G1�G2, is the simple graph with V (G1) × V (G2) as its vertex set and

two vertices (u1, v1) and (u2, v2) are adjacent in G1�G2 if and only if either u1 = u2
and v1, v2 are adjacent in G2, or u1, u2 are adjacent in G1 and v1 = v2.

2.3 Some families of graphs

We review in this section several classes of graphs that will be considered in this

document.

Path graph: a graph G is called path, denoted by Pn, if it is of the form:

V (P ) = {v0, v1, . . . , vn}, E(P ) = {v0v1, v1v2, . . . vn−1vn} (see Figure 2.3(a)).

Cycle graph: a graph G is called cycle, denoted by Cn, if it is of the form:

V (P ) = {v0, v1, . . . , vn}, E(P ) = {v0v1, v1v2, . . . vn−1vn, vnv1} (see Figure 2.3(b)).
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v1 v2 v3
vn-1 vn

(a)

v2

v3
vn-1

vn

v1

v i

v i+1

(b)

Figure 2.3: (a) Path graph, (b) Cycle graph.

Hamiltonian graph: a Hamilton cycle is a cycle containing every vertex of the

graph. A graph is Hamiltonian if it has an Hamilton cycle.

Complete graph: a complete graph is a graph in which every two distinct vertices

are joined by exactly one edge. The complete graph with n vertices is denoted by

Kn. In Figure 2.4, we give five examples of complete graphs.

(a) (b) (c) (d) (e)

Figure 2.4: Complete graphs (a) K1, (b) K2, (c) K3, (d) K4, (e) K5.

Planar graph: a graph is planar if it can be drawn in a plane without edge cross-

ing (i.e., edges intersect only at their common vertices). For example, the complete

graph K4 is a planar graph.

Tree: a tree is a connected graph which has no cycle. An example of tree is given

in Figure 2.5. A tree is called a rooted tree if one of its nodes is distinguished as

the root, in which case the edges have a natural orientation, towards or away from

the root. A vertex v in a rooted tree is a descendant of a vertex u if u lies on the

unique path from the root to v. The parent of a vertex v is the last vertex before v

in a path from the root to v. The depth of a vertex v in a rooted tree is the length

of the path from the root to v. Thus, the depth of the root is 0.

Star graph: the star graph Sn, is a tree with n vertices such that one vertex (called

the center) has degree n− 1 and the other n− 1 vertices have degree 1 (see Figure

2.6(a)).

Caterpillar: a caterpillar is a tree which becomes a path when all its endpoints

are removed, as shown in Figure 2.6(b).
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Figure 2.5: Tree.

(a) (b)

Figure 2.6: (a) Star graph, (b) Caterpillar.

Bipartite graph: a bipartite graph G = (V,E) is a graph whose vertex set V can be

divided into two disjoint subsets U and W , such that each edge of G has one endpoint

in U and one endpoint in W , as shown in Figure 2.7. Equivalently, a bipartite graph

is a graph that does not contain any odd-length cycle. The complete bipartite graph

on n and m vertices, denoted by Kn,m is the bipartite graph G = (U,W,E), where

U and W are disjoint sets of size n and m, respectively, and E connects every vertex

in V with every vertice in U . It follows that Kn,m has nm edges.

U

W

Figure 2.7: bipartite graph

Regular graph: a regular graph is a graph whose vertices all have equal degree.

A k-regular graph is a regular graph whose common degree is k. A cubic graph is a

3-regular graph.

d-degenerate graph: a d-degenerate graph is a graph in which every induced

subgraph has a vertex with degree at most d.
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There have been several studies using a variety of methods for the purpose

of uniquely identifying (or distinguishing) the vertices of a graph. Many of these

methods involve graph labelings or graph colorings. In several variants, certain edge

colorings have given rise to vertex-distinguishing labelings. These are often referred

to as vertex-distinguishing edge colorings, which is the subject of this chapter.

3.1 Introduction to graph coloring

Graph coloring is one of the oldest areas in graph theory. It is widely believed that

the graph coloring problem was born in 1852 when Guthrie asked whether it was

possible to color the countries of any geographical map with four or fewer colors,

so that every two countries sharing a common boundary are colored differently.

This is the famous Four Color Problem. The first proof of this problem was given

by Kempe in 1879 and accepted for more than ten years until Heawood in 1890

found a flaw in Kempe’s reasoning using a map with 18 countries. By a revision

of Kempe’s proof, Heawood was able to show that five colors are always sufficient.

Graph coloring has become a subject of great interest for researchers, mainly be-

cause of its diverse theoretical results and unsolved problems. Furthermore, graph
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colorings have been proved to be paramount in other domains of graph theory (for

instance in the study of connectivity, matchings, Hamilton cycles) and also in real

world applications in many engineering fields, including register allocation [CH90],

timetabling [Wer85], frequency assignment [Gam86], scheduling [Lei79] and commu-

nication networks [WSW02].

3.1.1 Vertex coloring problem

Graph coloring problems that received the most attention deal with the vertices of

a graph. A proper vertex coloring of a graph G is a mapping f : V (G) −→ N (where

N is the set of positive integers) such that f(u) 6= f(v) if u and v are adjacent in G.

If f(V ) has size at most k, then we refer to the coloring as a k-coloring. A subset of

vertices assigned with the same color is called a color class, every such class being

an independent set. Thus, a k-coloring is equivalent to a partition of V (G) into k

independent sets, and the terms k-partite and k-colorable have the same meaning.

The following figure illustrates an example of a proper vertex coloring with three

colors.

1

3
b

c

e

d g

f
1

1

2

2

3

V ={a,e,g}
1

V ={c,d}
2

V={b,f}
3

a

Figure 3.1: A graph with a proper 3-coloring

The chromatic number χ(G) of G is the minimum positive integer k for which

G has a k-coloring. Determining the chromatic number of a general graph G is

well-known to be a NP-hard problem [GJ79]. Consequently, much work has been

devoted to (1) determining bounds on the chromatic number of general graphs and

(2) determining the chromatic number of some families of graphs. It is quite easy to

see that for every graph G with maximum degree △(G), we have χ(G) ≤ △(G)+1.

However, Brooks has improved this bound as follows [Bro41].

Theorem 3.1 ([Bro41]) Let G be a connected graph. Then χ(G) ≤ △(G) unless
G is a complete graph or an odd cycle.

A rather obvious, but often useful, lower bound for the chromatic number of a

graph involves the chromatic numbers of its subgraphs.

Theorem 3.2 If H is a subgraph of a graph G, then χ(H) ≤ χ(G).
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The following result is an immediate consequence of the previous theorem.

Corollary 3.3 For every graph G, χ(G) ≥ ω(G).

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H).

In the early 1960’s, Berge observed [Ber60, Ber61] that several classical families of

graphs (e.g. bipartite graphs, trees, interval graphs, chordal graphs) are perfect.

In [L7́2], the author showed that a complement of a perfect graph is also perfect.

However, there are also many graphs whose chromatic number exceeds their clique

number such as the Petersen graph and the odd cycles of length 5 or more. In

[GLS84], Grötschel et al. showed that the chromatic number of a perfect graph can

be determined in polynomial time. This is important as perfect graphs have many

connections to other combinatorial problems.

In addition to vertex coloring problems, many other types of graph coloring

problems have been formulated in the literature. However, the significance of vertex

coloring problems is often emphasized since many of these new problems can be

reformulated in terms of vertex colorings, or strongly depend on the chromatic

number. For more details on those variants, we refer the reader to the book of de

Werra and Hertz [WH89].

3.1.2 Edge coloring problem

After vertex colorings, it makes sense to study edge colorings. In this problem we

are looking for the minimum number of colors necessary to be assigned to the edges

of a graph such that any two incident edges are colored with different colors. This

parameter is called the chromatic index and is denoted by χ′(G). In 1965, Vizing

[Viz65] proved the famous Vizing’s theorem.

Theorem 3.4 ([Viz64]) For every nonempty graph G,

△(G) ≤ χ′(G) ≤ △(G) + 1

In [Hol81], Holyer proved that it is NP-complete to decide whether χ′(G) = △(G) or

χ′(G) = △(G) + 1. The chromatic index has been determined for several classes of

graphs. Indeed, bipartite graphs satisfy χ′(G) = △(G), while for odd cycles, we have

χ′(G) = △(G) + 1. For planar graphs, Vizing proposed the following conjecture:

Conjecture 3.5 ([Viz65]) For every planar graph G with maximum degree△(G) =

6 or 7, we have
χ′(G) = △(G)

This conjecture has been confirmed in [SZ01, Zha00] for △(G) = 7. But the case

△(G) = 6 remains an open problem.

Various generalizations of edge-coloring have been introduced and investigated

in the literature. In the 1970’s, Hilton and de Werra obtained many results on

equitable and edge-balanced colorings in which each color appears uniformly in G
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[HW82, Wer74, Wer75]. In the 1980’s Hakimi and Kariv [HK86] proposed the

following f -coloring problem: let f be a function which assigns a positive integer

f(v) to each vertex v ∈ V (G), an f -coloring of a graph G is a proper edge coloring

of G such that for each vertex v ∈ V , at most f(v) edges incident to v are colored

with the same color. The minimum number of colors needed to f -color G is called

the f -chromatic index χ′
f (G) of G. Since the proper edge-coloring problem is NP-

complete, the f -coloring problem is also NP-complete in general. Various upper

bounds on χ′
f (G) have been provided in [HK86, NNS88, Sey90].

3.1.3 Total coloring problem

We now consider colorings that assign colors to both vertices and edges of a graph.

A total coloring of a graph G is an assignment of colors to the vertices and edges of

G such that distinct colors are assigned to (i) every two adjacent vertices, (ii) every

two adjacent edges, and (iii) every incident vertex and edge. The total chromatic

number χ′′(G) of a graph G is the least number of colors needed in any total coloring

of G. Immediately, we have that χ′′(G) ≥ △(G) + 1. Sánchez-Arroyo [SA89] shown

that deciding whether a given graph has χ′′(G) = △(G) + 2 is an NP-complete

problem. The total coloring conjecture proposed independently by Behzad [Beh65]

and Vizing [Viz65] claims that for every simple graph G, χ′′(G) ≤ △(G) + 2. This

conjecture has been verified for a few important classes of graphs such as all bipartite

graphs and most planar graphs except those with maximum degree 6.

3.2 Vertex-distinguishing edge coloring

A problem in graph theory that has received considerable attention in the literature

concerns methods to uniquely identify the vertices of a connected graph. One of

the most popular methods is due to Entringer and Gassman [EG74] and Sumner

[Sum73]. They characterized the graphs G such that every two non-adjacent vertices

of G have distinct open neighborhoods. Harary and Melter [HM76] introduced the

idea of selecting a subset A = {u1, u2, . . . , uk} and labeling each vertex of v of G

with the ordered k-tuple l(v) = (d1, d2, . . . , dk) called distance label of v, where

di = dist(v, ui) for 1 ≤ i ≤ k. In this case, the vertices of G are distinguishable if

distinct vertices of G have distinct distance labels. The symmetry breaking method

was introduced by Harary [Har96, Har01] and, independently, by Albertson and

Collins [AC96]. In this method, the distinction of the vertices of G is realized with

the aid of a certain automorphism of G.

In this thesis, we are interested in another distinguishing method that is related

to the graph coloring problem. Indeed, many researchers investigated the question

of finding an edge coloring inducing a vertex distinguishing labeling. This is of-

ten referred to as vertex-distinguishing edge coloring. This problem has received

increasing attention in the literature during the past forty years. To the best of our

knowledge, four main different functions have been proposed to label each vertex v
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of G according to the colors of its incident edges. A vertex labeling l induced by an

edge-coloring f is said to be:

1. vertex-labeling by sum if l(v) =
∑

v∋e f(e), ∀v ∈ V (see [CJL+88, BKT05]).

2. vertex-labeling by sets if l(v) =
⋃

v∋e f(e), ∀v ∈ V (see [BS97, CHS96, HP85]).

3. vertex-labeling by multiset if l(v) =
⊎

v∋e f(e), ∀v ∈ V (see [ATT92, Bur95,

CEOZ06]).

4. vertex-labeling by product if l(v) =
∏

v∋e f(e), ∀v ∈ V (see [Kaz12]).

The problem of vertex-distinguishing edge colorings offers many variants and re-

ceived a great interest during these last years. We refer the interested reader to

Chapter 13 of Chartrand and Zhang’s book [CZ08]. In the next section, we give

some results and open questions about this area of research.

3.2.1 Variations of the problem

Over the years, several vertex distinguishing edge coloring problems have been de-

fined. In many variants, some authors used the same terminology to describe differ-

ent concepts. In Table 3.1, we describe a summary of these variants depending on

whether:

1. the edge coloring is proper or not,

2. the vertex labeling is induced by sum; product; set or multiset (if the edge-

coloring is not proper),

3. the edge coloring must distinguish all vertices (global) or only adjacent vertices

(local).

Hence, we potentially obtain fourteen variants of vertex distinguishing edge col-

orings, among which ten were studied in the literature (to the best of our knowledge).

Each row of Table 3.1 presents a vertex-distinguishing variant, for example, the first

row means that Burris and Schelp [BS97] defined a strong edge coloring of G as

a proper edge coloring that induces a vertex-distinguishing labeling by sum. In

Figure 3.2, we provide a coloring scheme of C7 for each variant appearing in Table

3.1. Since the literature on these topics is very rich, we are not able to give an

exhaustive list of all the relevant references. In what follows, we only mention three

variants of vertex distinguishing colorings that will have a strong relation with our

coloring parameter introduced in the next chapter.

3.2.2 Strong edge coloring

Let χ′
s(G) denote the minimum number of colors required to have a proper edge

coloring of G that induces a vertex-distinguishing labeling by sets. This coloring

number was introduced and studied by Burris and Schelp in [Bur93, BS97], and
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Edge Labeling vertex Reference Example

coloring operation distingushing

Strong edge coloring proper set global [BS97] Fig 3.2(a)

Point-distinguishing edge coloring improper set global [HP85] Fig 3.2(b)

Adjacent strong edge coloring proper set local [ZLW02] Fig 3.2(c)

Neighbour-distinguishing coloring improper set local [GHPW08] Fig 3.2(d)

Detectable coloring improper multiset global [ATT92] Fig 3.2(e)

Vertex colouring edge partitions improper multiset local [AADR05] Fig 3.2(f)

Irregular weighting improper sum global [CJL+88] Fig 3.2(g)

Vertex-colouring edge-weighting improper sum local [KLT04] Fig 3.2(h)

Neighbor sum distinguishing edge colorings proper sum local [FMP+12] Fig 3.2(j)

Multiplicative vertex-colouring weightings improper product local [Kaz12] Fig 3.2(i)

Table 3.1: Summary of vertex distinguishing edge coloring of graphs

was independently called observability of a graph by Cerny et al [CHS96]. In their

original article on this topic, Burris and Schelp [BS97] gave values of χ′
s for some

families of graphs such as complete graphs, bipartite complete graphs, paths and

cycles. Let nd(G) be the number of vertices of degree d in G, it is clear that
(χ′

s(G)
d

)

≥ nd for all d with δ(G) ≤ d ≤ △(G). In [BS97], Burris and Schelp posed

the following conjecture.

Conjecture 3.6 ([BS97]) Let G be a graph with no isolated vertices or edges and
let k be the minimum integer such that

(

k
d

)

≥ nd for all d with δ(G) ≤ d ≤ △(G).
Then χ′

s(G) = k or k + 1.

This conjecture remains open in general and has only been determined for some

classes of regular graphs [RS08] and graphs with small components [BBS02].

The following result has been conjectured by Burris and Schelp [BS97] and

proved in [BBLW99].

Theorem 3.7 ([BBLW99]) A graph G with n vertices, without isolated edges and
with at most one isolated vertex satisfies χ′

s(G) ≤ n+ 1.

This upper bound is the best possible since it is achieved for the complete graph

Kn where n is even. For some families of graphs, the parameter χ′
s(G) is close to the

maximum degree than to the order of the graph as shown by the following theorem.
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Figure 3.2: Coloring scheme of C7 for each variant in Tabel 3.1.

Theorem 3.8 ([BBLW01]) Let G be a graph of order n ≥ 3 without isolated edges
and with at most one isolated vertex. If δ(G) > n

3 , then

χ′
s(G) ≤ △(G) + 5

There have been many bounds related to some specific families of graphs. In the

case of trees, Burris and Schelp have obtained the following upper bound: for any

tree T 6= K2, χ
′
s(T ) ≤ max{n1 + 1, 6.35n

1/2
2 , 21}. Recently, Jun-qiao and Yue-hua

[JY12] have found bounds on the vertex distinguishing chromatic index of 3-regular

Halin graphs and Halin graphs with △(G) ≥ 4, respectively.

3.2.3 Detectable edge coloring

Let c(G) (called also detection number) denote the minimum number of colors

required to have an edge coloring (not necessarily proper) of G that induces a
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vertex-distinguishing labeling by multisets. The following result has been stated

in [ATT92].

Theorem 3.9 ( [ATT92]) Let c be a k-coloring of the edges of a graph G. The
maximum number of different labels of the vertices of degree r in G is

(

r+k−1
r

)

.

In other words, this means the following:

Corollary 3.10 If c is a detectable k-coloring of a connected graph G of order at
least 3, then G contains at most

(

r+k−1
r

)

vertices.

Since vertices with distinct degrees in a connected graph always have distinct

labels, then, it seemed most challenging to study the graphs having many vertices

of the same degree. Indeed, the parameter c(G) of complete graphs and complete

bipartite graphs have been determined and detectable colorings of connected r-

regular graphs and trees have been studied as well (see [ATT92], [Bur94],[Bur95],

[CEOZ06]).

The detection number of cycles and paths have been determined in [CEOZ06]

and [EP05], respectively.

Theorem 3.11 ([CEOZ06]) Let n ≥ 3 be an integer and let l = ⌈
√

n
2 ⌉. Then

c(Cn) =

{

2l − 1 if 2(l − 1)2 + 1 ≤ n ≤ 2l2 − l

2l if 2l2 − l + 1 ≤ n ≤ 2l2

Theorem 3.12 ([EP05]) Let n ≥ 3 be an integer and let l = ⌈
√

n
2 ⌉. Then

c(Pn) =

{

2l if 2l2 − l + 1 ≤ n ≤ 2l2 + 3

2l + 1 if 2l2 + 4 ≤ n ≤ 2l2 + 3l + 2

The following result, stated in [CEOZ06], gives an upper bound for c(G) on a

connected graph.

Theorem 3.13 ([CEOZ06]) If G is a connected graph of order n ≥ 4, then c(G) ≤

n− 1.

This upper bound is obviously reached since there are many families of graphs

G with the property that c(G) = n− 1 such as K1,n for n ≥ 2, K3, K4, P3 and C4.

3.2.4 Point-distinguishing edge coloring

Let χ′
0(G) denote the minimum number of colors required to have an edge coloring

(not necessarily proper) of a graph G that induces a vertex distinguishing labeling

by sets. Harary and Plantholt [HP85] referred to this type of coloring as the point-
distinguishing edge coloring. They proved, among other things, the exact value of

χ′
0(Pn), χ

′
0(Cn), χ

′
0(Qn) and χ′

0(Kn) for n ≥ 3. For bipartite graphs it seems that

the problem of determining χ′
0(Km,n) is not easy (see [HS97, HS06, Sal90]).

Clearly we have c(G) ≤ χ′
0(G) ≤ χ′

s(G), and the following result follows from

Theorem 3.7.
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Theorem 3.14 A graph G with n vertices, without isolated edges and with at most
one isolated vertex satisfies χ′

0(G) ≤ n+ 1.

During the analysis of this problem we have observed that there is no connected

graph G of order n with χ′
0(G) = n+1. Thus, we propose the following conjecture.

Conjecture 3.15 For every connected graph G of order n ≥ 3, χ′
0(G) ≤ n.

If this conjecture is true, then the resulting theorem cannot be improved in

general (clearly χ′
0(Qn) = n). In the next chapter, we will prove that Conjecture

3.15 holds for several families of graphs.

3.2.5 Our observations

Derived from our study of the above literature, the following three observations can

be made.

1. If the problems of determining χ′
0(G), χ′

s(G) and c(G) are compared, their

complexity depends on the structure of G and none of them can be stated to

be more difficult than another one. For example, the exact value of χ0(Qn)

has been determined in [HP85], while χ′
s(Qn) is computed only for n ≤ 5. On

the other hand, χ′
s(Kn,n) = n + 2, while the exact value of χ0(Kn,n) is not

easy to get. In Table 3.2, we give a summary of some important results about

these three parameters.

2. The problem of vertex-distinguishing edge coloring has been the subject of a

renewed interest in recent years. Perhaps the only downside of this area is

the lack of applications. But do not despair, this type of coloring could be

simpler and still easier to use in some areas such as the identification of nodes

in networks, routing problem, etc.

3. Note that from the point of view of computational complexity, we know al-

most nothing about these problems (only the problem of proper coloring that

distinguishes adjacent vertices by sets is known to be NP-complete, even for

regular bipartite graphs).

In order to simplify the study of χ′
0(G), χ′

s(G) and c(G), we introduce the

following notation: given a set S of positive integers, we denote by diam(S) the

diameter of S, where diam(S) = max{x − y : x, y ∈ S}. It is clear that for

every two sets S1 and S2, if diam(S1) 6= diam(S2), then S1 6= S2. Hence, we can

conclude that the diameter of sets may help the vertex distinguishing property by

sets or multisets. Hence, we look to extend the vertex distinguishing edge coloring

problems by introducing the notion of diameter of sets, which is the subject of the

next chapter.
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Parameter Exact values Upper bounds

χ′
s(G) paths, cycles, complete graphs,

bipartite graphs, wheel graphs,

chordal graphs, union of paths

and union of cycles.

General graphs: χ′
s(G) ≤ n+1,

Some graph families: trees,

graphs with minimum degree

σ(G) > n
3 , graphs with σ ≥ 5

and △ < n(2c−1)−4
3 where c is

a constant with 1
2 < c ≤ 1, cu-

bic graphs, graphs contains both

paths and cycles.

c(G) paths, cycles, wheel graphs, com-

plete graphs, complete bipartite

graphs and union of paths

General graphs: c(G) ≤ n −

1, Some graph families: trees

and r-regular graphs.

χ′
0(G) paths, cycles, complete graphs,

union of paths, bipartite graphs

Km,n with m ≤ 10 or n ≥ 8m2 −

2m+ 1 and wheel graphs.

General graphs: χ′
s(G) ≤ n+1,

Some graph families: bipar-

tite graphs and complete bipar-

tite graphs.

Table 3.2: Summary of some important results about χ′
s(G), c(G) and χ′

0(G).

3.3 Conclusion

In this chapter, we have presented a short survey on vertex distinguishing edge

coloring. In particular, we detailed three parameters that will be useful to study

the coloring problem that will be detailed the next chapter.
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In this chapter, we define and study a new variation of the vertex-distinguishing

edge coloring problem. It consists in an edge-coloring of a graph G which induces

a vertex distinguishing labeling of G such that the label of each vertex is given by

the difference between the highest and the lowest colors of its adjacent edges. The

minimum number of colors required for a gap vertex-distinguishing edge coloring of

G is called the gap chromatic number of G and is denoted by gap(G).

We study in this chapter the gap chromatic number for a large set of graphs G

of order n and we even prove that gap(G) ∈ {n− 1, n, n+ 1}.

4.1 Definitions and preliminary results

As mentioned in the previous chapter, the problem of vertex-distinguishing edge

coloring offers many variants and received a great interest during these last years.

The aim of this chapter is to introduce a new variant of vertex-distinguishing edge

coloring called gap vertex-distinguishing edge coloring, which is defined as follows:

Definition 4.1 Let G be a graph, k be a positive integer and f be a mapping from
E(G) to the set {1, 2, ..., k}. For each vertex v of G, the label of v is defined as

l(v) =

{

f(e)e∋v if d(v) = 1

maxe∋v f(e)−mine∋v f(e) otherwise
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The mapping f is called a gap vertex-distinguishing edge coloring if distinct vertices
have distinct labels. Such a coloring is called a gap-k-coloring.

The minimum positive integer k for which G admits a gap-k-coloring is called the

gap chromatic number of G and is denoted by gap(G). Necessary and sufficient

conditions for the existence of such a coloring are given by the following proposition:

Proposition 4.1 A graph G admits a gap vertex-distinguishing edge coloring if and
only if it has no connected component isomorphic to K1 or K2.

Proof. Since no isolated vertex of a graph G is assigned a label in an edge coloring

of G, we may assume that G has no isolated vertex. Furthermore, if G contains a

connected component K2, then the two vertices of K2 are assigned the same label

in any edge coloring of G. Hence, when considering the gap vertex-distinguishing

edge coloring of G, we may assume that the order of every connected component

of G is at least 3. Let G be such a graph and let E(G) = {e1, e2, ..., em}. The

following edge coloring function: f(ei) = 2i−1 for 1 6 i 6 m clearly induces a gap

vertex-distinguishing edge coloring of G. �

The following lemma gives a lower bound on the gap chromatic number.

Lemma 4.2 A graph G of order n and without connected component isomorphic to
K1 or K2 satisfies gap(G) ≥ n− 1. Moreover, if δ(G) ≥ 2 or if any vertex of degree
greater than 1 has at least two neighbors of degree one, then gap(G) ≥ n.

(a) (b) (c)

Figure 4.1: A gap vertex-distinguishing edge coloring of a graph.

To illustrate these concepts, consider the graph G shown in Figure 4.1(a). A 6-edge

coloring f1 of G is given in Figure 4.1(b) and a 5-edge coloring f2 of G is given in

Figure 4.1(c). For example, in Figure 4.1(b), the vertex w is incident to two edges

colored 2 and one edge colored 3, then l1(w) = 1, while the vertex z is incident with

one edge colored 6, then l1(z) = 6. The resulting vertex labels are distinct for both

figures. By Lemma 4.2, we have gap(G) ≥ 5, hence we can immediately conclude

that gap(G) = 5.

After a strong analysis of this problem, we raised the conjecture asserting that

there is no graph G of order n with gap(G) > n+ 1.
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Conjecture 4.3 For every connected graph G of order n ≥ 3, we have gap(G) ∈

{n− 1, n, n+ 1}.

In the following sections, we prove this conjecture for a large set of graphs and

we even decide the exact value of gap(G). The rest of this chapter is organized

as follows: first, we give in Section 4.2 some motivations to investigate this new

parameter. The results of Section 4.3 will confirm our conjecture for a large part

of graphs with minimum degree at least 2. In Section 4.4, we prove our conjecture

for some classes of graphs with minimum degree 1, such as paths, complete binary

trees and all trees with at least two leaves at distance 2. This classification of our

results according to δ(G) is due to the definition of our parameter, especially to the

definition of labels of vertices of degree one. Finally, concluding remarks are given

in the last section.

4.2 Motivation

In this section, we describe the motivation to study the gap coloring problem. First,

we give the following proposition, where we recall that the diameter of a set S,

denoted by diam(S) is the largest distance between any two points of the set.

Proposition 4.4 Let S1 and S2 be two sets of positive integers, if diam(S1) 6=

diam(S2), then S1 6= S2.

From the gap vertex labeling function (Definition 4.1), we observe that the label

of every vertex v with degree at least 2 is the diameter of the set of colors incident

to v. Note that this is not the case for the vertices of degree 1. Then, the gap

labeling of a graph G can be seen as a strong version of set and multisets label-

ings (defined in the previous chapter). Indeed, according to Proposition 4.4, a gap

distinguishing labeling of a graph G is also a multiset distinguishing labeling of G

and a set distinguishing labeling (if δ(G) > 1). Hence, we now characterize the

relationship between our coloring parameter and the two coloring parameters χ′
0(G)

and c(G) defined previously. The following results follows from Proposition 4.4 and

the definitions of χ′
0(G) and c(G).

Lemma 4.5 For every graph G without components isomorphic to either K1 or K2

and with minimum degree at least 2, we have

χ′
0(G) ≤ gap(G)

Lemma 4.6 For every graph G, without components isomorphic to either K1 or
K2, we have

c(G) ≤ gap(G)

We will see in Corollary 4.17 how the results of our parameter can be connected

to the study of χ′
0(G).
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4.3 Gap chromatic number of graphs with minimum de-

gree at least two

The main result of this section is the following:

Theorem 4.7 For every m-edge-connected graph G of order n with m ≥ 2,

gap(G) =

{

n if G is not a cycle of length ≡ 2, 3(mod 4)

n+ 1 otherwise

The proof of Theorem 4.7 is the combination of several results detailed below.

4.3.1 Gap chromatic number of cycles

Theorem 4.8 Let Cn be a cycle of order n, then

gap(Cn) =

{

n if n ≡ 0, 1(mod 4)

n+ 1 otherwise

Proof. Let Cn = (v1, v2, . . . , vn, vn+1 = v1). For each integer i with 1 ≤ i ≤ n, let

ei = vivi+1. We consider two cases as follows:

Case 1: n ≡ 0, 1(mod 4). By Lemma 4.2, we have gap(Cn) ≥ n, it then suffices to

prove that Cn admits a gap-n-coloring. Two subcases are considered:

Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Cn) to {1, 2, . . . , n} is defined

as follows (see Figure 4.2(a)).

For 1 ≤ i ≤ n, f(ei) =















n+ 1− i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling function:

For 1 ≤ i ≤ n, l(vi) =















n− i+ 1 if i ≡ 2(mod 4)

n− i if i ≡ 0, 3(mod 4)

n− i− 1 if i ≡ 1(mod 4)

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, . . . , n− 1}. Hence

gap(Cn) = n.

Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Cn) to {1, 2, . . . , n} is defined

as follows (see Figure 4.2(b)):

For 1 ≤ i ≤ n, f(ei) =















i if i is odd

n− 1 if i ≡ 2(mod 4)

n if i ≡ 0(mod 4)
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This mapping induces the following gap vertex labeling function:

For 1 ≤ i ≤ n, l(vi) =















n− i if i ≡ 1, 2(mod 4)

n− i+ 1 if i ≡ 0(mod 4)

n− i− 1 if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, . . . , n− 1}. Hence

gap(Cn) = n.

Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Cn) > n. Let f : V (Cn) −→

{1, 2, . . . , n} be any edge-coloring of Cn which induces a gap vertex-distinguishing

function l. Now note that:

n
∑

i=1

l(vi) =| f(e1)− f(en) | +
n
∑

i=2

| f(ei)− f(ei−1) |=
n(n− 1)

2

In this formula, each term f(ei) appears twice with opposite (or same) signs, hence
n(n−1)

2 is even. But this latter value is odd if n ≡ 2, 3(mod 4), which is a contradic-

tion. Thus, gap(Cn) ≥ n+ 1. It then remains to show that gap(Cn) ≤ n+ 1. Two

subcases are considered according to whether n mod 4 = 2 or 3.

Subcase 2.1: n ≡ 3(mod 4). We know that Cn+1 admits a gap-(n + 1)-coloring.

Necessarily, Cn+1 must contain two successive edges of same color j where 1 ≤ j ≤

n + 1. By merging these two edges into a single edge colored by j, we obtain a

gap-(n+ 1)-coloring of Cn (see Figure 4.2(c)).

Subcase 2.2: n ≡ 2(mod 4). In this subcase, we define an edge coloring f

from E(Cn) to {1, 2, . . . , n, n + 1} by (see Figure 4.2(d)) : f(en) = f(en−1) = 2,

f(en−2) = 3 and

For 1 ≤ i ≤ n− 3, f(ei) =















n+ 2− i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex distinguishing labeling:

l(vn−2) = 2, l(vn−1) = 1, l(vn) = 0 and

For 1 ≤ i ≤ n− 3, l(vi) =















n− i if i ≡ 1(mod 4)

n+ 2− i if i ≡ 2(mod 4)

n+ 1− i if i ≡ 0, 3(mod 4)

Then, it is easy to check that l is a bijection from the vertex set of Cn to the set

{0, 1, . . . , n} \ {3}. Hence gap(Cn) = n+ 1. �
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(a) (b)

(c) (d)

Figure 4.2: A gap vertex-distinguishing edge coloring of Cn: (a) n = 8, (b) n = 9,

(c) n = 7, (d) n = 6.

4.3.2 Gap chromatic number of m-edge-connected graphs

We first introduce a definition which plays a pervasive role in this section.

Definition 4.2 Let G be a graph of order n with V (G) = {v1, v2, . . . , vn} and let
f be an edge coloring of G. For every vertex v of G, we define the interval I(v) =
[minf(e)e∋v,maxf(e)e∋v]. We say that f is balanced if I(v1)∩I(v2)∩· · ·∩I(vn) 6= ∅.

The following proposition summarizes an important property of our coloring param-

eter.

Proposition 4.9 Let G be a graph with δ(G) ≥ 2. If there exists a spanning sub-
graph H of G with δ(H) ≥ 2 and there exists a gap vertex-distinguishing balanced
edge coloring f of H with k colors, then gap(G) ≤ k.

Proof. Under the stated hypothesis, the gap vertex-distinguishing labeling of H is

induced by a balanced edge coloring f with k colors. Therefore, there exists at least

an integer j where 1 ≤ j ≤ k such that ∀v ∈ V , we have j ∈ I(v). By coloring the

edges of G\H with the color j, we obtain a gap-k-coloring of G. Hence gap(G) ≤ k.

�

We illustrate the interest of Proposition 4.9 by considering the following example:

let G be a Hamiltonian graph of order n ≡ 0(mod 4). In the proof of Theorem 4.8

(Subcase 1.1), it is easy to check that the proposed edge coloring of Cn is balanced.

Indeed, for each vertex v in G, we have 2 ∈ I(v). Hence, We can extend the edge-

coloring of Cn to an edge-coloring of G by weighting the added edges with color 2

without affecting the gap chromatic number of Cn. Thus, for every Hamiltonian

graph G of order n ≡ 0(mod 4), we have gap(G) = n.

The following proposition will be useful for proving Theorem 4.7. Furthermore,

it provides a useful tool for proving other results.
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Proposition 4.10 If G = (V,E) is an m-edge-connected graph of order n (with
m ≥ 2), different from a cycle of length ≡ 1, 2 or 3(mod 4), then for every in-
teger a ≥ 0, there exists an (a + n)-edge-coloring f which induces a gap vertex-
distinguishing labeling l : V → {a, a+ 1, . . . , a+ n− 1}.

Proof. The proof of this proposition is done by giving a polynomial-time coloring

algorithm. Let us begin with some definitions and notations. For every subset S of

V , let NS denote the set of neighboring vertices of S, not included in S.

NS = {u ∈ V \ S : ∃v ∈ S for which (v, u) ∈ E}

For every two adjacent vertices u and v of G such that v ∈ S and u ∈ NS , let P (v, u)

be a function which returns a path (or cycle) from v to a vertex w ∈ S that passes

through u, such that the set of vertices between v and w does not belong to S.

Let f be an edge coloring of G. For every subgraph R of G, let g(R) be a function

defined on the set E(R) as follows:

g(R) = min{f(E(R) \ {1, 2}}

We denote by Q the set of all graphs that are isomorphic to a cycle of order multiple

of 4 or to two cycles having at least one vertex in common.

Observation Every m-edge-connected graph G (with m ≥ 2), different from a cycle

of length ≡ 1, 2 or 3(mod 4) contains at least one subgraph H ∈ Q.

It is clear that if G is a 2-edge-connected graph, different from a cycle, then

△(G) ≥ 3. Hence, the subgraph H can always be obtained from G. The basic idea

of our algorithm is to find a balanced (a+ n)-edge-coloring f of a 2-edge-connected

spanning subgraph G′ = (V ′, E′) of G. Initially, both sets V ′ and E′ are empty.

During the algorithm, the updating of V ′ and E′ is done gradually through a specific

edge coloring procedure (which is explained in more detail below). When an edge

of G is colored by this procedure it is inserted into E′. A vertex v ∈ V is inserted

into V ′ if and only if it is incident with at least two colored edges (e, s ∈ E′). Note

that when a vertex v is inserted in V ′, we set the label l(v) as l(v) = |f(e) − f(s)|

and the interval I(v) at [min(f(e), f(s)),max(f(e), f(s))]. Such an edge coloring

will ensure that for every interval I(v), we have 2 ∈ I(v).

In more details, the proposed algorithm starts by coloring the edges of a subgraph

H ∈ Q of G of order k which induces a gap vertex-distinguishing labeling of H, where

the vertices of H are labeled by distinct numbers ranging from n+a−k to n+a−1.

We can easily establish this labeling structure for every subgraph H of G which is

isomorphic to a member of Q. Then, we propose four edge-coloring functions to

color the set of edges which constructs a cycle that has an unique vertex in V ′ or

a path between two vertices of V ′. This last step is iterated until all vertices are

labeled (i.e., |V ′| = |V | ).
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In order to color the subgraph H, we need to define several edge-coloring func-

tions. For a proper understanding of our algorithm, we are going to present the

algorithm for a graph G which contains at least one cycle of length multiple of

4. Otherwise, all other edge-coloring functions of H are described in detail in the

Appendix of [TDK12]. The different steps of the algorithm are illustrated in the

example of Figure 4.3, where a = 12.

Algorithm 1

Input: An integer a ≥ 0 and a m-edge-connected graph G = (V,E) of order n, such

that m ≥ 2 and G is not isomorphic to a cycle of length ≡ 1, 2 or 3(mod 4).

Output: A balanced (a + n)-edge-coloring f of G which induces a gap vertex-

distinguishing function l : V → {a, a+ 1, . . . , a+ n− 1}.

Begin of Algorithm

Step 1: V ′ ← ∅, E′ ← ∅. Let an index t = 2.

Step 2: Take any subgraph H = R1 ∈ Q of G.

2.1 If (R1 is a cycle of length k ≡ 0(mod 4)) Then

Let H = (v1, v2, . . . , vk, vk+1 = v1). For each integer i with 1 ≤ i ≤ k, let

ei = vivi+1. A mapping f from E(R1) to {1, 2, . . . , a+n} is defined as follows:

For 1 ≤ i ≤ k, f(ei) =















n+ a− i+ 1 if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following vertex labeling of R1:

For 1 ≤ i ≤ k, l(vi) =















n+ a− i+ 1 if i ≡ 2(mod 4)

n+ a− i if i ≡ 0, 3(mod 4)

n+ a− i− 1 if i ≡ 1(mod 4)

Then, it is easy to check that l is a bijection from the vertex set of R1 to the

set {n+ a− 1, n+ a− 2, . . . , n+ a− k}.

Otherwise all other edge-coloring functions of R1 are described in detail in

the Appendix of [TDK12].

2.2 V ′ ← V (R1), E
′ ← E(R1) and set z = g(R1).

Step 3: While ( V ′ 6= V ) do

Begin while

3.1 Take any two adjacent vertices u and v such that v ∈ V ′ and u ∈ NV ′ .

3.2 Let Rt = P (v, u), we represent the obtained subgraph Rt by the walk

(v1 = v, v2 = u, . . . , vk−1, vk). For each integer i with 1 ≤ i ≤ k − 1, let
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ei = vivi+1. We now define an edge coloring f of Rt. Four cases are considered

according to the value of k mod 4.

Case 1: k ≡ 0(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a + n} is

defined as follows: f(ek−1) = z − k + 2 and

For 1 ≤ i ≤ k − 2, f(ei) =















z − i if i is odd

1 if i ≡ 0(mod 4)

2 if i ≡ 2(mod 4)

This mapping induces the following gap vertex labeling of Rt: l(vk−1) = z− k

and

For 2 ≤ i ≤ k − 2, l(vi) =















z − i− 1 if i ≡ 1, 2(mod 4)

z − i− 2 if i ≡ 3(mod 4)

z − i if i ≡ 0(mod 4)

Case 2: k ≡ 2(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a + n} is

defined as follows:

For 1 ≤ i ≤ k − 1, f(ei) =















z − i if i is even

1 if i ≡ 3(mod 4)

2 if i ≡ 1(mod 4)

This mapping induces the following gap vertex labeling of Rt.

For 2 ≤ i ≤ k − 1, l(vi) =















z − i− 1 if i ≡ 0, 1(mod 4)

z − i− 2 if i ≡ 2(mod 4)

z − i if i ≡ 3(mod 4)

Case 3: k ≡ 1(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a + n} is

defined as follows: f(e1) = z − 2 and

For 2 ≤ i ≤ k − 1, f(ei) =















z − i if i is odd

1 if i ≡ 2(mod 4)

2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling of Rt: l(v2) = z − 3

and

For 3 ≤ i ≤ k − 1, l(vi) =















z − i− 1 if i ≡ 0, 3(mod 4)

z − i− 2 if i ≡ 1(mod 4)

z − i if i ≡ 2(mod 4)

Case 4: k ≡ 3(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a + n} is

defined as follows: f(ek−1) = z − k + 2 and

For 1 ≤ i ≤ k − 2, f(ei) =















z − i if i is even

1 if i ≡ 3(mod 4)

2 if i ≡ 1(mod 4)
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This mapping induces the following gap vertex labeling of Rt: l(vk−1) = z−k,

and

For 2 ≤ i ≤ k − 2, l(vi) =















z − i− 1 if i ≡ 0, 1(mod 4)

z − i− 2 if i ≡ 2(mod 4)

z − i if i ≡ 3(mod 4)

Observation: In the previous four cases, it is easy to check that l is a bijec-

tion from the vertex set V (Rt)− {v1, vk} to {z − 3, z − 4, . . . , z − k}.

2.3 V ′ ← V ′ ∪ V (Rt), E
′ ← E′ ∪ E(Rt). Set z = g(Rt) and t = t+ 1.

End while

Step 4: For all edges e ∈ E \ E′, set f(e) = 2.

End of algorithm.

We now present the proof of correctness of the above algorithm. We first show that

this algorithm achieves its goal without blocking, i.e., both actions in Step 3 (3.1

and 3.2) satisfy the following assertions:

If |V ′| < |V | then NV ′ 6= ∅. (4.1)

For every vertex u ∈ NV ′ there exists a path

from u to a vertex v ∈ V ′of order at least 2.
(4.2)

The assertion (1) follows from the connectivity hypothesis on G. For a vertex

u ∈ NV ′ there exists, at last, an edge (u, v) ∈ E such that v ∈ V ′. The 2-edge-

connectivity hypothesis of G implies that every edge of G belongs to a cycle, then the

two vertices u and v belong to the same cycle. Therefore, the assertion (2) also holds.

We now prove that our coloring algorithm gives a gap vertex-distinguishing func-

tion l : V ′ → {a, a+ 1, . . . , a+ n− 1} of G′ induced by a balanced edge coloring f

with a + n colors. At the end of the loop of Step 3, we obtain a bijection l from

the set V ′ to the set {a, a+1, ..., a+ n− 1}, i.e., for any two vertices u, v of V ′, we

have l(u) 6= l(v). It then remains to show that f is a balanced edge-coloring and

for every vertex v of V ′, we have l(v) equal to maxe∋v f(e)−mine∋v f(e) in G′. By

considering the degree in G′ of each vertex v, we have two cases.

Case 1. d(v) = 2: from the algorithm, it is clear that the label of each vertex v of

degree 2 which is incident with two edges e and s of E′ is equal to |f(e)− f(s)|.

Case 2. d(v) > 2: let R(v) = {Rd1 , Rd2 , . . . , Rdp} denote the set of all subgraphs

having a common vertex v, where d1 ≤ d2 ≤ · · · ≤ dp. From the algorithm, we can

observe that (see Figure 4.3(g)):

• for any two subgraphs Ri and Rj of R(v), we have E(Ri) ∩ E(Rj) = ∅.

• v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let f(ed1) ≥ f(sd1),

then the label of v is fixed as l(v) = f(ed1)− f(sd1).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.3: Illustration of Algorithm 1 (a=12): (a) A 2-edge-connected graph

G. (b) Coloring of R1. (c),(d),(e),(f) illustrates the coloring of R2, R3, R4, R5,

respectively. (g) A balanced gap-30-coloring of a spanning subgraph G′ of G.

(h) A gap-30-coloring of G which induces a gap vertex-distinguishing function

l : V → {12, 13, . . . , 29}.

• for every subgraph Ri of R(v), where i ≥ d2, we have v is incident with one

or two edges of E(Ri).

Furthermore, according to the edge coloring f , we can easily see that:

• for every vertex v of G′ , we have 2 ∈ I(v).

• 1 ≤ f(sd1) ≤ 2 and f(ed1) ≥ g(Rd1) ≥ 2.

• for every subgraph Ri of R(v), where i ≥ d2 then ∀e ∈ E(Ri) with v ∈ e, we

have 2 ≤ f(e) ≤ g(Rd1).
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From these observations we can conclude the following:

• the edge-coloring f is balanced.

• for every vertex v of V ′, maxe∋v f(e) = f(ed1) and mine∋v f(e) = f(sd1).

At Step 4 of the algorithm, we know that the obtained edge coloring f of G′ is

balanced. Hence, we can extend G′ to G by coloring the added edges with color 2

without affecting the vertex labeling function l : V → {a, a+ 1, . . . , a+ n− 1}. �

Now, we can state the proof of Theorem 4.7. To proceed, we introduce the following

result.

Theorem 4.11 For every m-edge-connected graph G of order n (with m ≥ 2),
different from a cycle of length n ≡ 2 or 3(mod 4), we have

gap(G) = n

Proof. By Lemma 4.2, we have gap(G) ≥ n. It then suffices to prove that G

admits a gap-n-coloring. We know by Theorem 4.8 that if G is a cycle of length

n ≡ 0, 1(mod 4), then gap(G) = n. Otherwise, it is clear by Proposition 4.10 that

if we set the integer parameter a at 0, we obtain a gap-n-coloring of G induced by

a balanced edge coloring. Hence gap(G) = n. �

We can now conclude that the result of Theorem 4.7 is a direct consequence of

Theorem 4.8 and Theorem 4.11.

Here we generalize the previous results to a special case of disconnected graphs as

follows:

Theorem 4.12 If G is a graph of order n with connected components G1, . . . , Gt,
such that for every component Gi of G, Gi is different from a cycle of length ≡
1, 2, 3(mod 4) and the edge connectivity of each component of G is at least 2, then

gap(G) = n

Proof. Let ni be the order of Gi (1 ≤ i ≤ t). The proof is essentially due to

Proposition 4.10. The idea is to provide a gap vertex distinguishing edge coloring for

each component of Gi according to the parameter a of Proposition 4.10 as follows: by

applying this proposition in sequence to G1, G2, . . . , Gt, we can obtain the labeling

function l : V (Gi) → {a, a + 1, . . . , a+ ni − 1} induced by an edge coloring f with

a + ni colors such that a = n −
∑i

j=1 nj . From this, it is easy to check that l is a

bijection from the vertex set of G to the set {0, 1, 2, . . . , n− 1}. Thus gap(G) = n.

�
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We believe that the result of Theorem 4.7 can be extended to all graphs of minimum

degree at least 2. But we have not been able to prove it. We suggest the following

conjecture:

Conjecture 4.13 For every connected graph G of order n with minimum degree
δ(G) ≥ 2, we have

gap(G) =

{

n+ 1 if G is a cycle of length ≡ 2, 3(mod 4)

n otherwise

4.4 Gap chromatic number of graphs with minimum de-

gree one

In this section we give the value of gap(G) for some classes of graphs with δ(G) = 1.

4.4.1 Gap chromatic number of paths

Theorem 4.14 Let Pn be the path of order n. Then

gap(Pn) =

{

n− 1 if n ≡ 0, 1(mod 4)

n otherwise

Proof. The proof of this theorem is similar to the one of Theorem 4.8. Let V (Pn) =

(v1, v2, . . . , vn). For each integer i with 1 ≤ i ≤ n− 1, let ei = vivi+1. We consider

two cases as follows:

Case 1: n ≡ 0, 1(mod 4). By Lemma 4.2, we have gap(Pn) ≥ n− 1, it then suffices

to prove that Pn admits a gap-(n− 1)-coloring. Two subcases are considered:

Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Pn) to {1, 2, . . . , n − 1} is

defined as follows (see Figure 4.4(a)).

For 1 ≤ i ≤ n− 1, f(ei) =















i
2 if i even
n−2
2 if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4)

This mapping induces the following vertex labeling function: l(vn) =
n−2
2

and for 1 ≤ i ≤ n− 1, l(vi) =























n−i−2
2 if i ≡ 0(mod 4)

n− 1− i−1
2 if i ≡ 1(mod 4)

n− 1− i
2 if i ≡ 2(mod 4)

n−i−1
2 if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n− 1}. Hence

gap(Pn) = n− 1.



36 Chapter 4. Gap Vertex-Distinguishing Edge Colorings of Graphs

Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Pn) to {1, 2, . . . , n − 1} is

defined as follows (see Figure 4.4(b)).

For 1 ≤ i ≤ n− 1, f(ei) =















i
2 if i even
n−1
2 if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4)

This mapping induces the following vertex labeling function:

and for 1 ≤ i ≤ n− 1, l(vi) =























n−1−i
2 if i ≡ 0(mod 4)

n− 1− i−1
2 if i ≡ 1(mod 4)

n− 1− i
2 if i ≡ 2(mod 4)

n−i
2 if i ≡ 3(mod 4)

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n− 1}. Hence

gap(Pn) = n− 1.

Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Pn) > n− 1. Let f : V (Pn) −→

{1, 2, . . . , n−1} be any edge-coloring of Pn which induces a gap vertex-distinguishing

labeling l. We note that:

n
∑

i=1

l(vi) = f(e1) + f(en−1) +

n−1
∑

i=2

| f(ei)− f(ei−1) |=
n(n− 1)

2

In this formula, each term f(ei) appears twice with opposite (or same) signs, hence
n(n−1)

2 is even. But this latter value is odd if n ≡ 2, 3(mod 4), which is a contradic-

tion. Thus, gap(Pn) ≥ n. It then remains to show that gap(Pn) ≤ n. Two subcases

are considered according to whether n mod 4 = 2 or 3.

Subcase 2.1: n ≡ 3(mod 4). We know that Pn+1 admits a gap-n-coloring. Neces-

sarily Pn+1 must contain two successive edges of same color j where 1 ≤ j ≤ n. By

merging these two edges into a single edge colored by j, we obtain a gap-n-coloring

of Pn (see Figure 4.4(c)).

Subcase 2.2: n ≡ 2(mod 4) In this subcase, we define an edge coloring f from

E(Pn) to {1, 2, . . . , n} (see Figure 4.4(d)) by f(en−1) = n− 1 and

For 1 ≤ i ≤ n− 2, f(ei) =















i
2 + 1 if i even
n
2 if i ≡ 3(mod 4)

n if i ≡ 1(mod 4)

This mapping induces the following gap vertex distinguishing labeling: l(v1) = n,

l(vn−1) =
n
2 − 1,l(vn) = n− 1 and

for 2 ≤ i ≤ n− 2, l(vi) =























n−i
2 − 1 if i ≡ 0(mod 4)

n− i+1
2 if i ≡ 1(mod 4)

n− i
2 − 1 if i ≡ 2(mod 4)

n−i−1
2 if i ≡ 3(mod 4)
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Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n} \ {n2 }.

Hence gap(Pn) = n. �

(a)

(b)

(c)

(d)

Figure 4.4: A gap-coloring of Pn: (a) n = 8, (b) n = 9, (c) n = 7, (d) n = 6.

4.4.2 Gap chromatic number of trees

We first determine the gap chromatic number of complete binary trees. We denote

by BTh a complete binary tree of height h > 0, note that BTh has exactly 2h+1 − 1

vertices.

Theorem 4.15 For any complete binary tree BTh of order n = 2h+1, we have

gap(BTh) = n− 1

Proof. By Theorem 4.14, we have gap(BT1) = gap(P3) = 3. Then, we may restrict

our attention to h ≥ 2. By Lemma 4.2, we have gap(BTh) ≥ n − 1, it then

suffices to prove that BTh admits a gap-(n − 1)-coloring. We define the level l(u)

of vertex u of BTh as the number of edges along the unique path between it and

the root. Similarly, the level of an edge e = (u, v) of BTh is l(e) = max{l(u), l(v)}.

We represent the vertices and the edges of BTh, level by level, left to right by the

sequence v1, v2, . . . , vn and e1, e2, . . . , en−1, respectively (see Figure 4.5(a)). We now

define a mapping f from E(BTh) to {1, 2, . . . , n− 1} as follows.

For 1 ≤ i ≤ n− 1, f(ei) =

{

2h if i ≤ 2

i+ 2(h− l(ei)) if i ≥ 3

This mapping induces the following gap vertex labeling: l(vi) = i− 1 for 1 ≤ i ≤ n.

Then it is easy to check that l is a bijection from V (BTh) to {0, 1, . . . , n− 1}. Thus

gap(BTh) = n− 1. �
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(a) (b)

Figure 4.5: (a) Notation of BT3, (b) A gap-14-coloring of BT3

The following theorem gives an upper bound on the gap chromatic number of

general trees.

Theorem 4.16 Let T = (V,E) be a tree of order n which has at least two leaves u

and v at distance two, then
gap(T ) ≤ n

Proof. The proof of this theorem is done by giving a polynomial-time algorithm.

We first start with some definitions used in the following. Let R1 = (u,w, v) be a

path of T (where u, v are leaves) and let R be the subtree of T rooted at w and

induced by the set V \{u, v} (see Figure 4.6(a)). Let h be the depth of R. For every

level i of R, let Li denote the set of leaves at level i. Let S be a subset of V (R)

and for every vertex x of V (R) \S, let P (x, S) be the function which returns a path

from x to a vertex y ∈ S, such that the set of vertices between x and y does not

belong to S.

Let l be a vertex labeling of V (T ). For every path P of T , let g(P ) be the function

defined as follows:

g(P ) = min{l(v) : ∀v ∈ V (P )}

The different steps of Algorithm 2 are illustrated in the example of Figure 4.6.

Algorithm 2

Input: A tree T = (V,E) of order n with two leaves u and v at distance 2.

Output: A gap-n-coloring of T .

Begin of Algorithm

Set f : E(R1)→ {1, n} as follows: f(vw) = n, f(uw) = 1.

This mapping induces the following gap vertex labeling of R1: l(v) = n, l(w) = n−1

and l(u) = 1.

Let S = {w}, z = n− 1 and t = 2.

For i = 1 to h do

Begin For

For every vertex x of Li in the subtree R do

Begin For

Let Rt = P (x, S). We denote the path Rt by the sequence of vertices v1 = x, v2
, . . . vk−1, vk. For each integer i with 1 ≤ i ≤ k − 1, let ei = vivi+1. Set an edge
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coloring f of Rt as follows:

For 1 ≤ i ≤ k − 1, f(ei) =

{

z − i+1
2 if i odd

i
2 otherwise

This mapping induces the following gap vertex labeling of Rt.

For 1 ≤ i ≤ k − 1, l(vi) = z − i

S ← S ∪ V (Rt), z ← g(Rt), t← t+ 1.

End for

End for

End of Algorithm

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.6: Illustration of Algorithm 2: (a) A tree T . (b) Coloring of R1.

(c),(d),(e),(f) illustrates the coloring of R2, R3, R4, R5, respectively. (g) A gap-14-

coloring of T .

Now, we present the proof of correctness for the above algorithm. At the end of

this algorithm, we obtain a bijection l from V to the set {1, 2, ..., n}. It then remains
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to show the property of our coloring parameter. By considering the degree of each

vertex v of T , we have three cases:

Case 1. d(v) = 1: from the algorithm, it is clear that l(v) = f(e)e∋v.

Case 2. d(v) = 2: from the algorithm, it is clear that the label of vertex v of degree

2 which is incident with two edges e and s of E equals |f(e)− f(s)|.

Case 3. d(v) > 2: let R(v) = {Rd1 , Rd2 , . . . , Rdp} denote the set of all paths having

the vertex v in common, where d1 ≤ d2 ≤ · · · ≤ dp. We represent the distance

between two vertices x, y ∈ V by dist(x, y). From the algorithm, we can observe

that:

• every path Ri of R(v) contains a leaf li of T which is an endpoint of Ri. We

can see that dist(v, ld1) ≤ dist(v, ld2) ≤ · · · ≤ dist(v, ldp).

• for any two paths Ri and Rj of R(v), E(Ri) ∩ E(Rj) = ∅.

• the vertex v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let

f(ed1) ≥ f(sd1), then the label of v is fixed as l(v) = f(ed1)− f(sd1).

• for every path Ri of R(v), where i ≥ d2, the vertex v is incident to exactly

one edge ei of E(Ri).

Furthermore, according to the edge-coloring f , we can see that:

• f(sd1) = ⌈
dist(v,ld1 )

2 ⌉.

• for every path Ri of R(v), where i ≥ d2, we consider two cases for the value

of f(ei) (with v ∈ ei) according to the distance between v and li:

• dist(v, li) is even. We have f(ei) = dist(v,li)
2 . Hence f(sd1) ≤ f(ei) ≤

g(Rd1) ≤ f(ed1).

• dist(v, li) is odd. We have f(ei) = g(Ri) +
dist(v,li)−1

2 . Hence f(sd1) ≤

f(ei) ≤ g(Rd1) ≤ f(ed1).

From these observations, we can conclude that for every vertex v of V , f(ed1) =

maxe∋v f(e) and f(sd1) = mine∋v f(e). Hence, T admits a gap-n-coloring. �

4.5 Conclusion

In this chapter, we studied a new variant of graph edge coloring that induces a

vertex distinguishing labeling. Exact results are given for paths, cycles, some trees

and all m-edge-connected graphs with m ≥ 2. Our results are summarized in the

follwoing table.
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Graph classes gap(G)

Cycle Cn of order n ≡ 2, 3(mod 4) gap(Cn) = n+ 1

Cycle Cn of order n ≡ 0, 1(mod 4) gap(Cn) = n

m-edge connected graph G (with m ≥ 2)

different from a cycle

gap(G) = n

Path Pn of order n ≡ 2, 3(mod 4) gap(Pn) = n

Path Pn of order n ≡ 0, 1(mod 4) gap(Pn) = n− 1

complete binary tree BTh of order n =

2h+1

gap(BTh) = n− 1

Tree T of order n which has at least two

leaves u and v at distance two

gap(G) ≤ n

Table 4.1: Our summary results on the gap chromatic number

The study of the relationships between our parameter and the point distinguishing

problem gives the following result which is a direct consequence of Lemma 4.5 and

Theorem 4.12.

Corollary 4.17 If G is a graph of order n with connected components G1, . . . , Gt,
such that for every component Gi of G, Gi is different from a cycle of length ≡
1, 2, 3(mod 4) and the edge connectivity of each component of G is at least 2, then
χ′
0(G) ≤ n.
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In this chapter, we focus on graph packing problems, which are a well-known

field of graph theory for over 30 years. We start in Section 5.1 by presenting a variety

of results, some quite recent, concerning the packing of unlabeled graphs. We then

discuss the relationship between the embedding of graphs and the structure of the

embedding permutations. In Section 5.2, we introduce and study a new variant of

the graph packing problem, called the labeled packing of graphs. In particular, we

present some results and conjectures about cycles.

5.1 Packing and embedding of unlabeled graphs

5.1.1 Basic definitions

We here consider only finite simple graphs and use standard terminology notation

from Chapter 2 except when indicated. We recall that if a graph G has order n and

size m, we say that G is an (n,m)-graph. For more brevity, we will call an unlabeled

graph simply a graph.

A permutation σ is an one-to-one mapping of a set S into itself. We say that

an element e of S is a fixed point of a given permutation σ if σ(e) = e. Then, a

permutation σ is called fixed-point-free if σ has no fixed point. Any permutation σ of
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a finite set can be written as the disjoint union of cycles (two cycles are disjoint if they

do not have any common element). Here, a cycle (a1, a2, . . . , an) is a permutation

sending ai to ai+1 for 1 ≤ i ≤ n − 1 and an to a1. This representation is called

the cyclic decomposition of σ and is denoted by C(σ). In this context, the cycles of

length one correspond to fixed points of σ.

The study of graph packing was initiated in the 1970s by Bollobás and Eldridge

[Bol78, BE78], Sauer and Spencer [SS78], and Catlin [Cat74].

Definition 5.1 Let G1, G2, . . . , Gk be k graphs of order n. We say that there is a
packing of G1, . . . , Gk (into the complete graph Kn) if there exist k permutations
σi : V (Gi) −→ V (Kn), i = 1, . . . , k, such that σ∗

i (E(Gi))∩σ
∗
j (E(Gj)) = ∅ for i 6= j,

where the mapping σ∗
i : E(Gi) −→ E(Kn) is the one induced by σi.

By definition, two graphs, G1 and G2, of the same order pack if G1 is a subgraph

of the complement G2 of G2, or, equivalently, if G2 is a subgraph of the complement

G1 of G1. A packing of k copies of the same graph G into Kn will be called a

k-placement of G. A packing of two copies of G in Kn (i.e., a 2-placement) is called

an embedding of G (into its complement G). In other words, an embedding of a

graph G is a permutation σ on V (G) such that if an edge vu belongs to E(G) then

σ(v)σ(u) does not belong to E(G). If there exists an embedding of G into Kn,

we say that G is embeddable. For example, the following figure presents a packing

of two copies of P4 ∪ P3 into K7, where the dotted edges represent the second

copie of P4 ∪ P3. This embedding can also be represented by the following cyclic

decomposition: (x2)(x7)(x4)(x1, x6)(x3, x5).

x
2

x3

x
1

x
4

x
5

x
6

x
7

Figure 5.1: A packing of two copies of P4 ∪ P3 into K7.

Many problems in graph theory could be formulated as graph packing problems.

Here are some relevant examples.

Example 5.1 The question of the existence of an Hamiltonian cycle in a graph G

of order n is equivalent to the question whether the cycle Cn and G are packable into
Kn.

Example 5.2 Given two graphs G1(V1, E1) and G2(V2, E2) with |V (G1)| = |V (G2)|,
G1 is isomorphic to G2 if and only if (1) G1 and G2 are packable into Kn and (2)
G1 and G2 are packable into Kn.
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Example 5.3 The independence number α(G) (α(G) represents the size of the
largest independent set of G) of a graph G of order n is at least p if and only if
G and the graph Kp ∪ (n− p)K1 (i.e., the graph consisting of the k-clique and n− p

isolated vertices) are packable into Kn.

In 1959, Erdős and Gallai [EG59] proved that every graph G with n vertices and

more than n(k−1)
2 edges contains a path of length k. Motivated by this result, Erdős

and Sós made the following conjecture in 1963.

Conjecture 5.1 If G is a graph of order n and E(G) > n(k−1)
2 , then G contains

every tree T of size k.

Example 5.4 We can easily see that if |E(G)| > n(k−1)
2 then |E(G)| < n(n−k)

2 .
Thus, Conjecture 5.1 can be formulated as follows: let G be a graph of order n and
T any tree of order k, with k < n. If |E(G)| < n(n−k)

2 then there exists a packing of
G and T into Kn.

Packing of graphs is a heavily studied subject having many applications in com-

puter science (see e.g. [BE78, Haj91]). The reader can find a good survey on packing

of graphs in [Woz04] and [Yap88]. In general, the review of existing literature identi-

fies three different lines of research. The first one is about packing of general graphs

having small size in Kn(e.g. (n,m)-graphs with m ≤ n). The second one deals

with packing of graphs with bounded maximum degree and bounded girth in Kn.

The last one considers some additional properties of permutations in the packing

construction. We present in the following some important results in these areas.

5.1.2 Packing of graphs of small size in a complete graph

In 1978, Bollobás and Eldridge [BE78] made the following conjecture about the

existence of a k-packing of graphs of small size, which is generally considered to be

one of the most important open problems in graph packing theory.

Conjecture 5.2 ([BE78]) Let G1, G2 . . . Gk be k graphs of order n. If |E(Gi)| ≤

n− k, i = 1, 2, . . . k, then G1, G2, . . . Gk are packable into Kn.

So far only the cases k = 2 and k = 3 of this conjecture were proved in [SS78]

and [KMSW01], respectively. This shows the hardness of the problem and motivates

future research. In what follows, we survey some of the well known results relative

to the number of graphs to pack.

Packing of two graphs

The following theorem was independently proposed in [Bol78, BS77, SS78].

Theorem 5.3 ([Bol78, BS77, SS78]) Let G = (V,E) be a graph of order n. If
|E(G)| ≤ n− 2 then G can be embedded in its complement.
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The example of the star Sn shows that Theorem 5.3 cannot be improved by raising

the size of G even in the case when G is a tree. However, in this case we have the

following theorem, proved in [BS78], which completely characterizes the embedding

of (n, n− 1) graphs.

Theorem 5.4 ([BS78]) Let G = (V,E) be a graph of order n. If |E(G)| ≤ n − 1

then either G is embeddable in its complement or G is isomorphic to one of the
following graphs: K1,n−1,K1,n−4 ∪ K3 with n ≥ 8, K1 ∪ K3, K2 ∪ K3, K1 ∪ 2K3,
K1 ∪ C4.

Among the exceptions mentioned in this theorem, the star K1,n−1 is the only

graph which is connected. Therefore, we have the following immediate consequence

(proved also in [HHS81]).

Theorem 5.5 ([HHS81]) Let T be a tree of order n, T 6= K1,n−1. Then T is
contained in its own complement.

These results has been improved in many ways. In Section 5.1.4, we are inter-

ested in improvements that deal with some additional properties of the permutation

structure.

Packing of three graphs

We are now going to consider the problem of packing of three graphs. We begin with

a theorem about the 3-placement of (n, n−2)-graphs, proved in [WW93], which can

be considered as an extension of Theorem 5.3.

Theorem 5.6 ([WW93]) Let G = (V,E) be a graph of order n. If |E(G)| ≤ n−2

then either there exists a 3-placement of G or G is isomorphic to K3 ∪ 2K1 or to
K4 ∪ 4K1.

The following theorem refines Theorem 5.6 by specifying the permutation struc-

ture of the 3-placement of G (see [Woz94]).

Theorem 5.7 ([Woz94]) Let G = (V,E) be a graph of order n, G 6= K3 ∪

2K1,K4 ∪ 4K1. If |E(G)| ≤ n− 2, then there exists a permutation σ on V (G) such
that σ1, σ2, σ3 define a 3-placement of G. Moreover, all cycles of σ have length 3,
except for 1 of length one if n ≡ 1(mod 3) or two of length 1 if n ≡ 2(mod 3).

Now, consider the packing of three copies of a tree. Obviously, if there is a

packing of three copies of T into Kn, then we have

3(n− 1) ≤
n(n− 1)

2

which implies n ≥ 6. Furthermore, since every vertex v of T with degree d(v) =

△(T ) must be mapped with two other vertices with degree at least one, then, we
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must assume that △(T ) ≤ n− 3. However, Huang and Rosa [HR78] observed that

these two necessary conditions are not sufficient as shown by the graph of Figure

5.2. In [WS93], Wang and Sauer characterized all the trees T such that T is 3-

placeable. The packing of three different trees into Kn has been considered by

Wozniak [Woz96], who proved the following theorem.

Theorem 5.8 ([Woz96]) Let T1, T2, T3 be three trees of order n. Then there is a
packing of T1, T2, T3 into Kn+1.

Figure 5.2: Example of a not 3-placeable tree

Packing of k graphs

To the best of our knowledge, only two graph packing results are known for the

general case [BW04, Zak11]. In [BW04], Brandt and Wozniak considered another

special case of Conjecture 5.2. In particular, they considered the packing of k copies

of a tree into Kn, where k = ⌊n2 ⌋.

Theorem 5.9 ([BW04]) Let T be a tree of size ⌈n2 ⌉. Then there exists a packing
of ⌊n2 ⌋ copies of T into Kn.

Recently, Zak [Zak11] studied for the first time the packing problem for all k,

and proved the following result.

Theorem 5.10 ([Zak11]) Let k be a positive integer and G be a graph of order
n ≥ 2(k − 1)3. If |E(G)| ≤ n− 2(k − 1)3, then G is k-placeable.

On the basis of Conjecture 5.2, the bound on the size of a graph in Theorem 5.10

is rather far from what can be expected. However, to the best of our knowledge,

this work is the first attempt that consider the general case of Conjecture 5.2.

5.1.3 Packing graphs with bounded maximum degree and bounded

girth in a complete graph

The graph packing theory also investigates two important directions concerning

graphs with bounded maximum degree and bounded girth. The two main conjec-

tures in this area were given by Bollobás and Eldridge [BS78] and Faudree et al.
[FRSS81], respectively.

Conjecture 5.11 ([BE78]) Let G1 and G2 be two graphs of order n with maximum
degrees △1 and △2. If (△1 +1)(△2 +1) ≤ n+1, then there is a packing of G1 and
G2.
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Conjecture 5.12 ([FRSS81]) If a graph G is a non-star graph without cycles of
length m ≤ 4, then G is embeddable.

If Conjecture 5.11 is true, then Conjecture 5.11 would be sharp, and considered

as an extension of the Hajnal-Szemerédi theorem [HS70] on equitable colorings. In-

deed, the Hajnal-Szemerédi theorem is a special case of Conjecture 5.11 when G2

is the disjoint union of cliques of the same size. This conjecture has been proved

in the case △1 ≤ 2 by Aigner and Brandt [AB93], and independently by Alon and

Fischer [AF96]. The case when △1 = 3 and n is huge has been proved by Csaba et
al. in [CSS03]. Bollobás et al. [BKN08] proved a strengthening of the conjecture

when G1 is d-degenerate and d < △1

40 . Eaton [Eat00] showed that under the given

condition, there is a near-packing of degree 1 of G1 and G2, that is, an embedding

of the two graphs into a common vertex set such that the maximum degree of the

subgraph defined by the edges common to both copies is at most 1. Recently, Kaul

et al. [KKY08] proved Conjecture 5.11 for graphs with large maximum degrees.

They proved in particular that for △1,△2 ≥ 300, if (△1 + 1)(△2 + 1) ≤ 0.6n + 1,

then G1 and G2 pack.

In [FRSS81], Conjecture 5.12 was proved for every graph G with n vertices and

no more than 6
5n− 2 edges. Wozniak [Woz91] proved that a graph G without cycles

of length at most 7 is embeddable. This result was improved later by Brandt [Bur95]

who showed that a graph G without cycles of length at most 6 is embeddable. Re-

cently, Görlich and Zak [GZ09] proved that a graph G without cycles of length at

most 5 is embeddable.

5.1.4 Graph packing and permutation structure

In this section, we review some results concerning the relationship between the

embedding of graphs and the structure of the embedding permutations. This study

allows us to obtain some results concerning our graph packing problem which will

be introduced in Section 5.2. Let us start by the permutations with no fixed point.

In [Sch78], Schuster proved the following theorem.

Theorem 5.13 ([Sch78]) Let G = (V,E) be a graph of order n. If |E(G)| ≤ n−2

then there exists an embedding σ of G such that σ has no fixed point.

The above theorem cannot be improved by increasing the number of edges as shown

by the graphs K1,2∪K3 and K1,3∪K3. However, all the other (n, n−1)-graphs that

are contained in their complements can be embedded without fixed points. More

precisely, we have the following theorem (proved also in [Sch78]).

Theorem 5.14 ([Sch78]) Let G = (V,E) be a graph of order n with E(G) ≤ n−1.
If (i) G is not an exceptional graph of Theorem 5.4 and (ii) G 6= K1,2 ∪ K3 and
G 6= K1,3 ∪K3, then there exists a fixed-point-free embedding of G.
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Other work deal with the study of families of embeddable graphs such that the

corresponding permutation is cyclic. First of all, we formulate some results proved

in [Woz99] in the following theorem.

Theorem 5.15 ([Woz99]) The following graphs are cyclically embeddable:

1. non-star trees.

2. (n, n− 2) graphs.

3. cycles Cn for n ≥ 6.

4. unicyclic graphs, except graphs that are not embeddable at all (See [FRSS81])
and five graphs given in Figure 5.3.

(a) (b) (c) (d) (e)

Figure 5.3: Five embeddable unicyclic graphs which are not cyclically embeddable.

Theorem 5.16 ([Woz99]) Let G be a graph of order n with |E(G)| ≤ n − 1 and
such that (i) G is not an exceptional graph of Theorem 5.4 and (ii) G 6= K1,2 ∪

K3,K1,3 ∪K3,K1 ∪ C5. Then there exists a cyclic embedding of G.

Assume that an embedding σ of G is expressed as the product of disjoint cycles

(consedring σ as a permutation). The previous results can be improved in another

direction by specifying the size and the number of cycles occurring in the embedding

permutation. We begin with a theorem about embedding of (n, n−1)-graphs, proved

in [BW85], which can be considered as an improvement of Theorem 5.14.

Theorem 5.17 ([BW85]) Let G = (V,E) be a graph of order n, n ≡ 0, 1(mod4).
If E(G) ≤ n − 1 then either there exists an embedding σ of G having all its cycles
of length 4, except for one of length 1 if n is odd, or G is isomorphic to one of the
following graphs: K1,n−1,K1,n−4 ∪K3, n ≥ 8, K1 ∪ C4, K1 ∪K3, K2 ∪K3.

The other cases (where n ≡ 2, 3(mod 4)) have been investigated by Wozniak in

[Woz94]. Another possibility for improvement of Theorem 5.13 is the following

theorem proved in [Woz94].

Theorem 5.18 ([Woz94]) Let G = (V,E) be a graph of order n, n ≥ 3. If
|E(G)| ≤ n − 2 then there exists an embedding σ of G such that each cycle of
σ has length 3 except for one of length 1 if n ≡ 1(mod 3) or two of length 1 if
n ≡ 2(mod 3).
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Finally, it is also interesting to note that another way to study the graph pack-

ing problem is to consider the placement of graphs into a (partial) subgraph of a

complete graph. In this case, it is necessary to consider more information about

the permutation structure. We can mention for example the paper of Kheddouci

[Khe03] that considers the packing of trees in their third power.

5.1.5 Our observations

The graph packing problem has attracted considerable attention from many re-

searchers. However, the most of existing work focuses on unlabeled graphs. There-

fore, it is interesting to consider this problem on labeled graphs, which we will be

done in the rest of this part. To the best of our knowledge, this variant has not

been studied so far.

5.2 Labeled Packing Problem

In this section, we introduce and study the packing problem for a vertex labeled

graph.

5.2.1 Definitions and general results

We first give the formal definition of our packing problem. Roughly speaking, it

consists of a graph packing which preserves the labels of the vertices.

Definition 5.2 Let p be an integer greater than one and let G1, G2, . . . , Gk be k

copies of a graph G = (V,E). Let f be a mapping from V (G) to the set of labels
{1, 2, . . . , p}. The mapping f is called a p-labeled packing of k copies of G into Kn

if there exist permutations σi : V (Gi) −→ V (Kn), where i = 1, . . . , k, such that:

1. σ∗
i (E(Gi)) ∩ σ∗

j (E(Gj)) = ∅ for all i 6= j.

2. for every vertex v of G, we have f(v)=f(σ1(v))=f(σ2(v)) · · ·=f(σk(v)).

For example, the following figure presents a 5-labeled packing of two copies of

P4 ∪ P3, where the dotted edges represent the second copie of P4 ∪ P3.

2

4 3

1

5

4

5

Figure 5.4: A 5-labeled packing of two copies of P4 ∪ P3.

From the previous definition, we define our packing parameter as follows:
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Definition 5.3 The maximum positive integer p for which G admits a p-labeled
packing of k copies of G is called the k-labeled packing number of G and is denoted
by λk(G).

Naturally, the existence of a packing of k copies of a graph G is a necessary and

sufficient condition for the existence of a p-labeled packing of k copies of G (where

p ≥ 1). Indeed, it suffices to choose the mapping f : V (G) −→ {1}. Then, we

obtain the following proposition.

Proposition 5.19 For every graph G, if there exists a k-placement of G into Kn,
then

λk(G) ≥ 1.

The following lemma is a direct consequence of Definition 5.2.

Lemma 5.20 Let G be a graph of order n and let H be a spanning subgraph of G.
If there exists a packing of k copies of G into Kn, then

λk(H) ≥ λk(G).

Let us introduce the following notations: let G be a graph of order n and f be

a mapping from V (G) to {1, 2, . . . , p}. We define S(f) as the subset of labels that

occur only once in f(V (G)) and let VS(f) consist of the vertices colored with the

labels of S(f). Thus it is obvious that |VS(f)| = |S(f)|. Throughout this part, a

labeled packing of two copies of G will be called a labeled embedding of G.

The following lemma gives an upper bound on the labeled embedding number

λ2(G).

Lemma 5.21 Let G be a graph of order n and let I be a maximum independent set
of G. If there exists an embedding of G, then

λ2(G) ≤ |I|+ ⌊
n− |I|

2
⌋

Proof. Let f be a mapping from V (G) to {1, 2 . . . , p} corresponding to a p-labeled
embedding of G with p maximum, (i.e., p = λ2(G)). A necessary condition for the

existence of a p-labeled embedding of G is that for every two adjacent vertices of G,

one of their labels must occur at least twice in f(V (G)). Hence, it is easy to see

that all vertices of VS(f) form an independent set in G. Then, we have |VS(f)| ≤ |I|

and p ≤ |VS(f)|+ ⌊
n−|VS(f)|

2 ⌋. Since g(x) = x+ ⌊n−x
2 ⌋ is an increasing function of x,

it follows that p ≤ |I|+ ⌊n−|I|
2 ⌋, giving the desired result. �
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Using the same sketch of proof as before, we can show a similar upper bound on

λ3(G) as follows:

Lemma 5.22 Let G be a graph of order n and let I be a maximum independent set
of G. If there exists a 3-placement of G into Kn, then

λ3(G) ≤ |I|+ ⌊
n− |I|

3
⌋

(a) (b)

Figure 5.5: (a) A caterpillar T , (b) A 10-labeled embedding of T

It is clear that any labeled embedding construction (the labeling function f and

the permutation σ) that achieves the upper bound of Lemma 5.21 must consider

the vertices of VS(f) as fixed-points under the permutation σ, which then requires

to define a ⌊
|V (G)\VS(f)|

2 ⌋-labeled embedding without fixed points for the subgraph

induced by the set of vertices V (G)\VS(f). For example, let us consider the caterpil-

lar T of Figure 5.5(a). From Lemma 5.21, we have λ2(T ) ≤ 10. This upper bound

can be reached by finding a 3-labeled embedding without fixed points for the central

path of T (Figure 5.5(b)).

Remark We explain in this observation a fundamental congruence relation between

the labeled embedding number and the permutation structure. For any labeled em-

bedding of a graph G induced by a permutation σ, we can see that the vertices of

every cycle of C(σ) share the same label. Hence, we can say that the labeled embed-

ding number of G denotes the maximum number of cycles induced by a permutation

of G. The following lemma is thus obtained.

Lemma 5.23 Let G be a graph. If G has an embedding σ with p cycles, then

λ2(G) ≥ p

Therefore, we can observe that the graph packing can be used to distinguish

some vertices of G as follows: let f be a mapping from V (G) to {1, 2, . . . , p} and let

σ be a permutation embedding on V (G), where for every two vertices u, v ∈ V (G),

we have

f(u) = f(v) if u, v belong to the same cycle in σ(T )

f(u) 6= f(v) otherwise.
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In Section 5.1.4, we have presented some results on graph embedding that deal

with some additional properties of the embedding permutation. These results can

be exploited to obtain a lower bound on λ2(G) for some families of graphs. For

example, from the statements of Theorem 5.18 and Lemma 5.23, we can deduce the

following corollary:

Corollary 5.24 Let G = (V,E) be a graph of norder n. If |E(G)| ≤ n− 2 then

λ2(G) ≥ ⌊
n

3
⌋

In the same way, the following corollary is an immediate consequence of Theorem

5.17 and Lemma 5.23.

Corollary 5.25 Let G = (V,E) be a graph of order n ≡ 0, 1(mod )4. If |E(G)| ≤

n−1 then λ2(G) ≥ ⌊n4 ⌋ or G is isomorphic to one of the following graphs K1,n−1,K1,n−4∪

K3, n ≥ 8, K1 ∪ C4, K1 ∪K3, K2 ∪K3, K1 ∪ 2K3.

As seen previously, graph packing is a very hard problem; the main results con-

cern graphs of small size ((n, n− q) graphs where q ≥ 0). Two studies are possible

for the labeled graph packing problem: (i) packing an important number of sample

graphs (or copies of a given graph) in a complete graph; or (ii) packing a fixed num-

ber (usually two) of non trivial graphs in a subgraph of Kn. For the first study of

labeled packing of graphs, we opt for the first possibility. We will give some results

concerning the labeled packing number of k copies of cycles (where k ≥ 2).

Given a graph G, the generalization of Lemma 5.21 for any k is not trivial. Yet,

it becomes easier when G is a cycle. We know that any complete graph Kn can be

decomposed into n−1
2 Hamilton cycles if n is odd and n−2

2 Hamilton cycles plus a

perfect matching if n is even (see [Luc92]). Thus, Cn cannot admit a packing of k

copies in Kn if n ≤ 2k.

Lemma 5.26 For every cycle Cn of order n ≥ 2k + 1, we have

λk(Cn) ≤ ⌊
n

2
⌋+ ⌊

n− ⌊n2 ⌋

k
⌋

Proof. Let f be a mapping from V (G) to {1, 2, . . . , p} corresponding to a p-labeled

packing of k copies of Cn with p maximum. Let us introduce the following notation:

for a set S ⊆ V (G), we denote by N(S) the neighborhood of S, i.e., the set of all

vertices of G which have a neighbor in S. Then, two necessary conditions for the

existence of p-labeled packing of k copies of Cn are that:

1. the labels of N(VS(f)) must occur at least k times in f(V (Cn)).

2. the labels of V \ (VS(f) ∪N(VS(f))) must occur at least twice in f(V (Cn)).
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Hence, we have

p ≤ |VS(f)|+ ⌊
|N(VS(f))|

k
⌋+ ⌊

n− |VS(f)| − |N(VS(f))|

2
⌋

Since k ≥ 2, the maximum value p is obtained when |VS(f)| = ⌊
n
2 ⌋ and |N(VS(f))| =

n− ⌊n2 ⌋, giving the desired result. �

5.2.2 Labeled-packing of k copies of cycles with order at least 4k

In this section, we determine the exact value of the labeled packing number of k

copies of cycles of order n ≥ 4k. It is done by proving that the upper bound of

Lemma 5.26 is reached for all n 6= 4k + x, where k > 2 and x mod 4 = 2.

Theorem 5.27 For every cycle Cn of order n = 2km + x, where k,m ≥ 2 and
x < 2k, we have

λk(Cn) =















n
2 + 1 if (x mod 4,m) = (2, 2) and k > 2.

⌊n2 ⌋+m+ 1 if x = 2k − 1.

⌊n2 ⌋+m otherwise.

Proof. Several cases are considered in this proof according to the values of x and

m. In Figure 5.6, we outline the general scheme of our proof.

Figure 5.6: Proof structure.

Case 1 : x mod 4 6= 2. Let Cn = (v1, v2, . . . , vn) be a cycle of order n, where

n ≥ 4k. From Lemma 5.26, we have λk(Cn) ≤ ⌊
n
2 ⌋ + ⌊

n−⌊n
2
⌋

k ⌋, it then suffices to

prove that Cn admits a (⌊n2 ⌋ + ⌊
n−⌊n

2
⌋

k ⌋)-labeled packing of k copies. In order to

simplify our proof, we consider three subcases according to the values of m and x

as follows:
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Subcase 1.1: x mod 2m = 0. Let B = {b0, b1, . . . , bp−1} be a partition of V (Cn)

into p sets, where all sets bi of B have the same cardinalty 2m. Then, we have

p = k + x
2m such that for 0 ≤ i ≤ p − 1, bi = {v

i
1, v

i
2, . . . , v

i
2m}, where vij = v2im+j .

These notations are illustrated in the example of Figure 5.7 , where n = 16 and

k = 3.

Figure 5.7: Partition of V (C16) for k = 3.

A mapping f from V (Cn) to {1, 2, . . . , ⌊n2 ⌋ +m} is now defined as follows: for

every set bi in B, let

f(vi2j+1) = im+ j + 1 for 0 ≤ j ≤ m− 1.

f(vi2j) =
n
2 + j for 1 ≤ j ≤ m.

Let σ0(Cn), σ
1(Cn), σ

2(Cn), . . . , σ
k−1(Cn) be a packing of k copies of Cn into Kn

under the permutations σ0, σ1, . . . , σk−1, respectively, where for 0 ≤ t ≤ k − 1,

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j) satisfying 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ m.

Figure 5.8 presents a 10-labeled-packing of three copies of C16.

From the set of permutations, we can easily see that for every vertex vi in V (Cn),

we have f(vi) = f(σ1(vi)) = f(σ2(vi)) = · · · = f(σk−1(vi)). It then remains to show

that the set of cycles σ0(Cn) = Cn, σ
1(Cn), σ

2(Cn) . . . , σ
k−1(Cn) are edge-disjoint

into Kn. To prove this, it suffices to show that for every vertex vi of V (Cn), we

have:

For 0 ≤ t 6= l ≤ k − 1, if σt(vi) = σl(vi), then σt(vi+1) and σt(vi−1) must be

different from both σl(vi+1) and σl(vi−1).

From the set of permutations, we can observe that for every two distinct integers

l, t ∈ {0, 1, . . . , k − 1} and for every set bi of B, we have σl(vi2j+1) = σt(vi2j+1) =
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(a) (b)

Figure 5.8: A 10-labeled-packing of three copies of C16: (a) σ1(C16), (b) σ2(C16).

vi2j+1, where 0 ≤ j ≤ m − 1. Then for every set bi of B, we consider two cases

according to whether j 6= 1 or j = 1.

1. for j = 3, 5 . . . 2m − 1, we have σl(vij+1), σ
l(vij−1) ∈ b(l+i) mod p and σt(vij+1),

σt(vij−1) ∈ b(t+i) mod p. It follows that (l + i) mod p 6= (t+ i) mod p 6= i.

2. for j = 1, we can easily see that σl(vi2) and σl(vi−1
2m ) are both different from

σt(vi2) and σt(vi−1
2m ).

Hence, according to the two previous observations, we can see that Cn, σ
1(Cn),

σ2(Cn), . . . , σ
k−1(Cn) are k pairwise edge-disjoint cycles, thus the mapping f is a

(⌊n2 ⌋+m)-labeled-packing of k copies of Cn.

Subcase 1.2: x = 2k − 1. In this case, the partition B = {b0, b1, . . . , bk−1} of

V (Cn) is defined as follows: for 0 ≤ i ≤ k − 2, bi = {vi1, v
i
2, . . . , v

i
2(m+1)} and

bk−1 = {v
k−1
1 , vk−1

2 , . . ., vk−1
2m+1}, where vij = v2i(m+1)+j .

A mapping f from V (Cn) to {1, 2, . . . , ⌊n2 ⌋ +m + 1} is now defined as follows:

for every set bi in B, let

f(vi2j+1) = i(m+ 1) + j + 1 for 0 ≤ j ≤ m and (i, j) 6= (k − 1,m).

f(vk−1
2m+1) =

n−1
2 +m+ 1.

f(vi2j) =
n−1
2 + j for 1 ≤ j ≤ m+ 1 and (i, j) 6= (k − 1,m+ 1).

Let σ0(Cn), σ
1(Cn), . . . , σ

k−1(Cn) be a packing of k copies of Cn into Kn under the

permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and for 1 ≤ t ≤
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k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ k − 1, 0 ≤ j ≤ m

and (i, j) 6= (k − 1,m).

σt(vi2j) = v
(i+t) mod k
2j for all (i, j) satisfying 0 ≤ i ≤ k − 1, 1 ≤ j ≤ m+ 1

and (i, j) 6= (k − t− 1,m+ 1).

σt(vk−1
2m+1) = vt−1

2m+2.

σt(vk−t−1
2m+2 ) = vk−1

2m+1 = vn.

Figure 5.9 shows a 11-labeled-packing of three copies of C17.

(a) (b)

Figure 5.9: A 11-labeled-packing of three copies of C17: (a) σ1(C17), (b) σ2(C17).

Using the same proof as in Subcase 1.1, we can show that the mapping f is a

(⌊n2 ⌋+m+ 1)-labeled-packing of k copies of Cn.

Subcase 1.3: x mod 2m 6= 0 and x 6= 2k − 1. Let B = {b0, b1, . . . , bp−1} be

a partition of V (Cn) into p = k + ⌈ x
2m⌉ sets such that for 0 ≤ i ≤ p − 2, bi =

{vi1, v
i
2, . . . , v

i
2m} and bp−1 = {v

p−1
1 , vp−1

2 , . . . , vp−1
x mod 2m}, where vij = v2im+j . We let

r = x mod 2m.

A mapping f from V (Cn) to {1, 2, . . . , ⌊n2 ⌋+m} is defined as follows:

f(vi2j+1) = im+ j + 1 for all (i, j) satisfying 0 ≤ i ≤ p− 2, 0 ≤ j ≤ m− 1.

f(vi2j) = ⌊
n
2 ⌋+ j for all (i, j) satisfying 0 ≤ i ≤ p− 2, 1 ≤ j ≤ m.

f(vp−1
2j+1) = (p− 1)m+ j + 1 for 0 ≤ j ≤ ⌈ r−1

2 ⌉ − 1.

f(vp−1
2j ) = ⌊n2 ⌋+ j for 1 ≤ j ≤ ⌊ r−1

2 ⌋.

f(vp−1
r ) = ⌊n2 ⌋+m.

Let σ0(Cn), σ
1(Cn), . . . , σ

k−1(Cn) be a packing of k copies of Cn into Kn under

the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and for 1 ≤ t ≤
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k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j), 0 ≤ i ≤ p− 2 and 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j), 0 ≤ i ≤ p− 2 and 1 ≤ j ≤ ⌊ r−1

2 ⌋.

σt(vi2j) = v
(i+t) mod (p−1)
2j for all (i, j), 0 ≤ i ≤ p− 2 and ⌊ r−1

2 ⌋+ 1 ≤ j ≤ m− 1.

σt(vi2m) = v
(i+t) mod p
2m for 0 ≤ i 6= p− t− 1 ≤ p− 2.

σt(vp−t−1
2m ) = vp−1

r = vn.

σt(vp−1
2j+1) = vp−1

2j+1 for 0 ≤ j ≤ ⌈ r−1
2 ⌉ − 1.

σt(vp−1
2j ) = vt−1

2j for 1 ≤ j ≤ ⌊ r−1
2 ⌋.

σt(vp−1
r ) = vt−1

2m .

Figure 5.11 shows a 9-labeled-packing of three copies of C15.

(a) (b)

Figure 5.10: A 9-labeled-packing of three copies of C15: (a) σ1(C15), (b) σ2(C15).

Using the same proof as in Subcase 1.1, we can show that the mapping f is a

(⌊n2 ⌋+m)-labeled-packing of k copies of Cn.

Case 2: x mod 4 = 2. We consider three subcases according to the value of k and

m as follows:

Subcase 2.1: k > 2 and m = 2. We first prove that λk(C4k+x) <
n
2 + 2. From

Lemma 5.26, it follows that the value n
2 + 2 is an upper bound of λk(C4k+x). We

assume that there exists a mapping f : V (C4k+x) −→ L = {1, 2, . . . , n2 + 2} which

is a (n2 + 2)-labeled-packing of C4k+x. Let σ0(C4k+x), σ
1(C4k+x), . . . , σ

k−1(C4k+x)

be a packing of k copies of C4k+x into K4k+x under the permutations σ0, σ1, . . . ,

σk−1, respectively. We know that the vertices colored with the labels of Sf form an

independent set in C4k+x (implying that |Sf | ≤
n
2 ). We consider two cases according

to the cardinality of Sf as follows:

(a): |Sf | <
n
2 . We know that each label of L\Sf occurs at least k times in f(C4k+x).

This requires at least 5k + x
2 − 1 vertices in C4k+x, which is a contradiction since

k > 2.
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(b): |Sf | =
n
2 . It means that the vertices colored with the labels of Sf form a

maximum independent set in C4k+x. Then the two labels of L \ Sf are attributed

to the remaining vertices such that each label occurs at least k times. With this

labeling scheme, there exist necessarily three vertices vi−1, vi and vi+1 such that

f(vi) ∈ Sf and f(vi−1), f(vi+1) = c ∈ L \ Sf . This requires that the label c must

occur at least 2k times in C4k+x, yielding a contradiction. Hence λk(C4k+x) <
n
2 +2.

We now prove that λk(C4k+x) =
n
2 + 1. Let f be the mapping from V (Cn) to

{1, 2, . . . , n2 + 1} defined as follows:

f(v2j+1) = j + 1 for j = 0, 1, . . . , n2 − 1.

f(v2j) =
n
2 + 1 for j = 1, 2 . . . , n2 .

Let σ0(Cn), σ
1(Cn), . . . , σ

k−1(Cn) be a packing of k copies of Cn into Kn under

the permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and for 1 ≤ t ≤

k − 1:
σt(v2j+1) = v2j+1 for j = 0, 1, . . . , n2 − 1.

σt(v2j) = v2(j+2t) mod n for j = 1, 2 . . . , n2 .

According to this scheme, Figure 5.11 presents a 8-labeled-packing of three copies

of C14.

(a) (b)

Figure 5.11: A 8-labeled-packing of three copies of C14: (a) σ1(C14), (b) σ2(C14).

Subcase 2.2: (k,m) = (2, 2). From Lemma 5.26, we have λ2(C10) ≤ 7. The

following figure gives a 7-labeled-embedding of C10.
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Figure 5.12: A 7-labeled-embedding of C10

Subcase 2.3: m ≥ 3. Let B = {b0, b1, . . . , bp−1} be a partition of V (Cn) \

{vn−1, vn} into p sets, where all sets bi of B have the same cardinalty 2m. Then,

we have p = k + x
2m such that for 0 ≤ i ≤ p− 1, bi = {v

i
1, v

i
2, . . . , v

i
2m}, where vij =

v2im+j .

A mapping f from V (Cn) to {1, 2, . . . , ⌊n2 ⌋+m} is defined as follows: for every

set bi in B, let

f(vi2j+1) = im+ j + 1 for 0 ≤ j ≤ m− 1.

f(vi2j) =
n
2 + j for 1 ≤ j ≤ m.

f(vn−1) =
n
2 .

f(vn) =
n
2 +m− 1.

Let σ0(Cn), σ
1(Cn), . . . , σ

k−1(Cn) be a packing of k copies of Cn into Kn under the

permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and for 1 ≤ t ≤

p− 1:

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ p− 1, 0 ≤ j ≤ m− 1.

σt(vi2j) = v
(i+t) mod p
2j for all (i, j) satisfying 0 ≤ i ≤ p− 1, 1 ≤ j ≤ m

and j 6= m− 1.

σt(vi2m−2) = v
(i+t) mod (p+1)
2m−2 for 0 ≤ i ≤ p− 1 and i 6= p− t.

σt(vp−t
2m−2) = vn.

σt(vn−1) = vn−1.

σt(vn) = vt−1
2m−2.

Using the same proof as in Subcase 1.1, we can show that the mapping f is a

(⌊n2 ⌋ + m)-labeled-packing of k copies of Cn. To illustrate this case, Figure 5.13

presents a 13-labeled-packing of three copies of C20. �

5.2.3 Labeled packing of k copies of cycles of order at most 4k − 1

In the case where n is relatively small compared to k, some additional difficulties

arise naturally, and λk(Cn) has to be estimated differently. We know that any
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(a) (b)

Figure 5.13: A 13-labeled-packing of three copies of C20: (a) σ1(C20), (b) σ2(C20).

complete graph Kn can be decomposed into n−1
2 Hamilton cycles if n is odd and

n−2
2 Hamilton cycles plus a perfect matching if n is even. Thus, Cn cannot admit a

packing of k copies if n ≤ 2k. After deep analysis, we raise the following conjecture.

Conjecture 5.28 For every cycle Cn of order n = 2k + x, where k ≥ 2 and 1 ≤

x ≤ 2k − 1, then

λk(Cn) =

{

2 if x = 1 and k is even.

x+ 2 otherwise .

This conjecture asserts that the upper bound of Lemma 5.26 is reached for all

n = 4k − 1, 4k − 2 and 4k − 3, where (k, n) 6= (2, 5). We report in the following the

results of our attempt to give some support to Conjecture 5.28 for some particular

cases.

Theorem 5.29 For every cycle Cn of order n = 2k+x, where k ≥ 2, 2k−3 ≤ x ≤

2k − 1 and (k, n) 6= (2, 5), we have

λk(Cn) = x+ 2

Proof. Let Cn = (v1, v2, . . . , vn) be a cycle of order n = 2k + x, where 2k − 3 ≤

x ≤ 2k − 1 and (k, n) 6= (2, 5). We know that a maximum independent set of Cn

has size ⌊n2 ⌋. Then, from Lemma 5.26, we have λk(Cn) ≤ ⌊
n
2 ⌋+ ⌊

n−⌊n
2
⌋

k ⌋ = x+2, it

then suffices to prove that Cn admits a (x+2)-labeled packing of k copies. In what

follows, we give the proof only for the case x = 2k− 1, since the proofs of the other

cases are similar.

Assume that x = 2k − 1 and let B = {b0, b1, . . . , bk−1} be a partition of

V (Cn) into k sets, such that for 0 ≤ i ≤ k − 2, bi = {vi1, v
i
2, v

i
3, v

i
4}, and bk−1 =
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{vk−1
1 , vk−1

2 , vk−1
3 }, where vij = v4i+j .

A mapping f from V (Cn) to {1, 2, . . . , 2k + 1} is defined as follows:

f(vi2j+1) = 2i+ j + 1 for all (i, j) where 0 ≤ j ≤ 1, 0 ≤ i ≤ k − 2.

f(vi2) = 2k for 0 ≤ i ≤ k − 2.

f(vi4) = 2k + 1 for 0 ≤ i ≤ k − 2.

f(vk−1
1 ) = 2k − 1.

f(vk−1
2 ) = 2k.

f(vk−1
3 ) = 2k + 1.

Let σ0(Cn), σ
1(Cn), . . . , σ

k−1(Cn) be a packing of k copies of Cn into Kn under the

permutations σ0, σ1, . . . , σk−1, respectively, where σ0(Cn) = Cn and for 1 ≤ t ≤

k − 1, let

σt(vi2j+1) = vi2j+1 for all (i, j) satisfying 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1.

σt(vi2j) = v
(i+t) mod k
2j for all (i, j) satisfying 0 ≤ i ≤ k − 2, 1 ≤ j ≤ 2.

and (i, j) 6= (k − t− 1, 2).

σt(vk−t−1
4 ) = v

(k−1)
3 .

σt(vk−1
1 ) = v

(k−1)
1 .

σt(vk−1
2 ) = v

(t−1)
2 .

σt(vk−1
3 ) = v

(t−1)
4 .

Figure 5.14 presents a 7-labeled packing of three copies of C11. �

(a) (b)

Figure 5.14: A 7-labeled packing of three copies of C11: (a) σ1(C11), (b) σ2(C11).

We now present our results concerning the cycles of order 2k + 1 and 2k + 2.

Theorem 5.30 For every prime number k > 2, we have λk(C2k+1) < 4.
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Proof. Let C2k+1 = (v1, v2, . . . , v2k+1, v2k+1 = v1). We assume that there exists a

mapping f : V (C2k+1) −→ L = {1, 2, 3, 4} which is a 4-labeled packing of C2k+1.

Let σ0(C2k+1), σ
1(C2k+1), . . . , σ

k−1(C2k+1) be a packing of k copies of C2k+1 into

K2k+1 under the permutations σ0, σ1, . . . , σk−1, respectively. We consider two cases

according to the cardinality of Sf (which is defined in Section 5.2.1).

Case 1. |Sf | = 0. In this case, each label occurs at least twice in f(V (Cn)). Let us

introduce the following notation: for every label i of L, let Vi be the subset of vertices

with color i. We know that σ0(C2k+1) ∪ σ1(C2k+1) ∪ · · · ∪ σk−1(C2k+1) = K2k+1.

We know that all vertices of the complete graph are neighbors. Then, for every

label i of L, the number of edges in the subgraph of K2k+1 induced by the set Vi

is |Vi|(|Vi|−1)
2 . Then, for every cycle σi(C2k+1) of the packing, we must have exactly

|Vi|(|Vi|−1)
2k = pi edges between the vertices colored with i in the cycle σi(C2k+1).

Hence, the following system of equations must have at least one solution.

{

|Vi|(|Vi| − 1) = 2kpi for 1 ≤ i ≤ 4 (1)

|V1|+ |V2|+ |V3|+ |V4| = 2k + 1 (2)

From hypothesis, it is clear that the equation (1) has a solution if and only if

|Vi| or |Vi| − 1 are multiples of k (where 1 ≤ i ≤ 4) since k is prime. Then we have

|V1|+ |V2|+ |V3|+ |V4| > 2k + 1, therefore this system of equations has no solution

which is a contradiction for k > 2.

Case 2. |Sf | ≥ 1. Let vi be any vertex of VS(f). Then we consider two cases

according to the labels of the neighbors vertices of vi.

Subcase 1. f(vi−1) = f(vi+1) = c. In this case, we must have at least 2k vertices

colored with c. This requires at least 2k+3 vertices in C2k+1, which is a contradic-

tion.

Subcase 2. f(vi−1) 6= f(vi+1). From hypothesis, each of the two labels f(vi−1)

and f(vi+1) must occur at least k times. This requires at least 2k + 2 vertices in

C2k+1. Hence, we also reached a contradiction and the theorem is proved. �

Using the same proof as in the above theorem, we obtain the following results.

Theorem 5.31 For every even number k ≥ 2, where k is a power of 2, we have
λk(C2k+1) = 2.

Theorem 5.32 For every even number k ≥ 2, we have λk(C2k+2) < 5.

5.2.4 Summary and concluding remarks

In this section, we have proved the exact value of λk(Cn) for all k ≥ 2 and n ≥ 4k−3.

Our results are summarized in the follwoing table.
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value of n λ2(Cn)

n ≤ 4 no packing

n = 5 2

n ≥ 6 ⌊3n4 ⌋

n = 2km + x, where x < 2k and k > 2 λk(Cn)

n ∈ {3, 4, . . . , 2k} no packing

n ∈ {2k + 1, 2k + 2, . . . , 4k − 4} remains to prove

n ≥ 4k − 3 and (x mod 4 6= 2 or m ≥ 3 ) ⌊n2 ⌋+ ⌊
n−⌊n

2
⌋

k ⌋

x mod 4 = 2 and m = 2 ⌊n2 ⌋+ ⌊
n−⌊n

2
⌋

k ⌋ − 1

As a corollary, the exact value of the 2-labeled packing number of cycles is a

direct consequence of Theorem 5.27, Theorem 5.29 and Theorem 5.31.

Corollary 5.33 Let Cn be a cycle of order at least 5. Then

λ2(Cn) =

{

⌊3n4 ⌋ if n > 5.

2 n = 5.

(a) (b)

Figure 5.15: A 3-labeled packing of three copies of C7: (a) σ1(C7), (b) σ2(C7).

Similarly, from Theorem 5.27 and Theorem 5.29, we immediately obtain the

exact value of λ3(Cn) for all n ≥ 9. Then, it follows from Theorem 5.30 and Theorem

5.32 that λ3(C7) < 4 and λ3(C8) < 5. The 3-labeled packing and 4-labeled packing

of three copies of C7 and C8 are shown in Figure 5.15 and Figure 5.16, respectively.

Hence, we obtain the following corollary.

Corollary 5.34 Let Cn be a cycle of order at least 7. Then

λ3(Cn) =























3 if n = 7.

4 if n = 8.

8 if n = 14.

⌊n2 ⌋+ ⌊
n−⌊n

2
⌋

3 ⌋ otherwise.
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(a) (b)

Figure 5.16: A 4-labeled packing of three copies of C8: (a) σ1(C8), (b) σ2(C8).

5.3 Conclusion

In this chapter, we have introduced and studied a new graph packing problem,

called labeled packing of graphs. One may consider two important issues: (i) packing

important number of sample graphs (or copies of a given graph) in a complete graph;

or (ii) packing a fixed number (usually two) of non trivial graph in a subgraph of Kn.

Our first contribution opted for the first possibility. In particular, we have studied

the labeled packing number of k copies of cycles, in which the exact value of λk(Cn)

have been shown for all n ≥ 4k− 3. A conjecture was given for the remaining cases.

In the next chapter, we will continue to study the labeled packing of graphs of small

size such as trees and (n, n− 2) graphs.
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This chapter deals with the labeled embedding of trees and (n, n−2)-graphs. In

Section 6.1, we will introduce a new labeled embedding problem called labeled fixed-
point-free embedding of graphs (i.e., a labeled embedding without fixed vertices).

Then we will show that the correlation between this problem and the labeled em-

bedding problem allows to derive some results on λ2(G). In Section 6.2, we present

some results on the labeled embedding number of a tree. Finally, in Section 6.3, an

upper bound on the labeled embedding number of (n, n− 2)-graphs is proposed.

6.1 Labeled fixed-point-free embedding of graphs

In correlation with the labeled embedding number, we introduce a new embedding

problem called labeled fixed-point-free embedding of graphs.

Definition 6.1 Let f be a mapping from V (G) to L = {1, 2, . . . , p}, which is a
labeled embedding of G with p labels under the permutation σ. We say that f is a
labeled fixed-point-free embedding if σ is a fixed-point-free permutation.

The maximum positive integer p for which G admits a labeled fixed-point-free

embedding of G is called the labeled fixed-point-free embedding number and is de-

noted by α2(G).

The following lemma shows an upper bound on α2(G).
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Lemma 6.1 Let G be a graph of order n. If there exists an embedding of G into
Kn, then

α2(G) ≤ ⌊
n

2
⌋.

Proof. We can easily verify that a necessary condition for the existence of p-labeled
fixed-point-free embedding of G is that every label of L occurs at least twice in G,

i.e., the upper bound of α2(G) is reached if and only if we find an embedding of G

having all its cycles of length two (except one of length three if n is odd). Hence,

α2(G) ≤ ⌊n2 ⌋. �

Given a graph G, the following lemma shows a lower bound on λ2(G) in terms of

α2(G) as follows:

Lemma 6.2 Let G be a graph of order n and let X be any set of end vertices of G.
If there exists a fixed-point-free embedding of G[V \X] with p labels into Kn, then

λ2(G) ≥ |X|+ p

Proof. By hypothesis, there exists a permutation σ′ on V (T ) such that σ′ is a

fixed-point-free embedding with p labels. This permutation can be extended to a

permutation σ on G as follows:

σ(x) = x for all x ∈ X and σ(y) = σ′(y) for all y ∈ V \X

From this permutation function, it is clear that for every edge xy ∈ E(G) such that

x ∈ X and y ∈ V \X, we have σ(x)σ(y) /∈ E(G). Hence λ2(G) ≥ |X|+ p. �

We can conclude that the correlation between the two parameters λ2(G) and α2(G)

allows to reach the upper bound of Lemma 5.21 if there is a maximum independent

set in G with only vertices of degree 1.

As we have seen in Lemma 5.23, we can obtain the following lower bound on

α2(G) which is related to the permutation structure.

Lemma 6.3 Let G be a graph. If G has a fixed-point-free embedding σ with p cycles,
then

α2(G) ≥ p.

We note that the parameter α2(G) will be used frequently to prove the main results

of the next section.

6.1.1 Labeled-embedding and labeled fixed-point-free embedding

of paths

We first determine the exact value of the labeled embedding number of paths. It

is done by proving that the upper bound of Lemma 5.21 is reached for all paths of

order at least 5.
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Theorem 6.4 Let Pn be a path of order at least 4. Then

λ2(Pn) =























⌊3n4 ⌋ if n mod 4 = 0, 2, 3 and n > 4,

⌊3n4 ⌋+ 1 if n mod 4 = 1 and n > 5,

3 if n = 5,

1 if n = 4.

Proof. Let Pn = (v1, v2, . . . , vn) be a path of order n where n ≥ 4. We consider

four cases as follows:

Case 1: n mod 4 = 0, 2, 3 and n > 4. From Lemma 5.21, we have λ2(Pn) ≤ ⌊
3n
4 ⌋,

it then suffices to prove that Pn admits a ⌊3n4 ⌋-labeled embedding. Since Pn is a

spanning subgraph of Cn, By putting together Lemma 5.20 and Corollary 5.33, we

get λ2(Pn) ≥ λ2(Cn) = ⌊
3n
4 ⌋.

Case 2: n = 4m+ 1 and m ≥ 2. A mapping f : V (Pn) −→ {1, 2, . . . , ⌊
3n
4 ⌋+ 1} is

defined as follows:

f(v2i+1) = i+ 1 for i = 0 . . . 2m.

f(v2i) = 2m+ i+ 1 for i = 1 . . .m.

f(v2i) = m+ i+ 1 for i = m+ 1 . . . 2m.

Let σ(Pn) be the embedding of Pn in Kn under the permutation σ where

σ(v2i+1) = v2i+1 for i = 0 . . . 2m.

σ(v2i) = v2(m+i) for i = 1 . . .m.

σ(v2i) = v2(i−m) for i = m+ 1 . . . 2m.

This permutation induces the following path:

σ(Pn) = v1, v2m+2, v3, v2m+4 . . . v2m+1, v2, v2m+3, v4, v2m+5 . . . v2m, v4m+1

According to the permutation σ, it is clear that for every vertex vi in V (Pn), we

have f(vi) = f(σ(vi)). It now remains to show that Pn and σ(Pn) are edge-disjoint.

To do so, it suffices to show that:

for every vertex vi of Pn, if σ(vi) = vi then σ(vi+1) /∈ {vi−1, vi+1}.

From the permutation σ, we have σ(vi) = vi if and only if i is odd. Then we

consider four cases for the vertices σ(vi+1) and σ(vi−1):

1. for i = 1, we have σ(v2) = v2m+2.

2. for i = 3, 5, . . . 2m−1, we have vi−1, vi+1 ∈ {v2, v4, . . . , v2m} and σ(vi−1), σ(vi+1) ∈

{v2m+2, v2m+4, . . . , v4m}.

3. for i = 2m+ 1, we have σ(v2m) = v4m and σ(v2m+2) = v2.
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4. for i = 2m+3, . . . 4m−3, we have vi−1, vi+1 ∈ {v2m+2, v2m+4, . . . , v4m−2} and

σ(vi−1), σ(vi+1) ∈ {v2, v4, . . . , v2m−2}.

5. for i = 4m− 1, we have σ(v4m) = v2m.

According to the previous observations, we get that E(Pn) ∩ E(σ(Pn)) = ∅ for

m ≥ 2, thus the mapping f is a (⌊3n4 ⌋+ 1)-labeled-embedding of Pn.

Case 3: n = 5. We first prove that λ2(P5) < 4. We assume that there ex-

ists a mapping f : V (P5) −→ L = {1, 2, 3, 4} which is 4-labeled embedding of

P5. We can easily see that the existence of this 4-labeled embedding requires the

existence of three independent vertices v1, v3 and v5 colored with three different

labels {c1, c2, c3} ⊂ L, then the two vertices v2 and v4 are colored with the same

label of L \ {c1, c2, c3}. We can easily see that this coloring scheme is not 4-labeled

embedding of P5 which is a contradiction with the hypothesis. We conclude that

λ2(Pn) < 4. It then remains to show that λ2(P5) = 3. This is proved by Figure 6.1.

Figure 6.1: A 3-labeled embedding of P5.

Case 4: n = 4. We can easily see that there is an unique embedding of P4 into

K4 (Figure 6.2). This embedding scheme gives λ2(P4) = 1. �

Figure 6.2: A 1-labeled embedding of P4.

We now study the labeled fixed-point-free embedding number of paths. This

result is crucial for the proof of our result in the next section.

Theorem 6.5 Let Pn be a path of order at least 4, then

α2(Pn) =

{

⌊n2 ⌋ if n > 5,

1 if n = 4, 5.

Proof. Let Pn = (v1, v2, . . . , vn) be a path of order n where n ≥ 4. We consider

two cases depending on whether n > 5 or n ≤ 5.

Case 1: n > 5. From Lemma 6.1, we know that α(Pn) ≤ ⌊
n
2 ⌋. It now suffices to

prove that Pn admits a ⌊n2 ⌋-labeled fixed-point-free embedding into Kn. We consider

two subcases as follows:

Subcase 1: n is even. We divide P into three subpaths as follows:
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P 1 = (v1, v2, . . . , vn
2
−3) = (x1, x2, . . . , xn

2
−3).

P 2 = (vn
2
−2, vn

2
−1, . . . , vn

2
+3) = (y1, y2, . . . , y6).

P 3 = (vn
2
+4, vn

2
+5, . . . , vn) = (z1, z2, . . . , zn

2
−3).

We define the permutation σ of P as follows:

σ(P ) = (y1, y3)(y2, y5)(y4, y6)(x1, z1)(x2, z2)(x3, z3) . . . (xn
2
−3, zn

2
−3).

It is clear that all cycles of σ have length two. Hence, we have α2(Pn) =
n
2 if n is

even.

Subcase 2: n is odd. In this case the path P is divided as follows:

P 1 = (v1, v2, . . . , vn−7
2
) = (x1, x2, . . . , xn−7

2
).

P 2 = (vn−7
2

+1, vn−7
2

+2, . . . , vn−7
2

+7) = (y1, y2, . . . , y7).

P 3 = (vn−7
2

+8, vn−7
2

+9, . . . , vn) = (z1, z2, . . . , zn−7
2

−3).

We define the permutation σ of P as follows:

σ(P ) = (y1, y3)(y2, y5)(y4, y6, y7)(x1, z1)(x2, z2)(x3, z3) . . . (xn−7
2
, zn−7

2
).

Hence, we have α2(Pn) =
n−1
2 if n is odd.

Case 2: n = 4, 5. Using the same proof idea as in the proof of Theorem 6.4 (Case

4), we show that α2(P4) = α2(P5) = 1. �

6.1.2 Labeled embedding of caterpillars

A caterpillar is a tree which becomes a path when all its end vertices are removed.

The following theorem shows the exact value of the embedding number of caterpil-

lars.

Theorem 6.6 Let C be a non-star caterpillar of order n with n ≥ 4 and let I be a
maximum independent set of C. Then

λ2(C) =























|I|+ ⌊n−|I|
2
⌋ if |V \ I| ≥ 5 or if C is isomorphic to one of the graphs

of Figure 6.3,

|I|+ ⌊n−|I|
2
⌋ − 1 if C is isomorphic to one of the graphs of Figure 6.4,

|I|+ ⌊n−|I|
2
⌋ − 2 if C is isomorphic to one of the graphs of Figure 6.5.

Proof. Let C be a non-star caterpillar; a maximum independent set I of C can be

computed as follows: let I = S1 ∪ S2, where S1 is the set of vertices with degree

one in C and S2 is a maximum independent set of the subgraph of C induced by

the vertices of degree two. Then, it follows from this construction that the vertices

of V \ I belong to the central path of C. Hence, we can deduce the following

observation:
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(a)

(b)

(c)

(d)

>0 >=0

v2
v

3 v4 v5

>0
v1

(e)

(f) (g)

>0

v1
v

2 v3 v4

>0>0
v5

(h)

Figure 6.3: Caterpillars with λ2(G) = |I|+ ⌊n−|I|
2 ⌋

Observation 6.7 The induced subgraph G[V \ I] is a set of paths.

Let f be a vertex labeling of C and let σ(C) be an embedding of C into Kn

under the permutation σ. We distinguish three cases according to the cardinality

of V \ I as follows:

Case 1: |V \ I| ≥ 5 or C is isomorphic to one of the graphs of Figure. 6.3. From

Lemma 5.21, we have λ2(C) ≤ |I|+ ⌊n−|I|
2 ⌋, it then suffices to prove that C admits

a (|I|+ ⌊n−|I|
2 ⌋)-labeled embedding. Three subcases are considered as follows:
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>1 >0

v2
v

3 v4

>1
v1

(a)

>1

v
1 v2 v3

>0

v
4

>1>0
v

5

(b) (c)

(d)

Figure 6.4: Caterpillars with λ2(G) = |I|+ ⌊n−|I|
2 − 1⌋

>0 >0

v2
v

3

v1 v4

(a)

>1 >1

v2
v

3 v4

v1

(b)

Figure 6.5: Caterpillars with λ2(G) = |I|+ ⌊n−|I|
2 − 2⌋

Subcase 1: |V \ I| ≥ 6. Let H = C[V \ I]. The vertices of I are considered as

fixed points under σ, i.e., for every vertex v of I, σ(v) = v and f(v) = f(σ(v)). Let

P = (v1, v2, . . . , vm) be the central path of C. We augment the edge set E(H) by

connecting the two vertices vi−1, vi+1 for all i such that vi ∈ I. Since vi is a fixed

point, the edge vi−1, vi+1 allows to avoid the following situation: σ(vi−1) = vi+1 or

σ(vi+1) = vi−1. From Observation 6.7, the induced subgraph H is a path of order

at least 6. Then, we can derive from Theorem 6.5 a ⌊ |V \I|
2 ⌋-labeled fixed-point-free

embedding of H. Therefore, we obtain by Theorem 6.2 that λ2(T ) = |I|+ ⌊n−|I|
2 ⌋.

Subcase 2: |V \ I| = 5. From Observation 6.7, we have that C[V \ I] is a set of

paths. We create a path H as follows: let H = C[V \ I] ∪ {v}, where v is a vertex

of I which is adjacent to an end-vertex of C[V \ I]. Then, the subgraph H is a set

of paths of order 6. From Theorem 6.5, we know that α2(C[V \ I]) = 3. Hence we

obtain from Lemma 6.2 that λ2(C) = |I|+ 2.

Subcase 3: C is isomorphic to one of the graphs of Figure. 6.3. We consider eight

cases depending on the structure of C. Let L be the set of end vertices in C.

1. Figure 6.3(a): let S = L ∪ {v4} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v3) = m+ 1 and f(v2) = f(v5) = m+ 2,
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σ(v1) = v3, σ(v3) = v1, σ(v2) = v5 and σ(v5) = v2.

2. Figure 6.3(b): let S = L ∪ {v3, v5} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v4) = m+ 1 and f(v2) = f(v6) = m+ 2.

σ(v1) = v4, σ(v4) = v1, σ(v2) = v6 and σ(v6) = v2.

3. Figure 6.3(c): let S = L ∪ {v2, v4, v6} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v5) = m+ 1 and f(v3) = f(v7) = m+ 2.

σ(v1) = v5, σ(v5) = v1, σ(v3) = v7 and σ(v7) = v3.

4. Figure 6.3(d): let S = L ∪ {v2, v5} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v4) = m+ 1, f(v3) = f(v6) = m+ 2 .

σ(v1) = v4, σ(v4) = v1, σ(v3) = v6 and σ(v6) = v3.

5. Figure 6.3(e): let S = (L \ {v1}) ∪ {v4} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v3) = m+ 1 and f(v2) = f(v5) = m+ 2.

σ(v1) = v3, σ(v3) = v1, σ(v2) = v5 and σ(v5) = v2.

6. Figure 6.3(f): let S = L ∪ {v4} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v3) = m+ 1 and f(v2) = f(v5) = m+ 2.

σ(v1) = v3, σ(v3) = v1, σ(v2) = v5, and σ(v5) = v2.

7. Figure 6.3(g): let S = (L \ {v1, v5}) ∪ {v4} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v3) = m+ 1 and f(v2) = f(v5) = m+ 2.

σ(v1) = v3, σ(v3) = v1 ,σ(v2) = v5, and σ(v5) = v2.

8. Figure 6.3(h): let S = (L \ {v5}) ∪ {v4} = {u1, u2, . . . , um},
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For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v3) = m+ 1 and f(v2) = f(v5) = m+ 2.

σ(v1) = v3, σ(v2) = v5, σ(v3) = v1 and σ(v5) = v2.

Case 2: C is isomorphic to one of the graphs of Figure 6.4. We can easily check

that λ2(C) ≤ |I|+⌊n−|I|
2 ⌋−1. It then suffices to prove that λ2(C) ≥ |I|+⌊n−|I|

2 ⌋−1

for every graph of Figure 6.4.

1. Figure 6.4(a): let S = L \ {v1} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v2) = f(v3) = f(v4) = m+ 1.

σ(v1) = v3, σ(v2) = v1, σ(v3) = v4 and σ(v4) = v2.

2. Figure 6.4(b): let S = L{u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v2) = f(v3) = f(v4) = m+ 1.

σ(v1) = v3, σ(v2) = v1, σ(v3) = v4 and σ(v4) = v2.

3. Figure 6.4(c): let S = (L ∪ {v1, v5}) ∪ {v2} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v4) = m+ 1, f(v3) = f(v5) = m+ 2.

σ(v1) = v4, σ(v4) = v1, σ(v3) = v5 and σ(v5) = v3.

4. Figure 6.4(d): let S = (L \ ∪{v3} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v2) = f(v3) = f(v4) = m+ 1.

σ(v1) = v3, σ(v2) = v1, σ(v3) = v4 and σ(v4) = v2.

Case 3: C is isomorphic to one of the graphs of Figure 6.5. In this case, we can

also check that λ2(C) ≤ |I| + ⌊n−|I|
2 ⌋ − 2. It then suffices to prove that λ2(T ) ≥

|I|+ ⌊n−|I|
2 ⌋ − 2 for every graph of Figure 6.5.

1. Figure 6.5(a): let S = L \ {v1, v4} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v2) = f(v3) = f(v4) = m+ 1.

σ(v1) = v2, σ(v2) = v4, σ(v3) = v1 and σ(v4) = v3.
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2. Figure 6.5(b): let S = L \ {v1} = {u1, u2, . . . , um},

For every vertex ui of S, f(ui) = i and σ(ui) = ui.

f(v1) = f(v2) = f(v3) = f(v4) = m+ 1.

σ(v1) = v2, σ(v2) = v4, σ(v3) = v1 and σ(v4) = v3.

�

6.2 Labeled embedding of trees

In this section, we intend to prove a lower bound on the labeled embedding number

of general trees.

Theorem 6.8 Let T be a non-star tree of order n and let X be the set of end-vertices
of T , then

λ2(T ) ≥ max(|X|+ ⌊n−|X|
2 ⌋ − 1, ⌊3n4 ⌋ − 2) if T \X 6= K1,n−1,

λ2(T ) ≥ ⌊3n4 ⌋ − 2 otherwise.

The lower bound of the previous theorem relies on two main theorems (Theorem

6.10 and Theorem 6.11). We first introduce the following notation to simplify our

proofs. Let T = (V,E) be a graph of order n. For a vertex v ∈ V , let d(v) denote

its degree and let diam(T ) denote the diameter of T . A permutation σ of V (T ) will

be called good for T if and only if:

1. σ is an embedding of T .

2. σ has at least ⌊3n4 ⌋ − 2 cycles.

3. for every pair of end-vertices (u, v) in T , we have σ(u) 6= v and σ(v) 6= u.

Thus, to prove that λ2(T ) ≥ ⌊3n4 ⌋ − 2, it suffices to show that T admits a good

permutation. Finally, for a vertex v of T , let Tv be the subtree rooted at v and let

V (Tv) denote the set of vertices of Tv. At the beginning, we prove the following

theorem which will be useful for the proof of Theorem 6.10.

Theorem 6.9 Let T be a tree of order n and diameter 4, then there exists an
embedding σ of T such that σ is good.

Proof. If T is a caterpillar, then we have by Theorem 6.6 that λ2(T ) ≥ ⌊3n4 ⌋ − 2.

In the other case, the level 2 of T contains at least three vertices of degree greater

than 1 (see Figure 6.6). Let U = {u1, u2, . . . , um} be the set of vertices of T with

degree at least 2 except x and y. Let σ(T ) be an embedding of T into Kn under the

permutation σ where
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σ(x) = t, σ(t) = x, σ(y) = v and σ(v) = y.

For every vertex u of degree 1 in T , where u /∈ {t, v}, σ(u) = u.

For every vertex ui ∈ U , σ(ui) =

{

u(i+1) mod m if i is odd ,

ui−1 otherwise.

From this permutation scheme, we can see that the number of cycles of σ is at least

|X|+⌊n−|X|
2 ⌋−1, where X is the set of end-vertices of T . Since for a tree of diameter

4, |X| ≥ ⌊n−1
2 ⌋, we get |X|+ ⌊n−|X|

2 ⌋− 1 ≥ ⌊3n4 ⌋− 2. Hence, σ is good permutation

of T . �

Figure 6.6: A tree of diameter 4.

The following theorem gives our first lower bound on the labeled embedding number

of general trees.

Theorem 6.10 Let T = (V,E) be a tree of order n. If T 6= K1,n−1, then there
exists an embedding σ of T such that σ is good.

Proof. The proof is done by induction on the number of vertices n. For n = 4,

there is only one tree which is not a star, namely P4. By Theorem 6.4, we have

λ2(P4) = 1. Then, our theorem is true for n = 4. Let n ≥ 5 and suppose that the

theorem has been proved for all n′ < n. We shall consider two main cases as follows:

Case 1: diam(T ) = 3. We choose a set of vertices X ⊂ V such that T \X = P4.

The induction hypothesis guarantees the existence of a good permutation σ′ on P4.

We can easily see that σ′ is fixed-point-free permutation. Then, σ′ can be extended

to a good permutation σ of T as follows: for every vertex x ∈ X,σ(x) = x. Hence

σ is a good permutation of T .

Case 2: diam(T ) = 4. It follows by Theorem 6.9 that λ2(T ) ≥ ⌊3n4 ⌋ − 2.

Case 3: diam(T ) ≥ 5. We choose D = (u1, u1, . . . , um) as a diameter of T and we

root T at a vertex r /∈ (V (Tu2) ∪ V (Tum−1)) as shown in Figure 6.7.

Two main subcases are considered as follows:

Subcase 3.1: d(u2) = 2 or d(um−1) = 2. Wlog, assume that d(u2) = 2. We

consider the tree T ′ = T \ (V (Tu2) ∪ V (Tum−1)). We can easily see that if T ′ is a

star then T is a caterpillar. Hence we have by Theorem 6.6 that λ2(T ) ≥ ⌊3n4 ⌋ − 2.

We Suppose now that T ′ 6= K1,m−1, then the induction hypothesis guarantees the

existence of a good permutation σ′ on V (T ′). Let us we consider the following
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proposition: ∗ : σ(u3) = um−2 or σ(um−2) = u3. The permutation σ′ can be ex-

tended to a good permutation σ of T as follows:

for every vertex v ∈ (V (Tu2) ∪ V (Tum−1)) \ {u1, u2, um−1}, σ(v) = v.

For every vertex v ∈ V (T ′), σ(v) = σ′(v).

σ(u2) =

{

u2 if ∗ holds,

um−1 otherwise.
σ(um−1) =

{

u1 if ∗ holds,

u2 otherwise.

σ(u1) =

{

um−1 if ∗ holds,

u1 otherwise.

um-2

um-1

um

u3

u2

u1

x
1

u4 um-3

r

y
1

Figure 6.7: Tree notation.

From this permutation scheme, we obtain the following equation:

λ2(T ) ≥ λ2(T ′) + |V (Tu2)|+ |V (Tum−1)| − 1.

By hypothesis, we have that λ2(T ′) ≥ ⌊3n
′

4 ⌋ − 2, and thus

λ2(T ) ≥ ⌊3(n−|V (Tu2)|−|V (Tum−1)|)
4 ⌋+ |V (Tu2)|+ |V (Tum−1)| − 3.

Since |V (Tu2)| + |V (Tum−1)| ≥ 4, we get λ2(T ) ≥ ⌊3n4 ⌋ − 2. Hence σ is a good

permutation of T .

Subcase 3.2: d(u2) ≥ 3 and d(um−1) ≥ 3. Three cases are considered as follows:

(a) diam(Tu3) = 4 or diam(Tum−2) = 4. Wlog, assume that diam(Tu3) = 4. We

consider the tree T ′ = T \ (V (Tu2)∪V (Tx1)∪V (Tum−1)). If T ′ is a star, then T is

isomorphic to one of the graphs of Figure 6.8. In this case, we choose a set of vertices

X ⊂ V such that T \X = (u1, u2, u3, u4). The induction hypothesis guarantees the

existence of a good permutation σ′ on (u1, u2, u3, u4). We can easily see that σ′ is

fixed-point-free permutation. Then, σ′ can be extended to a good permutation σ of

T as follows: σ(x) = u5, σ(u5) = x and for every vertex v ∈ X \ {x, u5}, σ(v) = v.

Hence σ is a good permutation of T .

We suppose now that T ′ 6= K1,m−1, then the induction hypothesis guarantees the

existence of a good permutation σ′ on V (T ′). The permutation σ′ can be extended

to a good permutation σ of T as follows:

for every vertex v ∈ (V (Tu2)∪ V (Tx1)∪ V (Tum−1)) \ {u1, u2, x1, um−1}, σ(v) = v.

For every vertex v ∈ V (T ′), σ(v) = σ′(v).
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Figure 6.8: Forbidden graphs

σ(u2) =

{

x1 if ∗ holds,

um−1 otherwise.
σ(um−1) =

{

u1 if ∗ holds,

u2 otherwise.

σ(x1) =

{

u2 if ∗ holds,

u1 otherwise.
σ(u1) =

{

um−1 if ∗ holds,

x1 otherwise.
From this permutation scheme, we obtain the following equation:

λ2(T ) ≥ λ2(T ′) + |V (Tu2)|+ |V (Tx1)|+ |V (Tum−1)| − 2.

By hypothesis, we have that λ2(T ′) ≥ ⌊3n
′

4 ⌋ − 2, and thus

λ2(T ) ≥ ⌊3(n−|V (Tu2)|−|V (Tx1)|−|V (Tum−1)|)
4 ⌋+ |V (Tu2)|+ |V (Tx1)|+ |V (Tum−1)|−4.

Since |V (Tu2)|+ |V (Tx1)|+ |V (Tum−1)| ≥ 8, we get λ2(T ) ≥ ⌊3n4 ⌋ − 2. Hence σ is

a good permutation of T .

(b) diam(Tu3) = 3 or diam(Tum−2) = 3. Wlog, assume that diam(Tu3) = 3. We

consider the tree T ′ = T \ (V (Tu3) ∪ V (Tum−1)). We can easily see that if T ′ is a

star then T is a caterpillar. Hence we have by Theorem 6.6 that λ2(T ) ≥ ⌊3n4 ⌋ − 2.

We Suppose now that T ′ 6= K1,m−1, then the induction hypothesis guarantees the

existence of a good permutation σ′ on V (T ′). The permutation σ′ can be extended

to a good permutation σ of T as follows:

σ(u1) = u3, σ(u3) = u1, σ(u2) = um−1 and σ(um−1) = u2.

for every vertex v ∈ (V (Tu3) ∪ V (Tum−1)) \ {u1, u2, u3, um−1}, σ(v) = v.

for every vertex v ∈ V (T ′), σ(v) = σ′(v).

From this permutation scheme, we obtain the following equation:

λ2(T ) ≥ λ2(T ′) + |V (Tu3)|+ |V (Tum−1)| − 2.

By hypothesis, we have that λ2(T ′) ≥ ⌊3n
′

4 ⌋ − 2 and thus

λ2(T ) ≥ ⌊3(n−|V (Tu3)|−|V (Tum−1)|)
4 ⌋+ |V (Tu3)|+ |V (Tum−1)| − 4.

Since |V (Tu3)| + |V (Tum−1)| ≥ 8, we get λ2(T ) ≥ ⌊3n4 ⌋ − 2. Hence σ is a good

permutation of T .

(c) diam(Tu3) = 2 and diam(Tum−2) = 2. Consider the tree T ′ = T \ (V (Tu2) ∪

V (Tum−1)). We can easily see that if T ′ is a star then T is a caterpillar. Hence we

have by Theorem 6.6 that λ2(T ) ≥ ⌊3n4 ⌋ − 2. We Suppose now that T ′ 6= K1,m−1,

then the induction hypothesis guarantees the existence of a good permutation σ′ on

V (T ′). Since u2 and um−1 are two end-vertices in T ′, we get by the property (4)

of σ′ that σ′(u2) 6= um−1 and σ′(um−1) 6= u2. Then, the permutation σ′ can be

extended to a good permutation σ of T as follows:
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σ(u2) = um−1 and σ(um−1) = u2.

for every vertex v ∈ (V (Tu2) ∪ V (Tum−1)) \ {u2, um−1}, σ(v) = v.

for every vertex v ∈ V (T ′), σ(v) = σ′(v).

From this permutation scheme, we obtain the following equation:

λ2(T ) ≥ λ2(T ′) + |V (Tu2)|+ |V (Tum−1)| − 1.

By hypothesis, we have that λ2(T ′) ≥ ⌊3n
′

4 ⌋ − 2 and thus

λ2(T ) ≥ ⌊3(n−|V (Tu2)|−|V (Tum−1)|
4 ⌋+ |V (Tu2)|+ |V (Tum−1)| − 3.

Since |V (Tu2)| + |V (Tum−1)| ≥ 6, we get λ2(T ) ≥ ⌊3n4 ⌋ − 2. So σ is a good

permutation of T . �

We now give a second lower bound on λ2(T ) that depends on the number of end-

vertices of T .

Theorem 6.11 Let T be a tree of order n and let X be the set of end-vertices of
T . If T \X 6= K1,n−1, then

λ2(T ) ≥ |X|+ ⌊
n− |X|

2
⌋ − 1.

We can clearly see that Theorem 6.11 can be proved as a consequence of Lemma

6.2 and the following theorem.

Theorem 6.12 Let T = (V,E) be a non star tree of order n, then

α2(T ) ≥ ⌊
n

2
⌋ − 1.

In the following, a permutation σ of V (T ) will be called good for T if and only if:

1. σ is an fixed-point-free embedding of T .

2. σ has at least ⌊n2 ⌋ − 1 cycles.

Using the same proof technique as in Theorem 6.9, we can show the following:

Theorem 6.13 Let T be a tree of order n and diameter 4, then

α2(T ) ≥ ⌊
n

2
⌋ − 1.

Proof of Theorem 6.12. The proof is done by induction on the number of ver-

tices n. The theorem is true for n = 4, 5. Let n ≥ 6 and suppose that the theorem

has been proved for all n′ < n. We shall consider four main cases as follows:

Case 1: diam(T ) = 3. We use the notation of Figure 6.9 which represents a double

star with two non leaf vertices. Three subcases are considered as follows:

Subcase 1: d(v2) ≥ 4 or d(v3) ≥ 4. Wlog, assume that d(v2) ≥ 4. Then, let x1
and x2 be two end-vertices adjacent to v2. Consider the tree T ′ = T \ {x1, x2}.

Thus, the induction hypothesis guarantees the existence of a good permutation σ′

on V (T ′). This permutation can be extended to a good permutation σ of T as
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Figure 6.9: A double star notation.

follows: σ(x1) = x2, σ(x2) = x1 and for every vertex v ∈ V (T ′), σ(v) = σ′(v).

Subcase 2: d(v2) = 3 and d(v3) = 3. We consider the tree T ′ = T \{x1, y1} = P4.

We know that there exists a good permutation σ′ on V (T ′) such that σ(v2) 6= v3
and σ(v3) 6= v2. This permutation can be extended to a good permutation σ of T

as follows: σ(x1) = y1, σ(y1) = x1 and for every vertex v ∈ V (T ′), σ(v) = σ′(v).

Case 2: diam(T ) = 4. It follows by Theorem 6.13 that α2(T ) ≥ ⌊n2 ⌋ − 1.

Case 3: diam(T ) ≥ 5. Two subcases are considered as follows:

Subcase 3.1: there exists a vertex v in T such that v is adjacent to at least two
end vertices of T . Let x and y be two end vertices of T which is adjacent to v.

Consider the tree T ′ = T \ {x, y}. Thus, the induction hypothesis guarantees the

existence of a good permutation σ′ on V (T ′). This permutation can be extended to

a good permutation σ of T as follows: σ(x) = y and σ(y) = x. Hence σ is a good

permutation of T .

Subcase 3.2: For every vertex v of T , v is adjacent is adjacent to at most one end
vertex of T . We choose D = (u1, u1, . . . , um) as a diameter of T and we root T at a

vertex r /∈ (V (Tu2)∪ V (Tum−1)). Three cases are considered according to whether

diam(Tu3) = 4, 3 or 2.

(a): diam(Tu3) = 4. The vertex u3 has at least two children vertices of degree 2 (see

Figure 6.10). Consider the tree T ′ = T \ {x1, y1, x2, y2, um−1, um}. Suppose that

x
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u1y
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x
2

y
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Figure 6.10: Tu3

T ′ 6= K1,m−1, the case where T ′ = K1,m−1 is left to the reader. Thus, the induc-

tion hypothesis guarantees the existence of a good permutation σ′ on V (T ′). This

permutation can be extended to a good permutation σ of T as follows: σ(x1) = x2,

σ(x2) = x1, σ(y1) = um, σ(um) = y1, σ(y2) = um−1, σ(um−1) = y2 and for every

vertex v ∈ V (T ′), σ(v) = σ′(v). Hence σ is a good permutation of T .

(b): diam(Tu3) = 3. In this case, the vertex u3 is adjacent to two children vertices:

an internal vertex u2 and an end vertex x. Consider the tree T ′ = T \{u1, u2, x, um}.

Suppose that T ′ 6= K1,m−1, the case where T ′ = K1,m−1 is left to the reader.

Thus, the induction hypothesis guarantees the existence of a good permutation σ′

on V (T ′). This permutation can be extended to a good permutation σ of T as
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follows: σ(u1) = um, σ(um) = u1, σ(x) = u2, σ(u2) = x and for every vertex

v ∈ V (T ′), σ(v) = σ′(v). Hence σ is a good permutation of T .

(c): diam(Tu3) = 2. Consider the tree T ′ = T \ {u1, u2, u3, um}. Suppose that

T ′ 6= K1,m−1, the case where T ′ = K1,m−1 is left to the reader. Thus, the induc-

tion hypothesis guarantees the existence of a good permutation σ′ on V (T ′). This

permutation can be extended to a good permutation σ of T as follows: σ(u1) = u3,

σ(u3) = u1, σ(u2) = um, σ(um) = u2 and for every vertex v ∈ V (T ′), σ(v) = σ′(v).

Hence σ is a good permutation of T .

�

6.3 Labeled embedding of (n, n− 2) graphs

In this section, a permutation σ on V (G) is said to be a good permutation for G if σ

is an embedding of G and the number of its cycle is at least ⌊2n3 ⌋. So we will prove

that if |E(G)| ≤ n− 2 then there exists a good permutation for G. More formally,

we have to prove that.

Theorem 6.14 Let G be a (n, n− 2) graph, then λ2(G) ≥ ⌊2n3 ⌋.

Proof. The proof is by induction on n. Without loss of generality, we can as-

sume that |E(G)| = n − 2, the theorem is true for n = 3, 4, 5. Assume it is true

for every graph of order n′ < n, where n′ ≥ 6. The components of G must in-

clude at least two non-trivial trees T and H. Let D1 = (x1, x2, . . . , xp−1, xp) and

D2 = (y1, y2, . . . , yq−1, yq) be the diameter of T and H, respectively. We root T and

H at the leaves xp and yq, respectively. We shall consider four main cases as follows:

Case 1: p, q ≥ 4. We consider three subcases as follows:

Subcase 1.1: d(x2) = 2 or d(y2) = 2. Wlog, assume that d(x2) = 2. Consider

the graph G′ = G\ (V (Tx2)∪V (Hy2)). So the induction hypothesis guarantees the

existence of a good permutation σ′ on V (G′). The permutation σ′ can be extended

to a good permutation σ of G as follows:

for every vertex v ∈ (V (Tx2) ∪ V (Hy2)) \ {x1, x2, y2}, σ(v) = v.

For every vertex v ∈ V (G′), σ(v) = σ′(v).

σ(x2) =

{

x2 if σ′(x3) = y3,

y2 otherwise.
σ(y2) =

{

x1 if σ′(x3) = y3,

x2 otherwise.

σ(x1) =

{

y2 if σ′(x3) = y3,

x1 otherwise.
From this permutation scheme, we obtain the following equation:

λ2(G) ≥ λ2(G′) + |V (Tx2)|+ |V (Hy2)| − 1.

By hypothesis, we have that λ2(G′) ≥ ⌊2n
′

3 ⌋, then

λ2(G) ≥ ⌊2(n−|V (Tx2)|−|V (Hy2)|)
3 ⌋+ |V (Tx2)|+ |V (Hy2)| − 1.
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By hypothesis, we have that |V (Tx2)| + |V (Hy2)| ≥ 4, hence λ2(G) ≥ ⌊2n3 ⌋. So σ

is a good permutation of G.

Subcase 1.2: d(x2) ≥ 3 and d(y2) ≥ 3. Three cases are considered as follows:

(a) diam(x3) = 4 or diam(y3) = 4. Wlog, assume that diam(Tx2) = 4 (see Figure

6.11). Consider the graph G′ = G \ (V (Tx2)∪ V (Tz1)∪ V (Hy2)). So the induction

hypothesis guarantees the existence of a good permutation σ′ on V (G′). The per-

mutation σ′ can be extended to a good permutation σ of G as follows:

for every vertex v ∈ (V (Tx2) ∪ V (Tz1) ∪ V (Hy2)) \ {x1, x2, z1, y2}, σ(v) = v.

For every vertex v ∈ V (G′), σ(v) = σ′(v).

σ(x2) =

{

z1 if σ′(x3) = y3,

y2 otherwise.
σ(y2) =

{

x1 if σ′(x3) = y3,

x2 otherwise.

σ(x1) =

{

y2 if σ′(x3) = y3,

z1 otherwise.
σ(z1) =

{

x2 if σ′(x3) = y3,

x1 otherwise.

From this permutation scheme, we obtain the following equation:

λ2(G) ≥ λ2(G′) + |V (Tx2)|+ |V (Tz1)|+ |V (Hy2)| − 2.

By hypothesis, we have that λ2(G′) ≥ ⌊2n
′

3 ⌋, then

λ2(G) ≥ ⌊2(n−|V (Tx2)|−|V (Tz1)|−|V (Hy2)|)
3 ⌋+ |V (Tx2)|+ |V (Tz1)|+ |V (Hy2)| − 2.

By hypothesis, we have that |V (Tx2)| + |V (Tz1)| + |V (Hy2)| ≥ 8, hence λ2(G) ≥

⌊2n3 ⌋. So σ is a good permutation of G.

x 3
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Figure 6.11: Tx3.

(b) diam(x3) = 3 or diam(y3) = 3. Wlog, assume that diam(Tx2) = 3. Consider

the graph G′ = G\ (V (Tx3)∪V (Hy2)). So the induction hypothesis guarantees the

existence of a good permutation σ′ on V (G′). The permutation σ′ can be extended

to a good permutation σ of G as follows:

σ(x1) = x3, σ(x3) = x1, σ(x2) = y2 and σ(y2) = x2.

for every vertex v ∈ (V (Tx3) ∪ V (Hy2)) \ {x1, x2, x3, y2}, σ(v) = v.

for every vertex v ∈ V (G′), σ(v) = σ′(v).

From this permutation scheme, we obtain the following equation:

λ2(G) ≥ λ2(G′) + |V (Tx3)|+ |V (Hy2)| − 2.

By hypothesis, we have that λ2(G′) ≥ ⌊2n
′

3 ⌋, then

λ2(T ) ≥ ⌊2(n−|V (Tx3)|−|V (Hy2)|)
3 ⌋+ |V (Tx3)|+ |V (Hy2)| − 2.

By hypothesis, we have that |V (Tx3)| + |V (Hy2)| ≥ 8, hence λ2(G) ≥ ⌊2n3 ⌋. So σ
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is a good permutation of G.

(c) diam(x3) = 2 and diam(y3) = 2. consider the graph G′ = G\(V (Tx3)∪V (Hy3)).

So the induction hypothesis guarantees the existence of a good permutation σ′ on

V (G′). The permutation σ′ can be extended to a good permutation σ of G as

follows:

σ(x3) = y1, σ(y1) = x3, σ(x1) = y3 and σ(y3) = x1.

for every vertex v ∈ (V (Tx3) ∪ V (Hy3)) \ {x1, x3, y1, y3}, σ(v) = v.

for every vertex v ∈ V (G′), σ(v) = σ′(v).

From this permutation scheme, we obtain the following equation:

λ2(G) ≥ λ2(G′) + |V (Tx3)|+ |V (Hy3)| − 2.

By hypothesis, we have that λ2(G′) ≥ ⌊2n
′

3 ⌋, then

λ2(G) ≥ ⌊2(n−|V (Tx3)|−|V (Hy3)|)
3 ⌋+ |V (Tx3)|+ |V (Hy3)| − 2.

By hypothesis, we have that |V (Tx3)| + |V (Hy3)| ≥ 8, hence λ2(G) ≥ ⌊2n3 ⌋. So σ

is a good permutation of G.

Case 2: (p = 3 and q ≥ 3) or (p ≥ 3 and q = 3). Wlog, assume that p = 3. Two

subcases are considered as follows:

Subcase 2.1: d(x2) = 2 or d(y2) = 2. This case follows easily using the same

induction scheme as in Subcase 1.1.

Subcase 2.2: d(x2) ≥ 3 and d(y2) ≥ 3. Consider the graph G′ = G\ (T ∪{y1, y2}).

So the induction hypothesis guarantees the existence of a good permutation σ′ on

V (G′). The permutation σ′ can be extended to a good permutation σ of G as

follows:

σ(x3) = x1, σ(x1) = x3, σ(x2) = y2 and σ(y2) = x2.

for every vertex v ∈ V (T ) \ {x1, x2, x3, y1, y2}, σ(v) = v.

for every vertex v ∈ V (G′), σ(v) = σ′(v).

From this permutation scheme, we obtain the following equation:

λ2(G) ≥ λ2(G′) + |V (T )|.

By hypothesis, we have that λ2(G′) ≥ ⌊2n
′

3 ⌋, then

λ2(G) ≥ ⌊2(n−|V (T )|−2)
3 ⌋+ |V (T )|.

By hypothesis, we have that |V (T )| ≥ 5, hence λ2(G) ≥ ⌊2n3 ⌋. So σ is a good

permutation of G.

Case 3: G has a star Sm. Let v be the root vertex of Sm and let u 6= v be a vertex

of degree 2 of G. Consider the graph G′ = G \ (V (Sm) ∪ {u}). Then there exists a

good permutation for G′, say σ′. Putting σ(u) = v, σ(v) = u, for every leaf vertex

x ∈ V (Sm), σ(x) = x and for x ∈ V (G′), σ(x) = σ′(x) we get a good permutaion

for G.
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Case 4: all previous cases are not satisfied. In this case G contains only isolated

vertices (at least two) and non-tree components. Two subcases are considered as

follows:

Subcase 4.1: G has a vertex x of degree at least 3. Let u, v be two isolated vertices

of G. Consider the graph G′ = G \ {u, v, x}). Then there exists a good permuta-

tion for G′, say σ′. Putting σ(u) = u, σ(v) = x, σ(x) = v and for y ∈ V (G′),

σ(y) = σ′(y) we get a good permutaion for G.

Subcase 4.2: all the components of G are cycles and isolated vertices. In this case

we can easily show that G has a good permutation.

From the proof above, we can conclude that λ2(G) ≥ ⌊2n3 ⌋. �

To improve Theorem 6.14, we propose the following conjecture which is probably

true but it seems difficult to prove it!

Conjecture 6.15 Let G be a graph of order n, if |E(G)| ≤ n− 2, then

λ2(G) ≥ ⌊
3n

4
⌋ − 2

6.4 Conclusion

In this chapter, we have studied the labeled embedding of trees and (n, n−2) graphs.

In particular, we have proved the exact value of the labeled embedding number of

paths and caterpillars. We have also shown the interest to study the fixed-point-free

labeled embedding in order to improve the lower bound of the labeled embedding

number of general trees and (n, n− 2) graphs.

We end this part by reflecting on the applicability of labeled packing to the

graph matching problem. If we consider the example of XML documents that are

modeled as ordered labeled trees, we can see that querying an XML document is

equivalent to searching an embedding of the query in the data tree. Therefore,

it would be interesting to exploit tree embedding techniques in order to define a

coherent similarity measure between two labeled trees. The XML pattern matching

is the subject of the next part of this thesis.
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Among all the available formats used to represent information (from text to

video or audio), the XML (eXtensible Markup Language) [W3C98b] format is now

extensively used. The simple, self-description nature of the XML standard promises

to enable a broad suite of next-generation Internet applications, ranging from intel-

ligence Web searching and querying to e-commerce.

The growing number of XML documents leads to the need for appropriate re-

trieval methods which are able to exploit the specific features of this type of

documents. Indeed, in XML documents, textual content (data) is hierarchically

structured with tags. As opposed to other markup languages (like HTML for ex-

ample), tags are used to specify semantic information about the content, and not

for presentation purposes. Although structure allows to organize content in XML

documents, it is not always used with the same intent. XML documents can be

either data-oriented, where structure is intensively used to organize data, and

where XML components can be seen as database records, or text-oriented, where

structure is irregular and documents are designed to be used by humans.

Many approaches have been proposed in the literature for XML retrieval. How-

ever, most of them propose ab nihilo solutions, whereas the use of graph theoretical
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concepts could be of interest. Indeed, the underlying data model of XML docu-

ments allows to consider them as a particular kind of graphs, i.e., trees [W3C98a].

More precisely, they can be considered as labeled trees of element nodes, where each

element can be either an atomic data item or a composite data collection consisting

of references (represented as edges) to child elements in the XML tree. The same

representation can be used for structured queries. Considering this data model for

retrieval, the retrieval process can thus be seen as a matching problem between

query and document trees.

In this chapter, we aim at studying and discussing what are the solutions pro-

posed by graph theory for the tree-matching problem in a general perspective, and

how they have been exploited in XML retrieval. In particular, we will focus our

attention on the exact tree matching problem.

7.1 Querying XML Data: Key points

Before giving some algorithms used in graph theory for tree matching, it seems

of great importance to recall some background about XML documents and query

languages, and to detail issues behind the retrieval of XML information.

7.1.1 Tree representation of XML documents

In XML documents, tags are used to hierarchically and semantically organize infor-

mation. In the document presented in Figure 7.1 for example, content is organized

within a header and a body tag. The body tag contains section elements, which are

in turn composed of title and paragraph elements, etc.

An element begins with an opening tag <tag> and ends with a closing tag

</tag>. It may contain atomic data (as for example author element), other ele-

ments (as for example one of the section elements) or a mixture of both (one talk

about mixed content). Elements are also called components.

Thanks to this data model, XML documents can be represented as labeled trees

[W3C98a]. In an XML tree, the whole document is represented by the root node,
elements are represented by internal nodes (i.e., non terminal nodes) and the con-

tent itself is in leaf nodes (i.e., terminal nodes). These nodes are linked with edges

showing their hierarchical relations. The tree representation of the document in

Figure 7.1 is given in Figure 7.2.

As previously mentioned, XML documents can be classified into two groups of

documents: data-oriented documents or text-oriented documents
Documents of the first category have a fine granularity, are highly structured and

do not contain mixed contents. The order of the children of a given element is often

without any importance. Elements can be considered as database records, there are
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�✁✂✄☎✆✝✞ ✟✞✁✂✠✡☛☞☞✌✡✍

�✎✞✁✏✞✂✍

�✄☎✄✝✞✍✑✒✓✔✂✕✁✄☎✔✒ ✂✞✄✂☎✞✖✁✝ ✔✒ ✄✎✞ ✗✞✘ �✙✄☎✄✝✞✍

�✁✚✄✎✔✂✍✛✜ ✢✚✣✔✒✄�✙✁✚✄✎✔✂✍

�✙✎✞✁✏✞✂✍

�✘✔✏✟✍

�✤✞✆✄☎✔✒✍

�✄☎✄✝✞✍ ✥✎✞ ✎☎✤✄✔✂✟ ✔✓ ✎✟✣✞✂✄✞✦✄�✙✄☎✄✝✞✍

�✣✁✂✁✧✂✁✣✎✍✑✒ ✔✂✏✞✂ ✄✔ ✏✞✤✆✂☎✘✞ ★✎✁✄ ✎✟✣✞✂✄✞✦✄ ☎✤✩�✙✣✁✂✁✧✂✁✣✎✍

�✣✁✂✁✧✂✁✣✎✍✩�✙✣✁✂✁✧✂✁✣✎✍

�✙✤✞✆✄☎✔✒✍

�✤✞✆✄☎✔✒✍

�✄☎✄✝✞✍✢☎✓✓✞✂✞✒✄ ✪☎✒✏✤ ✔✓ ✗✞✘ ✫✞✁✂✆✎ ✞✒✧☎✒✞✤ �✙✄☎✄✝✞✍

�✣✁✂✁✧✂✁✣✎✍✬✝✁☎✒✭✄✞✦✄ ✤✞✁✂✆✎ ✞✒✧☎✒✞✤✩�✙✣✁✂✁✧✂✁✣✎✍

�✣✁✂✁✧✂✁✣✎✍✩�✙✣✁✂✁✧✂✁✣✎✍

�✣✁✂✁✧✂✁✣✎✍✩�✙✣✁✂✁✧✂✁✣✎✍

�✙✤✞✆✄☎✔✒✍

�✤✞✆✄☎✔✒✍

✩

�✙✤✞✆✄☎✔✒✍

�✙✘✔✏✟✍

�✁✂✄☎✆✝✞✍

Figure 7.1: An example of XML document

�✁✂✄☎✆✝✞✟✄✁

☎✠✞☎✟✠✡✝☛ ✄✁

✞☞✠ ✌✠✍

✖✠✝☎✗ ✘✙✙✚

✧☞✠ ☞✟★✞✄☎✖

✄✂

�✁ ✄☎✪✠☎ ✞✄

✪✠★✫☎✟✍✠ ✬☞✝✞

☞✖✦✠☎✞✠✩✞ ✟★

✤✟✂✂✠☎✠✁✞

✭✟✁✪★ ✄✂

★✠✝☎✫☞

✠✁✮✟✁✠★

✰☛✝✟✁✱✞✠✩✞

★✠✝☎✫☞

✿✏✎✽✛

❀❁❂❃❄❁❅❆ ❁❇❈❃

❉❂❂❄❊❋●❂❃

❍❃❅■ ❁❇❈❃

✿✏✎✽✛ ✿✏✎✽✛ ✿✏✎✽✛ ✿✏✎✽✛

Figure 7.2: XML tree associated with the document of Figure 7.1

not so much information content. The document in Figure 7.3 is an example of a

data-oriented document.

On the other hand, text-oriented documents are loosely structured. They are

designed to be used by humans; books, articles, electronic messages are good exam-

ples of this type of documents. Their structure is irregular, and they can contain

many mixed contents. Moreover, the order of elements is very paramount for the

understanding of documents. For example, in the text-oriented document of Figure

7.1, section elements should be read in the good order to make the whole article
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�✁✂✄☎✆✝✞✟✆✠✡☛☞

�✆✡✁✌✠✝✍✍✎✆✡✏☛☞

�✟✆✟☎✍☞✑✡✒✠✌✓✞✟✆✠✡ ✌✍✟✌✆✍✔✞☎ ✠✡ ✟✕✍ ✖✍✄ �✗✟✆✟☎✍☞

�✞✂✟✕✠✌☞✘✙ ✚✂✁✠✡✟�✗✞✂✟✕✠✌☞

�✛✍✞✌☞✜✢✢✣�✗✛✍✞✌☞

�✝✠✡✒✍✌✍✡✝✍☞✖✖✖ ✤✠✡✒✍✌✍✡✝✍�✗✝✠✡✒✍✌✍✡✝✍☞

�✗✆✡✁✌✠✝✍✍✎✆✡✏☛☞

�✆✡✁✌✠✝✍✍✎✆✡✏☛☞

�✞✂✟✕✠✌☞✥✙ ✘☎☎✞✡�✗✞✂✟✕✠✌☞

�✟✆✟☎✍☞✑✡✒✠✌✓✞✟✆✠✡ ✌✍✟✌✆✍✔✞☎ ✞✡✎ ✏✌✞✁✕☛�✗✟✆✟☎✍☞

�✝✠✡✒✍✌✍✡✝✍☞✘✦✤ ✜✢✢✧�✗✝✠✡✒✍✌✍✡✝✍☞

�✛✍✞✌☞✜✢✢✧�✗✛✍✞✌☞

�✗✆✡✁✌✠✝✍✍✎✆✡✏☛☞

★

�✁✂✄☎✆✝✞✟✆✠✡☛☞

Figure 7.3: Example of a data-oriented document

understandable.

Boundaries between the two types of approaches are however nowadays not so

strict. As explained by Lalmas and Baeza-Yates in [LB09]:

"From a terminology point of view, structured text retrieval and query-

ing semi-structured data, in terms of end goals, are the same, i.e., finding

elements answering a given query. The difference comes from the fact

that in information retrieval, the structure is added, and in databases,

the structure is loosened."

In the following, we will thus present only approaches from the database com-

munity (exact tree matching, section 7.3). Whatever the considered approach, the

problem is to match a document tree with a query tree. The following paragraph

presents the different query languages proposed in the literature for XML retrieval.

7.1.2 Query languages

Queries for XML retrieval can be classified into content-only and content-and-
structure queries.

Content-only queries are composed of simple keywords terms, and have histori-

cally been used in traditional information retrieval. They are also suitable for XML

retrieval, in retrieval scenarios where the user does not know the structure of doc-

uments he/she is querying. In this thesis, we are not interested in such queries,

since open issues when considering this type of queries are different. Indeed, with

content-only queries, the main problem is to find the good granularity of information

to be returned to users, and not to match documents and queries trees.

In content and structure queries, users provide content conditions linked with

structure conditions. They are two reasons a user might add structural constraints

to a query [Tro09]:

◦ the first is to constraint the size of the result,
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◦ the second is to restrict the search to document parts that are supposed to be

appropriate.

According to [AYL06], there are three main categories of content and structure

query languages:

◦ tag-based queries allow users to express very simple conditions concerning the

tag of the element in which the required content should be. They are of

the form: "tag: content condition". For example the query "section: search
engines" means that the user is looking for a section element about "search

engines".

◦ path-based queries are based on the XPath [W3C07b] syntax. They include

content conditions in a XPath-based syntax. Examples of languages allowing

path-based queries are the NEXI language [TS04] or FuzzyXPath [CDG+09].

◦ clause-based queries have a structure similar to the one of SQL. They contain

nested clauses that allow to express the used need. In XML retrieval, one can

cite XQuery [W3C07a] or XQuery full-text [W3C11] as examples for clause-

based queries.

If we now purely consider the structure conditions of queries, XQuery and XPath

[W3C07a], [W3C07b] queries can be basically divided into two main groups: path
queries and twig queries. Path queries are simple queries against XML document,

which contain path expressions, i.e., child axis "/" and descendant axis "//". Twig

queries are represented as node-labeled twig patterns, i.e., small trees. They are

also named tree pattern queries.
An example of a twig query is represented in Figure 7.4.

Figure 7.4: A twig query

Whatever the query language used, content and structure queries, in the same

manner than XML documents, can be represented as labeled trees. The retrieval

process can thus be summarized to a tree matching process. In the following section,

we give a short survey for exact tree matching problem. For more information about

approximate tree matching we refer to our survey paper [TPSN+12], which was

submitted to ACM Computing Surveys.
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7.2 Algorithms for exact tree pattern matching

This section describes state-of-the-art algorithms for exact tree matching. In order

to state the problem, the terminology of labeled tree and their components has to

be defined first.

7.2.1 Notation and terminology

A rooted labeled tree is denoted by T = (V,E, r, µ), where V = {v1, v2, . . . , vn}

is a finite set of nodes, E ⊆ {(u, v)|u, v ∈ V } is a set of edges. The node r is a

distinguished node called the root, and µ is a labeling function which maps each

node of T to a label in a finite set L = {l1, l2, ..., lk}. For brevity, in the remaining

of this chapter, we call a rooted labeled tree simply a tree. We denote the level

of a vertex v by l(v). We recall that an ordered tree is a rooted tree for which an

ordering is specified for the children of every node, and it is unordered otherwise.

We give below the formal definition of the exact tree matching problem.

Definition 7.1 Let target T1 = (V1, E1, r1, µ1) and pattern T2 = (V2, E2, r2, µ2) be
two ordered labeled trees. T2 matches T1 at node x1 6= r1 if there exists a one-to-one
injective function from the nodes of T2 into the nodes of T1 such that:

1. the root of T2 maps to x1,

2. if v2 ∈ V2 maps to v1 ∈ V1, then µ1(v1) = µ2(v2),

3. if v2 ∈ V2 maps to v1 ∈ V1 and v1 is not a leaf, then each child of v2 maps to
some child of v1.

Figure 7.5 shows an example of a tree pattern matching between pattern tree

P and target tree T , where the one-to-one mappings is represented by dotted lines.

The tree pattern matching problem has been largely studied and has many impor-

tant applications such as term rewriting systems, transformational programming

systems, code-generator generators, theorem provers, and a variety of functional

languages with equational function definitions (see [HO82]). The following is a brief

overview of general exact tree pattern matching algorithms.

7.2.2 Algorithms

Given a tree pattern P and a target T of order m and n, respectively, where m ≤ n,

a naive tree pattern matching algorithm takes O(mn) in the worst case. The basic

idea is to visit all nodes of T in a pre-order walk, for each visited node a special

recursive procedure is applied to check for possible occurrence of P at that node v.

The matching procedure is terminated as soon as a mismatch is detected.
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Figure 7.5: An example of tree pattern matching

Several attempts were made to improve the naive O(mn) steps algorithm. Hoff-

mann and O’Donnell [HO82] proposed two approaches, called bottom-up and top-
down matching algorithms with the same worst case bound. Top-down algorithm is

efficient in space, but matching time is non-linear. The main idea of this algorithm

is to encode the root-to-leaf paths as strings. It then finds all occurrences of each

string in the target tree according to the string pattern matching algorithm of Aho

and Crasick [AC75]. On the contrary, the key idea of the bottom-up technique is

to find, for each node in the target tree, all patterns and all parts of patterns that

match this node. Bottom-up techniques achieve matching in linear time. However,

auxiliary space is required to store and establish the table encoding of all nodes in

the target tree.

Hoffmann and O’Donnell’s work stimulated a number of additional studies offer-

ing heuristic for space improvements. Among these improvements, we can mention

the following significant approaches: [Cha87], [Bur88], [Kos89], [DGM94], [CH97]

and [CH03]. Chase’s method [Cha87] received considerable attention in the litera-

ture. This method was able to improve bottom-up solutions presented by Hoffmann

and O’Donnell by exploiting the deeper structure of the pattern P to avoid some use-

less operations of the bottom-up algorithm. Chase proved that this transition map

utilizes space much better than Hoffmann and O’Donnells. In [Bur88], Burghardt

proposed a tree pattern algorithm, which consists of two phases. In the first phase

a matching automaton is built from a given pattern set. For this, it generalizes the

string matching algorithm of Aho and Corasick [AC75] such that each pattern is lin-

earized according to the position ordering relation. Then these pattern strings are

merged into an automaton by sharing as long initial parts as possible. In the second

phase, one or more target trees are put into the automaton, by walking through the

automaton graph according to the target tree and collecting the match information.

Kosaraju [Kos89] gave a new algorithm with improved complexity bound from

O(nm) to (nm
3
4 ). Kosaraju introduced three new techniques. Dubiner et al.

[DGM94] improved Kosaraju’s algorithm by discovering and exploiting periodical

strings appearing in the pattern. They obtained a bound of (nm
1
2 ). Cole and Har-
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iharan [CH97] introduced and gave an efficient algorithm for the subset Matching
problem. The goal of this problem is to find all occurrences of a pattern string P of

length m in a text string T of length n. Then the tree pattern matching has been

reduced to a number of instances of the subset matching problem. Combining this

reduction with the subset matching algorithm take an O(n log3m) time randomized

algorithm for the tree pattern matching problem. Later the same authors improved

the reduction time complexity [CH03]. They obtained an O(n log2m + m) time

deterministic algorithm and an O(n log n+m) time Monte Carlo algorithm for the

tree pattern matching problem.

7.3 Exact tree pattern matching for XML retrieval

As we have seen in Section 7.1, XML uses a tree-structured model for representing

data and twig patterns for expressing queries. Finding all occurrences of such a

twig pattern in an XML database is clearly a core operation in XML query process-

ing. There has been a great deal of interest in recent years to overcome efficiently

this problem. Most of the proposed approaches in the literature are interested in

structural properties of queries and can be classified into four groups:

◦ structural join approaches,

◦ holistic twig join approaches,

◦ sequence matching approaches,

◦ other important exact XML tree matching algorithms.

In the following, we present an overview of the main algorithms and results available

in each group.

7.3.1 Structural join approaches

In this section, we review the join based approach, a very important native

idea, which usually includes three parts: (1) decomposition, (2) matching and (3)

merging. Firstly, a twig pattern is decomposed into a set of basic parent-child and

ancestor-descendant relationships between pairs of nodes. In the second phase, each

binary relationship is separately executed using structural join techniques and its

intermediate results are stored for further processing. The final result is formed by

merging the intermediate results. We describe in the following the two main struc-

tural join algorithms proposed in the literature.

(i) Multi-predicate merge join algorithm

The key to the efficiency of this algorithm is in the use of a containment labeling
scheme [ZND+01] that encodes each element in an XML database by its positional
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information. The main purpose of this representation is that the structural relation-

ship between two vertices u, v can be determined easily without knowledge of the

intermediate nodes on the path between u, v. For more information, this labeling

scheme (called also region encoding) will be described in detail in the next chapter.

Based on the containment labeling scheme, Zhang et al. [ZND+01] proposed

the multi-predicate merge join (MPMGJN ) algorithm, which is the first structural

join to find all occurrences of the basic structural relationships. This mechanism

is an extension of the classical merge-join algorithm developed in relational query

optimizers for equi-joins. The results of Zhang showed that for many XML queries,

MPMGJN is more than an order-of-magnitude faster than the standard Relational

Database Management System (RDBMS) join implementations.

(ii) Tree-Merge and Stack-Tree algorithm:

Al-Khalifa et al. [AJK+02] took advantage of the containment labeling scheme

of XML elements to decrease the time of join processing. They developed two algo-

rithms for matching parent-child and ancestor-descendant structural relationships

efficiently: Tree-Merge and Tree-Stack.
The behavior of these two algorithms is explained by analytical results. In

particular, the Stack-Tree algorithm was shown to be both I/O and CPU optimal,

and practically as efficient as Tree-Merge family for evaluating containment queries.

7.3.2 Holistic twig join approaches

Until now, the holistic twig join approach was regarded as the most efficient

family in the literature. Bruno et al. [BKS02] proposed the first holistic XML twig

pattern matching algorithm to avoid producing large intermediate results. This ap-

proach constituted the major attempt for several subsequent works in order to make

the twig pattern matching very efficient. In the following, we present an overview

of the basic ideas and results of the main holistic twig join algorithms available in

the literature.

(i) TwigStack algorithm

The main disadvantage of twig query decomposition into multiple binary re-

lationships is that this approach generates a large amount of intermediate query

results even when the input and output size are more manageable. Frequently, such

intermediate results cannot be held in main memory and must be stored on disk.

This will result in high disk I/O cost. In order to overcome this weakness, Bruno et
al. [BKS02] proposed a novel holistic twig join algorithm, called TwigStack, wherein

no large intermediate results are created.

The idea behind this approach is to use a chain of linked stacks to compactly

represent partial results of individual query root-to-leaf paths, which are then com-

posed to produce the final solutions. This decomposition method avoids computing
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large redundant intermediate results. This algorithm will be described in detail in

the next chapter. The main advantage of this approach is to avoid storing interme-

diate results unless they contribute to the final results when the query twig has only

ancestor-descendant edges. The analytical results of this approach demonstrate that

TwigStack is I/O and CPU optimal among all sequential algorithms that read the

entire input. This analysis is confirmed by experimental results on a range of real

synthetic data and query twig patterns. The experimental results suggest that the

holistic approach has more than six-fold faster query processing performance than

the Stack-Tree approach coupled with the optimal join order.

(ii) Improvements on TwigStack

The idea of holistic twig join has been adopted in several works in order to make

the structural join algorithm very efficient. This section is devoted to a structured

review of these advances.

Improvement 1: efficient processing of parent-child edge query. As men-

tioned before, when all edges in query patterns are ancestor-descendant queries,

TwigStack ensures that each root-to-leaf intermediate solution contributes to the

final results. However, this algorithm still cannot control a large number of interme-

diate results for parent-child edge query. In the first improvement attempt, many

efficient algorithms for XML twig pattern have been proposed to efficiently handle

twig queries with parent-child relationships. Among them, Lu et al. [LCL04] ex-

tended TwigStack by proposing TwigStackList algorithm. This algorithm has the

same performance than TwigStack for query patterns with only ancestor-descendant

edges, but also produces much less useless intermediate solutions than TwigStack
for queries with parent-child relationships. The main technique of TwigStackList
algorithm is to look-ahead read more elements in the input streams and saves some

of them (only those that might contribute to final answers) into lists in the main

memory, so that we can make a more accurate decision to determine whether an el-

ement can contribute to the final solution or not. The experimental results obtained

by authors demonstrate the significant superiority of TwigStackList on TwigStack
according to the size of intermediate results for queries with parent-child edges.

Chen et al. [CLL05] suggested another algorithm, called iTwigJoin, which can be

used on various data streaming strategies (e.g. Tag+Level Streaming and Prefix
Path Streaming). Tag+Level streaming can be optimal for both ancestor-descendant

and parent-child only twig patterns whereas Prefix Path streaming could be optimal

for ancestor-descendant only, parent-child relationship only. The experiments in

[CLL05] show that Tag+Level streaming guarantees very few useless intermediate

solutions in most case tested. None of the previous algorithms can avoid useless in-

termediate solutions completely. Li and Wang [LW08b] proposed the first algorithm,

called TwigBuffer that completely avoids the useless partial solutions for arbitrary

twig patterns. TwigBuffer use the same idea of buffering like TwigStackList to

buffers some elements from the input streams in order to check the parent-child
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relationships. The experimental results show that TwigStackList and TwigBuffer
have the same performance when the queries that do not have parent-child edges

or parent-child edges happen under non-branching nodes. However TwigBuffer per-

forms better than TwigStackList when the queries have parent-child edges under

branching nodes.

Improvement 2: elimination of redundant computations. The existing holis-

tic twig join algorithms may perform many redundant checks of XML elements.

Indeed, an improvement strategy consists in avoiding these unnecessary computa-

tions. TSGeneric+ [JWLY03] makes improvements on TwigStack by using XR-Tree
to effectively skip some useless elements that do not contribute to the final results.

The motivation to use XR-tree is that, the ancestors (or descendants) of any XML

element indexed by an XR-tree can be derived with optimal worst case I/O cost.

However, TSGeneric+ may still output many useless intermediate path solutions

like TwigStack for queries with parent-child relationship. Guoliang et al. [LFZZ07]

proposed the TJEssential algorithm based on three optimization rules to avoid some

unnecessary computations. They presented two algorithms incorporated with these

optimization rules to effectively answer twig patterns in leaf-to-root combining with

root-to-leaf way. A novel holistic twig join algorithm, called TwigStack+ is proposed

in [ZXM07], it is based on holistic twig join guided by extended solution extension to

avoid many redundant computations. It significantly improves the query processing

cost, simply because it can check whether other elements can be processed together

with current one.

Improvement 3: eliminate the merging phase. Another improvement con-

sists in reducing the cost of queries execution. Indeed there exist very interest-

ing approaches that eliminate the second phase of merging of individual solutions

[CLT+06], [QYD07], [JLH+07], [LW08a]. However, these algorithms need to load

the entire document tree in memory. Chen et al. [CLT+06] proposed the first tree

pattern solution, called Twig2Stack that avoids any post path join. Twig2Stack
algorithm uses a hierarchical-stack to capture the ancestor-descendant relationships

for the elements in the same query node. In this way, Twig2Stack can process path

matching efficiently without a redundant relationships checking. Twig2Stack algo-

rithm has shown a better performance in query processing than TwigStack and TJ-
Fast [LLCC05] (see below). However, maintaining the hierarchical structure among

stacks in Twig2Stack algorithm has a critical impact on the performance processing

of twig query. Aiming to avoid this complex hierarchical-stacks, Qin et al. [QYD07]

proposed an algorithm, called TwigList, which is a refined version of Twig2Stack. In

fact, the main difference between both methods is that TwigList has only changed

the complicated stacks used in Twig2Stack to simple list structures. The experi-

mental studies of Qin et al. [QYD07] show that TwigList algorithm outperforms

Twig2Stack as well as TwigStack. In the same context a novel algorithm, called

HolisticTwigStack was developed in [JLH+07]. The authors proposed a novel com-

plex stack structure like Twig2Stack to preserve the holisticity of the twig matches,
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without generating intermediate solutions. However, a considerable amount of time

is taken to maintain the stack structure. HolisticTwigStack were evaluated better

than both TwigStack and Twig2Stack in terms of time complexity, memory space

and I/O. complexity. Dao and Gao [DC08] reviewed and analyzed both of the Holis-
ticTwigStack and TwigList algorithm on processing for XML twig pattern matching.

The statistics from this analysis clearly indicate that the TwigList algorithm seems

to be significantly more efficient in the most tested cases.

Improvement 4: benefit the properties of some labeling schemes. Most

of the existing holistic twig join algorithms are based on region encoding scheme

(which will be explained in detail in the following chapter) to capture the struc-

tural relationship between XML elements. However, there exist other approaches

which exploit others labeling scheme. Among them, Dewey labeling scheme has

been widely used in XML query processing. A Dewey label of a node v represents

the path from the document root to v. Based on the Dewey labeling, Lu et al.
[LLCC05] proposed TJFast algorithm which uses a new encoding scheme, called the

extended Dewey code, which allows to combine effectively the types and identifiers of

elements in a label. The main advantage of this labeling is that, the ancestors of any

XML element can be derived from its label alone. Thus, TJFast typically access

much less elements than algorithms based on region encoding and can efficiently

process queries with wildcards in internal nodes. More recently, based on the pre-

liminary idea of extended Dewey labeling scheme and TJFast algorithm, Lu et al.
[LML11] proposed three novel holistic twig join algorithms GTJFast, TJFastTL and

GTJFastTL. The first algorithm GTJFast allows to compactly represent the inter-

mediate matching solutions and avoid the output of non-return nodes to reduce the

I/O cost. Both TJFastTL and GTJFastTL algorithms are proposed by extending

TJFast and GTJFast algorithm based on tag +level streaming scheme. In tag +level
streaming, XML elements with the same label but different level numbers have been

separated to different streams. This level information is used to prune some useless

streams. The authors proved that TJFastTL and GTJFastTL guarantee the I/O op-

timality for queries with only parent-child relationships. The experimental results

reported in [LML11] show that these algorithms are superior to existing approaches

in terms of the number of scanned elements, the size of intermediate solutions and

query performance.

7.3.3 Sequence matching approaches

As opposed to the holistic twig join algorithm, the sequence matching approaches

use an indexing method to transform both XML documents and queries into se-

quences and evaluate queries based on sequence matching. Querying XML data is

equivalent to find subsequence matches. In [ZMM04] and [ZADR03], the authors

use the pre-order and post-order ranks to linearize the tree structures and apply

the sequence inclusion algorithms for strings. They proposed a novel strategy that

include three parts. Firstly, a query decomposition process is applied to transform
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the query twig into a set of root-to-leaf paths so that the ordered tree inclusion can

be safely applied. It has to be evaluated against the data signature in the second

phase. Finally, the set of answers is determined by joining compatible intermediate

solutions. The experiments in [ZADR03] demonstrate the efficiency of the decom-

position approach, which is especially advantages for the large query trees, and for

trees with highly selective predicates.

Two other sequence matching algorithms, ViST [WPFY03] and PRIX [RM04]

were proposed to avoid expensive join operations. ViST method represents a major

departure from previous XML indexing approaches. In fact, unlike classical index

methods that decompose a query into multiple sub-queries, and then join the solu-

tions of these sub-queries to provide the final answers, ViST uses tree structures as

the basic unit of query to avoid expensive join operations. This method introduced

a new sequential representation that transforms XML data trees and twig queries

into structure-encoded sequences. ViST performs efficient subsequence matching

algorithms on the structure-encoded sequences to find twig patterns in XML doc-

uments. However, the query processing in ViST may result in false alarms and

false dismissals (these two problems are explained in more detail in [WM05]). In

[RM04], Rao and Moon proposed a new indexing XML documents and process-

ing twig patterns in an XML database. This indexing approach transforms XML

documents and twig query into sequences by prüfer method that constructs an one-

to-one correspondence between trees and sequences. Based on this transformation,

a query execution system, called PRIX (Prüfer sequences for indexing XML) is

developed for indexing XML documents and processing twig queries. The matching

phase is achieved by applying subsequence matching on the set of sequences in XML

database.

7.3.4 Other important exact XML tree algorithms

In this section, we take a quick look over some other well-known query tree

pattern processing algorithms which have been developed in recent years. Among

them, some approaches have benefited from fundamental progress in node labeling

schemes of XML documents (for a survey, see [HL09]).

In [WL08], a twig pattern matching algorithm, called TwigVersion is proposed.

the key idea of this approach is to compress both structural index and number-

ing schemes technique. TwigVersion is based on new version-labeling scheme that

encodes all repetitive structures in XML documents. The identification of these

repetitive structures matching allows to avoid a large amount of unnecessary com-

putations. The experimental results reported in [WL08] show that TwigVersion
significantly outperforms TwigStack, TJFast and Twig2Stack algorithms.

Recently, Izadi et al. [IHH09] proposed a novel method, called S3, which can

selectively process the document nodes. In S3, unlike all previous methods, path ex-
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pressions are not directly executed on the XML document, but they first evaluated

against a guidance structure, called QueryGuide. The information extracted from

the QueryGuide is an abstraction of the XML document. It describes the struc-

ture of XML document by its paths, such as the nodes of XML data are labeled

by Dewey labeling scheme. The experimental results of [IHH09] confirm that S3

substantially outperforms TwigStack , TJFast, and TwigList in terms of response

time, I/O overhead, and memory consumption-critical parameters.

7.3.5 Summary

Table 7.1 depicts the various approaches presented in this section. These approaches

are categorized into four classes by considering three basic features: the decompo-

sition technique, the labeling technique, and a boolean parameter which indicates

whether the merging phase is used in the query processing or not.

7.4 Conclusion

Much research effort has been devoted on efficient XML query processing. As a core

operation in XML data, finding all occurrences of a query pattern in XML docu-

ments attracted more and more attention. In this chapter, we gave a structured

overview of the numerous recent advances in the exact tree matching for querying

XML data. As mentioned before, a very large volume of algorithms were proposed

in the literature, and it seems nearly impossible to consider all related works. It is

however difficult to decide what is the best algorithm that performs the query pro-

cessing efficiently. For example, the one-phase holistic twig join algorithm eliminates

completely the second phase of merging at the expense of huge memory requirement.

Of course, holistic twig join algorithms are good candidates for physical operators

supporting query evaluation in XDBMSs. Therefore, the development of new struc-

tural join algorithms is still valuable, the next chapter follows this line of research,

In particular, we will propose a new efficient holistic twig join algorithm, called

TwigStack++, which can greatly improves query processing performance of XML

documents.
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Approach Structural Joins algorithms

Decomposition Merging Phase Labeling technique

MPMGJN [ZND+01] binary relationship Yes Region Encoding

Tree-Merge [AJK+02] binary relationship Yes Region Encoding

Stack-Tree [AJK+02] binary relationship Yes Region Encoding

Holistic twig Join Approach

Decomposition Merging Phase Labeling technique

TwigStack [BKS02] root-to-leaf paths Yes Region Encoding

TwigStackList [LCL04] root-to-leaf paths Yes Region Encoding

iTwigJoin [CLL05] root-to-leaf paths Yes Region Encoding

TwigBuffer [LW08b] root-to-leaf paths Yes Region Encoding

TSGeneric+ [JWLY03] root-to-leaf paths Yes Region Encoding

TJEssential [LFZZ07] root-to-leaf paths Yes Region Encoding

TwigStack+ [ZXM07] root-to-leaf paths Yes Region Encoding

Twig2Stack [CLT+06] without decomposi-
tion

No Region Encoding

TwigList [QYD07] without decomposi-
tion

No Region Encoding

Holistictwigstack [JLH+07] without decomposi-
tion

No Region Encoding

TwigMix [LW08a] without decomposi-
tion

No Region Encoding

TwigFast [LW08a] without decomposi-
tion

No Region Encoding

TJFast [LLCC05] root-to-leaf paths Yes Extended Dewey Label-
ing

TJFastTL [LML11] root-to-leaf paths Yes Extended Dewey Label-
ing

GTJFast [LML11] root-to-leaf paths Yes Extended Dewey Label-
ing

GTJFastTL [LML11] root-to-leaf paths Yes Extended Dewey Label-
ing

Sequence Matching Approach

Decomposition Merging Phase Indexing technique

PRIX [RM04] Without decomposi-
tion

No prüfer Sequences

Tree signature [ZMM04],
[ZADR03]

root-to-leaf paths Yes Pre-order, Post-order

ViST [WPFY03] without decomposi-
tion

Yes structure-encoded se-
quences

Work of [WM05] without decomposi-
tion

No path labeling

Other exact XML tree algorithms

Decomposition Merging Phase Labeling technique

TwigVersion [WL08] root-to-leaf paths Yes Dewey ID labeling

S3 [IHH09] set of match patterns Yes Dewey ID labeling

Table 7.1: Summary of XML retrieval approaches using XML exact tree matching





Chapter 8

TwigStack++: A New Efficient

Holistic Twig Join Algorithm

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Containment labeling scheme of an XML document . . . . 108

8.3 Sub-optimality of TwigStack . . . . . . . . . . . . . . . . . . 109

8.4 A new algorithm: TwigStack++ . . . . . . . . . . . . . . . . 111

8.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4.2 TwigStack++ description . . . . . . . . . . . . . . . . . . . . 112

8.5 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . 118

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1 Introduction

As mentioned in the previous chapter, a typical approach of twig pattern matching

is to first decompose the twig query into a set of binary (parent-child or ancestor-

descendant) relationships. Thus, each binary relationship is separately executed

and its intermediate results are stored for further processing, and the final solution

is formed by merging these intermediate results. The main disadvantage of such a

decomposition is that intermediate result sizes can become very large, even if the

input and the final result sizes are much more manageable. In order to overcome

this problem, Bruno et al. [BKS02] introduced the first holistic twig join algorithm,

called TwigStack. It answers the twig query holistically and avoids huge interme-

diate results. The holistic twig join algorithm forms an important branch in XML

retrieval. However, it may perform a lot of unnecessary computation when process-

ing the queries and disk I/O in the merging phase.

In order to address the above weaknesses, we propose in this chapter a new

efficient holistic twig join algorithm, which can greatly improve query processing

performance. Our contributions can be summarized as follows:

1. We first introduce a new buffering technique that allows to eliminate many

unnecessary computations in the matching phase.
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2. We propose a new structural decomposition of a twig query, called star-path
twig decomposition which decomposes the twig query into a set of star and

path queries. The main objective of this decomposition is to decrease the

number of join operations and the number of join attributes in the merging

phase.

3. We implemented our proposed method and conducted an extensive perfor-

mance evaluation using real and synthetic datasets. The results showed that

our algorithm achieved high efficiency and outperformed existing proposals.

The rest of this chapter is organized as follows. We start describing the contain-

ment labeling scheme in the next section. Section 8.3 is dedicated to present the

sub-optimality of TwigStack. Then, TwigStack++ algorithm is proposed in detail in

Section 8.4. Section 8.5 reports experimental results, and we conclude the chapter

in Section 8.6.

8.2 Containment labeling scheme of an XML document

Containment labeling scheme is one of the most popular XML labeling schemes

[ZND+01]. This labeling scheme (called region encoding) uses a textual-position

of start and end tags in XML document such that the position is represented by

the 4-tuple (docId, start, end, level) for an XML element and (docId, start, level)

for a string value, where (i) docId is the identifier of the document; (ii) start and

end can be generated by counting word numbers from the beginning of the XML

document with identifier docId until the start of the element and the end of the

element, respectively. And (iii) level is the nesting depth of the element (or string

value) in the document. For example, Figure 8.1 shows an example of tree data

with containment labels.

Figure 8.1: A sample XML document with containment labels
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The structural relationship between tree nodes in this representation can be de-

termined easily without knowledge of the intermediate nodes on the path. Formally,

let two nodes x1 and x2 whose positions in the XML database are encoded as (d1,

s1, e1, l1) and (d2, s2, e2, l2), respectively. We have

1. Ancestor-Descendant relationship: an element x1 is an ancestor of another

element x2 if and only if d1 = d2, s1 < s2 and e2 < e1.

2. Parent-Child relationship: an element x1 is a parent of another element x2 if

and only if d1 = d2, s1 < s2, e2 < e1 and l2 = l1 + 1.

8.3 Sub-optimality of TwigStack

TwigStack algorithm constituted the major attempt for several subsequent holistic

twig join algorithms. The idea behind this approach is to use a chain of linked stacks

to compactly represent partial results of individual query root-leaf paths, which are

then composed to produce the final solutions.

(a) (b)

Figure 8.2: (a) D: An XML data tree and (b) Q: A twig query pattern

The main technique of TwigStack is to make use of two data structures: stack

Sq and stream Tq for each node q in twig query. The stream Tq contains the po-

sitional representation of all elements of tag q. At any time during the algorithm,

the elements in stack Sq are guaranteed to lie on a root-to-leaf path in the XML

document and the chain of stacks contains a compact encoding of partial results to

the twig query. The insertion and deletion elements over stacks are operated in the

following way:

1. An element xq from stream Tq is pushed to the stack Sq if and only if (i) xq
has a descendant xqi in each Tqi , where qi is a child of q and (ii) each node eqi
recursively has the first property.

2. An element xq is popped out from its stack if all matches involving it have

been output.

For example, consider the query and data tree in Figure 8.2. The stacks encoding

and the varying positions of cursors in data streams are shown in Figure 8.3(a)-(e).
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At the beginning (in Figure 8.3(a)), all cursors point to the first nodes a1, b1, c1,

d1. Since a1 is an ancestor of b1 and d1, a1 is inserted to stack Sa in Figure 8.3(b).

Then we advance Ta to read a2 which is also pushed to Sa (Figure 8.3(c)). Next, b1
and c1 are pushed into corresponding stacks. At this point, the algorithm outputs

two intermediate paths (a1, b1, c1), (a2, b1, c1). Finally, d1 is pushed to Sd (in Figure

8.3(e)) and output another two intermediate paths (a1, d1), (a2, d2). Hence, the final

results is obtained by merging the obtained intermediate paths.

(a) (b) (c)

(d) (e)

Figure 8.3: Illustrate to stack operations

Our observation: existing holistic twig join algorithms avoid storing intermedi-

ate results unless they contribute to the final results when the query twig has only

ancestor-descendant edges. However, they have to recursively call the getNext func-

tion (or other functions based on the getNext) many times, which is a core function

for the holistic algorithms. Each time, getNext returns a node q and ensures that:

(i) the current element in stream q has a descendant element in each stream qi, for

every child qi of q, and (ii) each current element in stream qi recursively satisfies the

first property. But, most of these calls are unnecessary and could be avoided. Hence,

they involve many unnecessary computations. In the previous example, TwigStack
calls getNext(a), getNext(b), getNext(c), getNext(d), many times respectively (see

Table 8.1), but only a few times are useful and pivotal, and other times can be

pruned.

getNext(a) getNext(b) getNext(c) getNext(d)

Number of calls 5 5 5 5

Table 8.1: Number of calls to getNext durning TwigStack

In the next section, we will demonstrate how to avoid those unnecessary compu-

tations using a new buffering technique. The main idea is to look-ahead read some
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matching nodes in input data steams and buffer a limited number of them in the

main memory.

Another overhead incurred in the merging phase of holistic twig join algorithms

could be large because the cost to input and output of the individual matches and

finally merge them to form twig matches can be substantial, especially when the

number of matching paths is large. To address this problem, we propose a new

structural decomposition of the twig query which reduces significantly the number

of pieces to be joined.

8.4 A new algorithm: TwigStack++

In this section, we present a new holistic twig join algorithm, we start with some

notations and definitions that will be used later.

8.4.1 Notations

Consider a tree T , we use V (T ) to denote the vertex set of T . Let x be an inter-

nal node of T and let N be a subset of vertices in V (T ), we define the function

star(T, x,N) which returns a star S consisting of a rooted node x and all of its

children nodes which are not in the set N . For each vertex x of T , let subtree(T, x)

to be the function which returns a subtree of T consisting of a rooted node x and

all of its descendants in T .

Given a twig pattern query Q and XML document D conforming to XML

schemas. For better understanding of our algorithm, we make use of the following

node operations. The self-explaining functions isRoot(q) and isLeaf(q) are used to

examine whether q is a root node or a leaf node. The function children(q) returns

all child nodes of q and parent(q) gets the parent node of q. The function end(Cq)

returns a boolean value that indicates whether the current position Cq is at the end

of the stream Tq. We use Cq.element to denote the element pointed by Cq. We can

access the attribute values of Cq by Cq.start, Cq.end and Cq.level. The cursor can

be forwarded to the next element in Tq with the procedure advance(Tq). Initially,

all the cursors point to the head of the corresponding stream. Similar to TwigStack,
we make use a chain of linked stacks to compactly represent partial results. Indeed,

each internal query node q in a twig pattern Q is associated with a stack Sq. The

operations over stacks are: pop, push, top and empty.
We associate a list Fq instead of stack with every leaf query node q in Q. Each

data node in the list consists of a pair: (positional representation of an element from

Tq, pointer to Sparent(q)), where Sparent(q) is the stack associated with the parent

of q. The operations over list Fq are: Fq.getLastElement(), Fq.append(e, pointer to
Sparent(q)) and Fq.clearList(). The first operation returns the element at the end

of Fq. The second operation appends pair information at the end of Fq. The last
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operation removes all elements from Fq.

The main technique of TwigStack++ is to make use of buffer Lq for each node

q in twig pattern query. For each node q, the operations over Lq are Lq.remove and

Lq.append(e). The first operation removes and returns the element at the end of Lq

and the last operation appends element e at the end of Lq.

8.4.2 TwigStack++ description

We now present our algorithm TwigStack++ for processing twig pattern matching

queries. TwigStack++ preserves the main idea of TwigStack. The objective here is

to reduce the amount of I/O and CPU cost by introducing two major improvements

as follows.

Star-path decomposition

As a first improvement, we propose a new structural decomposition of a twig query,

called star-path twig decomposition, which decomposes the twig query into a set

of star and path queries. This decomposition strategy is shown in Algorithm 1

given below, which takes as input a twig query Q. The variable SP is used to save

progressively the set of components to be generated from Q. Initially, the forest SP

is a null graph (a graph which has no vertices). For example, the structural star-path
decomposition corresponding to the query of Figure 8.4(a) is shown in Figure 8.4(b).

Our decomposition algorithm consists of two main steps as follows: for every vertex

u of degree greater than 2:

1. path decomposition: at line 3-6 in Algorithm 1, the algorithm provides a path

for every edge (u, v) where v has degree 2. Then from Figure 8.4(a), we can

see that only one path P = (a, b, c, d) is returned for the edge (a, b).

2. star decomposition: at line 7-9, only one star is generated if and only if the

vertex u has at least one child node with degree 6= 2. Then from Figure 8.4(a),

two stars are generated for the vertices a and d.

The following theorem shows the advantage of our decomposition approach com-

pared to the root-to-leaf paths decomposition of classical holistic twig join algo-

rithms.

Theorem 8.1 The total number of join operations required for star-path twig de-
composition is less than or equal to the number of join operations of the root-to-leaf
paths decomposition.

Proof. In TwigStack, a (k -1)-way merge is performed in the merging phase, where

k is the number of leaf nodes in the twig query. From Algorithm 1, we can see that

for every node u of degree at least 3, we have:
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(a) (b)

Figure 8.4: (a) Tree pattern, (b) Structural star-path decomposition

Algorithm 1 Decomposition

Input: twig pattern query Q.

Output: star-path twig decomposition of Q.

1: Forest SP =null graph;

2: for every node u with degree more than 2 in Q do

3: for every child v of u with degree exactly 2 do

4: Let P = u, v, x1, · · · , xm be an induced path of Q where the nodes from x1
to xm−1 has degree 2 in Q and the degree of xm is different from 2.

5: SP = SP ∪ {P}.

6: end for

7: if u has at least one child of degree 6= 2 then

8: SP = SP ∪ {star(Q, u, V (SP ))}.

9: end if

10: end for

11: return SP .

1. star-path twig decomposition approach provides a path for every edge (u, v)

where v has degree 2.

2. only one star is generated if and only if the vertex v has at least one child

node with degree 6= 2 (at line 7-9).

According to these two observations, we can see that the number of generated com-

ponents passing through the node u is less or equal to the number of children of u

which is less than or equal to the number of leaf nodes of subtree(Q, u). Therefore,

the total number of join operations of star-path twig decomposition is less than or

equal to the number of leaf nodes of any tree, giving the desired result. �

From Algorithm 1, we can easily obtain the following theorem.

Theorem 8.2 For every two different components C1 and C2 of SP , we have

|V (C1) ∩ V (C2)| ≤ 1
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Merging individual query solutions to form twig matches is simple, at least, con-

ceptually, but it may turn out to be a very expensive process in reality since the

number of join operations can be very large, rendering the merge phase cumbersome

and time consuming. By reducing the number of join operations, the performance

of XML query processing can be greatly improved. Note that our structural decom-

position will not only reduce the number of join operations but will also allow us to

decrease a large number of join attributes in the merging phase. So from Theorem

8.2, we can see that the number of join attributes is restricted to one attribute.

Improvement of getNext function

Our second improvement consists essentially in rewriting of TwigStack to elimi-

nate many unnecessary computations in the matching phase. As mentioned earlier,

TwigStack works by recursively calling a method called getNext to efficiently filter

useless elements in order to return the next node for processing. The existing holis-

tic twig join algorithms may perform many redundant checks in the calls to getNext.

We propose here a new strategy guided by containment labeling scheme to avoid

the redundant function calls. TwigStack++ changes the getNext to getNextSet func-

tion (Algorithm 2 given below). Implicitly, the getNextSet function does not return

only one node (like getNext) but a set of nodes at once. The core of this procedure

is more complex than the original algorithm but gives much better results.

In what follows, we first explain the getNextSet function and then present the

main algorithm in details. getNextSet(q) is a procedure called in the main algorithm

of TwigStack++. It updates the list Lq and returns a query node q′ (possibly q = q′)

with the following properties: at every point during computation:

1. the elements in sequence Lq (from the beginning of Lq to the end) are guar-

anteed to lie on a root-to-leaf path in the XML document.

2. for all ancestor-descendant pairs (q//q′) in the twig query, we have

∀(eq, eq′) ∈ Lq × Lq′, then eq′ is descendant of eq in XML data tree.

3. the number of buffered elements in any list is bounded by the depth of the

data tree. Note that the maximal depth of XML documents is usually very

limited.

At line 6-18 in Algorithm 2, we recursively invoke getNextSet(qi) for each qi ∈

children(q). In this computation step, we can avoid many unnecessary computa-

tions. Unlike TwigStack, it is unnecessary to recursively check whether qi and their

corresponding descendants have solution extensions if one of the following conditions

holds (this is because, the query node qi is processed already).

1. The existing top element of Sqi is decendant of the current element in the

data stream of node q.
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2. The list Lqi is not empty.

Algorithm 2 Function getNextSet(q)

1: if isLeaf(q) then

2: Lq.append(Cq.element);

3: advance(Tq);

4: return q;

5: end if

6: for qi in children(q) do

7: if not isLeaf (qi) then

8: e = top(Sqi);

9: else

10: e = Fqi.getLastElement();
11: end if

12: if (Cq is not an ancestor of e)and(Lqi = ∅) then

13: qj =getNextSet(qi);

14: if qj 6= qi then

15: return qj ;

16: end if

17: end if

18: end for

19: let hx be the head element of the list Lx;

20: nmin=minargqi{hqi .star : Lqi 6= ∅} ∪ {top(Sqi).star : Lqi = ∅};

21: nmax=maxargqi{hqi .star : Lqi 6= ∅} ∪ {top(Sqi).star : Lqi = ∅};

22: while Cq.end < maxStar do

23: advance(Tq):

24: end while

25: while (Cq.star < nmin.star)and(Cq.end > nmax.star) do

26: Lq.append(Cq.element);

27: advance(Tq);

28: end while

29: if Lq = ∅ then

30: return nmin;

31: else

32: return q;

33: end if

In order for node q to be returned, we make sure that the node q has a solution

extension as well by advancing Cq (line 23). At line 25-28, we load all common

ancestors from nmin to nmax cursors in Lq. If no such ancestor exists, we return the

child node with the smallest start value (nmin).

Algorithm TwigStack++, which computes answers to a query pattern Q is out-

lined in Algorithm 3. Similar to TwigStack, our algorithm operates in two phases.
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Algorithm 3 TwigStack++

1: while not (end(Q)) do

2: q=getNextSet(Q.root);

3: for all nodes qi in the subtreeNodes(q) do

4: for all elements e of Lqi do

5: e = Lqi.remove();

6: updateStackList(e, qi);

7: end for

8: end for

9: end while

10: mergeAllSolutions();

11: procedure updateStackList(e, q)
12: if not isRoot(q) then

13: cleanStack(Sparent(q), e);

14: end if

15: if isRoot(q) or not empty(Sparent(q)) then

16: cleanStack (Sq, e);

17: if not isLeaf (q) then

18: push(Sq, e, top(Sparent(q)));

19: else

20: Fq.append(e, top(Sparent(q));

21: end if

22: end if

23: end procedure

24: procedure cleanStack(S, e)

25: while not empty(S) and (top(S).end < e.start) do

26: pop(S);

27: showSolution(top(S));

28: end while

29: if emty(Sq) then

30: for all leaves qi of q do

31: Fqi.clearList();

32: end for

33: end if

34: end procedure

In the first phase (line 1-9), it repeatedly calls the getNextSet function (line 2). In

this phase, the matching solutions are computed according to the star-path twig

decomposition proposed previously. In the second phase, these solutions are merge-

joined to compute the answers of the query twig pattern (line 10). The procedure

call updateStackList(eq) (line 11-23) plays the role of updating the stack (or list if
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q is a leaf) structure. The update of stacks in this procedure is the same as the

one used in the original TwigStack. The following property shows the conditions for

a list Fq (q is a leaf) to be cleared (line 29-33): a list Fq is cleared if and only if

Sparent(q) is empty. At line 27, showSolution(eq) is called to output all answers

(star and path) matches passing through the XML element eq.

We present now an illustrative example of our approach. Consider the twig

query and data tree in Figure 8.5(a-b). There are five buffer lists La, Lb, Lc, Ld

and Le. Initially, getNextSet(a) recursively calls getNextSet(b) and getNext(c)

(for b, c ∈ children(a) in Q). Since c is a leaf node in Q, the new element c1 is

inserted into the list Lc. Next, getNextSet(b) recursively calls getNextSet(d) and

getNextSet(e). Since both d and e are leaf nodes in Q, we obtain getNextSet(d) =

d, getNext(e) = e, Ld = {d1} and Le = {e1}. Therefore, getNextSet(b) = b,

getNextSet(a) = a, Lb = {b1, b2} and La = {a1}. Figure 8.6(a) shows the state of

the algorithm after the previous computation has been completed.

In the second call of getNextSet(a), the top element of Sb is descendant of

the current element in the data stream of node a. Therefore, it is unnecessary to

recursively check whether b and their corresponding descendants (d and e) have

solution extensions (see Figure 8.6(b)).

Figure 8.6(c) shows the state of the algorithm when evaluating the query Q,

right after node e2 has been processed. When e2 is inserted to S2, b2 is popped

out (because b2 is not an ancestor of e2). At this point, the algorithm outputs all

solutions (star or path) matches passing through b2 (Figure 8.6(d)).

(a) (b)

Figure 8.5: (a) D: An XML Data Tree and (b) Q: A Twig Query Pattern

In order to demonstrate our improvement compared to TwigStack, we consider

Q and D in Figure 8.2 of Section 8.3. Initially, getNextSet(a) recursively calls

getNextSet(b) and getNext(d). In the same way, getNextSet(b) calls getNextSet(c).

Since both c and d are leaf nodes in Q, c1 and d1 are inserted into Lc and Ld, respec-

tively. Therefore, getNextSet(b) inserts b1 to Lb. Finally, a1 and a2 are common

ancestors to b1 and c1. Then we insert a1 and a2 to La. At this point, the algo-

rithm outputs directly all intermediate solutions :(a1, b1, c1), (a2, b1, c1), (a1, d1) and
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(a) (b)

(c) (d)

Figure 8.6: Illustration to TwigStack++.

(a2, d1). In this example, we have used only four calls to getNextSet to returns the

final solutions: getNextSet(a), getNextSet(b), getNextSet(c), getNextSet(d). How-

ever, From Table 8.1 of Section 4, TwigStack requires 20 calls to getNext in order

to return the final solution.

Finally, it is clear that our algorithm follows the same line of reasoning of

TwigStack. Hence, it is easy to show the correctness and the completeness of

TwigStack++ by directly deriving the proofs of TwigStack [BKS02]. Thus, we

obtain the following theorem.

Theorem 8.3 Given a twig query Q and an XML database D, the TwigStack++
algorithm correctly returns all the answers for Q on D.

8.5 Experimental result

In this section, we present the experiments conducted to evaluate the efficiency of

our algorithm and report some of the results obtained. We compared TwigStack++
with two other twig join algorithms: TwigStack [BKS02] and TJEssential [LFZZ07]

when the twig query pattern only involves ancestor-descendant relationships. The

reason for which we choose these two existing algorithms for comparisons is that

TwigStack and TJEssential are very efficient when the query contains only ancestor-

descendant relationships. Since our improvements do not depend on the structure

of the twig pattern, our algorithm can be easily adapted to other holistic twig join

algorithms like TwigStackList [LCL04] for efficiently processing twig queries with

parent-child edges.

All the algorithms were coded using Java 1.4.2, and performed experiments on

a PC with a Intel(R) Core(TM) 2 Duo T7250-2GHz processor and 2GB of main

memory. We used real-world (TreeBank) and synthetic data sets (XMark) for the

experimental evaluation. The comparison between the three algorithms is based
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on running time of both CPU and I/O cost. In this experimentation, We use five

queries from the standard TreeBank and XMark respectively as shown in Table 8.2.

These queries have different twig structures.

Label Query

TreeBank1 //S[//NP[//DT][//NN]]//PP[//IN]//NN

TreeBank2 //S[//NP][//NONE]//VP//PP[//IN]//DT

TreeBank3 //S[//VP[//NN][//VBD]]//NP[//IN]//DT

TreeBank4 //S//NP[//PP//TO][//VP//NONE]//JJ

TreeBank5 //S//VP//PP[//NP//VBN]//IN

XMark1 //person[//profile[//age][//interest][//education][//gender][//business]][//address]//email

XMark2 //person[//emailaddress][//homepage][//name]//address[//country]//city

XMark3 //site[//person[//homepage][//emailaddress]][//open-auction[//bidder] [//reserve]]//price

XMark4 //closed-auction[//annotation[//description]][//price][//date][//buyer]//seller

XMark5 //open-auction[//bidder[//personref][//time][//date]][//quantity][//reserve]//current

Table 8.2: Queries used in our experiments

Figure 8.7: Running time of CPU and I/O on TreeBank

Figure 8.7 and Figure 8.8 summarize the processing time of four twig queries

for the datasets, TreeBank (Figure 8.7), and XMark (Figure 8.8). The queries

give a comprehensive comparison of the three algorithms. Overall, our algorithm

outperforms the level of TJEssential and TwigStack in query processing time. This

can be explained by the fact that TwigStack++ reduces the cost (I/O and CPU time)

of TwigStack and TJEssential by reducing the number of join operations and the
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Figure 8.8: Running time of CPU and I/O on XMark

number of join attributes in the merging phase and the unnecessary computations

in the matching phase.

8.6 Conclusion

In this chapter, we have proposed a new holistic twig join algorithm, called TwigStack++
to efficiently process XML twig patterns. Our approach is based on two main im-

provements in the matching and merging phase. Experimental results show that

our approach achieves high efficiency and outperforms existing proposals.



Chapter 9

Conclusion and Future Work

In this thesis, we discussed three graph theory problems applied to different classes

of labeled graphs. In this chapter, we present several open questions and directions

for future research in these areas.

******

Over the years, several vertex-distinguishing edge coloring variants have been de-

fined in the literature. We gave in Chapter three a survey of various methods,

recent results and open conjectures from this area of research. In particular, we

have detailed the vertex-distinguishing edge coloring problem by sets and multisets.

Originally motivated by these two variants, we investigated in Chapter four a new

variant of edge coloring that induces a vertex distinguishing labeling where the label

of each vertex is given by the difference between the highest and the lowest colors

of its adjacent edges. In view of our results, we observed that our parameter can

be used to get a bound on the detection number. In addition, several results have

been obtained for various classes of graphs.

As future works, we plan to focus on the following three issues.

1. We left as an open question to show that the gap chromatic number of a graph

of order n is always in {n− 1, n, n+ 1}.

2. The computational complexity of the gap chromatic number is still an open

problem (this is the case of most variants of vertex distinguishing problems

derived from an improper edge coloring).

3. As for the other distinguishing parameters, it would be interesting to consider

the variant of the gap coloring problem that distinguishes adjacent vertices

only.

******

The purpose of the second part of this thesis was to study the graph packing problem

for labeled graphs. Much work has been done on the unlabeled graph packing prob-

lem and we felt that investigating the labeled case might yield interesting results.

The first section of Chapter five was dedicated to giving the reader an introduc-

tion to some relevant results on the packing of unlabeled graphs. Then, we studied
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the labeled graph packing problems for k copies of cycles in which we have proved

the exact value of λk(G) for all n ≥ 4k − 3. In Chapter six, we computed upper

bounds for the labeled embedding number of trees and (n, n−2)-graphs. From these

results, we can consider several directions for future work:

1. We would like to prove Conjecture 5.28 (in Chapter 5) that deals with the

labeled packing of k copies of cycles of order n, where 2k + 1 ≤ n ≤ 4k − 3.

2. we hope that the work in Chapter 6 provides a helpful beginning to the study

of the labeled packing of three copies of trees and (n, n− 2)-graphs.

3. Characterize all trees T for which the labeled embedding number of T reaches

the upper bound of Lemma 5.21.

4. We would also like to improve the lower bound of the labeled embedding

number of (n, n − 2)-graphs from ⌊2n3 ⌋ to ⌊3n4 ⌋ − 2 (as shown in Conjecture

6.15).

******

The last part of this thesis addresses the problem of query processing in XML

databases, namely XML twig queries. An XML twig query, represented as a la-

beled tree, is essentially a complex selection on the structure of an XML document.

Thus, XML tree patten matching is widely regarded as a new challenge for efficient

XML query processing. Until now, the holistic twig join approach was regarded

as the most efficient family in the literature. In Chapter seven, we provided a

comprehensive survey of the basic ideas and results of the main holistic twig join

algorithms available in the literature. In Chapter eight, we proposed a novel

holistic twig join algorithm, called TwigStack++. This algorithm is based on two

main improvements in the decomposition and matching phases. We analytically

and experimentally shown that TwigStack++ can efficiently avoid many unneces-

sary computation and I/O cost. While this part has proposed an efficient algorithm

for XML tree pattern matching, a number of issues need to be further investigated.

1. We would like to combine our decomposition technique with other efficient

holistic twig join algorithms. Furthermore it would also be interesting to

study the parallelism of these algorithms on a multi-core system in order to

maximize the computing performance of query processing in a large XML

database.

2. In the literature, quantum algorithms have attracted considerable attention

in the theoretical computer science community because of the considerable

speed up over classical algorithms they achieve. For a practical perspective

of tree matching problem, several aspects remains to be investigated. Indeed,

quantum versions of matching approaches based on decomposition and com-

binatorics on words can be developed. Nevertheless, the formalization of such
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solutions may be very difficult, but very promising. One can address that in

the future.

3. As mentioned in Part two, the graph matching problem can be naturally

stated as a packing of labeled graphs. Therefore, it would be interesting to

exploit tree packing techniques in order to define a coherent similarity measure

between XML query and tree data.
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Coloring, Packing and Embedding of graphs

Abstract: In this thesis, we investigate some problems in graph theory, namely

the graph coloring problem, the graph packing problem and tree pattern matching

for XML query processing. The common point between these problems is that they

use labeled graphs.

In the first part, we study a new coloring parameter of graphs called the gap
vertex-distinguishing edge coloring. It consists in an edge-coloring of a graph G which

induces a vertex distinguishing labeling of G such that the label of each vertex is

given by the difference between the highest and the lowest colors of its adjacent

edges. The minimum number of colors required for a gap vertex-distinguishing edge

coloring of G is called the gap chromatic number of G and is denoted by gap(G).

We will compute this parameter for a large set of graphs G of order n and we even

prove that gap(G) ∈ {n− 1, n, n+ 1}.

In the second part, we focus on graph packing problems, which is an area of

graph theory that has grown significantly over the past several years. However, the

majority of existing works focuses on unlabeled graphs. In this thesis, we introduce

for the first time the packing problem for a vertex labeled graph. Roughly speaking,

it consists of graph packing which preserves the labels of the vertices. We study

the corresponding optimization parameter on several classes of graphs, as well as

finding general bounds and characterizations.

The last part deal with the query processing of a core subset of XML query lan-

guages: XML twig queries. An XML twig query, represented as a small query tree,

is essentially a complex selection on the structure of an XML document. Matching a

twig query means finding all the occurrences of the query tree embedded in the XML

data tree. Many holistic twig join algorithms have been proposed to match XML

twig pattern. Most of these algorithms find twig pattern matching in two steps. In

the first one, a query tree is decomposed into smaller pieces, and solutions against

these pieces are found. In the second step, all of these partial solutions are joined

together to generate the final solutions. In this part, we propose a novel holistic

twig join algorithm, called TwigStack++, which features two main improvements

in the decomposition and matching phase. The proposed solutions are shown to be

efficient and scalable, and should be helpful for the future research on efficient query

processing in a large XML database.

Keywords: graph theory, labeled graph, vertex-distinguishing edge coloring,

labeled packing of graphs, XML tree pattern matching.



Coloration, Placement and Plongement de graphes

Résumé:

Cette thèse se situe dans le domaine de graphes et de leurs applications, Elle

est constitué de trois grandes parties, la première est consacrée à l’étude d’un

nouveau type de coloration sommets distinguantes, les arête-colorations sommets-

distinguantes par écarte. Il consiste de trouver une valuation des arêtes qui permette

de distinguer les sommets de graphes telle que chaque sommet v du graphe est iden-

tifié de façon unique par la différence entre la plus grande et la plus petite des valeurs

incidentes à v. Le plus entier pour lequel le graphe G admet une arête-coloration

sommets-distinguantes par écarte est le nombre chromatique par écart de G, noté

gap(G). Nous avons étudié ce paramètre pour diverses familles de graphes. Une

conjecture intéressante, proposée dans cette partie, suggère que le nombre chroma-

tique par écart de tout graphe connexe d’ordre n > 2 vaut n − 1, n ou n + 1.

La deuxième partie du manuscrit concerne le problème du placement de graphes.

Nous proposons un état de l’art des problèmes de placement de graphes, puis nous

introduisons la nouvelle notion de placement de graphes étiquetés. Il s’agit d’un

placement de graphes qui préserve les étiquettes des sommets. Ensuite, nous pro-

posons des encadrements de ce nouveau paramètre pour plusieurs classes de graphes.

La troisième partie de la thèse s’intéresse au problème d’appariement d’arbres dans

le cadre de la recherche d’information dans des documents structurés de type XML.

Les algorithmes holistique de jointure structurelle est l’une des premières méthodes

proposées pour résoudre l’appariement exact des documents XML. Ces algorithmes

sont souvent divisés en deux grandes étapes. La première étape permet de décom-

poser l’arbre de la requête en un ensemble de petites composantes connexes. Ensuite,

des solutions intermédiaires pour chaque composante de la requête sont trouvées, ces

résultats intermédiaires sont joints pour obtenir la solution finale. Nous proposons

dans cette partie un nouvel algorithme appelé TwigStack++ qui vise principalement

à diminuer le coût de la jointure et le calcule inutile recherche. Notre algorithme

obtient de meilleurs résultats en comparaison avec deux autres méthodes de l’état

de l’art.

Keywords: théorie des graphes, graphes étiquetés, colorations sommets distin-

guantes, placement de graphes étiquetés, l’appariement exact des documents XML.


