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Università Campus Bio-Medico di Roma
School of Engineering

PhD Course in Biomedical Engineering
(XXVI - 2011/2013)
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Abstract

Disproportion among class priors is encountered in a large number of domains making conventional

learning algorithms less effective in predicting samples belonging to the minority classes. Most of

the proposals reported in the literature deal with classification imbalanced problems composed of two

classes usually named as dichotomies, whereas small efforts have been directed towards multiclass

recognition tasks, which are referred to as polychotomies. In this latter case existing approaches can be

roughly divided in two groups. In the first one there are the methods addressing directly the multiclass

tasks, whereas in the second group there are the methods using decomposition schemes. A decomposi-

tion scheme divides the polychotomy into several binary classification tasks, and then a reconstruction

rule combines the predictions of binary learners to estimate the final decisions. In the case of a skewed

classification task addressed by a decomposition approach, existing methods propose specialized clas-

sification algorithms that work at level of single binary learners, while little efforts have been directed

to develop a reconstruction rule specifically tailored for class imbalance learning. On this motivation,

we aim at developing a reconstruction rule suited to multiclass skewed data. In performing this task we

look with interest to the classification reliability i.e. a measure of the goodness of classification acts.

This quantity takes into account phenomena like noise, borderline samples, etc., and conveys useful

information on the classification process. Hence, we decide to use these information in reconstruction

rule tailored for imbalanced domains. In the framework of One-per-Class decomposition scheme we

design a novel reconstruction rule, which is referred to as Reconstruction Rule by Selection. This rule

uses classifiers reliabilities, crisp labels and a-priori samples distribution to compute the final decision.

Experimental tests carried out with four classifiers on several public and artificial datasets show that

system performance improves using this rule rather than using well-established reconstruction rules.

Furthermore, the use of this rule improves classification performance in terms of accuracy, geometri-

cal mean of accuracies per class and F measure, proving to be suited for skewed classification task.

To further explore the effects of reconstruction rule in handling imbalanced domains we investigate a

statistical reconstruction rule in the Error Correcting Output Code (ECOC) decomposition framework.

Inspired by a statistical reconstruction rule designed for the One-per-Class and Pair-Wise Coupling de-

composition approaches, we have developed a rule for ECOC scheme that applies softmax regression

in order to estimate the final classification. To exploit the information provided by the reliability, we

introduce this quantity in the reconstruction rule. Experimental results show that this choice improves

the performances with respect to the existing statistical rule extended to ECOC framework, as well as

to other well-established reconstruction rules. On the topic of reliability estimation we notice that sev-

eral methods exist to estimate reliability and, in certain cases, posterior probability. Nevertheless small

attention has been given to efficient posteriors estimation in the boosting framework. On this reason

we develop an efficient posteriors estimator by boosting Nearest Neighbors. Using Universal Nearest

Neighbours classifier we prove that a sub-class of surrogate losses exists, whose minimization brings

simple and statistically efficient estimators for Bayes posteriors. Furthermore, we perform tests to eval-

uate the contribution of posterior estimation to set the final decision of the Universal Nearest Neighbors

classifier. Results show also that the posterior reliability used at the reconstruction stage leads to an

improvement of the system performance.





1. Introduction

Machine learning is the field that concerns the study of the algorithms that can learn from

data [14]. These algorithms find application in a wide range of fields: speech and handwrit-

ing recognition, computer vision and object recognition, medical diagnosis, brain-machine

interfaces, information retrieval and affective computing, to name a few. The large diffusion

of these systems is due to the heterogeneity of the data that they can process: images, video

sequences, signals, measures, etc. These raw data are typically preprocessed to transform

them into some new space of variables where, it is hoped, the pattern recognition problem

will be easier to solve. This pre-processing stage is also called feature extraction and maps

the raw data into a vector of values referred to as features vector. The categories of the data,

referred also as classes, are known in advance, typically by inspecting them individually and

hand-labelling them with a label. Where samples belong to two ore more classes are named as

binary or multiclass classification tasks. Furthermore, they are also referred to as dichotmies

and policotmies, respectively.

Techniques existing in machine learning field can be roughly divided in three main branches.

The first one deals with pattern recognition problems where the training data consists of a set

of input vectors without any corresponding target values. The goal in such unsupervised learn-

ing problems may be to discover groups of similar examples within the data, where it is called

clustering, or to determine the distribution of data within the input space, known as density es-

timation, or to project the data from a high-dimensional space down to two or three dimensions

for the purpose of visualization [10, 66, 93, 95].

The second one is the technique of reinforcement learning that concerns with the problem

of finding suitable actions to take in a given situation in order to maximize a reward [77, 134].

Here the learning algorithm discovers the optimal outputs by a process of trial and error.

Typically there is a sequence of states and actions in which the learning algorithm is interacting

with its environment.

The last one concerns applications where the training data comprises examples of the input

vectors along with their corresponding target vectors are known. This problem are referred to

as supervised learning. Cases in which the aim is to assign each input vector to one of a finite

number of discrete categories, are called classification problems. If the desired output consists

of one or more continuous variables, then the task is called regression.

We focus in this work on supervised learning and in particular on classification problems.

In these problems, a collection of samples is used to tune the parameters of an adaptive model.

This provides to the classifier the knowledge of the problem at hand. This phase is called

training phase, also known as learning phase, and the set of samples used is referred to as

training set. During this training stage, the model’s parameters of the learner are computed

minimizing a loss function which reduces the error rate on the training set. After the training

stage, new samples are presented to the learner, which assigns a label accordingly with its

1



1. Introduction

model. This step is called testing phase. Since in practical applications, the input vectors can

comprise only a tiny fraction of all possible input vectors, classifier knowledge is limited. This

issue limits the learner’s generalization ability, i.e. the ability to infer information on unknown

data. The number of misclassifications can depend also on several factors such as overlapping

of class distributions, borderline samples, dataset noise, to name a few.

Our work deals with particular attention to the Class imbalance learning that refers to clas-

sification problems where datasets have a disproportion between class priors. The skewed

distribution makes many conventional learning algorithms less effective, especially in pre-

dicting samples belonging to the minority classes. This happens because they are designed

to minimize errors over training samples, and also assume or expect balanced class distribu-

tions. Therefore, when skewed datasets are presented to most standard learning algorithms,

this cause an improper representation of data distributive characteristics, producing a bias

towards the majority classes and providing unsatisfactory accuracies across the classes com-

posed of few instances. When this phenomenon occurs in real-world domains, skewed data

represents a recurring problem of high importance with wide-ranging applications such as

text classification, currency validation, medical diagnosis and protein fold classification, to

name a few [20, 37, 52, 104, 116, 132, 130, 135, 151, 152]. The relevance of this issue and

its potential impact on the development of learning algorithms suited for real-world domains

have motivated recent research on class imbalance learning. In this respect, most of the exist-

ing literature concerns binary classification problems while smaller efforts have been directed

towards multiclass recognition tasks.

In case of binary problems, existing solutions work at pre-classification stage, at algorithmic

level and at post-classification stage. At pre-classification level they provide different forms

of resampling, such as undersampling and oversampling [5, 13, 44, 47, 48, 52, 56, 57, 64, 70,

73, 85, 91, 142, 92]. At algorithmic level they introduce a bias to compensate the skewness of

the classes, e.g. using ensemble techniques and adjusting the costs of classes [9, 25, 41, 43,

68, 110, 74, 94, 137, 144, 145]. At post-classification stage they adjust decision thresholds or

combine several learners in an ensemble system [17, 20, 71, 84, 92, 104, 108, 116, 121, 132,

140, 151] .

The large number of domains where samples belong to more than two classes pose new

challenges that have not been observed in two classes problems [139, 156]. When classes

have different misclassification costs, Zhou et al. [156] showed that it is harder to cope with

a polychotomy than a dichotomy. They reported that most of learning techniques originally

designed only for two-class scenarios are less effective, or even cause a negative effect when

applied to multiclass tasks. Recent works tackling with imbalanced multiclass distributions

can be roughly divided into two groups. In the first one there are the approaches directly ad-

dressing the polychotomy [1, 96, 139, 147, 156]. In the second group there are the approaches

handling multiclass imbalance problems using decomposition schemes, which reduce the mul-

ticlass problem in less complex binary subtasks, each one addressed by a dichotomizer [3]. In

this framework the three most popular decomposition schemes are One-per-Class (OpC), Pair-

wise Coupling (PC) and Error Correcting Output Code (ECOC) [3, 40, 46, 50, 55, 72, 111, 123,

128, 148, 150]. To provide the final classification, dichotomizers’ outputs are combined ac-

cording to a reconstruction rule. It is worth noting that results of experiments carried out by

Alejo et al. [1] show that a decomposition approach achieves larger recognition performances

2



1. Introduction

than directly addressing the polychotomy. This last result agrees with [111], where the au-

thors prove that OpC is preferable to a more complex error-correcting coding scheme or a

single-machine scheme. Focusing on using decomposition approaches in multiclass imbal-

ance learning, we observe that most of the aforementioned proposals work at level of single

dichotomizer [24, 46, 50, 90, 126, 135, 155], while little efforts have been directed to develop

a reconstruction rule specifically tailored for class imbalance learning.

On these motivations, we aim at developing new reconstruction rules suited for imbalanced

domains. In order to achieve this goal, we look with interest to the classification reliability,

which is a measure of the classifier’s “confidence” on its predictions. A large value of the

reliability suggests that the recognition system is likely to provide a correct classification [27,

82]. Conversely a low value of reliability suggests that the decision on the test sample is not

safe. This quantity takes into account several issues influencing the achievement of a correct

classification such as border line samples, dataset noise, outliers, etc.

Considering these interesting characteristics of the reliability, we decide to use this quantity

in the reconstruction rule in order to deal with imbalanced domains. Hence, we develop an

heuristic reconstruction rule in the OpC decomposition framework suited to classify skewed

data [30, 34]. The key idea of this approach is that learner reliabilities can be used to de-

tect classification acts where the presence of an imbalanced distribution among the classes is

leading to a misclassification. To this aim, our rule therefore incorporates the reliabilities at

reconstruction stage in order to correct possible misclassifications. We carried out tests on

several imbalanced domains, both real and synthetic, using four different classification algo-

rithms. Tests results point out two main contributions. First, this rule provides larger overall

performance compared with well-established reconstruction rules. Second, our rule is suited

for classify imbalanced domains since geometric means of accuracies and F measure show

that this rule improves performance with respect to minority classes.

In a decomposition scheme each binary learner outputs its prediction on the input sample.

The collection of these predictions build a vector that maps the sample into a new space and

thus it can be considered as a new feature vector. Hence, after binary classification, test sam-

ples are described in a new set of second order features that, together with the original labels,

define a new classification task. Considering the problem from this point of view, we further

investigate the use of the reconstruction rule in order to handle imbalanced datasets. We pro-

pose a statistical reconstruction rule extending an existing method, suited for One-per-Class

and Pairwise Coupling, in the case of Error Correcting Output Code (ECOC) [31, 32]. This rule

applies the softmax regression on the feature vectors generated by binary learners. In order to

achieve improvements with respect to the minority classes we integrate classifier reliabilities

in the reconstruction stage. Results show that the rule provides satisfactory performance when

compared with well established rules in the ECOC framework and when compared with the

softmax regression without the use of reliability.

Exploring the reliability issue, we became aware that several methods to compute reliability

measure from classifier outputs exist. In some cases, it is even possible to compute classifica-

tion reliability in terms of posterior probability [18, 60, 107, 154]. Among all the proposals, to

the best of our knowledge, little efforts have been directed toward efficient posteriors estima-

tion in boosting approach. Boosting algorithms are remarkably simple and efficient from the

classification standpoint, and are being used in a rapidly increasing number of domains and
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problems [18]. Nevertheless it is widely believed that boosting and conditional class probabil-

ity estimation are in conflict with each other, as boosting iteratively improves classification at

the price of progressively over-fitting posteriors [19, 54]. Existing experimental results display

that this estimation is possible, but it necessitates a very fine tuning of the algorithms [18].

For this reason, we propose a novel efficient posterior estimator by boosting Nearest Neigh-

bors. We use the Universal Nearest Neighbours demonstrating that a sub-class of surrogate

losses exists, whose minimization brings simple and statistically efficient estimators for Bayes

posteriors [33]. The point of our work is that boosting topological approaches, like nearest

neighbors, is possible to estimate class conditional probabilities, without tedious tunings, and

without overfitting. Furthermore, experimental results show that the use of the estimated pos-

terior probabilities to set the final decisions leads to an improvement of system performances.

The thesis is organized as follows. The next chapter presents an overview of the litera-

ture related to the issue of classify imbalanced datasets and the rationale behind our research

activities. Chapter 3 presents the datasets, the learners and the performance metrics used to

validate our proposals. Chapters 4,5 and 6 present our contributions and, finally, Chapter 7

summarizes results obtained with the proposed approaches.
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In an imbalanced dataset the most relevant source of misclassification is the skewed data distri-

bution between classes. Many authors pointed out that the problem of imbalance distribution

occurs often together with other phenomena that influence the performance of learning algo-

rithms in detecting the minority samples. As an example in [73] authors show that dataset

complexity and the presence of small disjunctions can cause a degradation in standard classi-

fiers’ performance. The difficulty in separating the small class from the prevalent one is the

key issue in this task and if patterns of each class are overlapping at different levels in some

feature space, discriminative rules are hard to induce.

Furthermore one of the critical factors in learning from imbalanced datasets is the sample

size. When the sample size is limited, uncovering regularities inherent in small class is unre-

liable. In [70] authors report that as the size of the training set increases, the error rate caused

by the imbalanced class distribution decreases. When more data can be used, relatively more

information about the minority class benefits the classification modeling, which becomes able

to distinguish rare samples. It is obvious that in real life problems it is not always possible to

increase the size of the sample.

Therefore the imbalance distribution issue is rather complex and in general it is not easily

solvable [49, 63, 65, 83, 131]. It is not limited to binary classification tasks (dichotomies) and

it holds also in multiclass problems (polichotomies). In the latter case an imbalanced dataset

has one or more classes with fewer samples than others.

A number of proposed solutions can be tracked back in the literature to solve imbalanced

datasets issue. These solutions have been focused mainly in case of binary problems whereas

contribution for multiclass tasks is still limited.

In the following we firstly present the solutions proposed to solve binary problems dis-

tinguishing between methods addressing the imbalanced issue at pre-classification level, in-

algorithms approaches and post-classification techniques. Secondly we present solutions that

aim at solving multiclass tasks.Thirdly, we describe the decomposition techniques. Finally,

we introduce the classification reliability.

2.1. Binary Methods

Many solutions have been proposed to handle imbalanced dataset issue in case of binary clas-

sifications. As reported in figure 2.1 these methods are divided in three main areas: Pre-

classification, In-Algorithms and Post-classification techniques. The objective of the formers

is to re-balance the class distributions by resampling the data space. At the algorithm level,

solutions try to adapt existing classifiers to strengthen learning with regards to the small class.

Post-classification techniques combine classifier outputs or tune prediction thresholds in order
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2. Background

Figure 2.1.: Techniques tassonomy for binary inbalanced dataset tasks

to reduce the misclassification in the minority class. As reported in the figure, often the divi-

sion in this taxonomy is not strict since in many cases proposals use techniques belonging to

different areas.

2.1.1. Pre-classification techniques

At the data level, different forms of re-sampling methods have been proposed aiming at gen-

erate balanced data distributions. Indeed in the specialized literature, several papers study the

effect of changing class distributions empirically proving that a preprocessing step is usually

a positive solution [13, 44, 47, 48, 91].

In [70] the effect of imbalance in a dataset is discussed and two re-sampling strategies are

considered. Random re-sampling consists of re-sampling the smaller class at random until it

consists of as many samples as the majority class, whereas focused re-sampling consists of

re-sampling only those minority instances that occur on the boundary between the minority

and majority classes. Experiments in [70] show that both the two sampling approaches are

effective, and the author proves that using more sophisticated sampling techniques do not give

any clear advantage in the domain considered.

In addition to these classical re-sampling methods, many others have been presented in the

literature, such as heuristic re-sampling methods, combination of over-sampling and under-

sampling methods, embedding re-sampling methods into data mining algorithms, and so on.

Examples of proposals regarding improved under-sampling methods are as follows. In [85]

authors presented the one-side selection under-sampling method, which heuristically balances

the dataset through eliminating the noise and redundant examples of the majority class. The

majority class instances are classified as ”safe”, ”borderline” and ”noise” instances. Border-

line and noisy cases are detected using Tomek links, and are removed from the dataset. Only

safe majority class instances and all minority class instances are used for training the learning

system. In [56, 57] authors propose an under-sampling procedure where genetic algorithms
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are applied for the correct identification of the most significant instances. A features and

instances selection method [52] has been tested on imbalanced domains in [130]. Authors’

method computes the discriminative power of each feature and then selects those samples that

show the highest score. In [5] author proposes a Condensed Nearest Neighbour Rule that

performs under-sampling bases on the notion of a consistent subset of a sample set, which is

a subset who can correctly classifies all of the remaining examples in the training set when

used as a stored reference set for the NN rule. One of the advantages of this algorithm is

the fast learning speed. In [142] the Edited Nearest Neighbour Rule is proposed. This al-

gorithm removes any example whose class label differs from the class of at least two of its

three nearest neighbours. In [92] two under-sampling algorithms are presented: EasyEnsem-

ble and BalanceCascade. The first one samples several subsets from the majority class, trains a

learner using each of them, and combines the outputs of those learners. The second one trains

the learners sequentially, where in each step, the majority class examples that are correctly

classified by the current trained learners are removed from further consideration.

Among proposals of over-sampling techniques there is SMOTE (Synthetic Minority Over-

sampling Technique) method [22], which generates new synthetic instances along the line

between the minority examples and their selected nearest neighbours. Authors show that

best performances are achieved combining SMOTE and under-sampling. The advantage of

SMOTE is that it makes the decision regions larger and less specific. In [64] authors propose

two methods based on SMOTE aiming at oversampling only the minority examples near the

borderline: borderline-SMOTE1 and borderline-SMOTE2. The key idea of this approach is

that borderline examples of the minority class are more easily misclassified than those ones far

from the borderline. In [73] authors put forward a cluster-based over-sampling method which

deals with between-class imbalance and within-class imbalance simultaneously. The idea

behind this method is that classification performances drop when class imbalanced problem is

related also with the problem of small disjunctions.

Other methods propose a combination between over-sampling and under-sampling to re-

solve the imbalance distribution problem. In [13] authors show results that contradict the liter-

ature. Testing ten different methods they show that over-sampling methods are more accurate

than under-sampling methods. In [44] there is an attempt to investigate three aspects: i) which

one is the most performing technique between under-sampling and over-sampling; ii) which

one is the ideal re-sampling rate; iii) if it is possible to combine re-sampling methods to im-

prove classification performance. Authors finally propose a method that performs multiple re-

sampling, both oversampling and under-sampling, selecting the most appropriate re-sampling

rate adaptively. Authors in [43] report that when using C4.5s default settings, over-sampling

is surprisingly ineffective, often producing little or no change in performance in response to

modifications of misclassification costs and class distributions. Moreover, they noted that

over-sampling prunes less the trees and therefore generalizes less than under-sampling.

The level of imbalance is reduced in both under-sampling and over-sampling methods, with

the hope that a more balanced training set can give better results. Both sampling methods

are easy to implement and have been shown to be helpful in imbalanced problems. Both

methods have also drawbacks. Under-sampling requires shorter training time, at the cost of

ignoring potentially useful data. Oversampling increases the training set size and thus requires

longer training time. Furthermore, it tends to lead to over-fitting since it repeats minority
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class examples. In this way, a symbolic classifier, for instance, might construct rules that are

apparently accurate, but actually, cover one replicated instance.

2.1.2. In Algorithms

In this section we report all the methods that operate on the algorithm rather than at dataset

level.

One of the most used algorithms in the field of machine learning is the Support Vector

Machine (SVM). In its traditional form, when deals with imbalanced data sets, it increases

the misclassified rate of the minority class. For this reason several attempts have been done to

modify internally this classifier to hanlde imbalanced distributions [74, 137, 144, 145]. In [74]

authors present an SVM that can directly optimize a large class of performance measures (e.g.

F measure, Precisoon/Recall at Breakeven point) formulating the problem as a multivariate

prediction of all the examples. In [137] two methods to control the sensitivity and specificity

of the SVM are proposed. With this aim the authors introduce different loss functions for

positive and negative samples. In [144, 145] authors modify the kernel matrix according to

the imbalanced data distribution. This is done in order to compensate for the skew associated

with imbalanced datasets which pushes the hyper-plane closer to the positive class.

The SVM is not the only classifier that has been modified to solve the problem of imbalanced

data. In [9] authors try to compensate for the imbalance in the training sample without altering

the class distributions. They use a weighted distance in the classification phase of kNN. Thus,

weights are assigned, unlike in the usual weighted k-NN rule, to the respective classes and not

to the individual prototypes. In this way, since the weighting factor is greater for the majority

class than for the minority one, the distance to positive minority class prototypes becomes

much lower than the distance to prototypes of the majority class. This produces a tendency

for the new patterns to find their nearest neighbours among the prototypes of the minority

class. C4.5 algorithms performances in [43] are evaluated when re-sampling techniques are

used together with algorithm parameters tuning. It is shown that over-sampling is ineffective

if C4.5s parameter to increase the influence of pruning and other over-fitting avoidance factors

are not well set. In [68] authors propose the Biased Minimax Probability Machine to resolve

the imbalance distribution problem. Given the reliable mean and covariance matrices of the

majority and minority classes, this algorithm can derive the decision hyper-plane by adjusting

the lower bound of the real accuracy of the testing set.

Furthermore, there are other effective methods such as one-class learning [25, 94] and cost-

based learning.

The first strategy, i.e. One-class learning, creates the learning model using only examples

from the positive class. Differently from a discriminative based approach that distinguishes

between positive and negative samples, the One-class learning recognizes only the samples

of the minority class. Hence, it belongs to recognition-based approaches. In [25] authors

show that one-class learning from positive class examples can be very robust classification

technique when dealing with imbalanced data. They argue that the one-class approach is

related to aggressive feature selection methods, but is more practical since feature selection

can often be too expensive to apply. Algorithms such as SHRINK that looks for the best

positive region and BRUTE [110] that performs an exhaustive search for accurate predictive
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rule belong also to this category.

The second approach integrates costs during the decision making process leading to an

improvement in performance in case of imbalanced domain. The cost matrix is usually ex-

pressed in terms of average misclassification costs for the problem. The goal in cost sensitive

classification is to minimize the cost of misclassification, which can be realized by choosing

the class with the minimum conditional risk. In [41] authors propose a general framework

that makes an arbitrary classifier costs sensitive. This procedure is called MetaCost and it

estimates class probabilities using bagging and then relabels the training examples with their

minimum expected cost classes, and finally relearns a model using the modified training set.

This approach can be used with any number of classes. Standard boosting algorithms , e.g.

Adaboost, increase the weights of misclassified examples and decrease the weights of those

correctly classified. The weights updating rule is uniform for all the samples and does not con-

sider the imbalance of the data sets. For this reason these algorithms do not perform well on

the minority class. In [45] authors propose a cost sensitive version of Adaboost referred to as

Adacost. In this algorithm to the examples belonging to rare class that are misclassified are as-

signed higher weights than those belonging to common class. It is empirically shown that the

proposed system produces lower cumulative misclassification costs than AdaBoost. In [76] an

improved boosting algorithm is proposed, which updates weights of positive predictions dif-

ferently from weights of negative predictions. It scales false-positive examples in proportion

to how well they are distinguished from true-positive examples and scales false-positive exam-

ples in proportion to how well they are distinguished from true-negative examples, allowing

the algorithm to focus on both Recall and Precision equally. The new algorithm can achieve

better prediction for the minority class. In SMOTEBoost [23] authors recognize that boost-

ing may suffer from the same problems as over-sampling (e.g., over-fitting), since will tend

to weight examples belonging to the rare classes more than those belonging to the common

classes. For this reason SMOTEBoost alters the distribution by adding new minority-class

examples using the SMOTE algorithm. The synthetic samples for the rare class are added

into the training set to train a weak classifier and discarded after the classifier is built. The

SMOTE procedure in each iteration makes every classifier learn more from the rare class, and

thus broadens the decision regions for the the rare class. All these Boosting variation can be

applied to binary problems as well as to multiclass tasks. An analysis of the cost-sensitive

boosting algorithms is reported in [133].

Other variations of traditional classification algorithms have been proposed in the area of

rule based algorithms. Indeed these traditional methods often show poor performances when

learned from imbalanced datasets. We have already introduced BRUTE algorithm [110] where

brute-force induction is applied in Boeing manufacturing domain. In [2] authors use Emerging

Patterns (EPs) [42] to handle imbalanced problems. The algorithm works in three stage: gen-

erating new undiscovered rare class EPs, pruning low-support EPs and increasing the supports

of rare class EPs. In [75] authors propose a two-phase rule induction method in the context

of learning complete and precise signatures of minority classes. The first phase aims for high

recall by inducing rule with high support and reasonable level of accuracy. The second phase

tries to improve the precision by learning rules to remove false positive in the collection of the

records covered by the first phase.
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2.1.3. Post-classification techniques and ensemble

One of the strategy adopted in the post classification stage is the tuning of decision thresholds

[116, 121] . Provost [108] highlights that adjusting decision thresholds is a critical factor

in classification of imbalanced data. This strategy is adopted in [132] where authors show

that SVM threshold relaxation can be used in hierarchical text classification to avoid blocking

documents at high-level categories in the hierarchy. Some classifiers, such as the Naive Bayes

classifier or Neural Networks, supply a score that represents the degree to which an example

belongs of a class. Such ranking can be used to tune the final decision by varying the threshold

of an example pertaining to a class [140] . In [17] authors, in addition of experiments with

cost-based adjustment of the dividing hyperplane, show that the learner achieves improved

performance mostly altering the score threshold directly.

An Ensemble learner [39] contains a number of learners which are usually called base

learners that are combined by combination schemes. Since ensemble learning has established

its superiority in machine learning, in recent years many attempts have been done in using

ensemble systems to handle imbalanced domains. In ensemble systems results of several

classifiers are combined to provide the final prediction. The diversity among base classifiers

guarantees an improvement in final system performance. The diversity can be achieved also

by using various class distributions. Boosting algorithms like Adacost [45], Rare-Boost [76]

and SMOTEBoost [23] are enclosed also in this category.

One of the most adopted strategy in ensemble systems is to generate many subsets starting

from the original distribution. Usually this datasets are generated through re-sampling tech-

niques. In Section 2.1.1 we have already introduced this method when we described the two

systems in [92]: EasyEnsemble and BalanceCascade. In [20] and in [151] authors, starting

from the original dataset, generate many subsets each one containing all the minority class

examples and an equal number of samples drawn from the majority one. In the first work

it is presented wrapper method where each learning algorithm is trained using a subset and

the final decision is taken according to a stacking strategy. It can be used with any learning

method internally. In the second work authors use an ensemble system of SVMs. They show

that this method is more stable than the traditional re-sampling techniques.

In [104] authors present a method that, in the domain of fraud detection, uses a single meta-

classifier to choose the best base classifiers, and then combine their predictions to improve

costs-saving. The data subsets are generated trough oversampling of minority class. They

show that their stacking-bagging procedure achieves the highest costs saving which is almost

the twice of the conventional back-propagation procedure.

In [84] authors use techniques of agent-based knowledge discovery to handle the problem

of imbalanced datasets. They use three agents (the first learns using Naive Bayes, the second

using C4.5 and the third using 5NN) on a filtered version of training data and combine their

predictions according to a voting scheme. The intuition of authors is that the models generated

using different learning are more likely to make errors in different way and thus increase the

diversity of system.

In [71] the author combines classification techniques from both supervised and unsuper-

vised learning. He uses an unsupervised method of re-labeling already labelled data. A clas-

sifier is then run on several version of the same dataset and their results are combined using a
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Figure 2.2.: Techniques tassonomy for multiclass inbalanced dataset tasks

voting techniques.

2.2. Multiclass

It is known that it is harder to cope with a polychotomy than a dichotomy when classes have

different misclassification costs [156]. In [156] authors show that most of learning techniques

originally designed only for two-class scenarios are less effective or even cause a negative

effect when applied to multiclass tasks. The large number of domains where samples belong

to more than two classes defines new challenges that have not been observed in two classes

problems [139, 156].

Recent works tackling with imbalanced multiclass distributions can be roughly divided into

two groups (figure 2.2). In the first one there are approaches directly addressing the poly-

chotomy [1, 96, 139, 156]. In the second group there are approaches handling multiclass

imbalance problems using class decomposition schemes [24, 46, 90, 126, 135, 155]. To pro-

vide the final classification, dichotomizers’ outputs are combined according to a reconstruction

rule. It is worth noting that, results of experiments carried out by Alejo et al. [1] show that

a decomposition approach achieves larger recognition performances than directly addressing

the polychotomy.

2.2.1. Direct Methods

As in the case of binary methods we can divide the proposal to handle multiclass imbalanced

classes at the level of Pre-classification, In-Algorithm and Post-classification.

In the first category there is the method proposed in [146] where on the majority classes

is applied a local clustering, whereas on the minority ones, is adopted oversampling. The
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algorithm adjusts the over-sampling parameter to match with the clustering result so that the

rare class size is approximate to the average size of the partitioned majority classes.

In the second category there are works such as: [1, 26, 96]. RIPPER [26] algorithm is a

rule induction system that utilizes a separate-and-conquer approach to iteratively build rules to

cover previously uncovered training examples. Each rule is grown by adding conditions until

no negative examples are covered. It normally generates rules for each class from the most

rare class to the most common class. Given this architecture, it is quite straightforward to learn

rules only for the minority class, a capability that Ripper provides. In [1] authors introduce

several cost functions in the learning algorithm in order to improve the generalization ability of

the networks and speed up the convergence process. In [96] a two stage evolutionary algorithm

is presented with two sequential fitness functions, the entropy for the first step and the area for

the second one. This algorithm is based on the accuracy and minimum sensitivity given by

the lowest percentage of examples correctly predicted to belong to each class. The two-stage

approach obtains high classification rate level in the global dataset with an acceptable level of

accuracy for each class.

In the last category we report, as in the case of binary, thresholding techniques [152] and

ensemble learning systems[37]. The use of the threshold is studied in [152] where three thresh-

olding strategies in text classification are studied on the performance of a kNN classifier. The

author shows that proportional thresholding performs well in classifying minority class sam-

ples for multicategory classification tasks. A system that automatically discovers classification

patterns by applying several empirical learning methods to different representation of datasets

is presented in [37] in the field of document categorization. Different representations of the

datasets are obtained performing feature selection based on genetic algorithm. The final docu-

ment category is obtained by the genetic combination of the decision made by all the learners.

Among the methods that address directly the problem of multicass imbalanced datasets we

include SMOTEBoost [23] , MetaCost [41] and AdaCost [45] that can be applied both to

binary and to multiclass tasks.

In [156] the effect of sampling and threshold-move is empirically studied in a training

cost-sensitive neural networks. Both over-sampling and under-sampling are considered. The

threshold is moved toward inexpensive classes such that examples with higher costs become

harder to be misclassified. Furthermore the effect of hard and soft voting is also used to

build the ensemble decision. This paper can be categorized in all the three sections. Indeed,

re-sampling techniques, a cost-sensitive classifier, a threshold moving strategy and finally an

ensemble decision are used in the approach proposed by the authors.

2.2.2. In Decomposition Framework

Given a polychotomy with K > 2 classes, decomposition methods can be traced back to the

following three categories [3, 24, 40, 46, 72, 90, 126, 128, 135, 155]: One-per-Class (OpC),

Pairwise Coupling (PC), and distributed output code. There exist other proposals that do not

perfectly fit this categorization, e.g. the hierarchical dichotomies generation [86], but this does

not introduce any limitations in the rest of the work. We provide in Section 2.3 a complete

description of decomposition methods, whereas we report the description of approaches that

handle imbalanced multiclass datasets based on these schemes [24, 46, 90, 135] in the follow-
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ing. In [24] authors use the min-max modular network to decompose a multi-label problem

into a series of small two-class subproblems. They present several decomposition strategies

to improve the performance of min-max modular networks showing that the proposed method

has better generalization than SVM. In [46] authors use pairwise coupling framework where

each sub-problem is processed with SMOTE algorithm in order to balance data distribution.

As a base classifier is used a linguistic Fuzzy Rule Based Classication system. The experi-

mental results support the goodness of their methodology as it generally outperforms the ba-

sic and pairwise learning multi-classifier approach. In [90] 22 data preprocessing methods are

tested to perform classification of weld aws with imbalanced classes in an OpC decomposition

scheme. Their results show that some data preprocessing methods do not improve any crite-

rion and they vary from one classifier to another. In [135] authors propose a novel ensemble

machine learning method that improves the coverage of the classifiers under the multi-class

imbalanced sample sets by integrating knowledge induced from different base classifiers, and

they illustrate that the approach performs at least as well as the traditional technique over a

single joined data source. Finally, in [50] authors experimentally study the contribution of

re-sampling techniques in the OpC ans PC decomposition schemes.

2.3. Decomposition Methods

The techniques reducing a multiclass recognition problem to several binary subtasks are usu-

ally named as decomposition methods. Several proposals exist in the literature, and the most

used ones are the One-per Class (OpC), the Pairwise Coupling (PC), and the distributed output

code.

The first decomposition method, OpC, is also known as One-against-All. It is based on a

pool of K binary learning functions, each one separating a single class from all the others.

Thus in the OpC framework the jth dichotomizer is specialized in the jth class when it aims

at recognizing if the input sample belongs either to the jth class or, alternatively, to any other

class. This decomposition scheme, even if it is often used to derive multiclass classifier by bi-

nary learning algorithms, has not received the same attention in literature as other rules. Some

authors state that other schemes are preferable to OpC [50], nevertheless it has been proven

that OpC performs as well as more complex error-correcting coding schemes or dicothomizer

are well tuned [111].

The second approach, PC, it is also cited as n2 classifier, One-against-One or even Round

Robin classification [55]. In this case the recognition system is composed of K ∗ (K − 1)/2
base dichotomizers, each one specialized in discriminating between pair of classes. Predic-

tions of the base classifiers are then aggregated to a final decision using a voting criterion. For

example, in [72, 128] the authors propose a voting scheme adjusted by the credibilities of the

base classifiers, which are calculated during the learning phase of the classification. Indeed,

in this case the typical approach consists in using the confusion matrix.

The third approach, distributed output code, assigns a unique codeword, i.e. a binary string,

to each class. Assuming that the string has L bits, the recognition system is composed by

L binary classification functions. Given an unknown sample, the classifiers provide an L-

bits string that is compared with the codewords to set the final decision. For example, the
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input sample can be assigned to the class with the closest codeword according to a distance

measure such as the Hamming distance. In this framework, in [40] the authors propose an ap-

proach, known as Error-Correcting Output Codes (ECOC), where the use of error correcting

codes as distributed output representation yield a recognition system less sensitive to noise.

This result can be achieved via the implementation of an error-recovering capability derived

from the coding theory. Recently, other researchers investigated the ECOC approach propos-

ing diversity measures between codewords and the output of dichotomizers that differ from

the Hamming distance. For example, Kuncheva in [87] presents a measure accounting for the

overall diversity in the ensemble of binary classifiers, whereas Windeatt [143] describes two

techniques for correlation reduction between different codes. As regard to classification relia-

bility in ECOC decompositions, in [40] the authors propose a reliability estimator based on two

Euclidean distances: the first between the outputs of the base classifiers and the nearest code-

word; the second between these outputs and the second-nearest codeword. The confidence is

then estimated as the difference between these two distances. The limit of this approach is that

the confidence does not explicitly depend upon the position of the pattern in the feature space.

More formally given a polychotomy with K > 2 classes represented by the label set

Ω = {ω1, ω2, . . . , ωK}, the decomposition through the application of decomposition schemes

generates a pool of L dichotomizers each one denoted as Mj . When feed with a test sam-

ple x ∈ ℜn, each dichotomizer outputs the quantity Mj(x), which is collected in the vector

M(x) = [M1(x),M2(x), . . . ,ML(x)], with the value of L depending upon the decomposition

approach adopted. Decomposition schemes can be unified in a common framework represent-

ing the outputs of the dichotomizers by a binary code matrix, named as decomposition matrix

D ∈ ℜK x ℜL. Its elements are defined as:

D(ωc, j) =







1 if class c is in the subgroup associated to label 1 of Mj

−1 if class c is in the subgroup associated to label -1 of Mj

0 if class c is in neither groups associated to label -1 or 1 of Mj

(2.1)

with c = {1, 2, . . . , K}. We also denote as D(ωc) the cth row of D which is the binary

codeword associated to the class c. Hence, the labels are coded as {1,+1} according to their

class membership, whereas zero entries indicate that a particular class is not significative for

a given dichotomy. Obviously, this latter situation occurs only in the PC approach.

When the decomposition system is fed by a test sample x ∈ ℜ, the L binary classifiers

outputs crisp or soft labels, which are collected into the test codeword. To set the final label, a

reconstruction rule compares, according to a certain criterion, this test codeword with the base

codewords associated to each class and defined in the matrixD.

Hard reconstruction rule. In this case crisp decisions are made on the outputs of the

binary learners. Using the previously introduced notation, the crisp output vector M(x) =
[M1(x),M2(x), . . . ,ML(x)] (with Mj(x) = {−1, 1}) contains the binary decisions provided

by the dichotomizers for each sample x ∈ ℜn. A well-known reconstruction rule, usually

referred to as Hamming decoding (HMD) [3], sets the index s of the final class ωs ∈ Ω as:
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s = argminc dHMD(C(ωc),M (x)) (2.2)

where

dHMD(D(ωc),M(x)) =
L∑

j=1

(
1− sign(D(ωc, j)Mj(x))

2

)

(2.3)

with c = {1, . . . , K}. This reconstruction rule can be used whatever the type of the classifier,

i.e. abstract, rank or measurement1, since it requires the crisp labels, only.

Soft reconstruction rule. A disadvantage of the hard decoding technique is that it com-

pletely ignores the magnitude of the soft outputs, which represent an indicator of the reliability

of the decision taken by the dichotomizer. Therefore, a common strategy is to consider the

real-values fj(x) provided by the jth dichotomizer, which are collected in f(x). In many

approaches this quantity is combined with the crisp label, thus computing the margin. The

margin of a training sample is a number that is positive if and only if the sample is correctly

classified by a given classifier and whose magnitude is a measure of confidence in the pre-

diction. In case of a test sample, the margin of binary learners can be collected in the vector

m(x), whose elements

mj(x) =Mj(x)fj(x) (2.4)

This vector is exploited looking for the binary learner returning the largest positive output [40].

Hence, the index s of the final class ωs is given by:

s = argmaxcm(x) (2.5)

An extension of the original maximum rule was provided by Allwein et al. [3], which

introduced the loss-based decoding (LBD). This rule is based on a loss function Γ evaluated

on the margin. Hence, the final label is given by equation 2.2 where dHMD is replaced by dLBD

that is computed as follows:

dLBD(D(ωc),M(x)) =
L∑

j=1

Γ(D(ωc, j), fj(x)) (2.6)

It is worth observing that such an approach can be used also when the loss function of the

dichotomizers is not known since can be substituted by either L1 or L2 norm distance [123].

1The various classification algorithms can be divided into three categories [150]: type I (abstract), that supplies

only the label of the presumed class, type II (rank) that ranks all classes in a queue where the class at the top

is the first choice, type III (measurement) that attributes each class a value that measures the degree that the

input sample belongs to that class.
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2.4. Classification Reliability

Classification performances are often deteriorated by several factors, e.g. the noise affecting

the samples, borderline samples and the differences between the objects to be recognized and

those used to train the classifier.

The classification reliability is a measure that takes into account such several issues influ-

encing the achievement of a correct classification. It permits to estimate the “confidence”

of a classifier in its classification act, providing useful information on classifier decision

[27, 82, 113]. A large value of the reliability suggests that the recognition system is likely

to provide a correct classification [27, 82]. Conversely a low value of reliability suggests that

the decision on the test sample is not safe.

The reliability measure is very useful in a wide range of tasks. For instance, the reliability is

used in ensemble learning to derive the “Weighted Voting” methods [67, 89] which works as

follows: first it collects the crisp outputs of all the experts, second it computes their reliability,

third it weights the outputs with the corresponding reliability and, fourth it assigns the sample

to the class that shows the highest sum of votes.

Several approaches exist to compute classifier reliability. In general, the most common

choice for evaluating the classification reliability is to use the confusion matrix or other mea-

sures that depend on the recognition performance achieved during the learning phase. For

example, if an expert assigns the input sample to a certain class, a reliability proportional to

the recognition rate achieved on the training set on that class is attributed to such a decision

[150]. The drawback of this approach is that all the patterns attributed to the same class have

equal reliability, regardless of the quality of the sample. Indeed, the average performance

on the learning set, although significant, does not necessarily reflect the actual reliability of

each classification act. However, several works have demonstrated that more effective solu-

tions could be achieved by introducing parameters that estimate the accuracy of each single

classification act of the system [27, 113, 153].

A reliability parameter should permit to distinguish between the two reasons causing unre-

liable classifications : (a) either the sample is significantly different from those presented in

the reference set, i.e. in the feature space the sample point is far from those associated with

any class, (b) the sample point lies in the region where two or more classes overlap. In [27] au-

thors propose a reliability computation method, suited for Nearest Neighbours (NN) and Multi

Layer Perceptron (MLP), that considers these situations. For each one of these two cases, it

is defined a reliability parameter, named ψa and ψb, respectively. Based on these definitions,

the parameter providing an inclusive measure of the classification reliability can be defined as

follows:

ψ = min (ψa, ψb) (2.7)

This form is conservative since it considers a classification unreliable as soon as one of the two

alternatives causing unreliable classifications happens. The definition of both the parameters

ψa and ψb relies on the particular classifier architecture adopted.

In the case of NN classifiers, following [27], the samples belonging to the training set are

divided into two sets: the reference set and the training test set. The former is used to perform

the classification of the unknown pattern x, i.e. it plays the role of training set for the NN
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classifier, whereas the latter provides further information needed to evaluate the ψa parameter.

More specifically, the two reliability estimators are defined as:

ψa = max (1− Omin

Omax

, 0) (2.8)

ψb = 1− Omin

Omin2

(2.9)

where: Omin is the distance between x and the nearest sample of the reference set, i.e. the

sample determining the class ωj(x), Omax is the highest among the values of Omin obtained

from all samples of class ωj(x) belonging to the training test set, and Omin2 is the distance

between x and the nearest sample in the reference set belonging to a class other than ωj(x). In

the case of MLP classifiers the reliability can be estimated as:

ψ = min (Owin, Owin −O2win) = Owin −O2win = ψb (2.10)

where: Owin is the output of the winner neuron, O2win is the output of the neuron with the

highest value after the winner. The interested reader may find further details in [27]. Note that

such estimators have been useful also in other applications, e.g. in [36, 124].

In general, the use of classification reliability does not limit the choice of a classifier archi-

tecture since it is always possible to obtain a soft label output for each classification act of

any kind of classifier [69]. In some specific cases, it is even possible to compute classifica-

tion reliability as posterior probability. One of the most known approach that maps classifier

continuous output to posterior probability is the Platt sigmoid function [107]. This method

transforms SVM continuous output, i.e. the distance from hyperplane (h(x)), in posterior

probability (p(x)) through:

p(x)
.
=

1

1 + exp(ah(x) + b)
, (2.11)

where a and b are estimated by maximizing the log-likelihood of the training sample with a

five-fold cross validation.

Considering all the characteristics of the reliability, we believe that using this measure can

lead to an improvement of the performance with regard to the minority classes in a multiclass

imbalanced problem. On this motivation we present in the following two reconstruction rule

based on classification reliability.

The first one is a reconstruction rule in the One-Per-Class decomposition scheme. This

rule, referred to as Reconstruction Rule by Selection (RRS), uses the useful information con-

tained in the classification reliability to distinguish between safe and dangerous dichotomizer

classifications, and then it applies different rules for each of these two cases.

The second rule that we propose is a statistical rules. Shirahishy et al. [122] proposed an

effective statistical rule designed for OpC and PwC decomposition schemes which use the

raw outputs of the binary classifiers. Inspired by their work, we extend their method to the

ECOC decomposition scheme and, furthermore, we improve their proposal incorporating the

17



2. Background

use of reliability in the decision stage.

In addition on the development of the two reconstruction rule we propose also an efficient

posterior estimation in case of boosting algorithms. Indeed we notice that several methods

exist to compute the reliability or posterior probability, but small effort has been done in the

case of boosting algorithm. This is due mainly to the fact that is widely believed that boosting

and conditional class probability estimation are in conflict with each other. Indeed boosting

iteratively improves classification at the price of progressively overfitting posteriors [19, 54].

We use the Universal Nearest Neighbours (UNN) [105], which is an algorithm that leverages

nearest neighbors while minimizing a convex loss function. We demonstrate that a sub-class of

surrogate losses exists, whose minimization brings simple and statistically efficient estimators

for Bayes posteriors. We show also that the use of posteriors in the final decision improves

system performance.
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3. Materials and Methods

In this chapter we present information regarding the general experimental set-up used to vali-

date our proposals. We briefly describe datasets used to test the two methods, the classification

algorithms used as base classifiers in the decomposition framework and the metrics chosen to

evaluate classification performances. We depute to specific sections in the next chapters the

task to provide further details on the specific set-up used.

The chapter is organized as follow. In the first section we describe the datasets used, in the

second section we give a short description of the classification algorithms employed and we

finally describe the performance metrics adopted to evaluate classification outputs.

3.1. Datasets

We use 15 datasets in which 9 of them belong to medical domains. In order to validate the

proposed methods for each one we chose a subset of these datasets providing an heterogeneous

test bench. We report a short description of each one hereunder, and a summary in terms of

number of samples, classes, features and class distributions can be found in table 3.1.

• Breast Tissue (BRTISS): This dataset collects electrical impedance spectroscopy mea-

surements performed on breast tissue samples. Each one of these samples belong to

one out of 6 possible classes i.e. carcinoma, fibro-adenoma, mastopathy, glandular, con

connective, adipose. Samples distribution among classes ranges from 20.8% to 13.2%.

• Cells (BIOCELLS)[106]: The images are acquired by means of a fully fluorescence mi-

croscope. In biological experiments different NIS proteins mutated are expressed for

putative sites of phosphorylation. The effect on the protein localization of each muta-

tion is studied after immunostaining using anti-NIS antibodies. Immunocytolocalization

analysis on 489 cells revealed 2 cell types with different subcellular distributions of NIS.

• Dermatology (DERM): This dataset is composed of 366 samples described by 33 fea-

tures. The classification task is to classify each sample in 6 classes aiming at predict

a differential diagnosis of erythemato-squamous diseases. Samples distribution range

from 30.6% to 5.5%.

• Ecoli (ECOLI): This dataset is composed by 336 samples. Each sample, described by 8

features, represents a localization site. Samples are distributed in 6 classes. As common

practice we remove the classes with less than 10 samples. Distribution among classes

ranges from 43.7% to 7.5%.

19



3. Materials and Methods

Dataset Number of Number of Number of Class distribution (%)

samples classes features Majority class Minority class

BIOCELLS 489 2 64 79.6% 20.5%

BRTISS 106 6 9 20.8% 13.2%

DERM 366 6 33 30.6% 5.5%

ECOLI 327 5 7 43.7% 6.1%

FER 876 6 50 28.1% 7.5%

GLASS 205 5 9 37.0% 6.3%

ICPRBOF 721 6 1024 28.9% 8.0%

ICPRBIF 721 6 1024 28.9% 8.0%

IIFI 600 3 57 36.0 % 31.5%

ORHD 5620 10 60 10.2% 9.8%

SAT 6425 6 36 23.9% 9.7%

SEEDS 210 7 3 33.0% 33.0%

SUN10 1677 10 2048 14.4% 6.9%

WFRN 5456 4 24 40.4% 6.0%

WINE 178 3 13 39.9% 27.0%

YEAST 1479 9 8 31.3% 1.6%

Table 3.1.: Summary of datasets characteristics. For each dataset are shown the number of samples, the

numbero of classes, the number of features, the number of majority class samples (%) and

the number fo minority class samples (%)

• Facial Expression Recognition (FER): This dataset is derived from Cohn-Kanade AU-

Coded Facial Expression Database [79]. It is composed of videos showing an actor that

performs 6 prototypical facial expressions i.e. anger, happiness, disgust, fear, sadness,

surprise. These expressions correspond to the classes of the dataset. This dataset is

composed by 876 instances, described by 50 features accordingly to [35]. A priori

probabilities of classes range from 7.5% to 28.1%.

• Glass (GLASS): This dataset is composed of 205 samples, described by 10 attributes [6].

The dataset is developed for glass type classification motivated by criminological inves-

tigation. As common practice we remove the two classes having less than ten samples.

Remaining classes distribution ranges between 6.3% to 37.0%.

• International Conference on Pattern Recognition HEp2 Cells (ICPR): HEp2 images are

acquired by means of a fluorescence microscope coupled with a 50W mercury vapor

lamp. This dataset has 791 instances distributed over 6 classes. We generated two

version of this dataset, ICPRBOF and ICPRBIF using two kind of descriptors: Bag of

Features and BIF respectively.

• Indirect Immunofluorescence intensity (IIFI): Connective tissue diseases are autoim-

mune disorders characterized by a chronic inflammatory process involving connective

tissues [112]. Test based on HEp-2 substrate is usually performed, since it is the recom-

mended method [127]. The dataset consists of 14 features extracted from 600 images of
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patient sera thorough the Indirect Immunofluorescence method [127]. The samples are

distributed over 3 classes, namely positive (36.0%), negative (31.5%) and intermediate

(32.5%) .

• Optical Recognition of Handwritten Digits (ORHD): This dataset is composed by 5620

samples representing handwritten digits through 64 attributes [6]. Samples are divided

in 10 classes where the a priori distributions range between 9.9% and 10.1%.

• Statlog (Landsat Satellite) (SAT): The dataset consists of the multi-spectral values of

pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with

the central pixel in each neighbourhood [6]. There are 6425 samples described by 36

features. The sample are distributed in 6 classes: red soil (23.9%), cotton crop (10.9%),

grey soil (21.1%), damp grey soil (9.7%), soil with vegetation stubble (11.0%), very

damp grey soil (23.4%).

• Sun (SUN10): This dataset is a collection of annotated images covering a large variety

of environmental scenes, places and the objects within [149]. We have extracted 1677

samples divided in 10 classes. Each samples is described by 2048 attributes generated

applying the bag-of-features approach to SIFT descriptors. Class prior ranges between

14.4% and 6.9%.

• Wall-Following Robot Navigation (WFRN): This is a dataset with 5456 samples repre-

sented by 24 features. The data were collected as the SCITOS G5 navigates through the

room following the wall in a clockwise direction, for 4 rounds [6]. To navigate, the robot

uses 24 ultrasound sensors arranged circularly around its ”waist”. The sample are dis-

tributed in 4 classes: move-forward (40.4%), slight-right-turn (15.2%) , sharp-right-turn

(38.4%), slight-left-turn (6.0%).

• Wine (WINE): This dataset is the results of a chemical analysis of wines grown in the

same region in Italy but derived from three different cultivars [6]. The analysis deter-

mined the quantities of 13 constituents found in each of the three types of wines. There

are 178 samples describe by 13 features. Samples are distributed in three classes, whose

priors are 39.9%, 33.1% and 27.0%.

• Yeast (YEAST)[6]: This database contains information about 10 localization sites of

Yeast cells. It is composed of 1484 instances represented by 8 features. We remove

the endoplasmic reticulum lumen class that makes impossible perform ten-fold cross

validation since it has only 5 samples.

3.2. Classifiers

As classification algorithms we used Support Vector Machine (SVM) as kernel machine, k-

Nearest Neighbours as non-parametric algorithm, Multi Layer Perceptron as Neural Networks

and Adaboost as Boosting approach. Classifiers’ hyper-parameter values and optimization
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methods are reported in a specific paragraph in the description of each method. A brief de-

scription of these algorithms is reported in the following:

• SVM algorithm performs classification building hyperplane or set of hyperplanes in a

high-dimensional space. In addition to performing linear classification, SVM can ef-

ficiently perform a non-linear classification using what is called the kernel trick i.e.

implicitly mapping its inputs into high-dimensional feature spaces. A good separation

is achieved by the hyperplane that has the largest distance to the nearest training data-

points of any class, since in general the larger the margin the lower the generalization

error of the classifier. An important property of SVM is that the determination of the

model parameters corresponds to a convex optimization problem, and so any local solu-

tion is also a global optimum.

• k-nearest neighbor (k-NN) algorithm is amongst the simplest of all machine learning

algorithms and should be one of the first choices for a classification task when there

is little or no prior knowledge about the distribution of the data. K-nearest neighbour

classification was developed from the need to perform discriminant analysis when reli-

able parametric estimates of probability densities are unknown or difficult to determine.

The k-nearest neighbours algorithm is a non-parametric method for classification and

regression, that predicts objects’ ”values” or class memberships based on the k closest

training examples in the feature space. An object is classified by a majority vote of

its neighbours, with the object being assigned to the class most common amongst its k

nearest neighbours (k is a positive integer, typically small). If k = 1 then the object is

simply assigned to the class of that single nearest neighbour. Usually Euclidean distance

is used as the distance metric.

• multilayer perceptron (MLP) is a modification of the standard linear perceptron and

can distinguish data that are not linearly separable. It consists of multiple layers of

nodes in a directed graph, it is a feed-forward neural network whose processing nodes

(neurons) compute the weighted average of its inputs and then transform the average by

an activation function such as the hyperbolic tangent and logistic function. What makes

a multilayer perceptron different from perceptron is that each neuron uses a nonlinear

activation function which was developed to model the frequency of action potentials, or

firing, of biological neurons in the brain. This function is modelled in several ways, but

must always be normalizable and differentiable.

• AdaBoost (Adaptive Boosting) extends boosting to multi-class and regression problems.

AdaBoost has many variations, such as AdaBoost.M1 for classification problems where

each classifier can attain a weighted error of no more than 1/2 , AdaBoost.M2 for those

weak classifiers that cannot achieve this error maximum (particularly for problems with

large number of classes, where achieving an error of less than 1/2 becomes increasingly

difficult), among many others. We adopt the most popular of AdaBoost’s variations,

AdaBoost.M1 for multi-class problems. In AdaBoost.M1, bootstrap training data sam-

ples are drawn from a distribution D that is iteratively updated such that subsequent

classifiers focus on increasingly difficult instances. This is done by adjusting D such
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Hypotesized Class

ζ1 ζ2 ζ ζc . . . ζK

T
ru

e
C

la
ss

ω1 n11 n12 . . . n1j . . . n1K

ω2 n21 n22 . . . n2j . . . n2K

. . . . . . . . . . . . . . . . . . . . .
ωc nj1 nj2 . . . njj . . . njK
. . . . . . . . . . . . . . . . . . . . .
ωK nK1 nK2 . . . nKj . . . nKK

Table 3.2.: Confusion matrix of a K-classes classifier

that previously misclassified instances are more likely to appear in the next bootstrap

sample. The classifiers are then combined through weighted majority voting.

3.3. Performance metrics

Traditionally, the most frequently used performance metrics are the accuracy (acc) and its

counterpart, the error rate. GivenN samples distributed overK classes, let {ζ1, ζ2, . . . , ζc, . . . , ζK}
be the predicted class labels. A representation of classification performance can be formulated

by the confusion matrix, as illustrated in Table 3.2. The recognition accuracy is defined as

acc =

∑K
j=1 njj

N
(3.1)

where njj is the number of elements of class j correctly labelled.

In certain situations, measuring the performances using only accuracy can be deceiving

since it fails to reflect the extent of minority class misclassifications. For example, consider

the a-priori distribution of GLASS dataset, where the 6.3% of samples are in the minority

class, the 37.0% of samples belong to the majority one, and the remaining 56.7% of samples

are in the other classes. One should develop a classification system that perfectly classifies

every sample on classes except for the minority one, achieving an accuracy of 93.7%, that

should appears satisfactory. That is to say, the accuracy in this case does not provide adequate

information on a classifier’s functionality with respect to the type of classification required.

Indeed, the accuracy is a performace measure based on values from both rows of confusion

matrix, whose values depend on class distribution. Any performance measure based on values

from rows will be inherently sensitive to class skew, as accuracy is.

Hence, it would be more interesting to use a performance measure dissociating the hits (or

the errors) that occur in each class. From Table 3.2, we compute the accuracy per class, which

is defined as accj = njj/Nj , with j = 1, . . . , K. Since each accj is estimated considering

only one row of the confusion matrix, it is independent of prior probabilities. Furthermore,
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the combination of the accuracies per class provides an estimator of summarizing the perfor-

mances of the classifier. It is the geometric mean of accuracies (GACC) given by:

g =

(
K∏

j=1

accj

) 1
K

(3.2)

It is worth nothing that g is a non-linear measure. Indeed, a change in one of its arguments

has a different effect depending on its magnitude; for instance, if a classifier misses the la-

bels of all samples in the jth class, it results in accj = 0, and g = 0. Another measure

used to evaluate classifiers performance is the F-measure. It is defined as F-measure =
2((Recall)−1 × (Precision)−1)−1. Where Recall is the fraction of samples labelled as be-

longing to the considered class that are correctly classified, whereas Precision is the fraction

of samples in the considered class that are correctly classified. F-measure shares with the

GACC the property of not suffering from the same issues that affect the Accuracy. Indeed it

is computed from independent rows of the confusion matrix.

Hence, these three metrics, Accuracy, geometric mean of accuracy per class and F measure pro-

vide an overall analysis of the classification performance tacking in account also the perfor-

mance with respect of each class.
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Literature analysis (Chapter 2) reveals that existing proposals, addressing multiclass skewness

in decomposition framework, work at level of single dichotomizer [3, 24, 40, 46, 72, 90, 126,

128, 135, 155], whereas, to the best of our knowledge, no attempt have been done to solve this

issue at reconstruction rule level. On this motivation, we propose here a reconstruction rule

for OpC decomposition approach which copes with skewness between classes. First, it distin-

guishes between safe and dangerous binary classifications using the classification reliabilities

assigned by binary classifiers to the input sample, and then it sets the final multiclass label

applying different reconstruction rules for each of these two cases. Hereinafter, the proposed

rule is referred to as Reconstruction Rule by Selection (RRS). The decision to develop our

proposal in the OpC framework arises from the fact that this decomposition scheme, even if it

is often used to derive multiclass classifier by binary learning algorithms, has not received the

same attention in literature as other rules. Some authors state that other schemes are prefer-

able to OpC [50], nevertheless it has been proven that OpC performs as well as more complex

error-correcting coding schemes when dicothomizers are well tuned [111]. Furthermore it is

well know that OpC scheme produces imbalanced binary tasks and then, among all the de-

composition schemes, it is the one that could benefit more of a rule suited for imbalanced

domains.

We extensively compare this rule with other two well-established reconstruction criteria on

a set of eight public and four artificial datasets, testing four classification architectures. The

results show that the proposed reconstruction rule provides larger performances than those

returned by the other criteria, reducing the effects of class skewness. The large number of

experiments we carry out shows also that the employment of reliability in the reconstruction

rule permits to achieve larger values of accuracy and geometric mean of accuracies than using

only the crisp labels.

This chapter is organized as follows. We firstly describe the proposed method, secondly we

provide details on the experimental set-up, finally we present and discuss results.

4.1. Method description

In order to present RRS method we introduce the following notation:

• Ω = {ω1, ω2, . . . , ωK} is the set of class labels;

• N is the total number of samples;

• Nj is the number of samples belonging to the class j;

• x ∈ ℜn is a sample;
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dichotomizer 1

dichotomizer 2

dichotomizer L

...

x

reconstruction rule

y

(M1,ψ1) (M2,ψ2) (ML,ψL)

Figure 4.1.: System architecture of traditional One-per-class decomposition.

• the binary profile M(x) is the K-bit vector which collects dichotomizers’ outputs on x
defined as: M(x) = [M1(x),M2(x), . . . ,MK(x)]. Mj(x) is 1 if x ∈ ωj , 0 otherwise1;

• the reliability profile Ψ(x) is a K elements vector collecting classification reliability i.e

confidence of a classifier on its output [51]. Formally, Ψ(x) = [ψ1(x), ψ2(x), . . . , ψK(x)].
Each entry ψj(x) lies in [0, 1] and represents the degree that x belong or not to class pre-

dicted by the jth dichotomizer.

• the reverse a-priori probability profile R contains the knowledge on the a-priori classes

distribution. It is a K elements vector defined as R = [r1, r2, . . . , rK ], where rj =
1−Nj/N ;

Moreover, in the following for brevity a binary dichotomizer classification is referred to as

positive if the sample is assigned to the dichotomizer own class, i.e. Mj(x) = 1, negative

otherwise.

The basic idea of our approach is depicted in Figure 4.2, where the block named as pro-

file analysis distinguishes between safe and dangerous classifications on the basis of mea-

sures derived from dichotomizers’ soft labels. Intuitively, safe classifications are those where

an analysis of binary M(x) and reliability Ψ(x) profiles suggest that all dichotomizers are

strongly confident about their output. Conversely, dangerous classifications are classifications

where the same profiles suggest that dichotomizers’ output might be negatively affected by

1Hereinafter, instead of using {-1;1} labels for negative and positive outputs, we adopt the {0;1} notation to

simplify the following formulas.
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Figure 4.2.: RRS system architecture. Left side: decomposition of the polychotomy into several di-

chotomies, introducing also the profile analysis. Right side: it shows how RRS works,

distinguishing between safe and dangerous classifications. The abbreviation r.r. stands for

reconstruction rule.

the skewed nature of the dataset. The rule used to compose dichotomizers’ outputs is different

in the two cases and it uses the reverse a-priori probability profile R to set the final decision

in case dichotomizers’ classifications turn out to be dangerous. The introduction of this block

is therefore the main difference with respect to the traditional OpC reconstruction approach

represented in Figure 4.1.

Formally, let α0(x) = minj(ψj(x)|Mj(x) = 0) be the lowest reliability value among those

provided by dichotomizers whose output is 0, i.e. the dichotomizers providing a negative

classification, and let α1(x) = maxj(ψj(x)|Mj(x) = 1) be the largest value of reliability

among those provided by dichotomizers whose output is 1, i.e. the dichotomizers providing

positive classifications. Let also α0(x) =
∑K

i (ψj(x)|Mj(x)=0)
∑K

i [Mj(x)=0]
, with [·] indicator function, be the

average value of reliabilities associated with dichotomizers whose output is 0. Furthermore,

the minimum and the maximum conventionally evaluate to 0 if sets (ψj(x)|Mj(x) = 0) and

(ψj(x)|Mj(x) = 0) are empty, respectively.

With these positions, the classifications provided by dichotomizers are considered danger-

ous if:

(α1(x) < τ1 ∧ α0(x) < τ0) ∨ (α1(x) ≥ τ1 ∧ α0(x) < τ0) (4.1)

where τ0 and τ1 are thresholds in [0, 1] estimated on a validation set maximizing the average

accuracy per class. We will discuss the contributes of this two parameters at the and of this

section. Condition 4.1 states that classifications are dangerous when: (i) both the highest re-

liability of classifiers providing positive classifications and the lowest reliability of classifiers
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providing negative classifications are below given thresholds or, alternatively, (ii) the high-

est reliability of classifiers providing positive classifications is higher than the corresponding

threshold, but the average value of reliabilities of classifiers providing negative classifica-

tions is below a given threshold. Case (i) corresponds to when all positive classifications are

scarcely reliable and there is at least one negative classification that is scarcely reliable too

(meaning this classification might have been positive instead), whereas case (ii) corresponds

to when many negative classifications are scarcely reliable although there is at least one posi-

tive classification sufficiently reliable.

To make more clear the rationale of condition 4.1, consider its negate, that can be rewritten

as:

(α1(x) < τ1 ∧ α0(x) ≥ τ0) ∨ (α1(x) ≥ τ1 ∧ α0(x) ≥ τ0) (4.2)

Condition 4.2 states that classifications can be retained safe when either all classifiers provid-

ing negative classifications are sufficiently confident although positive classifications have low

reliabilities, or there is at least one positive classification that is sufficiently reliable and many

negative classification are sufficiently reliable too.

In the following we refer to quantities α0(x), α1(x), and α0(x) omitting the dependence on

x if this does not introduce ambiguity.

To set the final classification, RRS applies different criteria for safe and dangerous classifi-

cations.

In the former case, let be Mj(x) the negate of the jth dichotomizer output and m =
∑K

j=1Mj(x) the number of dichotomizers providing a positive classification, i.e. recogniz-

ing x as belonging to their own class. The index s of the dichotomizer setting the final class

ωs ∈ Ω is given by:

s =







argmaxj(Mj(x) · ψj(x)) if m ∈ [1, K]

argmimj(Mj(x) · ψj(x)) if m = 0

(4.3)

Since we are in a safe case, now the final decision depends on both M(x) and Ψ(x), without

considering data related to the degree of imbalance presented in the dataset.

When a dangerous classification occurs, it should be interpreted as an error due to class

skew. In this case, we cannot rely any more on dichotomizers decision only, but we should

also take into account somehow the a-priori class distribution. Indeed, we have to decide if the

sample should be assigned either to the class recognized with the highest reliability (all other

positive classifications, if any, are less reliable) or to the class not recognized with the lowest

reliability (all other negative classifications are more reliable). In this respect there are two

alternatives: either (i) relying on purely bayesian classification, or (ii) deciding in favor of the

minority class. Note, however, that the latter makes sense only if the reliability of the positive

classification is high, since this could indicate that class unbalance may have led to a wrong

decision (remember we are considering the case when there are chances the classification is

wrong). We therefore consider the quantities α0 and α1 to discriminate between these two

possibilities.
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When α0 > α1, i.e. when the reliability of the most reliable positive classification is low, we

choose to rely on purely bayesian classification and the sample is assigned to the class with the

lower reverse probability, i.e. the class most populated in the training set. Indeed, in this case

reliabilities of both classifiers are very low and it is unlikely that a classification error has been

caused by class imbalance. Conversely, when α0 ≤ α1, i.e. when the reliability of the most

reliable positive classification is high, we assign the sample to the class with highest reverse

a-priori class distribution. Note that this means that the most reliable positive classification

is confirmed if and only if the corresponding a-priori class distribution is lesser that the one

associated to the least reliable negative classification.

More formally, the rule to be applied in case of dangerous classification is the following.

Let j0 and j1 be the indices of the most reliable positive classification and of the least reliable

negative classification, respectively. The index s of the dichotomizer setting the final class

ωs ∈ Ω is given by:

s =







argminj∈{j0,j1} rj if α0 > α1

argmaxj∈{j0,j1} rj if α0 ≤ α1

(4.4)

4.1.1. About τ0 and τ1

We try here to give a deeper insight of τ0 and τ1 parameters role in the proposed rule. {τ0, τ1} ∈
ℜ values ranges in [0,1]. They are chosen maximizing average accuracies per class on a vali-

dation sets. The search of the optimal value has been exhaustively performed using stepwise

construction of a grid with step equal to 0.05. Graphical samples of grid search results are

reported in figure 4.3 where average accuracies per class values are represented as function of

τ0 and τ1 on the considered validation set. The corner [0, 0] corresponds to not applying any

distinction between safe and dangerous classification. Observing the shapes in the figure, we

notice the importance of the tuning of the two parameters. Indeed variation of these values

improve or drop significantly the classification performance. We chose to optimize this value

on average accuracy per class since this lead to a better generalization ability with respect of

the minority classes.

4.2. Experimental set-up

In this section we present our experimental set-up, providing the list of used datasets and

details on classification paradigms employed as well as the list of performance metrics.

4.2.1. Datasets

We used twelve datasets: eight are a collection of real public datasets and four are artificial

datasets. The real datasets that we have chosen in order to provide an heterogeneous test-

bench to validate our proposal are: FER, GLASS, IIFI, ORHD, SAT, SUN10, WFRN and WINE.

Description of real datasets is reported in section 3.1 and datasets details can be found in table

3.1 whereas artificial datasets description is reported in the following.
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Figure 4.3.: Examples of performance on validation set, in term of average accuracies per class, ob-

tained varying τ0 and τ1 parameters. From left to right and from top to bottom: kNN, SVM,

MLP and ADA.

Inspired by [88], in Figure 4.4 we graphically represent the degree of imbalance for each

dataset. The chart represents the prior probability of the minority class as a function of prior

probability of the majority class. The feasible space is below the diagonal line of the plot,

which also corresponds to equiprobable classes. This line can be therefore thought of as the

edge of balanced problems. The balance disappears towards the bottom right corner. Point

(0.5,0.5) corresponds to two equiprobable classes. This graphical representation helps us to

observe how much the datasets are heterogeneous with respect to the imbalance ratio. For

instance, in the figure we notice that ORHD is a quite balanced dataset, whereas GLASS and

WFRN have a strong degree of imbalance.

Artificial datasets

We generate simulated examples involving fairly complex decision boundaries. To this aim,

synthetic samples are represented by a feature vector composed of 15 elements randomly

drawn from a 15-dimensional normal distribution x ∼ N(µc, σ ∗ I). Mean value of each

normal distribution µc ∈ {µ1, µ2, . . . , µK} is randomly taken in the range [0, 1], while σ is

equal to 1.5 for all the distributions. We generate four artificial sets with different number of

classes, i.e. K = {5, 10, 15, 20}, which are referred to as SIM1, SIM2, SIM3 and SIM4 respec-

tively. In each dataset the smallest class has ten samples, whereas the largest class has one

thousand samples, providing a ratio between the two classes always equal to 1
100

. The number

of samples belonging to other classes is computed as follows:

Nc =
2 · 1000

K − (c− 2)
j ∈ {2, 3, . . . , K − 1}. (4.5)
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Figure 4.4.: Dataset distribution as function of prior distribution of majority (x-axis) and minority (y-

axis) class.

For instance consider K = 5. Each class has a number of samples equal to 1000, 666, 500,

400, 333, 10; providing ratios between the smallest class and the others which are equal to

0.010, 0.015 ,0.020, 0.025, 0.030 and 1.

4.2.2. Classifiers

We employ a k-Nearest Neighbour (kNN) as a statistical machine, an Support Vector Ma-

chine (SVM) as a kernel machine, an Adaboost (ADA) as a weak learning algorithms, and a

Multi-Layer Perceptron (MLP) as a neural network. Brief descriptions of these algorithms

are reported in 3.2. In this subsection we describe how we tune the free parameters of the

classifiers and how we estimate the classification reliablities.

kNN. The kNN require no specific set-up. We test values of k equal to {1, 3, 5, 7} and

choose the value providing the best performances on a validation set according to a five-

fold cross validation. We estimate the reliability of each classification act on the basis of

information directly derived from the output of the expert and analysing also the reasons in

the feature space giving rise to unreliable classification. For further details the interested

reader may refer to [27].

SVM. We test a SVM with a gaussian radial basis kernel. Values of regularization parameter

C and scaling factor σ are selected within [1, 104] and [10−4, 10], adopting a log scale to sample

the two intervals. The value of each parameter is tuned using a five fold cross-validation on a

validation set. The reliability of a SVM classification is estimated as proposed in [107], where

the decision value of the classifier is transformed in a posterior probability.

MLP. We use a MLP with a number of hidden layers equal to half of the sum of features

number plus class number. The number of neurons in the input layer is given by the number
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Classifiers

Datasets Metrics kNN SVM MLP ADA

FER

HMD 73.78 ± 1.92 94.10 ± 1.19 86.22 ± 1.00 39.57 ± 1.34

LBD 79.69 ± 1.41 94.33 ± 1.33 88.27 ± 0.75 40.40 ± 1.07

RRS 81.13 ± 1.38 96.83 ± 0.78 79.58 ± 6.56 46.97 ± 3.10

GLASS

HMD 68.36 ± 2.68 65.29 ± 2.58 68.28 ± 2.15 62.47 ± 2.96

LBD 70.55 ± 2.70 54.46 ± 2.00 57.99 ± 2.12 56.50 ± 2.81

RRS 70.55 ± 2.70 66.97 ± 3.49 63.27 ± 2.88 69.49 ± 2.40

IIFI

HMD 65.49 ± 2.19 66.18 ± 1.40 66.51 ± 1.78 63.85 ± 2.45

LBD 63.75 ± 2.38 64.59 ± 1.93 65.45 ± 1.24 64.68 ± 2.68

RRS 68.93 ± 2.05 72.17 ± 1.43 68.16 ± 1.24 58.62 ± 4.13

ORHD

HMD 97.43 ± 0.21 97.53 ± 0.16 96.94 ± 0.14 76.76 ± 0.89

LBD 97.87 ± 0.22 98.65 ± 0.16 98.45 ± 0.17 87.97 ± 0.37

RRS 97.87 ± 0.22 98.65 ± 0.16 98.45 ± 0.17 87.97 ± 0.37

SAT

HMD 86.81 ± 0.54 91.40 ± 0.33 86.79 ± 0.38 87.78 ± 0.20

LBD 86.61 ± 0.51 90.31 ± 0.43 86.66 ± 0.59 93.93 ± 0.24

RRS 90.64 ± 0.42 91.92 ± 0.35 90.68 ± 0.25 72.20 ± 4.17

SUN10

HMD 51.92 ± 0.94 65.78 ± 1.05 64.28 ± 0.95 47.46 ± 1.00

LBD 57.25 ± 0.77 74.96 ± 1.43 72.21 ± 1.05 58.78 ± 1.30

RRS 57.43 ± 0.87 74.76 ± 1.39 72.21 ± 1.05 58.72 ± 1.32

WFRN

HMD 89.56 ± 0.45 89.93 ± 0.38 87.88 ± 0.32 71.33 ± 0.48

LBD 90.64 ± 0.42 90.77 ± 0.36 88.52 ± 0.38 76.97 ± 0.57

RRS 86.99 ± 0.50 91.84 ± 0.35 88.60 ± 0.27 95.38 ± 0.19

WINE

HMD 95.96 ± 1.65 96.51 ± 1.77 96.59 ± 1.73 94.95 ± 1.51

LBD 95.11 ± 1.66 96.65 ± 1.22 97.15 ± 0.92 94.92 ± 2.07

RRS 95.96 ± 1.65 97.72 ± 1.51 97.74 ± 0.90 84.10 ± 8.14

Table 4.1.: Average values of the global accuracy (ACC) on real datasets when kNN, SVM, MLP and

ADA are used as base classifier.

of the features whereas the number of neurons in the output layer is two. The reliability is a

function of the values provided by neurons in the output layer [27].

ADA: We use the “Adaboost M1” algorithm proposed in [53], where weak learners are de-

cision stumps. The number of iteration is equal to 100. The reliabilities of ADA classifications

are estimated using the magnitude of the final hypothesis [115].

4.2.3. Performance metrics

Performance of the propose method and competitors are evaluated in term of accuracy (acc) ,

the geometric mean of accuracies (GACC) and F measure. For further details on these metrics

see Section 3.3.
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Classifiers

Datasets Metrics kNN SVM MLP ADA

FER

HMD 61.37 ± 7.03 91.71 ± 1.93 81.38 ± 1.60 0.00 ± 0.00

LBD 72.22 ± 5.71 92.84 ± 1.87 85.09 ± 1.27 4.93 ± 3.21

RRS 76.95 ± 2.14 95.94 ± 1.08 74.30 ± 8.24 2.49 ± 2.42

GLASS

HMD 6.67 ± 6.49 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

LBD 11.16 ± 8.75 6.07 ± 5.90 0.00 ± 0.00 0.00 ± 0.00

RRS 11.16 ± 8.75 0.00 ± 0.00 6.96 ± 6.76 8.18 ± 7.95

IIFI

HMD 62.53 ± 2.45 60.29 ± 1.97 62.40 ± 2.09 59.13 ± 2.91

LBD 62.26 ± 2.52 61.46 ± 2.13 63.18 ± 1.70 61.37 ± 2.91

RRS 67.94 ± 2.17 70.01 ± 1.70 65.77 ± 1.49 57.70 ± 4.21

ORHD

HMD 97.39 ± 0.21 97.49 ± 0.16 96.90 ± 0.14 46.52 ± 12.31

LBD 97.85 ± 0.23 98.64 ± 0.16 98.44 ± 0.17 87.62 ± 0.42

RRS 97.85 ± 0.23 98.64 ± 0.16 98.44 ± 0.77 87.62 ± 0.42

SAT

HMD 86.48 ± 0.57 85.97 ± 0.68 82.65 ± 0.42 0.00 ± 0.00

LBD 88.06 ± 0.47 87.66 ± 0.64 85.01 ± 0.54 12.46 ± 8.07

RRS 88.06 ± 0.47 89.13 ± 0.56 87.71 ± 0.34 59.02 ± 3.60

SUN10

HMD 26.43 ± 5.7 56.21 ± 5.34 58.74 ± 1.50 17.94 ± 5.83

LBD 43.06 ± 4.81 72.59 ± 1.64 70.70 ± 1.22 54.46 ± 1.93

RRS 43.13 ± 4.86 72.47 ± 1.60 70.70 ± 1.22 54.42 ± 1.93

WFRN

HMD 85.87 ± 0.88 89.05 ± 0.47 83.59 ± 0.82 0.00 ± 0.00

LBD 86.01 ± 0.81 88.91 ± 0.53 85.96 ± 0.81 90.64 ± 0.74

RRS 86.59 ± 0.72 90.26 ± 0.54 88.10 ± 0.52 92.95 ± 0.63

WINE

HMD 96.40 ± 1.48 96.40 ± 1.89 96.41 ± 1.99 93.98 ± 1.82

LBD 95.62 ± 1.51 96.71 ± 1.21 97.15 ± 1.01 94.79 ± 2.12

RRS 96.40 ± 1.48 97.76 ± 1.81 97.65 ± 1.01 80.46 ± 10.62

Table 4.2.: Average values of the geometric mean of accuracies (GACC) on real datasets when kNN,

SVM, MLP and ADA are used as base classifier.

4.3. Results and Discussion

Experimental tests have been performed using three reconstruction rules, four classification al-

gorithms, thirteen datasets, and running four times the 10-fold cross validation. This produced

more than 5000 experiments whose results are summarized and discussed in the following

subsections, where we distinguish between those achieved on real and artificial datasets.

4.3.1. Experiments on real datasets.

The three reconstruction rules (RRS, LBD and HMD) have been tested over eight real datasets

running four times the 10-folds cross validation.

Tables 4.1, 4.2 and 4.3 report the average results in terms of ACC, GACC and F measure,
respectively. Each tabular shows also the 95% confidence interval estimated with the t-student

test.

To facilitate the comparisons between the performance of the reconstruction rules, in tables
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Classifiers

Datasets Metrics kNN SVM MLP ADA

FER
HMD 69 .75 ± 2 .32 93 .80 ± 1 .34 85 .64 ± 1 .23 25 .37 ± 1 .34

LBD 76 .02 ± 2 .00 93 .24 ± 1 .54 85 .82 ± 1 .02 29 .26 ± 1 .09

RRS 77 .98 ± 1 .80 96 .49 ± 0 .89 77 .10 ± 6 .58 35 .80 ± 2 .43

GLASS
HMD 55 .44 ± 3 .47 50 .40 ± 2 .87 53 .81 ± 2 .77 46 .09 ± 3 .82

LBD 59 .17 ± 3 .86 43 .09 ± 2 .27 46 .15 ± 2 .28 40 .59 ± 2 .83

RRS 59 .36 ± 3 .81 52 .59 ± 3 .87 52 .82 ± 3 .76 55 .86 ± 4 .40

IIFI
HMD 64 .31 ± 2 .28 63 .72 ± 1 .68 64 .73 ± 1 .85 61 .93 ± 2 .70

LBD 63 .12 ± 2 .43 63 .16 ± 2 .01 64 .52 ± 1 .41 63 .24 ± 2 .79

RRS 68 .54 ± 2 .10 71 .16 ± 1 .56 67 .22 ± 1 .31 58 .25 ± 4 .17

ORHD
HMD 97 .45 ± 0 .20 97 .58 ± 0 .15 97 .00 ± 0 .14 77 .37 ± 1 .29

LBD 97 .88 ± 0 .22 98 .65 ± 0 .16 98 .45 ± 0 .17 87 .9 ± 0 .39

RRS 97 .88 ± 0 .22 98 .65 ± 0 .16 98 .45 ± 0 .17 87 .9 ± 0 .39

SAT
HMD 88 .00 ± 0 .49 88 .47 ± 0 .49 85 .93 ± 0 .33 55 .11 ± 0 .29

LBD 88 .97 ± 0 .45 88 .71 ± 0 .52 86 .39 ± 0 .46 66 .64 ± 0 .92

RRS 88 .97 ± 0 .45 90 .33 ± 0 .43 88 .85 ± 0 .31 66 .45 ± 4 .12

SUN10
HMD 50 .21 ± 0 .99 67 .45 ± 1 .10 64 .73 ± 1 .85 45 .81 ± 0 .92

LBD 55 .16 ± 0 .92 74 .77 ± 1 .37 72.00 ± 1 .10 57 .36 ± 1 .58

RRS 55 .23 ± 1 .03 74 .61 ± 1 .31 64 .73 ± 1 .85 57 .30 ± 1 .59

WFRN
HMD 86 .48 ± 0 .73 90 .62 ± 0 .39 86 .72 ± 0 .54 67 .52 ± 0 .21

LBD 85 .56 ± 0 .78 87 .03 ± 0 .61 83 .57 ± 0 .76 88 .90 ± 0 .49

RRS 86 .59 ± 0 .67 91 .13 ± 0 .46 87 .80 ± 0 .48 94 .35 ± 0 .38

WINE
HMD 95 .93 ± 1 .63 96 .59 ± 1 .76 96 .52 ± 1 .72 94 .87 ± 1 .53

LBD 95 .06 ± 1 .66 96 .66 ± 1 .25 96 .90 ± 1 .01 94 .88 ± 2 .10

RRS 95 .93 ± 1 .63 97 .72 ± 1 .65 97 .60 ± 0 .96 83 .38 ± 8 .64

Table 4.3.: Average values of the geometric mean of accuracies (F measure) on real datasets when

kNN, SVM, MLP and ADA are used as base classifier.

4.4, 4.5,4.6, 4.7, 4.8,4.9, 4.10 , 4.11 and 4.12 we summarize the results over all folds according

to a win/tie/loss scheme. Tables 4.4, 4.7 and 4.10 report results with respect to ACC, tables 4.5

, 4.8 and 4.11 report results with respect to GACC and tables 4.6 , 4.9 and 4.12 report results

with respect to F measure. The win/tie/loss scheme works as follows. Given two methods A

and B to be compared, we assign a point to win/tie/loss class every time method A achieves

a larger/equal/lower performance than method B on a fold. Each tabular shows the number

of win/tie/loss in a relative fashion, since they values have been divided by 40, i.e. the total

number of stratified cross validation folds. For instance the value 25/25/50 means that method

A against B wins 10 tests (25%), ties 10 tests (25%), and losses 20 tests (50%). Furthermore,

the tabulars report in round parentheses a 1 if the performances computed over the 40 folds

are statistically different according to t-test, with a significance level of 0.05. Otherwise in the

round parenthesis there is zero.

In the following, we report the results by pairwise comparing the three reconstruction rules.

Each comparison is organized in three paragraphs, presenting the results in terms of accuracy,

geometric mean and win/tie/loss. In the last paragraph we report the average performance of

each classifiers over the datasets.
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 100/0/0 (1) 35/45/20 (0) 90/0/10 (1) 50/10/40 (0) 68.8/13.7/17.5

GLASS 50/40/10 (0) 0/7.5/92.5 (1) 0/10/90 (1) 0/40/60 (1) 12.5/24.4/63.2

IIFI 15/5/80 (0) 30/17.5/52.5 (0) 30/0/70 (0) 52.5/20/27.5 (0) 31.9/10.6/57.5

ORHD 85/10/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 46.3/2.5/1.2

SAT 95/5/0 (1) 100/0/0 (1) 80/10/10 (1) 100/0/0 (1) 93.8/3.7/2.5

SUN10 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0

WFRN 25/20/55 (0) 7.5/0/92.5 (1) 30/0/70 (0) 100/0/0 (1) 40.6/5.0/54.4

WINE 0/85/15 (0) 10/80/10 (0) 20/60/20 (0) 30/50/20 (0) 15.0/68.7/16.3

Average 58.8/20.6/20.6 47.8/18.8/33.4 56.3/10/33.7 66.6/15/18.4 -

Table 4.4.: Exhaustive comparison between the performances of different classifiers expressed in terms

of global accuracy (ACC), considering LBD and HMD reconstruction rules. Each tabular

shows the amount of win/tie/loss of LBD comparing versus HMD. Round parentheses reports

one if the performances computed over the 40 folds are statistically different according to

t-test, with a significance level of 0.05. Otherwise in the round parenthesis there is zero.

Last column shows the average values of win/tie/loss achieved by different classifiers on

a given dataset, whereas last row shows the average values achieved by a given classifier

using different datasets.

LBD Vs HMD

We compare now the two most used reconstruction rules in the OpC decomposition, i.e.

HMD and LBD. As shown in formulas 2.3 and 2.6, recall that HMD predicts the final labels

using the crisp labels only, whereas LBD applies a loss measure on the soft labels provided by

each dichotomizer. In particular, for LBD we have always used an exponential loss function,

as suggested in [3].

Accuracy In table 4.1 we observe that LBD outperforms HMD in 58% of cases, indepen-

dently of binary learners and datasets used. Furthermore LBD outperforms HMD whatever the

dichotomizer in FER, ORHD, SUN10 and WFRN datasets. Looking this table by columns we

observe that LBD achieves larger results in 75% of cases using the ADA classifier, in 63% of

cases using the SVM and MLP, and in 50% of cases using the kNN.

Geometric mean The comparison between LBD and HMD provides similar observations

to those reported above for the accuracy. Table 4.2 shows that, independently of datasets and

classifiers, LBD outperforms HMD method in the 87% of tests. In particular, LBD provides

larger performance than those achieved by HMD using all the dichotomizers over FER, ORHD,

SAT and SUN10 datasets. Furthermore, LBD show larger results than HMD in the 87% of cases

using the SVM, MLP and ADA classifiers and in 75% of cases using kNN.

F-measure Performing the comparisons between LBD and HMD, we observe in Table 4.3

that, independently of datasets and classifiers, LBD outperforms HMD method in the 52% of
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 95/5/0 (1) 55/25/20 (0) 100/0/0 (1) 20/80/0 (1) 67.5/27.5/5

GLASS 5/90/5 (0) 10/90/0 (1) 0/100/0 (0) 0/100/0 (0) 3.8/95.0/1.2

IIFI 35/0/65 (0) 72.5/0/27.5 (0) 40/0/60 (0) 82.5/0/17.5 (0) 57.5/0.0/42.5

ORHD 90/5/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/1.2/1.3

SAT 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 20/80/0 (1) 80.0/20.0/0.0

SUN10 90/10/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/2.5/0.0

WFRN 40/15/45 (0) 40/0/60 (0) 100/0/0 (1) 100/0/0 (1) 70.1/3.7/26.2

WINE 0/85/15 (0) 10/80/10 (0) 20/60/20 (0) 30/50/20 (0) 15.0/68.7/16.3

Average 58.9/26.3/ 16.8 60.9/24.4/14.7 70/20/10 56.6/38.7/ 4.7 -

Table 4.5.: Exhaustive comparison between the performances of different classifiers expressed in terms

of geometric mean of accuracies (GACC), considering LBD and HMD reconstruction rules.

Each tabular shows the amount of win/tie/loss of LBD comparing versus HMD. Round paren-

theses reports one if the performances computed over the 40 folds are statistically different

according to t-test, with a significance level of 0.05. Otherwise in the round parenthesis

there is zero. Last column shows the average values of win/tie/loss achieved by different

classifiers on a given dataset, whereas last row shows the average values achieved by a given

classifier using different datasets.

tests. In particular, LBD provides larger performance than those achieved by HMD using all

the dichotomizers over ORHD, SAT and SUN10 datasets. Furthermore, LBD show larger results

than HMD in the 87% of cases using the ADA classifier and in 63% of cases using kNN and

MLP.

Win/Tie/Loss Last column of Table 4.4 averages out over the binary learners win/tie/loss

results measured in terms of acc. Its values show that LBD outperforms HMD in 50% of

cases with a large difference between the number of wins. Indeed, the differences range

from 51.2% (FER dataset) up to 100% (SUN10 dataset). In the opposite situation, i.e. when

HMD wins, the differences with LBD are smaller and range from 1.2% (WINE dataset) up to

50.6% (GLASS dataset). Last row of the same table, which averages out the results for each

dichotomizer over the eight datasets, shows that LBD always outperforms HMD.

Similar considerations hold for win/tie/loss results in case of GACC (Table 4.5). Last col-

umn of this table shows that, independently of the classifier used, LBD outperforms HMD in all

cases. Similarly, the last row shows that LBD outperforms HMD independently of the datasets.

Finally in case of F measure (Table 4.6) we observe in the last column that LBD show

larger results than HMD, independently of the classifier used, in the 50% of the cases. In the

last row LBD show larger results than HMD in the 50% of the cases independently of the

dataset used. We point out that, when the number of wins of LBD is larger than those obtained

from hamming, the difference between these two values is larger than the opposite case, i.e.

when the number of wins of HMD is larger than those achieved by LBD.
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 100/ 0/0( 1) 32.5/0/67.5 (0) 50/0 /50( 0) 80/0 /20 (1) 66/0/34

GLASS 50/35/15 (0) 7.5/0/92.5 (1) 0/0/ 100 (1) 10/0/90 (1) 17/9/74

IIFI 20/0/80 (0) 47.5/0/52.5 (0) 30/0/70 (0) 62.5/0/37.5 (0) 40/0/60

ORHD 85/0/15 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96/0/4

SAT 95/0/5 (1) 60/0/40 (0) 70/0/30 (0) 100/0/0 (1) 81/0/19

SUN10 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0

WFRN 0/0/100 (0) 0/0/100 (1) 0/0/100 (1) 100/0/0 (1) 25/0/75

WINE 0/85/15 (0) 10/75/15 (0) 20/60/20 (0) 30/30/40 (0) 15/63/23

Average 56/15/29 45/9/46 46/8/46 73/4/23

Table 4.6.: Exhaustive comparison between the performances of different classifiers expressed in terms

of F measure, considering LBD and HMD reconstruction rules. Each tabular shows the

amount of win/tie/loss of LBD comparing versus HMD. Round parentheses reports one if the

performances computed over the 40 folds are statistically different according to t-test, with

a significance level of 0.05. Otherwise in the round parenthesis there is zero. Last column

shows the average values of win/tie/loss achieved by different classifiers on a given dataset,

whereas last row shows the average values achieved by a given classifier using different

datasets.

RRS Vs HMD

We compare now RRS results with those achieved by HMD. As in the previous comparison,

we first present the results in terms of accuracy (Table 4.1), second we introduce the results in

terms of geometric mean of accuracies (Table 4.2) and, third, we compare RRS and HMD ac-

cording to the win/tie/loss scheme (Table 4.7 and 4.8 ).

Accuracy Table 4.1 shows that RRS outperforms HMD in the 72% of tabulars. In case of

ORHD and SUN10 datasets RRS outperforms HMD for all binary learners.

Furthermore, we notice tha using SVM and MLP dichotomizers, RRS outperforms HMD re-

construction rule in seven 7 out of eight datasets.

Geometric mean Similar observations hold looking Table 4.2 where RRS outperforms

HMD in 84% of tabulars. It is worth observing that on three datasets, namely ORHD, SAT,

SUN10 and WFRN, RRS achieves larger performance than HMD independently of used di-

chotomizers. Furthermore we note RRS outperforms HMD in all datasets when it uses kNN and

SVM binary learners.

F-measure Focusing on the results in term of F measure in Table 4.3 we note that RRS out-

performs HMD in the 65% of the tabulars. Results on ORHD, SAT and ORHD, show that

RRS performs better than LBD independently of the base classifier adopted. As in the case of

GACC, RRS outperforms HMD in all datasets when it uses kNN and SVM dichotomizers.
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 100/0/0 (1) 100/0/0 (1) 60/0/40 (0) 10/90/0 (1) 67.5/22.5/0.1

GLASS 5/90/5 (0) 0/100/0 (0) 10/90/0 (1) 10/90/0 (1) 6.3/92.5/1.2

IIFI 90/0/10 (1) 100/0/0 (1) 70/0/30 (1) 57.5/7.5/35 (0) 79.4/18.7/18.8

ORHD 90/5/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/1.2/1.3

SAT 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0

SUN10 90/10/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/2.5/0.0

WFRN 65/5/30 (0) 97.5/0/2.5 (1) 20/0/80 (1) 100/0/0 (1) 70.7/1.2/28.1

WINE 0/100/0 (0) 17.5/80/2.5 (0) 20/70/10 (0) 30/40/30 (1) 16.9/7.3/10.8

Average 67.5/26.3/6.25 76.9/ 22.5/6 60/20/20 63.5/28.4/8.1

Table 4.7.: Exhaustive comparison between the performances of different classifiers expressed in terms

of global accuracy (ACC), considering RRS and HMD reconstruction rules. Each tabular

shows the amount of win/tie/loss of RRS comparing versus HMD. Round parentheses reports

one if the performances computed over the 40 folds are statistically different according to

t-test, with a significance level of 0.05. Otherwise in the round parenthesis there is zero.

Last column shows the average values of win/tie/loss achieved by different classifiers on

a given dataset, whereas last row shows the average values achieved by a given classifier

using different datasets.

Win/Tie/Loss RRS has a number of wins larger than HMD in 84% of tabulars shown in

Table 4.7. These wins are statistically significant in the 82% of cases.

Similar considerations hold for Table 4.8, where we observe that RRS collects a number

of wins larger than HMD in the 81% of tabulars, and the differences are statistically signifi-

cant in the 69% of tests. Last row and last column of the table show that RRS outperforms

HMD whatever the dichotomizer and the dataset, with gaps ranging in [25.1%,74.1%] and

[6.3%,100%], respectively. In the case of F measure (Table 4.9), RRS otperforms, in number

of wins, HMD in all the cases independently of classifiers (last column) and datasets (last row)

used.

RRS Vs LBD

We compare now RRS and LBD reconstruction rules, i.e. our proposal against the other rule

setting the final decision using soft labels.

Accuracy In Table 4.1 we observe that, RRS outperforms LBD in the 59% of tabulars,

whereas in the 16% of them they perform equally. On the one hand, the rate of success of

RRS raises up 75% in case of FER, GLASS, IIFI, SAT, WFRN and WINE datasets, independently

of the binary learners used. On the other hand, fixed the SVM classifier while the datasets

vary, we found that RRS outperforms LBD in the 60% of the tests.
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 100/0/0 (1) 100/0/0 (1) 60/0/40 (1) 60/10/30 (1) 80.0/2.5/17.5

GLASS 50/40/10 (0) 37.5/37.5/25 (0) 20/20/60 (1) 80/20/0 (1) 46.9/29.4/23.7

IIFI 65/20/15 (1) 95/2.5/2.5 (1) 40/10/50(1) 40/0/60 (1) 60.0/8.1/31.9

ORHD 85/10/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96.3/2.5/1.2

SAT 95/5/0 (1) 100/0/0 (1) 90/0/10 (1) 70/0/30 (0) 88.8/1.2/10.0

SUN10 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0

WFRN 50/15/35 (0) 85/2.5/12.5 (0) 20/0/80 (1) 100/0/0 (1) 63.7/4.4/31.9

WINE 0/100/0 (0) 17.5/80/2.5 (0) 20/70/10 (0) 30/40/30 (1) 16.9/72.5/10.6

Average 68.1/23.8/8.1 79.4/15.3/5.3 56.3/12.5/31.20 72.5/8.8/18.7

Table 4.8.: Exhaustive comparison between the performances of different classifiers expressed in terms

of geometric mean of accuracies (GACC), considering RRS and HMD reconstruction rules.

Each tabular shows the amount of win/tie/loss of RRS comparing versus HMD. Round paren-

theses reports one if the performances computed over the 40 folds are statistically different

according to t-test, with a significance level of 0.05. Otherwise in the round parenthesis

there is zero. Last column shows the average values of win/tie/loss achieved by different

classifiers on a given dataset, whereas last row shows the average values achieved by a given

classifier using different datasets.

Geometric Mean Table 4.2 shows that RRS achieves larger results than LBD in the 56%

of tabulars, whereas in the 22% of them they perform equally. We observe that on IIFI, SAT,

WFRN and WINE datasets RRS outperforms LBD at least in the 75% of cases. Furthermore,

looking at the table by columns we notice that using kNN, SVM, MLP classifiers RRS outper-

forms LBD in the 62% of tabulars.

F-measure Table 4.3 shows that RRS achieves larger results than LBD in the 50% of tabu-

lars, whereas in the 13% of them they perform equally. We observe that on FER, GLASS,IIFI,

WFRN and WINE datasets RRS outperforms LBD at least in the 75% of cases. Furthermore,

looking at the table by columns we notice that using kNN, SVM classifiers RRS outperforms

LBD in the 62% of tabulars.

Win/Tie/Loss The results of win/tie/loss comparisons between RRS and LBD in terms of

ACC and GACC are reported in Tables 4.10 and 4.11, respectively. Last column of Table 4.10,

which averages out the win/tie/loss along the various dichotomizer architectures, shows that

(i) RRS has a number of wins larger than LBD in six out of eight datasets, with gap ranging in

[15.0%, 67.5%]; (ii) in the two other datasets where LBD outperforms RRS, the performance

gap is smaller than before and it ranges in [1.3%, 35.6%]. The last row of the same table

averages out the results along the datasets and it shows that RRS has a number of wins larger

than LBD, with performance gap ranging in [9.9%, 59.4%]. Tests are statistically significant

in the 53.12% of cases.

Turning our attention to results expressed in terms of GACC, last column of Table 4.11
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 100/0/0 (1) 100/0/0 (1) 50/0/50 (1) 90/0/10 (1) 85/0/15

GLASS 55/35/10 (0) 47.5/2.5/50 (0) 50/0/50 (0) 80/0 /20 (1) 58/9/33

IIFI 85/0/15 (1) 97.5/0/2.5 (1) 40/0/60 (1) 42.5/0/57.5 (0) 66/0/34

ORHD 85/0/15 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96/0/4

SAT 95/0/5 (1) 100/0/0 (1) 90/0/10 (1) 70/0/30 (1) 89/0/11

SUN10 95/0/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 99/0/1

WFRN 50/0/50 (0) 95/0/5 (0) 20/0/80 (1) 100/0/0 (1) 66/0/34

WINE 0/100/0 (0) 17.5/80/2.5 (0) 20/70/10 (0) 30/30/40 (1) 17/70/13

Average 71/17/13 82/10/8 59/9/33 77/4/20

Table 4.9.: Exhaustive comparison between the performances of different classifiers expressed in terms

of F measure, considering RRS and HMD reconstruction rules. Each tabular shows the

amount of win/tie/loss of RRS comparing versus HMD. Round parentheses reports one if the

performances computed over the 40 folds are statistically different according to t-test, with

a significance level of 0.05. Otherwise in the round parenthesis there is zero. Last column

shows the average values of win/tie/loss achieved by different classifiers on a given dataset,

whereas last row shows the average values achieved by a given classifier using different

datasets.

shows that RRS has a number of wins larger than LBD in six out of eight datasets, with gap

ranging in [1.5%, 60.5%]. Last row shows that RRS outperforms LBD in all cases, with a

difference between wins and losses cases ranging in [12.5%, 53.4%].

Focusing on the results expressed in terms of F measure, last column of Table 4.12 shows

that RRS has a number of wins larger than LBD in six out of eight datasets, with gap ranging in

[18%, 60%]. Last row shows that RRS outperforms LBD in all cases, with a difference between

wins and losses cases ranging in [16%, 57%].

Global Comparison

Figure 4.5 presents global comparison between the 12 tested algorithms. Values are reported

in terms of average results obtained on the 8 domains on the three metrics (ACC, GACC and

F measure) and in terms of ranking results. In each plot, tested algorithms’name is reported

concatenating the base classifier’s name with the reconstruction method’s name. As an exam-

ple considering the SVM, as the base classifier, and the RRS, as the reconstruction method, re-

sulting algorithm’s name is SVMRRS. On the left side of the figure we report the mean values

and the standard deviation for each algorithm respect each metrics: ACC (top), GACC (mid-

dle), F measure (bottom). Algorithms are ordered according to the average value of the

metric at hand. We note that, using RRS, a classifier rank first compared to when it is adopted

using other reconstruction schemes. It is worth nothing that classification algorithm showing

larger performance, on all the metrics, is SVM ranking first and second, respectively.

To drill down into these general results, we have also computed the global ranking results of
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Figure 4.5.: Left. Average ± Standard deviation for the accuracy (top), Geometric mean of relative

accuracies (middle), F measure (bottom) over the 8 domains for all the classification

schemes. Right. Ranking results: number of times each algorithm performed significantly

better than the others (blue) or worse (red) according to a Student paired t-test (p = 0.1).

In each plot, algorithms are ordered from left to right in decreasing average of the metric

at hand.

41



4. Reconstruction Rule by Selection

Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 55/45/0 (0) 90/10/0 (1) 40/10/50 (1) 70/10/20 (1) 63.8/18.7/17.5

GLASS 0/100/0 (0) 100/0/0 (1) 80/20/0 (1) 90/10/0 (1) 67.5/32.5/0

IIFI 90/5/5 (1) 90/2.5/7.5 (1) 50/20/30 (1) 30/12.5/57.5 (1) 65.0/10.0/25.0

ORHD 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0

SAT 0/100/0 (0) 100/0/0 (1) 80/0/20 (1) 70/0/30 (1) 62.5/25.0/12.5

SUN10 30/60/10 (0) 15/55/30 (0) 0/100/0 (0) 0/90/10 (0) 11.3/76.2/12.5

WFRN 80/20/0 (0) 100/0/0 (1) 20/0/80 (1) 100/0/0 (1) 75.0/5.0/20.0

WINE 15/85/0 (0) 27.5/70/2.5 (0) 10/90/0 (0) 30/50/20 (1) 20.6/73.8/5.6

Average 33.8/64.4/1.87 65.3/29.7/11.9 35/42.5/22.5 48.8/34.1/17.1

Table 4.10.: Exhaustive comparison between the performance of different classifiers expressed in terms

of global accuracy (ACC), considering RRS and LBD reconstruction rules. Each tabular

shows the amount of win/tie/loss of RRS comparing versus LBD. Round parentheses reports

one if the performances computed over the 40 folds are statistically different according to

t-test, with a significance level of 0.05. Otherwise in the round parenthesis there is zero.

Last column shows the average values of win/tie/loss achieved by different classifiers on

a given dataset, whereas last row shows the average values achieved by a given classifier

using different datasets.

each algorithm, recording the number of times each one ranked first, second, third and so on,

over the 8 domains. In figure 4.5, we report these results on the right side. To bring statistical

validation to these ranking, we performed Student paired t-test comparison for each algorithm

against all others (12x12 = 144 comparisons), recording those for which we can reject the

null hypothesis for level p = 0.1, and then clustering the significant differences as to whether

they are better (blue), or worse (red), of the algorithm at hand. Once again, we notice that

learners collect a larger number of significant wins when RRS is used rather than when other

reconstruction rules are adopted.

4.3.2. Results on artificial datasets

The four artificial datasets highlight performance differences between reconstruction rules in

a controlled scenario where only the number of classes vary, whereas the samples are drawn

from a normal distribution.

For each run of the stratified cross validation, we perform a 5-fold cross validation.

Preliminarily, we observe that performance differences between RRS and LBD both in terms

of ACC and GACC are less than 0.5% in average, and not statistically significant. For this

reason in this subsection we will consider RRS and HMD, under the remark that all observations

made for RRS hold also for LBD.

Figure 4.6 reports the accuracy for each dichotomizer on the four datasets, where the x-

axis shows the number of classes of each artificial datasets and the y-axis reports the value

of accuracy. Blue and red lines correspond to RRS and HMD results, respectively. In this fig-

ure, RRS always outperforms HMD. In case of kNN classifier, we notice that RRS outperforms
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 55/45/0 (0) 90/10/0 (1) 40/0/60 (1) 0/80/20 (0) 46.25/36.25/20

GLASS 0/100/0 (0) 0/90/10 (1) 10/90/0 (1) 10/90/0 (1) 5/92.5/2.5

IIFI 95/0/5 (1) 92.5/0/7.5 (1) 60/10/30 (1) 35/0/65 (0) 70.6/2.5/26.9

ORHD 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0

SAT 0/100/0 (0) 100/0/0 (1) 80/0/20 (1) 90/0/10 (1) 67.5/25/7.5

SUN10 30/55/15 (0) 15/55/30 (0) 0/100/0 (0) 0/90/10 (0) 11.25/75/13.75

WFRN 80/20/0 (0) 100/0/0 (1) 20/0/80 (1) 100/0/0 (1) 75/5/20

WINE 15/85/0 (0) 27.5/70/2.5 (0) 10/90/0 (0) 30/50/20 (1) 52.58/73.75/5.62

Average 34.4/63.1/2.5 53.1/40.6/6.3 28.8/ 48.7/23.7 33.2/51.2/15.6

Table 4.11.: Exhaustive comparison between the performance of different classifiers expressed in terms

of geometric mean of accuracies (GACC), considering RRS and LBD reconstruction rules.

Each tabular shows the amount of win/tie/loss of RRS comparing versus LBD. Round

parentheses reports one if the performances computed over the 40 folds are statistically

different according to t-test, with a significance level of 0.05. Otherwise in the round

parenthesis there is zero. Last column shows the average values of win/tie/loss achieved by

different classifiers on a given dataset, whereas last row shows the average values achieved

by a given classifier using different datasets.

HMD with a difference ranging between 1.7% and 6.3%. Using the SVM classifier this differ-

ence ranges between 3.2% and 24.4%. In case of ADA the gap between the two reconstruction

rules ranges between 6.1% and 15.7%. Finally, in case of MLP, accuracy improvement of

RRS with respect to HMD ranges between 1.5% and 5.4%. Furthermore, the charts in Fig-

ure 4.6 show that the accuracies decreases as the number of classes increase: this result is

expected since a larger number of classes imply a more complex dataset. Nevertheless, it

is worth observing that RRS drops the performances less than HMD since in many cases the

accuracies gap between RRS and HMD increases with the complexity of the recognition task.

Let us now focus the attention to the performance for each class. To this aim, Figure 4.7

plots the values of accuracies per class. For the sake of brevity and to not overload such

graphs with many curves, we report results achieved using one classification architecture for

each dataset. Furthermore, in this figure we order class labels so as class with more samples

came first. For instance, chart SVM-SIM1 represents the values of accj provided by the two

reconstruction rules when an SVM is used as a dichotomizer. The x-axis reports the number of

classes, and the corresponding ordinates are the values of accuracies for those classes. In gen-

eral, we observe that RRS outperforms HMD in each class except in the first one. This should

be expected since improving the recognition ability on the minority classes usually harms the

hit rate on the majority one, as it also been notices in case of binary skewed classification

problems [125].
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Dataset
Classifiers

Average
kNN SVM MLP ADA

FER 60/ 40/0 (0) 100/0/ 0 (1 ) 50/0/50 (1) 80/0/20 (1) 73/10/18

GLASS 10/85/5 (0) 82.5/0/17.5 (1 ) 80/10/10 (1) 100/0/0 (1) 68/ 24/8

IIFI 90/0/10 (1) 92.5/0/7.5 (1) 70/0/30 (1) 35/0/65 (1) 72/0/28

ORHD 0/100/0 (0) 0/100/0 (0 ) 0/100/0 (0) 0/100/0 (0) 0/100/0

SAT 0/100/0 (0) 100/0/0 (1 ) 80/0/20 (1) 70/0/30 (0) 63/25/13

SUN10 30/45/ 25 (0) 15 /52,5/32,5 (0) 0/100/0 (0) 0/80 /20 (0) 11/69/19

WFRN 15 /85/ 0 (0) 30/67,5/2,5 (0) 20/80/0 (0) 30/50/20 (1) 24/71/6

WINE 95 /5/0 (1) 100 /0/0 (1) 20/0 /80 (1) 100/0/ 0 (1) 79/1/20

Average 38 / 58 / 5 65 / 28 / 8 40 / 36 / 24 52 / 29 / 19

Table 4.12.: Exhaustive comparison between the performance of different classifiers expressed in terms

of F measure, considering RRS and LBD reconstruction rules. Each tabular shows the

amount of win/tie/loss of RRS comparing versus LBD. Round parentheses reports one

if the performances computed over the 40 folds are statistically different according to t-

test, with a significance level of 0.05. Otherwise in the round parenthesis there is zero.

Last column shows the average values of win/tie/loss achieved by different classifiers on

a given dataset, whereas last row shows the average values achieved by a given classifier

using different datasets.

4.4. Discussion

As a first issue, we notice that in imbalance classification tasks the reconstruction rules based

on soft labels, i.e. LBD and RRS, provide larger performances than a rule using the crisp

labels only, i.e. HMD. Indeed, the former reconstruction rules in most of the experiments

provide larger values of both accuracy and geometric mean of accuracies. This therefore

suggests us that they are more suited than the latter to tackle with class skew. Indeed our

quantitative assessment on real and synthetic datasets confirms the intuition that the use of

soft labels enriches the information available to the reconstruction rule, thus permitting to de-

rive more effective criterion. Although this observation should appear straightforward, to the

best of our knowledge, this issue has not been discussed so far in the literature where most of

the existing works focusing on OpC decomposition report only the accuracy and they do not

look at the performances on single and/or under-represented classes. Furthermore, the large

number of tests allows also to quantify this improvement, as detailed in previous sections.

Generally, experiments on artificial datasets show that RRS reconstruction rule, which uses

classification reliabilities and it is therefore based on soft labels, outperforms the reconstruc-

tion rule using crisp labels only (HMD) whatever the number of samples and classes in the

datasets. This consideration also holds for the experiments in real datasets, where we find out

that performances raise on datasets with different degree of imbalance. For instance, LBD and

RRS achieve the largest performance improvements in comparison to HMD on FER, ORHD,

SAT and SUN10 datasets, although they have very different a-priori sample distributions (Fig-

ure 4.4).
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kNN SVM

MLP ADA

Figure 4.6.: Results of kNN, SVM, MLP andADA classifier measured in terms of accuracy. Blue and red

lines correspond to RRS and HMD results, respectively.

As a second issue, we focus on results measured in terms of accuracy per class. The experi-

ments on artificial datasets show that on most of the classes RRS provides values of accj larger

than HMD. This consideration holds also for tests on real datasets, although we do not burden

the manuscript with the corresponding large number of plots. Broadly, RRS achieves more

balanced performances among the classes since very often it provides values of GACC and

F measure larger than HMD and LBD.

The third issue discusses how much the reconstruction rules provide performances which

are balanced between ACC and GACC. Indeed, the analysis of the literature on binary im-

balance classification task points out that very often the miss rate on the majority class raises

when the the hit rate on the minority class raises too. This phenomenon increases the value of

g but lowers the value of acc [85, 125, 141]. A similar analysis in case of imbalanced mul-

ticlass classification task is missing in the literature. Although its complete description and

discussion is out of the scope of this work, we provide a first attempt to analyze this behaviour
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SVM- SIM1 kNN- SIM2

ADA- SIM3 MLP- SIM4

Figure 4.7.: Accuracy per class on the synthetic datasets. The title of each chart reports both the clas-

sification architecture and the dataset considered. Class labels are ordered so as class with

more samples came first.

by computing the following quantity [125]:

β =

√

(1− acc)2 + (1− g)2
2

(4.6)

The measure β can be easily interpreted considering the xy plane, where x and y axes cor-

respond to ACC and GACC, respectively. The performancs of a classifier measured as (acc, g)
pair get one point in [0, 1]x[0, 1] and, hence, β ranges in [0, 1]. Furthermore, the ideal and the

worst performance corresponds to points (1, 1) and (0, 0), respectively. The closer the point

representing classifier performance to the ideal point, the more balanced the performance over

the classes. On this basis, we compute β for the four dichotomizer architectures and the eight

datasets used. Then, we normalize values provided by RRS and LBD with respect to values of

HMD, achieving β. Such data are graphically represented as follows (Figure 4.8). For each

dataset and reconstruction rule (RRS and LBD), we determine the dichotomizer providing the

minimum value of β, i.e. the best one, and we report this value in the figure. Moreover, for

each point of the figure, we draw also a geometric shape giving information on the consid-
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Figure 4.8.: Radar plot of β values for RRS and LBD reconstruction rules.

ered dichotomizer. For instance, consider the FER dataset. The orange and blue lines repre-

sent RRS and LBD performance: the corresponding dichotomizers are the SVM and the kNN,

whereas β values are 0.51 and 0.74, respectively. The figure permits us to derive the following

observation. First, values of LBD and RRS are always below 1: this means that they provide

values of β smaller than HMD, thus being able to improve the recognition capability over the

classes. This observation confirms once more the first issue of this section, i.e. soft labels

are more suited than crisp labels to tackle with class skew. Second, we notice that the blue

line is always inner to the orange one. This implies that β values provided by RRS are always

smaller, and therefore better, than those of LBD, thus confirming that RRS in several cases

achieves values of ACC and GACC that are, together, larger than those attained by other rules.

Hence, RRS improves the recognition ability on the minority classes affecting the recognition

accuracies on majority classes to a lesser extent than the other rules.

As final remark we observe that the SVM architecture seems to be the best suited to work

with the proposed reconstruction rule since the overall classification system. Indeed, the per-

formances (ACC GACC and F measure) achieved when this classifier is used as dichotomizer

are larger than those achieved by other classifiers, when RRS is used. In the case of ACC, Ta-

ble 4.1 shows that SVM classifier achieves larger results than kNN, MLP and ADAin the 62.5%

of cases. In particular, using this classifier RRS outperforms HMD and LBD in the 87.5%

and 75.0% of cases. Turning our attention to performances measured in terms of GACC and

F measure, Table 4.2 shows that SVM classifier shows larger performances than others in

the 75% of cases, when RRS is used. Furthermore, respect to GACC results, RRS outperforms

HMD and LBD in the 87.5% and 62.5% of tabulars respectively. Respect to F measure results

our proposal outperform HMD and LBD in the 100% and 75% of tabulars respectively.
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reconstruction rule

Results achieved RRS rules, presented in the previous Chapter 4, show that using the classifi-

cation reliability in the reconstruction stage leads to an improvement of the systems’ perfor-

mances. Motivating by these favourably results we aim to further investigate the effect of this

quantity in designing reconstruction rule suited for skewed data. With this aim, we notice that

in a decomposition scheme for each input sample a dichotomizer produces a raw output (∈ ℜ)

that can be transformed in a reliability value. Hence, after the dichotomizer classifications,

we have a vector that collects all these real values, describing each input sample in a new

feature space. The task to assign to this vector a label that corresponds to the final decision

of the system is a classification problem itself. Considering the problem from this point of

view, we investigate the reconstruction rules that address the problem using a statistical ap-

proach. Inspired by a statistical reconstruction rule [122] that was designed for Opc and PC

decomposition methods, we present here an extension of this method in the case of ECOC de-

composition approach. Since our final task is to handle imbalanced datasets, and aware of our

study of the use of reliability at reconstruction level, we decide to improve the existing rule us-

ing reliabilities instead of raw classifiers outputs. The resulting reconstruction rule is referred

to as Reliability-based Softmax reconstruction rule (RBS). Results achieved testing this rule

on eight datasets and three classifiers show two main results. The first one is that the proposed

rule improves system recognition performance both in therm of accuracy, geometric mean of

accuracies and F measure when compared with well established reconstruction rules. The

second one, according with the results that we achieved in the other proposals, shows that the

reliability improves system performance. The latter result arises from the comparison of the

statistical method [122] extended to the ECOC framework when it use reliability and when it

use only the raw outputs.

Next section presents RBS method and, at the end of the section, discusses the differences

between our proposal and [122]. In the sections 5.2 and 5.3 we present the experimental set-up

and the results, respectively. In the last section we discuss results achieved.

5.1. Method

When we use RBS reconstruction rule we can considers dichotomizers’ outputs as a new

feature vector which have to be classified. We present here an approach that solves this clas-

sification task using the Softmax regression. According to the ECOC decomposition method

a unique codeword, i.e. a binary string, is assigned to each class. Assuming that the string

has L bits, the recognition system is composed by L binary classification functions. These
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5. Reliability-based Softmax reconstruction rule

binary classifiers provide the binary decision vector M(x) and the reliability vector ψ(x) =
{ψ1(x), ψ2(x), . . . , ψL(x)}.

Since we aim at designing a reconstruction rule suited for imbalanced datasets, we want

use information owned by classifiers reliability in the reconstruction stage. In order to do this,

we introduce the quantity χj(x) that summarizes both the information provided by classifiers.

Indeed χj(x) integrates the crisp label and the classification reliability that the j-th binary

classifier provides for each sample x by multiplying them. Hence, for the whole decomposi-

tion we have: χ(x) = ψ(x)T ⊙M (x) = {χ1(x), χ2(x), . . . , χL(x)}, where the symbol ⊙
represents the element-wise product.

Considering now χ(x) as second-order features, we have to face with the classification

problem {χ(x), ω(x)}, where each sample χ(x) is a vector described by L features with

label ω(x). The classification task consists in predicting the label y(x) ∈ Υ, where Υ =
{y1(x), y2(x), . . . , yK(x)}, so that ω(x) = y(x) for each sample. For the sake of clarity we

omit in the following the dependence of all symbols from sample x.

We solve this classification task by using the softmax regression to estimate the posterior

distribution of classification acts. Softmax regression is a natural choice since multiclass prob-

lems show multinomial distribution for the output. Defining a set of K − 1 vectors of param-

eters, Θ = {θ1,θ2, . . . ,θK−1}, to parameterize the multinomial distribution over K different

outputs, the conditional distribution of y given χ is:

p(ω = yi|χ; Θ) =
eθ

T
i χ

∑K
j=1 e

θTj χ
i = 1, 2, . . . , K − 1. (5.1)

It is straightforward observing that p(ω = yK |χ; Θ) = 1 −∑K−1
i=1 p(ω = yi; Θ). The final

label is set by:

y = argmaxi(p(ω = yi|χ; Θ)). (5.2)

In order to perform this reconstruction technique we have to estimate Θ. To this aim, con-

sider a training set tr composed of mtr samples. Denoted by χtr the values of χ of samples

belonging to tr, Θ can be estimated maximizing the log-likelihood l:

l(θ) =
mtr∑

i=1

log
K∏

l=1

(
eθ

T
l χ

tr

i

∑k
j=1 e

θTj χ
tr

i

)1{yi=l} (5.3)

where 1{◦} denotes the index function, which is one if the statement inside the bracket is

true, zero otherwise.

To reduce the correlation between classifier outputs when we perform the maximization

of eq. 5.1 we use L2 penalty, as suggested in [122]. Note that χtr is computed performing

a stacking procedure, which avoids problem of reusing training samples during parameter

estimation. Indeed, we first divide tr into p folds, and then use p−1 folds for training and one

to estimate χtr
h , where h ∈ [1; p]. When all folds were considered as test fold, we compute

χtr = {χtr
h }ph=1.
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Algorithm 1: Reliability-based Softmax reconstruction rule

Input: Z = {(xi, ωi)} with i = 1, ..., N xi ∈ ℜ, ωi ∈ Ω = {ω1, . . . , ωK}};
Input: D : K × L code matrix.

1: ∀x ∈ Z map ω → {−1, 1}L usingD.

2: Split Z in T folds.

3: Initialize second order feature set: S = ∅.
4:

repeat

Get T-1 folds as training set (ZTr) and 1 as test set (ZTe).

for t = 1 to K do

-Train binary classifier Ct using ZTr = {(xj,yj),yj ∈ {−1, 1}}
-Test binary classifier Ct using ZTe

-Collect hard label and reliability: {(M(x), ψ(x)), ∀x ∈ ZTe}t
end for

-Compute the χ: χ(x) =M (x)⊙ψ(x), ∀x ∈ ZTe.

-Collect the new features : S.add{χ(x), ω), ∀x ∈ ZTe}.
until all folds tested

5:

repeat

Get T-1 folds as training set (STr) and 1 as test set (STe) from S.

-Compute the Softmax regression parameters Θ = {θ1,θ2, . . . ,θK−1} using STr

-Compute the probability p(ω = yi|χ; Θ) for each sample in STe respect each class.

-Compute sample class y = argmaxi(p(ω = yi|χ; Θ))
until all folds tested

Reliability-based Softmax reconstruction rule pseudo code The pseudo-code of

the proposed method is reported in Algorithm 1. The inputs are the dataset Z composed of N
pairs sample-label {(xi, ωi)} and the code matrix D. The six steps of the algorithm do the

following:

1. We useD to map the multiclass labels of all samples in the new set of binary labels, so

that the label of each sample is now a vector of K binary values.

2. Our experiments are performed according to a T -fold cross validation: hence, in the

second step we divide the original dataset in T folds.

3. We define a new set, named as Second order feature set S representing the new meta-

level dataset which will used to compute the Softmax regression. In S each sample is

described by a new feature vector given by χ(x), computed in the following step of the

algorithm.

4. For each iteration of the cross validation, we use T − 1 folds to train the pool of L
classifiers: C = {C1, . . . ,Cj, . . . ,CL}, whereas one fold is used to test C. We first

collect the labels and the reliabilities of the classification on all samples of the test set
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ZTe and then we compute the quantity χ(x). This quantity and its true multi-class label

are added to S.

5. At this point, after that all the folds were classified in the previous step, in the set S are

collected the second level features for each samples in Z. We divide the new dataset

S in T folds according to the splitting that have been performed on the original set Z.

For each iteration of the cross validation, we use T − 1 folds to estimate parameters Θ
maximizing the log-likelihood 5.1 and the test fold to compute posterior probabilities:

p(ω = yi|χ; Θ). Final system outputs are computed as y = argmaxi(p(ω = yi|χ; Θ)).

Remarks We discuss now the differences between our proposal and the contribution pre-

sented in [122]. These differences consist into three main points.

First, in [122] the authors use the raw outputs of the binary classifiers f(x) = {fj(x)}Lj=1

to compute the features of second order χ(x) = ψ(x)T ⊙ f(x). This choice does not permit

to use classifiers providing only crisp labels, e.g. the k-Nearest Neighbour. Conversely, our

contribution uses the quantity χ(x) = ψ(x)T ⊙M (x), which combines the crisps labels with

the reliability, i.e. a measure providing us more information about the classification process.

Note that this choice permits us to employ any kind of classifiers.

Second, in [122] OpC and PC decomposition are considered, whereas we focus on the

ECOC framework.

Third, the performances of RBS reconstruction rule are assessed with particular reference

to classification of samples belonging to under-represetend classes.

Note that the novel use of the reliability in the regression not only extends the work of [122],

but provides larger classification performance as will be reported in Section 5.3.

5.2. Experimental set-up

In this section we give a short description of the specific experimental set-up used to validate

our proposal. We first provide the list of datasets used in our tests, then the list of performance

metrics chosen and finally we present details of the experimental protocol.

5.2.1. Datasets

From the dataset presented in 3.1, we use 8 public datasets (BRTISS, DERM, ECOLI, FER,

GLASS, IIFI, SEEDS, WINE) which provide an heterogeneous set of classification tasks in terms

of number of samples, features and classes. Datasets shows also different skewness among

classes permitting to assess how the classification system performs when a class is under-

represented in comparison to others. Their characteristics are summarized in Table 3.1.

As previously done in Chapter 4, in Figure 5.1 we graphically represent the degree of im-

balance of the used datasets[88]. The chart represents the prior probability of the minority

class as a function of prior probability of the majority class. The feasible space is below the

diagonal line of the plot, which also corresponds to equiprobable classes. This line can be

therefore thought of as the edge of balanced problems. The balance disappears towards the
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Figure 5.1.: Dataset distribution as function of prior distribution of majority (x-axis) and minority (y-

axis) class.

bottom right corner. Point (0.5,0.5) corresponds to two equiprobable classes. This graphical

representation helps us to observe how much the datasets are heterogeneous with respect to

the imbalance ratio. In the figure we observe that SEEDS dataset is perfectly balanced whereas

datasets such as GLASS and DERM have a strong degree of imbalance.

5.2.2. Classifiers

We test three different types of classifiers, belonging to different classification para-digms.

Therefore, the binary learners are: Adaboost (ADA) as an ensemble of classifiers, Multilayer

Perceptron (MLP) as a neural network and Support Vector Machine (SVM) as as a kernel ma-

chine.

• SVM we use a Gaussian radial basis kernel. Values of regularization parameter C and

scaling factor σ are selected within [1, 104] and [10−4, 10], adopting a log scale to sample

the two intervals. The value of each parameter is selected according to average perfor-

mance estimated by five fold cross-validation on a validation set. The reliability of a

SVM classification is estimated as proposed in [107], where the decision value of the

SVM is transformed in a posterior probability.

• MLP we use a number of hidden layers equal to half of the sum of features number plus

class number. The number of neurons in the input layer is given by the number of the

features. The number of neurons in the output layer is always two when the MLP is

employed as dichotomizer. To evaluate the reliability of MLP decisions for multiclass

classification problems we adopted a method that estimates the test patterns credibility

on the basis of their quality in the feature space [27].

• ADA we use as the ”Adaboost M1” algorithm proposed in [53], where weak learners are
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decision stumps. The number of iteration is equal to 100. The reliabilities of ADA clas-

sifications are estimated using an extension of method [27], where we compute the

difference between the outputs related to winning and losing class.

5.2.3. Performance metrics

On the motivations discussed in section 3.3 we use as performance metrics the accuracy (acc)
and the geometric mean of relative accuracies (GACC).

5.2.4. Experimental protocol

We test RBS method to solve multiclass tasks in ECOC framework. We apply ECOC using the

method proposed by Dietterich et al. [40] for code generation. In particular, if 3 ≤ K ≤ 7
we use exhaustive codes; if 8 ≤ K ≤ 11 we generate exhaustive codes and then select a

good subset of decomposition matrix columns given by the GSAT algorithm [119]. In this

decomposition framework we compare the proposed reconstruction rule with HMD, LBD, and

with the method proposed in [122], which is referred to as SHI in the following. In this lat-

ter case, according to [122], the softmax regression is applied on the second order features

computed starting from classifiers soft labels f(x) = {fj(x)}Lj=1. Hence χ(x) is computed as

ψ(x)T ⊙ f(x). Furthermore, all experiments reported in the following are performed accord-

ing to a five folds cross validation.

5.3. Results

This section presents the results achieved by the three classifiers on the tested datasets varying

the reconstruction rule used, as reported in section 5.2.

Tables 5.1, 5.2 and 5.3 report results obtained by SVM, MLP and ADA classifiers, respec-

tively. For each table, the top, middle and right side reports performance measured in term of

accuracy, geometric mean of accuracies and F measurerespectively.

Let us now focus on the results obtained by the SVM classifier (Table 5.1). First we observe

that results measured in terms of accuracy show that RBS performs better than others methods

for all datasets. Second results expressed in terms of GACC show that RBS outperforms

other methods in 7 cases out of 8. Third F measure values show that RBS outperforms

other methods in 6 out of 8 datasets. Focusing now on the most imbalanced domains such

as ECOLI, FER, GLASS and WINE (Figure 5.1), we observe that RBS achieve for all the three

metrics better performance that other methods in all domains ad exception on ECOLI in term of

GACC. Consider the GLASS dataset we notice that RBS show largest performance differences

with other methods. In this case, the second best method is SHI, but its value of GACC is

32.18% lower than the one provided by RBS.

Turning our attention to Table 5.2 reporting results achieved by MLP classifier, we observe

that in terms of ACC RBS achieves the best results in four out of eight datasets. However, there

is not another prevalent method, since best performance are attained by SHI and LBD method

in one and two datasets, respectively. With respect to GACC , RBS method shows: (i) larger
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Rule
Datasets

BRTISS DERM ECOLI FER GLASS IIFI SEEDS WINE

Accuracy

HMD 71.67 96.96 87.75 97.48 63.88 62.50 92.85 97.79

LBD 71.58 97.23 87.76 97.60 67.87 67.33 93.33 98.33

SHI 84.34 82.74 88.06 92.80 62.66 56.00 90.95 74,79

RBS 90.43 99.45 88.98 98.97 77.11 68.00 93.81 98.87

G mean

HMD 40.58 96.60 80.40 96.98 23.34 56.12 92.72 97.52

LBD 40.73 96.83 87.86 97.24 36.62 64.89 93.12 98.17

SHI 80.00 80.00 81.62 80.00 41.18 25.82 79,76 64,72

RBS 80.00 99.47 79.06 99.08 73.36 65.40 93.75 98.75

F measure

HMD 69.32 97.46 80.90 94.91 61.52 61.86 92.83 97.86

LBD 71.70 97.46 84.25 94.82 60.78 67.44 93.25 98.28

SHI 89.43 80.60 67.72 81.45 64.61 56.52 72.00 77.00

RBS 89.42 98.49 85.76 96.49 72.02 67.34 93.75 98.78

Table 5.1.: Support Vector Machine results in term of ACC (top), GACC(middle) and F measure (bot-

tom), using HMD, LBD, SHI and RBS reconstruction rules.

Rule
Datasets

BRTISS DERM ECOLI FER GLASS IIFI SEEDS WINE

Accuracy

HMD 68.09 98.36 88.06 94.52 71.25 68.84 94.28 97.19

LBD 67.17 98.36 88.03 95.32 73.08 70.14 95.23 97.14

SHI 92.72 64.19 70.06 45.54 62.27 43.51 47.61 33.78

RBS 90.00 99.17 86.88 98.62 76.95 69.31 95.23 97.74

G mean

HMD 13.86 98.40 80.77 92.86 14.94 65.57 94.20 96.98

LBD 27.73 98.40 82.02 93.57 14.88 68.67 95.14 97.30

SHI 80.00 40.79 53.66 35.15 22.84 35.00 37.03 8.91

RBS 80.00 99.10 78.78 98.11 55.68 67.27 95.14 97.53

F measure

HMD 62.84 98.27 83.79 93.63 63.00 66.84 94.35 97.22

LBD 63.82 98.27 84.04 94.32 63.97 69.50 95.24 97.13

SHI 82.49 49.64 62.98 40.49 52.73 39.35 42.94 26.52

RBS 77.37 98.77 81.41 98.27 71.00 68.39 95.25 97.73

Table 5.2.: Multilayer Perceptron results in term of ACC (top), GACC(middle) and F measure (bot-

tom) using HMD, LBD, SHI and RBS reconstruction rules.
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Rule
Datasets

BRTISS DERM ECOLI FER GLASS IIFI SEEDS WINE

Accuracy

HMD 68.91 97.54 85.94 53.87 68.77 60.02 90.95 96.09

LBD 69.72 98.09 74.05 57.64 71.18 66.34 92.85 96.87

SHI 87.22 94.79 82.82 60.59 69.36 56.66 43.81 40.53

RBS 94.45 98.08 88.12 64.70 74.68 66.50 92.38 94.96

G mean

HMD 27.95 95.30 74.05 0.52 0.00 54.90 90.76 96.09

LBD 44.97 97.08 78.90 11.43 0.00 64.69 92.68 96.87

SHI 77.75 94.06 59.78 51.50 37.93 54.25 33.55 0.00

RBS 92.14 97.47 80.02 53.65 12.76 65.14 92.21 95.38

F measure

HMD 65.50 98.27 78.99 36.89 48.92 57.93 91.01 96.24

LBD 67.92 98.27 83.46 41.17 53.69 65.58 92.84 96.76

SHI 85.86 98.77 82.17 58.02 67.56 55.52 39.71 34.09

RBS 87.77 99.08 84.02 58.39 68.83 65.88 92.37 95.19

Table 5.3.: AdaBoost classifier results in term of ACC (top), GACC(middle) and F measure (bottom),

using HMD, LBD, SHI and RBS reconstruction rules.

performance than other methods on four datasets out of eight, (ii) best performance on BR-

TISS dataset which are also equal to those provided by SHI method, (iii) lower performance

than LBD method in the other two cases. Focusing on results in term of F measure we ob-

serve that RBS performs better than other methods in five cases out of eight. Considering

again datasets with highest degree of imbalance (ECOLI, FER, GLASS and WINE), RBS per-

form better in 3 out of 4 domains in respect of al the three considered metrics. Consider again

the GLASS dataset where RBS shows best performance: in case of ACC, the difference with

the second best method (LBD) is 3.77%, in case of GACC the difference with respect to SHIis

32.84% and in case of F measure the difference with respect to LBD is 7.03%.

Turning our attention to results achieved using the ADA classifier (Table 5.3), we observe

that RBS globally has larger performance than other methods. Indeed, considering both the

accuracy and the geometric mean of accuracies, RBS shows the largest values in five out

of eight datasets, whereas considering F measure, it overcomes others methods in six out

eight datasets. Focusing on the most imbalanced datasets (ECOLI, FER, GLASS and WINE)

RBSperforms better than other methods on: i) 3 out of 4 datasets considering the accuracy;

ii) on 2 out of 4 datasets considering GACC; iii) on 3 out 4 cases considering F measure.
Furthermore, it is worth observing the value of GACC on the GLASS dataset: only the use of

a reconstruction rule based on Softmax regression permit to attains a value of GACC larger

than zero. This means that both HMD and LBD misclassifies all samples of one class, at least.

This does not occur for SHI and RBS methods.
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Figure 5.2.: Left. Average ± Standard deviation for the accuracy (top), Geometric mean of rela-

tive accuracies (middle), F-measure (bottom) over the 8 domains for all the classification

schemes. Right. Ranking results: number of times each algorithm performed significantly

better than the others (blue) or worse (red) according to a Student paired t-test (p = 0.1).

In each plot, algorithms are ordered from left to right in decreasing average of the metric

at hand.

Figure 5.2 presents global comparison between the 12 tested algorithms. Values are re-

ported in terms of average results obtained on the 8 domains on the three metrics (ACC,

GACC and F measure) and in terms of ranking results. In each plot tested algorithms’name

is reported concatenating the base classifier’s name with the reconstruction method’s name.

As an example considering the SVM, as the base classifier, and the RBS, as the reconstruction

method, resulting algorithm’s name is SVMRBF. On the left side of the figure we report the

mean values and the standard deviation for each algorithm respect each metrics: ACC (top),

GACC (middle), F measure (bottom). Algorithms are ordered according to the average value

of the metric at hand. We note that, using RBS, a classifier rank first compared to when it is
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adopted using other reconstruction schemes. It is worth nothing that classification algorithms

showing larger performance, on all the metrics, are SVM and MLP ranking first and second,

respectively.

To drill down into these general results, we have also computed the global ranking results of

each algorithm, recording the number of times each one ranked first, second, third and so on,

on the 8 domains. In figure 5.2, we report these results on the right side. To bring statistical

validation to these ranking, we performed Student paired t-test comparison for each algorithm

against all others (12x12 = 144 comparisons), recording those for which we can reject the

null hypothesis for level p = 0.1, and then clustering the significant differences as to whether

they are better (blue), or worse, of the algorithm at hand. Once again, we notice that learners

collect a larger number of significant wins when RBS is used than when other reconstruction

rules are adopted.

Figure 5.3.: Average β values (left) over the 8 domains for all the classification schemes. Ranking

results (right): number of times each algorithm performed significantly better than the

others (blue) or worse (red) according to a Student paired t-test (p = 0.1). In each plot,

algorithms are ordered from left to right in decreasing average of β. Note that lower values

of β correspond to better classification performance

5.4. Discussions

From the analysis of results in tables 5.1, 5.2 and 5.3 and figures 5.2 we prove that RBS method

provides performances that are larger that those provided by other methods in the large major-

ity of tests, regardless of the classifier architecture. Furthermore, from rank results in figure

5.2, we observe that, not considering RBS, SHI is not the best performing method. These

observations suggest again that the introduction of the reliability in the reconstruction rule

provides a significant advantage. Moreover, considering the results achieved on the most

imbalanced datasets, namely, ECOLI, FER, GLASS and WINE, we notice that this advantage

permits the proposed reconstruction rule to handle imbalanced domains effectively. Indeed

the improvements are not limited to the accuracy, but they regard also the GACC and the

F measure. This is important since these two last metrics take in account the behaviour of

the classification system with respect to the minority classes (Section 3.3).

As a final issue, we notice that the proposed reconstruction rule provides values of ACC and

GACC that are, together, larger than the corresponding ones of other reconstruction rules. This
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results is summarized in Figure 5.3 in term of the following quantity [125]:

β =

√

(1− acc)2 + (1− g)2
2

(5.4)

The measure β can be easily interpreted considering the xy plane, where x and y axes corre-

spond to ACC and GACC, respectively. The performancs of a classifier measured as (acc, g)
pair get one point in [0, 1]x[0, 1] and, hence, β ranges in [0, 1]. Furthermore, the ideal and the

worst performance corresponds to points (1, 1) and (0, 0), respectively. The closer the point

representing classifier performance to the ideal point, the more balanced the performance over

the classes. The ideal condition implies that β is equal to zero and the worst one that β is

equal to 1. Hence in the figure 5.3 lower is the value better is the corresponding system per-

formance. The notation and plot type of figure 5.3 are the same that we have used in figure 5.2

described above. In this figure we report the average value of β for each algorithm on all the

datasets (left) and the corresponding rank score (right). Results point out that RBS improves

performances of the system, so that SVM, MLP and ADA using RBS rank on the top 4 ranks.

We deem that this result is relevant since most of the algorithms coping with class imbalance

improve the geometric mean of accuracies harming the global accuracy [125]. Being able to

provide larger values of both ACC and GACC implies that RBS improves the recognition abil-

ity on the minority class without, or with a small extend, affecting the recognition accuracies

on majority classes.
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6. Boosting Nearest Neighbours for

the efficient posterior probability

estimation

In this chapter we present an efficient posterior probability estimation by boosting nearest

Neighbours. Boosting refers to the iterative combination of classifiers which produces a clas-

sifier with reduced true risk (with high probability), while the base classifiers may be weakly

accurate [81]. The final, strong classifier h, satisfies im(h) ⊆ R. Such an output carries out

two levels of information. The simplest one is the sign of the output. This discrete value is

sufficient to classify an unknown observation x: h(x) predicts that x belongs to a class of

interest iff it is positive. The most popular boosting results typically rely on this sole informa-

tion [98, 114, 115] (and many others). The second level is the real value itself, which carries

out as additional information a magnitude which can be interpreted, applying some suitable

transformation, as a “confidence” or reliability in the classification. This continuous informa-

tion may be fit into a link function f : R → [0, 1] to estimate conditional class probabilities,

thus lifting the scope of boosting to that of Bayes decision rule [54]:

P̂r[y = 1|x] = f(h(x)) . (6.1)

To date, estimating posteriors with boosting has not met the same success as predicting (dis-

crete) labels. It is widely believed that boosting and conditional class probability estimation

are, up to a large extent, in conflict with each other, as boosting iteratively improves classi-

fication at the price of progressively overfitting posteriors [19, 54]. Experimentally, limiting

overfitting is usually obtained by tuning the algorithms towards early stopping [18].

We analyse, in the light of this problem, a recent algorithm has been proposed to leverage

the famed nearest neighbor ( NNk) rules [105], UNN. This algorithm, UNN, fits real-valued

coefficients for examples in order to minimize a surrogate risk [12, 98]. These leveraging

coefficients are used to balance the votes in the final k- NNk rule. It is proven that, as the

number of iterations T →∞, UNN achieves the global optimum of the surrogate risk at hand

for a wide class of surrogates called strictly convex surrogates [99, 98].

Perhaps the simplest road towards computing the conditional class probabilities for each

class c, also called (estimated) posteriors estimators consists in adopting a OpC decomposition

approach. In such a way we haveC problems with corresponding sample S(c) = {(xi, yic), i =
1, 2, ...,m}. For each of these problems, we learn from S a classifier h : O→ R out of which

we may accurately compute (6.1), typically with p̂c(x) = f(h(x)) for some relevant function

f .

There exists a convenient approach to carry out this path as a whole, for each class c =
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ψ f(x) φ

A (1− x)2 1
2
(1 + x) x(1− x)

B log2(1 + exp(−x)) [1 + exp(−x)]−1 −x ln x
−(1− x) ln(1− x)

C log2(1 + 2−x) [1 + 2−x]
−1 −x log2 x

−(1− x) log2(1− x)
D −x+

√
1 + x2 1

2

(

1 + x√
1+x2

) √

x(1− x)

E 1
2
x(sign(x)− 1)

{

1 if x > 0

0 if x < 0
2min{x, 1− x}

F exp(−x) [1 + exp(−2x)]−1 N/A

G
(

1 + 1−α2

4
x
)− 1+α

1−α

[

1 +
(

4−(1−α2)x
4+(1−α2)x

) 2
1−α

]−1
N/A

Table 6.1.: Examples of surrogates ψ (Throughout the work, we let ln denote the base-e logarithm,

and logz(x)
.
= ln(x)/ ln(z) denote the base-z logarithm). From top to bottom, the losses

are known as: squared loss, (normalized) logistic loss, binary logistic loss, Matsushita loss

[99, 98], linear Hinge loss, exponential loss, Amari’s α-loss, for α ∈ (−1, 1) [98]. Strictly

convex losses are A, B, C, D, F, G. Balanced convex losses are A, B, C, D (E corresponds

to a limit behavior of balanced convex losses [98]). For each ψ, we give the corresponding

estimators p̂c(x) = f(h(x)). (Theorem A.2 and Eqs (A.6, A.8) below: replace x in f(x)
by hopt(x)), and if they are balanced convex losses, the corresponding concave signature φ
(See text for details).

1, 2, ..., C: learn h by minimizing a surrogate risk over S [12, 98, 99]. A surrogate risk has

general expression:

εψ
S
(h, c)

.
=

1

m

m∑

i=1

ψ(yich(x)) , (6.2)

for some function ψ that we call a surrogate loss. Quantity yich(x) ∈ R is called the edge

of classifier h on example (xi,yi) for class c. The demonstration that exist a subclass of

surrogate losses, whose minimization brings simple and efficient estimators for Bayes (true)

posteriors (p̂c(x)
.
= P̂r[yc = 1|x] ), can be found by interested reader in the appendix A.

In the following of this section we show explicit convergence rates towards these estimators

for UNN, for any such surrogate loss, under a Weak Learning Assumption which parallels

that of classical boosting results. We provide also experiments and comparisons on synthetic

and real datasets. displaying that boosting nearest neighbours brings very good results from

the conditional class probabilities estimation standpoint, without the over fitting problem of

classical boosting approaches.
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6. Boosting Nearest Neighbours for the efficient posterior probability estimation

Algorithm 2: Algorithm UNIVERSAL NEAREST NEIGHBORS, UNN(S, ψ, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ O, yi ∈ {−1, 1}C}, ψ strictly convex loss (Definition A.1), k ∈ N∗;
Let αj ← 0, ∀j = 1, 2, ...,m;
for c = 1, 2, ..., C do

Let w ← −∇ψ(0)1;

for t = 1, 2, ..., T do
[I.0] Let j ← WIC(S,w);
[I.1] Let δj ∈ R solution of:

∑

i:j∼ki

yicyjc∇ψ
(

δjyicyjc +∇−1
ψ (−wi)

)

= 0 ; (6.3)

[I.2] ∀i : j ∼k i, let

wi ← −∇ψ
(

δjyicyjc +∇−1
ψ (−wi)

)

, (6.4)

[I.3] Let αjc ← αjc + δj ;

Output: H(x)
.
=

∑

j∼kx
αj ◦ yj

6.1. Leveraging and boosting Nearest Neighbors

The nearest neighbor rule belongs to the oldest, simplest and most widely studied classifi-

cation algorithms [28, 38]. We denote by kNN(x) the set of the k-nearest neighbors (with

integer constant k > 0) of an example (x,y) in set S with respect to a non-negative real-

valued ”distance” function. This function is defined on domain O and measures how much

two observations differ from each other. This dissimilarity function thus may not necessarily

satisfy the triangle inequality of metrics. For the sake of readability, we let j ∼k x denote the

assertion that example (xj,yj) belongs to kNN(x). We shall abbreviate j ∼k xi by j ∼k i. To

classify an observation x ∈ O, the k- NNk rule H over S computes the sum of class vectors

of its nearest neighbors, that is: H(x) =
∑

j∼kx 1 ◦ yj , where ◦ is the Hadamard product.

H predicts that x belongs to each class whose corresponding coordinate in the final vector is

positive. A leveraged k- NNk rule is a generalization of this to:

H(x) =
∑

j∼kx
αj ◦ yj , (6.5)

where αj ∈ R
C is a leveraging vector for the classes in yj . Leveraging approaches to nearest

neighbors are not new [117, 118], yet to the best of our knowledge no convergence results

or rates were known, at least until the algorithm UNN [105]. Algorithm 2 gives a simplified

version of the UNN algorithm of [105] which learns a leveraged k- NNk. Oracle WIC(S,w)
is the analogous for NNk of the classical weak learners for boosting: it takes learning sample

S and weightsw over S, and returns the index of some example in S which is to be leveraged.

[105] prove that for any strictly convex loss ψ, UNN converges to the global optimum of the

surrogate risk at hand. However, they prove boosting-compliant convergence rates only for

the exponential loss. For all other strictly convex losses, there is no insight on the rates with

which UNN may converge towards the optimum of the surrogate risk at hand. We now provide

such explicit convergence rates under the following Weak Learning Assumption:
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WLA: There exist some ϑ > 0, ̺ > 0 such that, given any k ∈ N∗, c = 1, 2, ..., C and any

distribution w over S, the weak index chooser oracle WIC returns an index j such that

the following two statements hold:

(i) Prw[j ∼k i] ≥ ̺;

(ii) Prw[yjc 6= yic|j ∼k i] ≤ 1/2− ϑ or Prw[yjc 6= yic|j ∼k i] ≥ 1/2 + ϑ.

Requirement (i) is a weak coverage requirement, which “encourages” WIC to choose indexes

in dense regions of S. Before studying the boosting abilities of UNN, we focus again on

surrogate risks. So far, the surrogate risk (6.2) has been evaluated with respect to a single

class. In a multiclass multilabel setting, we may compute the total surrogate risk over all

classes as:

εψ
S
(H)

.
=

1

C

C∑

c=1

εψ
S
(hc, c) , (6.6)

where H is the set of all C classifiers h1, h2, ..., hC that have been trained to minimize each

εψ
S
(., c), c = 1, 2, ..., C. We split classifiers just for convenience in the analysis: if one trains

a single classifier H : O × {1, 2, ..., C} → R like for example [115], then we define hc to

be H in which the second input coordinate is fixed to be c. Minimizing the total surrogate

risk is not only efficient to estimate posteriors (Appendix A.2): it is also useful to reduce the

error in label prediction, as the total surrogate risk is an upperbound for the Hamming risk

[115]: εH
S
(H)

.
= (1/(mC))

∑C
c=1

∑m
i=1 I[yichc(xi) < 0], where I[.] denotes the indicator vari-

able. It is indeed not hard to check that for any strictly convex surrogate loss ψ, we have

εH
S
(H) ≤ (1/ψ(0))× εψ

S
(H). We are left with the following question about UNN:

”are there sufficient conditions on the surrogate loss ψ that guarantee, under the sole WLA, a

convergence rate towards the optimum of (6.6) with UNN ?”

We give a positive answer to this question when the surrogate loss meets the following smooth-

ness requirement.

definition [78] ψ is said to be ω strongly smooth iff there exists some ω > 0 such that, for

all x, x′ ∈ int(dom(ψ)), Dψ(x
′‖x) ≤ ω

2
(x′ − x)2, where

Dψ(x
′‖x) .

= ψ(x′)− ψ(x)− (x′ − x)∇ψ(x) (6.7)

denotes the Bregman divergence with generator ψ [98].

Denote nj
.
= |{i : j ∼k i}| the number of examples in S of which (xj,yj) is a nearest

neighbor, and n∗
.
= maxj nj . Denote also Hopt the leveraged k- NNk which minimizes

εψ
S
(H); it corresponds to the set of classifiers ĥopt of Appendix A.2 that would minimize (6.2)

over each class. We are now ready to state our main result (remark that εψ
S
(Hopt) ≤ ψ(0)).
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theorem Suppose (WLA) holds and choose as ψ is any ω strongly smooth, strictly convex

loss. Then for any fixed τ ∈ [εψ
S
(Hopt), ψ(0)], UNN has fit a leveraged k- NNk classifier H

satisfying εψ
S
(H) ≤ τ provided the number of boosting iterations T in the inner loop satisfies:

T ≥ (ψ(0)− τ)ωmn∗
2ϑ2̺2

. (6.8)

Theorem proof can be found in Appendix B.

Appendix A.2 has underlined the importance of balanced convex losses in obtaining simple

efficient estimators for conditional class probabilities. Coupled with Theorem 6.1, we now

show that UNN may be a fast approach to obtain such estimators.

corollary Consider any permissible φ that has been scaled without loss of generality so that

φ(1/2) = 1, φ(0) = φ(1) = 0. Then for the corresponding balanced convex loss ψ = ψφ and

under the WLA, picking

T >
mn∗

2ϑ2̺2 minx∈(0,1)

∣
∣
∣
∂2φ
∂x2

∣
∣
∣

(6.9)

in the inner loop of UNN, for each c = 1, 2, ..., C, guarantees to yield an optimal leveraged k-

NNk H, satisfying εψ
S
(H) = εψ

S
(Hopt). This leveraged k- NNk yields efficient estimators for

conditional class probabilities, for each class, by computing:

p̂c(x) = ∇−1
φ
(hc(x)) . (6.10)

(Proof omitted) For the most popular permissible functions (Table 6.1), quantity minx∈(0,1)

∣
∣
∣
∂2φ
∂x2

∣
∣
∣

does not take too small value: its values are respectively 8, 4/ ln 2, 4 for the permissible func-

tions corresponding to the squared loss, logistic loss, Matsushita loss. Hence, in these cases,

the bound for T in (6.9) is not significantly affected by this term.

6.2. Experiments

In this section we present tests performed in order to validate our proposal. We perform three

different kinds of tests. The first one, performed on simulated datasets, aim at evaluating

the goodness-of-fit of the posterior estimator. The second one tests UNN against SVM on

the task of classify challenging SUN computer vision database. The last one, performed on

heterogeneous datasets, evaluates the benefit of using posterior probabilities to set the final

decision.

We have tested three flavors of UNN: with the exponential loss (F in Table 6.1), the logistic

loss (B in Table 6.1) and Matsushita’s loss (D in Table 6.1). All three are respectively referred

to as UNN(exp), UNN(log) and UNN(Mat). It is the first time this last flavor is tested, even from

the classification standpoint. For all these algorithms, we compute the estimation of posteriors

as follows: we use (A.8) for UNN(exp), (6.10) for UNN(log) and UNN(Mat). Leveraging
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δjc, see (6.11) g : wi ← g(wi)
A 2Wjc − 1 wi − 2δjcyicyjc
B ln

Wjc

1−Wjc

wi
wi ln 2+(1−wi ln 2)×exp(δjcyicyjc)

C log2
Wjc

1−Wjc

wi
wi+(1−wi)×2δjcyicyjc

D
2Wjc−1

2
√
Wjc(1−Wjc)

1− 1−wi+
√
wi(2−wi)δjcyicyjc

√

1+δ2jcwi(2−wi)+2(1−wi)
√
wi(2−wi)δjcyicyjc

E N/A N/A

F 1
2
ln

Wjc

1−Wjc
exp(−δjcyicyjc)

G 4
1−α2

(

(Wjc)
2

1−α−(1−Wjc)
2

1−α

(Wjc)
2

1−α+(1−Wjc)
2

1−α

)

4
1−α2 ×

(

1−α2

4
δjcyicyjc +

(
1+α
2
√
wi

)1−α
)− 2

1−α

Table 6.2.: Computation of δjc and the weight update rule of our implementation of UNN, for the strictly

convex losses of Table 6.1. UNN leverages example j for class c, and the weight update is

that of example i (See text for details and notations).
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Figure 6.1.: From left to right: example of simulated dataset with σ = 1.1; the estimated posterior

for class 1 obtained by UNN(exp); the corresponding gridwise KL divergence for class 1;

the estimated posterior for class 1 obtained by UNN(Mat); the corresponding gridwise KL

divergence for class 1 (see (6.13) and text for details).

coefficients estimation and weights update strategies for these three method are reported in

the following paragraph.

Computing leveraging coefficients and weights update Fix for short S
(c)
jb

.
= {i :

j ∼k i∧yic = byjc} for b ∈ {+,−}. (6.3) may be simplified as
∑

i∈S(c)j+
∇ψ

(
δ +∇−1ψ (−wi)

)
=

∑

i∈S(c)j−
∇ψ

(
−δ +∇−1ψ (−wi)

)
. There is no closed form solution to this equation in the general

case. While it can be simply approximated with dichotomic search, it buys significant compu-

tation time, as this approximation has to be performed for each couple (c, t). We tested a much

faster alternative which produces results that are in general experimentally quite competitive,

consisting in solving instead:
∑

i∈S(c)j+
wi∇ψ (δ) =

∑

i∈S(c)j−
wi∇ψ (−δ). We get equivalently

that δ satisfies:

∇ψ(−δ)
∇ψ(δ)

=
Wjc

1−Wjc

, (6.11)
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Figure 6.2.: Average Symmetric KL-divergence (left) and JensenShannon divergence (right) as a func-

tion of σ on simulated datasets, for UNN(exp), UNN(log), UNN(Mat) (left, k = 10) and

SVM .

with Wjc
.
= (
∑

i∈S(c)j+
wi)/(

∑

i∈S(c)j+
wi +

∑

i∈S(c)j−
wi). Remark the similarity with (A.5). Table

6.2 gives the corresponding expressions for δ and the weight updates.

6.2.1. Results on simulated data

In order to evaluate the goodness-of-fit of the proposed posterior probability estimator, we

perform tests using simulated data and adopting specific performances metrics.

Datasets

We crafted a general domain consisting of C = 3 equiprobable classes, each of which follows

a Gaussian distribution N(µ, σI), for σ ∈ [0.1, 1.1] with steps of 0.005, and µ remains the

same. For each value of σ, we compute the average over ten simulations, each of which con-

sists of 1500 training examples and 4500 testing examples. We get overall several thousands

datasets, on which all algorithms are tested.

Classifier

The competitor that we chose to validate UNN posterior estimation performance is the SVM.

On synthetic datasets SVM performs equally using both linear and radial basis function kernel.

Therefore, in the following we indicate simply with SVM the linear Support Vector Machine.

Values of regularization parameter C is selected within [1, 104] and [10−4, 10], adopting a log
scale to sample the two intervals. The value of each parameter is selected according to average

performance estimated by five fold cross-validation on a validation set. For SVM, we use the

method of [107], which, given a SVM output f for class c, forms the posterior:

p̂c(x)
.
=

1

1 + exp(af(x) + b)
, (6.12)
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k UNN(exp) UNN(log) UNN(Mat) SVM

SymmD̂KL

10 0.599 1.029 0.848

3.533
20 0.372 0.760 0.687

30 0.293 0.610 0.646

40 0.254 0.534 0.632

D̂JS

10 0.067 0.113 0.0562

0.256
20 0.045 0.086 0.045

30 0.036 0.072 0.043

40 0.032 0.065 0.043

F-measure

10 90.32 89.59 90.58

91.02
20 90.62 89.53 90.81

30 90.70 89.26 90.84

40 90.72 88.82 90.88

Table 6.3.: Average results over simulated data, for UNN(exp), UNN(log), UNN(Mat) with four different

values of k, and for support vector machines with linear (SVM).

where a and b are estimated by maximizing the log-likelihood of the training sample with a

five-fold cross validation.

Metrics

We use three metrics to evaluate the algorithms. We compute first Kullback-Leibler (KL) diver-

gences between the true and estimated posterior and after their mean obtaining the Symmetric

Kullback-Leibler divergences:

DKL(p̂‖p) .
=
∑

c Pr[c]
∫

Pr[x]p̂c(x) ln
p̂c(x)
pc(x)

dµ , DKL(p‖p̂) .
=
∑

c Pr[c]
∫

Pr[x] pc(x) ln
pc(x)
p̂c(x)

dµ

(6.13)

SymmDKL(p̂||p) .
=

1

2
(DKL(p̂‖p) +DKL(p‖p̂)) (6.14)

and also we compute JensenShannon (JS) divergence:

DJS(p̂||p) .
=

1

2
(DKL(p̂‖q) +DKL(p‖q)) (6.15)

where q is the average of the two distribution. Our estimate, SymmD̂KLDKL(p̂‖p) and

D̂JSDKL(p̂‖p) rely on a simple fine-grained grid approximation of the integral over the subsets

of O of sufficient mass according to µ. We use also the F-measure to evalutate classification

performance.
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Figure 6.3.: Average symmetric KL-divergence (top) and JensenShannon divergence (bottom) as a func-

tion of σ on simulated datasets, for UNN(exp) (left), UNN(log) (center), UNN(Mat) (right),

when the number of boosting iterations T varies in {2m, 5m, 10m}. The color code in

the same on each plot. Notice the differences in the y-scale for UNN(Mat) (see text for

details).

Results

Figure 6.1 presents an example of simulated datasets, along with results obtained by UNN(exp) and

UNN(Mat) from the standpoints of the posterior estimates and KL-divergence on the same

class. The estimators are rather good, with the largest mismatches (KL-divergence) located

near the frontiers of classes. Also, UNN(Mat) tends to outperform UNN(exp).

Figure 6.2 synthesizes the results from the KL and JS divergence standpoints. Two clear

conclusions can be drawn from these results. First, UNN is the clear winner over SVM for the

posteriors estimation task. The results of each flavor of UNN is indeed better than those of

SVM by orders of magnitude. This is all the more important as the kernels we used are the

theoretical kernels of choice given the way we have simulated data. The second conclusion is

that UNN(Mat) is the best of all flavors of UNN, a fact also confirmed by the synthetic results

of Table 6.3. The KL and JS divergences of UNN(Mat) are in general of minute order with

respect to the others. Its behavior (Figure 6.2) is also monotonous: it is predictable that it

increases with the degree of overlap between classes, that is, with σ. From the classification

standpoint, the average F-measure metrics display a very slight advantage to SVM.

The most important conclusion that can be drawn from the simulated data is shown in Figure

6.3: as the number of boosting iterations T increase, UNN does not overfit posteriors in general.

The only hitch — not statistically significant — is the case σ > 0.7 for UNN(Mat), but the

differences are of very small order compared to the standard deviations of the KL-divergence.
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6.2.2. Results on the SUN database domains

We present now results on SUN dataset. We described this dataset in section 3.1. Our interest

in this dataset rely on the fact that SUN is one of the most challenging dataset in the field of

large scale image classification task.

UNN(exp) UNN(log) UNN(Mat) SVMl

F R F R F R F R

SUN10 89.91 21.35 84.46 5.18 72.47 3.39 87.99 22.32

SUN20 82.82 36.64 72.34 8.51 55.46 2.51 74.60 33.25

SUN30 73.39 49.92 61.02 14.99 40.83 5.99 62.81 39.95

Table 6.4.: Area under the F measure (in percentage) and (R)ejection rate on the SUN databases. For

each database, the best F and R are written in bold faces.

Datasets

We have crafted, out of SUN computer vision database [149], three datasets, consisting in

taking all pictures from the first ten (SUN10), twenty (SUN20) or thirty (SUN30) classes.

Classifier

For experiments on SUN dataset we use the same classifiers configuration that we used on

simulated data described above.

Metrics

On these data, we compute a couple of metrics. First, we compute the F-measure of the clas-

sifiers (the harmonic average of precision and recall), based on thresholding the probabilistic

output and deciding that x belong to class c iff p̂c(x) ≥ κ, for varying κ ∈ (1/2, 1). Second,

we compute the rejection rate, that is, the proportion of observations for which p̂c(x) < κ.

Either we plot couples of curves for the F-measure and rejection rates, or we summarize both

metrics by their average values as κ ranges through (1/2, 1), which amounts to compute the

area under the corresponding curves.

Results

Table 6.4 summarizes the results obtained. This table somehow confirms that classifica-

tion and posterior estimation may be conflicting goals when it comes to boosting [54, 19],

as UNN(Mat) achieves very poor results compared to the other algorithms. Furthermore,

UNN(exp) appears to the clear winner over all algorithms for this classification task. These

results have to be appreciated in the light of the rejection rates: in comparison with the other

algorithms, UNN(Mat) rejects a very small proportion of the examples, this indicating a high

recall for the algorithm. Figure 6.4 completes the picture by detailing F-measure and rejection
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Figure 6.4.: F measure (top row) and rejection rates (bottom row) on the SUN domains, with C = 10
(left), C = 20 (center) and C = 30 (right, see Table 6.3 for notations).

rates plots. The F-measure plots clearly display the better performances of UNN(exp) com-

pared to the other algorithms, and the fact that UNN(Mat) displays very stable performances.

The rejection rates plots show that UNN(Mat) indeed rejects a very small proportion of exam-

ples, even for large values of κ.

6.2.3. Results on heterogeneous domains

We present here results achieved using several heterogeneous datasets belonging to real world

domains. In these experiments we verify the ability of the estimated posterior probability to

improved classification performances when it is used to set final label. In order to reach this

goal we use two different reconstruction rules. The first one estimates the final label according

to the Hamming decoding (HMD), whereas the second one sets the final label according to the

largest probability arg{maxc(p̂c(x))} among those computed by dichotomizers that output

a crisp label ŷc = 1. When there are no dichotomizers that output a crisp label ŷc = 1, we

consider the class associated to arg{minc(1− p̂c(x))}, i.e. the class associated with the lowest

probability to predict a ŷc = 0. In the following, this rule is referred to as MDS.

Experiments are performed using a 10-fold cross validation scheme. Each fold is randomly

generated maintaining the a-priori distribution of the original dataset. Reported results are

computed averaging out the results obtained for each fold.

Datasets

We used one private and five public datasets, belonging to images classification problems of

different biomedical domains (BIOCELLS, DERM, IIFI,YEAST, ICPRBOF , ICPRBIF ). They

are characterized by a large variability with respect to the number and type of features, classes
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and samples, allowing the assessment of classifiers’ performances in different conditions. Syn-

thetic data about the used datasets are reported in Table 3.1.

Classifier

Competitor chosen to asses the proposed approach are the SVM and the kNN. We tested both

the SVM with a linear kernel (SVMl) and the SVM with Gaussian kernel (SVMr). For SVMl val-

ues of regularization parameterC is selected within [1, 104] and [10−4, 10], adopting a log scale

to sample the two intervals. SVMr’s values of regularization parameter C and scaling factor

σ are selected within [1, 104] and [10−4, 10], adopting a log scale to sample the two intervals.

The value of each parameter is tuned using a five fold cross-validation on a validation set. The

reliability of a SVM (both linear and Gaussian) classification is estimated as proposed in [107],

where the decision value of the classifier is transformed in a posterior probability.

The kNN require no specific set-up. We test values of k equal to {1, 3, 5, 7} and choose

the value providing the best performances on a validation set according to a five-fold cross

validation. We estimate the reliability of each classification act following the method presented

in Section 2.4.

Metrics

As measure of classifier performance, we compute the accuracy and the F-measure described

in Section 3.3.

Results

We report in Table 6.5 the classification performance provided by UNN, SVM (with linear

and Gaussian kernel) and kNN classifiers on the six datasets. For each classification task, we

report the results obtained using both MDS and HMD reconstruction rules. In order to pro-

vide a global comparison among the results, we calculate the relative performance of each

experimental configurations with respect to the others (Figure 6.5). We record the number of

times each ranked first, second, third and so on, on the 6 domains. To bring statistical val-

idation to these ranking, we performed Student paired t-test comparison for each algorithm

against all others (12x12 = 144 comparisons), recording those for which we can reject the

null hypothesis (that the per-domain difference has zero expectation) for level p = 0.1, and

then clustering the significant differences as to whether they are in favor, or not, of the al-

gorithm at hand. The six ranks for each classification method are then summed up to give a

measure of the overall dominance among the methods in terms of accuracy. An analogous

procedure has been carried out in case of F-measure. The analysis of data reported both in

Table 6.5 and Figure 6.5 permits us to derive the following three considerations. The first one

concerns the comparison between MDS and HMD reconstruction rules. Independently of the

classifier and of performance metric considered, the former improves classification results in

comparison with the latter over 90%. We deem that such performance improvement is mainly

due to the fact that MDS rule uses not only predicted crisps labels, as HMD does, but also the

corresponding classification reliability. The second consideration focuses on UNN, observing
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Classifiers

Datasets Metrics (%)
UNN(exp) UNN(log) UNN(Mat) SVMl SVMr kNN

MDS HMD MDS HMD MDS HMD MDS HMD MDS HMD MDS HMD

BIOCELLS

ACC 87.1 87.1 86.5 86.5 87.3 87.3 74.3 74.3 87.7 87.7 85.2 85.2

F measure 77.7 77.7 76.9 76.9 78.2 78.9 66.9 66.9 76.9 76.9 75.2 75.2

DERM

ACC 97.5 97.6 96.5 96.4 97.7 97.1 97.1 87.7 96.9 95.5 95.9 95.5

F measure 97.3 97.3 96.1 95.7 97.3 96.6 96.5 81.2 96.6 95.1 95.4 95.2

IIFI

ACC 69.5 69.3 68.8 69.1 70.8 68.8 67.2 66.7 71.5 67.4 70.3 68.7

F measure 69.0 68.5 68.4 68.4 70.3 68.0 66.8 64.8 70.3 65.5 69.6 67.7

YEAST

ACC 59.1 58.0 57.1 55.5 53.9 53.5 52.8 48.3 58.4 54.5 54.1 54.3

F measure 50.7 46.3 47.5 45.4 41.5 40.9 41.2 24.2 47.8 41.7 46.1 44.5

ICPRBOF

ACC 88.1 85.3 87.1 84.6 85.9 80.5 65.4 66.0 86.3 81.6 25.1 26.6

F measure 87.4 84.9 86.2 83.3 85.8 81.1 72.3 55.1 85.2 79.8 21.5 21.2

ICPRBIF

ACC 95.7 95.6 94.9 95.5 95.4 94.9 91.8 89.8 95.3 94.4 95.1 93.91

F measure 95.6 95.4 94.4 95.4 95.6 95.1 90.7 85.5 95.2 94.0 94.8 93.7

Table 6.5.: Average values (%) of accuracy and F-measure of the different classifiers. We mark highest

value (blue) and the second one (green) in each row.

that its performance improve using posterior based reconstruction rule. Indeed, MDS scheme

equals or improves UNN performance with HMD scheme in 85% of the cases, at least. For

instance, focusing on ICPRBOF dataset, MDS improves UNN performance for all the three

configurations of 2%, at least, in terms of both accuracy and F-measure. The third observa-

tion concerns how UNN performance compares with those provided by other classifiers. From

a general point of view, turn our attention to Figure 6.5 where we notice that the value of

UNN(exp) rank is larger than the ones of other classifiers. Focusing now on recognition per-

formance we note that UNN classifiers with MDS scheme always overcome performance of

SVMl. UNN also overcome kNN results with at least one configuration among the three tested.

Comparing performance of UNN with those of SVMr we note that results are quite similar.

Figure 6.5.: Ranking results: number of times each algorithm performed significantly better than the

others (blue) or worse (red) according to a Student paired t-test (p = 0.1), for the accuracy

(left), Fmeasure (right) over the 6 domains for all the classification schemes. In each plot,

algorithms are ordered from left to right in decreasing average of the metric at hand.
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6.3. Discussions

Boosting algorithms are remarkably simple and efficient from the classification standpoint,

and are being used in a rapidly increasing number of domains and problems [18]. In some

sense, it would be too bad that such successes be impeded when it comes to posterior esti-

mation [19]. Experimental results display that this estimation is possible, but it necessitates a

very fine tuning of the algorithms [18].

The point of our work is that estimating class conditional probabilities may be possible, with-

out such tedious tunings, and sometimes even without overfitting, if we boost topological

approaches to learning like nearest neighbors. There is a simple explanation to this fact. For

any classifier, the conditional class probability estimation for some x in (A.4) is be the same

as for any other observation in the vicinity of x, where the “vicinity” is to be understood

from the classifier standpoint. When boosting decision trees, the vicinity of x corresponds to

observations classified by the same leaf as x. As the number of leaves of the tree increases,

the vicinity gets narrowed, which weakens the estimation in (A.4) and thus overfits the cor-

responding estimated density. Ultimately, linear combinations of such trees, such as those

performed in AdaBoost, make such a fine-grained approximation of the local topology of data

that the estimators get irreparably confined to the borders of the interval [0, 1] [19]. Nearest

neighbors do not have such a drawback, as the set of k-nearest neighbors in S of some observa-

tion x spans a region of O which does not change throughout the iterations. Nearest neighbor

rules exploit a topology of data which, under regularity conditions about the true posteriors,

also carries out information about these posteriors. For these reasons, nearest neighbors might

be a key entry for a reliable estimation of posteriors with boosting. Because of the wealth

of ”good” surrogates, this opens avenues of research to learn the most accurate surrogate

on a data-dependent way, such as when it is parameterized (Amari’s α-loss, see Table 6.1 ).

Furthermore with this contribution we have shown that using posteriors to set the final la-

bel improves UNN performances. Indeed on heterogeneous datasets it achieves larger results

when using a reconstruction rule based on classifiers’ reliability rather than a reconstruction

rule based on classifiers’ row outputs. In this section we have shown also that thanks to this

efficient posterior estimation UNN can compete with SVM, one of the most powerful classifier

especially on dataset such as SUN.

We finally want notice that there is, an analytical and computational bottleneck in UNN, as

the leveraging coefficients are solutions to non-linear equations with no closed form expres-

sion in the general case. Boosting compliant approximations are possible, but in the context

of NN rules, they are computationally far too expensive to be performed at each boosting iter-

ation on large datasets. Hence, in appendix C we present ”Gentle Nearest Neighbors Boosting

that performs adaptive Newton-Raphson steps to minimize any balanced convex surrogate

with guaranteed convergence rates avoiding this drawback.
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In this thesis we focused on the issues related to the classification of samples belonging to

multiclass imbalanced datasets. To the best of our knowledge, existing works in this field can

be divided in two groups. In the first one there are methods tackling directly the polychotomy.

In the other one there are approaches that decompose the problem in binary tasks. In the latter

case, existing solutions are proposed only at level of the single dichotomies. furthermore, the

analysis of the literature show that no attempts exist to solve this problem using reconstruction

rules specifically tailored to skewed data.

We therefore aim at designing a reconstruction rule addressing this open issue. We also

decided to use the classification reliability into the decision stage. This measure indicates

the classifier “confidence” towards its prediction taking into account elements such as dataset

noise, borderline samples, outliers, etc. Hence, it owns useful information related to the learn-

ers predictions.

Considering the characteristics of the reliability, we designed a novel heuristic reconstruc-

tion rule. This rule copes with multiclass imbalance problems using classifiers’ reliability in

the One-per-Class reconstruction rule. The proposed rule has been compared also with other

two well-established reconstruction criteria on a set of benchmark real and artificial datasets,

testing four classification architectures. Our results showed that the proposed reconstruction

rule provides larger performances than those provided by other criteria. In particular, in sev-

eral cases it attained values of accuracy, geometric mean of accuracies and F measure that

were, together, larger than those attained by other rules. Hence, our proposals improved the

recognition ability on the minority classes affecting the recognition accuracies on majority

classes to a lesser extent than the others. Furthermore, the large number of experiments we

carried out showed and that employing reliability in the reconstruction rule permits to achieve

larger values of accuracy, geometric mean of accuracies and F measure than using only the

crisp labels.

Aiming at further exploring the use of reconstruction rules to handle imbalanced datasets,

we presented a reconstruction rule in the ECOC decomposition scheme. We considered the

outputs of binary classifiers as a new feature vector. Indeed, each dichotomizer output can be

transformed in a reliability value and the collection of these values maps the input sample in a

new feature space. From this point of view the reconstruction stage is similar to a classification

task. Hence, we have proposed an extension of a statistical rule suited for the OpC and PC

decomposition scheme in the ECOC case. According to this rule the final label is set choosing

the class with the highest posterior probability estimated by the softmax regression. Beside

to the extension to a new decomposition scheme, we modified also the rule in order to use

classifiers’ reliability. Indeed, the original approach uses directly the dichotomizers’ soft label

without using the reliability. Given eight heterogeneous datasets, our proposal was satisfactory

compared with two popular reconstruction rules using three different classification algorithms.
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We also provided comparison with the original method [122] extended to the ECOC case. This

comparison, together with results obtained against other rules, shows that the use of reliability

at the reconstruction stage improves system performance in term of accuracy, geometric mean

of accuracy, as well as F measure. Hence, we can conclude that the rule shows satisfactory

performances when it deals with imbalanced domains.

Exploring the issue of reliability and posterior estimation, we noticed that, several methods

exist to derive this quantity from classifier soft outputs. In some cases, when the classification

function satisfied the requirements of sufficient regularity, the reliability can be estimated in

terms of posterior probability. Nevertheless, we noticed also that, up to now, efficient estima-

tors for posterior probability for boosting algorithms have not met enough attention. Indeed,

even if boosting algorithms are efficient for classification and are being used in a rapidly

increasing number of domains, it is widely believed that boosting and conditional class prob-

ability estimation are in conflict with each other. Existing experimental results on this subject

show that this estimation is possible, but it necessitates a very fine tuning of the algorithms.

On these reasons, we developed an efficient method that permits to estimate class conditional

probabilities without such tuning. That is possible boosting topological approaches to learning

like nearest neighbors. As shown in Chapter 6 we achieved this result using UNN, which lever-

ages nearest neighbors while minimizing a convex loss. Our contribution is threefold. First,

we showed that there exists a subclass of surrogate losses whose minimization brings simple

and statistically efficient estimators for Bayes posteriors. Second, we showed explicit con-

vergence rates towards these estimators for UNN, for any such surrogate losses, under a Weak

Learning Assumption which parallels that of classical boosting results. Third and last, we pro-

vided experiments and comparisons on synthetic and real datasets, including the challenging

SUN computer vision database. Results clearly display that boosting nearest neighbors may

provide highly accurate estimators, sometimes more than a hundred times more accurate than

those of other contenders like support vector machines. It is worth noting that UNN does not

over-fit posteriors increasing the number of boosting iteration. This is an interesting results

since it is widely believed that boosting and posterior estimation are in conflict with each other,

as boosting iteratively improves classification at the price of progressively overfitting poste-

riors [19, 54]. Furthermore, we observed that using the estimated posterior in the decision

making process we improved UNN classification performances.

Summarizing, in this thesis we presented two reconstruction rules based on the classification

reliability and an efficient posterior estimator for boosting algorithm by Nearest Neighbors.

Results achieved on the proposed reconstruction rules show two main results. The first one is

that overall performances of the tested systems improve when reliability-based reconstruction

rules are used. The second one is that the proposed rules improve the performance with respect

of both the geometric mean of accuracies and F measure proving that the rules are suited for

skewed domains. Furthermore, in this thesis we showed that the use of classifiers’ reliability

in reconstruction rule is an useful instrument to improve performance with respect to minority

classes.

Future works are directed towards a further exploration of the role of classification reliabil-

ity in the reconstruction rule. In this work, we extend the [122] in the ECOC scheme proving

that the use of reliability improves the performance with respect of the original method. For

this reason a future contribution will be to verify if the use of this quantity can improve also
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the performance of the softmax reconstruction in the original One-per-Class and Pair Wise

Coupling schemes. Finally, another future work is provide a full comparisons between all the

reconstruction rules suited for skewed data across the decomposition schemes. This future

work could show the existence of a rule suited for imbalanced domains independently of the

datasets, of the learners, and of the decomposition schemes.
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[1] R. Alejo, J. Sotoca, and G. Casañ. An empirical study for the multi-class imbalance problem

with neural networks. Progress in Pattern Recognition, Image Analysis and Applications, pages

479–486, 2008.

[2] H. Alhammady and K. Ramamohanarao. The application of emerging patterns for improving

the quality of rare-class classification. In Advances in Knowledge Discovery and Data Mining,

pages 207–211. Springer, 2004.

[3] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach

for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2001.

[4] S.-I. Amari and H. Nagaoka. Methods of Information Geometry. Oxford University Press, 2000.

[5] F. Angiulli. Fast condensed nearest neighbor rule. In Proceedings of the 22nd international

conference on Machine learning, pages 25–32. ACM, 2005.

[6] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[7] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[8] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. J. of

Mach. Learn. Res., 6:1705–1749, 2005.

[9] R. Barandela, J. S. Sanchez, V. Garca, and E. Rangel. Strategies for learning in class imbalance

problems. Pattern Recognition, 36(3):849–851, 2003.

[10] H. B. Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[11] A.-R. Barron, A. Cohen, W. Dahmen, and R.-A. DeVore. Approximation and learning by greedy

algorithms. Annals of Statistics, 26:64–94, 2008.

[12] P. Bartlett, M. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal

of the Am. Stat. Assoc., 101:138–156, 2006.

[13] G. E. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for

balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1):20–29,

2004.

[14] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 1.

springer New York, 2006.

[15] A. Blum. Random projection, margins, kernels, and feature-selection. In Subspace, Latent

Structure and Feature Selection, volume 3940 of LNCS, pages 52–68. Springer Verlag, 2006.

76



Bibliography

[16] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proc. of COMP-

STAT, pages 177–186. Springer, 2010.

[17] J. Brank, M. Grobelnik, N. Milic-Frayling, and D. Mladenic. Training text classifiers with svm

on very few positive examples. Microsoft Research, 2003.
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A. Surrogates Losses

In this Appendix we provide the demonstration that exist a subclass of surrogate losses, whose

minimization brings simple and efficient estimators for Bayes (true) posteriors. These demon-

strations have been provided together with Richard Nock, Wafa Bel Haj Ali, Frank Nielsen,

Michel Barlaud. [33].

A.1. Surrugate Losses

The surrogate risk is an estimator of the true surrogate risk computed over D:

εψ
D
(h, c)

.
= ED[ψ(yich(x))] . (A.1)

Any surrogate loss relevant to classification [12] has to meet sign(hopt(x
∗)) = sign(2PrD[yc =

1|x = x∗]− 1), where hopt minimizes ED[ψ(ych(x))|x = x⋆]. Hence, the sign of the optimal

classifier hopt is as accurate to predict class membership as Bayes decision rule. This Fisher

consistency requirement for ψ is called classification calibration [12]. We focus in this work

on the subclass of classification calibrated surrogates that are strictly convex and differentiable.

definition [98] A strictly convex loss is a strictly convex function ψ differentiable on

int(dom(ψ)) satisfying (i) im(ψ) ⊆ R
+, (ii) dom(ψ) symmetric around 0, (iii) ∇ψ(0) < 0.

Definition A.1 is extremely general: should we have removed conditions (i) and (ii), The-

orem 6 in [12] brings that it would have encompassed the intersection between strictly con-

vex differentiable functions and classification calibrated functions. Conditions (i) and (ii) are

mainly conveniences for classification: in particular, it is not hard to see that modulo scaling

by a positive constant, the surrogate risk (C.2) is an upperbound of the empirical risk for any

strictly convex loss. Minimizing the surrogate risk amounts thus to minimize the empirical

risk up to some extent. We define the Legendre conjugate of any strictly convex loss ψ as

ψ⋆(x)
.
= x∇−1ψ (x) − ψ(∇−1ψ (x)). There exists a particular subset of strictly convex losses

of independent interest [98]. A function φ : [0, 1] → R
+ is called permissible iff it is dif-

ferentiable on (0, 1), strictly concave and symmetric around x = 1/2 [80, 98]. We adopt the

notation φ = −φ [98].

definition [98] Given some permissible φ, we let ψφ denote the balanced convex loss with

signature φ as:

ψφ(x)
.
=

φ
⋆
(−x)− φ(0)

φ (1/2)− φ(0) . (A.2)
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A. Surrogates Losses

Balanced convex losses have an important rationale: up to differentiability constraints, they

match the set of symmetric lower-bounded losses defining proper scoring rules [98], that is,

basically, the set of losses that fit to classification problems without class-dependent misclas-

sification costs. Table 6.1 provides examples of surrogate losses, most of which are strictly

convex surrogates, some of which are balanced convex surrogates. We have derived Amari’s

α-loss from Amari’s famed α divergences [4] (proof omitted). The linear Hinge loss is not

a balanced convex loss, yet it figures the limit behavior of balanced convex losses [98]. Re-

mark that all signatures φ are well-known in the domain of decision-tree induction : from the

top-most to the bottom-most, one may recognize Gini criterion, the entropy (two expressions),

Matsushita’s criterion and the empirical risk [80, 99].

A (regular) one dimensional exponential family [4] is a set of probability density functions

whose elements admit the following canonical form:

p[x|θ] .
= exp (xθ − ψ(θ)) p0(x) , (A.3)

where p0(x) normalizes the density, ψ is a strictly convex differentiable function that we call

the signature of the family, and θ is the density’s natural parameter. It was shown in [98]

that the efficient minimization of any balanced convex surrogate risk — i.e. a surrogate risk

with a balanced convex loss — amounts to a maximum likelihood estimation θ̂ = H(x) at

some x for an exponential family whose signature depends solely on the permissible function

φ. [98] suggest to use the corresponding expected parameter of the exponential family as the

posterior:

P̂r[y = 1|x] = P̂rφ[y = 1|x;H]
.
= ∇−1

φ
(H(x)) ∈ [0, 1] . (A.4)

∇−1
φ

plays the role of the link function (6.1). The quality of such an estimator shall be ad-

dressed in the following Section.

A.2. Strictly convex losses and the efficient estimation

of posteriors

There is a rationale to use (A.4) as the posterior: the duality between natural and expectation

parameters of exponential families, via Legendre duality [12, 98], and the fact that the domain

of the expectation parameter of one dimensional exponential families whose signature is (mi-

nus) a permissible function is the interval [0, 1] [98]. We improve below this rationale, with the

proof that Bayes posteriors satisfy (A.4) for the classifier which is the population minimizer

of (A.4).

theorem Suppose ψ strictly convex differentiable. The true surrogate risk ED[ψ(yich(x))]
is minimized at the unique hopt(x) satisfying:

∇ψ(−hopt(x))
∇ψ(hopt(x))

=
pc(x)

1− pc(x)
. (A.5)
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Furthermore, isψ is a balanced convex loss, then the population minimizer hopt of ED[ψφ(yich(x))]
satisfies:

pc(x) = ∇−1
φ
(hopt(x)) , (A.6)

for which

ED[ψφ(yichopt(x))] =
φ(pc(x))− φ(0)
φ(1/2)− φ(0) . (A.7)

(Proof omitted) Table 6.1 provides examples of expressions for pc(x) as in (A.6). Eq. (A.5)

in Theorem (A.2) brings that we may compute an estimator p̂c(x) as:

p̂c(x) =
∇ψ(−h(x))

∇ψ(h(x)) +∇ψ(−h(x))
. (A.8)

This simple expression is folklore, at least for the logistic and exponential losses [18, 54]. The

essential contribution of Theorem A.2 relies on bringing a strong rationale to the use of (A.4),

as the estimators converge to Bayes posteriors in the infinite sample case. Let us give some

finite sample properties for the estimation (A.4). We show that the sample-wise estimators

of (A.6) are efficient estimators of (A.6); this is not a surprise, but comes from properties of

exponential families [97]. What is perhaps more surprising is that the corresponding aggre-

gation of classifiers is not a linear combination of all estimating classifiers, but a generalized

∇−1
φ

-mean.

theorem Suppose we sample n datasets S
(c)
j , j = 1, 2, ..., n. Denote ĥopt,j the popu-

lation minimizer for E
S
(c)
j
[ψφ(yich(x))]. Then each p̂c,j(x)

.
= ∇−1

φ
(ĥopt,j(x)) is the only

efficient estimator for pc(x). The corresponding classifier ĥopt aggregating all ĥopt,j , is:

ĥopt(x)
.
= ∇φ

(
1
nx

∑

j:(x,.)∈S(c)j
∇−1
φ
(ĥopt,j(x))

)

, ∀x ∈ ∪jSj , where 1 ≤ nx ≤ n is the

number of subsets containing x.

proof Let us pick ψ = φ
⋆

in (A.3) and condition p[x|θ] .
= p[x|θ;x∗] for each x∗ ∈ O. We

let µ
.
= pc(x

∗) (remark that µ ∈ dom(φ) = [0, 1] because φ is permissible) the expectation

parameter of the exponential family, and thus θ = ∇φ(µ). Using the fact that∇φ
⋆ = ∇−1

φ
, we

get the score:

s(x|θ) .
=

∂ ln p[x|θ]
∂θ

= x−∇φ
⋆(θ) ,

and so x is an efficient estimator for∇φ
⋆(θ) = µ; in fact, it is the only efficient estimator [97].

Thus, p̂c(x
∗) is an efficient estimator for pc(x

∗). There remains to use (A.6) to complete the

proof of Theorem A.2.
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B. Universal Nearest Neigbours

convergence

In this Appendix we provide the proof o the UNN convergence given any ω strongly smooth,

strictly convex loss under the Weak Learning Assumption. This proof has been developed

together with Richard Nock, Wafa Bel Haj Ali, Frank Nielsen, Michel Barlaud. [33].

theorem Suppose (WLA) holds and choose as ψ is any ω strongly smooth, strictly convex

loss. Then for any fixed τ ∈ [εψ
S
(Hopt), ψ(0)], UNN has fit a leveraged k- NNk classifier H

satisfying εψ
S
(H) ≤ τ provided the number of boosting iterations T in the inner loop satisfies:

T ≥ (ψ(0)− τ)ωmn∗
2ϑ2̺2

. (B.1)

Proof sketch: To fit UNN to the notations of (C.1), we let hc represent the leveraged k-

NNk in which each αj is restricted to αjc. We first analyze εψ
S
(hc, c) for some fixed c in the

outer loop of Algorithm 2, after all αjc have been computed in the inner loop. We adopt the

following notations in this proof: we plug in the weight notation the iteration t and class c, so

that w
(c)
ti denotes the weight of example xi at the beginning of the “for c” loop of Algorithm

2.

ψ is ω strongly smooth is equivalent to ψ̃ being strongly convex with parameter ω−1 [78],

that is,

ψ̃(w)− 1

2ω
w2 is convex, (B.2)

where we use notation ψ̃(x)
.
= ψ⋆(−x). Any convex function h satisfies h(w′) ≥ h(w) +

∇h(w)(w
′ − w). We apply this inequality taking as h the function in (C.28). We obtain,

∀t = 1, 2, ..., T, ∀i = 1, 2, ...,m, ∀c = 1, 2, ..., C:

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥ 1

2ω

(

w
(c)
(t+1)i − w

(c)
ti

)2

. (B.3)

On the other hand, Cauchy-Schwartz inequality and (C.10) yield:

∀j ∈ S,
∑

i:j∼ki

(

r
(c)
ij

)2 ∑

i:j∼ki
(w

(c)
(t+1)i − w

(c)
ti )

2 ≥
(
∑

i:j∼ki
r
(c)
ij w

(c)
ti

)2

. (B.4)
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B. Universal Nearest Neigbours convergence

lemma Under the WLA, index j returned by WIC at iteration t satisfies

∣
∣
∣
∑

i:j∼kiw
(c)
ti r

(c)
ij

∣
∣
∣ ≥

2ϑ̺.

(proof omitted) Letting e(t) ∈ {1, 2, ...,m} denote the index of the example returned at

iteration t by WIC in Algorithm 2, we obtain:

1

m

m∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥ 1

2ωm

∑

i:e(t)∼ki

(

w
(c)
(t+1)i − w

(c)
ti

)2

(B.5)

≥ 1

2ωm

(
∑

i:e(t)∼ki r
(c)
ie(t)w

(c)
ti

)2

∑

i:e(t)∼ki

(

r
(c)
ie(t)

)2 (B.6)

≥ 2ϑ2̺2

ωm
× 1
∑

i:e(t)∼ki

(

r
(c)
ie(t)

)2 (B.7)

=
2ϑ2̺2

ωmne(t)
≥ 2ϑ2̺2

ωmn∗
. (B.8)

Here, (B.5) follows from (C.29), (B.6) follows from (B.4), (B.7) follows from Lemma B, and

(B.8) follows from the fact that r
(c)
ie(t) = ±1 when e(t) ∼k i. Summing these inequalities for

t = 1, 2, ..., T yields:

T∑

t=1

1

m

m∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≥ 2Tϑ2̺2

ωmn∗
. (B.9)

Now, UNN meets the following property ([105], A.2):

εψ
S
(h(t+1)c, c)− εψS (htc, c) = − 1

m

m∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

, (B.10)

where h(t+1)c denotes hc after the tth iteration in the inner loop of Algorithm 2. We unravel

(B.10), using the fact that all α are initialized to the null vector, and obtain that at the end of

the inner loop, hc satisfies:

εψ
S
(hc, c) = ψ(0)−

T∑

t=1

1

m

m∑

i=1

Dψ̃

(

w
(c)
(t+1)i||w

(c)
ti

)

≤ ψ(0)− 2Tϑ2̺2

ωmn∗
, (B.11)

from (B.9). There remains to compute the minimal value of T for which the right hand side

of (B.11) becomes no greater than some user-fixed τ ∈ [0, 1] to obtain that εψ
S
(hc, c) ≤ τ .

The aggregation of the bounds for each c = 1, 2, ..., C in εψ
S
(H) is immediate as it is an aver-

age of εψ
S
(hc, c) over all classes. Hence, this minimal value of T , used for each c = 1, 2, ..., C,

also yields εψ
S
(H) ≤ τ . This ends the proof of Theorem 6.1.
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C. Gentle Nearest Neighbors

Boosting over Proper Scoring

Rules

This work has been developed in collaboration with Richard Nock1, Wafa Bel Haj Ali2, Frank

Nielsen3, Michel Barlaud4. Note that the work has been submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI).

C.1. Introduction

Iterative approaches to learn classifiers have been playing a major role in machine learning

and statistical learning for many decades. The most common high-level scheme consists in

gradually combining from scratch classifiers obtained at each iteration, with the objective to

minimize throughout iterations a convex differentiable risk called a surrogate risk, sometimes

amended with a structural part based on data [11]. Unlike so-called greedy algorithms, that

repeatedly perform fine-grained optimization steps [11], boosting algorithms rely on weak

optimization stages much less demanding from the statistical and computational standpoints

[54, 29, 102, 115]. In fact, the boosting theory involves at each iteration weak classifiers

slightly different from pure random, but requires that the final combination be probably as

close as required from optimum, in polynomial time.

Nearest neighbors ( NNk) rules are a non-trivial field of choice for boosting algorithms

[29, 102], as examples ideally play weak classifiers. In this case, we treat the boosting problem

in its simplest form: the accurate leveraging of examples that vote among nearest neighbors.

In particular, we compute nearest neighbors in the ambient space of data, i.e. as described

over their initial features. There have been other approaches to boost nearest neighbors by

learning features with (Ada)boosting algorithms, prior to computing nearest neighbor rules on

these new sets of features [58] (and references therein). No boosting results are known for

these algorithms, and it is in fact not known whether they achieve convergence to the opti-

mum of Adaboost’s exponential risk. A previous approach in our line of works is algorithm

UNN (for “Universal Nearest Neighbors”), which brings boosting guarantees for merely all

1Université Antilles-Guyane, CEREGMIA-UFR DSE, Campus de Schoelcher, B.P. 7209, Schoelcher 97275,

France
2CNRS - U. Nice, France.
3Sony Computer Science Laboratories, Inc., Tokyo, Japan
4Institut Universitaire de France and CNRS - U. Nice, France.
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ψφ φ π∗ δj(1/2) weight update, f : wi ← f(wi)

A (1− x)2 −x(1− x) 1
16

η(c,j)
2nj

wi − 2δjcyicyjc

B log2(1 + exp(−x)) x ln x

ln 2
8

4 ln(2)η(c,j)
nj

wi
wi ln 2+(1−wi ln 2)×exp(δjcyicyjc)+(1− x) ln(1− x)

C log2(1 + 2−x)
x log2 x 4η(c,j)

ln(2)nj

wi
wi+(1−wi)×2δjcyicyjc+(1− x) log2(1− x)

D −x+
√
1 + x2 −

√

x(1− x) 1
8

η(c,j)
nj

1− 1−wi+
√
wi(2−wi)δjcyicyjc

√

1+δ2jcwi(2−wi)+2(1−wi)
√
wi(2−wi)δjcyicyjc

E 1
2
x(sign(x)− 1) −min{x, 1− x} N/A

Table C.1.: From left to right: examples of balanced convex losses ψφ (A, B, C, D; we let ln denote

the base-e logarithm, and logz(x)
.
= ln(x)/ ln(z)); permissible functions φ; value of π∗ as

defined in (C.41); expression of update δj in (C.10) for ε = 1/2; expression of the weight

update in (C.11) (See text for details).

strictly convex differentiable surrogates relevant to classification [12, 102]. For a wide subset

of surrogates, it yields simple and efficient estimators of posteriors [33].

There is, however, an analytical and computational bottleneck in UNN, as the leveraging

coefficients are solutions to non-linear equations with no closed form expression in the general

case. Boosting compliant approximations are possible, but in the context of NNk rules, they

are computationally far too expensive to be performed at each boosting iteration on large

datasets. Computationally affordable coarse-grained approximations are also possible, that

yield compelling experimental results, but it is not known if they always lie within the boosting

regime [102].

In this work, we propose a simple boosting compliant solution to this computational bot-

tleneck. Our algorithm, GNNB for “Gentle Nearest Neighbors Boosting”, performs adaptive

Newton-Raphson steps to minimize any balanced convex surrogate [99] with guaranteed con-

vergence rates. This class, which comprises the popular logistic and squared surrogates [54],

match the set of even, twice differentiable proper scoring rules [59]. This is a proof of gener-

ality of our approach as being “proper” is the bare minimum one can request from a score — it

roughly states that forecasting the right output yields the optimal score. Our main theoretical

result establishes, for any of these surrogates, convergence rates towards global optimum that

surprisingly compete with those known for UNN [102] — thus proving that a complex, time

consuming leveraging procedure is not necessary for fast convergence towards the optimum.

To the best of our knowledge, these are the first convergence rates under the boosting frame-

work for Newton-Raphson approaches to general surrogate risk minimization, a set whose

most prominent member is Gentle Adaboost [54]. The link with balanced convex surrogates

optimization allows to show that GNNB equivalently fits class posteriors in a way that com-

plies with weak universal consistency requirements. Experiments are provided on a dozen

domains, including small domains from the UCI repository of machine learning database [7]

and large computer vision domains: the Caltech [61] and SUN domains [149]. They display

that GNNB outperforms UNN, both in terms of convergence rate and quality of the solutions

obtained. They also display that, on large domains for which complex learning approaches

like non-linear support vector machines or boosting with deep trees are ruled out for com-
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putational considerations, GNNB offers a simple, lightweight and competing alternative to

heuristic methods like stochastic gradient descent. Our experiments come with an improve-

ment of GNNB aimed at reducing the weak point represented by the curse of dimensionality

for nearest neighbor algorithms on large domains. We provide a low-cost divide-and-conquer

scheme which makes a partition of the description variables before running GNNB, and ex-

ploits links with density estimation in proper scoring rules to craft, out of all predictions, an

aggregated score which is shown experimentally to outperform very significantly the vanilla

approach without splitting.

The remaining of the work is organized as follows: Section 2 provides definitions. Sec-

tion 3 presents GNNB. Section 4 and Section 5 respectively state and discuss its theoretical

properties. Section 6 presents experiments, and Section 7 concludes the work.

C.2. Definitions

C.2.1. General setting

Our setting is multiclass, multilabel classification [115]. We have access to an input set of

m examples (or prototypes), S
.
= {(xi,yi), i = 1, 2, ...,m}. Vector yi ∈ {−1, 1}C encodes

class memberships, assuming yic = 1 means that observation xi belongs to class c. We let

H : O → R
C denote a classifier, O being the observations domain to which all xi belong.

The cth coordinate of the output of H, hc
.
= Hc, is a classifier which segregates observations

according to their membership to class c. We learn H by the minimization of a total surrogate

risk:

εψ
S
(H)

.
=

1

C

C∑

c=1

εψ
S
(hc, c) , (C.1)

where

εψ
S
(hc, c)

.
=

1

m

m∑

i=1

ψ(yichc(xi)) (C.2)

is a surrogate risk associated to class c, simply named surrogate risk hereafter [54, 99, 98, 115]

(and many others). Quantity yichc(x) ∈ R is the edge of classifier h on example (xi,yi), for

class c.

C.2.2. Proper scoring rules and surrogate losses

There exists numerous choices for the (surrogate) loss ψ. In this subsection, we motivate the

analysis of a subset of particular interest, called balanced convex losses [99, 98]. For the sake

of clarity, we assume in this Subsection that we have two classes (C = 2), and reduce the class

vector to real y ∈ {−1, 1} encoding membership to a so-called “positive” class (“1”). “−1”

means observation does not belong to the positive class, or similarly belongs to a “negative”
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Figure C.1.: Plot φ of row D in Table C.1 (left) and its matching posterior estimate p̂φ,h as a function

of h ∈ R (right).

class. In this case, a classifier h outputs a single real value.

More general than the problem of predicting labels is the problem of estimating posteriors

[59, 136]: let p
.
= p̂[y = 1|x] define for short the unknown true posterior for observation

x. The discrepancy between an estimator p̂ of p and p is measured by a loss ℓ[0,1](p‖p̂). The

interval [0, 1] in index recalls that its arguments are probabilities, and “‖” means that it is

not assumed to be symmetric. There are three requirements one can put on a loss to fit it to

statistical requirements of the estimation task while making it suited to convenient algorithmic

minimization. The most important one, requirement R1, is fundamental in estimation, as it

states that ℓ[0,1] defines a (strictly) proper scoring rule: 0 = ℓ[0,1](p‖p) < ℓ[0,1](p‖q), for any q
and p 6= q [59, 62, 98, 136]. This requirement is fundamental in that it encourages reliable

estimations. Second, requirement R2 states that the loss is even as ℓ[0,1](p‖p̂) = ℓ[0,1](1− p‖1−
p̂), and thus there is no class-dependent mis-estimation cost, a common assumption in machine

learning or classification. Third and last, requirement R3 states that ℓ[0,1] is twice differentiable.

The following Theorem, whose proof can be found in [99, 98], exhibits the true shape of ℓ[0,1].

Theorem 1 [99, 98] Any loss ℓ[0,1] satisfies requirements R1–R3 iff it is a Bregman divergence:

ℓ[0,1](p‖q) = Dφ(p‖q), for some permissible φ.

Theorem 1 makes use of two important definitions: a permissible φ satisfies: φ : [0, 1] →
R

+, it is differentiable on (0, 1), strictly convex, twice differentiable on (0, 1) and symmetric

around x = 1/2. Also, for any strictly convex differentiable ψ, the Bregman divergence of

(strictly convex differentiable) generator ψ is:

Dψ(x
′‖x) .

= ψ(x′)− ψ(x)− (x′ − x)∇ψ(x) , (C.3)

where ”∇” denotes first order derivative. The Legendre convex conjugate of any strictly con-

vex differentiable function ψ is ψ⋆(x)
.
= x∇−1ψ (x)− ψ(∇−1ψ (x)).
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Definition 1 [98] Given some permissible φ, the balanced convex loss (BCL) with signature

φ, ψφ, is:

ψφ(x)
.
=

φ⋆(−x) + φ(0)

φ(0)− φ (1/2) . (C.4)

We then have the following Theorem.

Theorem 2 [99, 98] The following identity holds true for any permissible φ and any classifier

h:

Dφ(p(y)‖p̂φ,h(x)) = (φ(0)− φ(1/2))ψφ(yh(x)) ,

where

p̂φ,h(x)
.
= ∇−1φ (h(x)) ∈ [0, 1] , (C.5)

p(y)
.
= p[y = 1|x] .

=

{

0 iff y = −1
1 otherwise

. (C.6)

Let us call p̂φ,h the matching posterior estimate for classifier h, as it represents an estimate

p̂φ,h[y = 1|x]. Figure C.1 plots p̂φ,h[y = 1|x] for choice D in Table C.1. It comes from

Theorems 1 and 2 that balanced convex losses (for real valued classification) match a wide

set of proper scoring rules (for estimation). Thus, they characterize a very important set of

losses. We shall see in the following Section how to achieve the optimum of the score through

a gentle optimization procedure with nearest neighbor classifiers.

Table C.1 includes popular examples of BCLs: squared loss (row A), (normalized) logistic

loss (B), binary logistic loss (C), Matsushita’s loss (D). Hinge loss (E) is not a BCL, yet it

defines the asymptotes of any BCL [99], and its φ is the empirical loss [99]. Adaboost’s

exponential loss is not a BCL [54]. We finish by stating properties of φ and ψφ. Let us assume

that:

min
[0,1]

Hφ(x) > 0 ; (C.7)

this is the case for all examples in Table C.1. Otherwise, we may replace φ by φ + φ2

where φ2 is permissible and meets assumption (C.7). Since permissibility is closed by lin-

ear combinations, function φ + φ2 is also permissible and satisfies (C.7). Since Hψφ(x) =

1/[(φ(0)− φ (1/2))× Hφ(∇−1φ (x))], assumption (C.7) implies:

H∗ψφ
.
= sup

R

Hψφ(x) ≪ ∞ , (C.8)

and in fact H∗ψφ = Hψφ(0) for all examples in Table C.1, and is very small (Cf column π∗,
(C.41) and Section C.4). The following Lemma states properties shown in [98].

Lemma 1 [98] For any permissible φ, the following properties hold true: φ⋆(x) = φ⋆(−x)+
x, ∀x; ∇ψφ(0) < 0, ψφ(0) = 1, im(ψφ) ⊆ R

+.
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Algorithm 3: Algorithm GENTLE NNk BOOSTING, GNNB(S, φ, ε, k)

Input: S = {(xi,yi), i = 1, 2, ...,m, xi ∈ O, yi ∈ {−1, 1}C}, permissible φ, ε ∈ (0, 1), k ∈ N∗;
Let αj ← 0, ∀j = 1, 2, ...,m;
for c = 1, 2, ..., C do

Let w ← 1
2(φ(0)−φ(1/2))

1;

for t = 1, 2, ..., T do
[I.0]//Choice of the example to leverage
Let j ← WIC(S,w);
[I.1]//Computation of the gentle leveraging coefficient update, δj
Let

η(c, j)←
∑

i:j∼S,ki

wtiyicyjc ; (C.9)

δj ← 2(1− ε)η(c, j)
H∗

ψφ
nj

, with nj
.
= |{i : j ∼k i}| ; (C.10)

[I.2]//Weights update
∀i : j ∼k i, let

wi ←
∇−1
φ

(

−δjyicyjc +∇φ((φ(0)− φ(1/2))wi)
)

φ(0)− φ(1/2) ; (C.11)

// we have wi ∈
[

0, (φ(0)− φ(1/2))−1
]

[I.3]//Leveraging coefficient update
Let αjc ← αjc + δj ;

Output: H(x)
.
=

∑

j∼kx
αj ◦ yj

C.2.3. Empirical risk and its minimization

Lemma 1 makes that surrogate risk minimization may be used as an approximate primer to the

minimization of the empirical risk, as the total surrogate risk (C.1) upperbounds the empirical

(Hamming) risk [115]:

εH
S
(H)

.
=

1

C

C∑

c=1

ε
0/1
S
(hc, c) ≤

1

ψ(0)
εψ
S
(H) , (C.12)

where

ε
0/1
S
(hc, c)

.
=

1

m

m∑

i=1

I[yichc(xi) < 0] (C.13)

is the usual empirical risk associated to class c. To quantify the performance of the best

possible classifier, we respectively define:

(ε
ψφ
S
)∗c

.
= inf

h
ε
ψφ
S
(h, c) , (C.14)

(ε
0/1
S
)∗c

.
= inf

h
ε
0/1
S
(h, c) , (C.15)

as the respective Bayes surrogate risks and Bayes empirical risks for class c. Averaging these

expressions following (C.1) and (C.12), we respectively define (ε
ψφ
S
)∗ and (ε

0/1
S
)∗ as the opti-
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Figure C.2.: Weight update w′ computed as a function of w and g(c, j)
.
= η(c, j)/nj , when yicyjc = 1

and ε = 1/2 (see Table C.1). The corresponding BCLs are the binary logistic loss (left) and

Matsushita’s loss (right). The black grid depicts the plane of equation w′ = w.

mal total surrogate risk and empirical (Hamming) risk on S. As a last remark, our minimization

problems on the learning sample may be useful as well to minimize the true (surrogate) risks,

that is, expectations of (C.1, C.12) in generalization, according to some unknown distribution

from which S is supposed i.i.d. sampled. We refer to [12] and the references therein for details,

not needed here.

C.3. Gentle boosting for NNk rules

The nearest neighbors ( NNks) rule belongs to the simplest classification algorithms [38]. It

relies on a non-negative real-valued “distance” function. This function, defined on domain

O, measures how much two observations differ from each other. It may not be a metric. We

let j ∼k x denote the assertion that example (xj,yj), or simply example j, belongs to the

k NNks of observation x. We abbreviate j ∼k xi by j ∼k i — and we say that example

i belongs to the inverse neighborhood of example j. To classify an observation x ∈ O, the

k- NNk rule H over S computes the sum of class vectors of its nearest neighbors, that is:

H(x) =
∑

j∼kx 1 ◦ yj , where ◦ is the Hadamard product. H predicts that x belongs to each

class whose corresponding coordinate in the final vector is positive. A leveraged k- NNk rule

generalizes this to:

H(x) =
∑

j∼kx
αj ◦ yj , (C.16)

where αj ∈ R
C is a leveraging vector for the classes in yj . Leveraging approaches to nearest

neighbors are not new [118], yet to the best of our knowledge no convergence rates were

known, at least until the algorithm UNN [102]. Algorithm 3 presents our gentle boosting

algorithm for the nearest neighbor rules, GNNB. It differs with UNN on the key part of (C.16):
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the computation and update of the leveraging vectors. Instead of the repetitive solving of

nonlinear equations — time consuming and with the risk, for approximations, of lying outside

the boosting regime —, we prefer a simple scheme linear on the weighted edge η(c, j) (see

Algorithm 3). The scheme of UNN [102] is nonlinear in this parameter. Our updates also

depend on integer nj , the cardinality of the inverse neighborhood of example j, where |.|
denotes the cardinality (see Algorithm 3). Table C.1 gives the expressions of the weight update

(C.11) for various choices of permissible φ, and the expression of δj for the particular choice

ε = 1/2. Figure C.2 plots examples of the weight update (C.11). The ranges of values, used in

Figure C.2, are respectively [−(φ(0)−φ(1/2))−1, (φ(0)−φ(1/2))−1] for g(c, j), and [0, (φ(0)−
φ(1/2))−1] for w and w′. The two plots, similar, exemplify two important remarks valid for any

BCL. First, when classes match for example i and j, the weight of example i decreases iff δj >
0. This is a common behavior for boosting algorithms. Second, the regime of weight variations

for extreme values of g(c, j) appear to be very important, despite the fact that leveraging

update δj is linear in the weighted edge. Thus, “gentle” updates do not prevent significant

variations in weights.

C.4. Properties of GNNB

C.4.1. GNNB is Newton-Raphson

Our first result establishes that GNNB performs Newton-Raphson updates to optimize its sur-

rogate risk, like Gentle Adaboost [54]. If we pick example i in the inverse neighborhood

of example j to be updated for class c, we have ∂ψφ(yichc(xi))/∂δj = −wiyicyjc, and

∂2ψφ(yichc(xi))/∂δ
2
j = Hψφ(yichc(xi)), so that the Newton-Raphson update for δj reads:

δj ← ρ× η(c, j)
∑

i:j∼S,ki
Hψφ(yichc(xi))

, (C.17)

for some small learning rate ρ, typically with 0 < ρ ≤ 1. Comparing with (C.10), we get the

following result.

Theorem 3 GNNB uses adaptive Newton-Raphson steps to minimize the surrogate risk at

hand, ε
ψφ
S

, with adaptive learning rate ρ
.
= ρ(c, j, ε):

ρ(c, j, ε) =
2(1− ε)∑i:j∼S,ki

Hψφ(yichc(xi))

H∗ψφnj
. (C.18)

Furthermore, 0 < ρ(c, j, ε) < 2(1− ε).

The Newton-Raphson flavor of GNNB might be useful to prove its convergence to the optimum

of the surrogate risk at hand (ε
ψφ
S

), yet the original boosting theory is more demanding than

“mere” convergence to global optimum: it requires guaranteed convergence rates under weak

assumptions about each iteration.
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C.4.2. GNNB boosts the surrogate risks

We consider the following Weak Learning Assumption about GNNB:

(WLA) There exist constants ̺ > 0, ϑ > 0 such that at any iterations c, t of GNNB,

index j returned by WIC is such that the following holds:
∑

i:j∼S,ki
wi

nj
≥ ̺

φ(0)− φ(1/2) ; (i)

|p̂w[yjc 6= yic|j ∼S,k i]− 1/2| ≥ ϑ . (ii)

Requirement (ii) corresponds to the usual weak learning assumption of boosting [99, 98, 115]:

it postulates that the current normalized weights in the inverse neighborhood of example j au-

thorize a classification different from random by at least ϑ. GNNB uses unnormalized weights

that satisfy (1/nj)
∑

i:j∼S,ki
wi ∈ [0, 1/(φ(0) − φ(1/2))]: requirement (i) thus implies that the

unnormalized weights in the inverse neighborhood must not be too small. Intuitively, such a

condition is necessary as unnormalized weights of minute order would not necessarily pre-

vent (ii) to be met, but would impair the convergence of GNNB given the linear dependence

of δj in the unnormalized weights. Notice also that unnormalized weights are all the smaller

as examples receive the right labels: the fact that requirement (i) becomes harder to be met

simply means that GNNB approaches the optimum sought. At the beginning of GNNB, the

initialization with the null leveraging vectors (αj = 0, ∀j) guarantees that we can pick in (i)

̺ = 1/2 everywhere.

The analysis we carry out is a bit more precise than usual boosting results: instead of giving,

under the WLA, a lowerbound on the number of iterations needed to drive down the surrogate

or empirical risks down some user-fixed threshold τ , we rather provide a lowerbound on the

total number of weight updates, for each class c. This number, ℓ(T, c), integrates the total

number of boosting iterations and the size of inverse neighborhoods used. It is important

to integrate these sizes since there is obviously a big difference for convergence between

leveraging an example which votes for many others in “dense” parts of the data, and leveraging

one which votes for none. Our main result is split in two. The first focuses on the surrogate

risk, the second on the empirical risk. Let us define:

φc(S)
.
=

∑

x

p̂S[x]φ(p̂S[yc = 1|x]) , (C.19)

∆φ(S, τ, c)
.
= φc(S)− ((1− τ)φ(1/2) + τφ(0)) , (C.20)

∆′φ(S, τ, c)
.
= φc(S)− φ ((1− τ)/2) . (C.21)

∆φ(S, τ, c) and ∆′φ(S, τ, c) are differences between average values of φ taking values within

±(φ(0)− φ(1/2)). We now state our main result on GNNB.

Theorem 4 Assume the WLA holds, and let τ ∈ [0, 1]. Suppose we run GNNB so that, ∀c,
ℓ(T, c) meets:

ℓ(T, c) ≥
∆φ(S, τ, c)(φ(0)− φ(1/2))H∗ψφ

8ε(1− ε)ϑ2̺2
×m . (C.22)
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Then the leveraged k- NNk H learned by GNNB satisfies:

ε
ψφ
S
(H) ≤ (ε

ψφ
S
)∗ + τ . (C.23)

Proof: We craft a negative upperbound for the variation of the surrogate risk at hand (C.2)

between two successive iterations, say t and t + 1. To keep references clear, we replace the

index j of the example returned by WIC by e(t). We have:

ε
ψφ
S
(h(t+1)c, c)− εψφS (htc, c)

=
1

m

∑

i:e(t)∼S,ki

ψφ(yich(t+1)c(x))−
1

m

∑

i:e(t)∼S,ki

ψφ(yichtc(x))

=
1

m







∑

i:e(t)∼S,ki

Dψ̃φ
(0‖∇−1

ψ̃φ
(−yich(t+1)c(x)))

−
∑

i:e(t)∼S,ki

Dψ̃φ
(0‖∇−1

ψ̃φ
(−yichtc(x)))






, (C.24)

where ψ̃φ(x)
.
= (ψφ)

⋆(−x) and (C.24) comes from Lemma 1 in [98]. We have ∇ψφ(x) =

−∇−1φ (−x)/(φ(0)−φ(1/2)), implying∇−1ψφ(x) = ∇(ψφ)⋆(x) = −∇φ((φ(1/2)−φ(0))x). Thus:

ψ̃φ(x) = −φ ((φ(0)− φ(
1/2))x)

φ(0)− φ(1/2) . (C.25)

Furthermore,

∇−1
ψ̃φ
(−yich(t+1)c(xi))

=
1

φ(0)− φ(1/2)∇
−1
φ (−δe(t)yicye(t)c − yichtc(xi))

= w(t+1)i , (C.26)
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and ∇−1
ψ̃φ
(−yichtc(x)) = wti as well, so that, using (C.25) and (C.26), we can simplify (C.24)

as follows:

ε
ψφ
S
(h(t+1)c, c)− εψφS (htc, c)

=
1

m







∑

i:e(t)∼S,ki

Dψ̃φ
(0‖w(t+1)i)−

∑

i:e(t)∼S,ki

Dψ̃φ
(0‖wti)







= − 1

m

∑

i:e(t)∼S,ki

{

ψ̃φ(w(t+1)i)− ψ̃φ(wti)

−w(t+1)i∇ψ̃φ
(w(t+1)i) + wti∇ψ̃φ

(wti)
}

= − 1

m

∑

i:e(t)∼S,ki

{

ψ̃φ(w(t+1)i)− ψ̃φ(wti)

+w(t+1)i

[

δe(t)yicye(t)c−∇ψ̃φ
(wti)

]

+ wti∇ψ̃φ
(wti)

}

= − 1

m

∑

i:e(t)∼S,ki

Dψ̃φ
(w(t+1)i‖wti)

−δe(t)
m

∑

i:e(t)∼S,ki

w(t+1)iyicye(t)c . (C.27)

We lowerbound the divergence term, starting by an important property for ψφ. We say that

a differentiable function ψ is ω strongly smooth [78] iff there exists some ω > 0 such that

Dψ(x
′‖x) ≤ ω

2
(x′ − x)2, ∀x, x′.

Lemma 2 For any permissible φ, ψφ is H∗ψφ strongly smooth, where H∗ψφ is defined in (C.8).

Proof: Taylor-Lagrange remainder brings that there exists some x′′ ∈ (x, x′) such that

Dψφ(x
′‖x) = 1

2
(x− x′)2Hψφ(x

′′) ≤ 1

2
(x− x′)2H∗ψφ

(we used (C.8)). This proves Lemma 2. It comes from [78] that (ψφ)
⋆ is (H∗ψφ)

−1 strongly

convex; so,

ψ̃φ(w)−
1

2H∗ψφ
w2 is convex. (C.28)

Any convex function ϕ satisfies ϕ(w′) ≥ ϕ(w) + ∇ϕ(w)(w
′ − w), ∀w,w′. We apply this

inequality taking as ϕ the function in (C.28), w = wti and w′ = w(t+1)i. We sum for each i
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such that e(t) ∼S,k i:

∑

i:e(t)∼S,ki

Dψ̃φ

(
w(t+1)i||wti

)

≥ 1

2H∗ψφ

∑

i:e(t)∼S,ki

(
w(t+1)i − wti

)2
. (C.29)

Finally, Cauchy-Schwartz inequality yields:

∑

i:e(t)∼S,ki

(
yicye(t)c

)2
∑

i:e(t)∼S,ki

(
w(t+1)i − wti

)2

≥




∑

i:e(t)∼S,ki

yicye(t)c(w(t+1)i − wti)





2

. (C.30)

Fix for short u
.
=
∑

i:e(t)∼S,ki
w(t+1)iyicye(t)c. Plugging altogether (C.27), (C.29) and (C.30),

we obtain the following upperbound for ε
ψφ
S
(h(t+1)c, c)− εψφS (htc, c):

ε
ψφ
S
(h(t+1)c, c)− εψφS (htc, c)

≤ −

(

u−∑i:e(t)∼S,ki
wtiyicye(t)c

)2

2H∗ψφm
∑

i:e(t)∼S,ki

(
yicye(t)c

)2 −
δe(t)
m

u

=
∆t(u)

m
. (C.31)

∆t(u) takes its maximum value for u = u∗
.
= η(c, e(t)) − H∗ψφne(t)δe(t), for which we have:

∆t(u
∗) = (1/2)H∗ψφne(t)δe(t)

(

δe(t) − (2η(c, e(t))/(H∗ψφne(t)))
)

. We pick δe(t) as in (C.10),

i.e., δe(t) = 2(1− ε)η(c, e(t))(H∗ψφne(t))−1, for ε ∈ (0, 1). This yields:

∆t(u) ≤ ∆t(u
∗) = −2ε(1− ε)η

2(c, e(t))

H∗ψφne(t)
. (C.32)

We now show that the WLA implies a strictly positive lowerbound on the absolute value

of edge η(c, e(t)). Letting I[.] be the indicator function, we have p̂wt [ye(t)c 6= yic|e(t) ∼S,k

i] = (
∑

i:e(t)∼S,ki
wtiI

[
yicye(t)c = −1

]
)/(
∑

i:e(t)∼S,ki
wti), and since I

[
yicye(t)c = −1

]
= 1 −

yicye(t)c, we obtain after simplification:

p̂wt [ye(t)c 6= yic|e(t) ∼S,k i] =
1

2
− η(c, e(t))

2
∑

i:e(t)∼S,ki
wti

.
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Using statement (ii) in the WLA, this equality brings |η(c, e(t))| ≥ 2ϑ
∑

i:e(t)∼S,ki
wti. Using

statement (i) in the WLA, we finally obtain:

|η(c, e(t))| ≥ 2
ϑ̺ne(j)

φ(0)− φ(1/2) . (C.33)

Plugging (C.33) into (C.32), and the resulting inequality into (C.31), we obtain:

ε
ψφ
S
(h(t+1)c, c)− εψφS (htc, c)

≤ −8ε(1− ε) ne(t)ϑ
2̺2

mH∗ψφ(φ(0)− φ(1/2))2
. (C.34)

At the initialization, all leveraging coefficientsαj equal the null vector, and so the correspond-

ing surrogate risk equals ψφ(0). To guarantee that ε
ψφ
S
(hTc, c) ≤ (ε

ψφ
S
)∗c + τ under the WLA,

for some τ ∈ [0, ψφ(0)], it is thus sufficient to have:

T∑

t=1

ne(t)≥
(ψφ(0)− (ε

ψφ
S
)∗c − τ)H∗ψφ(φ(0)− φ(1/2))2
8ε(1− ε)ϑ2̺2

×m .

This inequality leads to the statement of the Theorem, provided we remark the three following

facts. The first one is proven in the following Lemma.

Lemma 3 We have (ε
ψφ
S
)∗c = (φ(0)−φc(S))/(φ(0)−φ(1/2)), where φc(S) is defined in (C.19).

Proof: From Lemma 1, we have ∇−1φ (x) = 1 − ∇−1φ (−x), with which we obtain af-

ter few derivations: argminh ε
ψφ
Sx
(h, c) = ∇φ(p̂S[yc = 1|x]), where Sx is the subset of S

whose observations match x. Then, we compute ε
ψφ
S
(h, c) with this value for h, which, af-

ter simplification using Legendre conjugates, brings ESx [ψφ(yich(x))] = (φ(0) − φ(p̂S[yc =
1|x]))/(φ(0) − φ(1/2)). Finally, we average this over all distinct observations in S to obtain

Lemma 3. The last two facts that lead to the statement of the Theorem are simpler:

we indeed have
∑T

t=1 ne(t) = ℓ(T, c), and ψφ(0) = (φ(0)− φ(∇−1φ (0)))/(φ(0)− φ(1/2)) = 1.

This concludes the proof of Theorem 4.

C.4.3. GNNB boosts the empirical risk

The following bound holds on the empirical risk.

Corollary 1 Assume the WLA holds, and let τ ∈ [0, 1]. Suppose we run GNNB so that, ∀c,
ℓ(T, c) meets:

ℓ(T, c) ≥
∆′φ(S, τ, c)(φ(0)− φ(1/2))H∗ψφ

8ε(1− ε)ϑ2̺2
×m . (C.35)

Then the leveraged k- NNk H learned by GNNB satisfies:

εH
S
(H) ≤ (εH

S
)∗ + τ . (C.36)
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Proof: Following [12], let us define H(ǫ)
.
= infδ∈R{ǫψφ(δ) + (1 − ǫ)ψφ(−δ)}, ψBJM(ǫ

′)
.
=

ψφ(0)−H ((1 + ǫ′)/2), with ǫ ∈ [0, 1] and ǫ′ ∈ [−1, 1]. We have:

H(ǫ) = inf
δ∈R

{
ǫφ⋆(−δ) + (1− ǫ)φ⋆(δ) + φ(0)

φ(0)− φ(1/2)

}

= inf
δ∈R

{
φ⋆(δ)− ǫδ + φ(0)

φ(0)− φ(1/2)

}

(C.37)

=
φ⋆(∇φ(ǫ))− ǫ∇φ(ǫ) + φ(0)

φ(0)− φ(1/2)

=
−φ⋆⋆(ǫ) + φ(0)

φ(0)− φ(1/2) =
φ(0)− φ(ǫ)
φ(0)− φ(1/2) . (C.38)

Here, (C.37) follows from Lemma 1, and (C.38) follows from the fact that φ is convex and

lower semicontinuous. We thus have:

ψBJM(ǫ
′) =

φ((1− ǫ′)/2)− φ(1/2)
φ(0)− φ(1/2) . (C.39)

It is proven in [12], Theorem 1, that:

ψBJM

(

ε
0/1
S
(hc, c)− (ε

0/1
S
)∗c

)

≤ ε
ψφ
S
(hc, c)− (ε

ψφ
S
)∗c .

The argument of ψBJM is in [0, 1]. On this interval, ψBJM admits an inverse because φ admits

an inverse on [0, 1/2]. To ensure ε
0/1
S
(hc, c) ≤ (ε

0/1
S
)∗c + τ ′, it is thus equivalent to ensure

ε
ψφ
S
(hc, c) − (ε

ψφ
S
)∗c ≤ ψBJM(τ

′). There remains to combine (C.39) and (C.22) to obtain the

statement of Corollary 1.

C.4.4. GNNB is universally consistent

We analyze GNNB in the setting where WIC yields the leveraging of a subset ofm′ < m exam-

ples out of the m available in S. This setting is interesting because it covers the optimization

of GNNB in which we repeatedly leverage the most promising example, for example from

the standpoint of |δj|. We call GNNB
∗ this variation of GNNB. We assume that S is sampled

i.i.d. according to some fixed density. The following (weak) universal consistency result on

GNNB is not surprising, as NNk approaches were the first to be proven consistent [129], and

there have been since a wealth of weak and strong related universal consistency results [38].

The result also applies to UNN [102].

Lemma 4 Provided T, k → ∞, k/m′ → 0 and m′/m → 0, GNNB
∗ is (weak) universally

consistent: its expected Hamming risk converges to the Hamming risk of Bayes rule.

Proof sketch: The proof gathers several blocks, the first of which is the fact that the empirical

minimization of surrogate BCL ψφ in an NNk approach amounts to a maximum likelihood fit-

ting of class posteriors [98] (Lemma 4). Indeed, after dropping temporarily the class index c to
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focus first on a single class, the corresponding empirical risk ε
0/1
S
(h)

.
=
∑

S
p̂[(x, y)]ψφ(yh(x))

(C.13) satisfies (see Theorem 2):

ε
0/1
S
(h) ∝

v∑

l=1

p̂[Vl]
∑

S∩Vl

p̂[(x, y)]

p̂[Vl]
Dφ(p(y)‖p̂l)

︸ ︷︷ ︸

εl

. (C.40)

Here, v is the number of Voronoi cells Vl, l = 1, 2, ..., v; p̂[Vl]
.
=
∑

S∩Vl p̂[(x, y)] and p̂l
is p̂φ,h(x) for cell Vl. Second, the right-population minimizer of any Bregman divergence

is always the arithmetic average [8] (Proposition 1): at the minimum of each εl in (C.40),

p̂l = p̂∗l
.
=
∑

S∩Vl p̂[(x, y)]p(y)/p̂[Vl] = p̂[y = +1|Vl]. Third, in a metric space, the number

of distinct Voronoi cells is linear in m′ (but exponential in the dimension of O [38], Corollary

11.1), and as m′ → ∞ and provided k/m′ → 0, the distance between each point and all its

k- NNk vanishes [38] (Lemma 5.1). So, as k/m′ → 0, m′/m → 0 and provided the class

posteriors are uniformly continuous, the expectation of p̂l converges to the true cell posterior

p∗l . Last, Corollary 6.2 in [38] makes that a sufficient condition for the (weak) universal

consistency of GNNB with respect to class c, and by extension to all classes for Hamming risk.

C.5. Discussion

We chose not to normalize permissible functions, i.e. typically ensuring φ(1/2) = 1 and

φ(0) = 0, because normalization would reduce the number of BCL that can be generated. For

example, out of the two in rows B and C in Table C.1, the classical form of the logistic loss

in B would disappear. Bounds in (C.22) and (C.35) advocate for a simple implementation of

WIC: since the number of examples leveraged equals, on average, ℓ(T, c)/k, we should put

emphasis on leveraging examples with large inverse neighborhoods.

Our results call for several technical comparisons between GNNB, UNN and mathematical

greedy algorithms [11]. Let us define:

π∗
.
= (φ(0)− φ(1/2))2H∗ψφ/2 , (C.41)

and let us respectively define π(ε) and π′(ε) the terms factoring m(ϑ2̺2)−1 in (C.22) and

(C.35). Because ∆φ(S, τ, c) ≤ ∆′φ(S, τ, c) ≤ φ(0) − φ(1/2), it comes π(1/2) ≤ π′(1/2) ≤ π∗.
Table C.1 provides examples of values for π∗ for different choices of φ: they are small, in

[1/8, 1/16]. Hence, when ε = 1/2, a sufficient number of weight updates to ensure (C.23) and

(C.36) is ℓ∗(T, c) = (m/8)× (ϑ2̺2)−1. This happens to be a very reasonable constraint, given

that the range of δj is of minute order compared to that in UNN, where δj can take on infinite

values.

There is more: let ℓGNNB(T, c) and ℓUNN(T, c) denote the number of weight updates ensur-

ing (C.36) (and thus ensuring (C.23) as well), respectively for GNNB and UNN. Inspecting

Theorem 2.3 in [102] reveals that we have ℓGNNB(T, c) = Θ (ℓUNN(T, c)/(ε(1− ε))). Hence,

convergence rates of GNNB compete with those known for UNN.
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category name m C ref.

small Liver 345 2 [7]

Ionosphere 351 2 [7]

Pima 768 2 [7]

Scene 2407 6 [7]

Satellite 6435 6 [7]

Segment 2310 7 [7]

Cardio 2126 10 [7]

OptDig 5620 10 [7]

Letter 2561 26 [7]

large Caltech 30607 256 [61]

SUN 108656 397 [149]

Table C.2.: Domains used in our experiments, ordered in increasing number of classes, and then exam-

ples.

Mathematical greedy algorithms [11] have a very wide scope, and they can be special-

ized to statistical learning with a high-level scheme which is close to the iterative scheme

of boosting algorithms. Situating GNNB with respect to them is thus interesting and reveals

quite a favorable picture, from the computational and convergence rate standpoints. These

greedy algorithms are indeed computationally expensive, requiring at each iteration a local

optimization of the classifier that GNNB does not require. Regarding convergence rates, the

bound most relevant to our setting can be stated as follows, omitting unnecessary technical

details and assumptions [11] (Theorem 3.1 and its proof): after t iterations, the squared risk

of the greedy output is no more than τ(t) = β ((κ/t) + (t ln(m)/m)), for some κ, β that

meet in general κ ≫ m, and β > 104. This bound takes its minimum for some t∗ which

is ≫ m in general. Even for this large t∗, the corresponding upperbound on the squared

risk, τ(t∗) = 2β
√

κ ln(m)/m, is significantly weaker than the guarantees of Theorem 4 and

Corollary 1. Obviously however, our bounds rely on the WLA.

C.6. Experiments

C.6.1. Domains and metrics

Experiments have been performed on a dozen domains summarized in Table C.2. We have

split the domains in small and large domains. Large domains have a significantly larger num-

ber of examples and classes. We refer the reader to the UCI machine learning repository for

the related domains. We give a brief description of the “large” domains. The Caltech [61] do-

main is a collection of 30607 images of 256 object classes. We adopt the Fisher vectors [103]

encoding in order to describe these images as features vector. Fisher Vector are computed over

densely extracted SIFT descriptors and local color features, both projected with PCA in a sub

space of dimension 64. Fisher Vectors are extracted using a vocabulary of 16 Gaussian and

normalized separately for both channels and then combined by concatenating the two features

vectors. This yields a 4K dimensional features vector. The SUN [102, 149] domain is a col-

lection of 108656 images divided into 397 scenes categories. The number of images varies
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Figure C.3.: Average (µ) ± Std dev. (σ) for accuracy (left), F measure (center) and recall (right) over

the small domains for all algorithms. In each plot, algorithms are ordered from left to right

in decreasing average of the metric.

across categories, but there are at least 100 images per category. Each observation is repre-

sented as feature vector computed in the same way as for Caltech. Experiments are performed

on a classical five-fold cross-validation basis, except for the large domains Caltech and SUN

for which we have adopted the standardized approaches to use 30 (for Caltech) and 50 (for

SUN) random images from each class to train classifiers and the remaining for testing.

We consider three types of metrics: the accuracy, which is one minus the Hamming risk

(C.12, C.13) and which is directly optimized by GNNB (Corollary 1), the recall and the F-

measure.

C.6.2. Algorithms

To make an extensive analysis of the performances of GNNB, we have evaluated on small do-

mains twenty-two (22) algorithms, on each of the three metrics. The version of GNNB used is

GNNB(log) (Row B in Table C.1) with values of k = 5, 10, 20, 50. Contenders of GNNB can be

put in five categories: ordinary nearest neighbors, universal nearest neighbors (UNN), stochas-

tic gradient descent algorithms, (Ada)boosting algorithms and support vector machines.

Ordinary nearest neighbors, NN, and UNN(log) were tested with k = 5, 10, 20, 50. UNN per-

forms for this choice of BCL approximations to the optimal boosted updates [102]. We used

the simplest, non optimized WIC in UNN and GNNB, which returns index t mod m.

We considered Stochastic Gradient Descent (SGD) [103, 16, 120], with four varying number

of iterations. In the first, referred to as SGD1, the number of iterations is equal to that of GNNB

and UNN. In the second, SGD2, number of iterations for SGD is fixed to be the “equivalent” to

that of UNN and GNNB. Indeed, each iteration of SGD contributes to classify all examples in the

training sample, while each iteration of UNN or GNNB contributes to classify θ(k) examples

only. Thus, we need θ(m/k) iterations on UNN or GNNB for the classification of all examples

to be eventually impacted. So, if T is the total number of boosting iterations in UNN and

GNNB, then we perform T ×k/m iterations of SGD. The two last runs of SGD, hereafter noted

SGD3 and SGD4, consider a larger number of iterations, two times the size of the training set

in SGD3 and three times in SGD4. With those runs, we wanted to capture “limit” performances

of SGD.
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Figure C.4.: Ranking results: colors indicate the number of times an algorithm ranked among the top-

tier (green), second-tier (blue) and third-tier (red, for the worst 8 algorithms) among all

algorithms, over all small domains. For each color, the lighter the tone, the worse the rank.

For example, dark green is rank 1, the lightest green is rank 7 and dark blue is rank 8.

Algorithms are ordered from left to right in decreasing average of the metric at hand.

We also considered ADABOOST [115], with four different flavors. In ADABOOSTc2 (resp.

ADABOOSTc3), the weak learner is C4.5 [109] with depth-2 (resp. depth-3) trees. C4.5 is

a powerful weak learner: it repeatedly minimizes the expected −φ in row B of Table C.1.

Again, the weak learner (WIC) used in GNNB and UNN is deliberately not optimized at all.

For this reason, we have also tested ADABOOST with a non-optimized weak learner, which

returns random trees. In ADABOOSTr3, these trees have depth 3, and in ADABOOSTru, these

trees have unbounded depth. In all four flavors of ADABOOST, the number of boosting rounds

equals that of GNNB and UNN.

We have also considered two flavors of support vector machines, the first of which is afford-

able on small domains (but out of reach on our largest domains), non-linear SVM with radial

basis function kernel in which the regularization parameter and the bandwidth are further op-

timized by a five-fold cross-validation on the training sample. We refer to them as SVMRBF.

The second flavor is linear SVM, SVMl.

On large domains, we have tested GNNB against the contenders that scored top in the small

domains or were easily scalable to large domains: NNk, UNN, SGD. We have also tried

SVMLLC, that is, linear SVM with locality-constrained linear coding LLC [138].

C.6.3. Results on small domains

Results on average metrics

Figure C.3 presents the average results obtained for the 22 algorithms on the 3 metrics. Over

all metrics, one can notice that the algorithms cluster in 3 groups. The first is the group of the

best performing algorithms, with non-linear and mostly optimized large margin algorithms:

SVMRBF, GNNB (all ks), UNN (all ks), ADABOOST+C4.5, and NN with k = 5, 10, 20. The

second group performs not as well as the first, with mostly linear classification algorithms:

SVMl, all SGD algorithms and NN with k = 50. The last group perform the worst of all,

containing randomized large margin classification: ADABOOST with random trees.

Several observations can be made. First, the performances of all nearest neighbor methods
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Figure C.5.: Ranking results contd: number of times each algorithm performed significantly better than

the others (blue) or worse (red) according to Student paired t-test (p = .1). Algorithms

order follow Figs C.3 and C.4 (see text).

(GNNB, UNN, NN) decrease with k, in the range of values selected. Second, boosting nearest

neighbors (GNNB, UNN) dampens the degradation of performances. Third, GNNB is the best

of all kinds of nearest neighbor methods, from the standpoint of all metrics.

In fact, GNNB performs on par with SVMRBF, for a wide range of k (5, 10, 20). The com-

parison with ADABOOSTr3 and ADABOOSTru is clear and final, as regardless of k and for all

metric, GNNB is better by more than .2 points on average; finally, GNNB performs also slightly

better than ADABOOST+C4.5 (for k = 5, 10, 20). These are good news, first because GNNB is

not optimized as ADABOOST+C4.5 is (for example from the standpoint of the weak learner),

and second because GNNB is the lightest machinery among all, and so the easiest to scale to

large domains.

Ranking results

To drill down into these general results, we have also computed the global ranking results of

each algorithm, recording the number of times each ranked first, second, third and so on, on

the 9 domains. These results (Figure C.4), yield the following observations.

First, there is a subgroup in the group of the best performing algorithms according to the

average metrics, which is the best according to ranking: SVMRBF and GNNB (k = 5, 10, 20). In

this group, it appears that GNNB tends to be ranked higher than SVMRBF, for a wide range of k
(5, 10, 20), and this is particularly visible for F-measure and recall. From the recall standpoint,

GNNB is almost always in top-tier results, while SVMRBF is more often in the second-tier.

Second, SGD performs poorly from the ranking standpoint, as all flavors mostly score

among the third-tier results. We also observe that SGD performances are not monotonous

with the number of iterations, as SGD1 performs the best of all, both from the average and

ranking standpoints. Linear classification methods tend to perform poorly, as displayed by

SVMl’s ranking results, very similar to those of stochastic gradient descent. If we compare

ranking results with those of ADABOOST+random trees, which performs the worst of all from

the expected metrics standpoint, then the ranking results display that SGD is more often in the

third-tier of all algorithms.

Finally, ADABOOST with random trees sometimes scores very well among algorithms. Its
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Accuracy

F-measure Recall

Figure C.6.: Manifold classification patterns for the accuracy (up, commented), F measure (bottom

left) and Recall (bottom right), for all 22 algorithms (see text); colors in hexagons cluster

types of algorithms: red = GNNB, yellow = SVM, pink = ADABOOST, cyan = SGD, blue =

UNN, green = NNk (see text and [100] for details).

ranking patterns indicate that the poor average results are essentially due to some domains for

which replacing the randomized weak learner by an optimized one would make the classifier

jump from the worst performances to at least second-tier performances.

We validated these ranking results with Student paired t-test comparison for each algorithm

against all others (462 comparisons), recording those for which we can reject the null hypoth-

esis (per-domain difference has zero expectation) for level p = .1, and then clustering the

“significant” differences as to whether they are in favor, or in disfavor, of the algorithm at

hand. Figure C.5 summarizes the results obtained, for all three metrics. They allow to cluster

algorithms in three: those that are never significantly outperformed (GNNB for k = 5, 10, 20,

SVMRBF, ADABOOST+C4.5, NN for k = 5), those that never significantly outperform (SGD2,

NN for k = 50, ADABOOST+random trees), and the rest of the algorithms. They confirm that,

on a wide range of values of k, GNNB performs on par with or better than optimized large

margin non-linear algorithms (SVMRBF, ADABOOST+C4.5).

Classification patterns

The algorithms we have tested on small domains are representative of major families of su-

pervised classification algorithms, ranging from linear to non-linear, induced to non-induced,

including large margin classification methods, stochastic algorithms, and so on. To get a qual-

itative picture of the performances of GNNB, we have learned a manifold on the algorithms’
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top-1 accuracy (×100), Caltech

splits n
iteration t 8 16 32

1 19.21 20.11 21.14

10 28.47 30.08 31.45

100 30.02 30.89 31.66

1000 30.38 31.52 32.65

top-1 accuracy (×100), SUN

splits n
iteration t 8 16 32

1 23.63 26.40 29.46

10 23.85 26.63 29.62

100 25.64 27.98 30.54

1000 25.64 27.97 30.56

top-5 accuracy (×100), SUN

splits n
iteration t 8 16 32

1 49.36 52.67 55.59

10 49.52 52.72 55.62

100 50.34 53.17 55.91

1000 50.33 53.19 55.92

Table C.3.: Performance of our divide-and-conquer approach on large domains for GNNB(log), using

top-1 and top-5 accuracies.

results, one for each of the three metrics, as follows.

To get rid of the quantitative differences, we have normalized results to zero mean and unit

standard deviation in each domain. Then, a manifold was learned using a standard procedure,

with the normalized cosine similarity measure, and computing the second and third leading

eigenvector of the Markov chain from the associated similarity matrix [101].

The corresponding manifolds are displayed in Figure C.6, using a focus+context display

[100] in which the focus area is the center of the square. Plots also display in the background

the mapping of a regular equilateral triangular tiling of the plane. The main observation from

the plots, which cannot be observed in the average metrics and ranking experiments, is that

the recall plot is much different from the accuracy and F-measure plots, that are very simi-

lar. The recall plot clusters the algorithms in three categories: linear classification (top-left,

SGD, SVMl), randomized boosting (ADABOOST+random trees, bottom left), and the rest of the

algorithms (center). The accuracy and F-measure plot make a clear distinction between non-

linear large margin “optimized” (down-right), non-linear large margin “random” (down-left)

and linear (up). Looking at nearest neighbor algorithms as k increases reveals that boosted

nearest neighbor algorithms (UNN, GNNB) tend to behave more and more like large margin

classification algorithms as k increases, while vanilla NNk tends to behave more and more

like linear classification algorithms as k increases. This observation for NNk is consistent

with the simple example that sampling two spherical Gaussians with identical variance (one

for each class) makes a non-linear frontier for k,m ≪ +∞, which tends to a linear one as

both parameters tend to +∞.

Training times

We have computed the training times for GNNB (all ks), SVMRBF and ADABOOST+C4.5 (depth-

3 trees), that belong to the top-5 or top-6 algorithms in terms of average metric performances.

We have computed the ratio between training times for each domain and each value of k, for

SVMRBF to GNNB, and ADABOOST+C4.5 to GNNB. As already displayed for UNN [102], the

ratios are clearly in favor of GNNB. We obtained a synthetic and accurate picture of these

advantages by regressing the ratio against 1/k, that is, computing the regression coefficients

a, b for ρ = (a/k) + b. Here, ρ is e.g. the ratio for the SVMRBF training time to GNNB training

time, averaged over all domains, and then computed for each k. The results, that we give with
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NN GNNB SGD1 SVMLLC

f 4K 4K 4K 4K 4×4K 5×4K

Acc. 25.50 36.40 36.00 27.99 35.18 36.76

F-m. 20.97 29.24 30.87 24.00 31.67 33.33

Rec. 17.13 31.47 31.35 22.00 28.66 30.41

Table C.4.: Results on Caltech (accuracy, F-measure and recall are ×100). f is the number of features,

and k = 200 for NNk, GNNB.

the coefficient of determination r2, are (t.t. = training time):

t.t.(SVMRBF)

t.t.(GNNB)
≈ 851

k
+ 49 (r2 = 0.96) ,

t.t.(ADABOOST+C4.5)

t.t.(GNNB)
≈ 9547

k
+ 398 (r2 = 0.97) .

These regressions mean that, regardless of the value of k, SVMRBF’s training time is at least

roughly 50 times that of GNNB, while ADABOOST+C4.5’s training time is at least roughly

400 times that of GNNB. These ratios are in good agreement with those observed in favor of

UNN against SVMRBF and ADABOOST+stumps [102].

Summary for small domains

The results obtained on small domains bring the following general observations. First, GNNB scores

among the top algorithms and performs on par with, or better than, optimized machineries like

non-linear SVM or ADABOOST+trees, and it beats these latter approaches, from the training

times standpoint, by factors that range from tens to thousands of times. These good perfor-

mances go hand in hand with the desirable property that results are stable against reasonable

variations of k, which is not the case for UNN.

C.6.4. Results on large domains

We have used the instantiation of SGD that performed the best on small domains, SGD1, and the

number of iterations of GNNB and SGD1 is 6000. We split the analysis between the comparison

of GNNB vs UNN, and GNNB vs the rest of the algorithms.

A divide-and-conquer optimization of GNNB

It is well known that NN classifiers suffer of the curse of dimensionality [38], so that the

accuracy can decrease when increasing the size of descriptors. This may also affect GNNB, in

particular on large domains like SUN and Caltech. Fisher vectors employ powerful descriptors

but they generate a space with about 4K dimension for 32 gaussians, which could impair

GNNB performance. Our approach relies on a property of classification-calibrated losses that

one can get simple posteriors estimators from the classifier’s output, based on the matching
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Figure C.7.: Relative variation (in %) of GNNB over UNN, expressed as a function of the number of

boosting rounds t. Positive values mean better results for GNNB; a dashed rectangle indi-

cates the zone of negative values.

posterior p̂φ,h in (C.5) (see [33, 102], and the right plot Figure C.1) . The method we propose

consists in (i) splitting the set of descriptors, (ii) compute posteriors over each of these sets,

and finally (iii) average the posteriors over all splits. The set of Fisher descriptors is split in

a regular set of n ∈ {8, 16, 32} sub-descriptors; each set is normalized in L1 or L2 norm.

Finally, posteriors are combined linearly, with an arithmetic average.

Table C.3 presents the results obtained on our large domains. Results in Table C.3 show

that increasing n, the number of splits, always improves the performances of GNNB, in a range

between 1% and 6%, the largest improvements being obtained for the largest domain (SUN).

We have also checked that increasing the number of iterations still keeps this pattern, which

is thus robust to both variations in n and the total number of boosting iterations t. We have

witnessed in some cases differences that become much more important with the increase in t.
For example, after 7650 iterations on Caltech, GNNB’s top-1 accuracy becomes respectively

31.91%, 33.79% or 36.13% for n = 8, 16 and n = 32.

In the following results, GNNB is ran with n = 32 splits. To remain fair with UNN, we
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have also carried out the same n = 32 splitting strategy, and checked that it improves the

performances of UNN as well.

Results on Caltech

The two left plots of Figure C.7 display the results of GNNB vs UNN on Caltech. We have

chosen to put emphasis on the relative variations of GNNB wrt UNN, to get a clean quantita-

tive picture of the improvements. Those plots display that GNNB outperforms UNN, and this

phenomenon is dampened as k increases. For k = 100, the improvement of GNNB on accu-

racy and recall exceed +20%, and it is reduced to +10% for k = 200. Table C.4 compares

GNNB to NNk, SGD1 and LLC encoding for linear SVM using the same codebook as [138].

LLC produces a very large number of descriptors compared to the 4K Fisher vectors used in

the other approaches, and a significant part of the improvement due to encoding comes in fact

from this very large description space [21]. In order to make fair comparisons with the other

techniques that rely on 4K descriptors, we have extracted the two first layers of descriptors

of LLC, of size 4K and 4×4K, to analyze SVMLLC over 4K descriptors, 4×4K descriptors and

4K+4×4K = 5×4K descriptors.

The accuracy results show that GNNB tops NNk and SGD1, and beats SVMLLC until 16K

descriptors. It is only when SVMLLC uses five times the number of descriptors of GNNB that it

beats GNNB. In fact, when using the same description size as the other algorithms, LLC encod-

ing is beaten from the standpoint of all metrics by GNNB and SGD1. SGD1 performs well from

the standpoint of the F-measure, and performs on par with GNNB from the recall standpoint.

Results on SUN

The comparison between GNNB and UNN (Figure C.7, right plots) displays the same patterns

as for Caltech: as k increases, the improvements of GNNB wrt UNN are dampened, yet they

are now always in favor of GNNB, and the improvements are more significant.

Table C.5 compares the performances of GNNB, NNk and SGD1. This time, SGD1 beats

GNNB from the standpoint of all metrics. This observation has to be taken with a pinch of salt,

as the experimental setting for large domains disfavors GNNB. Indeed, GNNB, like UNN and

NNk, is a local classifier, and for such kinds of methods, the experimental setting amounts to

producing random edited nearest neighbors [38] by filtering out most (≈80%) of the dataset,

with consequences that are likely to be harmful as (i) drastic random editing increases sig-

nificantly the distances between nearest neighbors and impairs estimators quality and (ii) the

weak learner WIC used so far makes no selection among examples selected. On the other

hand, random subsampling may have minor effects on linear separators, and thus on SGD: for

example, when a linear separator exists with minimal margin γ, sampling Ω̃(γ−2) examples

(tilde hides dependences in other parameters) at random still guarantees with high probability

the existence of a linear separator with Ω(γ) margin and small true risk [15].

To get a more reliable picture of the performances reachable by GNNB on our largest do-

main, we have thus considered a naive optimization of the weak index chooser WIC in GNNB,

and tested it in an experimental setting computationally affordable for GNNB and less in dis-

favor than the former one. The new WIC in GNNB returns the index of the example with the
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NN GNNB SGD1

Acc. 20.92 30.16 32.20

F-m. 17.39 27.02 30.96

Rec. 23.39 34.32 35.53

Table C.5.: Results on SUN (conventions follow Table C.4).
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Figure C.8.: Left: frequency of cases among classes for the proportion of examples used per class by

GNNB; Right: GNNB
∗ (k = 200) vs SGD1 (conventions follow Fig. C.7).

largest current |δj|. This version of GNNB, GNNB
∗, is shown to be universally consistent in

Subsection C.4.4. To alleviate the negative effects of the experimental setting, we performed

a holdout estimation of GNNB
∗’s performances by training/testing on a random half/half par-

tition of the database, for 6000 iterations. This computationally intensive setting was not

applicable to SGD1, but fortunately we could check that the number of examples actually used

by GNNB
∗ (i.e. leveraged or reweighted) was comparable to that used by SGD1, so that both

algorithms had at least approximately the same amount of information for learning. This is

shown in Figure C.8 (left plot): we have recorded for each class the percentage of examples

actually used in training by GNNB
∗, and plotted the corresponding estimated density. The

expectation of this density is roughly 40%. Thus, 40% of the 50% of each class was used in

average by GNNB
∗, i.e. ≈54 examples, to be compared to the 50 used by SGD1.

The right plot in Figure C.8 summarizes the improvements of GNNB
∗ with respect to SGD1.

One sees this time that even when the recall of GNNB
∗ is smaller than that of SGD1, the accu-

racy is now comparatively significantly higher. While optimizing WIC in GNNB was not the

purpose of this work, this simple experiment displays that (i) there is significant room for fur-

ther improvement of GNNB while staying in the boosting/consistency regimes, and (ii) these

improvements are affordable in a large scale learning setting.
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C.7. Conclusion

We proposed a simple Newton-Raphson leveraging scheme for nearest neighbors to optimize

any even, twice differentiable proper scoring rule, with guaranteed convergence rates under

the boosting framework that compete with those known for non-gentle approaches [102]. To

the best of our knowledge, those convergence rates in the boosting framework are knew for

gentle boosting approaches. Experiments display that GNNB significantly outperforms UNN,

converging faster to better solutions. On small domains, GNNB performs on par with or bet-

ter than powerful non-linear large margin learners like non-linear SVM and Adaboost+C4.5.

Large domains, on which these latter approaches are ruled out for computational costs, dis-

play that GNNB provides a lightweight competitive alternative to stochastic gradient descent.

A byproducts of our experiments shows that manifold learning may be useful to assess global

qualitative comparisons of algorithms. As learning algorithms are rapidly becoming more nu-

merous and complex, this may be interesting for large-scale benchmarking, and might help in

the design of new algorithms.

C.8. Acknowledgments

The authors would like to thank the reviewers for insightful comments. Codes used (GNNB and

manifold learning) available upon request to R. N. and M. B. .

117


