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ELECTROMECHANICAL COUPLING OF DISTRIBUTED PIEZOELECTRIC
TRANSDUCERS FOR PASSIVE DAMPING OF STRUCTURAL
VIBRATIONS: COMPARISON OF NETWORK CONFIGURATIONS
BY

CORRADO MAURINI

(ABSTRACT)

In this work passive piezoelectric devices for vibration damping are studied. It is developed
the basic idea of synthesizing electrical wave guides to obtain an optimal electro-mechanical
energy exchange and therefore to dissipate the mechanical vibrational energy in the electric
form. Modular PiezoElectroMechanical (PEM) structures are constituted by continuous
elastic beams (or bars) coupled, by means of an array of PZT transducers, to lumped
dissipative electric networks. Both refined and homogenized models of those periodic
systems are derived by an energetic approach based on the principle of virtual powers.
Weak and strong formulation of the dynamical problem are presented having in mind
future studies involving the determination of numerical solutions.

In this framework the effectiveness of the proposed devices for the suppression of
mechanical vibrations is investigated by a wave approach, considering both the extensional
and flexural oscillations. The optimal values of the electric parameters for a fixed network
topology are derived analytically by a pole placement technique. Their sensitivities on the
dimensions of the basic cell of the periodic system and on the design frequency are studied.
Moreover the dependence of damping performances on the frequency is analyzed.
Comparing the performances of different network topological configurations, the advantages
of controlling a mechanical structure with an electric analog are shown. As a consequence of
those results, new interconnections of PZT transducers are proposed.

An experimental setup for the validation of the analytical and numerical results is proposed
and tested. A classical experience on resonant shunted PZT is reproduced. Future

experimental work is programmed.
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Chapter 1

Introduction

1.1 Background and Motivations

The control of structural vibrations is one of the foremost issues of mechanical engineering. Vi-
brations are undesirable for reliability, comfort and functionality of mechanical devices. Indeed,
they are a cause of material failure by fatigue, they generate noise that is disturbing for humans,
they impose a limit to the achievable precision in machinery, their oscillations cause instability in
aerodynamical systems, as happens for the wings of an airplane.

Traditional solutions to the problem are to utilize viscoelastic material to add damping to
the structure or to design the mass and stiffness distribution to control its dynamical behavior.
An alternative device for narrow band vibration damping is the Dynamical Vibration Absorber
(DV A). It consists of a spring-mass-damper to be coupled to the system to obtain a resonant
energy exchange and dissipation.

In the last decade many research efforts were devoted to study the applications to this field of
the significant electromechanical coupling offered by the new generation of piezoelectric ceramics
such as lead zirconate titanium (PZT'). In this context active and passive techniques have been
developed. Active controls use PZT materials as sensor and actuators to apply feedback control
to the structure. These achieve good performances, but they present the disadvantages of an high
power requirement, stability problems, and the need of a complex central unity for the implemen-
tation of the control law. Passive solutions suggest to utilize the two way piezoelectromechanical
coupling to transfer mechanical energy in electrical form and dissipate it in resistances by the Joule
effect. It has been show that resonant systems are more effective to this aim. In analogy to DV As,

piezoelectric transducers shunted on an inductance and a resistance can be bonded to a structure



to form a coupled highly dissipative system. Adjusting the electrical parameters, the RLC circuit!
can be tuned on a given mechanical mode with replacing it with a pair of strongly damped elec-
tromechanical modes. The advantages of this solution are its constructive simplicity, its intrinsic
stability and the total independence from the environment. Indeed, in principle passive devices
not only do not require power to work, but they can even be used to produce small amounts of
energy”. In practice the high inductor required to tune the mechanical system to the electric one
are frequently synthesized with electronic circuit that require a small amount of power to work>.
Resonant Shunted Piezoelectrics (RSP) are strongly preferable to the mechanical analog DV As
because of their low cost, low weight, low space requirements and for their flexibility. Indeed, the
electrical parameters can be easily adjusted to match the characteristics of the structural mode to
be damped. Exploiting this aspect, semi-active systems in which the values of the electrical param-
eters are chosen by a real-time control unit have been proposed. Industrial applications of RSPs
are now available (see for example www.acx.com where smart skis and smart bikes are illustrated).
The greatest disadvantage of these devices are that they are effective only in a narrow band of
frequencies because of their one-degree-of-freedom resonant nature. To bypass this problem piezo-
electric patches with multiple shunts, each one of which can be matched on a mechanical mode,
have been proposed with good results.

An innovative idea presented by dell’Isola and Vidoli consists in establishing a distributed
piezoelectric coupling between continuous mechanical and electric media to form a ”smart struc-
ture”® capable to be adjusted for an optimal broadband damping. They proposed to think about
controlling a continuous mechanical structure with its electrical analog to enhance a complete com-

munication between the two systems. In the present work this idea is studied and implemented.

1.2 Literature Review

Hagood and Von Flotow [30] in 1991 presented the first complete analytical and experimental
study on resonant and resistive shunted PZT's, proposing an optimization procedure analogto those
adopted for Dynamic Vibrations Absorbers in classical texts on vibrations such as Timoshenko [10].

The subject has been developed also by Del Vescovo in [28], [29] presenting comparisons between

'The capacitance is given by the physical nature of PZT materials, that are dielectrics.

2Energy harvesting by PZT transducers is one of the most recent reaserch topics.

3Let us underline that this power consumption is related only to the particular actual realization of a passive
device.

*Let us recall one of the most pertinent definitions of ”smart structure”:

A smart structure is a material systems with intelligence and life features integrated in the microstructure of the
material system to reduce mass and energy and produce adaptive functionality.



experimental results and numerical prediction. Details about the optimal design are given in [32]
and in [33] by Steffen and Inman, both for active and passive control techniques. They propose
also the simultaneous use of DV As and RSPs. Multiple shunts are implemented by Hollkamp [39].
Lesieutre [31] presented an useful review on shunting circuits (inductive capacitive, resonant and
switched) giving design indications for applications. Active controls using piezoelectric materials
as sensors and actuators are proposed in [40] and [41], semi-active techniques in [42] and [43].

Models of piezoelectric materials as actuators in unidimensional structures have been developed
by Crawley in [35] and [36]. On the other hand their behavior as sensor has been investigated by
Shiroy and Chopra in [37]. A coupled PiezoElectroMechanical model is discussed in [34], where
also a Finite Element implementation is presented. Emphasis on experimental testing is given in
[38].

Dell’Isola and Vidoli proposed a distributed coupling between mechanical and electrical continua
to dissipate mechanical energy in the electrical form. In [20] they present a continuum model
of a piezoelectromechanical truss beam coupled with an electrical transmission line studying its
application for the suppression of longitudinal and torsional vibrations while in [21] they look for
solutions for the bending modes. The idea of the distributed passive control is then applied in [22]
to study, by means of an homogenized model, the modal coupling between a beam and a second

order electric transmission line.

1.3 Ideas and Research Objectives

The goal of the research project of which this work is an integrated part is to study and realize
electromechanical systems for distributed passive control of vibrations in mechanical structures by
piezoelectric transducers and electric networks, following and improving what has been done in
[20], [21], [22]. In this context theoretical, numerical and experimental work is required.

The physical idea to be developed is to couple by means of PZT transducers a given mechanical
continuum with an electric continuous medium possessing analogous characteristics, in order to
realize an electromechanical energetic exchange for a wide range of frequencies. Indeed, if waves
propagate in the same fashion in two media and if they have been tuned for a given wavelength,
hence they are tuned for all. In this way one of the crucial issues of collocated passive control, the
narrow band behavior, can be solved.

To implement this idea in engineering applications it is necessary to

1. find electrical analogs of mechanical systems



2. realize the coupling between the analogous electrical and mechanical systems
In finding the analog electrical continuum two difficulties are encountered:

1. the speed of propagation of energy in electrical continua is enormously different to that in

mechanical media

2. the physics of electromagnetism and mechanics are not the same. There can be physical

mechanical phenomena that have not an electric equivalent and vice-versa.

For these reasons it is required to synthesize in an approrimative fashion the electric media by
a lumped model. Then the coupling between the mechanical continuum and the electric lumped
periodic system can be achieved by means of an array of piezoelectric transducers. With this idea
we will focus our attention on periodic electromechanical systems similar to that whose basic cell

is sketched in figure 1-1.

Figure 1-1: Periodic piezoelectromechancial beam

While a parallel study on electrical analogs of mechanical systems is carried on, the present

work has the following main objectives:

1. to establish both refined and homogenized models of the periodic electromechanical systems
with distributed piezoelectric coupling. Modular dissipative piezoelectromechanical systems
composed by a mechanical continuum connected to a lumped electric network by means of

an array of PZT transducers will be considered. It will be necessary to develop

(a) a detailed model of the interaction between piezoelectric transducers and structures that
underlines the two way electromechanical coupling, understanding how and by which

hypotheses it can be simplified,



(b) develop a refined model of the modular piezoelectromechanical system,

(c) develop following [20], [22] homogenized models, identifying the constitutive relations by

those found for the refined ones.

2. to study and compare the qualitative features of different types of electric networks for the
suppressions of mechanical extensional and flexural vibrations. In particular, considering

modular piezoelectromechanical media, we want to

(a) optimize the value of the electric parameters in the networks for a series of different

topologies to maximize the vibration damping,

(b) perform a scale analysis, understanding the influence of the ratio between the length of
the basic module and the characteristic wave lengths on the value of the optimal electric

parameters and in the performances of the system for the vibration damping,

(c) understand why and how optimized electrical systems with different topologies have

different performances to damp mechanical vibrations.

3. to realize and study experimentally the proposed piezoelectromechanical systems. It will be

necessary to

(a) realize prototypes, facing the related technological problems
(b) design and test an experimental set up and measurement procedure for their testing

(c) verify experimentally the analytical and numerical results.

Constructive critical feedback between the experimental and modelling aspects will be crucial
in this work. Indeed, in the research project the present is the first step toward an experimental

realization of the proposed devices.

1.4 Outline

The present paper can be structured in three main parts. In each of them one of the three main
objectives that have been outlined in the previous section will be treated.

In the first part composed by chapter 3,4,5 models of piezoelectromechanical systems will be
developed. In particular, in chapter 3 the attention will be focused on electric systems presenting
and modelling the electric networks that will be utilized for vibration damping. Some words on

electromechanical analogies will be spent. In chapter 4 a refined unidimensional model of an elastic



beam on which PZT patches are bonded will be given. The system will be considered as a multi-
layer beam and its model will be deduced by the three-dimensional one imposing a given mechanical
and electrical kinematics. The equations of motion will be furnished both in the strong and weak
form, having mind future studies involving the determination of numerical solutions also for the
refined model of the proposed smart structures. The hypotheses and the configurations for which
the interactions between elastic and piezoelectric layers can be reduced to a simple model will be
underlined. In chapter 5 the results achieved in chapter 3 and 4 will be applied to assemble the
refined model of a periodic unidimensional piezoelectromechanical medium composed by an elastic
beam coupled by means of a distributed array of PZT transducers to a lumped electric network. A
continuous model of the periodic system will be derived by means of an homogenization procedure.
Both the cases in which the electrical variables are coupled to the mechanical extensional and
flexural behavior will be studied.

In the second part (chapter 6), the homogenized model previously deduced will be utilized to
optimize the electrical networks for the vibration suppression and to infer important thumbnail
informations about the characteristics of the system. A wave approach will be followed to perform
a comparative analysis between different network connections. We will study the dependence of
the optimal electric parameters on the dimensions of the basic cell of the periodic system, their
sensitivity with respect to a change in the considered wavelength and the performance of the optimal
systems for vibration damping.

In the third part (chapter 7) the problem of the experimental realization and testing of the pro-
posed piezoelectromechanical system for the suppression of mechanical vibration will be addressed.
The realized experimental apparatus and a tested measurement procedures will be described. The
results of a classical experience on shunted PZT's, that has been reproduced to validate the exper-
imental setup, will be presented. Finally future experiments will be designed.

In the following chapter the basic concept of continuum mechanics and piezoelectricity will
be recalled. Moreover, referring to [3], the notation and the basic features of the Virtual Power

Principle, whose modelling approach is adopted, will be presented.



Chapter 2

Preliminaries

In this chapter the basic concept of the kinematics of a continuum body will be recalled. Some words
will be spent on the meaning and the formalism of the Virtual Power Principle that will be largely
used in this work to derive the balance equations of dissipative electromechanical discrete and
continuous systems. Finally the constitutive behavior of a piezoelectric material will be discussed

furnishing applicative examples.

2.1 Continuum Kinematics

2.1.1 Body, References, Coordinates

A body can be identified with the closed region of the Euclidean space £ that it occupies at a given
instant in time. We will call this region the reference configuration B and the points p €B material
points. Once a fixed Cartesian reference frame C = {o, e;,e,, €3} is selected each point p can be
associated with the oriented arrow op. Thus the space of points p can be structured as vector space
Y and each point can be represented also by the coordinate representation of op in C.

e, 4

p
¢

P
@)

> e,
D P>
e,

Reference frame



We will denote by

€= {617 62763} (21)
the fixed basis for V and by
b1
p =OD =piel +p2ex+pses =epe =¢ | po (2.2)
P2
the vector p =op with coordinates p. in the e basis.
We will introduce in V a scalar product ” - 7 that is a bilinear, symmetric, positive definite

application between pairs of elements of V. If not otherwise specified, the scalar product is defined

such that

el ey ej-ey e;-es

e-e .= € -€e; €ey-ex €2-e3 :I

Leg-el €3 - €9 eg'ng

where I is the third order identity matrix.

2.1.2 Deformations of Continuum Bodies

Definition 1 A deformation of a body B is a mapping

f : B—=E&

f : p—x:=f(p)

For the physical requirement of the impenetrability of the bodies and its continuity, f(p) must

be a smooth 1-1 mapping from B to a bounded region of £. An important role in the description

of a deformation of a continuum body is played by the deformation gradient with respect to p

F:p —F(p):= Vi(p)

(2.4)



whose determinant represents the local change in volume under f. We must require det(Vf(p)) #0

for each p € B. We will assume

det(VE(p)) >0, for each p € B. (2.5)

Definition 2 Let V be the three dimensional vector space of translations of B. The displacement

field associated to the deformation f is a function

ua : BV

o

p—u=1(p) :=f(p) - p

Remark 1 The displacement gradient respect to p is

Vu=V(f(p)—p)=F -1

F,Vu are linear applications from V to V we say F,Vu € Lin(V). In particular F € Lin™(V)

Definition 3 A deformation f is called an homogeneous deformation if F(p) is constant for each

peB

Let us introduce in the vector space of oriented arrows the norm ||-|| induced by the ordinary

scalar product. Thus it is possible to define the distance between two points p,q by means of

IPdll =llp—al-

Definition 4 A deformation f is a rigid deformation if it preserves distances between any pair of

points of the body B.

It is possible to show that the deformation gradient of a rigid deformation is skew-symmetric.
Expanding a generic deformation in the neighborhood of a point q € B we can approximate its

behavior as the superposition of a translation and an homogenous deformation

f(p) =f(q) + F(q)(p —q)+o(p—q) (2.6)

The deformation gradient F can be decomposed in its symmetric part E and skew symmetric

part W as following

F=D+W (2.7)



where

(F+F7T) (2.8)

(F—F7) (2.9)

o=l =

In the same way the displacement gradient Vu can be decomposed as

Vu=S+W (2.10)
where
S = I (Vutvd? 2.11
2
1
W = E(Vu—VuT) (2.12)

and S is called the infinitesimal strain
Thus each deformation can be locally decomposed in a rigid deformation and in a pure defor-

mation as

f(p) = f(q) + D(q)(p—a) + W(a)(p— q)+o(p —q) (2.13)

where

f(a) + W(a)(p —a) (2.14)

is the rigid component of f and

D(a)(p —a) (2.15)

is the pure deformation. We denoted by o(p —q) higher order terms in the Taylor expansion of
f(p) in a neighborhood of the point g

If dynamical processes are considered, an appropriate terminology must be introduced.

Definition 5 A motion of B is a smooth one parameter family of deformations fi(-) defined on B
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fort in a given real interval I. It can be represented by the function

x : BxZI—=E&E

(pt) — x=x(p;t) := f,(p)

Definition 6 The velocity field v(p,t) for a given motion x(p,t) is defined as

v(p) = () =(p.1)
Obviously the time derivatives of all the fields previously introduced can be defined.
Definition 7 Let p and q be points of the euclidean space €. A velocity field v(p,t) is a distributor
if
v(pt) =v(a)+ @)(p—aq)

where (t) is a skew-symmetric linear transformation.

The velocity field v(x,t) is one of a motion described by

x = Q(t)(p — 0) + (1) (2.16)
with
QHQ (1) =1 (2.17)
and
) = QA" () 2.15)

Definition 8 A tensor valued field in R? is said to be objective if and only if its components

transform tensorially with respect to (2.16).
Let C be the linear space of the distributors C.
Remark 2 Since each C € C is the superposition of a translation and a rotation in the euclidean

space &, the dimension of C is 6.
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Definition 9 A motion belonging to C is said to be rigidifying motion if B is a deformable contin-

uum.

2.1.3 Beam Kinematics

Let us consider in the Euclidean space £ a straight line A, called axis, a point O on it, called origin
and a one parameter family of bounded plane regions Sz, x € Z C R, called sections. It is now
possible to fix a Cartesian reference frame C = {O, e1, e5,e3}, with origin O and the e; — axis
parallel to A.

A straight axis beam B can be geometrically described as the union of sections S, for x in some

closed interval Z of R. Formally

B:=JS. (2.19)

el

The oriented arrow OP that is an element of the vector space V of translations in &£, can be

associated at each point p € B. In the reference C
OP = pie1+pae2+p3es (2.20)

and the set of three real numbers {p;,p2,p3} is the coordinate representation of OPinC. OP can

be partitioned in its orthogonal projection on the axis A
OPa = pie1 (2.21)

and its orthogonal projection on the section S,

s 1= P,P = pyey-+pses (2.22)
such that
OP = OF, + F,P (2.23)

where OF, is an element of the three dimensional vector space V and s := Paﬁ lies in the two
dimensional vectorial space W of the translations in the plane.

Considering B the reference configuration of the beam, a motion can be mathematically de-
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scribed by the smooth one parameter family of smooth maps
x(-,t): B— By (2.24)

such that each point p in the reference configuration B is mapped into its position q in the actual

configuration B; at time ¢ by
X = x(p,t) (2.25)
The displacement vector field is naturally defined as follows
u(pt) =X —p=x(pt) —p (2.26)
Remark 3 In the basis e = {e1, es,e3} u(pa,t) can be written as
u(p.t) =u1(p1,p2, p3, t)er + ua(pr, p2, 3, t)ex + us(p1, p2,p3, t)es
We will use the following notation

u1(p1, p2, 3, t)
u(p7t) =€ (u(p7t))e =€ u?(plapQ7p3at)
u3(p17p27p3at)

where e is the row vector {eq, €y, €3} and the column vector (u(p,t)), is the coordinate representation

of u(p,t) in the basis e. In the same fashion

J1(p1, p2, p3, 1)
X(pvt) =€ (X(pat))e =e fQ(p17p27p37 t)
{ f3(p1, p2, 3, 1) J

Moreover, given a function g(p1,p2,p3,t), we will define

g(p1,t) := g(p1,0,0,t)

The partition of OP induces the definition of the one parameter family of applications

Gi(s) :=x(p,t) — X(Pa, t) (2.27)
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such that

X(pat) = X(paut) + Gt(S). (228)
where
y41
p.=0F=c¢| 0 |,s=p-p, (2.29)
0

The constraints imposed on G; play a fundamental role in beam modelling. We will assume
that the axis can move only in the es,e3 — plane and that Gy is the composition of a in plane

uniform deformation Uz and a rotation R; around the e2 — axis. Thus
Gt(V) = Rt (Ut(V)) (230)

where U : W — W is linear and R;: W — V has the following coordinate representation in the

basis e = {e1,e5, €3} for V and ¢’ = {e2,e3} for W

0 sin(6)
R)S={1 0 (2.31)
0 cos(@)

Definition 10 A beam has no shear deformation if the rotation R, of the section S, is such that
in the actual configuration the angles between the sections and the axis remain the same those in

the reference configuration.

We will linearize the kinematics about the reference configuration and we will assume that the

beam has no shear deformability.

Claim 1 In the linearized kinematics the rotation Ry has the following coordinate representation

in the e — e’ —bases

0 0
(R)S=|1 0

[0 1]

Claim 2 In the linearized kinematics of a beam with no shear deformation the rotation angle of

14



R; is

p_ _Orsp,t) _ Ous(pit)

op1 op1

Finally we can write the coordinate representation of the motion beam without shear deforma-

tion in the linear approximation

oz,
21(p1,t) 0 —cmghud
Un U b2
x(p;t)) = 0 + 1 0
U1 Usp D3
| @3(p1,t) 0 1

[ s}

71(pr,t) — 2L (p Uy, + pyUny)
= p2U11 + p3Us2
x3(p1,t) + p2U2a + p3Uaz

| I—

Remark 4 In the hypotheses of rigid sections U =1 and

x1(p1,t) — 2L,

x(pt) = e 2 (2.32)
z3(p1,t) +ps3

ui (pr,t) — 24y

u(pit) = e 0 (2.33)

U3(p1,t)

2.2 Virtual Power Principle

2.2.1 Introduction

Our goal is to deduce homogenized and refined models of electromechanical dissipative systems.
The variational principle of virtual power, that is an evolution of D’Alembert principle, leads us to a
weak formulation of the problem that is general enough to consider the electromechanical coupling
in dissipative processes. In this context the equilibrium is expressed by a balance of powers. The
basic idea of this formulation is to describe forces not by their vectorial representation but by means
of the power they exert for a given velocity field'. In other words once given the normed vector

space V of virtual velocity fields v, the forces f acting on them are determined by the scalar values

! The terms velocity, kinematics and force are intented in a generalized meaning.
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assumed by the linear functional

P . V=R
v — P(v) = (f,v)

In this way the duality via a bilinear form (-,-) between the linear vector space of forces and virtual

velocities is the way in which the forces are defined.

2.2.2 Definitions
State variables

Discrete and continuous systems are distinguished by the fact that at a given instant in time the

configuration of a discrete system is given by a set of k constants
X={x1, ...,Xy} (2.34)
while the configuration of a continuum body? B is given by a set of h fields defined on B

Uo={u1(p), -, up(p)} (2.35)
and eventually by their spatial gradients
Ui,....Upy
where
Ui = {V'wi(p),..., Viun(p)},m < h,i=1..n (2.36)

The local state of a continuum body in the neighborhood of each point must be specified explicitly
and its description will be as good as the greatest gradient order n considered (the concept of a
Taylor expansion of each field u;(p) should be kept in mind). The choice about which and how
many spatial gradients to consider is a constitutive assumption. A theory which considers n spatial
gradients is called n — th gradient order theory.

On a continuum body a set of boundary conditions must be prescribed. In the approach we

2Here as before a continuum body is identified with the region B of the Euclidean space that it occupies at a fixed
time instant to
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are following only the boundary conditions prescribed directly on the elements of U = Uy, ...,U,
(essential boundary conditions) must be explicitly considered. They will be in the form of n.
equations (BC), in general non-homogeneous, that must be satisfied on a part of OB and they
appear in the definition of the functional space in which the virtual velocities must lie.

We will focus our attention on a system S constituted by a continuum body B with a set of

essential boundary conditions BC. The state of S at a fixed instant in time is given by the set
S ={Uo,....,Un}. (2.37)

We will call S the set of the state variables of S.

Example 1 In a first order gradient theory the state of an electromechanical continuum in the

quast-electrostatic approximation can be described by

S ={u(p,t),6(p,t), Vu(p,t), Vo(p,t)},p €B (2.38)

where u(p,t) is the vectorial valued field describing the mechanical displacement from the reference

configuration and ¢(p,t) is the scalar valued field of the time primitive of the electric potential.

Actual and Virtual velocities

The elements of S are all functions of time and the set of their time derivatives
V ={Vo, ... Vui} (2.39)
where
Vi = {Via (p), ..., Vi (p)},m < h,i=1..n (2.40)

are a velocity description of S. Here we will distinguish between the velocity actually experienced
during a motion (actual velocities) and the virtual velocities that will be denoted by a superscript
77 The virtual velocities do not need to satisfy the equation of motions, they are required only to
be enough smooth and to satisfy the homogeneous version of the prescribed boundary conditions,
otherwise they are arbitrary. We will denote by V the vector space of the virtual velocities.

On the actual and virtual velocities the same smoothness is required, but in general the func-

tional spaces in which they lie are different because of the boundary conditions. In fact the actual

velocities 1;(p) must satisfy the prescribed essential boundary conditions while the virtual veloci-
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ties are required to satisfy their homogeneous version. For numerical application it is useful to have

the actual and virtual velocities in the same space. Thus if non-homogenous boundary conditions

are present it is convenient to restate the problem converting them to an homogeneous forms3.
Focusing our attention on a first gradient order theory, let us denote the vector space of virtual

velocities by
V={v], Vv tiz1..n = {85, V3i}iz1.m (2.41)

The virtual velocities that are objective are called objective virtual velocities. Let’s denote by Vo,

the space spanned by them.

Example 2 In an electromechanical continuum in the quasi-electrostatic approximation and for a

first order-gradient theory the following set of virtual velocities can be chosen

VY = {0 (p,t), ¢*(pst), V' (pst), Vo (1)} (2.42)

Virtual Powers

The virtual powers are defined as a linear functional defined on the space V of the virtual velocities.
P:V—-R (2.43)

Thus the virtual powers are in the dual space of V. The virtual velocities are test functions for the

forces defined in the distributional sense by means of the corresponding powers.

Virtual Power of Internal Forces The virtual power of internal forces is characterized by the

following

Axiom 1 The wvirtual power of forces internal to a system B vanishes for all rigidifying motions

of B considered at any time t.

Proposition 1 The virtual power Pint of the internal forces ® exerted within a continuous medium

that occupies, in the reference configuration, the region B of the euclidean space is expressed by a

3 A simple change of variables is required.
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continuous linear functional on the normed* linear space Vobj. That is
Pint(B,V) = <(I)7 v*>B ) vt € vobj-

Thus to formulate an a-priori theory of a continuum it is necessary, after having chosen the
space V, to find Vp;. In the present work we will specialize already existence theories in technical
cases and we will write directly the expression of the internal power without facing the problem of

finding Vop;.

Example 3 In an electromechanical continuum in the quasi-electrostatic approzimation and for a

first order-gradient theory the virtual velocity are (2.42) and

Varj = {8*(p,1), V¢ (1)} (2.44)

where

Sk o % 1 .k ok
S*(pit) = sym(Vi' (pyt)) = 5 (VI (p,1) +VI* (p,1)) (2.45)
Hence the virtual power of the internal forces is
Pint(B,V) = Pint,m(B,V) + Pinte(B,V) (2.46)
= <T, S*(pvt)> - <J ,Va'ﬁ*(p,t)> 5 (2.47)

where the tensorial field T and the vectorial field J are defined as the quantities on which S*, V(;b*
expend power. Physically T is the tensor that describes the tensional state of a continuum, while J
can be interpreted as the time derivative of the electric displacement vector D, that is a displacement

current inside the dielectric body.

Virtual Power of External Forces As the external forces are classified as at-distance, or

volume, forces and contact forces, so are the respective powers.

Proposition 2 The virtual power of distance, or volume, forces By exerted in a continuous medium

occupying, in the reference configuration, the region B of the euclidean space &, is a continuous

* The norm induced by the scalar product (-, ‘) is considered.
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linear functional on V.

Pa(B,V) = (P, v%) 5 := / By v*
B

Proposition 3 The virtual power of contact forces B, exerted in a continuous medium occupying,
in the reference configuration, the region B of the euclidean space £, is a continuous linear functional

on V.

Pe(0B,V) = (®,v*) g5 ::/ B. - v*
oB

The external forces can expend power in every type of virtual velocities, included the non
objective ones. Often in applications only a few types of them are present.

Here we will considered the inertial forces as external forces despite that they are prescribed
by something similar to a constitutive relation, while contact and volume forces are given by the

environment in which the body is embedded.

Proposition 4 The virtual power of inertial forces P, experienced by a continuous medium occu-
pying the domain B of the euclidean space £ in the reference configuration is a continuous linear
functional on the virtual velocities containing only time derivatives of the state fields and not their

gradients.

For example, in the purely mechanical case we will impose

Po(B, v%) = A i v (2.48)

where p is the mass density for unit volume in the medium. We underline that it is necessary to
differentiate the notation between the actual velocities v and the virtual velocities v*. The minus
sign in the definition is due to the fact that they are considered as external forces.

The virtual power of all the external forces is given by the sum of the three contributions
Peat(B, v*) = Pa(B,v*) + Pe(0B, v*) + Puo(B,v™) (2.49)

Example 4 Let B be an electromechanical dielectric in the quasi-electrostatic approximation. The

virtual velocities are (2.42) and the virtual power of the external forces can be written as
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Power of distance forces

Pd(va*) = Pd,m(Bau*(put)) (250)
= (b,u*(pt)) (2.51)

Power of contact forces
Pe(0B,v") = Pem(9B, 67 (p.t)) +Pec(0B, 6 (p)) (2:52)
= (£ () + (7.8 (p1)) (2.53)

Power of inertial forces
Pa(0B,v*) = Pam(0B,0*(p,t)) (2.54)

Hence the total power of the external forces is

Peat (B, v*) = Pa(B,v*) +Pe(dB,v*) + Po(B, v*) (2.56)
Pd,m (B7 1.1* (pvt)) + Pc,m (887 ﬁ*(p7t) ) +
+Pee(0B, ¢ (p,1)) + Pam (0B, 0*(p,t))

_ ( [0 (D,1) + [ F - 0 () + )
+ Jos @ (D) + [5—pi(p.t) - " (p.t)

2.2.3 Statement

It’s finally possible to enunciate the principle of virtual power.

Proposition 5 Principle of Virtual Power. In a Galilean reference frame, and for an absolute
Newtonian chronology, the virtual power of the internal forces of a system B balance the virtual
power of external forces impressed on the system, for any smooth virtual velocity field satisfying the
homogeneous version of the prescribed boundary conditions. Thus the following equality must hold

for each smooth v* satisfying the homogeneous version of the prescribed boundary conditions
Pz’nt(Ba U*) = Pea:t(87 U*> (257)

Example 5 Let B be an electromechanical dielectric in the quasi-electrostatic approximation. In a
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first order gradient theory the virtual velocities are (2.42), the virtual power of the internal forces
is (2.46), the virtual power of the external forces is (2.56). Hence the power balance is expressed by

Pmt,m + Pint,e - Pd’m + Pc,m + Pc,e + ,Pa,m (258)
+ [ 3-V (pit) + fopf -0 (D,t) + [z —pli(pit) - 0¥ (p,t)

2.2.4 Considerations

From a kinematical description of the physical system by means of the principle of the virtual
power, once considered the constitutive equations, a mathematical formulation of a boundary value
problem can be obtained.

The formulation of a physical problem by means of the principle of the virtual power allows us

to

1. Obtain a weak formulation of the problem. It is given by the statement of the principle power

itself when the constitutive relations are considered.

2. Derive a Galerkin Formulation of the problem restating the principle of the virtual power
performing a change of variables in order to have only essentially homogeneous boundary

conditions.

3. Obtain numerical approximate solutions for the problem by means of a Galerkin Approxima-

tion. For example the Finite Element Method can be applied.

4. Derive the strong form of the balance equations rewriting the power balance with some inte-
gration by parts and considering that the virtual velocities are arbitrary. It must be underlined
that, dealing with non-regular physical systems, a strong formulation of the equilibrium equa-
tions is not convenient because, while an analytical solution cannot be achieved, a numerical

solution of the problem can be obtained directly as in 3.

5. Write the actual power balance for the system once the virtual velocities in (2.57) are substi-

tuted by the actual velocities.

6. Find a correspondence between the forces appparing in two different models of the same phys-
ical system once a kinematical map between them is given. It can be obtained imposing that
corresponding forces expend the same power in corresponding virtual velocities. With this
procedure constitutive equations of homogenized models of periodic systems can be evaluated

from refined models. The latter possibility is central in this work.
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2.3 Piezoelectric Materials

In a piezoelectric material mechanical phenomena are coupled with electrical ones by means of

constitutive relations. Here we will recall the constitutive equations of Linear Piezoelectricity.

2.3.1 Linear Constitutive Relations

The state of a piezoelectric material is no longer determined only by the mechanical state variable.
Electromechanical interactions are not negligible and it is necessary to introduce new fields to
describe the electric state. We will consider the quasi-electrostatic case in which coupling between
electrostatic and magnetic fields can be ignored and only the electrostatic state is included in the
model. Different choices of the electrical state variable are possible (electric displacement vector
D, electric field vector E, electric potential ¢, ...).

The coupling between the electrical and mechanics fields is realized by means of the constitutive
relations. The constitutive laws can be derived from a postulated expression of the Gibbs free energy
and their explicit formulation depends upon the chosen mechanical and electrical state variables
(see [7]). In the following we express the vectorial and tensorial quantities in a fixed orthonormal

reference C ={0,e} with the indicial notation (repeated indices are intended to be summed).

Claim 3 The Gibbs free energy for a piezoelastic body is the scalar function
G = —1T3S;j — DpE}y

where the electric field vector En and the mechanical strain tensor S;; are intensive state variables

and the electric displacement vector and the mechanical stress tensor are extensive state variables.

Depending upon which state variables are chosen as independent the following four equivalent

expressions of the constitutive relations can be derived®:
e (S, D)-type (extensive type)

Ti; = Cgklskl_hijnDn

(2.59)

®One can easily derived by the the other by simply rearranging the system
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where

cD = oG Ay — _0G
l]kl 8&]6Skl D n 8SklaD’ﬂ

(2.60)
S _ |_90G
/an - |:8Dm3Dn] S
e (T, E)-type (intensive type)
Sz'j = 55lekl + diann (2 61)
Dy = dmiTij + €L Ep
where
E _ |_0G R
Sijkl = |:8TijaTkl:|E d’un o [aTklaE"] (2.62)
S — {L]
mn OEm OFEn S
e (T,D)-type (mixed type)
S@'j = Sglekl + giijm (2 63)
Em = —gijmTij + 8L, Dy,
where
Sgkl = |:3TijaTkl:|D Yign = [WklaDn] (2 64)
y .
Bmn = |:6Dm8Dn:|S
e (S, E)-type (mixed type)
Tz’j = CiEjlekl —eiijm (2 65)
Din=¢ijmSij+es,, En
where
Ciipt = [ﬁ%] Cijn = [35 O ]
] kl | B k1 n (266)
S [i]
mn OEmO0E, S

Remark 5 The state variables S, T,D, E can be replaced by other physical quantities. In these the
constitutive relations can be rewritten considering the expressions of the new variable in term of

the old ones.



Example 6 If the time primitive ¢ of the electric potential is chosen as state variable, the consti-
tutive equations should be expressed in term of the pair of electric variables (¢,J). Since
09

Ep = P Jm=Dp, (2.67)

the (S, E)-type relations becomes

L R o Ay
Tz] = CiEjlekl_ezjmawm¢

. g (2.68)
szeijmsij‘i'ﬁgmgo_;t o

2.3.2 Voigt Notation

Piezoelectric materials present a particular symmetry: they are transversely isotropic with respect
to an axis, called the polarization axis P. If a reference system is oriented according to that sym-
metry, the parameters required to define the coordinate representation of the constitutive relations
are drastically reduced®. Moreover adopting a particular notation, valid only in the fixed reference,
the material characteristics can be given in a matrix form.

Let us orient a reference C' = {O, e} such that the e3 — axis will be parallel to the polarization
direction P and let us denote with 1,2,3 the directions associated to e, ez, es. If the following
correspondence between each pair of indices ij of the tensorial notation and a index r of the so

defined Voigt-Kelvin notation is introduced

11—1 22— 2 33 —3
23=32—4 13=31—5 12=21 —6

(2.69)

the constitutive equations assume a simpler form and a matrix representation of them will be

possible.

Remark 6 The experimental data for the constitutive behavior of the piezoelectric material are
given in the Voigt notation and in particular in the intrinsic (S, D)-type or alternatively in the

mized (S, E)-type.

Example 7 The constitutive equations of the (S, E) — type for a linear piezoelastic material, ex-

SBecause of the transverse isotropy the piezoelectric constitutive equation must be invariant under the group of
rotations around the polarization axis.
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pressed in the tensorial notation by (2.65), in the Voigt notation becomes

S =sET +dE

(2.70)
D=dl +'FE

where now S,T are 6x1 matrices, E, D 3x1 matrices and s¥,d, €l are 626,623,323 matrices ex-

pressed by
-sﬁ sg s;3 0 0 0 ]
sbosE osEo0 00 0
GE _ 33El 33EQ s 0 0 0
0 0 0 sF o0 0
0 0 0 0 s 0
0 0 0 0 © 2(st) — sb)
[ 0 0 ds1 |
0 0 ds1
e 0 0
0 0 dss T
d = € =10 €5 0
0 dis O
{ 0 O 6§3J
ds 0 0
| 0 0 0 |

The zeros entries in the matrices are due only to the symmetries.

2.3.3 Uniaxial States

Frequently particular physical situations allow to neglect the influence of some secondary phenom-
ena on the main aspects that one wants to model, consequently the number of variables needed to
describe the state of the system can be reduced. Here we will give the definition of some of those
situations and we will derive the corresponding constitutive equations, in order to use them in the

following sections.

Definition 11 A tensional state is called uniazial along the i — axis if all the stress components

vanish except the one along the i — axts. Using the Voigt notation, a uniaxial tensional state in the

1 — direction s characterized by

Ih=T3=Ty=1T5=1=0
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Definition 12 The electrostatic state is called uniaxial along the i — axis if all field components
not parallel to the i — direction are zero. Using the Voigt notation,a uniaxial electrostatic state in

the 3 — direction s characterized by

E1=F,=0,D1=Dy=0

In the following we will focus our attention on the piezoelectric material with a uniaxial ten-
sional state along the 1 — direction and a uniaxial electrostatic state along the 3 — direction. We

characterize this situation as follows:

Claim 4 In a uniaxial stress state along the 1 — direction and a uniaxial electrostatic state along

the 3 — direction, equation (2.70) in the Voigt notation becomes

St| st ds Th @.71)
Ds ds1 653 E3

Claim 5 In a uniaxial stress state along the 1 — direction and a uniaxial electrostatic state along

the 3 — direction, equation (2.63) becomes

S s T
L 1 g3 1 (2.72)
Es3 g1 Ok Ds
In following sections we will often use the inverse of the (2.72) that is
T ck —€31 S1
=| M (2.73)
D3 €31 6353 E3
where
E _ 1 S _ —dRitedss]
ATSE WTTOR (2.74)
ez =L
S11

2.3.4 PZT Transducers

In this work we will refer to a piezoelectric transducer as a specimen of polarized PZT material
whose surfaces are plated in order to generate a electric field inside the body once a potential
difference is applied between them. These conductive surfaces are called the electrodes. Depending

upon the geometrical shape, the direction of polarization, and the direction along which the electric
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field is applied, there are a great variety of PZT transducers able to couple the applied electric field
with the mechanical shear or normal modes.

For applications to vibration control the most common configuration is the one in figure 2-1
where the transducer is constituted by a thin sheet of PZT material polarized along its thickness.
Since the thickness t, is usually 10 — 20 times smaller than the transversal dimensions this type of
transducer can be treated as an essentially two dimensional object. When a voltage difference is
applied between the two electrodes an electric field is induced along the 3 — direction and by the
relations (2.65) a constant mechanical pre-stress along the 1 and 2 directions is generated. If no
forces are applied on the lateral surfaces the result of the applied field is a uniform contraction or

elongation in the 1 — 2 plane.

Plated Surface

Direction of Polarization

Figure 2-1: PZT sheet working by 3 — 1 effect

When uniaxial stress states are considered the behavior of the PZT sheet is completely described
by relations like (2.73). The manufacturers usually provide the performances of the PZT sheets
giving the blocked force and the free elongation. These two quantities refer to a unidimensional
model of the transducer. The blocked force is defined as the force exerted when the ends of
the actuator are fixed and a given voltage is applied between the electrodes; the free elongation
is the elongation experienced in the relevant direction for a given potential when no forces are
applied. These characteristics can be derived also integrating equation (2.73) in order to get global

constitutive relations of the type

F kmm  kme | | AL
= fom (2.75)

Q kem kee V

where AL is the total elongation, V, the applied voltage, F, the resultant force applied on the lateral
surfaces and @, the charge accumulated on the electrodes (see figure 2-2). Typical numerical values

of the characteristics of a PZT transducer working by 3 — 1 effect are given in figure 2-3.

28



Figure 2-2: PZT sheet working by 3 — 1 effect.

Transversal Dimensions 5-10cm
Thickness 0.1 mm
Force 50-100 N
Displacement 1-10 fum
Voltage 10-100V
Resonance frequency 10.000Hz

Figure 2-3: Typical numerical values for the characteristics of a PZT transducer.
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Chapter 3

Electrical Systems

The passive control of mechanical vibrations by means of PZT transducers is based on the piezo-
electric coupling between a mechanical structure and an electric network. In this chapter the basic
notions about electrical systems will be introduced focusing our attention on those aspects that will
be useful in the following developments. After spending some words on electromechanical analogies,
both a refined and homogenized model of a lumped electric transmission line will be developed by
means of the Virtual Power Principle. In this fashion an example of the homogenization procedure

that will be applied on more complex systems will be furnished.

3.1 Discrete Systems

We will consider a discrete electric system, or circuit, as a set of two-port networks, or components,
with a specific interconnection.

A two-ports network is a physical device with two terminals that can be mathematically mod-
elled as a binary relation between an intensive scalar variable through the terminals and an extensive
scalar variable across the terminals. In the following the pairs of conjugate variables (¢, ¢) and (v, x)
will be considered, where v = (;5 is the electric potential difference across the network terminals and

L = X is the electric current through the terminals. We will focus our attention to electric two-ports

networks.

Remark 7 ¢,v are extensive state variables while ¢, x are intensive state variables and the products

¢ x1, vx X have the physical dimensions of a power.
Axiom 2 The virtual power for a two-ports network is given by

P:L*(b*
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if qb* 18 chosen as virtual velocity,

if X* is chosen as virtual velocity.

P=vx*xx*

We will consider the following basic passive linear components

Name Resistor Capacitor Inductor
—NN= |/ ]

Diagram

Characteristic constant | ReR ™", ( ) CeR™,(F) LeR ™, (H)

Binary relation v=Ryx v= -é:x v =1Ly

Inverse binary relation | ¢ = Tl%gb t=C gb L= %gb

and the following basic active components

Name Current generator | Voltage generator
. . (2
Diagram |/

Binary relation

vt =1, for each ¢

v =V, for each y

The definitions of the elementary interconnections between elements are

(3.1)

Definition 13 Parallel connection. Two networks are connected in parallel if the same potential

between their terminals is imposed.

Definition 14 Series connections. Two networks are e connected is series if the same current is

mmposed through their terminals.

Remark 8 The binary relation characterizing a component can be regarded as a constitutive

relation.

Remark 9 Constitutive relations for a two-port network that is the composition of elementary

components can be deduced by a power balance once a kinematic (connections between elements) is

gqiven.
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Proposition 6 If ¢ is chosen as state variable the constitutive relation (or binary relation) for a

parallel connection of an inductor L, a capacitor C' and a resistor R is given by 1 = C’éﬁ—f—%qﬁ—l— %%gb

Proof. Denoting with the subscript the quantities relative to each component, the power

Y Y\

Figure 3-1: RLC parallel

balance can be written as
1d =10e + trdR + LLdL,
The parallel connection imposes that
§ =bn=de=0;
thus (3.2) becomes
.k * %k
W =(o+ip+ir)o

and for the arbitrariness of ¢,

. 1- 1
L:LC+LR+LL:C¢+E¢+E¢

(3.2)

Proposition 7 If x is chosen as the state variable, the constitutive relation for a series connection

of an inductor L, a capacitor C and a resistor R is given by

1
— v+ Ri4—
v X+ X+CX

Proof. The power balance is written as
vX" =vLXL + VRXR + VCXC

32



The series connection imposes that

thus (3.3) becomes
vx* = (vr, +vr +ve) X*
and for the arbitrariness of x*,

, o1
vva+vR+vc=Lx+Rx+5x

3.2 Electromechanical Analogies

Electric and mechanical discrete systems with n degrees of freedom have the same mathematical
model: a system of n second order ordinary differential equations. So that, once a mathematical
model for a mechanical and for an electric system with the same number of degrees of freedom is
given, it is possible to associate at each physical mechanical quantity the electrical one that plays
the same role in the model. In this fashion electromechanical analogies for discrete systems are

developed. The same procedure can be applied to continuous systems, as studied in ([23], [26]).

Example 8 Let us consider the one degree of freedom mechanical system in figure 3-2. If we choose
as the state variable the displacement u of the mass m, the following power balance must hold for

each virtual velocity u*

pi’nt - Pemt "‘Pa
Byttt = fan* + miii

(—ku —cw)u* = fu*+miu*
By the arbitrariness of i* the following equation must be satisfied
mi+cu+ku = f (3.4)
Example 9 Let us consider the RLC series circuit in figure 3-3. If the electrical charge x is chosen
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Figure 3-2: Spring-mass-damper system

Figure 3-3: RLC' series circuit

as the state variable, the following balance of power must hold for each virtual generalized velocity

: %k

X

Pint = Pemt

. 1 sk .
(Rx+5><+Lx)x = Vx

By the arbitrariness of X* the following second order linear ordinary differential equation must be

satisfied
Lxy+Rx+Lx=V (3.5)

Example 10 Let us consider the RLC parallel circuit in figure 3-4 If the time primitive of the

Figure 3-4: RLC parallel circuit
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electrical potential ¢ is chosen as the state variable, the following balance of power must hold for

each virtual generalized velocity ¢*

Pint = Pe:nt

<o

o= Ié

° ok

11
By the arbitrariness of ¢" the following second order linear ordinary differential equation must hold
Cot—ptro=V (3.6)

R L™ '

Comparing the equation (3.4) with the equation (3.5) the charge-displacement electromechanical

analogy can be deduced with the following identifications

u—x f—ou
m—L k—C (3.7)
c— R

Comparing the equation (3.4) with the equation (3.6) the woltage-velocity electromechanical

analogies can be deduced, with the following identifications

u—¢ f—u
m — C k—>% (3.8)
i

c— 5

3.3 Periodic Systems and Homogenized Models

3.3.1 Lumped Transmission Line
System Description

Let us consider a periodic one-dimensional electric lattice whose basic cell is composed by a parallel
RLC element to ground G and a line element L as represented in figure 3-5.

Let be d the constant space interval between two cells, such that the n — th cell is the position
x = nd and the (n+ 1) — th cell is the position = = (n +1)d.

The resultant system is represented in figure 3-6 and it is a generalized lumped electric trans-

mission line.
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Figure 3-6: Generalized lumped trasmission line

Let us denote by ¢,, the time primitive of the potential of the n —th node, by ¢, the current to
ground from the n — th node, 7n,, the line current between the n — th and the (n + 1) — th nodes.
Since the basic cell is composed of a parallel RLC' element to ground G and a parallel line RLC

element NV, the virtual powers spent in the virtual velocities d):;, 5:; = (¢pt1 — n) are

e internal

PN =" +n,& (3.9)

int
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e cxternal
PE) = Ly + Vb, (3.10)

where I, and Y, denote the current exerted by the ground and line current generators,

respectively.

The constitutive equations are

tn = Go, (3.11)
Mn = N¢,
where the linear differential operators
2 1 d 1
= — 4+ == +— 12
¢ (ngt2 * Ry dt * Lg> (3.12)
#  1d 1
N — L %, - 1
(Cl a2 Rydi " L,) (3.13)

are defined!.

Equations of Motion

Since in the expression of the power balance of the n —th element, also the (n + 1) — th variable is
involved, the variable ¢, is present only in the power expression of the n —th and the (n —1) —th

cells. So that by the power balance

Sopd =P (3.14)

and the arbitrariness of (,75:;, collecting the term involving qbz in the expression

n n—1 n n—1
Pi(nt) + Pi(nt )= Pémg + Pémt ) (3.15)
[’n(bn + 77n (¢n+1 ¢n) + o n¢n + n (¢n+1 ¢n) +
.ok - .k
Lnflqsnfl +77an (¢7*1 - Qs:,—l) Inflqbnfl + Ynfl (¢:§L - Cb:;,fl)
I The subscript ”;” indicates the line parameter, the subscript 74" the parameters of the RLC element to ground
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the following balance of currents must hold
(Ln —Nn +77n71) = (In — Yn +Yn-1) (3.16)
Substituting the equations (3.11) into the previous expression we get

G¢n +N (_¢n+l + 2¢n - ¢)n—1) = In - Yn + Ynfl (317)
(G+2N) ¢n_N¢n+1 _Ngbnfl = In_ (}/’n_Ynfl) (318)

that are the balance equations for the generic cell of the modular system. If the N, G are written

explicitly they become

(Cy +2C1) by + (L% +719)¢>n+ (R%+R—1g) b

. , , =I,— (Yp—Yno1) (3.19)
“Cu(bnsr 1) =L (i1 +0n1) = F (Sna +901)

If

Rg—>oo Lg—>oo

T,—0 C—0

then the equation of motion (3.19) reduces to

(Cy) &y — (‘L];> (o1 + Gt — 26)

a (é) (¢n+1 + g — Zéﬁn) = In = (Yo =Yo1) (3.20)

that is the equation of motion for the generic cell of a classic lumped electric line.

3.3.2 Homogenized Model

An homogenized model of the one-dimensional electric lattice presented in the previous section is a
continuous electric transmission line. Once the virtual velocity fields for the continuous transmission
line are chosen, the balance equations can be found by the power balance. On the other hand, the
constitutive equations will be deduced giving a mapping between the kinematics of the homogenized
and the lumped models and prescribing that the virtual powers spent in corresponding virtual

velocities must be the same.
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Kinematics

If we think of the transmission line as a physical continuous system, it occupies a fired unidimen-
sional region of the euclidean space. Let it be a straight line 7 and let us fix a curvilinear coordinate
s on it.

If the time primitive of the electric potential? of a generic point of the line is chosen as the state

variable, in a first order gradient theory the space of the virtual velocities is

V={¢ (s,8),& (s,1)} (3.21)
where
& (s,t) = % (3.22)

Remark 10 The n—th elementary cell of the lattice model corresponds to the region [nd, (n+1)d]

of the continuous model.

The continuous system can be identified with the lattice model only in an approximate fashion.
In the lumped system the state of the n —th cell at a given instant in time is determined only by
two scalar quantities, ¢,, and &, = ¢, 11 — ¢, while in the continuous model it is given by smooth
fields v(s),&(s) = %%f) defined on the real interval [nd, (n + 1)d].

Considering the fields 9(s), (s) constant in each cell the following kinematic mapping is assumed

U(s,t) = ,(t) (3.23)
£(s,t) = é”% (3.24)

for each s € [nd, (n + 1)d].

Power Balance and Equilibrium Equations

The virtual powers for the continuous system can be written as

2 All the potentials are referred to ground.
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e internal virtual power

(H)
wnt

Il
g

e external virtual power

The power balance is expressed by

P

wnt

Using (3.25) and (3.26), this can be rewritten as

ok @* ok - —'*_Q-* ek
/T<L¢ ~ s >+[77¢]37—/T<I¢ ds¢)+[y¢]87

=P

(H)
ext

Since this must hold for each regular qu* the following balance equation

and constraints on the boundary conditions

[?_7@*]67 =[Y

are derived

Constitutive Equations

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

The constitutive equations for the homogenized model of the lumped transmission line considered

in the previous section will be derived considering the kinematic mapping (3.23) and imposing

that in the elementary cell corresponding virtual velocities expend the same virtual power on

corresponding generalized forces. In the elementary cell the virtual power of each virtual velocity

40



for the two models is

e homogenized model

Virtual velocity | Pint Peat
gZ'S* f(n+1)d qu ds n+1 IQZS ds
&* [ petgs fég*l VEds

e lumped model

Virtual velocity | Pt | Peat

(;bn LnQ'Sn I n(rbn

For the prescribed equality of powers the following must hold

f (m+1)d 4% 45 = bnGr fégﬂ)d I¢'ds = I,¢,

(n+1 (n+1)d % - (331)
Joa € ds =€, [TVYE ds = Y6,

Considering the kinematical map (3.23) and the constitutive equations (3.11) for the lumped model,
(,75:;,5:1 can be replaced by the constants (,;5*, dg* and the previous relations imply that

f(n—l-l)d ids = 1, f(n-i-l Tds = I,

[0V G0 = pad - [V ds = Vid (3:32)
By the refined constitutive relations
tn = Go=Go (3.33)
N, = NE=NdE (3.34)
hence, the mean values of the generalized forces 7,7, I, Y are given by
=(@)e I=% (3.35)

n= ( )5 Y:Ynd
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that are regarded as the constitutive relations for the continuous transmission line, homogenized

model of the electrical lattice described in the previous section. Introducing the new operators

a — % (3.36)
_ <Qda%+d%g§t+d—zg) (3.37)
(oot rt) -
and
N = dN (3.39)
_ (dcl L TR d) (3.40)

2 1d 1
- 2,2 Al
(C a2 T Ra " L,) (3.41)

the definitions of the distributed inductances, resistances and capacitances

C —
C, = =g =dR, L,=dL
g4 7Y o g . 7 (3.42)
C=dC, R=< L=
is induced. Moreover let us define
I=L v=Yd (3.43)

Equations of Motion

Substituting the constitutive equations (3.35) in the expression of the power balance (3.27) we get

/T (God™ + Nei™) = /T (16 + v¢) (3.44)
Considering that
&= d:zi* (3.45)

and integrating by parts it becomes

(oo s2)e - (- )
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thus for the arbitrariness of qﬁ*

o i g v
Go— N5 =T-— (3.47)

The previous equations of motion for the continuous generalized transmission line can be rewritten

in a explicit form substituting the expression of the operator G, N
a2 T Roat T 0.Y) T = =28\ 7= 4
< + + ¢> <Cl dt2 ds? + Rl dtds? Ll d82> ds (3 8)

Coap Rgdt = L

Dimensionless Form The equations of motion can be rewritten in a dimensionless form intro-

ducing the dimensionless variables
§ = xox
(3.49)

p=0o¢op t=toT
I=0LI* Y =YyYe

Defining the following dimensionless parameters

_ i1 a1 [L e
B = V/CoLi 81 = 3w 6; =IO
_ 1 — L [Le 3.50
ﬁg to N by 2R, \/ C, ( )
_ fng_O _ 71‘,20)_/0
X3 = Cyo X4 = C,boTo
the following equation is obtained
(3.51)

U 426,840 + B2 — ki) +2880 + 87" = x5 (I%) — x4 (V)

Example 11 If
Ry — o0 Ly— o0

Rl —o00 C—0

then
2648, =0 B2—0

2608, -0 K —0
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and the (3.48) reduces to

2o & ¢

i) va)/
02 51 xs (1) = x4 (Y?) (3.52)
that is known as telegraphist equation.
Example 12 If
Li,R — oo
C; — 0

then

B =0
26, —0 k—0

and (3.48) reduces to

<d2¢ d¢

72 + 25969 + ﬁg¢> = x3[® (3.53)

that is an ordinary linear second order differential equation in time. Since ¢ is a field defined on
the real axis, the solution ¢(s,t), recalling the dynamical system terminology, can be identified with

the flow associated to the equation

dy
(dt2 + 25969 +ﬂgy) = x3I”

where y depends on t only. That is

B(s0,t) = ¢(t; to, 50)

where ¢(t; to, so) is the unique solution of the initial value problem

&? _
( dt‘g +25gﬁg +ﬁgy> — el

ylto) = o

So that in this case the solution at a given point s depends only on the initial state at the point s,

no matter what is the state of all other points of the continuum.
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Chapter 4

Layered Composite PEM Beam

Our goal is to use piezoelectric materials to couple the vibrations of a mechanical structure with
the dynamics of an electric network. In this chapter we will focus our attention on modelling the
electromechanical interaction between a beam and a PZT transducer'. A convenient configuration

of PZT sheets is the one presented in figure 4-1, known in literature as a bimorph configuration.

v T P7T N
_________ 0 [T N
P Elastic matiial
L 7 Lower PZT
1/2 1/2

!
< T >

Figure 4-1: Laminated PiezoElectroMechanical (PEM) beam: lateral view

In this symmetric arrangement two thin PZT layers polarized over the thickness are bonded on
a rectangular cross section elastic beam. The upper and lower surfaces of each layer are plated and
play the role of electrodes. By the mechanical and material symmetries the flexural and extensional
modes of the sandwiched beam are mechanically uncoupled. Depending upon the connections

between the electrodes it is possible to have different types of electromechanical coupling:

!Here and in the following we will refer to a PZT transducer as a sheet of electroded PZT material as that
presented in figure 2-1.

Figure 4-2: Laminated PiezoElectroMechanical (PEM) beam: cross section
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o cxtensional-electric for the in-phase electric connection of the PZT sheets as in figure 4-3

Figure 4-3: In-phase parallel connection of PZT layers for extensional coupling

o flexural-electric for the out-of-phase electric connection as in figure 4-4

+t+t++t+tt+t+

e

Figure 4-4: Out-of-phase parallel connection of PZT layers for flexural coupling

In the first section of this chapter we will derive an unidimensional model of the axially homoge-
neous beam in figure 4-1 treating it as a 3D piezoelastic continuum with an imposed kinematic. In
order to follow an unified approach we will consider the general case without shortcuts between the
electrodes. In this framework the configurations in figure 4-3, 4-4 will be understood as particular
situations.

In the second section the power balance, the equations of motion and the constitutive relations
for a simple elastic beam will be derived as a particular case. By dimensional analysis, the rotational
inertia will be shown to be negligible for the numerical values relevant for applications and for the
designed experimental setup.

Finally the possibility of deriving a weak formulation of the equations of motion for an axially
non-homogeneous PiezoElectroMechanical (PEM) beam offered by the additivity of the virtual
powers will be exploited considering an elastic beam with a pair of PZT transducers not covering
all its axial length.

All the modelling procedure will be carried on keeping in mind the physical case of the piezo-

electromechanical beam that has been realized experimentally as described in Chapter 7.
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4.1 Continuous Layered Composite PEM Beam

An axially homogeneous three layered beam with a material and geometrical symmetry with respect
to the beam central axis?, such as that in figure 4-1, will be considered. Assuming the kinematics,
the constitutive equations and the power balance of the system as a 3D piezoelastic continuum
and a kinematical mapping between the 3D and the 1D representations, the power balance and the
constitutive relations for the 1D model will be derived defining sectional stiffness, capacitance and
coupling coefficients.

By the power balance a weak formulation of the balance equations will be directly deduced. A
strong form of them will be obtained with the boundary conditions after integrations by parts. In

this framework it will be shown? that for an axially homogeneous beam:

e the piezoelectric effect on the mechanical system reduces to a pair of equal and opposite forces

applied on the ends of the PZT layers, with a module proportional to the applied voltage;

e the PZT transducer is electrically equivalent to a capacitance in parallel with a current
generator with an imposed current proportional to the time derivative of the change in length

of the PZT sheet.

The cases in which the upper and lower PZT layers are connected one to each other to couple
the applied potential difference with the beam bending mode (out of phase connection, figure 4-4)
and with the beam extensional mode (in phase connection, figure 4-3) will be treated separately,

getting the respective coupling coefficients.

4.1.1 System Description

A composite 3-layer laminated piezoelectric beam with a geometrical and material symmetry with
respect to a straight axis A (beam axis) will be modelled. The central layer is assumed to be
an isotropic, linear elastic material with continuous boundaries. The upper and lower layers are
assumed to be linear homogeneous piezoelastic materials, with the polarization axis oriented as in
figures 4-1,4-2. Moreover the upper and lower surfaces of the piezoelectric layers are supposed to

be plated and eventually subjected to a potential difference, while the lateral surfaces are bared?.

2These symmetries are required to avoid a mechanical coupling between the beam extensional and flexural modes.

3The following results are frequently assumed in literature. The correspondence of the interaction between the
structure and the PZT sheet is known as Pin Forces Model.

4This configuration is one of the PZT transducers that have been described in Chapter 1 and that have been
utilized for the experimental realizations of the PEM beam (see Chapter 7).
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The thickness of the central layer, t3, is assumed much greater than that of the piezoelectric ones,

tp.
A description of the geometric configuration of the body is given specifying the regions of the

. . . . |4
euclidean space occupied in the reference configuration®. Define

e By, = A x S the elastic central layer, where A is the beam central axis and S, is the part of

the cross section occupied by the elastic material;

o Py, = A XSy, the upper PZT layer, where A is the beam central axis and Sy, is the part of

the cross section occupied by the upper piezoelectric layer;

o P, = Ax Sy the lower PZT transducer, where A is the beam central axis and Sy, is the part

of the cross section occupied by the lower piezoelectric layer;

e B,=A xS, ="P,UP, the total region occupied by PZT material, where

S, = Sp US, (4.1)

e B = B, UDB, the whole body.

Remark 11 In the particular case of a beam with uniform and rectangular cross sections as rep-

resented in figures (4-1), (4-2), the regions cited above are

1
ty tp
Spu = [~wp,wp| X [5’_2 +tp]
ty
Spi = [~wp,wp| X [—_27 57 tp]
S = lwnw) x -2,

4.1.2 Kinematics
Hypotheses

In the application we will deal with® the following facts are verified:

®Considering a carthesian reference frame C ={0, e,,e,,e;} the region of space
G={p =pie1 +p2e2+ psez €€ : p1 € [a1, b1],p2 € [az,b2], p3 € [as,bs]}
will be denoted by

G =[a1,b1] X [az, b2] X [as, bs]

8We refer to the physical situation of the experimental set up that has been realized (see Chapter 7).
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the thickness of the PZT layer is 10-20 times smaller than that of the elastic beam

The thickness of the PZT transducers is negligible with respect to its transversal dimensions

the upper and lower surfaces of each transducer are plated, thus equipotential, while the

lateral surfaces are bare

the piezoelectric material is polarized along its thickness

Hence, we will get the reduced kinematics of the beam in figure 4-1 under the following hy-

potheses:

1. the beam sections remain rigid;

2. small deformations and linearized kinematics;

3. no shear deformation;

4. perfect bonding between elastic and PZT layers;
5. constant electric field in the transducers;

6. uniform displacements along the thickness of the transducers equal to that of the surface in

contact with the beam. This hypothesis is required for coherence once (5.) is assumed.

Remark 12 These hypotheses are satisfied in physical situations if the beam thickness ty,, the beam
length ly, the transducer thickness t, and the bonding layer thickness tyond are such that

trond < tp Kty Ly (4.2)

Kinematics of Composite Laminated Beam

Let us choose as state variables of the 3D model the mechanical displacement field u(p,t) and
the electric potential ¢(p). Since no electromechanical coupling is present in the elastic layer, the
electric potential can be defined on the regions occupied by the piezoelectric layers whose upper and
lower surfaces are plated and thus equipotential. We will denote by ¢,,,,,¢,,; the electric potential of
the upper and lower surfaces of the upper PZT layer, by ¢, ¢;; the ones of the lower PZT layer.
In general ¢,,,, # O 7# P, # P11, but particular connections are often used to achieve specific goals.

We will consider the following

49



1. In-phase parallel connection (see figure 4-3) for which

bu = du =02 (4.4)

2. Out-of-phase parallel connection (see figure 4-4) for which

¢uu = ¢ll:¢1 (45)
bu = O =P (4.6)

By the hypotheses 4,6 we can write (see also figure 4-5)

t
w'(prt) = u@py,0,5,0).p €a,a+ld] (4.7)

4
w'(prt) = u(ps,0,~7,1).p1 € [a,a+1] (43)

where by u(p1,t),ul(p1,t), u(p1, p2, p3,t) are denoted the displacement fields of the upper layer,

the lower layer and of the central layer respectively.

Flexural Strain Extensional Strain Total Strain

A A A

P, Py P
PZT Layer | N\
Ou Ou 9
opy

op L I op,

PZT Layer |

Aluminium beam

Aluminium beam

Figure 4-5: Assumed mechanical strain %pﬁ‘ distribution along the thickness

Hence, considering the reduced kinematics for a beam with rigid sections and no shear defor-
mation by the hypotheses about the distribution of the electric potential (see figure 4-6) we impose

the following kinematical mapping’

7 All the vectorial and tensorial quantitites are denoted with the Voigt notation once a reference C = {o, e ,e2 €3}
with e; parallel to the central axis A and e; parallel to the direction of polarization in the piezoelectric material
is fixed, as in figure (4-1). The longitudinal and transverse components of the central axis displacement vector are
denoted by u1 and us respectively.
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Out-of-phase Connection: In-Phase Connection:

Flexural Coupling Extensional Coupling
Py py 4
uu
PZT Layer  p] PZT Layer  p]
q) ul
Aluminium beam Aluminium beam
>0 >
Aluminium beam o Aluminium beam
lu
PZT Layer Py PZT Layer Py

Figure 4-6: Assumed electric potential distribution along the thickness for in-phase and out-of-phase
connections

e on By
.k . T
uw(pt) = [ui—%;;pg 0 ug} (4.9)
Sy wk 2% T
S'pt) = [GE-Z%p 00 0 0 0]
e on B,

— on the upper layer P,

w(pt) = [u;-%ﬁ—% 0 ug} (4.10)
. . T
* _ Ut 021%
S'pt) = [GE-Z%L 0000 0]
« % ‘¢uu_¢ul, tp
¢ (p,t) = ou+t " (ps =)
p
% L T
VQS (p,t) — |: O 0 ¢uutp¢ul :|
— on the lower layer P,
.k . o . T
u(pt) = [u{—#a—pf% 0 u3] (4.11)
T
Sk o ot 02U ¢
$*(pit) = [%;Jra—pg—; 0000 0]
. o (P— ) ¢
O'pt) = ot (st
p

Vépd) = [0 o Lhodi) ]

P
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4.1.3 Constitutive Relations

The body B is a composite material where the part By is as a linear elastic homogeneous solid, the
part B, a linear homogeneous piezoelastic continuum. Let us represent the constitutive laws by
means of the Voigt notation once the reference in figure (4-1) is fixed. Since no forces are applied
on the beam lateral surfaces an uniazial stress state along the 1 — direction is assumed both on
the beam By, and on the transducers B,. Moreover by the electric kinematic (4.10,4.11) an uniavial

electric state along the 3 — direction is assumed. Thus the constitutive equations will be reduced

to the form (2.73)

Linear Elastic Material

In the layer By, the linear homogeneous elastic constitutive law for a uniaxial tension state is assumed

in the form
T =c1151 (4.12)
Example 13 If an aluminium beam is considered the c11 constant is
c11 = By =70GPa

Linear Piezoelastic Material

In the piezoelectric layers the linear piezoelastic constitutive equation for an uniaxial tension state
and an uniaxial electric state, once the mechanical strain and the time primitive of the electric

potential as state variables have been chosen, are assumed in the form

a.
Tl = cﬁSl—egla—}i (413)
J3 = e —I—e%ai (4.14)

where the coefficients can be deduced by the material characteristics given in the technical data

sheets by
—d2, 4+¢T.sE
off =5 ey =" g
11 11 (415)
ez =L

iy
—

Example 14 For the PZT material PSI-5H4E Ceramic used in the transducer of the company
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Piezo System® the following material constants are given

Ef = 6.2*1010%
m

ds1p = —320%10712—

31 * V

€33 = 380060 = 3.3646 x 10*%

and the following numerical values are found

i = B = 6210100 o, = =Bt —9.7207 1058
ez =L = —19.84715
11

4.1.4 Power Balance

Let us consider the beam with the piezoelectric transducer as a body B composed by the two parts

By and B) as in 4.1.1, such that

B=ByUB, (4.16)

where By, is an homogenous linear elastic medium and B, a linear piezoelastic medium. Moreover
let us denote by oB*,0Bf the parts of B =0B* U 0B/ in which are imposed the displacements
and the forces respectively and by 0B%, 0B the parts of OB =0B%U0B° on which are imposed the
potential and the charge.

Recalling the expressions derived in the example (2.58) the balance of power for the system
considered in figure (4-1) is expressed by

Pintn + Pint,e = Pdm + Pem +Pee + Pa,m (4.17)
+ [, 3 VO (B1) + fogo 1 (DE) + [ —pii(p,t) - 0 (p,t)

We will now rewrite each term of (4.17) taking into account the reduced kinematics derived in

(4.9,4.10,4.11).

8 This is also the material that was utilized for the experimental set up described in Chapter 7.
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Mechanical Internal Power

The mechanical internal power Pjns ., can be rewritten as

Pint,m = /T‘S*<Pat)
B

- AbT-S*(p,t)+/uT-S*(p,t)+/PlT-S*(p

t)
_ ( fA(beT1>%;]1:+fA<f8 T1+fSlT1)%plli_

La (fs, Tovs) 52— La (Js,, 57— fs, 470

Our™ @2u3 )
[4 ( Op1 op?
with the following definitions
F=FO 4y p® pr=p® 4 ppe)
where

FO = Js, T = fspu i+ fspl T

b 4 t
M® = — [ Tips MP =~ [¢ 2T + Js, 3T

Substituting into the previous expressions the constitutive laws

Ti=c11 51 on By

E d¢
Th =c; 51— 6315% on B,

we get
8u1 8%03
- (o) (L) 52
< s, C11 ap1 s, C11P3 8p%
0 _ p®ou
F K, n
and
(f CE) Jur
SpuUSl 11 8p1
FO - = (fs i = Js . Cﬁ%)%u{’_

)

o%uy

8p2

- (fspu T ) <</>uu - %l) - (fgpL f;f) <¢lu - @z)

() Ot

i — K, % -G (%u - @ul + C.bzu - <}5u)

o4

|

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)



where

() _ (p) _
K7 = [s cn K" = fsu +fsl 11 (4.24)
G = f; fgpu €31 = ;]; fgpL €31
Moreover
ou 62“3
o _< >—+</ 2)— 4.5
s, C11pP3 L s, C11P3 8p% ( )
6 _ g0 19
M K¢ o (4.26)
and
du
- <f$,m Jefi - Jsu Bef] ) %}'
2 2
My — + (fs,m oy ()" + [s, cfl (%) 8p (4.27)
+ (fspu %‘2‘1) <¢uu - %l) - (fspu 9t ) (¢zu - ¢u>
Pug . . )
MP = Kj(fp) pY + Gy (¢ — b — ¢lu+¢’u> (4.28)
where
& = [ ens? (4.29)
Sp
ko _ (B [ o (BY [ & 4.30
f - 9 Spu Cll + 9 Spl Cll ( . )
ty ty
= L =L 4.31
G 2tp )y, 17, S et (.31

In the previous calculations we considered that, for the geometrical and material symmetries respect

/ / bep _ (4.32)

/611p3 =0 (4.33)

to the chosen reference
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Hence we can finally rewrite the internal mechanical power in the unidimensional model as

. _ in* 84)
Pznt,m /_A <F 8p1 + M apl
= /A(Kz%—@ <¢uu—<}5m+fbm—fbu>>au_pl

/Kf o 2 4Gy <¢uu Put — ¢zu+¢zz> o

1

where

Ky = K+ K

Kl — Kl(b) + Kl(p)

(4.34)

(4.35)

(4.36)

are the beam extensional and flexural stiffness, GG and Gy are the homogenized extensional-electric

and flexural-electric coupling coefficients homogenized over a section.

Internal Electric Power

The internal electric power Pjnt . becomes

Pinte = /J Vo (pit)

- /[;( ap3>

= <](U) <¢W — %l) +10 <¢lu - Q.bll))

with the following definitions

SRR
Ap JSpu tp
oL
.Ap Spl tp

Substituting into the previous expressions the constitutive law

‘ 8..
J3 = e3151 + 6§38—§;, on Bp
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/ ((/ t—fj) (b ) + (/ tp) (- q'au))

(4.37)

(4.38)

(4.39)

(4.40)



we get

7w — ([4 (é/ 631> %) —/ (;fp (/Pue ) 8;?)) + (t—l%A[Spuﬁg?,) (¢uu—¢ul>
= (o)) s o
for the upper transducer and
. 2, . .
(L)) (LG L) 58) - (R L) 6o
0 = [4 (Gz g;i) / <Gf882u3> + <¢5zu— ﬁgll) /AH(Z)

for the lower one, with the further definition of the capacitance per unit of length
gL & = HW = g0 (4.41)
Hence the internal electric power can be expressed by
pint,e = (I(u) ( - ¢ul> + I(l <¢;u - Qb;l))
_ G ==3 H _ _

() = [(0r 55 )+ [ (=) (B - 0)
+ Ga“1 G82 (o, —by) | H) (65, — &

l3p1 5.2 op 2 ( lu u) M ( lu u)

Mechanical External Power of the Distance Forces

The mechanical external power Pg,,, of the distance forces can be rewritten as

Pam = Zg b-u*(p;t) = (4.42)
Lals, (i = ) + Lafs,, o (i =554 ) + )
LS, b (0 + 528 ) + [ [, bsis + [y S, o
S (S 00) 5 = (s paba) 52 ) +
- +fA(<fsp bl) - ( (fspu by — fslbl>) 8p:>+

Juls, b3is+ [ [, b3t

= / (Bﬂlf — Be% + Bsfti;))
A op1

o7



with the definitions

B0+ 5 = ([, )+ (15 )
By = BY) + BY) = ( fs, b3> + ( Js, b3> (4.43)
By =By + B = [ psbu + % ([, 01— [, b1)

Mechanical External Power of Contact Forces

The mechanical power P, of external contact forces becomes

e / £.d*(p.t) (4.44)
oB

. ous .
= / / (flul — f148u D3 +f3u3>
AJos P1
- / <P1u>{ ~pYE P3u§>
A op1

with the definitions

Pl:fagfl P9:f35f1p3

(4.45)
Py = fas 3

Electrical External Power

Let us denote by Fyu, Ful, Fiu, Fii the upper and lower surfaces of the upper and lower transducers.
Since only the upper and lower surfaces of the transducers are plated, the electric external power

Pe,e becomes
Pc,e = lu <¢:u - ¢Zl> T4 <¢;<u - ¢7l> (446)
where the /s physically represent the currents flowing through the transducers.

Mechanical Power of Inertial Forces

The power Pgn of the inertial forces acting on the structure can be rewritten as

Pan = [ =pii(p)- 5 (p) (1.47)

.. .. Otig O
( [4 < (lrdn” +tsti3) “op: op1
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with the definitions

A= A0 4L \@) (4.48)

a = a4+ a@ (4.49)

O =(fs0) o= (Js )

= (00) o0 = (0451 o

and considering that for the assumed symmetry

(ko)== (o)~ ()

Statement

The balance (4.17) can be written explicitly as

it 024 S4By + Pr— Xiig) tr*
fAb(F%ll_FMEf&)—’— —f (Bg—l-Pe-i—a%)%
10 (4, —du) + | = ““f s i jpl) o (4.52)
e L + [ 4 (B3 + P5 — \iig) i3+
+10 <¢lu — ¢u)

b (o= ) + (B0 - 1)

or equivalently as

/ (Fa_u; N M@) L ((Rl — Niiy) i * — (Rg +a%f> B 1 (B —Aug)ug) +
A\ Om op? (1 — 1) (¢Zu —45:;) + (4 — 1) (¢z<u _ng)

(4.53)
if the definitions
R1 — Bl + Pl
R3 = B3 —|— P3 (454)
Ry = By+ B

are introduced.
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4.1.5 Balance Equations
Generic Case

The following integrals by part hold

. 1
2 8u’{ . skl 2 OF . %
! . ) l 4
> 0%k ouk oM s M
M—2dp, = |M=—2| — |=—1i / d
/—é ot M { apl}o [8}91 ug}o i -4 opi B
1
2 ous Al 2 ORy .,
/_l R@a ‘;’dpl = [Rpisl, /_ _8p1 Usdp,

S
[Fuilo+ i
+ [M3E] + —| '
.. l
+ [(—3% + Ry +ag) i3

/N

Ry — Xiig + 3p1) U1 dp1+

m+i(m.>+
) iddpit

(U_I()<@m_¢m>+

+(u— I(l)) (¢;u - ¢;l>

(4.55)

(4.56)

Since the virtual velocities can be chosen arbitrarily, providing that they are smooth enough

and that they satisfy the homogeneous version of the prescribed essential boundary conditions,

equation (4.56) is verified if and only if

Ry 1( o) 2

+
Opr Op1 \ O;

(=) )+ (-

Rl )\’U,l + g =0
o4}
AMig+Rg = 0

on B and
[Fiuily = O
{M%] _ 0
op1 0
oM dig\ .11
on 0B.
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The first three equations are the balance equations for the beam (extensional, bending, electri-
cal), the latter three are the conditions that must be satisfied at the boundaries. Here the axial
continuity is required but not also its homogeneity.

Considering the following constitutive relations for the unidimensional model that have been

derived by homogenizing over a section those of the 3D model with the imposed kinematics

P . . . .

Fo= Kt =G (b= dut b= du) (4.63)
d2us3 . . .

M = Ki—= op? > +Gy (¢ ~ Pu ~ P +¢u> (4.64)

o ) L) e [
0 = /(Glgzll> /(Gf62> P — Su /H (4.66)

the following equations are deduced

0 ow ..
— | K— X = R 4.67
o < l8p1)+ i 1 (4.67)
0?2 0%us 0 Ol . ORy
— (K= ) —=— (a=2 ) + Xiis = =— +R 4.68
%(fﬁﬂ %i%m s = gy T8 (4.68)
(Lu - I(“)> (éﬁ,ju - é;) + (u - I<’>) (% - <b;‘}) — 0 (4.69)
together with the boundary conditions
9 1%
ul . . . . % .
{(Kl o Gy (%u — Gu t O — ¢u>> Ul_ s =0 (4.70)
oPu Ok B
|:(Kf 8 23 +Gf <¢uu ¢ul ¢lu+ Cbll )sz y =0 (4.71)
- 2
B 82us TRE
— | Kf—= R — | w3 =0 4.72
Kf?pl ( d 0p%>+ 9+a<9p1> Bl w7

These are the equations of motion and the boundary conditions for the laminated piezoelec-

tromechanical, axially continuous, symmetric beam.

Remark 13 The influence of the electrical quantity on the mechanical equations is exerted only by

the boundary conditions.

Remark 14 The extensional equation is uncoupled from the bending and electric ones if

Guu — ut + D1y — S =0
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A particular case is the out-of-phase parallel connections between the two piezoelectric layers in

which
G = G Put = P
Remark 15 The bending equation is uncoupled from the extensional and electric ones if
Gu — St — ru + G =0
A particular case is the in-phase parallel connections between the two piezoelectric layers in which
Su =S Puu = Ow

By the remarks above we can study separately the flezural-electric coupling for the out-of-phase

connection and the extensional-electric coupling for the in-phase connection.

In-Phase Connection: Extensional-Electric Coupling

In the case of an electric connection between the piezoelectric layers as in figure 4-7 the equations

/’ Mechanical Side

F =-2G,A@
F
<+ —>
A=A ®) 4 AP

Mass density e
Extensional Stiffness e==p

i 11
Aluminum layer PZT layers
I o W s A AL ] contribution contribution
!

'p Electrical Side
2 I’, " Hax

b (
K, =K+ K"

G [ ]

o

Figure 4-7: Mechanical and electrical equivalents of axially homogeneous PEM with in-phase con-
nected PZT sheets
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of motion become

0 Ouy .
K +A = R 4.73
32?1( l3p1> “ ! (4.73)
o2 0Pus 0 Diis ORy
S|\ K== | 5 +Aiz3 = — +R
ot < ! ap%) o1 < 3291) BT o T
/ (Gla )dpl —|—2A¢/H =
A 0
plus the boundary conditions
5 Ll
. 2
[(Kl 8“1 2GIA¢> wt = 0 (4.74)
_d
0%u 8&*—-;
K| =3 =0
K ! Op? ) apl__é
;]
8 82U3 8u3 12
— K R — ) U3 =0
(o (g5 )+t
where
A¢:¢uu_¢ll L=ty F U (475)

Remark 16 With this symmetric configuration in which a in-phase voltage is applied to the two
PZTs, the piezoelectric effect couples the extensional behavior of the beam with the applied electric

potential. As a consequence of the applied voltage a longitudinal deformation

Our _ 2G,

- Ad
oy K ¢

s imposed on the boundary of the beam. Hence its effect corresponds to two equal and opposite

forces
F =2G,A¢

applied on the boundaries.

Remark 17 The piezoelectric effect causes a current in the electric terminal given by
Oy
lp =2 Gi— | dm
8 /A ( Op1 )
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proportional to the beam curvature. If the piezoelectric layers are materially and geometrically

homogeneous G is constant and the current generated by the mechanical deformation becomes
0 4
tp =2G — | dp1 = 2G [i1 ]2
P le(@pl) P1 ]2
Hence it is proportional to the time rate of the total elongation of the PZT layers.

Out-of-phase Connection: Flexural-Electric Coupling

If the PZT layers are connected in parallel and in opposition of phase as in figure 4-8 the equations

/’ Mechanical Side

M =-2G,A¢
A=A (b) +}\(p)

Mass density == )
i K, =K,
Flexural Stiffness =D

| P
Y J !
Aluminum layer ZT layers
contribution contribution
Electrical Side

0 I

2 ﬁ " Ha

+K1W

s [Aux ']

¢

N

Figure 4-8: Mechanical and electrical equivalents of axially homogeneous PEM with out-of-phase
connected PZT sheets

of motion become

0 ouq .
— | K— |+ )\ = R 4.76
3291( l3p1) " ! (4.76)
(92 82’&3 (9 6U3 . 8R9
S (K=2) —=— (aZ2) +ri = =L +R
Op? ( ! 819?) O (a 0p1> " ap

o [* (0,228 gy o [* HAp —
/_-;(fap%>p1+ /_ v

plus the boundary conditions
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L1
KKZ%)M{ o— 0 (4.77)
1 _d
2
Kr—2 +G (2A¢> duz)* _
fa 2 f o | . -
0 Pus i3 1%
= (g, =223 R . = 0
(o (<055 ) + o +5) |y
where
Aqﬁ:gbuu_gbul L=1ly— U (478)

Remark 18 In this skew — symmetric configuration in which the potential difference between the
PZT layers is applied with a relative phase difference of 180°, the beam bending mode is coupled
with the electrical variable by means of the boundary conditions. The piezoelectric effect on the

laminated beam imposes a curvature on the boundary given by

% = _ﬁi A¢
opi Ky

Hence its effect its equivalent to a two equal and opposite moments applied to the boundary, with a

modulus

M =—(2Gy) Ag

Remark 19 The piezoelectric effect causes a current in the electric terminals given by

L .
2 82U3
Lp—Q/_é (Gf o >dp1

If the piezoelectric layers are homogeneous and with constant cross section, Gy is constant and the

current generated by the mechanical deformation becomes

3 0213 ous E
v =21 /_g () i =20 [3_191]12

Hence it is proportional to the time rate of difference of the central axis slope at the two ends, that

1s the beam spatially averaged curvature time rate.
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4.1.6 Weak Formulation

The weak formulation for the dynamical problem of a continuous piezoelectromechanical layered
beam can be derived directly by the expression of the power balance (4.52) substituting in it the
constitutive equations.

Since we are treating continuous systems the virtual velocities must be elements of an opportune
functional space. In particular, as underlined in the statement of the virtual power principle, they

are required to

1. be smooth enough to evaluate the integrals involved in the virtual power principle.

2. satisfy the homogeneous version of the prescribed essential boundary conditions.

The spatial distribution of the electric variable ¢ in the continuous body was prescribed in
function of its value at the boundaries such that it satisfies the requirement 1., 2. for each value
of ¢ & i, Py - Thus no further specification is necessary on it. For the mechanical virtual
velocities, a distinction must be made between the vertical and the horizontal components 3, i}
because in the problem statement the spatial derivative up to the second order for 7} and up to

the first for ] are present. Let us denote by

e H} the space of functions having square integrable? derivatives up to the first order and
satisfying the homogeneous version of the boundary conditions prescribed directly on them

(essential boundary conditions for wy ).

e HZ the space of functions having square integrable derivatives up to the second order and
satisfying the homogeneous version of the boundary conditions prescribed on them and on

their spatial derivatives up to first order (essential boundary conditions for u3)

Also the weak formulation will be given separately for the flexural-electric and extensional-

electric cases.

Extensional-Electric Coupling

If the electrical connections between the PZT layers are such that

¢uu = leu Qbul = ¢)ll (479)

°Tn the Lebesgue sense.
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the piezoelectric coupling is symmetric and the mechanical displacements due to bending are elec-
trically filtered out since they are skew-symmetric.

Defining

A¢ = (rbuu - ¢ll L=ty F Ul (480)

the constitutive equations can be written in the form!?

F = FO 4 g = Klgipl —2GiAD
® 4 ) — g, U
M = MY +MY =Kfy— (4.81)
32?1

. 1
I = 2/ JERALt dp1+2A£ﬁ/2H
4 op1 =

Hence the power balance (4.52), mechanically limited to extensional behavior, becomes

1 au* . d au* 1 . .
ffé gl g2 dp — 209 ffé Gy dp1+ J?1 (By — Niy) 4y dpy 4.82)
sk L . R = 2 % :
12067 [7, (GiBl) dpr +28006 2, H 1A
2 2

The weak formulation is:

e The equation (4.82) must hold
for each U7 € Hol,AEb* ER

This is also a Galerkin formulation in the case in which the prescribed essential boundary
conditions are homogeneous, otherwise it will be easily obtained with a simple change of

variable.

Remark 20 If the layered beam is azially homogeneous, the quantities
Gl ) Kl ’ A
will be constant and the power balance (4.82) will assume the simplified expression

A . . - A -
K (2, 2wl gy 2GAG ], + [?, Ryijdp,
2

2 =
*

1 .
= [?, tadpr + 1A
2

10The flexural behaviour is neglected since it is uncoupled from the extensional-electric modes
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Flexural-Electric Coupling

To obtain a coupling between the electric and flexural beam modes the following electric conditions

must be imposed

¢uu = d)ll ¢ul = ¢lu (483)

Thus introducing the definitions
A¢) = Q‘Suu — Q‘sul J =71 _ 1) L= Ly — U (484)

the constitutive equations can be rewritten!! as

M o= MO M= Kf%“3+2af (44) (4.85)

I = —2/ Gfa“?’ dp1+2A2;‘s/2H
L op? 1

So that the power balance for this specific case becomes

iz | Oul
—f2 (Ra +a%§) o dp1+
= + f 2, (Rg — \iig) widp1+ (4.86)
+LA¢*

82'*
f2 Kfaz 8p2 = dpy +2A¢f2 Gfﬁdpl+

—2A¢ f2 <Gf%?> dpi +2A¢A¢ f2

The weak formulation of the problem is obtained imposing that equation (4.86) must hold
for each ity € H3,Ap € R (4.87)

If the boundary conditions that are prescribed on u;,%-f are homogeneous this is also a Galerkin
formulation that can be directly used to obtain a numerical solution by means of a Galerkin ap-
proximation. Otherwise a simple change of variable is required to convert the problem to a new

one with homogeneous essential boundary conditions.

Remark 21 If the layered beam is axially homogeneous the quantities

VTN ET NP

' The extensional behaviour is neglected since it is uncoupled from the flexural-electric modes
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will be constant and the power balance (4.86) can be rewritten in the simplified form

J 2 R _3d a 2 d +
Kfo_L apz 6 2 dpl +2GfA¢ |:6p1:| + f 68}71 p1 — f D1
é . L = | + f | Raiigdpy — A f A u3u§dpl+
—2G AG" +2HIAGA
f [ LQ ’ o8 TIAG"

4.2 Elastic Beam

The governing equations for a continuous, isotropic, linear elastic beam can be derived from the
case of the layered piezoelastic beam by simply letting vanish the thickness of the piezoelectric
layers. Here the equilibrium equations in the strong and weak form, following what has been done
in the previous section, are reported.

4.2.1 Equilibrium Equations

The equilibrium equations for a linear elastic isotropic beam are

0 Ou ..
K + A = R 4.88
“op < lap1) " ! (4.88)

2 Pus ) 0 < Qi3 ) . ORy
— | Kf— | —— +A = —+R
op3 ( / op? op \ Op1 s Op1 3

plus the boundary conditions

-4
2
[<K1%> w = 0 (4.89)
apl _-é
(92’LL3 ous 2
KK e (2A¢>>> o P 0
o [ Pus dii\ .]?
— (K== ) +Ro +a— | & =0
K@pl < ! 51?%) ’ a3p1>u3___5
4.2.2 Weak Formulation
For each
W e H,uh € HE (4.90)
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the following power balance must hold

L out
_ff'é <R9 +a8p1> _adpl‘f’
= +f__l R3 — \ug) uidp1+
2z
+ [, (R1 — Xiin) Ui dpr
2

A 82-*
J2 K G+

+f2 Kz%f%}dm

4.2.3 Dimensional Analysis and Approximations

Introducing the dimensionless variables

/I _ D1 /I ua I _ L I _ a
P1 =" Uz =", =1 =%y
K R
s y _ Rg / _ Ra
Kf_ ko Ra_mo R3_ Jo

the equilibrium equations (4.88) become

kols O2 < ,321/3) lzaoi( ,_Ous > N3 duy _ mo ORy + foRb

7o\ ) ey \Yaper ) R o2 = 1 oy

o2 , 0Pl 0 , Oug ous 8R’ ,
2 <Kf 8p’12> ~ oy, <a 8p'18t’2> g = Vo, il

with
_ l2ﬂ ag

DA
_mod . lifo
~ kols H= kols

Let us choose ty such that v =1, thus
and

In application is frequently verified that

1 Al%
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(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)



consequently the term

0 oug
nap/l (al (9p’18t/2> (499)

in(4.94), physically representing the rotational inertia of the beam, can be neglected and (4.94)

becomes

0? 02! o OR,

which is the Euler equation for an elastic beam. A numerical example is discussed

Example 15 Let us consider a rectangular cross section aluminum beam with'?

tp =4mm  wp, =40mm

Iy =510 mm

Consequently

B N T
TN T 12 \L) T

and (4.98) is well satisfied

In the following we will assume that (4.98) is verified and the term (4.99) will be neglected.

4.3 Beam with PZT Transducers

Let us consider a beam with a PZT transducer, as represented in figure 4-9, 4-10. The two PZT

Figure 4-9: Bimorph PZT transducer on a elastic beam: lateral view

layers are considered to be connected in parallel and out of phase to realize a coupling between the

12 The numerical values refer to those of the experimental set up described in Chapter 7.
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Figure 4-10: Bimorph PZT transducer on a beam: cross section

electric variables and the flexural mode of the beam. All the kinematical hypotheses previously

used will be tacitly assumed.

The whole body B can be partitioned in

B =B, +B:.+ B (4.101)
where

e [3; is the left part composed only by an homogeneous elastic beam
e BB, is the central part composed by a 3 — layers piezoelastic beam

e B, is the right part composed only by an homogeneous elastic beam

By the additivity of the virtual powers

P(B) =PB,UB.UB.) =P(B;) +P(B:) + P(Br) (4.102)

Hence the expressions of the external and internal virtual powers can be easily assembled since
those of each part are known from the previous sections. Since only the bending mode of the beam

will be considered, the following virtual velocities can be chosen

V = {Vm, Ve} (4.103)
e Oup 0% =
Vm:{UB’a_p?’E%a} VGZ{A¢ }

where Aéﬁ is the potential difference across the two parallel connected PZT layers.

4.3.1 Internal Powers

We can write
Pint(B,V) = Pintm(B, Vi) + Pint,e(B, Ve) (4.104)
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where with P(B,V) is denoted the power expended on the virtual velocity V in the part B. Con-

sidering the reference in figure 4-9 the internal powers are given by

Piﬂt(Ba Ve)

lp lp
2 . + 2 .k
-2 — 2A H|A
Gf[apj_%ﬂL ¢/_% ¢
P'L’nt(B'r'a Vm) + pint(Bca Vm) + pint(de Vm)

r Y
K(b)/ 2 Pug 0Py,
T Jw opt opt

+2 g2 920k ,
(K(b)+K(p))/ MM@IHG#M :
1

f f 2 2
~L Opt Opi

(b) 3 Pus 82u§

K 1
! 2 2
L Op; Opy

(4.105)

l
oig)*
Op1 ]t

! L
() B 0Puz 0% () +2 9%us 0%
L e e A P e
- Opy Op1 —3 1 9OP1
lp
2

26180 [apl] _

Ip
2

where K, Kj(cb),Gf, H are given in Appendiz B.

4.3.2 External Powers

If the external actions are

1. a mechanical vertical force per unit length R3

2. a mechanical moment per unit length Ry

3. a electric current generator ¢
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the external powers are

Pext (87 Ve) - ZA¢* (4106)
Pea:t(Ba Vm) = Pea:t + Pea:t (867 V ) + Pea:t(Bda Vm)
Lp .
_ 2 811,3 % Or . %
= /_% < < ) apy + (Rg A U3> u3 | dp1 +
Ip

Re—l— ®) 4 o ))%ﬁ‘)%ﬁ ;
p
+ R3— A(P>+A(>) )u;; '

N .
2 b) 8u3 8u* YOr . %
/_la < ( ) o1 (Rg A u3> Uz | dp1
8U3 au*a (b) -+ -
( < ) 8]71 + <R3 A ’LL3> u3> dp1
Olig Ou’k
_oP@Z28303 (P) 570y *
/_l;2 ( o 901 O + AP u3u3> dm

where the explicit expressions of o = a® +a® \ =20 L \P) Ry Ry are given in Appendix
B.

4.3.3 Power Balance

The balance of power

Pint(B7 Vm) +Pint(Bave) = Pea:t(Ba Vm) +7Dezt(87 Ve) (4107)
N .
K 2, Sl *
%y w o[ — <R9+a(”)@3)%+
K(p f z2 %}ga%adpl_l_ f2£h bapl Op1 dp1
o T2 (Rg — )ii3> u3
+2G5 Ag, [2%] ', = w [ o)2isdi
l 1] ke _le 0Op1 Op1 dp
el [%;ﬂ ?, Ad A
e\ e +iA
+2 ( e H) AdAD
T2

must hold for cach A¢ € R and for each ug € H? ([—%,%]) . This is also a weak formulation of
the problem. It can be fruitfully applied to obtain numerical solution of the dynamical problem by

means of a Galerkin Approximation.
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4.4 Results Review

In this chapter a model of a PEM layered beam has been derived imposing a prescribed kinematics

on a 3D Cauchy Continuum model. The following hypotheses have been assumed:

1. The beam sections remain rigid

2. Small deformations and linearized kinematics

3. No shear deformation

4. Perfect bonding between elastic and PZT layers
5. Constant electric field in the transducers

6. Uniform displacements along the thickness of the transducers equal to that of the surface in

contact with the beam.

The following kinematical descriptors of the state of unidimensional electromechanical beam

have been chosen

e the beam central axis transversal deflection usz(p1, t)

du; t

e the beam section attitude v = By

e the beam central axis longitudinal displacement u;(p1,1t)

e the time primitive of the potential difference applied between the electrodes'® Ag(t)
By means of the virtual power principle we have found
1. the weak and strong formulation of the equations of motion for

(a) the three layered PEM beam in figure 4-3 with in-phase connected PZT sheets. They
are given equations (4.82) and (4.73 — 4.74) respectively;

(b) the three layered PEM beam in figure 4-4 with out-of-phase connected PZT sheets. They
are given equations (4.86) and (4.76 — 4.77) respectively.

3Let us underline that the Ag(t) does not depend on the spatial variable. This is beacause the surfaces of the PZT
sheets are electroded, thus equipotential. This fact allows us to describe, by means of an imposed kinematics, the
electric state of the transducer only by a scalar variable, defining as dual quantity the electric current I flowing throw
the electric terminals. In this way the pair of PZT transducers can be electrically regarded as a two port network.
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(c) an elastic beam. They are given by equations (4.91) and (4.88 — 4.89), respectively.
The negligibility of the rotational inertia has been discussed by means of a dimensional

analysis
2. the constitutive relations for an unidimensional model of

(a) the three layered PEM beam in figure 4-3 with in-phase connected PZT sheets. They

are given by

)
F o= (K}”) +K,(”)) a;” 2G1Ad
M = (K(‘”)+K(b)) 88“23 (4.108)

1
I = 2/ <Gla )dp1+2A¢/ H
4 o

(b) the three layered PEM beam in figure 4-4 with out-of-phase connected PZT sheets. They

are given by

O

Fo= (EP+K") o (4.109)
M = (kP +KD) 68“23 +26; (29)

é au:)’ . 2
I = —2/__é (Gf@) dp1+2A¢/_éH

where F, M are the axial force and moment acting representing the contact actions in
the unidimensional model of the beam, and [ is the current flowing through the electric
terminals of the PZT sheets. The expressions and the physical dimensions of all the

quantities introduced are reported in Appendiz B

3. how and by which hypotheses the interaction between the structure and the PZT patches
can be reduced to the simple model that is represented in figure 4-8 for the flexural coupling

and in figure 4-7 for the extensional coupling.

Hence we have understood the physical behavior of a beam with bonded PZT transducers
studying the equations of motions and the boundary conditions derived for some meaningful sit-
uations. As outlined with an example in the last section of this chapter the power expressions
for the simple cases that have been considered explicitly will allow us to derive the model of a

complex system by means of the virtual power principle following an assembling procedure. The last
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point will be crucial in the following chapters and, in general, to obtain numerical solution for the

dynamical problem of complex PEM systems. .

7



Chapter 5

Periodic PEM Structures and

Homogenized Models

The main idea of this work is to design and analyze electromechanical systems with distributed
piezoelectric coupling for the suppression of mechanical vibrations. An unidimensional periodic
PiezoElectroMechanical structure with distributed coupling can be physically realized interconnect-
ing an array of PZT transducers bonded on an elastic beam with a lumped electric transmission
line, as sketched in figure 5-1. In the present chapter both a refined and an homogenized model of
that periodic system will be developed. The refined model will be deduced gathering the represen-
tations of its parts that have been derived in the previous chapters'. In this context we will make
use of the additivity of the virtual powers. The constitutive equations of the homogenized model
will be derived by those of the refined one by means of a kinematical mapping.

The homogenized model provide a rough description of the system valid only to analyze per-
turbations with a characteristic wave length greater than the dimensions of the basic cell. However
it allows us to infer important qualitative thumbnail information (see the following chapter) about
the behavior of the PEM structure. Indeed its mathematical model will be reduced? to two coupled
Partial Differential Equations (PDFE) whose dimensionless form will be provided.

Both the cases of longitudinal-electric coupling and flezural-electric coupling will be treated.

1See Chapter 3 for the transmission line, and Chapter 4 for the beam with PZT transducers.
2The refined model is mathematically represented by a system of a partial differential equation coupled with N
ordinary differential equations, where NN is the number of cells composing the modular system.
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Figure 5-1: Basic cell of the periodic PEM structure

5.1 Bending Coupling

Let us derive both the refined and the homogenized model of a periodic piezoelectromechanical

system whose basic cell is represented in figure 5-1.

5.1.1 Refined Model of the Basic Cell

The generic cell of the system is represented in figure 5-1. Let us denote it by S;. It can be thought

as the union of

1. a piezoelastic beam IB; whose model has been derived as studied in Chapter 4;
2. a RLC parallel element to ground G; whose model has been derived in Chapter 3;

3. aline RLC parallel element £; whose model has been derived in Chapter 3.
Thus
Si=B;UG, UL; (5.1)
where the parts B;,G;, £; have been studied in the previous chapters and an expression for their

powers has been already given. In the reference fixed in figure 5-1 the beam central axis is the set

le le
A ={p =pre1:p1 € [—575]} (5.2)

We will focus our attention on the flexural behavior of the beam and we will not describe the

extensional mode. Indeed because of the assumed electric connections and the symmetry the
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extensional mode is uncoupled from the flexural-electric mode. Assuming all the hypotheses (1 —6)

introduced in 4.1.2, the state of S; can be described by the set of virtual velocities

V=V, UV (5.3)
with
Vi = {ir, 55 5EY Ve={4.8) (5.4)
where

o u, = Uy(p1) is the vertical displacement of the beam central axis and is defined on A4;,

e ¢, is the time primitive of the electric potential difference across the PZT layers and the

RLC element to ground G;,

e ¢, is the time primitive of the potential difference across the line RLC' element L;.

The power for the generic cell S; can be easily derived by assembling the expressions that have

been found in the previous chapters. Indeed for the additivity of the powers we can write

P(S;) = P(B;) +P(G;) +P(L;)

Notation 6 In the following we will denote by

P(B,v") (5.5)

the virtual power expended on the virtual velocity v* in the part B. When v* is omitted all the virtual
velocities are implicitly considered. Moreover we will indicate by a subscript ;,; the virtual power

of the internal forces, and by .. the virtual power of the external forces.

Internal Power By the expressions of the previous chapters

0% .
Pint(B;) = Pim<8i,8—p§ﬁ)+ﬂm<8i,¢r> (5.6)

Pint(G) = Pint(Gi, &)
Pint (ﬁl) = Pint (Ela é:)
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where

024 L 0%, B +E P, 924
Pons (B, Ll / (0) 0y Oty / ) O 07
"B ) wf o2 o M fw T o2 o !
l
[T
+26, G, —=Zdp
u o
.k 2 u *
znt( Z’¢) = _2¢’r 1 wadpl +2 1 H¢r¢r
*_2]2 P T2
Pint(Grby) = 0,0,
_ ¢, x| 1 dg, i
a gdt2¢+R dt¢+ ¢¢
Pznt(£17§;k) = Lré:
d2§ 1 d{r -

External Power

Pea:t(Bi)
Pea:t(gi)
Pext(ﬁz')
where
Ly
P@mt(szu'r‘) = /_%L(
o 4
- r — _
Per (B Gpy) = /—%

’Pext(gia(b:) = r¢*
,Pext(ﬁiaé:) = Y;.fr

By the expressions deduced in the previous chapters

. %
o,

3171)

= Pemt(BZ: T)+Pemt(8i’
= Peat(Gi, &)
= Pemt(ﬁiaé:)

Iy

Rs— x%) it dpy — / ll AP i, ii*dpy

2
Oii,. \ ouy
Ry +a®
( o 3]01

l

Op1 Op1

(5.7)

(5.11)

(5.12)

(5.13)
(5.14)

Power Balance The power balance for the basic cell of the periodic system can be easily written

imposing the equality between the internal and external powers. Moreover a weak formulation for

a modular system can be derived by writing its internal and external powers as a sum of those of

its cells and equating them.
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5.1.2 Homogenized Continuous Model

Let us define an electromechanical straight axis beam as the unidimensional continuum whose

configuration is described by the three scalar valued fields

{u, 7,0} (5.15)

defined on the unidimensional domain

A={p€e&p=npe} (5.16)

where C ={o, e,e2, €3} is an opportunely chosen Cartesian reference and u,7, ¢ represent respec-
tively the vertical displacement of the beam axis, the rotation of the beam sections and the electrical
potential referred to ground. Here it is assumed that the beam is constrained to move in the e; —e3
plane. With a first order gradient theory in all the variables the following set of virtual velocities

can be chosen

ou* * 8¢
Y ={u", Y, O, 5.17
{u* . o 8p1 ¢ 1 (5.17)
We will assume a linear theory and that the beam is not shear deformable, thus
ou*
Y = 5.18
= (5.18)
and the set of virtual velocities can be reduced to
2 * *

G Rl 8p1}
Virtual Powers

The virtual powers are written as a linear functional on the virtual velocities. As usual we will

distinguish between internal and external virtual powers.

Internal Virtual Powers Let us split the internal power in the sum of the contributions relative

to each objective element of (5.19)

% - ¢

Pint(A) = Pint(‘A’ a_p%) + Pz’nt ("47 ¢ ) + Pint (A’ 6])1

) (5.20)
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Thus the following internal actions are identified

Pmt ] 8p2 f.A p% Pmt A ¢ f_A 77¢

(5.21)
Pint(A7 f A dp;
External Virtual Powers The external powers are
o’ 96"
Pemt (A) ea;t (A u ) + 7Deamf (A7 (9 ) + Pewt(A ¢ ) + Pea}t(A7 3_]01) (5'22)
and the following external actions are identified
Pl i) = Ly P PeedA ) = [ oty (5.23
Pea:t (-Aa ¢ f_A I¢’ Peact f.A op1

Power Balance

By the principle of the Virtual Power the following power balance must hold for each regular virtual

velocity (P, (A) = Peat(A))

Ja Fat* +fAF98p1
/ e +/ s ( I +fAY%,% ) (5.24)

Equilibrium Equations

Integrating by parts the terms of (5.24) containing the spatial derivatives of @* and of ¢>* we obtain

[ [ = (I R 5.29
8p1 N Id" YQQL* '
+ 4 ld + [ Y55
{M%P%L)A_ [g{l’%u*]aA_*—fA Ut _ < fAFSiL*—’—[FOu*]@A_fA%S‘?u*—F )
T[], 1A L 78]

({M%L 5 M _ < Failaa+ [V6],, - )

22 N A
fA(ap% — Fy+ 5 fA(n_am_I+ap1)¢

Since the virtual velocities are arbitrary the following equilibrium equations are derived

FPM 0Fy
W = B (5.26)
oL )
—_ = [ —— 5.27
7 Op, Opy ( )
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if the boundary conditions are such that

[fﬁmbA+{MgZLM—{%%mLM+[@—yj$hA:o (5.28)

Remark 22 FEquation (5.28) is a constraint imposed on the boundary condition by the adopted
formulation with the virtual power principle. We say that boundary conditions that satisfy (5.28)
are ideal. In the following we will assume that (5.28) is verified.

Constitutive Equations

Kinematical Map If dynamical phenomena with a wave length A, > l., where [, is the dimen-
sion of the basic cell of the periodic system are considered, the continuous fields can be approximated
on each cell by a constant.

With this idea we impose the following kinematical mapping between the descriptors of the

refined and homogenized models 3

U —u u, —u ull =

(5.29)
¢, — ¢ L g

Power Balance

Notation 7 The homogenized material constants will be denoted by the same letters of the refined

9 —"

ones adding a . In general they will not have the same physical dimensions.

Imposing the balance of the powers expended in corresponding (by 5.29) virtual velocities and
considering the mapping 5.29, by the arbitrariness of the virtual velocities, the following constitutive

equations for the homogenized model have been found*

M= I_(fu”+(?f<b

R S TR (5.30)
n fu +Lg¢+Rg¢+ g¢ L Ll¢ +Rl¢+ l¢

3The quantities relative to the refined model are denoted by a subscripted ”,”
! These have been obtained by means of a Mathematica code.
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where

C 1 (% Z o p) =
Kf:E ff% Kf dpl‘f‘fi% Kf dpl Cl:Clle
!
~ 2 (2 AP =~ Cy+2,H
Gf — I —% Gf dp1 Cg = 1. (531)
L=4 R=L
Ly = Lyle Ry = Ryle
The external actions in the homogenized model are given by
F3=Rs —\ii Fp= Ry +ail 5.32)

I=1 y=1%

where

ok

Ip
_ 1 2
A= T ( / _ AOdpr + / . A<P>dp1> (5.33)

2

v
a = l_ </l a(b)dpl _|_/l (X(p)dpl) (534)
e \J-% -4

Equations of motion Substituting the constitutive relations in the equilibrium equations (5.26)
we get the homogenized equations of motion for the coupled electromechanical continuum in a

strong form

(By)" +(Gpd) +Xi+ (ail) = R-F  (5.39)

1 Lo (LN (LN AN A o
-Z¢+;Z¢+Q@—<fy>-—<E¢>—(&¢)—%%u = I-Y (5.36)

Since we consider systems that are constituted by an array of identical cells, the homogenized

material characteristics are constant in space. Thus we can rewrite the equation of motion as

K +Gd" + Ni+ ail” = F3— Fy (5.37)

i i _.._i ”__1~//_—~~//_— o 5
Lo+t G- ¢ — G -G’ = I-¥ (5.38)

The electrical (I, —Y”) and mechanical (F3, —F}) forcing terms can vanish and the homogeneous

system corresponding to (5.37) is easily obtained.
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Dimensionless From The equations can be conveniently rewritten in dimensionless form intro-

ducing new dimensionless variables such that

U= ugu t=tor pr=z0r ¢ =Py

F3 =F30P3 Fyg=FpPy [ =11 Y =YY
They becomes

_.Lﬂ_F Gidg 03w

21 Ozt thO 92 or O Fyo 0P
e Py aug 8t Py on
508 T B
K2y _Qn__lé Cady 0% _ _¢n 0% = AT
‘¢ Ryto O 7'+ 2 or2 Lix? 0x? o ‘fa_ana
bo_ 0% _ Cien_ 0% Gruo &y 0 2o O
T Riadto 02201 232 0x20T | 3ty 0a0r
or, equivalently,
2 2K, 94
o+ oAt 2Ry Fpo OB
— puum— — 3 -_— =
13Gidy Py L g Mgz Ox
Augxdty Ox20T Az 02072
Pyt to QU _ 1 P .
o T Cngw—’—ngRg or — CoLizg 0x? _ 21y Fa _ 7t0Y0
_ t_n a?)w _ _CI 84w _ C_:ftou() 83’1) g¢0 Cg Ox() a.%‘
CyRyaZ 02201 Cyxk 022072 Cyxddy 02207
Defining the dimensionless coefficients
_ 8Ky _ Gritggy en
v 17 Dz 12 T Cuae,
2 B _ o _a
Oi = CyLi22 200 = CoRizz P = P
6 F Y S R o/
9 = CylL, 9= CyR, ol
t2F50 t2QFQQ t2 1o 2Yp

X1 = T X2 = oo X3 = Codo X4 = Cqd00

and choosing the dimensionless time to and the dimensionless electric variable ¢g such that

_ X2 . _ X
tO—\/[{fifo ¢0—\/@guo
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)



the dimensionless parameters

a=1 =7 Y2 =7 V=T
9Ky
D — 1 A .2 _ a
B = R'f@ngxO o1 = 2C, Rz \/ K; o p= fjg (5.46)
— A 2 1 A2 — G
By =\ T, %0 %9 = 36,7, \/ %, L0 K= G2
o $4QF30 . :U3DFQQ - zwgfouo o Kfc?’uuoffo
X1 = “uok; X2 = uok; X3 =W\, K, X7 \/ég K;
are found and the equations (5.42) can be rewritten as
V" A+ 0= X, Py — xo P, (5.47)
_ "”_26'”_ N a2 Ny 2§ y 2 7 — y! 4
K W = 0" = B A b+ 260 + Bob = 3T — x4 (5.48)

where the symbols “ and’ are redefined as the dimensionless temporal and spatial partial derivatives.

For sake of simplicity in the following we will consider particular cases in which some of the
electrical elements of the basic cell vanish or tend to infinity. Since, as it has been shown in the
previous chapter, the dimensionless parameter p in the common applications is very small, we will

pose p= 10
Vanishing Ground Element Let us consider the case in which

L,— o0 Ry;— o0 . By —0 By, —0

(5.49)
C—0 p—0 k—0 p—0
Hence the equations (5.37) simplify to
V" 440 45 = x1Ps— xoP, (5.50)
</ . . _a _a
=200 — 0 = B+ = el —xa (V) (5.51)

If also the line resistance is absent (R; — oo, since parallel connected) then the system is

conservative® and since §; — 0 the equations of motion reduce to

My o = x1P —x2 P, (5.52)

—’Y"l}ll - ﬁ?w// _+_¢' — X?ja - X4 (}7@)/

°In this definition we have not considered the external forces.
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Vanishing Line Element If

L R 0 6—0

| — OO0 _l — OO — ﬁl—> 1 — (553)

Cir—0 Y*—=0 p—0 k—0

then the following equations are obtained

U””‘i"ﬂ‘ﬁ”-f—ﬁ = 1P _XQP; (5.54)
i+ + 250 + B2 = xsI° (5.55)

The correspondent conservative case is obtained with R;, — oo
"+ )"+ = x Py— xoP) (5.56)

5.2 Extensional Coupling

If the PZT layers of each module are electrically connected in phase as in figure 4-4, then the
state variable in the electric network is coupled with the extensional mode of the mechanical beam.
As has been underlined before, the bending mode of the beam is uncoupled from the extensional
one because of the geometric and materials symmetries. Hence focusing our attention on the
electromechanical coupling, we will consider only the extensional-electric modes of the beam. The
model procedure followed in the previous section we will quickly repeat for the new case, to derive
equations analogous to (5.47) for the extensional coupling.

5.2.1 Refined Model of the Basic Cell

Kinematics

The following set of virtual velocities can be chosen

Vn = {in, 55} Ve =168} (5.58)

where
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e u, =1,(p1,t) is the arial displacement of the beam central axis and is defined on A4;,

e ¢, is the time primitive of the electric potential difference across the PZT layers and the RLC

element to ground G;,

e &, is the time primitive of the potential difference across the line RLC element L;.

Virtual Powers

With the same notation adopted for the bending coupling, the expressions of the virtual powers

will be split up in

P(S;)=P(B;) +P(G;) +P(L;) (5.60)

Internal Power By the expressions that have been derived in the previous chapters

PutlB) = Pia(B 55 + Py (B, ) (5.61)
Pint(Gi) = Pint(Giyby) (5.62)
Pint(Li) = Pant(Li, &) (5.63)

where

.k l
,Pznt(B %) — /_lb l(b)auTau d /LE KZ(P)aur (9’(1, d D

v op Op1 Om Op1 Op1
+'E . %
126, 2 g, (5.64)
iz Op1
e * +_2 oux +_2 ek
Pint(Bia ¢T‘) = _2¢'r I Gl a pol +2 L H¢r¢r (565)
T2 2
Pint(Gr. ) = 0,0, (5.66)
o PO 1 ds,
= g 12 ¢r +5 R dt ¢r + ¢’r¢r
Pint(Li &) = wéy (5.67)
d &r 1 dg'r" ¥
= gr + = 57‘ _érgfr
R T

89



External Power By the expressions that have been deduced in the previous chapters

p@mt(Bi) = Pext(Biau::) (568)
Peat(G) = Peat(Gir ér) (5.69)
Peact(£i) = ,Pext(ﬁiaé:) (5'70)
where
2
Pewt(B,, i) = / (B =2V itdp, (5.71)
/Pext(gia('b:) = Ir¢: (572)
,Pext(ﬁz"%:) = Y;’é: (573)

5.2.2 Homogenized Continuous Model
Kinematics

To study the extensional behavior of an electromechanical beam we can describe its state by the

set of scalar valued fields {u, ¢} defined on the unidimensional domain
A={pe&p=me1, ;eI CR} (5.74)

where C ={0, e, e2,e3} is an opportunely chosen Cartesian reference and u, ¢ represent respectively
the azial displacement of the beam axis and the electrical potential referred to ground. With a first

order gradient theory in all the variables the following set of virtual velocities can be chosen

- 0"

: 5.75
o (5.75)

v:{ 70 7¢

Virtual Powers

The internal and external powers are written as a linear functional on the corresponding virtual

velocities and the internal and external actions are consequently identified.

Internal Virtual Powers We can divide the internal power in the electrical and mechanical

contributions

o d¢"

Pimf(A) = Pint(Av a ) + Plnt ('A QZS ) + 7Dim& (“47%) (576)
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where

ou*

Pint (A, apl) = ap1 (5.77)
Pine( A7) = / .79
LR )

P'Lnt(A, apl) - " (9p1 (579)

External Virtual Powers Also the external power can be divided into the mechanical and
external contributions. The mechanical and electrical external actions are consequently identified.

We have

ok

9¢

Pest(A) = Peay( A1) £ Py (A &)+ Pey (A, 5 -) (5.80)
where
Peat(A, u*) = /A Pt (5.81)
Pert(A,07) = /A [$° (5.82)
Prut(A, ‘Zﬁ) _ /A ?gi (5.83)

Power Balance

The power balance prescribes that for each regular virtual velocity field, that satisfy the homo-
geneous version of the prescribed essential boundary conditions, the following equality must hold

(Pint (A) = Pea:t (“4) )

6p1 /77¢ +/ or AFlu*++AI¢*+Ag_Z (5.842)

Equilibrium Equations

Integrating by parts the terms of (5.84a) involving the spatial derivatives of 4* and qu* we obtain

i () [ (-8 -],
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Since the previous expressions must hold for each virtual velocity the following equilibrium equations

must be satisfied

ON
G = B (5.85a)
8L )
= [ —— 5.85b
O op Op1 ( )

Moreover the following conditions must be verified on the boundary

Nilou = [(V =0) 6] =0 (5.86)

Constitutive Equations

Assuming the same hypotheses and adopting the same procedure as with the bending coupling, the

following homogenized constitutive equations have been derived

N = Ku +Go (5.87)
_ 1 1 . _ .
— Gl =t —ba O 5.88
7 1 +Lg¢+ Rg¢+ o (5.88)
1 / 1 o/ = !
_ 1 I 5.89
L Llsb + Rlsb +Ci¢ (5.89)

where

lp _
Gl _ _2 2 G d C. = Cot2i,H
-/ g M P1 9 le (5.90)
Ly TLL R = ze
Ly = Lyle Ry = Ryl

The external actions in the homogenized model are given by

Flle—j\iJ./

_ . (5.91)
I=1I, y=1
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where

Le lp

e _le _p
- 1(/ O+ [
le L _

Equations of Motion Substituting the constitutive relations in the equilibrium equations we

IS e

a(p)dp1> (5.93)

N5

get the homogenized equations of motion for the coupled electromechanical continuum in a strong

form

_ AN
~ (Bw) - (Gid) +Xi = By (5.94)
1 1. . 1 ! 1.\ _ N -
—¢p+—=—0¢+Cp— [=¢' ) — = —(C)+G":I—Y’ 5.95
Fot ot () - (F9) - (08) + ca (5.95)
If periodic PEM beams are considered, the homogenized material characteristics are constant and

the previous equations become

Kl —Gid + i = Fy (5.96)
1 1. = - 1 1 = wn = -
- —_ Cth—=—0¢" ——=¢ — O Gu = I-Y 5.97
ot o+ Cb -0 - - G+ G (5.97)
Dimensionless Form Introducing the dimensionless variables
U = uQv t=toT P1 = o ¢ = ¢0¢ (5 98)
P = FoP, I=1" Y =YY"
the equations (5.96) become
Kug v Gy 0% Aug BPo
- - — FoP 5.99
:r% 0x2  xoty Ox0T t% or? 1041 (5.99)
0 d0 00 | Cabn Py by 8% -
LV T Ruor VT o " Tafor | _ p YodY (5.100)
_ ol P _ C’I(bn o) + Q_lﬂﬂﬂ ) ax ’

Ryx2ty 0x207 x2t2 Ox2072 Totg OxOT

Dividing each equation by the coefficient of the term with only two time derivatives, we obtain

0% AR Py GG, 0% BF
I e L 1o 00 _ ffiop (5.101)
or Axg 02 Augxgly Ox0T Aug

22¢ i3 tn oY g Py T \/ a

o TG,V T G o ~ GL 0a? _ Moo Y Ot 0

oty By _C 2 Gitown o  Cy Cydoro Ox
CyRya2 022017  Cgad 02012 + Cywo g 00T 970 970
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Defining the dimensionless coefficients

o — Ak N = Gitody _ Gitqug
Az} Auo o Cgzodo
2 _ _ 3 to
/Bl C’ngwg 25l C Rlxo
32 = B 95 — —to = O
9= CyL, 97 CyRy Cya2
_ BF, _ 3], 3V,
X1 Aug X3 = Cyp Cg<250w0

(5.103)

and choosing the dimensionless time ¢y and the dimensionless electric variable ¢ such that

to = \/}%xo b0 = /?J%uo (5.104)
the dimensionless parameters
a=1 Mm=7 Y2 =7
= ___X__ — + A G
_ _1_ A _ G
\/ chg ro b9 =55 T\ 7 %0 R ="Cu32
72 — Iy 4 2 _ Y /A
X1 = uOKl o X3 = uk \/ T, 00 X4 = yk,\/ C, MO
are found and the equations (5.96) can be rewritten as
"~ +i = P (5.106)
iy WM 2.0 <y y 2 _ Ta val
—RY =260 — BT 0+ 4 26000 + 85 = XgI® — XY

where the symbols ~ and ’ have been redefined as the dimensionless

derivatives respectively.

temporal and spatial partial

As for the bending vibrations, we will treat particular cases of (5.106).
Vanishing Ground Element Let us consider the case in which
Ly — o0 R;— 0 —0 6,—0
I 7 & 7 (5.107)
C;—0 p—0 Kk —0
Hence the equations (5.106) simplify to
=+ 5 = P (5.108)
260" — B+ = xgl = X, Y (5.109)
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If also the line resistance is absent (R; — oo, since parallel connected) then the system is conser-

vative® and since §; — 0 the equations of motion reduce to

'~y +i = P (5.110)
B+ 4y = xal® =g Y (5.111)
Vanishing Line Element If
L —00 R — o -0 & —0
: o ) l (5.112)
C—0 Y*—=0 k—0 p—0

then the following equations are obtained

= i = P (5.113)

U+ 2600 + B2 +40 = x3l® (5.114)
The corresponding conservative case is obtained with Ry — oo

—f =)+ = x1Py— xoP, (5.115)

P+ B2 + i Y3l (5.116)

6In this definition we have not considered the external forces.
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Chapter 6

Comparison of Optimal Network

Configurations

In the previous chapter periodic physical systems in which a distributed piezoelectromechanical
coupling between a beam (or bar) and an electric network is realized has been presented following
[22]. An homogenized model for it has been derived. Here we want to analyze the applications
of that concept to the control of the mechanical vibrations of a structure. To this end we will
study how the proprieties of a monochromatic wave propagating in the electromechanical infinite
media depend on its wave number and on the electric circuit parameters. The optimal values of
the electrical parameters will be found (Minimizing the decay time of the propagative wave) for
three different network topological configurations with a single inductor and resistor per module. A

comparative analysis of the obtained results will be performed. We will discuss

1. the performances in the mechanical vibration damping;

2. the dependence of the optimal electric parameters on the number of modules of the periodic

system that are spanned by the chosen wavelength;
3. the sensitivities of the optimal parameters on the assumed wave number;

4. the behavior of PEM beams designed for a wave number ky when wave numbers different

from ky are considered.

Both the cases of the longitudinal-electric and transversal-electric coupling will be examined.
The wave analysis on an infinite medium may be useful also when finite structures must be

studied. Indeed, the vibration modes of a simply supported mechanical beam can be interpreted
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as stationary monochromatic waves with a wave length given in function of the beam length and
the mode number considered.
Numerical results for the PEM beams which has been experimentally realized, as it will de-

scribed in Chapter 7, will be furnished.

6.1 Wave Form Solutions

Let us consider a mono-dimensional infinite media the state of which is determined by a n — th
dimensional vector field v, defined on the cartesian product of a spatial and a temporal domain.

Let us assume that its dynamics is governed by a system of n PDFE's in the form

d*v dv
where D1, Dy are space differential operators. If a Fourier method on the spatial variable is applied

to (6.1), its general solution can be written as superposition of waves of the type
v = Vi cos(kx) (6.2)

where k is a dimensionless wave number and ¥ is a vector function of time only. Hence by the study
of the properties of the solutions in the form (6.2) as function of the wave number it is possible to
get a deeper insight into the dynamical proprieties of the PEM we are dealing with.
The fact that the media is mono-dimensional simplifies the discussion since k£ and x are scalars.
In the following we will consider k as a fixed real, positive parameter!. Substituting (6.2) into
(6.1) the generic spatial derivative can be easily evaluated and Dy, Dy transform into two real alge-
braic operators Dy g, Dg . Then (6.1) transforms in the following system of Ordinary Differential
Equations for the temporal evolution of a solution of (6.1) in the form (6.2) for a given k
d*¥y, A,

—= +D

7 Lt DoV, =0 (6.3)

This system can be rewritten in the normal form of a system of the first order in R?"

% .
It A,y (6.4)

! Physically it corresponds to study of the propagation of waves with a given, fixed wavelegth A (Let’s recall that

A= 28)
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with

Vi 0 I
S’ - dv ’ Ax = g n
7 —Doxr —Dig

where we denoted by 0,, and I,, the null and identity operators on R™. Hence the theory of linear first
order systems of autonomous homogeneous OD E's can be fruitfully applied to study the qualitative
properties of the temporal evolution of solutions in the form (6.2).

The differential problem (6.4) is posed in the vector space V = R?®, and Ay, for each k, is a
linear operator mapping V into itself (Ax € L(V,V)). It is well known that its general solution
starting from the initial data yo at ¢ =0 is given by (see [15])

v =ty (6.5)

However, in order to study the qualitative properties of this type of solutions, it is opportune to get
a deeper insight into (6.5). To this end it should be necessary to describe explicitly how to write
the exponential of a real operator Ay in the general case. Here we will only report in a convenient
form the fundamental results of the theory of the system of linear autonomous, homogeneous O DE,
referring to [14-17] for a complete treatment.

First of all, let us note that since Ay, is real, its eigenvalues must appear in complex conjugate

pairs. Without loss of generality, let us split the set X of the distinct eigenvalues of Ay into

e a set {\}i=1..p of p distinct real eigenvalues, each one characterized by an algebraic multi-

plicity a;

e aset {w;,w; }i=p+1..prq Of ¢ distinct conjugate pairs of complex (with non vanishing imaginary
part) eigenvalues, each one characterized by an algebraic Each A; will be associated with a
generalized eigenspace NA, with dim(N?) < a;, while to each pair {w;,w?} will correspond
the pair of generalized eigenspaces {NZ,N¥"} with dim(AV*) = dim(NV¥") < @;. However,
since Ay isreal, if {e}, ..., €} } is a basis of N}, it is convenient to not distinguish between the
compler N and N¥", and to associate to each pair {w;,w?} the real generalized eigenspace

N, defined as

N; =R — Span{Re(e!), — Im(ezi)7 ..,Re(e’ ), —Im(e! )} (6.6)
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Hence let us define the set {Nj}i=1, . ptq, Where

NA - for i=1,..,
Ni= / P (6.7)
N, for i=p+1,..p+q

It is possible to show that the vector space V can be decomposed into a direct sum of the N,

that is,

V = ®i=1.. preN* (6.8)

Moreover, each N is invariant under Ag. As a consequence the operator Ay can be decom-

posed as the sum
Ay = @i:l...p—l—qA](:) (6.9)

where each A,(:) is the restriction of Ax on N*. So that the differential problem (6.4) can be
decomposed into p + ¢ sub-problems in the p + g generalized eigenspaces {N%};=1,. p+q. Let
us denote by

§' = eArlyl c N (6.10)

the solution of (6.4) starting from initial data §% € N. Hence it is meaningful to introduce

the following definition

Definition 15 (Wave Mode) We define as the i —th wave mode the generalized eigenspace N C

V of the differential operator Ay, defined by (6.7). Each wave mode is invariant under the flow of

At this point we can fruitfully consider the consequences of the following theorem (see [16] of

for a complete proof [17]).

Theorem 8 Each coordinate of the solution §* € N* of (6.4) with o = Sfé e N is a linear

combination of functions of the form

theN't (6.11)
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fori=1,...,p and of
thewi't cos(wlt) or thewitsin(w!t) (6.12)

fori=p+1,...,p+q, where sz = Re(wi),w{ = Im(w;) and k < a;. In particular, if the algebraic

multiplicity a; of an eigenvalue is the same of its geometrical multiplicity, then k = 0.

Thus it is possible to distinguish between p + ¢ different wave modes {y(i)}izl,.,7p+q, each one
characterized by a temporal evolution expressed by a linear combination of terms of the form (6.11)

or (6.12) and by the fact of lying in the generalized eigenspace N".

Remark 23 (Dispersion Relations) The functions giving the real and imaginary part of the
eigenvalues as a function of the wavenumber can be interpreted as the dispersion relations of the
media. The tmaginary part w;-’ (k) of each complex eigenvalue furnishes the wave frequency corre-
sponding to a wave with a given wavenumber k, while its real part, if negative, will characterize
the damping properties of each wave mode. If real eigenvalues are concerned, the corresponding
contribution to the temporal evolution of (6.2) will not be oscillatory, but a simple exponential

decay.

In the following we will focus our attention only on systems having eigenvalues with a negative
real part (dissipative systems). In particular we are interested in estimating in a simple way the

damping proprieties of a given system in the form (6.4)

Lemma 1 Let k,a,r > 0 and let us consider the functions
f(t) =the™ g(t) = the cos(rt) (6.13)
Then there exist two real, positive constants M >0 and 0 < ¢ < a such that, for each t >0
ft) < Me™ g(t) < Me™“ (6.14)

Moreover if we denote by C' the set of real positive numbers ¢ such that 0 < c < a and (6.14) holds,
then

sup(c) =a (6.15)
ceC

Proof. Let us show the result for g(t), since the same reasoning is valid also for f(t). The

function t* cos(rt)e= (@~ is bounded for t >0 and c < a. Then there exists a constant M > 0 such
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that
t* cos(rt)e % < Me™ (6.16)
For each 0 < ¢ < a such that (6.14) holds, it is possible to define 6 € R* such that
c=a—20 (6.17)
Hence
sup(c) =sup(a — ) = a— inf(6) =a (6.18)

Remark 24 The temporal evolution of a solution of the type (6.2) in the generalized eigenspace
N is a linear combination of n; < a; terms of the form (6.11) or (6.12). Let us denote by fr(t)
the generic one. Hence, by the previous lemma, there exist two constants cp, My > 0 such that
fu(t) < Mpe=“* for each t > 0. Denoting by M = , max Mp, and by c= min cp, we can write

=1,..n4 h=1,..n;

fh (t) < Me ¢ (619)

for each h=1,...,n; and for eacht > 0. Moreover sup(c) = —wf

1
ceC

We can introduce the following definitions that will be useful to state an optimization problem

for the control of the vibrations of the PEM beams the dynamics of which we would like to study.
Definition 16 (Modal Decay Rate) For each generalized eigenspace N* we can define the char-

acteristic damping rate of the i —th wave mode as the constant

o = — (6.20)

5§

This characterizes the exponential decay rate of the contribution to the general solution of (6.1) due

to the i —th wave mode.

Definition 17 (Modal Decay Time) For each generalized eigenspace N* we can define the char-

acteristic damping time of the ¢ —th wave mode as the constant

2w

9(1) .—

(6.21)
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This furnishes the characteristic damping time of the contribution to the general solution of (6.1)

due to the i —th wave mode.

Definition 18 (Modal Damping Ratio) Defining the modal period as

70 = — (6.22)

and denoting by n; the number of modal periods after which the amplitude of ewi't is reduced to ;]2;

of its initial value, we define the damping ratio of the i — th mode as

1
G = @ (6.23)
It is given by
7 wk
.= = 4
=g = [ (624

Obuviously (; depends on the wave number k since w; does.

We can now extend the previous definitions to the whole system, attributing to it the proprieties

of the worst (for the vibration damping) wave mode as follows.

Definition 19 (System Decaying Rate) We define the system decay rate as
= min |wf?| (6.25)
(3

This characterizes the exponential decay rate of the general solution of (6.1).

Definition 20 (System Decaying Time) We define the system decay time © as

CRES max(e(i)) = 1

7

(6.26)

Let us denote by m one of the indexes for which 6™ = ©. Both © and m depend on the wave

number k since each 019 does.

Definition 21 (System Damping Ratio) Let us define the system damping ratio as

(m)
Z = e (6.27)



where m is one of the indexes for which 6™ = ©. We have also

P ‘%
wh| o,
Let us underline that
Z # min (4(@) (6.28)

Obviously Z and m depend on the wave number k since each 0@ does.

The phase velocity of the i — th wave mode is given by

I
@ =) = (6.29)
while the group velocity is defined as
~ dwi] k
v =0 (k)= dlf: ) (6.30)

If the relation w;(k) is linear, then v» = v9 otherwise v # v9 and the medium is said to be
dispersive.

Let us recall the relationships between the wave number k£ and the wave length A,

2T
k=— 6.31
3 (6.31)
and the wave frequency v and pulsation w,
w =2mv (6.32)
The temporal period of the wave is given by T = %JE = %

Remark 25 (Dimensionless Wave Number) Let Ay, be the characteristic wave length of the

physical phenomena considered. Thus we can set the dimensionless length

20 = Aug (6.33)

103



Consequently the dimensionless wave number relative to a wave length Ay, will be

(6.34)

If Ay = Mo then k = 2m.

6.2 Waves in PiezoElectroMechanical Beams

In the previous chapter we introduced PEM beams for the damping of the structural vibrations

by means of PZT transducers and electric networks. We derived an homogenized model for

1. a bar coupled with an electric transmission line by means of an array of PZT transducers in

bimorph configuration with in-phase electric connections

2. a beam coupled with an electric transmission line by means of an array of PZT transducers

in bimorph configuration with out-of-phase electric connections

Let us study the properties of solution of type (6.2) in those systems, the dimensionless equations

of which are given by (5.47),(5.106), assuming that

e the rotational inertia is negligible, thus p — 0
e the line capacitance C} is zero, thus Kk — 0

e the capacitance to ground is given only by the PZT patch and Cy4 vanishes?.

These systems of PDE’s can be in general written in the form of

d?v dv
— +D1— +Dyv = .
a2 + 1 a + Dov =20 (6 35)
where
D— D™ Dre Do Dy Dire
_’DT€ ’Dtize _D(T)ne DS@

are two by two matrices of differential operators and

V = uem + ¢ee

2 As we will show an additional capacitance to ground C, has a negative influence on the performances in the
vibration suppresion.
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is the vector defining the configuration of the electromechanical system. Here we denote by u the
mechanical variable, by ¢ the electrical variable, by {ey, e.} the basis corresponding to a pure
mechanical and electrical vector respectively. Obviously this system is a particular case of the one
studied in a previous section for n = 2

Let us start studying the general case of a PEM beam with a network topological connection

as that in figure 6-1. Then we will focalize our attention on particular cases.

Figure 6-1: Basic Cell: Electric Connections

We will consider the two cases of the coupling between transversal and electric waves realized
with out-of-phase connected PZT sheets and longitudinal-electric waves realized with in-phase

connected PZTs. In what follows we will write the equations in coordinates assuming the basis

{ema ee}

6.2.1 Transversal-Electric Coupling

The system of PDFE's in this case is

UW""YQLN—F’U — 0 (6.36)

b+ 260" + 2650 — 40" — B + B30 = 0
Assuming a wave form solution with a wave number k£ we can find

0 —yk? Kk 0
D1 - DO -
k2 —26,k2 + 26, 0 B5+k3}
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Hence the coordinate representation of the corresponding operator Ay is

Ap =

Ap =

Its eigenvalues can be found as roots of the following forth order characteristic polynomial

plw) = wt + (—2611{:2 + 2(‘59) w3+ (53 + k4 kQﬁIQ +72k4) w2

0

0 1 0
0 0 1
0 0 k2

—07 — k28] —yk? 260k — 26,

0 1 0
0 0 1
0 0 vk?

—B; — K87 —yk® 260k% — 264 |

+ (2k%6g — 2K%;) w + k'3 + KO3}

6.2.2 Longitudinal-Electric Coupling

The system of PDFE's is

—v"+7121/+i) =0

b+ 260" + 2650 — i — B+ = 0

Assuming a wave form solution with a wave number k we can find

0 ik k2 0
—iyk?  —26,k2 + 26, 0 B2+k0}

106

(6.37)

(6.38)

(6.39)

(6.40)



Hence the coordinate representation of the corresponding operator Ay is

0 0 1 0
0 0 0 1
Ay = (6.41)
—k? 0 0 —ivk
0 —B2 — K267 vk 260k% — 26, ]

Its eigenvalues can be found as roots of the following forth order characteristics polynomial with

real coeflicients

pw) = w4 (=26k% +265) w? + (B2 + KA1+ 57 — 7)) w? (6.42)

+ (2k%64 — 2k6)) w + K262 + K 57 (6.43)

Notation 9 The parameters of the systems with the longitudinal and the transversal coupling are
denoted by the same letters, however in each case they must be defined by (5.46), (5.105) respectively.

Remark 26 (Parameters range) To maintain a physical meaning all the parameters are con-

strained to be real and positive. Moreover we will consider

0<vy<1 (6.44)

6.3 Optimization for Vibrations Suppression

Our aim is to study the applications to the suppression of mechanical vibrations of the PiezoElec-
troMechanical system that have been introduced in the previous chapter. An optimal design of the

electric networks to maximize the energy dissipation is required. Thus we need to

1. define a performance index to be maximized (or a cost function to be minimized) related to

the damping properties of the system

2. define the electric parameters to be optimized specifying the functional dependence of the

performance index on them

3. maximize the performance index with respect to the electric parameters determining their

optimal values. In this phase it is necessary to choose an optimization method.

In the following sections we will focus our attention only on the optimization problem related
to the vibration control of the systems (6.36,6.40) in which only two electric parameters are left

free. They will be in the form of
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1. a dimensionless tuning parameter 3 to be chosen between the 3,,5; in equations (6.36,6.40),

that is associated to the value of an inductor

2. a dimensionless damping parameter 6 to be chosen between the ¢4,6; in equations (6.36,6.40)

that is associated with the value of a resistor

6.3.1 Performance Index

The performance index of a control technique can be chosen in different ways depending on the
application that is considered. The principal goals in the vibrations control are the reduction of
the forced and free response of the system. Here we consider the problem of the optimization of the
electrical parameters in the electromechanical systems (6.36,6.40) in order to let the free oscillations
characterized by a given wavelength decay as fast as possible. To this aim we will analyze the
damping properties of solutions of the type (6.2) in an infinite media. In this framework, as it has
been pointed out in a previous section, the temporal evolution resulting from to arbitrarily given
initial data can be characterized by the decay time of each wave mode, thus by the real part of
the corresponding eigenvalue. Moreover the damping properties of the whole system for a fixed

wavenumber can be controlled by referring to the following performance index

P= = (6.45)

1
B

where © and  have been defined by (6.26) and (6.25). The optimization problem related to the
maximization of P is completely equivalent to the minimization of the cost function C' = 713 =06
that has a direct physical interpretation since © has been defined as the greatest modal decay time.

In order to formalize the optimization problem it is opportune to underline the functional
dependence of P on the relevant parameters. Let us recall that P is a function of the eigenvalues of
the system (6.4) governing the evolution of a wave with a fixed wave number. Since the characteristic
polynomials (6.39,6.42) depend on the tuning parameters (3, on the damping parameter 6 and on

the wave number k, for which the system is analyzed, it will be
P=P(k,3,6) (6.46)

Hence, aiming to optimally damp the waves with a given wavenumber kg, we can state the following

optimization problem

Problem 10 (Optimization for a given wave number ky) Given a wave number kg, find the
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optimal tuning and damping electric parameters

Bopt = Bopt (ko) =0 8opy = by (ko) >0

such that for each 8>0,0 >0

P(k:())ﬁ)&) < p(k(),qut(ko),Sopt(kO))

Once the relations Bopt (ko),éopt(ko), giving the optimal electric parameters in function of the

given wavenumber, are found, it is particularly meaningful to study the behavior of

P(k, ko) = P(k, Bopt (ko) dopt (ko)) (6.47)

as a function of k. Indeed it describes the damping properties for waves with wavenumber k in a
system optimized for a wavenumber kg, and it will furnish us a criterion to compare the properties

of systems characterized by different network topologies.

Remark 27 (Resonant Structures) The present approach, that is based on the analysis of infi-
nite PEM beams, is meaningful and convenient also for finite structures. Indeed, considering for
example the free vibrations of a simply supported mechanical beam of length 1, its n — th vibration
mode can be interpreted as a stationary wave with a wave length A = %L and a wave number k = 7.

Hence its temporal evolution is given by a solution of the form (6.2)

6.3.2 Optimization Method

The evaluation of the performance index (6.45) requires us to find the roots of a fourth order
polynomial as a function of the parameters 3,6 and the wave number k. Although analytical
formulas for these are available, they have a complex expression and the analytical maximization of
the performance index is not trivial. We assume the following useful reasonable results frequently
used in pole placement optimization techniques®, that can be checked numerically in each case by

plotting the root loci of the characteristic polynomial as function of the electric parameters.

Claim 11 (Optimal Pole Placement) For the systems (6.36,6.40) the performance index (6.45)
s maximized when the roots of the characteristic polynomial appear in the form of two complex con-

Jugate pairs of coincident roots. Hence the systems we are considering are optimized when their

?See for example [30] or [28]
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characteristic polynomials can be factorized as

(w—0)(w—-2")2=0 (6.48)

This assumption can be checked numerically in each specific case.

With this assumption it is possible to find analytical expressions for the relations giving the
optimal electric tuning and damping electric parameters as a function of the wavenumber kq. Indeed,
imposing that the characteristic polynomial of the system, whose coefficients are functions of 3, 6

can be factorized as (6.48), a nonlinear system of four equations in the four unknowns
3,6, Re(w),Im(w) (6.49)

is found. The corresponding solution will furnish the values of 3, ;, éop¢t and of the corresponding

opt?
performance index (that is trivially given by Re(w) ) as function of kg. In other words it is possible

to find the following functions

Bopt(k())v 8(erz‘,(kO)a P(kbv B()]gt(k())Jgopt(kO)) (650)

Once the relations (6.50) are known, it is possible to analyze also the sensitivity of the optimal
parameters with respect to the wave number for which the system has been optimized, that are

defined as follows:

Definition 22 (Parameter Sensitivity) We define the sensitivity of the optimal values of the

parameters with respect to a change of the wave number k the two quantities

déogt(k) Sogt(k’)

opk) =520 05k =55

d

(6.51)

If these are evaluated for k = 2w, they will represent the sensitivity of the optimal parameters for a

change of the wave number about that one relative to the characteristic wave length xg.

In the following we will apply explicitly the outlined method to the cases on which we are

interested.
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6.4 Transversal-Electric Waves

In this case the linear operator that defines the system of OD Es governing the temporal evolution
of electromechanical waves with a wavenumber kg is (6.37) and its characteristic polynomial is
(6.39). We will find the optimal parameters for the following network configurations, particular

cases of that in figure 6-1:

1. Isolated Resonant Shunts (figure 6-2). Only the ground inductance and resistance Lg, Ry

are present. This case can be obtained from the general one by letting L;, R — oo (Thus

ﬁl_>0a6l_>0)

Figure 6-2: Isolated Resonant Shunts (IRS): Basic Cell

2. Transmission Line with Line Resistance and Inductance (figure 6-3).Only the line inductance
and resistance L;, R; are present. This case can be obtained from the general one by letting

Lg, Rg — oo (Thus 8, — 0,64 — 0)

Figure 6-3: Trasmission Line with Line Resistance and Inductance ( TL-R;-L;): Basic Cell

3. Transmission Line with Line Inductance and Ground Resistance (figure 6-4). In this case the
line element reduces to an inductance L;,while the element to ground reduces to a resistance

Ry. The correspondent equations can be derived by letting L;, R — oo.

In each case the PZT pairs of each element are electrically connected out-of-phase to realize a

bending coupling. Hence we reduced the problem in finding the optimal resistance and inductance
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Figure 6-4: Trasmission Line with Line Inductance and Ground Resistance (TL-R4-L;): Basic Cell

for the three network configurations above in each case of which only two electrical parameters are
left free. Thus the optimal parameters can be found with the procedure outlined in the previous
section.

For the following developments let us recall the expressions of the dimensionless parameters

KfC QZCORng Kf w/Kng (652)

8. = —_— 2 6 — 1 _A_xQ
g RCyLy " 2R,Cy\/ K;*0

and the relations between the homogenized and actual electrical quantities

B _ ~ _C
=L =p2 R =B-RZ C,=% +2fiH=C4% +2fH (6.53)
Lg — Lgle = LQ%Z Rg = Rgle = Rg%il

that have been rewritten in a convenient form by introducing the number n. of elements in the

characteristic length, such that

le = = (6.54)

and the ratio

bs~

Ji= (6.55)

o~
®

between the length of the PZT patch and that of the whole element.
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The numerical values relative to the example presented in Appendix C will be considered?®. For

that case it has been found

ﬁ,—ﬂ/K—fg—leo_ml QRZ i—i—156><104—20—

By = Jrar =13 1\/—9 b9 = sy [ 75 = 196 x 10* /oy (6.56)
_ G =G o
N = N 0.212 K Coo? 1.82 x 10 -,

6.4.1 Isolated Resonant Shunts (IRS)

The characteristic polynomial can be derived from the general case by posing 3; = 0,6; = 0. It

becomes
wh +2600° + (B2 + k' + k) o + 2K 6w + K132 =0 (6.57)

The values of the dimensionless parameters (3,4, 6, for which the two pairs of complex conjugate

roots coalesce in a single pair are

ﬁopt = k? 5Opt '}/kz
The real and imaginary parts of the roots corresponding to the optimal solution are given by

=122 W =11 (2) (6.58)

Hence the optimal values of the inductor and the resistor in each module are’

opt M g opt b\
L _—D—mfﬁﬂﬁ Ry _D'ch TS (6.59)

1) (1)

The sensitivities o ’,0p” of the optimal parameters respect to the wave number £ are given by

(1) 1 2 (1) _ iﬁ 1 1 —
dk i s :_7_T N—636% UR = dk /F e = - N—318% (660)

4They are relative to the geometrical and material characteristics of the PEM beam that was experimentally
realized, as it is described in Chapter 7.
It has been posed

Cy=0

Indeed an additional capacitance to ground has a negative effect on the damping ratio.
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In the numerical case considered in Appendix C
L' = 3.43n,238  RP' = 1.87 x 10%.n,20= (6.61)

For a wave length corresponding to the first mode of a simply supported beam® with a length

Iy =0.51m, we can set xg = 2l = 1.02m, consequently
L% =3.64n, H Ry =1.90 x 10°n, (6.62)
For n. = 10,
L' =364H R =19.0 x 10° (6.63)

6.4.2 Transmission Line with Line Resistance and Inductance(TL-R;-L;)

The characteristic polynomial can be derived from the general case by posing 8, = 0, g = 0. It is
wt =26 K%w? + (K* + k257 + 7 k*) w? — 2k%6 1w + K537 = 0 (6.64)

The values of the dimensionless parameters (3;,6; for which the two pairs of complex conjugate

roots coalesce in a single pair are

ﬁopt = k2 6opt =7 (665)

The real and imaginary parts of the roots corresponding to the optimal solution are given by
WR = /{:2% wl = k2.1 — (22{)2 (6.66)

Hence the optimal line inductance and resistance in each module are (Cy = 0)

opt A3 1 opt A1
L™= Wﬁﬁ)nekz 1 _2_60} 2fiH ne (6.67)

and the corresponding sensitivities with respect to k are

L
o2 — [%i— /?12];@_2 — 15 -31.831% o2 =0 (6.68)

6 Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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In the numerical case considered in Appendix C

O IS O X
L7 =135 x 10281 RyP =735 x 10340 — (6.69)

For a wave length corresponding to the first mode of a pinned-pinned beam with a length’ I, =

0.51m, we can set xg = 2l = 1.02m, consequently

L7 =140 R =10 < 10° (6.70)
For n. = 10,
L =144H R’ =750x 10° (6.71)

6.4.3 Transmission Line with Line Inductance and Ground Resistance(TL-Ry-

L)

This case can be obtained from the general one by letting Ly, R — oo. Since with these positions

ﬁg — 0, 6; — 0, the characteristic polynomial becomes
wh +2650° + (k* + K267 + k) w? + 2k 6w + K557 =0 (6.72)

The values of the electrical parameters for which the four roots of the characteristic polynomial

coalesce in a single pair are
ﬁ;)pt — ]{?2 6zpt — ,yk2 (6.73)
The real and imaginary parts of the roots corresponding to the optimal solution are given by
2

Hence the optimal inductor and resistor in each module are

opt _ _Jul 1 popt _ X
L7 = memmme T =6\ 2hais (6.75)

T Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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Table 6.1: Transverse-Electric waves: optimal values and sensitivities with respect to the wave
number of the electric parameters for different network configurations

Network\Parameter || L, or | Row | or ||
IRS cr s —2 | cple | 4
(TL-R[ 'Ll) CLn_]k_Q —% CR?IL‘ 0
(TL-Ry-L;) e | =2 | ers | -2
The sensitivities with respect to k are
d—+ d—+
0(L3) — {—Cgf/ﬂ =-—1%-31.8% g<R3) = {—dfsk& ?12} =—1%-31.8% (6.76)
k=2m k=2m
In the numerical case considered in Appendix C
L% =135 x 10°28 RP — 187 x 1032on,. 5 (6.77)

For a wave length corresponding to the first mode of a pinned-pinned beam with a length® I, =

0.51 m, we can set g = 2l = 1.02m, consequently

L' =14 5 102 R” = 1.90n, x 103 (6.78)

For n, =10

L' =144H R =19.0 x 103 (6.79)

6.4.4 Comparison of Network Configurations

Optimal Electric Parameters

The results that have been deduced for the optimal inductor and resistor for the three network
configurations proposed are summarized in table 6.1, where the constants
__da} N
CL=3%k,H °R=20,\/2hH (6.80)
are introduced. In table 6.2 the numerical values of those expressions are given for the numerical

case previously introduced, where n. is left as a parameter.

Let us underline the following important results:

8 Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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Table 6.2:

Transverse-Electric waves: optimal values of the electric dimensionless parameters for

different network configurations

Network\Parameter || L., (H) | Row (k ) ||
IRS 3.64n. | 1.90n,
(TL-R;-I;) 143.6-- | 74.98--
(TL-Ry-L;) 143.6L | 1.90n.

1. about the dependence of the optimal values on n,:

(a)

(b)

The value of L, = an—% is the same for both the network configurations with a line

inductor (TL-Rg-L; and TL-R;-Ly)

The value of Rept = cris is the same for both network configurations with a ground

resistor (/RS and TL-Ry-Lj)

For different network configurations the optimal inductor in each element of the periodic
system has an opposite dependence on the number of elements n. in a wave length: Ly
is proportional to n. for the IRS configuration with a ground inductor, proportional to
;t for the networks with a line inductor (TL—RZ—LZ,TL—RQ—LI). Thus

lin
Lmte _i

d 52

L%lzun ne

The optimal resistor in each element as a function of n. has the same behavior as
the optimal inductor: R,y is proportional to n. when it is connected to ground (/RS
and TL-R,-L; networks), it is proportional to n—le when it is a line resistor (T'L-R;-1;

configuration)

2. about the sensitivity of the optimal parameters respect to k:

(a)

(b)

In the networks with a line inductor (T'L-R;-L;,TL-R4-L;) or, is half of that in the

configuration with a ground inductor (IRS)

ghine 1
ground ~— 9
oL

In the network TL-R;-I; with a line resistor, o g is zero.
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Decaying Time

Referring to the definitions (6.26),(6.27) it is interesting to compare the values of the decay time
and of the damping ratio for the optimal values of the electric parameters.
We can note that in an optimal system, the characteristic decay time is the same for all three

networks configurations examined. It is given by
O=—=— (6.81)

while the corresponding frequency is

Wl = k:Z\/1— (%)2 (6.82)

z=% —__T (6.83)

such that, considering the expressions of v and of (_3’9, can be rewritten as

7 = (6.84)

1 B 1
MGy [ (Soan)
G2 e —1

Hence it is evident that an additional capacitance Cy, in parallel to the PZT one, has a negative

effect. So that it is convenient to pose Cy = 0. In that case

R S— (6.85)

8K;fiH 1
G:
With the numerical values that have been considered
Z =.106 = 10.6% (6.86)
We can also associate to the system the characteristic number of periods, 1y,
1
Nper = 7 = 9.40 (6.87)

We can conclude that once the electric parameters are set to the optimal values, the damping ratio

118



and the decay time are independent of the network topology.

Waves in Optimal Systems: Damping by Varying the Wave Number

If waves with a fixed wave number kg are considered, it is possible to fix the corresponding optimal
electric parameters to minimize the decay time of the propagating waves. However it is interesting
to study the behavior of the systems optimized for ky when wave numbers k # ko are considered.
To this end the solution of the characteristic equations for the optimal electric parameters as a
function of k give important information. In figure 6-5 the real and the imaginary parts of the two

complex conjugate pairs,
wi2(k/ko) = wf tiw! wsa(k/ko) = wh + iwl (6.88)

representing the roots of the secular equation, are reported for the three network configurations.
The colors represent the mechanical (dark), electrical (bright) or coupled (mixed) characteristic of

the wave mode?.

9The color is given as a function of the ratio between the mechanical and electrical amplitude of each wave mode.
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Figure 6-5: Real and imaginary parts of w(k), solution of the characteristic polynomial in the
optimal system for trasverse-electric waves: comparison of network configurations
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A direct comparison between the damping performances of the three network configurations

can be achieved by plotting the function

P(x) := P(ako, Bopr (ko). Bop (ko)) (6.89)

or equivalently the reciprocal é(x) = #x) representing the characteristic damping time for waves

with wavenumber k = xko in a system optimized for waves with wavenumber k. The function C’(:r)

for the three network configurations that have been analyzed is reported in figure 6-6.
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N

S 104 ]
3
=3
)
8

T 1y E
g
£

S 01 E

0.01} ]

0.1 0.5 1 5 10 50

k ko

Figure 6-6: Dimensionless damping time as function of k/kg

Looking at this plot , the fact that the green system (T'L — R; — L) is decaying faster for wave
numbers k greater than that one for which it has been optimized, can appear as a contradiction.
However, also the dependence of the optimal decay time on the wave number must be taken into
account (see relations(6.58,6.66,6.74)). Hence, to make the discussion clearer, we report in a plot
(figure 6-7) the function

Cu’ratz'o(aj) = Cv'cii)E)

(6.90)
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where

o 1
COpt(w) = ]5(.7:, Bopt(x), 3gpt(x)) (6.91)

expressing, for each system, the ratio between the actual damping time C (755) and that one obtain-

able in a system optimized each time for the actual wave number k.

1000 — . ;
500 |
IRS
TL- RI- Ll
100 L TL- Rg- Ll
2 50 +
B
<
10 ¢
5k
J"r . . P S S S . . P SN S ) . r
0.1 0.5 1 5 10 50

kk

Figure 6-7: Ratio between the actual damping time and that one achievable in optimal conditions
as a function of k/ko

Looking at the presented plots we can check numerically the previously assumed circumstances:

1. For all the network configurations considered the four complex roots of the secular equations

can be collected in two pairs of the form 6.88 (see figure 6-5).

2. In the relevant parameter range the performance index P(k) is maximized when the two pairs

of roots of the secular equation coalesce in a single one (see figure 6-5 and 6-7).

These important facts were used to find analytical relations for the optimal values of the electric
parameters and the performance of the optimal systems.

We can also note that in correspondence of the value ky of k& for which the systems have been
optimized, there is an effective coupling between the mechanical and electric components of the

propagating waves (see colors in figure 6-5).
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The most important result can be deduced by figure 6-7. As it has been previously noted, the
performances of the three network configurations are the same for the value of the wave length
k = ko for which they have been designed. However the networks TL-R;-L; with a line inductance
realizing second order electric transmission lines present better performances for values of k greater
than ko. In particular the system T'L-R;-1; realizes a damping time less than ten times greater than
the optimal one for 1 < -k% < 20. For applications this fact is very important since it shows that,
with an opportune network connection, it is possible to significantly damp waves with a wide range
of wavenumbers. For instance, considering a simply supported PEM beam, if one optimizes the
system for the wavelength relative to the first bending mode, one can strongly damp also the second,
third and fourth mode.

In order to emphasize this fact, in figure 6-8 the modal mechanical energies of the first six

bending modes of a PEM with different network connections optimized for the first mode are

presented.
6 Q 6
@ 5 N5 System TL-Rg-LI
S System IRS N
S 4 K4
'\8 3 .§ 8
'§ 2 § 2
'ﬁ 1 % 1
< =
20 40 60 80 100 20 40 60 80 100
Dimensionless time Dimensionless time
0 6
S &
V o~ 5
Ny 4 System TL-RI-LI S
§ 3 S 4
T <M 3
S S
S 1 = 2
S
1

20 40 60 80 100
Dimensionless time

Figure 6-8: Modal mechanical energies as a fuction of time for a simply supported PEM beam
with different network topologies optimized for the first bending mode.
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6.5 Longitudinal-Electric Waves

For the longitudinal case we will follow the same procedure adopted for the transverse-electric

waves.

6.5.1 Isolated Resonant Shunts (IRS)

The characteristic polynomial can be derived from the general case by posing §; = 0,6; = 0. It

becomes
w+ 26,0 + (82 + K (1 — %)) w? + 2k%6gw + K232 = 0 (6.92)

The values of the dimensionless parameters ﬁg, 64 for which the two pairs of complex conjugate

roots coalesce in a single pair, are
Bopt =k bopt = Yk (6.93)
The real and imaginary parts of the roots corresponding to the optimal solution are given by

wB=k3 wl=k/1- (32‘)2 (6.94)

Hence the optimal values of the inductor and the resistor in each module are!'?

opt _ My p, opt _ a0 [_A_ne
Ly T 2K, f,H k? Ry —2G,\ 2fiH k (6'95)

The sensitivities ag), O'g) of the optimal parameters with respect to the wave number k are given

by
oY = [%',{2 /?12] - 15 318% o) = [%?;/ﬂk:% — ok~ —15.9% (6.96)
In the numerical case considered in Appendix C
LPt = 20Tnead x 1076 RPY = 23 ddn.mo— (6.97)

9Tt has been posed
Cy=0

Indeed an additional capacitance to ground has a negative effect on the damping ratio.
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For a wave length corresponding to the first mode of a simply supported beam with a length'!

Iy =0.51m, we can set xg = 2l = 1.02m, consequently

LS =219.7 x 1050, H R$" = 23.9n, (6.98)

For n. =10

LP' =219.7x10°H Ry = 239 (6.99)

6.5.2 Transmission Line with Line Resistance and Inductance(TL-R;-L;)

The characteristic polynomial can be derived from the general case by posing 8, = 0, g = 0. It is
wt = 260k%° + K (14 8] — ¥*) w? — 2k 61w + K437 = 0 (6.100)

The values of the dimensionless parameters (3;,6; for which the two pairs of complex conjugate

roots coalesce in a single pair, are

Bopt =1 dopt = /k (6.101)
The real and imaginary parts of the roots corresponding to the optimal solution are given by
WwR=k3 Wl=k\1-(3) (6.102)
Hence the optimal line inductance and resistance in each module are (Cy = 0)
L= L g Sk (6.103)
and the corresponding sensitivities with respect to k are

V=0 o\ =[L/k],_, =5 ~15.9% (6.104)

In the numerical case considered in Appendix C

em3

L =8.179 x 10-3Z81L  port 9252 — (6.105)

1 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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For a wave length corresponding to the first mode of a pinned-pinned beam with a length!? I =

0.51 m we can set xg = 2l = 1.02m, consequently

L7 =8.68 x 107%L g R =T (6.106)
For n. =10
L' =8.68x 1074H Ry = 94.37 (6.107)

6.5.3 Transmission Line with Line Inductance and Ground Resistance(TL-Ry-

L)

This case can be obtained from the general one by letting Ly, R; — oo. Since with these conditions

ﬁg = 0,6; = 0 the characteristic polynomial becomes
wh+ 26003 + K% (1 + 87 — ) w? + 2626w + K157 = 0 (6.108)

The values of the electrical parameters for which the roots of the characteristic polynomial

coalesce in a single pair are
The real and imaginary parts of the roots corresponding to the optimal solution are given by

wR=ky wl=ky/1-(3)? (6.110)

Hence the optimal inductor and resistor in each module are

opt _ _ w1 opt _ xn /A _ne
S T TR e (110
The sensitivities with respect to k are
1
A =0 o= [%'?/ﬂk_g — L = —15.9% (6.112)

12 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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Table 6.3: Longitudinal-Electric waves: optimal values and sensitivities respect to the wave number
of the electric parameters for different network configurations

Network\Parameter || L, | o | Row | or ||
IRS e | =24 | eple | -
(TL-R;-I;) =10 |epE |+
(TL-Ry-L;) cop |0 | er®e | —-
In the numerical case considered in Appendix C
L =8.179 x 1073581 RO — 93 4dn, aym (6.113)

For a wave length corresponding to the first mode of a pinned-pinned beam with a length!3 I, =

0.51 m we can set xg = 2l = 1.02m, consequently

LP =8.68 x 1073-L H Rg”™ = 23.9n, (6.114)

For n, =10
L' =8.68x 107*H Ry" =239 (6.115)

6.5.4 Comparison of Network Configurations
Optimal Electric Parameters

The results obtained for the optimal inductor and resistor for the three network configurations
proposed are summarized in table 6.3, where the constants
_ Az T
CL = 2K 1 fI H CR = 2Gi'\ 2fiH
are introduced. In table 6.4 the numerical values of those expressions are given for the numerical
case previously introduced, where n. is left as a parameter.
The results obtained are qualitatively analogous to those for the transverse waves. In this case
we can note that for the network topologies with a line inductor (TL- R;-L;, TL-R,4-1;) the optimal
inductor is independent of the wavenumber. So that, with those configurations it is possible to tune

the electrical and mechanical systems for all frequencies. This is a direct consequence of the fact

13 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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Table 6.4: Longitudinal-Electric waves: optimal values of the electric dimensionless parameters for
different network configurations

Network\ Parameter |[ L., (H) R, (k )
IRS 219.7 x 10~5n, | 23.9n.
(TL-R;-1;) 8.68 x 1031 | 431
(TL-Ry-L;) 8.68 x 107°L | 23.9n,

that the differential equations governing the evolutions of the mechanical and electrical systems
are, for this cases, of the same order. However for all the network configurations that have been
analyzed, the optimal resistor in each module depends on the wavenumber. Hence, despite of being
possible to realize an optimal energy exchange between the mechanical and electrical systems for

all the wavenumbers, it is not possible to realize also an optimal damping for all wavenumbers.

Decay Time

In the three cases that have been examined the characteristic number of periods to damp the waves

in optimal conditions is the same, given by

1{4—’}/2 \/4 8Klle
P v 2 e

corresponding to a damping ratio

=== (6.116)

1
p 8K\ IH 1
Gt
Hence once the electric parameters are set to the optimal values the damping ratio and the decay

time are independent of the network considered.

Waves in Optimal Systems: Damping Varying the Wave Number

For the coupling between the extensional and electrical waves in PEM beams let us report only
the fundamental results that are summarized in figures 6-9, 6-10. In the first one the dimensionless
decay time C(k/ko) as a function of the ratio k/ko in systems optimized for a wavenumber ko is
plotted, while figure 6-10 shows the behavior of the function émtw(k/ ko), defined by (6.90), for the
three network configurations that have been analyzed.

Looking at the previous plots we can deduce conclusions similar to those derived for the trans-

verse waves. In particular we can note that with the network topologies T'L-L;-R; and T'L-L;-R,,
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Figure 6-9: Dimensionless damping time as a function of k/kg in systems that have been optimized
for a wavenumber kg

it is possible to realize a better damping than with IRS. The first one is better for -,f'; < 1 while
the second for fg > 1. However, since the optimal resistor depends on the wavenumber, despite the
fact that damping time is independent of the wavenumber for fg > 1 (see blue line in figure 6-9),

the systems cannot be optimized for all wavenumbers (see figure 6-10)
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Figure 6-10: Ratio between the actual damping time and that one achievable in optimal conditions
as a function of k/ ko
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Chapter 7

Experiments

The problem of the experimental realization of a PEM beam to be used for the validation of the
analytical and numerical results has been addressed. An experimental setup for the modal analysis
of mechanical and electrical systems has been tested and an identification procedure to extrapolate
their modal characteristics from the experimental frequency response has been developed. The
electronic devices' needed to assemble the electrical networks presented in the previous chapters
have been realized and tested. Finally a classical experiment for resonant shunted PZTs has been

reproduced to check the whole experimental apparatus.

7.1 Goals

The main goal of the experimental project of which this work is the starting point is the validation
of the numerical and analytical results obtained about the effectiveness of a distributed piezoelec-
tric coupling between a structure and an electric network for the broadband passive control of
mechanical vibrations. The final ambition is to realize prototypes to experimentally compare the

performances of the following systems:

1. a beam coupled with a resonant RLC' circuit by means of a PZT transducer;

2. a beam coupled with n separated RLC circuits by means of a periodic array of PZT trans-

ducers (see figure 6-2);

3. a beam coupled with the lumped version of a second order transmission line by means of a

periodic array of PZT transducers (see figures 6-3 and 6-4).

!n principle the proposed electrical networks are composed only of resistors and inductors. However the charac-
teristics required by the latter induce us to synthetize them by electronic devices.
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The present work is the first step of this program. Its objectives are
1. to test technological solutions for the experimental use of PZT materials;

2. to develop and test both an experimental setup and an identification procedure for the ex-

traction of the modal parameters of electromechanical systems;

3. to realize and characterize a pinned-pinned beam with five pairs of PZT transducers in bi-

morph configuration to be used in a series of future experiments;
4. to realize and characterize the electronic devices needed to assemble the electrical networks;

5. to test the objects at points 3 and 4 by reproducing a classical experiment for a resonant

shunted PZT.

7.2 System Design and Realization

The experimental apparatus has been designed to facilitate the measurements and to emphasize
the relevant physical aspects utilizing materials and geometrical parameters frequently faced in en-
gineering applications. The original idea carried on in this project is the realization of a distributed
piezoelectric coupling between a mechanical and an electrical continuum for vibration damping.
As a matter of fact only a lumped version of an electrical continuum effectively coupled with a
mechanical structure can be actualized?. Hence a modular PEM beam has been set up.

Two critical technological problems that have been faced:
1. bonding the PZT transducers on the beam leaving an electrical access to the electrodes

2. realizing large value adjustable inductors with low parasite resistances.

7.2.1 Beam with PZT Transducers

The simply supported beam with five pairs of PZT transducers in bimorph configuration in figure
7-1 has been realized. The beam was made from aluminum (Young modulus Ey = 70 x 10° Pa,
mass density p, = 2700%1%).

The geometrical dimensions of the beam

lenght [, = 51 mm
width wp = 40mm

thickness ¢, = 4 mm

2See the Introduction for more datails about the problem.
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Figure 7-1: Pinned-pinned beam with five bimorph PZT pairs

PZT Sheet

Figure 7-2: Realized beam with PZT transducers

have been chosen to maintain the first natural frequency above 30 Hz to avoid difficulties for dy-

namical measurements.
The system can be interpreted as the assembly of five modules as evident in figure 7-1. The

number of basic cells has been chosen to realize a modular system that, in the frequency range
of interest, can be approximated sufficiently well by an homogenized continuous model. Here we

focused our attention on the first mechanical spatial mode of the simply supported beam.

Piezoelectric Transducers

The Piezo System T110-H4FE-602 transducers were used. They are composed of a single sheet of
PZT PSI-5H/E Ceramic material with nickel electroded upper and lower surfaces. The charac-
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teristics of the PZT material are reported in figure 7-4.
dimensions 74.2 x 74.2 x 0.267 mm .

85" Nickel electrodes

both sides

285"

Figure 7-3: Single sheet piezoelectric transducer

The sheet was cut using a diamond edge into two equal parts with

lenght I, = 74.2 mm
width w, = 36.1mm
thickness ¢, = 0.267 mm

The transverse dimensions have been chosen in agreement with those of the beam

FECDELECTHR

Figure 7-4: Characteristics of used PZT material.

Each item is sold as a parallelepiped of

. The transducers

have been designed with two contrasting goals: to have a high electromechanical coupling and to

limit the voltage across the two electrodes. Indeed, realizing electronic devices for high voltage

applications is a technological problem, especially when operational amplifiers
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7.2.2).

The choice of this type of transducers was motivated by

1. the possibility of cutting a transducer in a desired shape

2. its constructive simplicity that allows a good understanding of its behavior
3. the good characteristic of the PZT material

4. the high price/quality ratio

Each bimorph pair of PZTs has been realized as reported in figure 7-5. The two sheets were
connected in parallel and out-of-phase to obtain a flexural-electric coupling. The electric connec-
tions to the electrodes have been realized using a 60/40 solder alloy and a specific flux for nickel
electrodes. The PZT sheets were bonded to the aluminum beam using an electrically conductive
silver-loaded epoxy resin. In this way the lower electrode of the PZT was electrically accessible by
means of the conductive beam that was grounded. The connections were optimized to reduce the

number of wires number and lengths to limit induced noise.

e wires

Conductive Epoxy . - Poling Direction

Aluminum beam

}AV

.
1
C e
Poling Direction Soldering

Figure 7-5: PZT pair in bimorph configuration: detailed constructive scheme.

7.2.2 Electric Networks

In principle the needed electric networks are composed only of elementary components, as resistors,
capacitors and inductors. However, as has been found by theoretical analysis, vary large value
adjustable inductors with low parasite resistances are required. Completely passive components

with these characteristics are not convenient. Here synthetic inductors have been used.
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Synthetic Inductors

The synthetic inductors that have been used are electronic circuits composed of resistors, capacitors
and operational amplifiers. The problem of synthesizing analog circuits presenting a desired input
impedance has been widely studied in electronics. These circuits are known as General Impedance
Converters (GIC). Here an alternative modification of Antoniou’s GIC, presented in [27], has been

used. The circuit diagram is reported in figure 7-6.

o
V.{

Figure 7-6: Synthetic inductor: an alternative modification of Antoniou’s GIC

_GRR,
é ..

__ &
e - R3R0

Figure 7-7: Synthetic Inductor: ideal equivalent impedance

The ideal input impedance of this circuit (see figure 7-7) is the same as a series connection

between an inductor and a negative resistor with values

L = TSRG (7.1)
_ I
R = —R3R0

In this way the desired equivalent inductance and resistance can be obtained by simply adjusting
the values of the two trimmers Rg and Ry respectively, on which they are linearly dependent. To

have good behavior in the desired range of the equivalent parameters the following values of the
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Figure 7-8: Synthetic Inductor

components were chosen

Ry =3k Rs=1k
Ry=1k C5=10uF

The opportunity of having a negative series resistance is useful because it allows the cancellation
of parasite resistances that can have a negative effect on vibration damping.

The actual behavior of the synthetic inductor has been investigated experimentally by measur-
ing the frequency response of the RLC circuit composed when a series connection with a known

capacitance is realized, as in figure 7-9. In figure 7-18 the experimental values of the equivalent

Antoniou’s GIC

Figure 7-9: RLC resonant circuit for experimental testing of the Antoniou’s GIC by frequency
response measurements.

resistance are reported as a function of Rg comparing them with those from (7.1). In figure 7-19
the total actual parasite resistance of the GIC is plotted as a function of the values of Ry In both

the cases a linear interpolation of the experimental data is also added with the respective coefficient
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of correlation R2.

The circuit in figure 7-6 must have one terminal connected to ground. However floating synthetic
inductors can be obtained in a similar way. For more information see [23].

A negative aspect of this solution is that operational amplifiers need a dual DC' power supply to
work. Thus despite of the components of the electric networks are theoretically passive, its actual
realization requires an external power supply. However the power absorbed by the Op-Amp is
very low and it is not comparable with that required in active control techniques. The operational
amplifiers T'L — 081 have been used with DC voltage supply at 412V, furnished by two batteries

connected as in figure 7-10.

+12V oV -12V

Figure 7-10: Batteries for alimentation of Op-Amps

7.3 Experimental Modal Analysis

Mechanical and electrical dynamical measures were taken in a frequency range from 10 to 800Hz
following the standard modal analysis techniques. The modal characteristics of the mechanical and
the electrical systems were extrapolated from their frequency response by means of an identification
procedure. Here the peculiarities of the experimental apparatus and of the measurement procedure
will be emphasized, referring to [13], [12] for generalities about the subject.

7.3.1 Instrumentation

Hardware

For the dynamical measurements the following instrumental hardware has been used
1. Piezoelectric accelerometer Bruel&Kier 4393 with charge amplifier Bruel&Kier 2635
2. Force transducer Bruel&Kier 8200 with charge amplifier Bruel&Kier 2635
3. Electromagnetic shaker Bruel& Kier 4809 with power amplifier Bruel&Kier 2700
4. Scanning laser vibrometer Polytec O F055 with controller Polytec OF'V 300015
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5. Analogical two channels oscilloscope Hameg 203 — 5

6. Personal Computer, processor AM D-K6 266 MHz, 64 Mb Ram memory, equipped with

(a) A/D converter National Instruments PCI — 4452 (Basic technical data in figure 7-11,
for more informations see www.ni.com)
(b) A/D and D/A converter National Instruments AT — MIO — 16E — 10 (Basic technical

data in figure 7-11, for more informations see www.ni.com)

PCl-4452
Analog Input

T ar four ehannels

90, clB dyramic rarge

&Gt resclution

5.0 1o 2048 kS/s sampling rates:
(H51 4452

5.0t 51.2 ks sampling rates [4454)

Crverload detection (495 14452)

A coupling

Multiple Board sychmnizaton

Analog Output
Zehannels, LE-Bit resolution
125 10 5102 ka/s sampling rates

AT-MIO-16E-10

Analog Inputs

[ & singleended, & differerna| drammeks
1 00 ks sampling =i

| 00 K55 smesmrn-disk rane

| -2t nescluticn

Analog Dutput

2 charneks | 2-bm esolubon

Digital /0
& (5 VITTL fines (6020
32 {5 WITTLY lines (6021 E|

Digital /0 (4451/2452 only) Eﬂ:ﬂ:’:ﬁﬂizq it resallman
B (5 V/TTL] lines Triggering
Triggering it

Andlog and digital

Figure 7-11: Acquisition and generation boards technical datasheets.

Software

A personal computer has been utilized for the management of the digital input and output and

signal processing. In an unique LabView code the following Virtual Instruments were gathered
1. sweep® generator
2. anti-leakage windowing on the input and output signals
3. spectrum analyzer

4. frequency response analyzer

3 A sweep is a sinuosodal signal with a frequency linearly dependent on time. Its time representation is of the type

Wo_W1

f(t) = fosin < t* +w1t)

It spans linearly the frequencies from w; to ws for ¢ between 0 and T. It is a transient excitation signal frequently
used in Experimental Modal Analysis to investigate the behavior of the system in an assigned frequency range.
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7.3.2 Experimental Setup for Mechanical and Electrical FRF Measures

The main measurements regarded the mechanical frequency response of the simply supported beam
in figure 7-1 and the electrical frequency response of a RLC resonant circuit with the GIC' in figure
7-6. To obtain the frequency response of a physical system between an input and an output
terminal we followed the procedure represented in figure 7-12. Three fundamental logical phases

can be distinguished

1. excitation (input)
2. measurements of the given input and the consequent output

3. signal processing

The third is identical for mechanical and electrical systems, the other two are different. Indeed,
if a mechanical system is considered the electrical quantities must be transduced to mechanical
ones for the excitation and vice-versa for the measurements?.

The signal generation and processing have been implemented by means of a personal computer
with a LabView code. A transient excitation method has been adopted generating a digital sweep
signal. The outputs of each measurement were the digital time signals, their FFTs, and the sys-
tem FRF. Only the FFTs have been stored to extract from them the modal parameters by an
identification procedure.

Let us describe the details of the mechanical and electrical experimental setups separately.

Mechanical Experimental Set up

The chain of measurement in figure 7-13 has been utilized to obtain the frequency response of a
mechanical or electromechanical beam® relative to a force input and an acceleration output. The
structure has been excited by means of a shaker (1) (the numbers refer to those in figure 7-13), that
is controlled through an amplifier by a digital input given with the electronic calculator (7). For the
Digital /Analog conversions the board AT — M IO — 16E —10 (8) has been utilized. The shaker has
been attached to the structure through a support to limit the rotational stiffening in correspondence
to the attachment point. The force effectively transmitted to the structure has been measured with

a force transducer (2). The output was measured by means of a piezoelectric accelerometer (4)

‘The signals are intended to be electrical. All the physical quantities to be measured must be transduced to
electric signals (if they are not) in order to process them..

®Indeed the same set up can be used when the beam is coupled or not to an electric network by means of PZTs
transducers.
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Figure 7-12: Logical scheme for Frequency Response measurements

attached with a thin layer of wax. The locations of the excitation and the response have been

optimized to

1. give the best results for the first mode of the simply supported beam, compatibly with the
presence of the PZT patches. Indeed, if one considers the spatial shape of the first mode, the
force transducer has been placed where the rotation is the smallest, the accelerometer where

the deflection is the greatestS.

2. avoid particular positions for which some fundamental modes are automatically filtered out.

The two measured analog signals have been amplified and conditioned by two charge amplifiers
(3,5). Then they were sampled using the board PCI — 4452 in which both analog and real-time

digital anti-aliasing filters were incorporated.

8Obeying those criteria, the central position should be chosen. Unfortunately it is occupied by the PZT layers.
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Figure 7-13: Experimental set up for mechanical FRF measurements

Electrical Experimental set up

The experimental set up for the electrical measurements differs from the previous one only because
no transducers are needed since the physical quantities to be measured and to be imposed are

voltages. The frequency response of a RLC series circuit has been found as sketched in figure 7-14.
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Figure 7-14: Experimental set up for electrical FRF measurements

7.3.3 Identification Procedure

From the frequency response, given as a complex scalar function defined on the frequency domain,
the modal characteristics of the measured systems has been extracted. The averaged resonant
frequencies and damping ratios were deduced with the respective confidence intervals from a series
of N measures taken in the same conditions and for the same values of the acquisition parameters.

The procedure followed is outlined in figure 7-15. Three main phases can be distinguished

1. Synchronization and Statistical Analysis of the input and output frequency domain data as
result of a set of N experiments taken in the same conditions. These have been averaged cal-
culating the empirical variances and input-output covariances. A foregoing synchronization is
required to eliminate a residual phase shift between the measures. This is realized minimizing
the weighted phase differences of the complex amplitudes in the frequency domain by intro-
ducing a delay. In figure 7-17 an example of the statistical analysis on the FRF experimental

data for a simply supported beam is reported.
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2. Frequency Domain Identification of each set of data and extraction of the resonant frequencies
and damping ratios. This step has been implemented utilizing a MatLab Toolbox. It requires
as input the frequency domain data with an estimation of the variances and input-output
covariances and the number of poles and zeros to be assumed for a Laplace domain form of
the model in which the system must be identified. As outputs the estimated poles and zeros
are given. The real and imaginary parts of each complex conjugate pair of poles can be easily
converted to the corresponding natural frequency and damping ratio. This procedure has
been repeated for the N sets of measures. An example of the output of the MatLab code is

given in figure 7-15.

3. Statistical Analysis of the Modal Parameters resulting from the N identifications. From the
N sets of the extracted resonant frequencies and damping ratios the mean values of the modal

parameters have been derived with the respective confidence intervals.

1st Step
A ged FFT FRF
Set of N FRF measures vera’ed sand
FFLw)
mean)
FFT, PO P - Synchronization - Statistical analysis - FFEm(w) FRE™(0))
FFI () Confidence intervals
var,,, (0, Var,,;,, (), cov(@y)
2nd Step
for k=1..N
Frequency N
Frequen {FFZ?,,,.,«»)
data of the FF .
k-th measure Zj/”"( )
>- - Laplace Domain Model Set of modal parameters
Variances "'P“'(w' ) Var”’“P"Kw") Poles and Zeros Natural frequencies
of the set cov(®y) Identified from the kth measure and damping ratios for the k-th measure
of N measures _/ Frequency
i (k) _ (k)
N Domain | gy p ©) 7 0w © Z (k)
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(*)n,i ’Zn i - Statistical analysis - 00" i - 30—&),, ;
k=1..N (mean
o' 230,

Figure 7-15: Identification procedure
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7.4 Results

7.4.1 Beam Modal Parameters

The natural frequencies and damping ratios of the first three modes of the beam in figure 7-1
without the PZT transducers have been found experimentally following the procedure outlined in
the previous sections. In particular the experimental setup in figure 7-13 and the identification

procedure in figure 7-15 have been adopted. The following results have been found

Mode | Natural Frequency (Hz) Damping Ratio

Mean Value | 99% C.L Mean Value | 99% C.I.
Ist 34.95 422 %1072 0.10% +7.5x 1073%
2nd | 137.2 +2.9 x 1073 | 0.26% +1.3x 1073%
3rd | 304.5 +3.2 x 1073 | 0.24% +1.46 x 1073%

We can note that the confidence intervals are very narrow, thus the measurements are good. This is
a validation of the experimental setup and of the quality of the utilized instruments. However let us
underline that the statistical analysis has been performed on a set of measures taken with the same
experimental conditions. In particular small values of the damping ratio are strongly influenced
by the environment and must be considered only as an indication of their order of magnitude. An
example of the identification of experimental frequency response for one of the N measures in the
range from 10 to 400 Hz is presented is figure 7-16 together with the extracted poles and zeros and
the phase error between the measured data and the identified FRF.

7.4.2 Synthetic Inductors Characterization

The values of the equivalent resistance and inductance of the synthetic inductor in figure 7-6 have
been extrapolated by frequency response measurements of the resonant circuit assembled once a
series connection with a known capacitance is realized (see figure 7-9). The measures have been
taken as in figure 7-14. The resonant frequency and damping ratio have been deduced with the
same procedure followed for the mechanical beam. The equivalent inductance and resistance as a
function of the variable resistors Rg and Ry are reported in figures 7-18 and 7-19 respectively. A

linear interpolation of the experimental data is presented (see also 7.2.2).
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Figure 7-19: Effect of Ry on the parasite resistance for a fixed equivalent inductance L = 210 H.
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7.4.3 Beam with Resonant Shunted PZT

To validate the experimental apparatus set up for future investigations (see 7.5), a basic experiment
on shunted PZT has been replicated using the simply supported beam with the bonded piezoelectric
sheets and the tested synthetic inductor. The main idea of coupling the first mode of the beam with
the dynamics of a dissipative RLC circuit utilizing the piezoelectric transducer has been developed.
Only the central PZT pair has been used, shunting it with a series connection of a resistor and

a synthetic inductor. The other transducers have been short-circuited as in figure 7-20. We will

Figure 7-20: Configuration for the resonant shunted PZT experiment

present quickly only the obtained result skipping the details about the experiment since the case
has been widely studied in literature (see for example [30] or [29]). The values of the resistor and
of the inductor for an optimal damping of the first mode of the beam have been evaluated by
measurement of the first beam natural frequency for open-circuited and short-circuited PZT. The
FRF has been found with the experimental set up in figure 7-13. Then the modal parameters have
been extracted with the identification procedure in figure 7-15. We found

Lot = 36 H

Ropt = 21k

In figure 7-21 the experimental frequency response of the beam for electric parameter values
close to the optimal ones are compared with those for open and short-circuit conditions. The
corresponding poles found by means of the frequency domain identification are plotted in the
complex plane in figure 7-22. As can be noted a relevant reduction of the forced response is
obtained and the damping ratio is significantly increased. However the reduction of the frequency
response is achieved only for a narrow band centered on the resonance frequency. The issue of
developing a broadband damping should be solved by the distributed coupling, as we hope to verify

with future experiments.
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7.5 Next Steps

To achieve the goals of the experimental project of which this work was the starting point the fol-
lowing systems’ must be assembled utilizing the simply supported beam and the synthetic inductors

that have been realized:

1. a beam coupled with 5 resonant RLC circuits

2. a beam coupled with the lumped version of an electric transmission line with line resistances

and inductances

3. a beam coupled with the lumped version of an electric transmission line with line inductances

and ground resistances

Their performances in the suppression of mechanical vibrations must be investigated as a func-
tion of the values of the electrical parameters to validate the theoretical and numerical results
obtained in the previous chapters. To this aim the mechanical forced response can be found with
the experimental setup in figure 7-13.

Since it will be necessary to vary simultaneously all the inductances and resistances, it will be

auspicious to realize resistances® whose value can be imposed by means of a potential difference.

"The electrical boundary conditions have been designed by analogy to the mechanical ones.
8The values of the inductances are indirectly controlled by resistors since they will be realized by the GIC.
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Indeed, their value could be imposed directly by the personal computer through the digital\ analog
converter, avoiding time-wasting and boring manual adjustments. A single analog output of the

board could control all the resistance, another all the inductances.

7.6 Conclusions

In this experimental work a preparatory activity to a complex and original experimental project
has been carried on. The components needed for the planned experiments have been assembled
and tested. A complete experimental procedure for the extraction of the modal parameters of
mechanical and electrical systems has been designed and tested with excellent results. Moreover
a classical experience on shunted PZT has been reproduced with success. These results will be
used as a benchmark for the validation of the analytical results obtained about the effectiveness of
a distributed piezoelectric coupling of a structure with an electric network for broadband passive

control of mechanical vibrations. To this aim a set of experiments has been planned.
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Appendix A

Physical Dimensions

In the following table are resumed the physical dimensions of all the quantities introduced in

Chapter 2. In the notation the subscripts are omitted.

Table A.1: Piezoelastic variables and characteristics: physical dimensions

Name | S.I. | S.I. base Name | S.I. | S.I. base
kg 2 S4
r m? (m)s? € ﬁ A 3(kE) m3
S 1 1 I} o 5 kg
m 2
L w ks Y Y _
D = | (A d T | Wes
J prrerll e h T (ke)
¥ m2
¢ V (kg) (A)s3 € _H% (A) ;nSE
2
¢ Vs | (kg) (B 52 || € = (nlf) 2
s w | g2
N kg
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Appendix B

Material Properties and External

Actions

In this Appendix the expressions of material properties appearing in the constitutive relations of
the unidimensional model of the PEM beam studied in Chapter 3 will be furnished explicitly.
They will be given for the beam in figures 4-1, 4-2 as a function of its material characteristics as a
Cauchy Continuum and of its geometrical dimensions. Also the expressions of the external actions
will be specified as a function of those defined for a Chauchy Continuum model.

B.1 Material Properties

e Mechanical properties
— Stiffness
_ 5B (»)

K = K”+KY

b 2 2
KP = [senrd KPP = (%) [s. i+ (%) fs, i
K l(b) = fsb €11 Kz(p) = fspu cfi + fspl cf1

— Density per unit of length

A= \0) 4y \®
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A0 — ( Is, p> AP = ( Is, p>

— Inertia per unit of length

al) = ( Js, pp§> alP) = (ff fs o+ 5 Js, P)

e Electrical properties

— Capacitance per unit of length

e Coupling properties

1 1
G = — 6312—/ e31
tp Spu tp SpL
t ty
G - e =, es1
f 2, Js,. 2, Js.,

B.2 External Actions

e Horizontal force per unit of length

Ri=B1+P

where

fi
08

B = B?’)+pr):</ b1>+</ bl)
Sp Sp

e Vertical force per unit of length

R3=Bs+ P
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Table B.1: External actions: expressions and physical dimensions

| Name Expression S.I. units,base
B =B +BY | (Js,br) + (Jo, 1) ot
P1: fncfl fncfl 'H:%
R, B, + P, N ke
By =BY 1+ B | ([5 bs) + (Js, bs) N kg
P fﬁs J3 ﬁ[a g2
R3 B3 4+ P3 T k%
b1+
®) |, n®) Js, psbr

By=BY + B N, (kg) 2

0= B + By <+% (Joptn— s, 0r) ) | 1%
By fac fips N, (kg) ol
Ry By + Py N, (kg) 3

where
Py = /3
as

- s ()1
Sp Sp

e Moment per unit of length
Ry =DBs + Iy

where

P = /flps
as

t
By = B((ab)+Be(7p):/ pab1 + = (/ bl—/ bl)
Sp 2 u Spi

B.3 Physical Dimensions

In the tables the definitions of all the quantities are resumed with the respective physical dimensions

in the SI units
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Table B.2: Material characteristics: expressions and physical dimensions

I Name | Expression | SI units ||
a=a® 4 P (be pp%) 4—2%4i fspup kg m
A=A @ Js,p+ s, P ke

2
c11p3+ 3
K;=kK® 4 g ( f&’a ) Nm?, (kg) &
=7 ! 2(2)" fs,. e i

K=K+ KP | [cen+2[s & N, (kg) 2
Gl _t]; fS,m €31 ﬁv (A) rin
Gy g‘t“; fsw es1 C,As
H & Js,, 5 w A
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Appendix C

Numerical Values

Here the numerical values of all the relevant quantities defined throughout the present work will
be given explicitly for the material and geometrical characteristics of the simply supported PEM

that was experimentally realized as described in Chapter 7.

C.1 Geometric and Local Material Characteristics

The experimentally realized beam can be thought as composed of five modules such as that in

figures C-1 and C-2

Figure C-1: Elementary cell of the electromechanical beam: lateral view.

Figure C-2: Elementary cell of the electromechanical beam: cross section
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The central elastic layer is constituted of aluminum, while the two piezoelastic layers are com-

posed of the PZT material PSI-5H4E Ceramic. The material characteristics are !

c11=T0%10°Pa  p, = 27005 pp = 78004 (C.10)
la
cfh = 62x109Pa €53 =2797x10785 ey = —-19.845
The geometrical dimensions of the basic cell are
wp =40 % 1073 m wy, = 36.2 * 103m
(C.2)

tp=4%10m  t,=0.267%10"3m

The length of an element is left as a parameter, however the following ratio between the length of

the element [, and the length of the PZT layers is assumed when necessary

by 0.743

l_e:

fi=

All the values above refer to those of the experimental setup that was realized.

C.2 Sectional Material Characteristics

Assuming a rectangular cross section beam as described before the integrated material character-
istics presented in the Appendix B can be written explicitly. The results presented in table C.1

have been found?

C.3 Homogenized Material Characteristics

If the ratios

i =

fw:%f

o~~~
@

are left as parameters the homogenized material characteristics can be rewritten explicitly by the

expressions given in Chapter 5.

" The notation is referred to that given when the constitutive relations have been introduced
2The coupling coefficients are relative to an out- of-phase parallel electric connection of the PZT layers for the
bending case, to an in-phase parallel electric connection for the longitudianl-electric case.
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Table C.1: Material characteristics:Expression and Numerical Values

| Constant | Expression | Numerical Value
a® B 5.76 % 10~7 kgm
alp) pnﬁ%ﬂﬂ 6.03% 10~ " kgm
A pytuwy 4.32% 10715
AP) 2pptpwp | 1.51% 10138
K;b) cnﬁl% 14.93 Nm?
kP Bl |y 79 ym?
K Lty 1125 107N
K 2F t,w, | 1.20% 105N
G €31 Wp 7.18 % 10~ 2€
G a1tolp 1.436  103<
H e 3.70 % 1070 E

Table C.2: Homogenized Material Characteristics:Expression and Numerical Values

|| Name | Expression | Numerical Value? ||

o a® + fa® | 1.02% 10 5kgm
A | A® L pA® [ 544510 1ks
K | KY + kP | 185Nm?

K | EY 1P| 121410'N
G 211Gy L0735

Gy 211G 2.13 %1073 C
C, | £ +2mf 5.50 x 10~ 0%
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C.4 Dimensionless Parameters

C.4.1 Bending Coupling

The dimensionless parameters for the numerical values assumed are

4
B, = \/KCL =B/ 5= QRIC,/%:1.56><10—@“—

I nex3 . . 4
ﬁg KfCL :BO—731 Og _D_QRgC’ =1.56 x 10 n?’xoRg
__G _ _C' 5_C1
v = e =0.212 /ﬁ—cg —182><10 pp—

where the numerical values of the quantities left free must be inserted in the SI units.

C.4.2 Longitudinal Coupling

The dimensionless parameters for the numerical values assumed are

2 -2 /= 1 1
08, = Gl =9.04 x 10 T o = 29001?10 2 —193 La
_ A -2 — 2 — ﬂ
ﬁg = KngLg =9.04 x 10 \/ 69 = 2Rgé \/le = n@x()
_ _ C 5

where the numerical values of the quantities left free must be inserted in the SI units.
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