F. S. Devaraj, R. E. Williams, S. Nag, R. Srinivasan, H. L. Fraser et al., Three-dimensional morphology and composition of omega precipitates in a binary titanium-molybdenum alloy Evidence of [alpha]nanophase heterogeneous nucleation from [omega] particles in a [beta]-metastable Ti-based alloy by high-resolution electron microscopy Yamabe-Mitarai, TEM investigations on martensite in a Ti-Nb-based shape memory alloy, Thèse de doctorat. Alliages nanostructurés: cas des amorphes à base d'aluminium et des beta-métastables à base de titane): p. 701. 56. F. Prima,): p. 1305. 58. S.B.a.P. Mukhopadhyay, Chapter 1 Phases and Crystal Structures Pergamon Materials Series. p. 3. 59. G. Lütjering and J.C. Williams, Fundamental Aspects Titanium Tagunova and M. Central Research Inst. of Ferrous, Laws of formation of metastable phase in titanium alloys. Doklady Akad, pp.61-645, 2006.

J. K. Mackenzie, J. S. Bowles, D. C. Moffat, and . Larbalestier, The crystallography of martensite transformations-- IV body-centred cubic to orthorhombic transformations Acta Metallurgica The Competition Between Martensite And Omega In Quenched Ti-Nb Alloys, Metallurgical Transactions A-Physical Metallurgy And Materials Science, vol.5, issue.37, pp.19-1677, 1957.

A. Dobromyslov, G. Dolgikh, Y. Dutkevich, and T. Trenogina, Phase and structural transformations in Ti-Ta alloys. The Physics of Metals and Metallography): p. 502. 64, 1994.

M. Peltonen, T. Lindroos, M. Kallio, S. K. Wu, and C. M. Wayman, Effect of ageing on transformation kinetics and internal friction of Ni-rich Ni???Ti alloys, Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Materials Science and Engineering A, pp.359-406, 1987.
DOI : 10.1016/j.jallcom.2007.05.102

M. Morinaga, M. Kako, T. Kamimura, M. Fukumotom, I. Harada et al., Theorical design of [beta]-type titanium alloys. in Titanium General approach to phase stability and elastic properties of [beta]-type Ti-alloys using electronic parameters, Scripta Materialia, issue.5, pp.55-477, 1992.

D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and mechanical properties of new ?? type titanium alloys for implant materials, Materials Science and Engineering: A, vol.243, issue.1-2, p.244, 1998.
DOI : 10.1016/S0921-5093(97)00808-3

D. Pionnier, Thèse de doctorat Etude de la transformation de phases beta vers alpha'' induite sous contrainte dans l'alliage de titane beta-CEZ, 1993.

B. Sander and D. Raabe, Texture inhomogeneity in a Ti???Nb-based ??-titanium alloy after warm rolling and recrystallization, Materials Science and Engineering: A, vol.479, issue.1-2, p.236, 2008.
DOI : 10.1016/j.msea.2007.06.077

H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura et al., Texture and shape memory behavior of Ti???22Nb???6Ta alloy, Acta Materialia, vol.54, issue.2, pp.54-423, 2006.
DOI : 10.1016/j.actamat.2005.09.014

S. Miyazaki, H. Y. Kim, and H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Materials Science And Engineering A- Structural Materials Properties Microstructure And Processing, pp.18-24, 2006.
DOI : 10.1016/j.msea.2006.02.054

H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti???Nb binary alloys, Acta Materialia, vol.54, issue.9, pp.54-2419, 2006.
DOI : 10.1016/j.actamat.2006.01.019

E. Patoor and M. Berveiller, Technologie des alliages à mémoire de forme, Série Matériaux, 1994.

L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva, and F. Malvisi, Microstructural and mechanical characterization of biomedical Ti???Nb???Zr(???Ta) alloys, Materials Science and Engineering: A, vol.432, issue.1-2, p.108, 2006.
DOI : 10.1016/j.msea.2006.06.013

J. P. Morniroli and M. Gantois, Etude des conditions de formation de la phase omega dans les alliages titane-niobium et titane-molybdène. Mémoires scientifiques de la Revue de Métallugie Decomposition of martensite [alpha]'' during aging treatments and resulting mechanical properties of Ti-Ta alloys, Materials Science and Engineering A, vol.384, issue.1112, p.92, 1973.

M. Arciniegas, J. M. Manero, J. Peña, F. J. Gil, and J. A. , Study of New Multifunctional Shape Memory and Low Elastic Modulus Ni-Free Ti Alloys, Metallurgical and Materials Transactions A 742. 12. G. Lütjering and J.C. Williams, Fundamental Aspects, in Titanium, p.15, 2007.
DOI : 10.1007/s11661-008-9478-5

M. Abdel-hady, K. Hinoshita, and M. Morinaga, General approach to phase stability and elastic properties of [beta]-type Ti-alloys using electronic parameters, Scripta Materialia, issue.5, pp.55-477, 2006.

M. Morinaga, M. Kako, T. Kamimura, M. Fukumotom, I. Harada et al., Theorical design of [beta]-type titanium alloys. in Titanium, 1992.

L. , 9. Hvdwrphvjulvpvvrqwvlwxpvjfdxghvvxvgxsodqg·revhuydwlrq, 9. Ljxuh, . Dwrphvvxuohsodqghodvwuxfwxuhruwkrukrpeltxh, . Hvdwrphv-eodqfvvrqwvlwxpvgdqvohsodqhwohvdwrphvjulvpvvrqwvlwxpvjfdxghvvxvgxsodq et al., QGH[DWLRQ?DHWLQGH[DWLRQV?··EFHWG Références bibliographiques 1 Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, LNXFKLREWHQXVXUOH7L7D1E)LJXUH Acta Materialia, vol.9, issue.9, pp.54-2419, 2006.

T. Maeshima, S. Ushimaru, K. Yamauchi, and M. Nishida, Effect of heat treatment on shape memory effect and superelasticity in Ti???Mo???Sn alloys, Materials Science and Engineering: A, vol.438, issue.440, pp.438-440, 2006.
DOI : 10.1016/j.msea.2006.05.092

Y. W. Chai, H. Y. Kim, H. Hosoda, and S. Miyazaki, Self-accommodation in Ti???Nb shape memory alloys, Acta Materialia, vol.57, issue.14, pp.57-4054, 2009.
DOI : 10.1016/j.actamat.2009.04.051

M. H. Loretto, D. Hu, and Y. G. Li, Microstructural studies on some ordered Ti-based alloys, Intermetallics, vol.8, issue.9-11, pp.9-11, 2000.
DOI : 10.1016/S0966-9795(00)00035-2

T. Inamura, H. Hosoda, H. Y. Kim, and S. Miyazaki, Antiphase boundary-like stacking fault in alpha''-martensite of disordered crystal structure in beta-titanium shape memory alloy, Philosophical Magazine, issue.25, pp.90-3475, 2010.

D. Banerjee, K. Muraleedharan, and J. L. Strudel, Substructure in titanium alloy martensite, Philosophical Magazine A, vol.30, issue.2, pp.299-323, 1998.
DOI : 10.1007/BF02801159

P. J. Buenconsejo, H. Y. Kim, H. Hosoda, and S. Miyazaki, Shape memory behavior of Ti???Ta and its potential as a high-temperature shape memory alloy, Acta Materialia, vol.57, issue.4, p.1068, 2009.
DOI : 10.1016/j.actamat.2008.10.041

P. J. Buenconsejo, H. Y. Kim, S. Miyazaki, . J. Novel, E. S. Contieri et al., TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect Phase transformation of quenched [alpha]'' martensite by aging in Ti-Nb alloys Materials Science and Engineering: A, 2006. 438-440: p. 315. 11. F. Sun, Thèse de doctorat Alliages nanostructurés: cas des amorphes à base d'aluminium et des beta-métastables à base de titane Contribution à l'étude du comportement pseudoélastique d'un alliage de titane beta metastable, applications aux arcs orthodontiques, Mantani and M. Tajima, Effect of ageing on internal friction and elastic modulus of Ti-Nb alloys. Materials Science and Engineering: A, pp.409-423, 2003.

H. Kim, W. Kim, and S. Lim, Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications The effect of ternary additions on the decomposition of metastable beta-phase titanium alloys, Caram, Correlations between aging heat treatment Metallurgical transactions, pp.2387-2402, 1971.

. F. Références-bibliographiques-1, S. Yin, D. Iwasaki, K. Ping, and . Nagai, Snoek-Type High-Damping Alloys Realized in -Ti Alloys with High Oxygen Solid Solution, Advanced Materials, issue.12, pp.18-1541, 2006.

O. Mercier, K. N. Melton, and Y. De-préville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metallurgica, vol.27, issue.9, p.1467, 1979.
DOI : 10.1016/0001-6160(79)90169-X

A. Ghilarducci and M. Ahlers, Internal friction in quenched [beta] phase CuZn and CuZnAl alloys. Scripta Metallurgica Shape memory characteristics of as-spun and annealed Ti51Ni49 crystalline ribbons, Intermetallics, vol.18, issue.125, pp.14-1341, 1980.
DOI : 10.1016/0036-9748(80)90191-x

J. Van-humbeeck, Damping capacity of thermoelastic martensite in shape memory alloys, Journal of Alloys and Compounds, vol.355, issue.1-2, p.58, 2003.
DOI : 10.1016/S0925-8388(03)00268-8

Y. Liu, J. Van-humbeeck, R. Stalmans, and L. Delaey, Some aspects of the properties of NiTi shape memory alloy, Journal of Alloys and Compounds, vol.247, issue.1-2, p.115, 1997.
DOI : 10.1016/S0925-8388(96)02572-8

F. M. Mazzolai, A. Biscarini, B. Coluzzi, G. Mazzolai, E. Villa et al., Lowfrequency internal friction of hydrogen-free and hydrogen-doped NiTi alloys, Acta Materialia, issue.13, pp.55-4243, 2007.

T. Inamura, Y. Yamamoto, H. Hosoda, H. Y. Kim, and S. Miyazaki, Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti???Nb???Al shape memory alloy, Acta Materialia, vol.58, issue.7, pp.58-2535, 2010.
DOI : 10.1016/j.actamat.2009.12.040

E. Patoor and M. Berveiller, Technologie des alliages à mémoire de forme Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy, Acta Materialia, vol.57, issue.4, p.1068, 1994.

D. Raabe and K. Lücke, Annealing textures of BCC metals, Scripta Metallurgica et Materialia, p.1533, 1992.
DOI : 10.1016/0956-716X(92)90140-A

H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura et al., Texture and shape memory behavior of Ti???22Nb???6Ta alloy, Acta Materialia, vol.54, issue.2, pp.54-423, 2006.
DOI : 10.1016/j.actamat.2005.09.014

T. Inamura, H. Y. Kim, H. Hosoda, K. Wakashima, and S. Miyazaki, Antiphase Boundary Like Defect Inside ?????-Martensite in Ti-Nb-Al Shape Memory Alloy, states: The Minerals, Metals and Materials Society (TMS), 2009.
DOI : 10.1002/9781118803592.ch49

.. Du-modèle, Construction, p.158

). Vxuodtxhoohohvs{ohv^-`-vrqw-uhsupvhqwpvhqurxjhohs{ohfruuhvsrqgdqwjodyduldqwhghpdfodjhrevhuyphhqljxuh9 and . Ljxuhvghs{ohv^-`-dhw^-`-eiljxuhlqyhuvhghs{ohvfhwiljxuhgh-s{ohvgxjudlqpdfopfrqvwuxlwhvrxv&d5, QHG(QURXJHOHJUDLQpWXGLpHQEOHXODPDFOH HWHQYHUWODPDFOH 3.3.3. Conclusion Pour le Ti-25Ta-25Nb ou le Ti-25Ta-30Nb, le maclage est un mécanisme de déformation qui a été mis en évidence par EBSD sur certains grains. Pour chaque caractérisation, c'est le système {332}<113> qui a été observé Le calcul du facteur de Schmid adapté au maclage s'avère être un outil extrêmement prédictif pour déterminer quelle variante a été activée. Cependant, certains grains ayant un facteur de Schmid favorable n'ont pas nécessairement maclé et se sont vraisemblablement déformés par glissement. Les grains non maclés étant généralement plus petits, un effet de taille de grain sur la compétition glissement/maclage n'est pas à exclure, Références bibliographiques 1. X.H. Min, S. Emura, N. Sekido, T. Nishimura, K. Tsuchiya and K. Tsuzaki, Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy. Materials Science and Engineering: A. 527, pp.10-11

T. Sawai and A. Hishinuma, Twin intersection in tensile deformed [gamma]-TiAl intermetallic compounds, Journal of Physics and Chemistry of Solids, vol.66, pp.2-4

E. Bertrand, P. Castany, I. Péron, and T. Gloriant, Twinning system selection in a metastable ??-titanium alloy by Schmid factor analysis, Scripta Materialia, vol.64, issue.12, p.1110
DOI : 10.1016/j.scriptamat.2011.02.033

URL : https://hal.archives-ouvertes.fr/hal-00926958

S. Hanado and O. Izumi, Correlation of tensile properties, deformation modes, and phase stability in commercial beta-phase titanium alloys, Metallurgical Transactions A, issue.48A, pp.265-271, 1987.

S. Hanada and O. Izumi, Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys, Metallurgical Transactions A, vol.3, issue.8, pp.1409-1420, 1986.
DOI : 10.1007/BF02650122

M. Oka and Y. Taniguchi, {332} Deformation twins in a Ti-15.5 pct V alloy, Metallurgical Transactions A, vol.10, issue.5, pp.651-653, 1979.
DOI : 10.1007/BF02658330

R. H. Richman, The diversity of twinning in body-centered cubic structures, in Deformation twinning, 1964.

J. W. Christian, S. Mahajan, J. W. Christian, M. Besse, and T. Gloriant, Deformation twinning-2): p. 1. 10 The Theory of Transformations in Metals and Alloys Dislocation mobility in gum metal beta titanium alloy studied via in situ transmission electron microscopy, Progress in Materials Science Physical Review B, vol.39, issue.842, p.20201, 1995.
DOI : 10.1016/0079-6425(94)00007-7

M. Besse, P. Castany, and T. Gloriant, Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence, Acta Materialia, vol.59, issue.15, 2011.
DOI : 10.1016/j.actamat.2011.06.006

URL : https://hal.archives-ouvertes.fr/hal-00926966