Fonctions de coût pour l’estimation des filtres acoustiques dans les mélanges réverbérants
Alexis Benichoux

To cite this version:

HAL Id: tel-00992221
https://tel.archives-ouvertes.fr/tel-00992221
Submitted on 16 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fonctions de coût pour l’estimation des filtres acoustiques dans les mélanges réverbérants

Thèse soutenue à l’IRISA le 14 octobre 2013
devant le jury composé de :

Laurent DAUDET
Professeur à l’Université Paris Diderot-Paris 7 / rapporteur

Mila NIKOLOVA
Chargée de recherche à l’ENS Cachan / rapporteur

Emmanuel BACRY
Directeur de recherche à l’Ecole Polytechnique / examinateur

Matthieu KOWALSKI
Maître de conférence à l’Université Paris-Sud 11 / examinateur

Rémi GRIBONVAL
Directeur de recherche au centre INRIA Rennes - Bretagne Atlantique / directeur

Emmanuel VINCENT
Chargé de recherche au centre INRIA Nancy - Grand Est / co-directeur
Table des matières

Table des matières 1

Remerciements 5

1 Introduction 11

Introduction 11

1.1 Notion de réponse de salle 11

1.2 Motivations applicatives 12

1.2.1 Déréverbération 12

1.2.2 Restitution spatialisée par des haut-parleurs 13

1.2.3 Restitution binaurale par des écouteurs 14

1.2.4 Séparation de sources 14

1.3 Description du processus de mélange 16

1.4 Problématique 16

1.5 Estimation des réponses pour différents niveaux de connaissance 17

1.5.1 Fonction de coût pour l’estimation des filtres lorsque les sources sont connues 17

1.5.2 Optimisation combinatoire pour le problème de permutation 18

1.5.3 Estimation des filtres quand les sources sont inconnues 18

1.6 Contributions 19

1.7 Plan de la thèse 19

1.8 Publications associées aux contributions de cette thèse 20

1.8.1 Articles dans des revues avec comité de lecture 20

1.8.2 Communications avec actes 21

1.8.3 Communications sans actes 21

1.8.4 Rapports techniques 21

1 État de l’art 23

2 Estimation des filtres en environnement contrôlé 25

2.1 Mesure successive de réponses impulsionnelles 25

2.1.1 Choix des signaux sources 25
3 Problème de permutation en analyse en composantes indépendantes

3.1 Du mélange instantané aux mélanges convolutifs
3.1.1 Mesures d’indépendance des signaux sonores
3.1.2 Rôle de la taille de la fenêtre

3.2 Ambiguïtés d’échelle et de permutation
3.3 Méthode des filtres parcimonieux
3.3.1 Premières garanties théoriques
3.3.2 Algorithme de descente
3.3.2.1 Description
3.3.2.2 Choix du critère ℓ_p
3.3.2.3 Complexité
3.3.2.4 Résultats

3.4 Récapitulatif

4 Optimisation proximale pour la régularisation de systèmes sous-déterminés

4.1 Optimisation convexe pour la séparation de sources
4.1.1 Hypothèse de parcimonie des sources dans le plan temps-fréquence
4.1.2 Algorithme DUET
4.1.3 Analyse en composantes parcimonieuses

4.2 Algorithmes proximaux pour l’optimisation convexe
4.2.1 Opérateurs proximaux
4.2.2 Caractérisation du minimum
4.2.3 Description des algorithmes

4.3 Optimisation alternée des problèmes biconvexes
4.3.1 Définition et algorithmes
4.3.2 Exemple d’application en traitement d’image
II Contributions

5 Estimation simultanée des filtres
5.1 Estimation des filtres en régime sous-déterminé 49
5.2 Étude statistique d’une famille de filtres 51
 5.2.1 Synthèse d’une base de données de réponses de salles 51
 5.2.2 Distributions retenues 52
 5.2.3 Estimation au sens du maximum de vraisemblance 52
 5.2.4 Résultats 53
5.3 Mise en place de l’algorithme 54
 5.3.1 Choix des pénalités 54
 5.3.2 Calcul des opérateurs proximaux 55
 5.3.3 Calcul du gradient et de sa constante de Lipschitz 55
5.4 Expérience préliminaire sur des mélanges synthétiques 56
5.5 Protocole expérimental 56
 5.5.1 Conditions de l’expérience 56
 5.5.1.1 Acquisition de la vérité terrain 57
 5.5.1.2 Longueur de filtres 57
 5.5.1.3 Caractérisation du bruit de fond 57
 5.5.1.4 Discussion sur les mesures de qualité d’une réponse impulsionnelle 58
 5.5.2 Paramètres de l’algorithme 59
 5.5.2.1 Signaux sources 59
 5.5.2.2 Paramètres des pénalités considérés 59
 5.5.2.3 Paramètres de FISTA 60
5.6 Résultats expérimentaux 60
 5.6.1 Comparaison entre les différents types de sources 60
 5.6.2 Influence du silence dans les signaux sources 61
 5.6.3 Performances de la méthode proposée pour \(T = 0.45 \, T_{\text{crit}} \) 61
 5.6.3.1 Rôle de la pénalité 61
 5.6.3.2 Analyse qualitative des réponses estimées 61
 5.6.4 Robustesse à un temps de réverbération erroné 62
 5.6.5 Influence de la durée d’enregistrement \(T \) 63
 5.6.6 Choix du paramètre de régularisation \(\lambda \) 63
5.7 Récapitulatif 64

6 Caractère bien posé du problème de permutation en analyse en composantes indépendantes 67
 6.1 Résultat principal 67
 6.1.1 Hypothèse de parcimonie des filtres 68
 6.1.2 Théorème pour \(L \) premier 68
 6.2 Preuve du Théorème 6.1 69
 6.2.1 Mesure de la taille de la famille de permutations 69
 6.2.2 Conséquence du principe d’incertitude 69
Remerciements

Je tiens à remercier tous ceux qui ont contribué à ce travail collectif, qui a vu le jour au sein d’une équipe motivante. Merci à mes directeurs pour leur encadrement directif, exigeant et bienveillant. Merci aux membres du jury pour leur lecture attentive.
Résumé

On se place dans le cadre du traitement des signaux audio multicanaux et multi-sources. À partir du mélange de plusieurs sources sonores enregistrées en milieu réverbérant, on cherche à estimer les réponses acoustiques (ou filtres de mélange) entre les sources et les microphones. Ce problème inverse ne peut être résolu qu’en prenant en compte des hypothèses sur la nature des filtres. Notre approche consiste d’une part à identifier mathématiquement les hypothèses nécessaires sur les filtres pour pouvoir les estimer et d’autre part à construire des fonctions de coût et des algorithmes permettant de les estimer effectivement.

Premièrement, nous avons considéré le cas où les signaux sources sont connus. Nous avons développé une méthode d’estimation des filtres basée sur une régularisation convexe prenant en compte à la fois la nature parcimonieuse des filtres et leur enveloppe de forme exponentielle décroissante. Nous avons effectué des enregistrements en environnement réel qui ont confirmé l’efficacité de cet algorithme.

Deuxièmement, nous avons considéré le cas où les signaux sources sont inconnus, mais statistiquement indépendants. Les filtres de mélange peuvent alors être estimés à une indétermination de permutation et de gain près à chaque fréquence par des techniques d’analyse en composantes indépendantes. Nous avons apporté une étude exhaustive des garanties théoriques par lesquelles l’indétermination de permutation peut être levée dans le cas où les filtres sont parcimonieux dans le domaine temporel.

Troisièmement, nous avons commencé à analyser les hypothèses sous lesquelles notre algorithme d’estimation des filtres pourrait être étendu à l’estimation conjointe des signaux sources et des filtres et montré un premier résultat négatif inattendu : dans le cadre de la déconvolution parcimonieuse aveugle, pour une famille assez large de fonctions de coût régularisées, le minimum global est trivial. Des contraintes supplémentaires sur les signaux sources ou les filtres sont donc nécessaires.
Abstract

This work is focused on the processing of multichannel and multisource audio signals. From an audio mixture of several audio sources recorded in a reverberant room, we wish to estimate the acoustic responses (a.k.a. mixing filters) between the sources and the microphones. To solve this inverse problem one need to take into account additional hypotheses on the nature of the acoustic responses. Our approach consists in first identifying mathematically the necessary hypotheses on the acoustic responses for their estimation and then building cost functions and algorithms to effectively estimate them.

First, we considered the case where the source signals are known. We developed a method to estimate the acoustic responses based on a convex regularization which exploits both the temporal sparsity of the filters and the exponentially decaying envelope. Real-world experiments confirmed the effectiveness of this method on real data.

Then, we considered the case where the sources signal are unknown, but statistically independent. The mixing filters can be estimated up to a permutation and scaling ambiguity. We brought up an exhaustive study of the theoretical conditions under which we can solve the indeterminacy, when the multichannel filters are sparse in the temporal domain.

Finally, we started to analyse the hypotheses under which this algorithm could be extended to the joint estimation of the sources and the filters, and showed a first unexpected results : in the context of blind deconvolution with sparse priors, for a quite large family of regularised cost functions, the global minimum is trivial. Additional constraints on the source signals and the filters are needed.
Notations et abréviations

C Pondération entre les deux pénalités .. p. 18
K Longueur des filtres ... p. 16
L Nombre de fréquences d’une TFCT .. p. 28
M Nombre de capteurs ... p. 16
N Nombre de sources ... p. 16
T Longueur des sources et des enregistrements p. 16

$A \in \mathbb{R}^{MNK}$ Matrice de filtres ... p. 16
$E \in \mathbb{R}^{MT}$ Matrice de bruit .. p. 16
$S \in \mathbb{R}^{NT}$ Matrice de sources ... p. 16
$X \in \mathbb{R}^{MT}$ Matrice des enregistrements p. 16

P Fonction de coût ... p. 17

S_N Groupe des permutations d’un ensemble à N éléments p. 18

F_L Matrice de transformée de Fourier discrète p. 28

Φ Matrice de transformée de Fourier à court terme p. 40

SNR$_A$ Mesure de qualité du filtre A ... p. 30
SNR$_S$ Mesure de qualité de la déconvolution de S p. 31
SNR$_X$ Rapport signal-à-bruit de l’enregistrement X p. 26
i Indice des capteurs .. p. 16
j Indice des sources ... p. 16
t Indice temporel ... p. 16
t_R Temps de réverbération à 60 dB ... p. 51
\otimes Convolution circulaire ... p. 28

$\Delta(\hat{A}, A|\pi)$ Dérangements de la famille de permutations π sur le filtre observé p. 36
\star Produit matriciel convolutif ... p. 16
\sharp Cardinal d’un ensemble .. p. 36

ACI Analyse en Composantes Indépendantes p. 15, 16, 18, 33, 34

BRIR $Binaural Room Impulse Response$ p. 14

ERLE $Echo Return Loss Enhancement$.. p. 31

FASST $Flexible Audio Source Separation Toolbox$ p. 15
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRTF</td>
<td>Head Related Transfer Function</td>
<td>14</td>
</tr>
<tr>
<td>MDCT</td>
<td>Modified Discrete Cosine Transform</td>
<td>90</td>
</tr>
<tr>
<td>MLS</td>
<td>Maximum Length Sequence</td>
<td>27</td>
</tr>
<tr>
<td>NMF</td>
<td>Non-negative Matrix Factorisation</td>
<td>15</td>
</tr>
<tr>
<td>RIR</td>
<td>Room Impulse Responses</td>
<td>11</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
<td>26</td>
</tr>
<tr>
<td>SCA</td>
<td>Sparse Component Analysis</td>
<td>15, 16</td>
</tr>
<tr>
<td>SiSEC</td>
<td>Signal Separation Evaluation Campaign</td>
<td>20</td>
</tr>
<tr>
<td>TFCT</td>
<td>Transformée de Fourier à Court Terme</td>
<td>34, 39</td>
</tr>
<tr>
<td>WFS</td>
<td>Wave Field Synthesis</td>
<td>13</td>
</tr>
</tbody>
</table>
Chapitre 1

Introduction

1.1 Notion de réponse de salle

Un mélange réverbérant est un enregistrement dans les conditions les plus banales : un
ou plusieurs microphones sont placés dans une salle qui contient plusieurs sources sonores.
Les sources peuvent être musicales, ou des locuteurs par exemple, comme dans une salle de
conférences où la superposition des voix nuit à l’intelligibilité des signaux (cocktail party effect
[Che53]).

Comme illustré dans la Figure 1.1, entre une source ponctuelle et un récepteur, les ondes
sonores émises se réfléchissent contre les parois de la salle, si bien qu’on enregistre la somme
des contributions correspondant aux différents chemins suivis par toutes les sources. Ce proces-
sus est linéaire et invariant par translation temporelle, et il se formalise donc par la convolution
des signaux sources par un ensemble de filtres. Ces filtres propres à la salle et dépendant des
positions des sources et des capteurs sont appelés réponses impulsionnelles de salle [Kut00] ou
Room Impulse Responses (RIR). L’opération inverse, la déconvolution, consiste à récupérer le
signal émis à partir d’un enregistrement réverbéré.

La réponse acoustique de salle entre un capteur i et une source j se décompose traditionnel-
lelement en trois termes $a_{ij} = a_{ij}^d + a_{ij}^p + a_{ij}^q$, où a_{ij}^d représente le champ direct, a_{ij}^p les premières
réflexions et a_{ij}^q la queue réverbérante, comme illustré dans la Figure 1.2. La définition de ces
trois termes varie en fonction des applications.
INTRODUCTION

Il existe une multitude de traitements possibles dans les mélanges sonores : séparation de sources, reconnaissance vocale, localisation... Dans un premier temps ces traitements ont été développés pour des conditions idéales, et ils ont été mis en difficulté par la présence de réverbération. D’autres approches ont ensuite été développées pour des situations contrôlées, c’est-à-dire quand certaines caractéristiques des filtres, ou bien les filtres eux-mêmes, sont connus. Nous nous intéressons dans cette thèse à l’estimation des filtres, en vue d’améliorer le traitement des mélanges sonores.

1.2 Motivations applicatives

Dans le cas d’un signal mono-source, la déconvolution est appelée déréverbération. Dans le cas d’un signal multi-sources, il s’agit plutôt d’un problème de séparation de sources. Ces deux problèmes ont de nombreuses applications.

1.2.1 Déréverbération

Les méthodes de déconvolution du signal temporel consistent à appliquer un filtre inverse au signal réverbéré. On distingue alors systématiquement la partie précoce de la réponse de salle de la queue réverbérante, qui ne sont pas estimées de la même manière. La méthode [GM03] estime les filtres, puis les sources par inversion directe dans le plan temps fréquence tout en corrigeant les erreurs de convolution avec évaluation du niveau de bruit. Une approche
plus élaborée utilise un modèle de bruit non-stationnaire [YNM09]. La méthode de delayed normalized linear prediction [NYK+10] estime la partie précoce de la réponse de salle par prédiction linéaire, et la queue réverbérante est supprimée suivant un modèle de bruit. Dans ce cas, la réponse de salle n’est pas connue, et on utilise plutôt des méthodes d’estimation du temps de réverbération, de la variance spectrale [HGCS08].

Les méthodes de filtrage de spectre de puissance passent par l’estimation de la variance de la queue réverbérante, qui doit être guidée par un modèle statistique de la réponse de salle. Une première approche modélise la réponse comme un bruit blanc muni d’une enveloppe exponentielle décroissante [LBD01] [KDNM09]. Un modèle moins contraignant prend en compte le fait que le temps de réverbération dépend de la fréquence [EH11]. Une méthode hybride combine l’estimation de la variance de la queue réverbérée dans le domaine temporel avec un filtrage du spectre de puissance [KDNM09].

Les applications de la déréverbération peuvent être directes ou indirectes. Le premier objectif est de restituer un signal sans la partie réverbérée. Par exemple, en téléphonie mobile, les appareils sont utilisés en environnement bruité et réverbéré, et on souhaite restituer un signal intelligible. Lorsque la réponse est connue, on peut faire une inversion directe, en revanche la connaissance d’une réponse de salle ne permet pas la déréverbération d’un enregistrement effectué dans la même salle pour d’autres positions du capteur ou du récepteur [Mou85]. Des méthodes de déconvolution aveugle propres aux signaux de parole ont été développées, basées sur la parcimonie [LCKL07b], ou l’harmonicité [NKM07].

La connaissance de la réponse de salle peut également permettre l’amélioration de traitement de mélanges réverbérants, comme par exemple la reconnaissance de la parole. Les algorithmes d’apprentissage sont entraînés dans des conditions idéales, non réverbérées, alors qu’en pratique dans des systèmes embarqués (kits mains-libres, visioconférence...), la distance source-capteur augmente, et on est amené à traiter un mélange réverbérant. Les méthodes sont robustes à la présence de quelques réflexions, c’est surtout la queue réverbérante qui pose problème [GA02] : typiquement, le support des premières réflexions a une durée de 30 ms, ce qui correspond à la taille d’une fenêtre d’analyse pour les algorithmes de reconnaissance [KDNM09]. Il a été établi qu’un apprentissage de l’algorithme en milieu réverbérant ne règle pas le problème [KM97]. Certaines approches utilisent l’information de la réponse de salle au moment de l’extraction des descripteurs [KHU10], d’autres se concentrent sur la suppression de la queue réverbérante, modélisée comme un bruit non-stationnaire [LBD01] [KDNM09]. Le modèle des réponses de salles peut être pris en compte directement par l’algorithme de reconnaissance vocale, lors de l’extraction des descripteurs [KHU10][SMK10].

1.2.2 Restitution spatialisée par des haut-parleurs

Les méthodes de spatialisation permettent la restitution d’une scène acoustique dans une pièce à partir d’un grand nombre d’enceintes. L’objectif est de rendre la perception du son la plus naturelle possible, au point que l’auditeur ne soupçonne pas la présence d’un système de haut-parleurs. La stéréo permet de créer cette illusion de manière très limitée, pour un seul point dans la salle appelé sweet spot. C’est un cas particulier des méthodes holophoniques [PCRP11], on peut multiplier le nombre d’enceintes, mais les sweet spots sont limités aux emplacements des microphones. De façon différente, la Wave Field Synthesis (WFS) [BdVV93] est basée sur
INTRODUCTION

le principe de Huygens :

La pression sonore générée à l’intérieur d’un volume par des sources extérieures peut être calculée si la pression et la vitesse particulaire acoustique à la surface du volume sont connues.

Autrement dit, si on restitue les conditions acoustiques observées sur une surface de la salle, la propagation reproduit à l’identique la diffusion de la scène sonore enregistrée à l’intérieur du volume correspondant. Des systèmes composés d’un grand nombre d’enceintes disposées dans des conditions parfaitement maîtrisées sont aujourd’hui en activité [BSP01]. Leur mise en place nécessite le calcul précis des phénomènes de compensation des ondes diffusées par les enceintes, et donc une bonne connaissance des conditions d’émission et de réverbération [BdVV93].

Pour compenser l’effet de la salle, la calibration du système passe par l’enregistrement d’un grand nombre de réponses de salles. Le nombre de positions pour lesquelles le système est optimisé dépend du nombre de couple de positions pour lesquels la réponse de salle est connue [HdVB02]. Pour des raisons pratiques, les méthodes existantes se restreignent à un ensemble mesurable en un temps raisonnable. Par exemple le système WFS présenté dans [Cor06] est constitué de 48 haut-parleurs, 6 panneaux multi-actuateurs, et l’acquisition des réponses de salles est répétée pour 96 positions.

1.2.3 Restitution binaurale par des écouteurs

Une Binaural Room Impulse Response (BRIR) [Møl92] est la combinaison du rôle de la salle avec la réponse de l’appareil auditif (le pavillon auriculaire, la tête, le torse) appelée Head Related Transfer Function (HRTF). Chaque réflexion de l’onde sonore correspond à une position différente dans la salle, et donc à une HRTF différente : une BRIR est la somme de plusieurs HRTF retardées et mises à l’échelle. Cette fonction de transfert contient l’ensemble des informations utilisées par le cerveau pour la perception d’une scène sonore et on utilise des bases de BRIR pour la restitution spatialisée par des écouteurs [WK89]. Les BRIRs sont également employées pour l’étude expérimentale des prothèses auditives [KEA+09].

Une étude perceptive place la sensibilité de notre localisation autour de 2° pour des bruits roses, et de 5° pour des sons musicaux [LMW08] : pour restituer le mouvement des sources musicales, une grille de 5° × 5° de mesures de BRIR est nécessaire. De plus les BRIR varient d’une personne à l’autre, on ne peut pas se passer d’enregistrements individuels [MSH96], et les caractéristiques du système de restitution doivent être parfaitement contrôlées [LHW07].

1.2.4 Séparation de sources

La séparation de sources consiste à extraire les différentes sources sonores présentes dans l’enregistrement d’un mélange sonore, par exemple plusieurs locuteurs, ou plusieurs instruments de musique. Les applications sont nombreuses : c’est une étape nécessaire pour améliorer le confort des appareils auditifs, les performances reconnaissance vocale en environnement bruyé, la commande vocale, ou encore dans le cadre du post-traitement d’enregistrements musicaux. Par exemple la restitution spatialisée par WFS d’une scène sonore multi-sources soulève un problème de séparation de sources lorsque les sources ne sont pas disponibles séparées
Dans ce cas, les artefacts introduits par les algorithmes de séparation sont partiellement compensés lors de la restitution.

Il existe un large panel de méthodes présentées en audio. On se focalise sur les méthodes de séparation des enregistrement multi-canaux, en mettant l’accent sur les différentes utilisations de l’information des filtres. Le problème est fondamentalement mal posé : la notion même de source est ambiguë dans la plupart des enregistrements, et les approches s’orientent de plus en plus vers des méthodes informées. Dans un premier temps la plupart des améliorations ont porté sur les modèles spectraux associés aux sources, il est donc naturel de se pencher sur la modélisation des filtres pour compléter la modélisation.

Un première approche, dans le cas sur-déterminé ($M \geq N$), consiste à rechercher un filtre inverse pour isoler chaque source à partir du mélange multicanal. Les méthodes de filtrage spatial ou beamforming approximent le filtre inverse [Van02], sous l’hypothèse que les filtres sont anéchoïques, c’est-à-dire en assimilant chaque filtre à son champ direct. L’Analyse en Composantes Indépendantes (ACI) [KAM07] [SAMM07] estime le filtre inverse en chaque point temps-fréquence en supposant que les contributions de chaque source sont statistiquement indépendantes. L’expérience montre que cette dernière hypothèse est valide dans la plupart des situations [PVD09]. Lorsque le mélange est convolutif, l’ACI se heurte au problème de permutation (cf. Chapitre 3).

La Sparse Component Analysis (SCA) suppose de plus que les sources sont parcimonieuses dans le plan temps-fréquence, en modélisant les sources par des distributions à queues lourdes. Les méthodes masquage temps-fréquence exploitent la diversité parcimonieuse des sources pour effectuer un clustering dans le plan temps fréquence [YR04], à nouveau en approximant le filtre par leur champ direct. Ces méthodes fonctionnent dans les mélanges sous-déterminés convolutifs, cependant les filtres ne vérifient pas strictement cette approximation et la séparation introduit alors des artefacts [VAT+12]. La régression parcimonieuse a également été utilisée dans le cas convolutif [WKSM07], en approximant les filtres par leur réponse fréquentielle sur une fenêtre courte.

Des modèles de signaux peuvent remplacer les hypothèses de parcimonie des sources, comme les Spectral Gaussian Mixture Models [BBG06], et fonctionnent même dans le cas mono-canal [Row00]. La factorisation en matrices positives ou Non-negative Matrix Factorisation (NMF) [SB03] permet de factoriser le spectrogramme de puissance de chaque source en produit de deux matrices W, H à coefficients positifs : on associe par exemple un modèle de signal à W [VCG08] et une contrainte de parcimonie à H [FBD09], si bien qu’on peut interpréter W comme un dictionnaire d’atomes spectraux, et H comme une carte d’activation temporelle. La Flexible Audio Source Separation Toolbox (FASST) [OVB12] généralise une grande famille de modèles de signaux, et permet de s’adapter aux signaux considérés.

D’une manière générale le mélange convolutif est traité en approximant les filtres par leur réponse fréquentielle sur une fenêtre courte, voire par leur champ direct. Il a été démontré que la modélisation du filtre dans le domaine temporel donne de meilleurs résultats pour la SCA [KVG10], cependant ce résultat nécessite la connaissance du filtre à ce stade.

Une campagne de séparation de sources [ANV+12] permet de comparer les différentes approches existantes.
1.3 Description du processus de mélange

Formellement, on observe, en présence d’un bruit $E \in \mathbb{R}^{MT} = (e_1, \ldots, e_M)^T$ M mélanges sonores $X \in \mathbb{R}^{MT} = (x_1, \ldots, x_M)^T$, de N sources $S \in \mathbb{R}^{NT} = (s_1, \ldots, s_N)^T$, de longueur T. On indexera par i les capteurs et j les sources. On note $A \in \mathbb{R}^{MNK} = (a_{ij})_{1 \leq i \leq M, 1 \leq j \leq N}$ la matrice de filtres de longueur K.

Dans le cas d’une source s et d’un microphone ($N = M = 1$), on modélise l’enregistrement comme une convolution discrète

$$x(t) = a * s(t) = \sum_{\tau=0}^{K-1} a(\tau)s(t - \tau), \quad \forall 0 \leq t \leq T + K - 2 \quad (1.1)$$

Dans le cas multi-canal, multi-sources, on définit un produit matriciel convolutif \star tel que, pour $0 \leq t \leq T - 1$

$$x_i(t) = \sum_{j=1}^{N} (a_{ij} * s_j)(t) + e_i(t), \quad 1 \leq i \leq M \quad (1.2)$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_M \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \vdots & \vdots \\ a_{M1} & \cdots & a_{MN} \end{pmatrix} \star \begin{pmatrix} s_1 \\ \vdots \\ s_N \end{pmatrix} + E. \quad (1.3)$$

On notera d’une manière générale, en gras pour les distinguer des scalaires, les vecteurs en lettres minuscules "a" et les matrices en lettres majuscules "A".

Selon les applications, plusieurs modèles de réponse impulsionnelles existent dans la littérature. Le cas le plus simple est celui des mélanges linéaires instantanés, où chaque filtre est un Dirac δ_0 associé à un gain c_{ij}, sous la forme $a_{ij} = c_{ij} \delta_0$. C’est une hypothèse peu réaliste selon laquelle il n’y a pas de temps de décalage entre les différents microphones. Dans le cas de plusieurs capteurs $M > 1$, si on introduit un décalage t_{ij} propre à chaque couple source-capteur, on parle alors de mélange anéchoïque : $a_{ij} = c_{ij} \delta_{ij}$. On approche la réponse de salle par le coefficient du champ direct, tout en autorisant des différences de temps d’arrivée entre les différents micros. Le modèle le plus général est celui d’un mélange convolutif, où les filtres a_{ij} sont des signaux quelconques. Dans le cas des réponses de salle, les filtres possèdent une certaine structure abordée à la partie 1.1 qui va nous permettre d’apporter un a priori.

1.4 Problématique

Dans le cas des mélanges instantanés, l’estimation des filtres à l’aide d’hypothèses de parcimonie et d’indépendance des signaux a été étudiée par l’ACI et SCA. La possibilité d’estimer les filtres dépend de la connaissance qu’on a des sources. La mesure des réponses de salles en environnement maîtrisé se fait aujourd’hui avec des sources connues, suffisamment longues, prévues à cet effet. Les techniques de déconvolution dédiées à des signaux spécifiques permettent d’obtenir les réponses impulsionnelles avec précision. À l’inverse lorsqu’on enregistre un mélange réverbérant en général on ne dispose pas exactement des sources, et pour estimer
les filtres l’information disponible est insuffisante : c’est un problème inverse mal posé. Pour lever cette indétermination on souhaite utiliser un a priori sur la nature de la solution, qu’on peut alors caractériser comme le minimum d’une fonction de coût. Nous explorons la modélisation des connaissances a priori sur les réponses de salle, qui mène à la construction de fonctions de coût adaptées à l’estimation des matrices de filtres dans les mélanges.

1.5 Estimation des réponses pour différents niveaux de connaissance

Nous résumons dans le Tableau 1.1 les méthodes d’estimation des filtres en fonction de la connaissance des sources et du type de mélange considéré. Dans un premier temps on suppose qu’on connait exactement les sources, apparemment trop courtes (Contribution 1), puis on suppose qu’on connait la matrice de filtres à une famille de permutations près (Contribution 2), et enfin on étudie le problème de l’estimation aveugle à partir du mélange, lorsqu’on ne connait pas les sources (Contribution 3).

1.5.1 Fonction de coût pour l’estimation des filtres lorsque les sources sont connues

L’estimation des filtres lorsque les sources sont connues est un problème inverse linéaire : estimer A lorsque X et S sont connus sachant $X = A \ast S$. Les sources et les filtres jouent un rôle symétrique, et ce problème est similaire à celui de l’estimation des sources lorsque la matrice de mélange est connue : estimer S lorsque X et A sont connus sachant $X = A \ast S$.

Si le filtre est court, et les sources longues, le système $X = A \ast S$ comporte plus d’équations que d’inconnues, et l’inversion ne pose pas de problème. On parle de problème inverse mal posé lorsque le système est sous-déterminé (filtre long et sources courtes), et il y a alors plusieurs solutions possibles. Nous introduisons une fonction de coût P sur l’ensemble des solutions qui permet de reformuler par exemple le problème en un problème d’optimisation sous contraintes

$$
\begin{align*}
\min_A & \quad P(A) \\
\text{s.t.} & \quad X = A \ast S.
\end{align*}
$$

Il existe dans la littérature plusieurs fonctions de coût pour les sources sonores, souvent liées aux hypothèses de parcimonie et d’indépendance présentées dans les Chapitres 3 et 4. Cependant, cette question a été beaucoup moins étudiée en ce qui concerne les filtres. Un modèle parcimonieux de réponses de salles à été utilisé pour la déréverbération d’un mélange à une source et deux canaux [LCKL07a] et pour la séparation de sources [SAG10], mais seulement dans le cas où les sources sont actives une par une.

Problème 1 : Quelles fonctions de coût sont adaptées à l’estimation des filtres associés à des réponses de salles par inversion régularisée d’un système sous-déterminé ?
1.5.2 Optimisation combinatoire pour le problème de permutation

L’ACI convolutive [MD03] permet une séparation de sources efficace lorsque le nombre de capteurs est supérieur ou égal au nombre de sources. La séparation se fait dans un premier temps indépendamment sur plusieurs bandes de fréquence, on estime alors les sources et les filtres à une permutation près. Dans une seconde étape, il faut rassembler les fragments provenant d’une même source. La correction de cette indétermination passe par la recherche d’une permutation dans chaque bande de fréquence parmi l’ensemble des permutations \(S_N \) d’un ensemble à \(N \) éléments. Les méthodes exploitant la nature de la matrice de filtres se basent sur l’information de localisation des sources [SMAM04], essentiellement contenue dans le champ direct. Notre approche va plus loin, puisqu’elle utilise les premiers échos des filtres.

Problème 2 Comment exploiter une fonction de coût sur les filtres pour retrouver une famille de permutations ?

\[
\begin{align*}
\min_{\mathbf{A}} & \quad \mathcal{P}(\mathbf{A}) \\
\text{s.c.} & \quad \mathbf{A} = \sigma \hat{\mathbf{A}}, \quad \sigma = (\sigma_1, \ldots, \sigma_L) \in S_N^L.
\end{align*}
\]

(1.5)

La notation \(\sigma.\hat{\mathbf{A}} \) sera explicitée au Chapitre 3.

1.5.3 Estimation des filtres quand les sources sont inconnues

Lorsque les sources ne sont pas connues, si on dispose d’un a priori sur les sources et sur les filtres, on peut reformuler le problème sous forme de minimisation sous contrainte de la fonction de coût associée,

\[
\begin{align*}
\min_{\mathbf{A}, \mathbf{S}} & \quad \mathcal{P}(\mathbf{A}) + C\|\mathbf{S}\| \\
\text{s.c.} & \quad \mathbf{X} = \mathbf{A} * \mathbf{S},
\end{align*}
\]

(1.6)

où \(\| \cdot \| \) est la pénalité associée aux sources \(\mathbf{S} \), souvent invariante par translation temporelle. La fonction de coût est la somme des deux a priori, avec une constante \(C \) pour pondérer ces deux pénalités. Il est à noter que, si le choix d’une pénalité \(\mathcal{P} \) convexe permet la résolution efficace du problème (1.4) par optimisation convexe, le problème (1.6) est non convexe quelles que soient les pénalités choisies. Il existe des algorithmes qui convergent vers des minima locaux de ce problème [BCP10], en exploitant sa nature biconvexe. Plusieurs travaux notamment
en traitement d’image proposent une étude pratique du problème, et font part des difficultés rencontrées [LWDF09], dues notamment à la présence de nombreux minima locaux.

Problème 3 : Quelles garanties théoriques peut-on obtenir concernant les minima globaux et locaux de ce problème ?

1.6 Contributions

Pour répondre aux trois problèmes ci-dessus, notre première contribution (*Contribution 1*) est d’avoir étudié l’apport de plusieurs fonctions de coût dans le problème inverse (1.4). Nous formulons pour cela deux hypothèses sur la réponse de salle, qui nous permettent de construire plusieurs pénalités P :

- l’amplitude des coefficients suit une enveloppe exponentielle décroissante,
- les premières réflexions sont parcimonieuses.

Nous validons notre approche expérimentalement sur des données réelles. Les expériences menées aboutissent à une méthode d’acquisition compressée des réponses de salles.

Notre deuxième contribution (*Contribution 2*) se place dans un modèle simplifié où les filtres convolutifs sont remplacés par leur approximation parcimonieuse. Nous établissons des résultats théoriques qui caractérisent le filtre original parmi les permutations possibles du filtre observé par l’ACI, et élargissons ainsi les garanties théoriques du problème d’optimisation combinatoire (1.5) dans le cas où la pénalité $P(A) = \|A\|_p$ est la norme ℓ_p.

La troisième contribution (*Contribution 3*) est l’analyse théorique du problème de déconvolution aveugle (1.6). Nous avons abouti à une description du minimum global, et étudié les conditions d’existence de minima locaux pour une grande famille de fonctions de coût utilisées dans la littérature dans le cas où la pénalité $P(A) = \|A\|_1$ est la norme ℓ_1. Les expériences menées permettent de délimiter les cas où la solution recherchée est un minimum local.

Ces avancées viennent compléter dans le Tableau 1.1 la colonne d’estimation des filtres parcimonieux pour différents niveaux de connaissance des sources.

1.7 Plan de la thèse

Ce document est divisé en deux parties.

La première partie se concentre sur les méthodes existantes d’utilisation des fonctions de coût pour l’estimation des filtres. Dans le Chapitre 2, on dresse l’état de l’art de la mesure des réponses de salle, dans des situations où les sources sont connues, et choisies pour être les mieux adaptées à la situation. Ce chapitre contient à la fois des méthodes de mesure individuelle des réponses de salles, et des méthodes de mesure simultanées de plusieurs réponses motivées par une volonté d’accélérer le processus d’acquisition dans des situations où le temps d’acquisition est coûteux.

Le Chapitre 3 décrit les méthodes d’estimation des filtres dans le cas particulier de l’ACI. L’ACI fournit une connaissance des coefficients fréquentiels des filtres à une permutation près,
et on s’intéresse à une méthode récente d’estimation des permutations par optimisation combinatoire d’une fonction de coût sur les filtres.

On aborde au Chapitre 4 le problème de l’estimation des sources lorsque la matrice de filtres est connue. On présente une approche récente basée sur l’optimisation convexe, en utilisant un a priori sur les sources. La méthode décrite est à la fois une motivation pour s’intéresser à l’estimation des filtres, dont la séparation de sources est une des utilisations possibles, et le point de départ de la conception d’une méthode similaire pour estimer les filtres lorsque les sources sont connues.

La deuxième partie contient les contributions de la thèse. La première contribution présentée dans le Chapitre 5 est une méthode d’acquisition simultanée des filtres en temps réduit. Cet outil permet surtout la validation expérimentale de deux a priori sur les réponses de salles : la parcimonie et la décroissance exponentielle des réponses de salles. On montre que ces hypothèses permettent la construction de fonctions de coût convexes et la mise en œuvre d’algorithmes proximaux efficaces pour l’estimation des filtres, à travers les résultats d’expériences en situation réelle et sur des données synthétiques.

Le Chapitre 6 est une extension théorique des conditions nécessaires et suffisantes à la résolution du problème de permutation en ACI convolutive à partir d’un modèle parcimonieux des filtres. Partant d’un résultat démontré par P. Sudhakar [Sud11] nous obtenons des bornes de parcimonie plus précises, plus générales, et optimales.

En combinant les a priori sur les sources présentés au Chapitre 4 et ceux sur les filtres du Chapitre 5, on aboutit à une méthode d’estimation simultanée des filtres et des sources, c’est à dire une méthode de déconvolution aveugle. Le Chapitre 7 est consacré à l’étude des minima locaux et globaux de la fonction de coût associée. Un résultat négatif sur le minimum global donne une interprétation nouvelle aux difficultés rencontrées par les méthodes existantes, et l’analyse locale suggère de nouvelles approches.

On présente au Chapitre 8 la conclusion et les perspectives de ces travaux.

1.8 Publications associées aux contributions de cette thèse

Chacune des contributions de cette thèse a fait l’objet d’au moins une publication de conférence. La solution au problème de permutation étudiée au Chapitre 6 a été publiée dans un journal, et la méthode d’estimation du Chapitre 5 a été soumise à un journal. Deux publications correspondent à mon implication dans l’organisation de la campagne d’évaluation des algorithmes de séparation de sources Signal Separation Evaluation Campaign (SiSEC) en 2011.

1.8.1 Articles dans des revues avec comité de lecture

1.8.2 Communications avec actes

3. Benichoux, Alexis ; Sudhakar, Prasad ; Bimbot, Frédéric ; Gribonval, Rémi, “Some uniqueness results in sparse convolutive source separation”, in Proc. 10th International Conference on Latent Variable Analysis and Signal Separation, pp 196-203, Tel Aviv, 2012

4. Nolte, Guido ; Lutter, Dominik ; Ziehe, Andreas ; Nesta, Francesco ; Vincent, Emmanuel ; Koldovský, Zbyněk ; Benichoux, Alexis ; Araki, Shoko, “The 2011 Signal Separation Evaluation Campaign (SiSEC 2011) : Biomedical data analysis ”, in Proc. 10th International Conference on Latent Variable Analysis and Signal Separation, pp 423-429 Tel Aviv, 2012

1.8.3 Communications sans actes

1.8.4 Rapports techniques

Première partie

État de l’art
Chapitre 2

Estimation des filtres en environnement contrôlé

On cherche à mesurer les effets de la propagation dans la salle lors de l’émission des sources sonores. Dans les années 1920, le pionnier de l’acoustique des salles W.C. Sabine effectuait ses mesures à l’oreille, avec un orgue et un chronomètre. La méthode a évolué, mais on utilise encore ses équations [Kut00]. Plus tard, le développement des hauts-parleurs a permis de raffiner le choix des sources excitatrices, et la mesure analogique du niveau d’enregistrement d’obtenir une estimation des temps de réverbération. Enfin, le traitement numérique du signal permet aujourd’hui d’obtenir une mesure point par point des réponses de salles. Certains modèles simplifiés résument la réponse à quelques mesures statistiques d’ensemble comme le temps de réverbération, ou la clarté [Bra90]. On considère ici son acquisition point par point.

2.1 Mesure successive de réponses impulsionnelles

Le protocole de mesure de réponses impulsionnelles se fait en trois étapes : l’émission d’un son (le signal excitatoire), l’enregistrement de sa version réverbérée, puis la déconvolution de l’enregistrement. Dans le cas de la mesure de plusieurs réponses de salles, nous distinguerons l’estimation successive, c’est-à-dire lorsque les sources sont activées une par une, de l’estimation simultanée dans un mélange réverbérant.

2.1.1 Choix des signaux sources

Le choix des signaux sources permet idéalement de remplir trois objectifs [SEA02] :

— des sources parfaitement reproductibles,
— un rapport signal-à-bruit de l’enregistrement maximal,
— des non-linéarités d’émission minimales.
2.1.1.1 Puissance des signaux

En présence d’un bruit de fond dans une salle, un signal plus puissant donne un meilleur rapport signal-à-bruit. Les entrées numériques étant limitées en amplitude, on souhaite utiliser un signal le plus puissant possible pour une amplitude donnée, pour préserver le système de restitution et limiter les non-linéarités. C’est pourquoi on considère des signaux normalisés en amplitude, \(\|s\|_\infty = 1 \) pour mesurer la puissance.

La mesure typique de puissance en audio d’une source \(s \) de longueur \(T \) normalisée est la moyenne des carrés ou \(Root Mean Square \) (RMS)

\[
\text{RMS}(s) = 10 \log_{10} \frac{\|s\|_2^2}{T}.
\]

(2.1)

Les signaux normalisés qui maximisent le RMS sont les signaux binaires, c’est à dire l’ensemble des signaux à valeurs dans \(\{-1, 1\} \). On trouve dans la littérature une mesure similaire [Boy86], le facteur de crête \(10 \log_{10} \frac{\|s\|_\infty^2}{\|s\|_2^2} \). Il est inversement proportionnel au RMS et contient un terme de normalisation. On cherche à maximiser le rapport signal-à-bruit de l’enregistrement \(x = a \ast s + e \), qu’on notera \(\text{SNRX} \)

\[
\text{SNRX} = 10 \log_{10} \frac{\|a \ast s\|_2^2}{\|e\|_2^2}.
\]

(2.2)

2.1.1.2 Impulsions de Dirac

La mesure la plus directe s’obtient en émettant un signal de Dirac. Cependant, on trouve difficilement des Diracs parfaitement reproductibles. Théoriquement, la réponse de salle est exactement l’enregistrement obtenu en réponse à un signal de Dirac. En pratique, le signal émis (tir au pistolet, clave, explosion de ballon de baudruche, clic) est une approximation d’un signal de Dirac : il a une couleur et la réponse en est affectée. Pour compenser ces erreurs de mesure, on applique un traitement à la réponse de salle obtenue, en tenant compte de la vraie nature du signal émis. Des modèles spécifiques ont été développés, par exemple pour les ballons de baudruche [ABH10] ou des tirs au pistolet [Bra86]. Les difficultés rencontrées suggèrent d’utiliser des signaux connus, émis dans des hauts-parleurs, pour limiter les approximations.

De plus, l’émission de l’impulsion doit être suivie d’un silence, le temps que le système revienne à un état d’équilibre. Le rapport signal-à-bruit de l’enregistrement en est considérablement affecté, et on préfère utiliser des sources les plus puissantes possibles.

2.1.1.3 Suites pseudo-aléatoires

Les suites pseudo-aléatoires ont ainsi remplacé les impulsions pour la mesure des réponses de salles, en partie pour des raisons de puissance de signal [SEA02]. La première approche, proposée par Schroeder en 1979 [Sch79], était destinée à la mesure des réponses par un signal inaudible, mais puissant, pendant la représentation d’un opéra. Pour maximiser le rapport signal-à-bruit on utilise un signal de puissance maximale. Il est donc naturel de choisir des signaux aléatoires de type Bernoulli.
Les Maximum Length Sequence (MLS) sont des suites pseudo-aléatoires de longueur \(D = 2^d - 1, d \in \mathbb{N}\) aux propriétés algébriques fortes qui permettent une déconvolution exacte des enregistrements : leur fonction d’autocorrélation est proche d’un Dirac, ce qui permet de construire explicitement un inverse au sens de la convolution. La construction des suites MLS passe par les polynômes irréductibles sur les corps finis. L’idée est de construire une orbite de l’espace vectoriel \(\mathbb{F}_2^n\) sous l’action de la translation. On obtient ainsi une suite périodique qui n’est similaire à aucune de ses translations. Soit \(P(X) = X^n + \lambda_{n-1}X^{n-1} + \ldots + \lambda_0\) un polynôme irréductible de \(\mathbb{F}_2[X]\), tel que \(X\) génère \(\mathbb{F}_2[X]/\langle P \rangle\). Il n’existe à ce jour aucune méthode déterministe pour la construction d’un tel polynôme, mais des méthodes itératives existent [Sta73]. Une suite MLS est définie par une initialisation \(s(0), \ldots, s(n-1) \in \mathbb{F}_2\) et la relation de récurrence
\[
s(n+k) = \lambda_{n-1}s(n+k-1) + \ldots + \lambda_0s(k), \quad k \in \mathbb{N}.
\]

L’isomorphisme \(\mathbb{F}_2[X]/\langle P \rangle \simeq (\mathbb{F}_2)^n\) permet de représenter chaque suite de \(n\) éléments de \(\mathbb{F}_2\) comme un polynôme, on assimile par exemple (\(\forall k \in \mathbb{N}\)) \(X^{k+n}\) à \((s(n+k-1), \ldots, s(l))\). Par construction la suite \((s(k))_{k \in \mathbb{N}}\) à valeurs dans \(\mathbb{F}_2\) est alors \(2^n - 1\) périodique, et une fenêtre de taille \(n\) qui glisse le long de \(2^n - 1 + n\) éléments de la suite fait apparaître tous les éléments non nuls de \((\mathbb{F}_2)^n\) [MS76]. On en déduit également des propriétés de la fonction d’autocorrélation
\[
R(k) = \begin{cases}
1 & \text{pour } k = 0 \\
-\frac{1}{2^{n-1}} & \text{pour } 0 < |k| < 2^n - 1
\end{cases}.
\]

Ce résultat est équivalent à dire que la suite à un spectre plat.

Un lien avec la transformation d’Hadamard avait un intérêt pratique pour la déconvolution, à l’époque où les ordinateurs étaient munis d’un processeur de 6MHz [Chu90]. Il permettait d’éviter une convolution dans le domaine temporel, il est désuet aujourd’hui au regard de l’évolution des capacités de calcul. Les non-linéarités des enceintes introduisent d’autre part des pics parasites dans les réponses estimées, en conséquence des propriétés algébriques des MLS [Wri95].

2.1.1.4 Sine sweeps

L’intérêt des sine sweeps est qu’on peut supprimer les non-linéarités dans l’enregistrement par masquage dans le plan temps-fréquence. La puissance RMS est plus faible que les suites MLS mais reste plus satisfaisante que celle des Diracs. Par définition [Far00] un sine sweep \(s\) de longueur \(T\) (en nombre d’échantillons) est un signal de type
\[
s(t) = \sin(\theta(t)), \quad 0 \leq t \leq T - 1.
\]

Pour balayer le spectre entre \(f_1 = 50\) Hz et \(f_2 = 22500\) Hz (la fréquence audible la plus aigüe) avec un signal échantillonné à une fréquence \(f_s\), on définit par exemple, \(c = \frac{T-1}{\log\frac{f_2}{f_1}}\) et
\[
\theta(t) = 2\pi c \frac{f_1}{f_s} (e^{t/c} - 1), \quad 0 \leq t \leq T - 1.
\]
La vitesse angulaire $\theta'(t)$ est proportionnelle à la fréquence observée, ainsi si $\theta(t)$ est exponentiel on parle d’*exponential sine sweep*, et s’il est quadratique (par exemple $\theta(t) = at^2 + bt + c$) de *linear sine sweep*. Comme pour les MLS, la fonction d’autocorrélation est proche d’un Dirac. On peut construire explicitement l’inverse au sens de la convolution [NSKL10].

La longueur du *sine sweep* est déterminante pour la qualité d’estimation du filtre. Dans le cas d’un bruit de fond stationnaire, plus le signal est long, plus les effets du bruit de fond sont atténués. Doubler la longueur du signal revient à faire la moyenne de deux *sine sweeps*. La longueur typique d’un *sine sweep* est de l’ordre de 1.5 s [SEA02].

2.1.2 Déconvolution directe dans le domaine fréquentiel

On parle de déconvolution directe par opposition à la déconvolution régularisée utilisée en traitement d’image abordée dans le Chapitre 4. On s’intéresse à la déconvolution d’un mélange mono-canal mono-source $x = a * s + e$ dans le cas où s est connu.

La convolution circulaire \otimes entre deux signaux u, v périodiques de même période L, pour $t \in \mathbb{Z}$, est définie par

$$u \otimes v(t) = \sum_{0 \leq \tau \leq L-1} u(t - \tau) v(\tau).$$

Le signal obtenu est lui aussi de période L. On note i l’unité imaginaire, et F_L la matrice de transformée de Fourier discrète,

$$F_L = \frac{1}{\sqrt{L}} \left(e^{\frac{2i\pi \omega l}{L}} \right), \quad 0 \leq \omega, l \leq L - 1$$

Dans le cas de signaux périodiques de même période L, la convolution circulaire \otimes vérifie, dans le domaine fréquentiel

$$F_L[u \otimes v](\omega) = F_L[u](\omega) F_L[v](\omega)$$

Pour profiter de cette propriété dans le cas de signaux non-périodiques et d’une convolution $*$ on effectue un *zero-padding* f qui associe à une suite à support fini u, de longueur K, une suite périodique $f_L(u)$ de période $L \geq K$ en complétant avec des zéros. On choisit ensuite $L \geq T + K$ et on peut vérifier que pour $0 \leq t \leq T + K - 2$ on a bien

$$[f_L(a) \otimes f_L(s)](t) = a * s(t)$$

Ainsi on peut effectuer une déconvolution dans le domaine fréquentiel en utilisant la transformée de Fourier des signaux complétés $f_L(a)$ et $f_L(s)$:

$$F_L[f_L(a)](\omega) = \frac{F_L[f_L(x)](\omega)}{F_L[f_L(s)](\omega)},$$

et reconstruire le filtre a à partir de sa transformée de Fourier discrète, par transformée inverse [RS79].
2.1.3 Estimation successive

L’approche naïve consiste à estimer à tour de rôle les réponses de salles pour chacune des \(N \) sources. Plusieurs capteurs peuvent enregistrer simultanément les sources qui sont activées une à une. C’est la méthode la plus précise, et la plus utilisée. On multiplie le temps d’acquisition par le nombre de sources.

Le mesure par des Diracs successifs entrecoupés de silence de durée \(K - 1 \) est la plus rapide et nécessite un enregistrement d’une durée totale de \(T_{\text{dirac}} = N(K - 1) \), \(K \) étant la durée du filtre. Dans le cas de *sine sweeps* successifs, on doit prendre en compte la durée \(D \) d’un *sine sweep*, et le temps d’attente nécessaire entre deux signaux pour que le système revienne à l’équilibre. La durée totale d’enregistrement est de \(T_{\text{sweeps}} = N(D + K - 1) \). On obtient le même temps \(T_{\text{MLS}} = N(D + K - 1) \), pour les suites MLS, avec une contrainte en plus sur la longueur des signaux, de type \(D = 2^d - 1, d \in \mathbb{N} \).

2.2 Mesure simultanée des réponses impulsionnelles

Pour accélérer la mesure de plusieurs réponses impulsionnelles d’une même salle, on peut les estimer à partir de l’enregistrement simultané de plusieurs sources.

2.2.1 Maximum Length Sequences simultanées

On a vu que la fonction d’autocorrélation d’une suite MLS est très proche d’un Dirac. Une des conséquences de ce résultat est que le signal est orthogonal à toutes ses translations. Ainsi une méthode d’estimation simultanée a été proposée [GZPdD04]. En émettant \(N \) suites de longueur \(D = 2^d - 1, d \in \mathbb{N} \), translatées d’un facteur \(K \), on obtient des enregistrements qu’on peut inverser. La généralisation de l’inversion des suites MLS comme un cas particulier du *time multiplexing* suggère que la méthode fonctionne avec tous les types de suites pseudo-aléatoires. On utilise le fait que la fonction d’autocorrélation est proche d’un Dirac, on obtient à un terme négligeable près

\[
1 \leq i \leq M, 1 \leq j \leq N, i \neq j, \quad x_i \otimes s_j(t) \simeq a_{ij}(t), \quad T \leq t \leq T + K - 1. \quad (2.12)
\]

Cette propriété est vérifiée par toutes les suites pseudo-aléatoires. On obtient alors en négligeant les effets de bord \(T_{\text{sim}}^{\text{MLS}} = NK \).

2.2.2 Méthode des *sine sweeps* entrelacés

Une méthode plus adaptée à la gestion des non-linéarités [MBL07] consiste à superposer des *sine sweeps* tout en s’assurant que leurs contributions réverbérées restent disjointes dans le plan temps-fréquence lors de l’enregistrement. Si on suppose que la réponse des enceintes et des microphones est linéaire, il suffit de laisser un écart de longueur \(K - 1 \) entre le lancement de chaque *sine sweep*. Un spectrogramme de l’enregistrement obtenu dans le cas de deux sources est disponible dans la Figure 2.1. Un silence additionnel de longueur \(K - 1 \) est nécessaire pour estimer la dernière réponse. Ainsi la durée totale de l’enregistrement passe de \(N(D + K - 1) \) à \(T_{\text{sim}}^{\text{MLS}} = cN(K - 1) + D \). La méthode simultanée avec des *sine sweeps* permet, comme dans
le cas monosource, de gommer les non-linéarités : on applique un masque dans le plan temps-fréquence pour supprimer les harmoniques correspondant aux non-linéarités, et ne garder que la partie linéaire de la réponse.

![Figure 2.1](image)

Figure 2.1 – Représentation temps-fréquence de l’enregistrement obtenu après l’activation de deux sources par des *sine sweeps* entrelacés tirée de [MBL07]. Les coefficients non nuls sont en noir.

2.3 Évaluation des filtres estimés

On étudie ici le niveau de précision nécessaire sur les réponses de salle en fonction des applications, ainsi que le niveau maximal d’acquisition possible en pratique.

2.3.1 Mesure de proximité entre deux filtres

Pour mesurer l’écart entre une réponses impulsionnelle estimée \hat{A} et une réponse de référence A il est courant de définir le rapport signal-bruit en décibels (dB) SNR_A [EDG03]

$$\text{SNR}_A(\hat{A}) = 10 \log_{10} \frac{\|A\|_2^2}{\|A - \hat{A}\|_2^2}.$$

(2.13)

C’est la mesure que nous utiliserons. Associée à un filtre de référence obtenu avec le plus de précision possible, cette mesure permet d’évaluer différentes méthodes en comparant les écarts au filtre de référence.
2.3.2 Variabilité des réponses de salle

La réponse de salle dépend de nombreux paramètres : les caractéristiques physiques de la salle, la position du récepteur, la position de l’émetteur. Pour éviter des problèmes de directivité de la source, la source serait idéalement émise par des hauts-parleurs omnidirectionnels. Par exemple, les enceintes en dodécahèdre à 12 hauts-parleurs permettent une bonne approximation de la diffusion uniforme [Kut00].

Les conditions d’absorption des parois de la salle sont susceptibles de varier : une salle de spectacle est souvent moins réverbérante en présence de public, car les vêtements sont plus absorbants que les sièges. Les parois en moquette ou les rideaux ont des réflexions aléatoires, qui induisent des variabilités.

Surtout, la température influe directement sur la vitesse de propagation du son. La température fluctue dans une salle ordinaire, surtout en présence de radiateurs ou de climatiseurs. À titre d’ordre de grandeur [Kut00], si τ est la température en degrés centigrades (°C), la vitesse du son dans un milieu homogène, sans obstacles est \(331.4 + 0.6 \tau \text{ m.s}^{-1}\). Les coefficients de la réponse de salle correspondent à des trajets de longueurs différentes, et les derniers coefficients sont ceux qui sont le plus touchés par une variation de la vitesse de propagation. On peut prédire la réponse de salle par la méthode source image en fonction de la température [EDG03]. Dans le cas d’un espacement source microphone de 2 m dans une salle, à une fréquence d’échantillonnage fixée artificiellement à 10000 Hz, le calcul montre que deux réponses avec une différence de 0.1° C correspondent à un SNR\(_A\) de 25 dB. Une réponse calculée avec une différence de 1° C correspond à un SNR\(_A\) de 6 dB [EDG03]. Ces prédictions sont vérifiées par les expériences des auteurs, et nous ne nous attendons pas à avoir une précision supérieure à un SNR\(_A\) de 25 dB.

2.3.3 Bornes sur l’estimation des filtres

Dans les applications, on sait qu’une meilleure connaissance des filtres n’apporte plus d’améliorations à partir d’un certain niveau de précision.

Un exemple de lien entre SNR\(_A\) et performance applicative a été observé dans le cadre de l’annulation d’écho. Au delà d’un certain seuil (20 dB rule [KG94]), augmenter la précision de la réponse de salle ne permet pas d’augmenter la qualité du signal reconstitué. La mesure de la qualité d’annulation d’écho est le SNR\(_S\), défini comme le rapport signal-à-bruit entre le signal reconstitué \(\hat{s}\) et le signal émis \(s\) :

\[
\text{SNR}_S = 10 \log_{10} \frac{\|s\|^2}{\|s - \hat{s}\|^2}. \tag{2.14}
\]

On parle également de Echo Return Loss Enhancement (ERLE) dans la littérature. L’observation initiale de la 20 dB rule fait le lien entre le rapport champ direct sur champ réverbéré et la valeur d’annulation d’écho SNR\(_S\). Cependant, il est naturel d’extrapoler ce résultat à une 20 dB rule sur le SNR\(_A\) [EDG03]. Ainsi le meilleur résultat d’annulation d’écho possible est SNR\(_S\) ≃ SNR\(_A\) pour des valeurs SNR\(_A\) ≤ 20 dB, puis SNR\(_S\) ≃ 20 dB au-delà. La variabilité des réponses de salle fournit une explication possible pour cette observation.
Par ailleurs, dans le contexte différent de la séparation de sources informée par la matrice de filtres [KVG10], on observe que les performances de séparation sont stables lorsque la connaissance sur les filtres est approximative, pour un SNR_A supérieur à 10 dB.

2.4 Récapitulatif

En résumé, on peut classer les méthodes en fonction de la puissance du signal excitation : les signaux les plus adaptés à la mesure des réponses de salles sont les signaux pseudo-aléatoires, comme les suites MLS. Si on souhaite gommer les non-linéarités, on utilise des *sine sweeps*. Les artefacts liés aux non-linéarités dépendent du signal excitatoire utilisé, et pas de la méthode (simultanée ou successive) [GZPdD04], on peut opérer la même classification pour la mesure simultanée. Dans le contexte de notre étude nous considérons que les non-linéarités sont négligeables, et nous nous concentrerons sur la maximisation de la puissance des signaux émis.

Une pratique courante pour réduire l’influence du bruit de fond est de prendre la moyenne de r enregistrements répétés. L’écart de temps d’acquisition nécessaire entre les méthodes de *sine sweeps* simultanés et de MLS simultanés est d’autant plus net que r est grand. Revenons sur le calcul de $T_{\text{sim}}^{\text{ML}}$, dans le cas d’un moyennage r, en prenant en compte les effets de bord. La mesure la plus rapide $T = rNK$ dans la littérature est l’utilisation de Diracs successifs. Dans le cas des MLS simultanés, pour obtenir une convolution circulaire entre le filtre de la réponse de salle et la source, il faut faire la moyenne des signaux en omettant le premier et le dernier, la durée totale d’enregistrement est $rNK + 2K$. Ce n’est pas le cas pour la méthode des *sine sweeps* naïve successive, qui nécessite $T = rN(K + D − 1)$. On obtient pour les *sine sweeps* simultanés $T = rNK + D$ un temps comparable aux MLS simultanés : $T = rNK + 2K$. Les méthodes sont résumées dans le Tableau 2.1.

<table>
<thead>
<tr>
<th>Méthodes</th>
<th>T</th>
<th>RMS (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirac</td>
<td>rNK</td>
<td>$-10 \log_{10}(K)$</td>
</tr>
<tr>
<td>MLS simultanés</td>
<td>$rNK + 2K$</td>
<td>0</td>
</tr>
<tr>
<td>sine sweeps successifs</td>
<td>$rN(K + D − 1)$</td>
<td>$-10 \log_{10}(2)$</td>
</tr>
<tr>
<td>sine sweeps simultanés</td>
<td>$rNK + D$</td>
<td>$-10 \log_{10}(2)$</td>
</tr>
</tbody>
</table>

Tableau 2.1 – Comparaison de la durée totale d’acquisition nécessaire pour plusieurs techniques d’estimation des réponses de salle.

La mesure des réponses acoustiques des salles dans des conditions idéales permet de dresser un portrait de la matrice de mélange convolutif. Il n’y a pas à ce jour de méthode d’estimation des filtres lorsque l’information sur les sources est lacunaire. Par la suite, nous mettons au point des méthodes d’estimation de la matrice de mélange dans des systèmes sous-déterminés.
Chapitre 3

Problème de permutation en analyse en composantes indépendantes

L’Analyse en Composantes Indépendantes (ACI) permet de séparer les composantes des mélanges sonores instantanés dans le cas (sur-)déterminé \(M \geq N \), c’est-à-dire lorsque le nombre de microphones est supérieur ou égal au nombre de sources. En analysant le lien entre les méthodes instantanées et convolutives, on présente dans ce chapitre les indéterminations liées à l’ACI.

3.1 Du mélange instantané aux mélanges convolutifs

Les premières implémentations de la méthode supposent que le mélange est instantané. On peut ramener le cas des mélanges convolutifs à un mélange instantané, mais cette approche soulève des ambiguïtés d’échelle et de permutation.

3.1.1 Mesures d’indépendance des signaux sonores

Supposons qu’on observe un mélange instantané \(X \), représenté par une matrice \(A = (a_{ij})_{1 \leq i \leq N, 1 \leq j \leq M} \in \mathbb{R}^{MN} \) telle que \(X = AS \). Les sources \((s_j)_{1 \leq j \leq N} \), sont considérées comme des instances de variables aléatoires suivant la distribution \(P_{s_j} \). On fait alors une hypothèse sur la distribution jointe \(P_S \) de la matrice de sources \(S = (s_1, \ldots, s_N)' \), qui vérifie [Car98]

\[
P_S = \prod_{1 \leq j \leq N} P_{s_j}.
\]

L’ACI consiste à choisir les sources \(S \) et la matrice \(A \) compatibles avec \(X = AS \) qui maximisent l’indépendance, autrement dit qui sont les plus proches de vérifier cette égalité. On peut construire des fonctions de coût différentes selon la mesure de proximité statistique utilisée. Par exemple à partir de la divergence de Kullback-Leibler \(\mathcal{K} \), on construit une mesure d’indépendance appelée information mutuelle [Car98] \(I(S) = \mathcal{K} \left(P_S \left| \prod_{1 \leq j \leq N} P_{s_j} \right. \right) \).

On cherche une matrice de démixage \(B \) telle que \(BX = S \), si bien qu’on aboutit à un problème de minimisation sans contrainte
Le passage du modèle instantané aux mélanges convolutifs se fait simplement en effectuant la séparation dans le domaine fréquentiel. On décompose le mélange X en bandes de fréquence $\tilde{X}_{\omega}(t), 1 \leq t \leq T$, et on cherche alors une matrice de démixage B_{ω} à coefficients complexes dans chaque bande

\[
\min_{B_{\omega} \in \mathbb{C}^{MN}} I(B_{\omega} \tilde{X}_{\omega}). \quad (3.3)
\]

\text{(ACI Convolutive)}

3.1.2 Rôle de la taille de la fenêtre

La décomposition en bandes de fréquence s’effectue généralement par le biais d’une transformation temps-fréquence, par exemple la Transformée de Fourier à Court Terme (TFCT), munie d’une fenêtre w de longueur L

\[
\text{TFCT}[x](t, \omega) = \sum_{\tau \in \mathbb{Z}} x(\tau)w(t - \tau)e^{-2i\pi \omega \tau / L}, \quad \omega = 0, 2, \ldots, L - 1. \quad (3.4)
\]

On peut alors effectuer une ACI dans chaque bande de fréquence en considérant l’ensemble des coefficients de la TFCT.

Pour couvrir l’ensemble de la réverbération il faut que les fenêtres soient plus longues que la réponse de salle, donc on impose intuitivement $L > K$. Cependant si la taille des fenêtres est trop grande, l’hypothèse d’indépendance n’est plus vérifiée. Entre les deux se trouve une taille de fenêtre optimale empiriquement, qui ne vérifie pas forcément $L > K$ [AMM+03].

3.2 Ambiguïtés d’échelle et de permutation

Sous certaines hypothèses (indépendance, non-gaussianité, ...) on peut prouver l’unicité de la solution vérifiant (3.1) [Dar53]. Cependant, par définition du problème, l’unicité est toujours à deux indéterminations près sur les sources : de permutation, et de changement d’échelle. En effet pour $1 \leq j \leq N$, σ dans l’ensemble des permutations \mathcal{S}_N et $\lambda_j \in \mathbb{R}^*$ on peut remplacer s_j par $s_j' = \lambda_j s_{\sigma(j)}$ et préserver (3.1). Cette ambiguïté d’échelle et de permutation est inhérente à la définition de l’ACI, il n’y a pas d’espoir de lever cette indétermination sans faire de nouvelles hypothèses.

Dans le cas d’une séparation par bandes de fréquence $0 \leq \omega \leq L - 1$, on rencontre cette indétermination L fois. Notons $\hat{y}_j, 1 \leq j \leq N$, le résultat de l’ACI. On obtient dans
le meilleur des cas une famille de permutations $\sigma = (\sigma_1,\ldots,\sigma_L \in S_N)$ et de scalaires $(\lambda_{j\omega})_{1 \leq j \leq N, 0 \leq \omega \leq L-1}$ tels que pour chaque fréquence $0 \leq \omega \leq L - 1$,
\[
\hat{y}_j(\omega) = \lambda_{j\omega}a_{\sigma_\omega(j)}(\omega)s_{\sigma_\omega(j)}(\omega).
\] (3.5)

Par la suite, on suppose que l’ambiguïté d’échelle est résolue, et on considère le problème de permutation indépendamment. C’est une hypothèse de travail, pour progresser vers une méthode plus réaliste. On note $\sigma.A$ le filtre correspondant à l’erreur de permutation, $\sigma.A(\omega) = A_{\sigma_\omega(j)}(\omega)$. À partir du filtre original A on définit l’ensemble des filtres observables $\{\sigma.A, \sigma \in S^L_N\}$: le problème de permutation revient à retrouver A à partir d’un filtre observable.

Pour résoudre l’ambiguïté de permutation, certaines méthodes exploitent la continuité de l’enveloppe temporelle des sources sonores, une taille de fenêtre plus large [IM00], ou des chaînes de Markov [SP04][SWC04]. On peut utiliser une fonction de coût, en choisissant sur chaque bande temporelle la permutation qui minimise la distance euclidienne avec la fenêtre précédente sur l’ensemble des coefficients fréquentiels [BKKO01] [WCS04], ou la corrélation entre les spectres de puissance de deux fenêtres consécutives [RR05].

Plusieurs techniques utilisent une information sur les filtres, à travers la localisation des sources. Les différences de temps d’arrivée des sources entre les différents capteurs permettent d’estimer les distances sources-capteurs. Plus précisément, le rapport entre deux coefficients fréquentiels du filtre $\omega \mapsto \tilde{a}_{ij}(\omega)$ est une fonction continue, qu’on peut calculer par ailleurs en fonction des distances sources-capteurs. Une contrainte sur le rapport des coefficients des filtres permet donc de retrouver les permutations pour chaque fréquence [PA02]. Dans le cas de microphones directionnels on peut regrouper les coefficients fréquentiels par différence d’intensité intermicrophone [SAMM07]. Cette information permet de construire un filtre inverse [MD04], pour maximiser la réponse du système de capteurs dans la direction correspondant à chaque source. Cette technique est connue sous le nom de beamforming et pose problème en présence de réverbération : en étudiant directement la directivité des sources on observe une localisation qui varie en fonction de la fréquence [IM02]. Une classification de l’ensemble de ces méthodes est disponible [CJ10, Ch. 19].

Ces approches obtiennent de bons résultats en pratique pour certains types de sources et de filtres, cependant il n’y a pas en général de garanties sur le caractère bien posé du problème de permutation et d’échelle en fonction des hypothèses. Nous allons étendre l’étude théorique faite par P. Sudhakar et al. [Sud11] dans le cas des filtres parcimonieux.

3.3 Méthode des filtres parcimonieux

Plus que la localisation, on s’intéresse à une méthode qui utilise les premières réflexions de chaque filtre [SG09]. Cette méthode proposée par P. Sudhakar et al. suppose que les filtres originaux A sont parcimonieux. Plus qu’une hypothèse sur la nature des réponses de salles, c’est une approximation : le filtre est résumé à une version qui contient uniquement les plus grands coefficients, soit un maximum de k coefficients non nuls par filtre, avec $k < K$. Supposons qu’on observe le filtre $A = \sigma.A$, est-il possible d’exploiter la parcimonie de A pour retrouver la famille de permutations σ?
3.3.1 Premières garanties théoriques

Des premières garanties [Sud11] sont données en fonction de la taille de la famille de permutations σ. On définit la “norme” $\|\cdot\|_0$ comme le nombre de coefficients non nuls, en notant $\#$ le cardinal

$$\|a_{ij}\|_0 := \#\{0 \leq t < L - 1, \ a_{ij}(t) \neq 0\}. \tag{3.6}$$

La notation entre guillemets suit les premières notations de [Don01] : il convient de garder à l’esprit que ce n’est ni une norme, ni une quasi-norme. On mesure la taille de la famille de permutations $\Delta(\tilde{A}, A|I_d)$ en dénombrant les coefficients fréquentiels de A qui sont modifiés :

$$\Delta(\tilde{A}, A|I_d) := \max_{i,j} \|F_L(\tilde{a}_{ij} - a_{ij})\|_0, \tag{3.7}$$

où F_L correspond à la matrice de transformée de Fourier discrète. Cette mesure est liée au nombre de dérangements des permutations $\sigma_1, \ldots, \sigma_L$. La notation I_d fait référence à la taille des permutations à permutation globale π près $\Delta(\tilde{A}, A|\pi)$ qui sera introduite au Chapitre 6.

On se place dans le cas mono-canal $M = 1$, avec deux sources $N = 2$.

Théorème 3.1 [Sud11] Si $k := \max_{i,j} \|a_{ij}\|_0 < \frac{L}{2\Delta(\tilde{A}, A|I_d)}$ alors

$$\|\tilde{a}_1\|_0 + \|\tilde{a}_2\|_0 > \|a_1\|_0 + \|a_2\|_0 \tag{3.8}$$

Sous des hypothèses de parcimonie du filtre initial (la borne sur k) le filtre ayant subi des permutations sur certaines fréquences est toujours moins parcimonieux que le filtre initial. On peut alors caractériser la permutation π recherchée puisqu’elle minimise la norme $\|\cdot\|_0$ parmi l’ensemble des filtres compatibles, c’est-à-dire l’ensemble des filtres construits en permutant les fréquences du filtre observé, obtenu par l’ACI. Ce résultat est généralisé au Chapitre 6 au cas général avec M capteurs et N sources, avec une borne sur k indépendante de la famille de permutations.

Un deuxième résultat établit que si les filtres d’une même source sont deux à deux disjoints, alors les permutations ne peuvent pas diminuer la quasi-norme ℓ_p , pour $0 \leq p \leq 1$:

Théorème 3.2 [Sud11] Soit $\Gamma_{ij} \subset \{0, \ldots, L - 1\}$ le support du filtre a_{ij}. On suppose pour i et $j_1 \neq j_2$

$$\Gamma_{i,j_1} \cap \Gamma_{i,j_2} = \emptyset. \tag{3.9}$$

Alors, pour $0 \leq p \leq 1$, on a $\|\tilde{A}\|_p \geq \|A\|_p$.

Les filtres à supports disjoints ne sont pas forcément très parcimonieux : M filtres de longueur K peuvent être à support disjoints dès lors que $\max_j \|a_{ij}\|_0 \leq L/M$.

3.3.2 Algorithme de descente

On tient, à partir des garanties théoriques ci-dessus, une intuition que le filtre original est le plus parcimonieux parmi tous les filtres compatibles. La recherche exhaustive est cependant très coûteuse, et la norme $\|\cdot\|_0$ est peu propice à des algorithmes de minimisation. Sudhakar et al. [Sud11] proposent un algorithme de descente basé sur la norme ℓ_p, $0 < p \leq 1$.

39
3.3.2.1 Description

L’initialisation de l’algorithme se fait au filtre observé $A_0 = \hat{A}$. Pour $n \geq 0$, le filtre candidat $A_{n+1,\pi}$ est obtenu en appliquant la permutation π à la fréquence $\omega_n \equiv n \mod L$. En testant toutes les permutations possibles π on retient π_n qui minimise $\|A_{n+1,\pi}\|_p$, ce qui fournit le filtre suivant $A_{n+1} := A_{n+1,\pi_n}$. On répète le processus jusqu’à ce que la norme ℓ_p de A_n ne varie plus. Le critère de non-progression est typiquement obtenu en un nombre raisonnable d’itérations.

3.3.2.2 Choix du critère ℓ_p

En pratique, pour $p = 0$, l’algorithme stoppe après une seule itération, parce que la norme ℓ_0 ne varie pas en général lorsqu’on modifie les coefficients fréquentiels. Elle est la plupart du temps constante et maximale sauf pour la permutation recherchée. Motivés par le lien entre les normes ℓ_p et la parcimonie [Don06], P. Sudhakar et al. comparent les normes ℓ_p pour $0 < p \leq 1$.

\[
\begin{align*}
\min_A \|A\|_p \\
\text{s.c. } A = \pi \cdot \hat{A}, \quad \pi = (\sigma_1, \ldots, \sigma_L) \in S^L_N, \\
\end{align*}
\]

(Minimisation ℓ_p pour le problème de permutation)

3.3.2.3 Complexité

Pour chaque évaluation de la norme ℓ_p il faut ramener la matrice de filtres dans le domaine temporel, et donc effectuer MN transformées de Fourier chacune de complexité $L \log L$. La recherche exhaustive dans S^L_N nécessite donc $MNLN!L \log L$ opérations. L’algorithme de descente requiert seulement $MNL^2N!\log L$ opérations à chaque itération, soit une convergence en temps polynomial.

3.3.2.4 Résultats

Nous reproduisons ici les résultats des expériences menées par P. Sudhakar et al. sur des filtres et des permutations aléatoires. Pour $N = 2$ sources et $M = 3$ capteurs, on génère aléatoirement en tirant les coefficients suivant des distributions gaussiennes indépendantes et identiquement distribuées. La parcimonie $0 \leq k \leq L - 1$ est obtenue en seuillant en dehors d’un support tiré au hasard parmi $\{1, \ldots, L\}$. Le filtre observé $\sigma \cdot \hat{A}$ est construit en tirant une famille σ de $L = 1024$ permutations de taille $0 \leq \Delta \leq L$. L’expérience est reproduite 50 fois pour chaque taille et chaque niveau de parcimonie. Les résultats finaux sont mesurés en terme de SNRA entre le filtre obtenu par l’algorithme et le filtre original. On représente dans la Figure 3.1 la moyenne de ces résultats. Le blanc correspond aux filtres retrouvés exactement, c’est-à-dire les filtres parcimonieux pour des familles de permutations suffisamment petites. À l’œil, on devine une règle additive du type $k + \Delta \leq L/2$, qui n’est pas expliquée par le Théorème 4.1. Ces résultats suggèrent que les garanties d’identifiabilité peuvent s’étendre.
Figure 3.1 – Résultats de correction de permutation en fonction de la parcimonie des filtres \(k \) et de la taille \(\Delta \) des permutations [BSG11].

3.4 Récapitulatif

En résumé, l’ACI convolutive souffre d’ambiguités d’échelle et de permutation. Des garanties théoriques ont été proposées dans le cas d’un mélange à deux sources, pour des filtres parcimonieux, en supposant que l’erreur de permutation est contrôlée. Il manque une étude plus générale, multi-sources, multi-canale, et des bornes qui expliquent mieux les observations.
Chapitre 4

Optimisation proximale pour la régularisation de systèmes sous-déterminés

Nous avons vu comment obtenir la matrice de filtres A dans un mélange réverbérant X lorsqu’on dispose des sources S, sous certaines conditions. Pour que système $X = A \ast S$ soit inversible, les sources doivent couvrir l’ensemble du spectre, et être suffisamment longues pour que le système ait plus d’équations que d’inconnues. En vue d’une estimation simultanée des sources et de la matrice de filtres, une méthode d’estimation dans le cas sous-déterminé est nécessaire.

4.1 Optimisation convexe pour la séparation de sources

Plusieurs méthodes ont été employées en séparation de sources, en utilisant l’a priori de parcimonie des sources dans le plan temps-fréquence. Nous présentons ici l’hypothèse de parcimonie, ainsi que les principales applications en séparation de sources. Nous nous baserons sur ces techniques pour construire un a priori sur les filtres au Chapitre 5, et pour l’analyse du problème de déconvolution aveugle au Chapitre 7.

4.1.1 Hypothèse de parcimonie des sources dans le plan temps-fréquence

Un signal est parcimonieux s’il est représenté par un petit nombre de coefficients significatifs dans un dictionnaire. La TFCT, qui fournit une visualisation dans le plan temps-fréquence, permet une représentation parcimonieuse de nombreux signaux sonores : par exemple, la Figure 4.1 représente le module de la TFCT d’un enregistrement de voix. Les coefficients significativement non nuls sont en noir, et le fond blanc représente les zéros, et on voit qu’une faible proportion de coefficients sont non nuls. Formellement, la distribution des coefficients présente un pic en zéro [OPR05]. À noter que cet enregistrement n’est pas parcimonieux dans le domaine temporel, il faut une transformation adaptée. Nous analysons les méthodes existantes de
régularisation des systèmes linéaires, qui permettent d’utiliser un a priori sur la solution recherchée, et de transformer ainsi un problème mal posé en un problème d’optimisation convexe.

Figure 4.1 – Un enregistrement de voix chantée vu dans le plan temps-fréquence. Les coefficients non nuls sont en noir.

L’intérêt de la notion de parcimonie vient de la possibilité de caractériser et d’obtenir la solution la plus parcimonieuse parmi l’ensemble des solutions d’un système sous-déterminé. Une large collection de travaux récents a permis d’une part de délimiter les possibilités théoriques de cette approche, et d’autre part de construire des algorithmes efficaces pour l’utilisation pratique de l’hypothèse de parcimonie dans les mélanges réverbérants [AEBAMG07][Kow09].

L’hypothèse de parcimonie des sources permet de bons résultats dans le cas sous-déterminé $M < N$. Une vue d’ensemble des méthodes de Sparse Component Analysis est disponible [GL06]. On notera Φ l’opérateur associé à la TFCT, et \tilde{s} le vecteur de coefficients temps-fréquences associé au signal s

$$ s = \tilde{s} \Phi' . \quad (4.1) $$

4.1.2 Algorithme DUET

Une des premières formulations de l’hypothèse de parcimonie consiste à supposer qu’une seule source est active pour chaque point temps-fréquence [YR04]. Cette hypothèse dépend de la fenêtre w utilisée en TFCT, on parle de w-orthogonalité. Ainsi on peut ramener la séparation de source au problème de minimisation, pour chaque point temps-fréquence (t, ω).

40

\section*{4. Optimisation Proximale pour la Régularisation de Systèmes Sous-Déterminés}

\begin{equation}
\begin{array}{l}
\min_{\hat{S}} \| \tilde{X}(t, \omega) - \hat{A}(\omega)\tilde{S}(t, \omega) \|_2 \\
\text{s.c.} \quad \| \hat{S}(t, \omega) \|_0 = 1
\end{array}
\end{equation}

(Degenerate Unmixing Estimation Technique)

On obtient une separation par masquage binaire du plan temps-fréquence. L'hypothèse est un peu forte, une régularisation plus lisse permet de séparer les sources qui ne sont pas \(w\)-orthogonales.

\subsection*{4.1.3 Analyse en composantes parcimonieuses}

On peut faire l'hypothèse, plus large, que les sources sont parcimonieuses dans le plan temps-fréquence, c'est-à-dire que seuls quelques coefficients sont significativement non nuls pour chaque source. Cette hypothèse n'exclut pas que plusieurs sources puissent être actives à un même point temps-fréquence. C'est en quelque sorte un élargissement des hypothèses de l'algorithme DUET. Des méthodes d'apprentissage de dictionnaire spécifiques à la séparation de sources ont été développées, [ZP01] [LLGS99] : la parcimonie des sources dépend du dictionnaire considéré, on suppose ici que le signal est parcimonieux dans le plan temps-fréquence. L'analyse en composantes parcimonieuse mène à la minimisation d'une fonction de coût pour chaque point \((t, \omega)\) [GTC05]

\begin{equation}
\min_{\hat{S}} \| \hat{X}(t, \omega) - \hat{A}(\omega)\hat{S}(t, \omega) \|_2^2 + \lambda \| \hat{S}(t, \omega) \|_p.
\end{equation}

(Analyse en composantes parcimonieuses)

En pratique, on sépare l'étape d'estimation de la matrice de mélange et l'étape d'estimation des sources pour \(A\) connu [PZ04][KVG10]. Une technique récente utilise le modèle d'analyse plutôt que de synthèse [AVC+13], on parle alors de coparcimonie.

La séparation de sources est alors ramenée à un problème de minimisation parcimonieuse. On minimise la norme \(\ell_1\) pour obtenir les sources les plus parcimonieuses parmi toutes les reconstructions possibles du mélange observé.

Le passage dans le domaine temps-fréquence pose problème dans le cas des mélanges convolutifs : pour modéliser le filtre complet sans faire d'approximation (l'approximation en bande étroite) un approche reformule le problème dans le domaine temporel [KVG10] :

\begin{equation}
\begin{array}{l}
\min_{\hat{S}} \| \hat{S} \|_1 \\
\text{s.c.} \quad X = A \ast S \text{ et } S = \hat{S} \Phi'.
\end{array}
\end{equation}

(LASSO large-bande)

On peut également utiliser des normes mixtes pour forcer la parcimonie par groupe. Si on souhaite garder l'hypothèse de parcimonie entre les sources c'est-à-dire que peu de sources
sont actives au même point \((t, \omega)\), sans forcer la parcimonie temps-fréquence, on utilise la norme mixte
\[
\|\hat{S}\|_{1,2} = \sum_{t,\omega} \left(\sum_{i=1}^{N} |\hat{S}_i(t, \omega)| \right)^2.
\]

4.2 Algorithmes proximaux pour l’optimisation convexe

Le problème (4.4) est du type
\[
\min_x \{ L(x) + \lambda P(x) \},
\]

où \(L\) est différentiable, \(x \mapsto \nabla L(x)\) est un opérateur \(\kappa\)-lipschitzien et \(P\) est une fonction convexe semi-continue inférieurement.

4.2.1 Opérateurs proximaux

Les opérateurs proximaux permettent de relacher l’hypothèse de différentiabilité pour construire des algorithmes d’optimisation dans le cas convexe [Mar70]. La définition est basée sur un résultat clé qui permet de définir l’opérateur

Lemme 4.1 Pour \(P : \mathcal{H} \to \mathbb{R} \cup \{+\infty\}\) convexe semi-continue inférieurement, \(x \in \mathcal{H}\), le problème
\[
\min_y \left\{ P(y) + \frac{1}{2} \|x - y\|_2^2 \right\}
\]
admet une solution unique.

Une fois l’existence et l’unicité établie on peut définir l’opérateur proximal.

Définition 4.1 Pour \(P : \mathcal{H} \to \mathbb{R} \cup \{+\infty\}\) semi-continue inférieurement et convexe on appelle opérateur proximal associé à \(P\) la fonction
\[
\text{prox}_P : x \mapsto \arg\min_y \left\{ P(y) + \frac{1}{2} \|x - y\|_2^2 \right\}
\]
4.2.2 Caractérisation du minimum

On obtient à l’aide des opérateurs proximaux la caractérisation du minimum [CW06, Proposition 3.1]. Pour $\gamma > 0$, les points qui vérifient

$$x = \text{prox}_{\frac{1}{\gamma}P} \left(x - \frac{\nabla L(x)}{\gamma} \right)$$

(4.9)

sont exactement les solutions du problème (4.6).

4.2.3 Description des algorithmes

L’algorithme ISTA est simplement la recherche itérative d’un point fixe solution de (4.9). Dans le cas différentiable on retrouve une descente de gradient projeté à pas constant égal à $\frac{1}{\kappa}$. On définit constante de Lipschitz du gradient de P

$$\kappa = \sup_{x,y \in H} \frac{\| \nabla L(x) - \nabla L(y) \|}{\| x - y \|}. \quad (4.10)$$

En pratique la convergence est lente, surtout pour des petites valeurs de λ [HYZ08]. Une première accélération consiste à commencer par calculer le minimum pour λ grand, puis à réduire progressivement λ en initialisant à chaque fois l’algorithme à la matrice de filtres obtenue pour le λ précédent.

Algorithm 1 ISTA

1: pour $n \leq n_{\text{max}}$ faire
 $\tilde{s}^n = \text{prox}_{\frac{1}{\gamma}P} \left(\tilde{s}^{n-1} - \frac{\nabla L(\tilde{s}^{n-1})}{\kappa} \right)$
2: fin pour

En pratique on utilise l’algorithme FISTA, une accélération de l’algorithme ISTA basée sur le schémas de Nesterov [BT09]. On obtient une convergence de la fonction de coût en $O\left(\frac{1}{T}\right)$, où la constante est proportionnelle à γ. Donc si on surévalue la constante de Lipschitz, la convergence a toujours lieu, mais elle est plus lente.

Algorithm 2 FISTA

1: fixer Z^0, S^0
2: pour $n \leq n_{\text{max}}$ faire
 $\tilde{S}^n = \text{prox}_{\frac{1}{\gamma}P} \left(Z^{n-1} - \frac{\nabla L(Z^{n-1})}{\kappa} \right)$
 $\tau^n = \frac{1 + \sqrt{1 + 4 (\tau^{n-1})^2}}{2}$
 $Z^n = \tilde{S}^n + \frac{2}{\tau^n} (\tilde{S}^n - \tilde{S}^{n-1})$
3: fin pour
4.3 Optimisation alternée des problèmes biconvexes

Il est possible d’étendre les algorithmes proximaux à des fonctions plus générales, en relaxant l’hypothèse de convexité : les fonctions quasi-convexes [AT04], ou seulement continues vérifiant la propriété de Łojasiewicz [AB09]. Nous nous focalisons sur le cas des fonctions biconvexes [GPK07], qui correspond à la déconvolution aveugle des mélanges réverbérants.

4.3.1 Définition et algorithmes

On cherche à exploiter les propriétés de la fonction

\[f : (A, S) \mapsto \|X - A \ast S\|_2^2 + \mathcal{P}(A) + \mathcal{Q}(S), \tag{4.11} \]

où les pénalités \(\mathcal{P} \) et \(\mathcal{Q} \) sont convexes. La fonction \(f \) n’est plus convexe, elle est biconvexe : c’est une fonction convexe de \(S \) à \(A \) fixé, et inversement.

Définition 4.2 Soit \(\mathcal{X}, \mathcal{Y} \) deux ensembles convexes, \(f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \) est dite biconvexe si pour tout \(x, y \in \mathcal{X}, \mathcal{Y} \) les fonctions \(f(\cdot, y) \) et \(f(x, \cdot) \) sont convexes.

La première approche est d’utiliser un algorithme de Gauss-Siedel pour l’optimisation alternée. La convergence est assurée [CW00], mais pas forcément vers un minimum global.

Algorithm 3 Optimisation alternée : Gauss-Siedel

1: fixer \(A^0, S^0 \)
2: pour \(n \leq n_{\text{max}} \) faire
 \(S^n = \arg\min_S f(A^{n-1}, S) \)
 \(A^n = \arg\min_A f(A, S^n) \)
3: fin pour

On peut profiter des extensions des algorithmes proximaux pour construire une méthode d’optimisation alternée plus efficace, basée sur des hypothèses de semi-algébricité [AT04]. On note \(f_A : S \mapsto f(S, A) \) et \(f_S : A \mapsto f(S, A) \).

Algorithm 4 Optimisation alternée : proximal splitting

1: fixer \(\rho, \bar{\rho} > 0 \) et \(A^0, S^0 \)
2: pour \(n \leq n_{\text{max}} \) faire
 choisir \((\lambda_n, \mu_n) \in [\rho, 2\rho]^2 \)
 \(S^n = \text{prox}_{\lambda_n f_A}(S^{n-1}) \)
 \(A^n = \text{prox}_{\mu_n f_S}(A^{n+1}) \)
3: fin pour

Pour tous les choix des coefficients \(\lambda_n, \mu_n, \rho, \bar{\rho} \), la suite \(S^n, A^n \) converge vers un point critique de la fonction de coût [BCP10]. À l’image du pas dans l’algorithme de descente de gradient, le choix des coefficients joue un rôle sur la vitesse de convergence.
4.3.2 Exemple d’application en traitement d’image

Les premières approches de déconvolution aveugle des ondes sismiques basées sur la Minimum Entropy Deconvolution [Don81] utilisent une norme invariante par remise à l’échelle (le kurtosis) en utilisant l’hypothèse de blancheur statistique des sources. Cette hypothèse n’est cependant pas envisageable pour des signaux sonores ou des images. Parmi les approches existantes en image [KH96, LWDF09, AG97, NG10], la plupart impliquent la minimisation d’une fonction de coût qui implique un terme d’attache aux données quadratique et a priori de type ℓ_p sur les sources et/ou le filtre. Ces approches sont souvent désignées comme des approches de type maximum a posteriori (MAP) en référence aux techniques de modélisation et d’estimation Bayesienne. En traitement d’image les principaux a priori sont des statistiques d’images ou la parcimonie du gradient [FSH +06, SJA08, CL09, SDZG12]. Le floutage classique (cha- leur, problèmes mise au point) correspond à un filtre gaussien, qui n’est pas parcimonieux. Le floutage directionnel dû au mouvements de l’appareil photo, ou du sujet, pendant l’acquisition correspond plutôt à un filtre parcimonieux.

Formellement, considérons la déconvolution d’une image s convolue avec un filtre a à partir d’une observation $x = a * s$. On suppose le filtre a parcimonieux, donc régularisé par la norme ℓ_1. La parcimonie du module du gradient de s fournit une pénalité convexe pour caractériser les images naturelles, la combinaison des deux a priori mène à un problème d’optimisation biconvexe Certaines approches utilisent une normalisation ℓ_1 [KNY09, KTF11] sur le filtre a

$$\min_{a,s} \lambda \|x - a * s\|_2^2 + C \|\nabla s\|_1 \quad \text{s.t. } \|a\|_1 = 1.$$

(P2)

Dans le cas de la déconvolution d’image sans contrainte on rencontre la fonction de coût suivante [FSH +06, SJA08, CL09, SDZG12],

$$\min_{a,s} \lambda \|\nabla x - a * \nabla s\|_2^2 + \|a\|_1 + C \|\nabla s\|.$$

(4.12)

De nombreux de travaux basés sur une approche “MAP” rapportent un problème récurrent : l’algorithme converge vers $(a^n, s^n) \rightarrow (\delta_0, x)$, l’observation x et un filtre de Dirac trivial [LWDF09]. On montre au Chapitre 7 que cette solution triviale est un minimum global.
Deuxième partie

Contributions
Chapitre 5

Estimation simultanée des filtres

Le premier volet des contributions est une technique d’estimation des filtres acoustiques lorsque les sources émises sont connues, mais trop courtes. C’est une première approche vers une estimation aveugle des filtres : il manque de l’information pour une inversion directe, mais pour l’instant la connaissance des sources est précise. Le succès des expériences fournit d’une part, la validation expérimentale d’un a priori, et d’autre part une méthode d’intérêt pratique pour l’estimation simultanée d’un grand nombre de réponses de salle.

Ce chapitre est une présentation des résultats des expériences sur des données synthétiques [BVG11b][BVG11a] et des expériences sur les données réelles menées dans [BSVG12].

5.1 Estimation des filtres en régime sous-déterminé

Rappelons la formalisation du processus de mélange réverbérant. Un ensemble de N haut-parleurs émettent N signaux connus s_n de durée T. L’enregistrement est effectué par M microphones, on obtient M signaux x_m de longueur T. On suppose que l’enregistrement et l’émission commencent exactement au même moment. Le processus de d’enregistrement se formalise comme suit

$$x_m(t) = \sum_{n=1}^{N} a_{mn} \ast_{[0,T-1]} s_n(t) + e_m(t), \quad 0 \leq t \leq T - 1 \quad (5.1)$$

où a_{mn} est un filtre de longueur K entre la source n et le capteur m. Le vecteur e_m correspond au bruit de fond, ainsi qu’aux non-linéarités des enceintes et des microphones. Nous allons nous concentrer sur le temps d’acquisition des réponses de salles, il est alors pratique de considérer que les sources et les enregistrements font la même longueur : la notation $\ast_{[0,T-1]}$ signifie que le résultat de la convolution a été restreint à l’intervalle $[0, T-1]$.

On suppose que les signaux sont normalisés en amplitude, $\|s\|_\infty = 1$. Le but est d’estimer les réponses A, et peut se décomposer en deux tâches complémentaires :

- estimer A à partir de l’enregistrement X en connaissant les sources S exactement
- choisir les sources S qui maximisent la qualité de l’estimation.

La tâche d’estimation est un problème inverse linéaire, qui consiste à trouver A satisfaisant approximativement l’égalité $X = A \ast_{[0,T-1]} S$. En supposant que le filtre est de longueur K, le
système comporte MT équations pour MNK inconnues, il est donc inversible linéairement seulement si la durée d’enregistrement dépasse la durée critique
\[T \geq T_{\text{crit}} := NK. \] (5.2)

Nous nous focaliserons sur l’exploration du régime sous-déterminé, c’est-à-dire quand $T < T_{\text{crit}}$. Le système n’est pas inversible, et l’estimation des filtres à partir des enregistrements devient un problème inverse linéaire qui nécessite une méthode d’estimation non-linéaire à partir d’un a priori sur la structure des réponses de salle. Pour les filtres, nous allons étudier l’apport de deux hypothèses

— l’enveloppe décroissante exponentielle

— la parcimonie des premiers coefficients.

L’enveloppe exponentielle décroissante est un phénomène observé en acoustique des salles, validé par les règles de conservation d’énergie en propagation des ondes. La visualisation du module des coefficients Figure 5.1, à droite, permet de deviner une enveloppe. C’est en observant le logarithme du module des coefficients Figure 5.1, à gauche, qu’on voit le mieux la nature exponentielle de l’enveloppe.

On peut aussi remarquer que la densité temporelle des coefficients significatifs varie en fonction du temps. Les premiers grands coefficients paraissent être répartis de manière sporadique, ce qui nous permet de formuler l’hypothèse de parcimonie des premiers coefficients. D’autre part, la partie la moins parcimonieuse, la plus chaotique, est placée à la fin de la réponse de salle, là où l’enveloppe prend des valeurs très faibles. On peut ainsi faire une approximation de la réponse de salle par ses premiers coefficients parcimonieux, tout en conservant une grande partie son énergie. On distinguera deux cas : l’hypothèse de parcimonie nous permet de reconstituer toute la réponse dans le cas de l’estimation simultanée, alors qu’on se base sur une modélisation simplifiée de la réponse pour l’étude du problème de permutation au Chapitre 6.
5.2 Étude statistique d’une famille de filtres

Nous effectuons une première étude de la validité de nos hypothèses sur la réponse de salle. Nous souhaitons tester la pertinence statistique de l’hypothèse de parcimonie et d’enveloppe exponentielle décroissante, en utilisant une grande base de données de réponses de salles. Tout d’abord, il faut générer cette base de donnée, puis nous testons plusieurs distributions au sens du maximum a posteriori.

5.2.1 Synthèse d’une base de données de réponses de salles

On peut synthétiser une réponse de salle en utilisant le principe des sources images [AB79]. Chaque trajet de la source dans la salle correspond au trajet direct d’une source abstraite, construite géométriquement à partir des murs de la salle. La Figure 5.2 représente cette méthode pour une salle carrée (en gras). Le capteur est représenté par un rond \circ, la source par une croix \times. Chaque croix de la grille correspond alors à une source image, c’est-à-dire à un trajet possible entre la source et le capteur. Les quatre sources images qui partagent un mur avec la source correspondent à un trajet comportant une seule réflexion, ce sont les sources images dites de première génération.

L’amplitude de chaque émission est un paramètre qui dépend de l’absorption des murs, de la position et de la génération de la source image. La formule de Sabine relie approximativement le temps de réverbération t_R aux caractéristiques de la salle : le volume v, la surface s des murs et le coefficient d’absorption moyen α [Kut00] :

$$t_R = \frac{1.163 \, v}{s \alpha}.$$ \hfill (5.3)

On génère ainsi $N = 10000$ filtres pour une source et un micro positionnés aléatoirement à 1 m l’un de l’autre dans une salle rectangulaire de taille $10 \times 8 \times 4$ m avec $t_R = 250$ ms, que nous noterons $\{a_n\}_{n \leq N}$.
TABLEAU 5.1 – Présentation des hypothèses correspondant aux distributions considérées.

5.2.2 Distributions retenues

L'étude de l'acoustique des salles [Kut00] montre que l'amplitude moyenne des coefficients de la réponse de salle est une fonction du temps ρ qui décroit exponentiellement

$$\rho(t) = \sigma 10^{-3t/t_R}, \quad 1 \leq t \leq K - 1$$

où t_R est le temps de réverbération, et σ un facteur d'échelle. Cette théorie suppose par ailleurs que $a(t)$ suit une distribution gaussienne. On se distingue des travaux qui estiment que le filtre a une amplitude moyenne constante et est parcimonieux car constitué d'échos à des instants distincts [LCKL07a]. Afin d'évaluer l'impact respectif de la décroissance d'amplitude et de la parcimonie, nous considérons les quatre distributions suivantes : laplacienne à amplitude décroissante

$$P_{1,\rho}(a(t)) = \frac{1}{2\rho(t)} e^{-|a(t)|/\rho(t)},$$

gaussienne à amplitude décroissante

$$P_{2,\rho}(a(t)) = \frac{1}{\sqrt{2\pi \rho(t)}} e^{-a(t)/2\rho^2(t)},$$

laplacienne à amplitude constante

$$P_1(a(t), \sigma) = \frac{1}{2\sigma} e^{-|a(t)|/\sigma},$$

gaussienne à amplitude constante

$$P_2(a(t), \sigma) = \frac{1}{\sqrt{2\pi \sigma}} e^{-a(t)^2/2\sigma^2}.$$

Ces quatre distributions correspondent aux combinaisons possibles de nos deux hypothèses sur les réponses de salle, comme le résume le Tableau 5.2.2.

5.2.3 Estimation au sens du maximum de vraisemblance

Il faut construire une mesure de vraisemblance de la base de filtres pour chaque distribution. Par exemple, dans le cas de la distribution gaussienne P_2 à amplitude constante. Pour $0 \leq t \leq K - 1$, la vraisemblance \mathcal{V} de $\{a_n(t)\}_{n \leq N}$ est donnée par

$$\mathcal{V}(\{a_n(t)\}_{n \leq N} | \sigma) = \prod_{n \leq N} P_2(a_n | t, \sigma) = \prod_{1 \leq n \leq N} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{a_n(t)^2}{2\sigma^2}},$$

52
et la log-vraisemblance \mathcal{L} s’obtient directement, toujours pour $0 \leq k \leq K - 1$ fixé

$$
\mathcal{L}(\{a_n(t)\}_{n \leq N}|\sigma) = \frac{N}{2} \log 2\pi\sigma^2 - \sum_{1 \leq n \leq N} \frac{a_n(t)^2}{2\sigma^2}. \quad (5.10)
$$

Pour chaque modèle, et chaque coefficient $0 \leq t \leq K - 1$, le paramètre d’échelle est optimisé au sens du maximum de vraisemblance. On calcule pour chaque indice temporel le coefficient σ le plus vraisemblable

$$
0 \leq t \leq K - 1, \quad \sigma_t^* = \arg\min_{\sigma} \mathcal{L}(\{a_n(t)\}_{n \leq N}|\sigma). \quad (5.11)
$$

On obtient la log-vraisemblance moyenne de la distribution P_2 sur la base de filtre, définie pour $0 \leq t \leq K - 1$ par $\mathcal{L}_2(t) = \frac{1}{N} \mathcal{L}(\{a_n(t)\}_{n \leq N}|\sigma_t^*)$. De manière similaire on construit $\mathcal{L}_1, \mathcal{L}_{1,\rho}, \mathcal{L}_{2,\rho}$.

5.2.4 Résultats

On compare dans la Figure 5.3 les log-vraisemblances moyennes des quatre distributions de probabilités considérées. L’enveloppe exponentielle joue un rôle crucial : la vraisemblance des modèles $P_{1,\rho}$ et $P_{2,\rho}$ est nettement au dessus de celles de P_1 et P_2 pour les grandes valeurs de t. La distribution laplacienne a un impact plus limité, la vraisemblance de P_1 (et dans des moindres proportions celle de $P_{1,\rho}$) est plus grande que celle de P_2 pour les premiers coefficients, $t \leq 60$ ms, mais devient similaire pour $t > 60$ ms. On a l’impression que les premiers coefficients ne suivent pas la même distribution que la queue réverbérante, ces observations nous conduisent à considérer un cinquième modèle hybride,

\[P_{1,2}(t) = \begin{cases} P_1(t) & \text{pour } t \leq 60 \text{ ms} \\ P_2(t) & \text{pour } t > 60 \text{ ms}. \end{cases} \]

(5.12)

5.3 Mise en place de l’algorithme

Munis de pénalités adaptées aux réponses de salle cherchons donc la solution d’un problème du type (1.4), c’est-à-dire

\[\min A \mathcal{P}(A) \quad \text{s.c.} \quad X = A \star S. \]

La solution \(A^* \) de ce problème s’obtient comme limite des solutions d’un problème de minimisation sans contrainte \(A_{\lambda} = \min A \|X - A \star S\|_2^2 + \lambda \mathcal{P}(A) : \) on a \(A^* = \lim_{\lambda \to 0} A_{\lambda} \) [Mal99]. Nous utilisons l’algorithme FISTA, et détaillons ici les calculs nécessaires à sa mise en place.

5.3.1 Choix des pénalités

On choisit de régulariser l’inversion par l’opposé des log-vraisemblances. On définit les pénalités convexes \(P_1 = -\log P_1, P_{1,\rho} = -\log P_{1,\rho}, \ldots \), on obtient ainsi

\[P_1(A) = \|A\|_1 = \sum_{m,n,t} |A_{m,n}(t)|, \]

(5.13)

\[P_2(A) = \frac{1}{2} \|A\|_2^2 = \frac{1}{2} \sum_{m,n,t} |A_{m,n}(t)|^2, \]

(5.14)

\[P_{1,\rho}(A) = \sum_{m,n,t} \frac{|A_{m,n}(t)|}{\rho(t)}, \]

(5.15)

\[P_{2,\rho}(A) = \sum_{m,n,t} \frac{|A_{m,n}(t)|^2}{2 \rho^2(t)}, \]

(5.16)

\[P_{1,2,\rho}(A) = \sum_{m,n} \left(\sum_{t=0}^{k_R-1} \frac{|A_{m,n}(t)|}{\rho(t)} + \sum_{t=k_R}^{K} \frac{|A_{m,n}(t)|^2}{2 \rho^2(t)} \right). \]

(5.17)

Remarquons que l’hypothèse de gaussianité à amplitude constante correspond à la pseudo-inversion du système linéaire [Pen56].

Rappelons que la longueur \(K \) du filtre est fixée manuellement. La longueur \(K = t_R \) définie par le temps de réverbération à 60 dB correspond à une observation psychoacoustique propre à la dynamique de l’oreille humaine, et il n’est pas certain selon les applications toute la longueur du filtre soit nécessaire. Si on suppose que seuls les \(K' \) premiers coefficients du filtre sont non-nuls, avec \(K' \leq \frac{T}{R} \), le système devient sur-déterminé et on définit alors \(A_{\text{cut}} \) comme la solution du problème

\[A_{\text{cut}} = \min A \|X - A \star S\|_2^2 \quad \text{s.c.} \quad \text{supp}(A) \subset [0, K' - 1]. \]

(5.18)
qui s’obtient simplement par pseudo-inversion. Nous utiliserons abusivement le terme de \(P_{\text{cut}} \) pour désigner cette solution.

Expérimentalement, nous avons observé que les meilleurs résultats s’obtenaient pour \(K' = 0.9 \frac{L}{N} \), lorsque le système est légèrement sur-déterminé. On obtient les \(K' \) premiers coefficients en utilisant FISTA avec la régularisation \(P_2 \) et \(\lambda \to 0 \), puis on prolonge par des zéros le filtre afin de le comparer aux autres solutions.

5.3.2 Calcul des opérateurs proximaux

La log-vraisemblance des distributions \(P_1 \) et \(P_2 \) introduites précédemment correspondent aux normes \(\ell_1 \) et \(\ell_2 \). Les opérateurs proximaux de ce type de pénalité sont bien connus. D’autre part, la séparabilité des pénalités \(P_{1,\rho}, P_{2,\rho}, P_{1,2,\rho} \) permet le calcul des opérateurs proximaux coordonnée par coordonnée. Plusieurs règles de calcul sont détaillées dans [CW06]. Par exemple on peut utiliser sur chaque coordonnée

\[
\text{prox}_{\phi/\rho}(x) = \rho \text{prox}_{\phi}(x / \rho).
\]

En notant \(x^+ := \max(x, 0) \) pour \(x \in \mathbb{R} \), on obtient

\[
\begin{align*}
\text{prox}_{\lambda P_1}(A)_{m,n,t} &= \frac{a_{mn}(t)}{|a_{mn}(t)|} (|a_{mn}(t)| - \lambda)^+, \quad (5.19) \\
\text{prox}_{\lambda P_2}(A)_{m,n,t} &= \frac{a_{mn}(t)}{1 + \lambda}, \quad (5.20) \\
\text{prox}_{\lambda P_{1,\rho}}(A)_{m,n,t} &= \frac{a_{mn}(t)}{|a_{mn}(t)|} \left(\frac{a_{mn}(t)}{|a_{mn}(t)|} - \frac{\lambda}{\rho(t)} \right)^+, \quad (5.21) \\
\text{prox}_{\lambda P_{2,\rho}}(A)_{m,n,t} &= \frac{a_{mn}(t)}{1 + \frac{\lambda}{\rho^2(t)}}. \quad (5.22)
\end{align*}
\]

5.3.3 Calcul du gradient et de sa constante de Lipschitz

Lemme 5.1 Pour \(j \leq N \) on définit \(S^*_{f} \in \mathbb{R}^T \) avec \(S^*_j(t) = S_j(T - t - 1), 0 \leq t \leq T - 1, \) et \(S^* = (S^*_1, \ldots, S^*_N) \). On a

\[
\langle X, A *_{[T-I,K]} S \rangle = \langle X *_{[T-I,T+K-2]} S^*, A \rangle. \quad (5.23)
\]

On peut exprimer le gradient à partir de l’adjoint,

\[
\nabla \mathcal{L}(A) = (X - A *_{[T-I]} S) *_{[T-I,T+K-2]} S^*. \quad (5.24)
\]

La constante de Lipschitz de \(\nabla \mathcal{L} \) est le module de la plus grande valeur propre de l’opérateur

\[
A \mapsto (A *_{[T-I]} S) *_{[T-I,T+K-2]} S^*.
\]

Nous la calculons en utilisant l’algorithme des puissances itérées [KVG10, Algorithm 5].

55
5.4 Expérience préliminaire sur des mélanges synthétiques

Nous allons simuler un enregistrement en construisant des mélanges convolutifs à partir de réponses de salles synthétiques prises dans la base de données construite dans la partie 5.2.1. On se place dans le cas \(N = 3 \) sources et \(M = 2 \) capteurs, avec un filtre de \(K = 2753 \) échantillons correspondant à \(t_R = 250 \) ms. La longueur des enregistrements est choisie autour de la valeur critique \(T_c = 500 \) ms au-delà de laquelle le système est sur-déterminé, de \(T = 45 \) ms à \(T = 1300 \) ms. On dispose de 30 enregistrements de voix de 12 s échantillonnés à 11025 Hz, les résultats présentés sont des moyennes des résultats d’estimation sur 10 expériences menées avec chacune 3 sources différentes.

Pour mesurer l’erreur entre les filtres estimés \(\hat{A} \) et les filtres originaux \(A \), on introduit le rapport en décibels

\[
\text{SNR}_A(\hat{A}) = 10 \log_{10} \frac{||A||_2^2}{||A - \hat{A}||_2^2}.
\]

(5.25)

La Figure 5.4 représente cet indicateur en fonction de la durée des sources, pour chacune des 5 pénalités introduites. La première remarque est que la solution de \(X = A \ast S \) n’est visiblement pas unique même en régime sur-déterminé, ce qui indique que le système n’est pas inversible ou mal conditionné. Avec des enregistrements de voix, certaines fréquences sont pas ou peu excitées par le signal émis, et sans régularisation l’inversion du système n’est pas satisfaisante. On a représenté la descente de gradient pour la minimisation de \(\mathcal{L} \) sans pénalité. Cette approche naïve fournit les plus mauvais résultats, elle converge vers le minimum local le plus proche de l’initialisation. La minimisation associée à \(P_4 \), qui équivaut à une simple pseudo-inversion du système linéaire, est également en-dessous des autres pénalités.

L’apport des pénalités \(P_1, P_2, P_{1,\rho} \) et \(P_{1,2,\rho} \) est nettement visible jusqu’à \(T = 1300 \) ms, donc bien au-delà du seuil de sous-détermination \(T_{\text{crit}} \). Les pénalités en norme \(\ell_1 \), associées aux distributions \(P_1 \) et \(P_{1,\rho} \) obtiennent les meilleurs résultats. De plus, la modélisation de la variation d’amplitude des filtres proposée pour \(P_1 \) améliore les résultats par rapport à la pénalité \(\ell_1 \) classique associée à \(P_1 \).

Pour le problème considéré, l’a priori introduit sous la forme d’une pénalité convexe bien choisie permet d’obtenir une meilleure estimation des filtres qu’une simple déconvolution par pseudo-inverse, notamment dans des cas où les sources sont courtes. Nous allons vérifier ces hypothèses en condition réelles.

5.5 Protocole expérimental

Nous décrivons ici l’environnement et la mesure de performance utilisée pour les expériences d’estimation simultanée des filtres dans des conditions réelles.

5.5.1 Conditions de l’expérience

Nous effectuons les enregistrements à l’IRISA, dans la salle qui a servi par ailleurs à l’enregistrement de certains signaux de la campagne d’évaluation SiSEC [VAT+12]. La salle, aux dimensions approximatives de \(4 \times 5 \times 2.5 \) m, n’est pas rectangulaire. Les signaux sont émis par
CHAPITRE 5. ESTIMATION SIMULTANÉE DES FILTRES

Figure 5.4 – Performance moyenne d’estimation de A sur dix enregistrements simulés de trois sources, en fonction de la durée du signal.

$N = 2, 4, 6$ ou 8 haut-parleurs, et on utilise $M = 10$ microphones omnidirectionnels. L’installation est visible Fig. 5.5. Les microphones et les haut-parleurs sont placés aléatoirement dans la salle. Nous fixons la fréquence d’échantillonnage à 44100 Hz pour l’émission comme pour l’enregistrement. Tout d’abord il faut mesurer successivement les réponses de référence, nous utilisons des sine sweeps.

5.5.1.1 Acquisition de la vérité terrain

Nous émettons $r = 20$ sine sweeps linéaires de 50 Hz à 22000 Hz. Chaque signal a une durée de 2 s et est suivi d’un silence de 1 s. Nous calculons la moyenne de ces 20 enregistrements, puis on estime les RIRs par inversion dans le domaine de Fourier. La durée totale du processus d’acquisition pour les $N = 8$ sources différentes est de 480 s.

5.5.1.2 Longueur K des filtres

Les filtres obtenus correspondent à nos hypothèses : après une première partie dominée par le champ direct et les premières réflexions, on observe une enveloppe de décroissance exponentielle jusqu’à ce qu’on atteigne le niveau de bruit, autour de 300 ms. Pour cette raison nous fixons la longueur des RIRs à $K = 300$ ms, soit 13230 échantillons.

5.5.1.3 Caractérisation du bruit de fond

Nous avons observé un bruit fond dans les basses fréquences des enregistrement, probablement à cause de la climatisation de la salle. L’évaluation de l’estimation des réponses de salle n’est pas possible pour ces fréquences, puisque la vérité terrain et les RIRs estimées sont dominées par le bruit. Pour cette raison, dans le reste de l’étude, on choisit de mesurer la précision...
d’estimation en ne comparant que les plus hautes-fréquences. La visualisation du spectre du
bruit suggère de ne garder que les fréquences supérieures à 100 Hz pour l’évaluation. À noter
qu’on utilise toutefois le spectre complet des enregistrements pour estimer les réponses.
Dans cet environnement bruité, toutes les méthodes échouent à estimer les basses fré-
quences des RIRs : la même expérience dans des conditions idéales donnerait vraisembla-
blement des résultats sur l’ensemble du spectre des RIRs, à l’image des résultats obtenus sur
des données synthétiques.

5.5.1.4 Discussion sur les mesures de qualité d’une réponse impulsionnelle

On peut mesurer la qualité d’une réponse enregistrée sans disposer d’une réponse de ré-
férence [SEA02], en estimant le niveau de bruit du signal. La réponse de salle possède une
enveloppe décroissante exponentielle, qui permet de détecter l’instant où son estimation est
noyée dans le bruit. En visualisant son amplitude en logarithme, on peut visualiser le niveau
de bruit en repérant l’amplitude au-delà de laquelle la réponse ne décroît plus linéairement en
fonction du temps. C’est une mesure qui considère que la partie émergée de la réponse de salle
est toujours estimée correctement.

Dans le contexte de nos expériences, le problème inverse linéaire considéré admet une
infinité de solutions, il nous faut une mesure de la précision de l’estimation point par point. On
propose donc de mesurer l’erreur entre les RIRs estimées \hat{A} et la vérité terrain (en fait, entre les
hautes fréquences de \hat{A} et A comme expliqué ci-dessus), en utilisant le rapport signal-à-bruit
en décibels (dB) (5.25).

On utilise également un SNR$_A$ par bandes de fréquences, en filtrant simplement les co-
efficients de Fourier de \hat{A} et A avant d’utiliser le rapport signal-à-bruit. La fluctuation de
température dans la salle ne permet pas d’obtenir une précision supérieure à 25 dB entre deux
mesures [EDG03]. On montre dans la Partie 5.6.3.2 qu’une valeur SNR$_A$ de l’ordre de 15 dB
est très satisfaisante et correspond à un niveau de bruit au sens de [SEA02] de l’ordre de 50 dB.
Une première série de valeurs est donnée dans le Tableau 5.2, où l’on compare les RIRs A_r estimées en prenant la moyenne de r sine sweeps à la vérité terrain $A = A_{20}$ obtenue avec $r = 20$.

<table>
<thead>
<tr>
<th>nombre d’enregistrements r</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SNR}A(A{r})$ (dB)</td>
<td>26.8</td>
<td>28.7</td>
<td>32.7</td>
<td>38.5</td>
<td>∞</td>
</tr>
</tbody>
</table>

Tableau 5.2 – Rôle du moyennage sur l’acquisition de la vérité terrain

Le SNR_A permet de comparer filtres pour évaluer des techniques d’estimation. Il est également intéressant de mesurer le niveau de bruit et de distorsion non linéaire présent dans les enregistrements à partir desquels on évalue des filtres. Pour ce faire on utilise le rapport signal-à-bruit des enregistrements (seulement des plus hautes fréquences), défini comme

$$
\text{SNR}_X(X, s) = 10 \log_{10} \frac{\|A \ast_{[0,T-1]} s\|_2^2}{\|X - A \ast_{[0,T-1]} s\|_2^2} \quad (5.26)
$$

où A est la matrice de filtres obtenue pour la vérité terrain.

5.5.2 Paramètres de l’algorithme

Après avoir calculé la vérité terrain, on fait des enregistrements supplémentaires pour évaluer notre méthode d’estimation des filtres.

5.5.2.1 Signaux sources

Des signaux de durée variable sont émis, suivis ou non d’un silence. Plusieurs enregistrements ont été faits, pour $N = 2, 4, 6, 8$, sources et 3 types de signaux

- un bruit uniforme aléatoire entre $[-1,1]$,
- un bruit de Bernoulli, généré par un processus aléatoire sur $\{-1,1\}$ avec une probabilité $p = \frac{1}{2}$,
- des suites MLS décrites au Chapitre 2.

Tous les signaux émis sont normalisés en amplitude.

5.5.2.2 Paramètres des pénalités considérés

Le facteur d’échelle σ est fixé pour toutes les pénalités à $\sigma = 1$. Nous obtenons des résultats presque optimaux pour $\lambda \to 0$, ce paramètre n’a en fait quasiment aucun impact sur la performance.

Nous considérons plusieurs valeurs du temps de réverbération t_R pour les pénalités $P_{1,\rho}^*$, $P_{2,\rho}^*$ entre 50 ms et 1 s. La Figure 5.1 montre deux visualisations d’une des réponses de salle de la vérité terrain, normalisée en amplitude. La valeur du temps de réverbération calculée en utilisant la méthode de Schroeder [Sch65] est $t_R = 380$ ms. L’enveloppe de décroissance exponentielle est visible en vue logarithmique. Les expériences de la Section 5.6.3.1 montrent...
que la valeur exacte de t_R n’est pas nécessaire pour obtenir de bonnes estimations des filtres avec la pénalité $P_{1,\rho}$.

5.5.2.3 Paramètres de FISTA

L’examen de l’Algorithme 4 et des expressions (5.19–5.24) révèle que les variables relatives aux différents microphones m n’interagissent pas entre elles. C’est cohérent avec le fait que la fonction de coût est additive par rapport à m.

L’estimation de la constante de Lipschitz nécessite 200 itérations de l’algorithme des puissances itérées. On a vu au Chapitre 4 que comme beaucoup d’algorithmes qui résolvent (4.6), FISTA nécessite un grand nombre d’itérations pour les petites valeurs de λ et on utilise donc le *warm start*. Nous lançons l’algorithme pour plusieurs valeurs de λ, en initialisant à chaque tour au filtre obtenu au tour précédent. Ainsi on lance successivement 16 instances de FISTA, pour des valeurs décroissantes de $\lambda = \{10^0, \ldots, 10^{-15}\}$. La convergence de FISTA est obtenue pour chaque valeur de λ au bout de 500 itérations.

En théorie, on s’attend à obtenir le meilleur résultat pour une valeur non nulle de λ mais, vu que les basses fréquences ne sont pas prises en compte par la mesure de performance, le niveau de bruit est suffisamment bas pour qu’on puisse négliger son impact. Nous gardons la valeur obtenue pour $\lambda = 10^{-15}$ comme une approximation de la limite quand $\lambda \to 0$. Ce soupçon sera confirmé par les expériences dans la Section 5.6.6.

En utilisant Matlab et un processeur double cœur à 3.40 GHz, le temps de calcul est de l’ordre de 20 min par microphone, par source, et par seconde de signal enregistré. Nous nous concentrions sur la réduction du temps d’acquisition, le temps de calcul ici n’est pas optimisé.

5.6 Résultats expérimentaux

5.6.1 Comparaison entre les différents types de sources

Tout d’abord nous évaluons l’impact du choix des différents signaux sources sans silence en régime sur-déterminé $T = 2 T_{\text{crit}}$ pour $N = 2$ sources. On effectue l’inversion du système avec P_2 et $\lambda \to 0$. Le Tableau 5.3 montre le lien entre l’amplitude RMS des sources, le SNR$_X$ de l’enregistrement, et la qualité d’estimation des réponses SNR$_A$. Le plus grand niveau de RMS correspond à un niveau de bruit plus faible, et finalement permet un plus grand SNR$_X$ et SNR$_A$. Les mesures de SNR$_X$ et SNR$_A$ prennent en compte l’effet à la fois du bruit et des non-linéarités du système.

<table>
<thead>
<tr>
<th></th>
<th>Uniforme</th>
<th>Bernoulli</th>
<th>MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS (dB)</td>
<td>-4.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNR$_X$ (dB)</td>
<td>17.1</td>
<td>18.2</td>
<td>18.3</td>
</tr>
<tr>
<td>SNR$_A$ (dB)</td>
<td>18.2</td>
<td>22.2</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Tableau 5.3 – Relation entre RMS, SNR$_X$ et SNR$_A$ pour $T = 2 T_{\text{crit}}$ en fonction des signaux sources.

60
CHAPITRE 5. ESTIMATION SIMULTANÉE DES FILTRES

SNR_A	P_{1,\rho}	P_{2,\rho}	P_1	P_2	P_{cut}
N=4 | 15.0 | 15.8 | 12.4 | 0.0 | 12.0
N=6 | 14 | 14.2 | 10.7 | 0.0 | 11
N=8 | 13.0 | 10.4 | 6.2 | 0.0 | 10.2

Tableau 5.4 – Précision des réponses en fonction de la pénalité choisie pour \(T = 0.45 T_{\text{crit}} \) et différents nombres de sources \(N \).

5.6.2 Influence du silence dans les signaux sources

Il est courant dans la littérature de laisser un silence entre les enregistrements successifs, pour s’assurer que la convolution est complète. Cependant, inclure un silence de durée \(L \) dans un signal de durée \(T \) induit une baisse du SNR_X de \(10 \log_{10}(1 - L/T) \) dB. Cette valeur augmente à mesure que le système devient sous-déterminé. Par exemple pour la configuration étudiée dans la section suivante avec \(T \approx 2K \), un silence de durée \(L = K \) correspond à une baisse de 6 dB de SNR_X. Nous avions établi le lien entre une baisse du SNR_X et une perte sur le SNR_A lors des expériences sur des données synthétiques. Nous utiliserons des signaux sans silence dans les expériences suivantes.

5.6.3 Performances de la méthode proposée pour \(T = 0.45 T_{\text{crit}} \)

5.6.3.1 Rôle de la pénalité

À titre d’exemple de résultats en régime sous-déterminé, on compare dans le Tableau 5.4 la performance des différentes pénalités avec \(T = 544 \) ms = 0.45 \(T_{\text{crit}} \) pour \(N = 4, 6 \) ou 8 sources. Ceci correspond à la réduction du temps d’acquisition par un facteur de 2.2 par rapport au temps critique \(T_{\text{crit}} \), qui est lui-même déjà plus court que le temps d’acquisition proposé par l’état de l’art (voir le Tableau 2.1).

La performance moyenne décroit quand on augmente le nombre de sources, tout en maintenant le classement entre les pénalités. De plus, une analyse plus fine des performances individuelles de chaque source dans le cas \(N = 4 \) dans le Tableau 5.5 montre que la performance relative des pénalités ne dépend pas de la source considérée, bien que l’estimation soit moins bonne pour les sources les plus éloignées des microphones. Sans surprise, la pénalité \(P_3 \) correspondant à la pseudo-inversion échoue totalement. La norme \(\ell_1 \) sans pondération \(P_1 \) et la pseudo-inversion des réponses tronquées \(P_{cut} \) parviennent à estimer relativement les réponses, c’est un bon résultat vu que la connaissance du paramètre \(t_R \) n’est pas nécessaire. Les meilleurs résultats d’estimation s’obtiennent avec les normes pondérées \(P_{1,\rho} \) et \(P_{2,\rho} \), qui permettent d’obtenir un SNR_A de l’ordre de 15 dB pour \(N = 4 \) sources. Ce constat illustre l’importance de l’introduction de l’enveloppe exponentielle décroissante dans les pénalités.

5.6.3.2 Analyse qualitative des réponses estimées

Un SNR_A de 15 dB dans le Tableau 5.4 correspond donc apparemment à un noise level de 50 dB au sens de [SEA02]. À titre de comparaison, les efforts faits pour accélérer l’acquisition
TABLEAU 5.5 – Précision des réponses détaillée pour chacune des \(N = 4 \) sources en fonction de la pénalité choisie pour \(T = 0.45 \text{ } T_{\text{crit}} \).

<table>
<thead>
<tr>
<th>SNRA</th>
<th>(P_{1,\rho})</th>
<th>(P_{2,\rho})</th>
<th>(P_{1})</th>
<th>(P_{2})</th>
<th>(P_{\text{cut}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>source 1</td>
<td>17.8</td>
<td>18.4</td>
<td>15.2</td>
<td>0</td>
<td>15.4</td>
</tr>
<tr>
<td>source 2</td>
<td>12.1</td>
<td>13.1</td>
<td>9.1</td>
<td>0</td>
<td>8.4</td>
</tr>
<tr>
<td>source 3</td>
<td>15.7</td>
<td>16.4</td>
<td>13.3</td>
<td>-0.1</td>
<td>12.3</td>
</tr>
<tr>
<td>source 4</td>
<td>14.4</td>
<td>15.3</td>
<td>12.0</td>
<td>0</td>
<td>11.8</td>
</tr>
</tbody>
</table>

FIGURE 5.6 – Rapport signal-à-bruit SNRA par bandes de fréquences entre les réponses estimées par \(P_{1,\rho} \) sur la source 2 et la vérité terrain pour \(N = 4, T = 0.45 \text{ } T_{\text{crit}} \).

Les HRTF obtiennent une estimation entre 10 et 15 dB [ASV07]. Un visualisation du SNRA pris sur 8 octaves de bandes de fréquences dans la Figure 5.6 confirme la précision de l’estimation. Aucun filtrage passe-haut n’a été appliqué avant l’estimation, et la difficulté d’estimer dans les plus basses fréquences (0 Hz - 125 Hz) en raison du bruit est bien visible. La Figure 5.7 présente une réponse estimée par \(P_{1,\rho} \) comparée à la vérité terrain. On retrouve l’aspect global de la réponse jusqu’à \(-50\) dB.

5.6.4 **Robustesse à un temps de réverbération erroné**

Le temps de réverbération n’est connu que rétrospectivement, après l’estimation de la vérité terrain. Nous souhaitons fournir une méthode reproductible, en ce sens la meilleure pénalité doit fournir de bons résultats d’estimation avec le moins de paramètres possibles. Nous montrons ici qu’il est possible d’utiliser une estimation grossière du temps de réverbération. La Figure 5.8 témoigne de la robustesse des pénalités à une erreur d’estimation du temps de réverbération \(t_R \). Les pénalités \(\ell^2 \) pondérées \(P_{2,\rho} \) obtiennent les meilleurs résultats pour un \(t_R \) allant de 150 ms à 600 ms. Cependant, la performance chute rapidement au-delà de cette valeur.
À l'inverse, la pénalité de type ℓ_1 pondérée $P_{1,\rho}$, qui favorise à la fois la parcimonie et l'enveloppe exponentielle décroissante, montre une robustesse remarquable et des performances supérieures ou égales à celles de $P_{2,\rho}$ pour tous les choix de t_R.

Pour cette raison, nous choisissons la pénalité $P_{1,\rho}$ pour les expériences suivantes.

5.6.5 Influence de la durée d’enregistrement T

La Figure 5.9 présente les performances en fonction de la durée d’enregistrement T, avec $T^{\text{crit}} = 1200$ ms. Alors que la performance de l’inversion naïve P_2 est systématiquement mauvaise, celle de $P_{1,\rho}$ et P_{cut} se dégrade progressivement à mesure qu’on réduit la durée d’enregistrement. Par exemple, $P_{1,\rho}$ permet d’estimer les réponses avec plus de 10 dB de SNR_A pour $T = 300$ ms $= 0.25 T^{\text{crit}}$, ce qui correspond à une réduction du temps d’acquisition d’un facteur 4. À noter également que $P_{1,\rho}$ dépasse P_{cut} dès que $T \lesssim 0.6 T^{\text{crit}}$, et obtient les mêmes performances partout ailleurs.

5.6.6 Choix du paramètre de régularisation λ

Les résultats précédents sont obtenus pour $\lambda \to 0$, cependant nous nous attendons à obtenir les meilleurs résultats pour une valeur non nulle, en raison de la présence de bruit et de non-

Figure 5.7 – Vue logarithmique d’une des réponses esstimées par $P_{1,\rho}$ pour $T = 0.45 T^{\text{crit}}$, comparée à la vérité terrain.

Les résultats précédents sont obtenus pour $\lambda \to 0$, cependant nous nous attendons à obtenir les meilleurs résultats pour une valeur non nulle, en raison de la présence de bruit et de non-

63
5.7 Récapitulatif

Nous avons proposé un algorithme pour estimer les réponses de salle à partir des enregistrements de plusieurs haut-parleurs actifs lorsque le nombre d’échantillons enregistrés est inférieur au nombre d’échantillons à estimer. Cet algorithme repose sur des pénalités convexes qui incorporent de la connaissance sur les réponses de salle. Nous avons étudié les possibilités de plusieurs pénalités connues comparées à de nouvelles pénalités et nous concluons que la pénalité $P_{1,\rho}$ qui prend en compte à la fois la parcimonie et l’enveloppe exponentielle décroissante est la plus robuste à un choix erroné du temps de réverbération t_R. Ces deux hypothèses sur les réponses de salle sont donc validées expérimentalement dans le cadre de la régularisation, même si les vraies réponses de salle ne les vérifient pas exactement.

En suivant le protocole décrit précédemment, d’autres expériences pourraient être menées pour étendre cette technique à d’autres réponses acoustiques comme les BRIR. L’estimation des réponses de salle est également un problème important en séparation de sources aveugle, désigné comme l’estimation des matrices de mélange dans la littérature. L’algorithme que nous proposons est un premier pilier vers un nouvel algorithme d’estimation jointe des filtres de mélange et des sources qui pourrait utiliser la régularisation proposée.

De plus, l’information inter-canal n’est pas utilisée dans ces travaux, un modèle avec une estimation jointe pourrait être exploré pour améliorer notre méthode, dans l’œil des méthodes d’estimation simultanée des filtres mises au point pour l’estimation aveugle [MDO11].
Figure 5.9 – Performance des différences pénalités en fonction de la durée T des enregistrements.

Figure 5.10 – Rôle du paramètre λ sur la précision des réponses obtenues avec $P_{1,\rho}$ pour différentes durées T des enregistrements.
Chapitre 6

Caractère bien posé du problème de permutation en analyse en composantes indépendantes

Ce chapitre est une traduction de l’article [BSBG11]. La preuve du résultat principal est plus détaillée pour faciliter sa compréhension.

S’ils sont plutôt maîtrisés dans les conditions de mélanges instantanés, les problèmes de séparation et localisation de sources en milieu réverbérant posent problème. En particulier, sans hypothèse supplémentaire autre que l’indépendance statistique des sources, le problème est mal posé en raison d’une indétermination de permutation et d’échelle entre les sources. Au mieux, on peut estimer pour chaque fréquence une famille de coefficients fréquentiels de toutes les sources (et des filtres associés) ; cependant on ne peut pas espérer identifier les coefficients issus d’une même source sans faire de nouvelles hypothèses.

Nous étudions donc les possibilités ouvertes par l’hypothèse de parcimonie sur les filtres pour la résolution du problème de permutation. Le résultat principal de ce chapitre établit un seuil de parcimonie en dessous duquel le filtre minimise la “norme” ℓ_0 parmi tous les filtres permutés. Dans le domaine de l’acoustique, notre modèle suppose que des fenêtres de longueur L du signal sont convolées circulairesment avec la réponse de salle. On notera L la longueur du filtre, en gardant à l’esprit qu’il s’agit de la longueur de la fenêtre utilisée pour la transformation temps-fréquence opérée pour l’ACI. Les théorèmes principaux sont exposés dans les Parties 6.1-6.2. Dans la Partie 6.3 on discute de la force des hypothèses utilisées, et de la possibilité de les assouplir.

6.1 Résultat principal

Une première série de résultats (Propositions 1, 2, 3) montre que, même en considérant que le problème d’échelle est réglé, le problème de permutation peut rester mal posé pour des filtres exactement parcimonieux, avec des niveaux de parcimonie contraignants. En revanche, le résultat principal de ce chapitre (Théorème 2) montre que, quand le problème d’échelle est résolu, le problème de permutation est bien posé pour les filtres dont la longueur L est un
nombre premier, “suffisamment parcimonieux”, avec un seuil de parcimonie qui dépend du nombre de sources.

Soit une matrice $M \times N$ notée A, de filtres de longueur L, et une famille de L permutations $\sigma_0, \ldots, \sigma_{L-1} \in S_N$. Notons \tilde{A} le filtre obtenu après ACI, obtenu à partir de A en appliquant des permutations dans le domaine fréquentiel, sans problème d’échelle

$$\tilde{a}_{ij}[\omega] = a_{i\sigma_{\omega}(j)}[\omega],$$

Une fois séparées, on ne peut pas de distinguer les sources les unes des autres, aussi on cherche seulement à reconstruire les filtres à une permutation globale près, au sens de la définition suivante.

Définition 6.1 (permutation globale) On dit que la famille de permutations correspond à une permutation globale $\pi \in S_N$ des colonnes de A si $\tilde{a}_{ij} = a_{i\pi(j)}$, $\forall i, j$, ou de manière équivalente dans le domaine fréquentiel :

$$\tilde{a}_{ij}[\omega] := a_{i\pi(j)}[\omega], \; 0 \leq \omega < L, \; \forall i, j.$$

On notera alors $A \equiv \tilde{A}$.

6.1.1 Hypothèse de parcimonie des filtres

Nous allons exploiter la parcimonie de la matrice de filtres A dans le domaine temporel pour trouver la famille $\sigma_0, \ldots, \sigma_{L-1} \in S_N$, en supposant que le problème d’échelle est résolu, i.e., $\lambda_j[\omega] = 1$.

Supposer que A est parcimonieux revient à dire que a_{ij} n’a que quelques coefficients non nuls, ce qui se quantifie par la “norme” ℓ_0

$$\|a_{ij}\|_0 := \sharp\{0 \leq t < L, \; a_{ij}[t] \neq 0\}.$$

Nous utilisons des guillemets en référence aux notations de D. Donoho [Don01], qui rappellent que ce n’est ni une norme, ni une quasi-norme. L’approche considérée ici consiste à chercher la famille de permutations $\sigma = (\tilde{\sigma}_0, \ldots, \tilde{\sigma}_{L-1})$ qui fournirait la matrice de filtres la plus parcimonieuse dans le domaine temporel $\tilde{A} = (\tilde{a}_{ij})$ où $\tilde{a}_{ij}[\omega] := \tilde{a}_{i\tilde{\sigma}_{\omega}(j)}[\omega]$. En plus de la “norme” ℓ_0 , $\|\tilde{A}\|_0 := \sum_{ij} \|\tilde{a}_{ij}\|_0$, on utilisera la quasi-norme ℓ_p pour mesurer la parcimonie de \tilde{A} :

$$\|\tilde{A}\|_p^p := \sum_{ij} \|\tilde{a}_{ij}\|_p^p = \sum_{ijt} |	ilde{a}_{ij}[t]|^p, \; 0 < p \leq 1.$$

6.1.2 Théorème pour L premier

Pour notre résultat principal, nous considérons des filtres k-parcimonieux dans une fenêtre de longueur L avec L premier, et $p = 0$.
Chapitre 6. Caractère bien posé du problème de permutation en analyse en composantes indépendantes

Théorème 6.1 Soit A une matrice $M \times N$ de filtres de longueur L, avec L premier. On suppose que
$$\max_{ij} \|a_{ij}\|_0 \leq k,$$

où
$$k \leq \frac{L}{\alpha(N)} := \left\{ \begin{array}{ll}
\frac{2}{N(N+2)} & \text{pour } N \text{ pair}, \\
\frac{2}{(N+1)^2} & \text{pour } N \text{ impair}.
\end{array} \right.$$

Alors, à permutation globale près, A est l’unique minimiseur de la norme ℓ_0 parmi l’ensemble des permutations possibles.

6.2 Preuve du Théorème 6.1

La preuve du Théorème 6.1 repose sur la mesure de la “taille” de la famille de permutations considérée, le principe d’incertitude, et des arguments combinatoires comme le théorème de Hall, aussi appelé lemme des mariages.

6.2.1 Mesure de la taille de la famille de permutations

Pour mesurer la “taille” des permutations, on compte le nombre de bandes de fréquence où une permutation non-triviale est appliquée, par rapport à une permutation globale optimale π, c’est-à-dire, $\min_{\pi} \sharp\{\omega, \sigma_\omega \neq \pi\}$. Formellement, pour une permutation globale π, on définit le nombre maximal de fréquences où le filtre observé \tilde{A} est différent du filtre original permuté globalement A_{π} :
$$\Delta(\tilde{A}, A|\pi) := \max_{i,j} \|F_L^* (\tilde{a}_{ij} - a_{i\pi(j)})\|_0$$
$$\Delta(\tilde{A}, A) := \min_{\pi \in S_N} \Delta(\tilde{A}, A|\pi).$$

À noter que $\Delta(\tilde{A}, A) = 0$ si et seulement si $\tilde{A} \equiv A$. Par concision, on notera $\Delta = \Delta(\tilde{A}, A)$ s’il n’y a pas d’ambiguïté.

6.2.2 Conséquence du principe d’incertitude

Lemme 6.1 On suppose que $\tilde{A} \neq A$, et que la longueur L est un nombre premier, et que
$$2k + \Delta \leq L \quad (6.1)$$

avec $k := \max_{ij} \|a_{ij}\|_0$. Alors $\|\tilde{A}\|_0 > \|A\|_0$ et
$$\|\tilde{a}_{ij}\|_0 \geq \|a_{ij}\|_0, \forall i, j. \quad (6.2)$$

L’inégalité (6.2) est stricte si $\tilde{a}_{ij} \neq a_{ij}$.

Pour L quelconque on obtient les mêmes conclusions si on remplace la condition (6.1) par
$$2k \cdot \Delta < L. \quad (6.3)$$

69
On peut déjà pressentir le rôle du principe d’incertitude dans ce Lemme [DS89, EB02, Tao05]. Le cas L premier permet d’utiliser une conséquence du théorème de Chebotarev sur les racines de l’unité, qui a déjà donné lieu à des garanties théoriques de représentation parci-
monieuse exacte dans le contexte des problèmes inverses linéaires à partir de mesures fréquentielles partielles [CRT06].

Preuve: [Lemme 6.1] Soit π_0 la permutation globale telle que

$$\Delta(A, \tilde{A}) = \min_{\pi \in S_N} \Delta(A, \tilde{A}|\pi).$$

(6.4)

Par abus de notation on note A la matrice obtenue en appliquant π_0 aux colonnes du filtre original. Pour chaque canal $1 \leq i \leq M$ et un indice de source $1 \leq j \leq N$ tel que $a_{ij} = \tilde{a}_{ij}$, on a évidemment $\|a_{ij}\|_0 \leq \|\tilde{a}_{ij}\|_0$. Puisque $\Delta \geq 1$ on a $\tilde{A} \not\equiv A$ donc il existe une paire i, j telle que $\tilde{a}_{ij} \neq a_{ij}$. Le principe d’incertitude de Dirac-Fourier sur la norme ℓ^0 [EB02, Theorem 1], indique que pour tout vecteur $u \in \mathbb{C}^L$ on a

$$\|u\|_0 \|F_L^*(u)\|_0 \geq L.$$

Par hypothèse on a $k < \frac{L}{2\Delta}$, il vient

$$\|a_{ij}\|_0 + \|\tilde{a}_{ij}\|_0 \geq \|\tilde{a}_{ij} - a_{ij}\|_0$$

(6.5)

$$\geq \frac{L}{\Delta} > 2k$$

(6.6)

$$\geq \|a_{ij}\|_0 + \|a_{ij'}\|_0$$

(6.7)

où $j' \leq N$ est un indice de source arbitraire. Pour tout couple i, j tel que $\tilde{a}_{ij} \neq a_{ij}$ et pour tout j' on a donc $\|\tilde{a}_{ij}\|_0 > \|a_{ij'}\|_0$, et on obtient

$$\|\tilde{a}_{ij}\|_0 > \max_{j'} \|a_{ij'}\|_0 \geq \|a_{ij}\|_0.$$

et en particulier $\|\tilde{A}\|_0 > \|A\|_0$.

Si L est premier, il existe un principe d’incertitude plus fort $\|u\|_0 + \|F_L(u)\|_0 \geq L + 1$ [Tao05] en conséquence directe du théorème de Chebotarev sur les racines de l’unité.

Théorème (Chebotarev) Soit L un nombre premier et $1 \leq n \leq L$. Soit x_1, \ldots, x_n des éléments deux à deux distincts de $\mathbb{Z}/L\mathbb{Z}$, et $\omega_1, \ldots, \omega_n$ de $\mathbb{Z}/L\mathbb{Z}$. Alors la matrice extraite $(e^{2\pi i x_j \omega_l/L})_{1 \leq j, l \leq n}$ a un déterminant non nul.

Ainsi, en supposant $2k + \Delta \leq L$ on peut remplacer (6.6)-(6.7) par

$$\|\tilde{a}_{ij} - a_{ij}\|_0 \geq L + 1 - \Delta > 2k$$

et obtenir la même conclusion.

6.2.3 Arguments combinatoires

Dans le cas L premier on peut obtenir à partir du Lemme 6.1 et d’un argument combinatoire très simple une version plus faible du Théorème 6.1, avec une borne plus large $\alpha'(N) := \frac{1}{2N!}$.

70
En effet, en appliquant le Lemme des tiroirs, pour tout \(L \)-uple de permutations de fréquences parmi les \(N \) sources, au moins \(L/N! \) sont identiques ; en conséquence, \(\Delta(\tilde{A}, A) \) est majorée uniformément par \(L - L/N! \); ainsi pour \(k \leq L/2N! \) on obtient \(2k + \Delta \leq L \) et on peut conclure grâce au Lemme 6.1. La preuve du Théorème 6.1 avec la constante \(\alpha(N) \) exploite une borne supérieure universelle plus fine \(\Delta(\tilde{A}, A) \leq L(1 - 2\alpha(N)) \) obtenue à partir d’une application du théorème de Hall [Hal35] aux matrices bi-stochastiques.

Définition 6.2 (Matrice bi-stochastique) Une matrice \(N \times N \) notée \(B \) est dite bi-stochastique si tous ses coefficients sont positifs, et que la somme des coefficients de chaque rangée ainsi que de chaque colonne vaut un.

6.2.3.1 Lemme sur les matrices bisto-chastiques

Lemme 6.2 Soit \(B \) une matrice \(N \times N \) bi-stochastique ; il existe une matrice de permutation \(P \) telle que tous les coefficients de \(B \) sur le support de \(P \) dépassent le seuil

\[
2\alpha(N) = \begin{cases}
\frac{4}{N(N+2)} & \text{si } N \text{ est pair}, \\
\frac{4}{(N+1)^2} & \text{si } N \text{ est impair}.
\end{cases}
\]

Une version plus faible du Lemme 6.2, avec \(2\alpha''(N) = \frac{1}{1+(N-1)^2} \) peut s’obtenir en combinant le théorème de Birchhoff-Von Neumann et le théorème de Carathéodory.

Théorème 2 (Birkhoff - Von Neumann Theorem, [Bir46, VN53]) Toute matrice bi-stochastique est dans l’enveloppe convexe des matrices de permutations.

Théorème 3 (Carathéodory Theorem [Ber77]) Soit \(X \) un ensemble non vide d’un sous espace affine de dimension \(n \geq 1 \). Alors chaque élément de l’enveloppe convexe de \(X \) est une combinaison convexe de \(p \) éléments de \(X \) avec \(p \leq n + 1 \) éléments.

L’ensemble des matrices bi-stochastiques est un sous-espace affine de \(\mathbb{R}^{N^2} \). Il est défini par \(2N \) équations, mais ces équations sont linéairement dépendantes puisque les colonnes et les lignes sont à somme constante. Ainsi la dimension affine est \(n \leq N^2 - (2N - 1) = (N - 1)^2 \), et on conclut d’après le théorème de Carathéodory que toute matrice bi-stochastique est la combinaison convexe d’au plus \((N - 1)^2 + 1 \) matrices de permutation. Au moins un des coefficients de cette combinaison doit donc être plus grand que \(1/(1 + (N - 1)^2) \), ce qui donne une version du Lemme 6.2 avec \(2\alpha''(N) = \frac{1}{1+(N-1)^2} \).

Cependant, cette borne est sous-optimale. La borne optimale du Lemme 6.2 vient du théorème de Hall, qui d’ailleurs est un ingrédient de la preuve du théorème de Birkhoff-Von Neumann.

Théorème 4 (Théorème de Hall [Hal35, Oxl92]) Soit \((A_j)_{j \in J} \) une famille de sous-ensembles d’un ensemble fini \(S \). Il existe une bijection \(\pi : J \rightarrow S \) telle que \(\pi(j) \in A_j \) pour tout \(j \in J \) si et seulement si pour tout \(E \subset J \)

\[\sharp \bigcup_{j \in E} A_j \geq \sharp E \]
On dit que la bijection π est une transversale de S.

Preuve: [Lemme 6.2] Soit B une matrice bistochastique, $J = \{1, \ldots, n\}$ et $F \subset J$. On pose $\beta = \min_{1 \leq j \leq N} \frac{1}{2(N-j)(j+1)}$, et on note $A_j = \{i, B_{ij} \geq \beta\}$. $A = \bigcup_{j \in F} A_j$. Remarquons que pour $i \notin A$, on a $\forall j \in F, B_{ij} < \beta$. Il vient

\[
\sharp F = \sum_{i=1}^{N} \sum_{j \in E} B_{ij} = \sum_{i \notin A} \sum_{j \in E} B_{ij} + \sum_{i \in A} \sum_{j \in E} B_{ij}
\]

(6.9)

\[
\sharp F < \beta (N-\sharp A) \sharp F + \sum_{i \notin A} 1
\]

(6.10)

\[
\sharp F < \beta (N-\sharp A) \sharp F + \sharp A.
\]

(6.11)

Raisonnons par l’absurde et supposons que $\sharp E > \sharp A$. On utilise un résultat ensembliste très général : soit E tel que $\sharp E > \sharp \bigcup_{j \in E} A_j$, alors il existe $F \subset E$ tel que $\sharp F = \sharp \bigcup_{j \in F} A_j + 1$. En effet soit E tel que $\sharp E > \sharp \bigcup_{j \in E} A_j$. S’il existe j_0 tel que A_{j_0} est vide, le résultat est trivial (dans notre cas l’hypothèse de bistochasticité garantit que les A_j sont non vides). Sinon, notons $E = \{j_r\}_{r \leq k}$ et considérons la suite pour $1 \leq n \leq k$, $c_n = \sharp \bigcup_{r \leq n} A_{j_r}$. Si $c_k = k - 1$, $E = F$ convient. Sinon, la suite $(c_n)_{1 \leq n \leq k}$ est à valeurs dans $\{0, \ldots, k-2\}$. Cette suite est croissante, et par le lemme des tiroirs elle ne peut pas être injective, donc il existe n_0 tel que $c_{n_0} = c_{n_0+1}$ et $F = \{j_1, \ldots, j_{n_0+1}\}$ convient. La définition de β implique $\beta (N-\sharp A) \sharp F = \beta (N-\sharp A) (\sharp A + 1) \leq 1$, et en replaçant dans (6.11), on obtient $\sharp F \leq \sharp A$. C’est une contradiction, donc on peut conclure que

\[
\forall E \subset J, \quad \sharp E \leq \sharp A,
\]

(6.12)

et on peut utiliser le théorème de Hall : en reprenant les mêmes notations, avec $S = J$ on obtient l’existence d’une bijection π telle que pour $1 \leq j \leq n$ on ait $B_{\pi(j)} \geq \beta$.

Pour achever la démonstration il faut montrer que $\min_{1 \leq j \leq N} \frac{1}{(N-j)(j+1)} = 2\alpha(N)$. Le polynôme $x \mapsto (x+1)(N-x)$ atteint son maximum pour $x = \frac{N-1}{2}$, donc si N est impair, le maximum sur les entiers est atteint pour $k = \frac{N-1}{2}$, et $\beta = \frac{4}{(N+1)^2}$. Si N est pair, par symétrie, la valeur maximale sur les entiers est atteinte deux fois, pour $k = \frac{N}{2}$ et $k = \frac{N}{2} - 1$. On retrouve $\beta = \frac{4}{N(N+2)}$. Finalement on a vérifié les hypothèses du théorème de Hall pour

\[
\beta = 2\alpha(N) = \begin{cases}
\frac{4}{N(N+2)} & \text{pour } N \text{ pair}, \\
\frac{4}{(N+1)^2} & \text{pour } N \text{ impair}.
\end{cases}
\]

(6.13)

6.2.3.2 Optimalité de la borne obtenue

Nous avons publié un contre-exemple [BSBG11] qui explicitait les filtres permutés, nous détaillons ici la matrice bistochastique associée à cette famille de permutations, qui ne dépend en fait ni des filtres ni de leur longueur.
Posons \(k_0 = \frac{N}{2} \) si \(N \) est pair et \(k_0 = \frac{N-1}{2} \) sinon. Le caractère optimal du lemme est assuré par le contre-exemple suivant. On définit la matrice carrée \(\mathcal{M} = (\mathcal{M}_{ij})_{1 \leq i,j \leq N} \) de taille \(N \) par blocs :

\[
\mathcal{M} = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} = \begin{pmatrix} a & \ldots & \ldots & \ldots & a \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a & \ldots & \ldots & \ldots & a \\ b & \ldots & \ldots & \ldots & b \end{pmatrix} \begin{pmatrix} 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & \ldots & 0 \\ c & \ldots & \ldots & \ldots & c \end{pmatrix} \begin{pmatrix} k_0 \\ N - k_0 \end{pmatrix}
\]

Il n’existe qu’une matrice bistochastique de ce type. En effet, en écrivant la somme de la première ligne on obtient la valeur de \(a \),

\[
(k_0 + 1)a = 1 \\
a = \frac{1}{k_0 + 1}.
\]

(6.14)
(6.15)

Ensuite, la somme suivant la première colonne de \(\mathcal{M} \) donne

\[
k_0a + (N - k_0)b = 1 \\
b = \frac{1}{(N - k_0)(k_0 + 1)}.
\]

(6.16)
(6.17)

Remarquons que \(b = 2\alpha(N) \), le seuil du Lemme 6.2. La matrice \(C \) est un exemple de matrice rectangulaire dont les sommes des lignes et des colonnes sont constantes, mais pas égales. La somme des lignes de \(\mathcal{M} \) impose

\[
(k_0 + 1)b + (N - k_0 - 1)c = 1 \\
c = \frac{1}{(N - k_0)}.
\]

(6.18)
(6.19)

et on peut vérifier qu’on obtient bien la somme des colonnes \((N - k_0)c = 1\). La matrice est construite telle que toute permutation des lignes laisse un élément de \(B \) sur la diagonale. En effet : soit \(P \) une matrice de permutation, alors la matrice \(\mathcal{M} \) contient au moins un élément du bloc \(B \) sur le support de \(P \). Il n’existe donc pas de seuil supérieur à \(2\alpha(N) \) pour le Lemme 6.2. En effet les \(k_0 + 1 \) colonnes de la matrice \(P \) contiennent des 1 à \(k_0 + 1 \) indices de lignes distincts,
or on ne peut pas choisir \(k_0 + 1 \) indices de lignes distincts dans le bloc \(A \). Le Lemme 6.2 montre que \(b \) est la plus petite valeur pour laquelle cette construction est possible. □

Par exemple, pour \(N = 3 \) sources, \(N \) est impair, \(k_0 = 1 \), \(a = \frac{1}{2} \), \(b = 2\alpha(N) = \frac{1}{4} \), et la matrice

\[
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{pmatrix}
\] (6.20)

fournit un cas limite au Lemme 6.2 : pour tout \(\beta > \frac{1}{4} \), il n’existe pas de permutation des lignes telle que tous les éléments de la diagonale soient supérieurs à \(\beta \).

6.2.3.3 Application au problème de permutation

Le lien entre les permutations des coefficients fréquentiels des filtres et les matrices bistochastiques est résumé par le Corollaire suivant.

Corollaire 6.1

Soit \(\sigma_0, \ldots, \sigma_{L-1} \in S_N \) une famille de \(L \) permutations. Il existe une permutation globale \(\pi \) telle que

\[
C_{j\pi(j)} = \sharp\{0 \leq \ell < L : \sigma_\ell(j) = \pi(j)\} \geq 2L\alpha(N), \quad \forall 1 \leq j \leq N.
\]

Preuve: [Corollaire 6.1] On considère la matrice de comptage \(C \) avec pour coefficients

\[
C_{jn} := \sharp\{0 \leq \ell < L : \sigma_\ell(j) = n\}, \quad 1 \leq j, n \leq N
\]

où \(\sigma_\ell, 0 \leq \ell < L \) sont les permutations considérées. Puisque \(\sum_j C_{jn} = \sum_n C_{jn} = L \) on a \(C = L \cdot B \) où \(B \) est bi-stochastique, il existe une permutation \(\pi \) telle que \(C_{j\pi(j)} \geq 2L\alpha(N) \).

6.2.4 Preuve du Théorème 6.1

En utilisant les outils ci-dessus nous sommes en mesure de prouver le Théorème 6.1. D’après le Corollaire 6.1, il existe une permutation \(\pi \) telle que pour tout \(1 \leq i \leq M \) et \(1 \leq j \leq N \) on a

\[
\|\mathcal{F}_L(\hat{a}_{ij} - a_{i\pi(j)})\|_0 \leq \sharp\{0 \leq \ell < L, \sigma_\ell(j) \neq \pi(j)\} \leq L(1 - 2\alpha(N)),
\]

ainsi \(\Delta(\hat{A}, A|\pi) \leq L(1 - 2\alpha(N)) \) et finalement \(\Delta(\hat{A}, A) \leq L(1 - 2\alpha(N)) \). Combiné avec l’hypothèse \(k \leq L\alpha(N) \), on obtient \(2k + \Delta \leq L \), et on conclut grâce au Lemme 6.1.

6.2.5 Extensions du Théorème 6.1 pour \(L \) non premier ?

Comme le suggère la Proposition 1 ci-dessous, pour un filtre de longueur \(L \) avec \(L \) pair et \(L \geq 4 \), il existe des matrices de filtres parcimonieux qui sont solution du problème mais sans résultat d’unicité (même à une permutation globale près) : certaines permutations fréquentielles fournissent une solution aussi parcimonieuse mais pas équivalente.
Proposition 1 Pour tout entier k tel que $2k$ divise L, il existe une matrice A de filtres k-parcimonieux et une famille de $\frac{L}{2k}$ permutations telles que $\hat{A} \neq A$ et pour tout $0 \leq p \leq \infty$:

$$\|\tilde{a}_{ij}\|_p = \|a_{ij}\|_p, \quad \forall i, j.$$

Par ailleurs on a alors $2k \cdot \Delta(\hat{A}, A) = L$.

Pour revenir au contexte du Théorème 6.1, il est clair qu’on peut construire une famille de L permutations, dont $L - \frac{L}{2k}$ sont triviales, telle que $A \neq A$, et $\|\hat{A}\|_p = \|A\|_p$. Le fait que les matrices A et \hat{A} satisfassent $2k \cdot \Delta(\hat{A}, A) = L$ montre la finesse du Lemme 6.1 dans le cas où L est pair : l’inégalité stricte dans (6.3) ne peut pas être améliorée.

La Proposition 1 fournit dans le cas particulier $k = 1$ pour des filtres de longueur paire $L \geq 4$ des filtres 1-parcimonieux a_{ij} et une famille de $\frac{L}{2}$ permutations fréquentielles telles que les filtres \hat{a}_{ij} sont 1-parcimonieux, le filtre \hat{A} n’est pas équivalent à A et ne peut pas être discriminé par une quasi-norme ℓ_p.

6.3 Discussion

On peut remarquer que le Théorème 6.1, s’il a bien relâché l’hypothèse des supports disjoints du Théorème 3.2 de l’état de l’art [Sud11], introduit de nouvelles restrictions : l’hypothèse de primalité sur L, et la restriction à $p = 0$ comparée à $0 \leq p \leq 1$ dans le Théorème 3.2. Dans quelle mesure ces restrictions sont-elles essentielles ? Peut-on les assouplir en exploitant conjointement l’hypothèse des supports disjoints ? Nous répondons à ces questions dans cette section.

6.3.1 Extensions possibles pour des supports disjoints

Peut-on obtenir des garanties plus fortes en combinant l’hypothèse des supports disjoints (Théorème 3.2) à l’hypothèse de parcimonie (Théorème 6.1) ? Pour un filtre de longueur $L \geq 4$, la Proposition 2 ci-dessous indique l’existence d’une matrice de filtres parcimonieux à supports disjoints qui sont les plus parcimonieux sans unicité (à permutation globale près) parmi les solutions du problème considéré : certaines familles de permutations fréquentielles de “taille” $\Delta = L/2k$ fournissent une solution aussi parcimonieuse mais pas équivalente.

Proposition 2 Pour tout entiers $k' < k \leq L/2$ tels que $2k'$ divise L, il existe une matrice A de filtres k'-parcimonieux à supports disjoints (3.9), et une famille de $L/2k'$ permutations fréquentielles telles que $A \neq A$, et pour tout $0 \leq p \leq \infty$: $\|\hat{A}\|_p = \|A\|_p$ et

$$\|\tilde{a}_{ij}\|_p = \|a_{ij}\|_p, \quad \forall i, j.$$

On a par ailleurs $2k' \cdot \Delta(\hat{A}, A) = L$.

La Proposition 2 pour $k' = 1$ et $k = 2$ pour $L \geq 4$ pair fournit l’existence de filtres 2-parcimonieux a_{ij} et une famille de $L/2$ permutations fréquentielles telles que les filtres \hat{a}_{ij} sont 2-parcimonieux ; A n’est pas équivalent à A et ne peut pas être discriminé par aucune quasi-norme ℓ_p.

75
Ce résultat montre qu’en ajoutant l’hypothèse de supports disjoints, pour \(L \geq 4 \) pair, il y a peu de chances d’améliorer le résultat du Lemme 6.1 : au mieux, on peut espérer remplacer l’inégalité (6.3) par une inégalité large. Est-ce possible ? Nous répondons en partie à cette question avec le résultat suivant.

Proposition 3 On suppose que \(\tilde{A} \neq A \), que

\[
2k \cdot \Delta(\tilde{A}, A) = L
\]

avec \(k := \max_{ij} \|a_{ij}\|_0 \) et que les filtres de \(A \) sont à supports disjoints (3.9). Alors, soit \(\|\tilde{A}\|_0 > \|A\|_0 \), soit chaque ligne de \(\tilde{A} \) est obtenue en permutant les paires de filtres disjoints \(a_{ij}, a_{ij}' \) à partir des lignes de \(A \) telles que \(a_{ij} - a_{ij}' \) soit proportionnelle à un peigne de Dirac à \(2k \) pâtes modulé et transléat.

Pour un filtre à une seule ligne, puisque \(\tilde{A} \neq A \) veut dire que les filtres \(\tilde{a}_{1j} \) sont des permutations de \(a_{1j} \), on obtient le corollaire suivant.

Corollaire 6.2 Soit \(A \) avec une seule ligne (\(M = 1 \)). On suppose que \(\tilde{A} \neq A \), que

\[
2k \cdot \Delta(\tilde{A}, A) = L
\]

avec \(k := \max_{ij} \|a_{ij}\|_0 \) et que les filtres de \(A \) sont à supports disjoints (3.9). Alors \(\|\tilde{A}\|_0 > \|A\|_0 \).

6.3.2 Un pessimisme excessif ?

Les contres-exemples construits aux Propositions 1 et 2, qui sont associées à des peignes de Dirac, sont très structurés. Ils fournissent le pire cas possible pour les bornes d’identifiabilité, mais les versions probabilistes du principe d’incertitude (voir par exemple [Tro08]) nous amènent à conjecturer pour des grandes valeurs de \(L \) que si les filtres parcimonieux sont tirés aléatoirement (par exemple pour une distribution Bernoulli-gaussienne), les garanties d’identifiabilité du Théorème 6.1 sont maintenues avec une probabilité \(O(L^{-\beta}) \) avec \(k < c(\beta) L / \log L \). Nous laissons cette remarque à des recherches futures.

6.4 Expériences numériques

6.4.1 Choix du critère \(\ell_p \)

En théorie, il est possible que le critère de non progression de l’algorithme de minimisation ne soit atteint qu’après un grand nombre d’itérations : en pratique, dans le cas de la “norme” \(\ell_0 \), l’algorithme s’arrête après une seule itération puisque la “norme” \(\ell_0 \) atteint sa valeur maximale.
6. Caractère bien posé du problème de permutation en analyse en composantes indépendantes

Pour une très grande majorité des permutations. Pour cette raison, on choisit de tester l’algorithme pour des quasi-normes \(\ell_p \), \(p > 0 \), qui sont moins localement constantes que la “norme” \(\ell_0 \). De manière surprenante les meilleures performances ne sont pas obtenues pour des petites valeurs de \(p \) mais plutôt pour \(p = 2 - \varepsilon \) avec \(\varepsilon > 0 \) petit. Pour \(p = 0 \) et \(p = 2 \) l’algorithme échoue totalement.

6.4.2 Simulations de Monte-Carlo

Pour différentes longueur de filtre \(L \), niveaux de parcimonie \(k \) et dimensions \(M, N \), on génère aléatoirement des matrices \(A \) constituées de filtres \(k \)-parcimonieux. Chaque filtre est tiré aléatoirement en choisissant a) un support de taille \(k \) uniformément b) des coefficients suivant des distributions gaussiennes indépendantes et identiquement distribuées.

Pour chaque configuration \((L, k, M, N)\), 200 matrices \(A \) sont tirées. Pour chaque \(A \), des permutations aléatoires indépendantes sont choisies pour estimer \(\hat{A} \). L’algorithme est alors appliqué et renvoyé \(\hat{A} \). La performance est mesurée par le SNR \(A \) entre \(A \) et \(\hat{A} \).

La Figure 6.1 montre l’histogramme des valeurs de SNR \(A \) obtenues pour \(L = 31, 1 \leq k \leq L, M \in \{1, 2\}, N \in \{2, 3, 4\}, p = 1 \). On voit que l’algorithme soit échoue totalement, soit estime la réponse avec une grande précision de l’ordre du bruit numérique (SNR \(A \) supérieur à 300 dB). Pour cette raison, dans la suite des expériences l’estimation est considérée parfaite quand le SNR \(A \) dépasse 100 dB.
6.4.3 Rôle du critère ℓ^p

La Figure 6.2 montre le résultat d’estimation en fonction du niveau de parcimonie k/L, pour plusieurs valeurs de critère ℓ_p, et pour des filtres de longueur $L = 131$, $N = 2$ sources et $M = 5$ canaux. La ligne pointillée verticale représente le seuil $k/L \leq \alpha(2)$ associé aux garanties d’identifiabilité (correspondant à un critère ℓ_0) du Théorème 6.1.

Au-delà de ce seuil l’algorithme peut encore réussir, mais avec une probabilité qui diminue rapidement quand le niveau de parcimonie k/L augmente. Là où le problème est garanti d’être bien posé, l’algorithme proposé réussit souvent mais peut encore échouer, surtout de manière surprenante pour des petites valeurs de k. Ce phénomène est très marqué pour $p < 1$ et disparaît pour $p > 1$. L’influence du choix de p sur les résultats d’optimisation gloutonne avec une quasi-norme ℓ_p, pour un problème bien posé au sens de la “norme” ℓ_0, est une question ouverte.

6.4.4 Rôle de la longueur du filtre L

On montre Figure 6.3 les résultats pour différentes valeurs de L avec $p = 1.9$, $M = N = 2$. On peut voir que la performance moyenne n’a pas l’air de dépendre de la primalité de L. Quand L augmente, la performance pour des “petites” valeurs de k/L augmente légèrement, mais le taux de succès se dégrade pour les “grandes” valeurs de k/L proches de $\alpha(2)$.
6.4.5 Rôle du nombre de canaux M

La Figure 6.4 montre les résultats pour des valeurs croissantes du nombre de canaux M, avec une longueur de filtre $L = 512$, $N = 2$ sources, $p = 1.9$. On peut voir que le taux de succès augmente significativement quand M augmente de $M = 1$ à $M = 2$, puis plus légèrement à mesure que M augmente. Les garanties théoriques d’identifiabilité sont les mêmes, l’algorithme semble tirer parti de la diversité inter canal.

6.4.6 Rôle du nombre de sources N

La Figure 6.5 montre le taux de succès en fonction de la parcimonie relative k/L, pour $N \in \{2, 3, 4\}$, avec $L = 31$, $M = 5$ et $p = 1.9$. La limite d’identifiabilité $k/L \leq \alpha(N)$ associée au Théorème 6.1 correspond aux lignes verticales en pointillés. Les résultats empiriques confirment que l’algorithme peut réussir au delà des garanties d’identifiabilité, mais avec un taux de réussite qui décroit rapidement. Là où les garanties théoriques tiennent, l’algorithme peut encore échouer, mais son taux de réussite est très haut si le taux de parcimonie est suffisamment faible par rapport aux bornes fournies par le Théorème 6.1.

6.4.7 Temps de calcul

On a vu au Chapitre 3 que le coût de l’algorithme glouton est de $O(N!MNL^2 \log_2 L)$ au lieu de $O((N!)^{L-1}MNL \log_2 L)$ pour la recherche exhaustive.
CHAPITRE 6. CARACTÈRE BIEN POSÉ DU PROBLÈME DE PERMUTATION EN ANALYSE EN COMPOSANTES INDÉPENDANTES

Figure 6.4 – Succès d’estimation des filtres en fonction de M, pour $p = 1.9$.

Figure 6.5 – Succès d’estimation des filtres en fonction de N, pour $p = 1.9$.
La Figure 6.6 montre le temps de calcul moyenné sur 200 tirages et des durées de filtres variables. La ligne rouge pointillée correspond à cette prédiction en utilisant le coût théorique d’estimation de la forme $C \times L^2 \log_2 L$ avec $C \approx 40$ nanosecondes.

6.5 Récapitulatif

Il est maintenant bien connu qu’un niveau suffisant de parcimonie peut être utilisé pour garantir le caractère bien posé des systèmes linéaires sous-déterminés : sans hypothèse de parcimonie, le problème admet un espace affine de solutions, qui intersecte en un seul point l’ensemble des vecteurs parcimonieux. Au delà de cette propriété d’identifiabilité, le déploiement des modèles parcimonieux et des méthodes d’inversion dans différents champs applicatifs est possible grâce à la relaxation convexe du problème NP-complet de minimisation ℓ^0, qui a donné lieu à des garanties de succès sous certaines hypothèses de parcimonie. La possibilité d’utiliser des algorithmes d’optimisation convexe rend le problème abordable.

Le problème considéré dans ce chapitre n’est pas un problème inverse. Même si c’est une simplification du problème de permutation et d’échelle rencontré en ACI, il reste a priori un problème beaucoup plus compliqué en terme de structure de l’ensemble des solutions : à chaque solution correspond une grande famille de solutions équivalentes par permutation globale.

Le fait que nous avons réussi à obtenir des résultats d’identifiabilité de la solution dans ce contexte est encourageant, mais c’est au mieux le début de l’histoire : en l’absence d’une solu-
tion au problème d’échelle, ce résultat reste théorique. Peut-on espérer étendre ces résultats au problème d’échelle ? La réponse à ces questions aura probablement un impact dans la recherche autour de la séparation de sources aveugle dans des mélanges multicanaux sous l’hypothèse de parcimonie des filtres.
Chapitre 7

Un écueil en déconvolution aveugle

Le but de la déconvolution aveugle est d’estimer la source $s \in \ell^2(Z^d)$ à partir d’une observation $x = a \ast s \in \ell^2(Z^d)$ quand le filtre $a \in \ell^2(Z^d)$ est inconnu. Les approches existantes ont tendance à converger vers un minimum trivial. Une explication propre au domaine de l’image [LWDF09] repose sur la forme du spectre du filtre du flou gaussien, et a été utilisée pour la mise au point de méthodes alternatives comme la marginalisation sur le filtre [FSH+06][BMDK12], en plus d’une étape de détection de contours [MK08], des pénalités qui dépendent du temps [SJA08], ou une repondération des a priori [KTF11]. Une autre intuition largement répandue est que ce problème est lié à l’ambiguité d’échelle et la non convexité de la fonction de coût.

Dans ce chapitre, nous fournissons deux nouvelles explications de ce phénomène.

Tout d’abord, nous montrons qu’une grande famille de fonctions de coût qui apparaissent naturellement dans le contexte du problème de déconvolution aveugle sont en fait fondamentalement impropre. La fonction de coût elle-même est responsable de l’échec de la méthode, et non l’algorithme utilisé pour la minimiser : tous ses minima globaux sont triviaux.

Ensuite, nous fournissons une étude empirique de la fonction de coût qui découle typiquement de l’exploitation d’un a priori de parcimonie en audio. Inspirés par la caractérisation du minimum ℓ_1 utilisé en apprentissage de dictionnaire [GS10], nous constatons que la solution voulue est un minimum local de la fonction de coût seulement si le filtre et la source sont tous les deux suffisamment parcimonieux. En plus de fournir une nouvelle interprétation à un phénomène connu, ces résultats peuvent permettre de construire des fonctions de coût améliorées en livrant des garanties sur leurs minima indépendamment de la stratégie choisie pour les minimiser.

Le Chapitre est organisé comme suit. Les fonctions de coût considérées sont décrites dans la Partie 7.1. Le résultat principal sur le minimum global est exposé dans la Partie 7.2. La Partie 7.3 est dédiée à l’étude locale d’un exemple de traitement du signal sonore.

Ce chapitre a fait l’objet d’une publication [BVG13]. La présentation suit la traduction de l’article, avec un plus grand niveau de détail. Notamment, l’application numérique de l’étude locale est plus rigoureuse.
7.1 Régularisation avec des a priori

On modélise l’observation \(x \in \ell^2(\mathbb{Z}^d) \) comme la convolution de la source \(s \in \ell^2(\mathbb{Z}^d) \) avec le filtre \(a \in \ell^2(\mathbb{Z}^d) \) plus un bruit additif \(e \), c’est-à-dire pour tout \(t \in \mathbb{Z}^d \) :

\[
x(t) = (a * s)(t) + e(t) := \sum_{\tau \in \mathbb{Z}^d} a(\tau)s(t - \tau) + e(t).
\]

(7.1)

Le problème de l’estimation aveugle de \(a \) et de \(s \) à partir de \(x \) est mal posé, une approche répandue pour y remédier est d’utiliser des a priori sur \(a \) et \(s \), qui mènent typiquement au problème d’optimisation régularisée du type

\[
\min_{a,s} \lambda \|x - a * s\|_2^2 + p(a, s)
\]

(7.2)

où la pénalité \(p(a, s) \) contient les a priori.

La mise au point et l’exploitation des a priori sur les signaux est un vaste domaine de recherche qui a fait ses preuves pour le traitement des problèmes inverses sous-déterminés. En particulier, il existe des méthodes de résolution dans le cas des quasi-normes \(\ell_p \|s\|_p \) et \(\|a\|_p \) avec \(p \leq 1 \) si \(a \) et \(s \) sont parcimonieux ou au moins “compressibles”.

En raison de l’ambiguïté d’échelle inhérente au problème de déconvolution aveugle, certaines pénalités naïves \(p(a, s) \) doivent être évitées. En particulier, il a été montré que c’est une mauvaise idée de n’utiliser qu’un a priori sur les sources en laissant un a priori uniforme sur le filtre (c’est-à-dire aucune régularisation sur \(a \)). En notant \(\| \cdot \| \) la régularisation sur \(s \), on obtient le problème d’optimisation :

\[
\min_{a,s} \lambda \|x - a * s\|_2^2 + C\|s\|.
\]

(7.3)

Une telle fonction déjà a été diagnostiquée par le passé comme dramatiquement sensible à l’ambiguïté d’échelle, à travers le résultat suivant.

\[\text{Lemme 7.1 [LWDF09, Claim 1]} \] Soit \(a_0, s_0 \in \ell^2(\mathbb{Z}^d) \). Le minimum global de

\[\mathcal{L} : (a, s) \mapsto \lambda\|a_0 * s_0 - a * s\|_2^2 + C\|s\|.
\]

(7.4)

n’est jamais atteint. Il existe \(a^n, s^n \) tel que

\[
\lim_{n \to \infty} s^n = 0, \quad \text{et} \quad \lim_{n \to \infty} \mathcal{L}(a^n, s^n) = 0.
\]

\[\text{Preuve: [Lemme 7.1]} \] Il suffit de remarquer que \(\lim_{n \to \infty} \mathcal{L}(na, \frac{1}{n}s) = 0 \).

En conséquence (7.3) n’a pas de solution. De plus, dans de nombreux problèmes physiques, les hypothèses de conservation d’énergie permettent d’éviter cette ambiguïté. Suite à ces remarques, on ne considère que des approches qui dépendent d’un a priori sur \(a \).

À partir de maintenant on considère que la régularisation \(\| \cdot \| \) sur \(s \) est une semi-norme invariante par translation.

\[\text{Définition 7.1 Une semi-norme invariante par translation} \ell^2(\mathbb{Z}^d) \text{ est une fonction} \| \cdot \| : \ell^2(\mathbb{Z}^d) \to \mathbb{R} \text{ qui satisfait} \forall u, v \in E\]

84
(i) \[\| u + v \| \leq \| u \| + \| v \| \]

(ii) \(\forall \lambda \in \mathbb{R}, \quad \| \lambda u \| = |\lambda| \| u \| \)

(iii) \(\forall k \in \mathbb{Z}, \quad \| u(\cdot - k) \| = \| u(\cdot) \| \)

A la différence des normes, les semi-normes autorisent des vecteurs non nuls \(u \) tels que \(\| u \| = 0 \).

On rencontre fréquemment ce type de pénalités dans la pratique. En traitement d’image [KTF11, FSH+06, BMDK12] on introduit typiquement un a priori de parcimonie sur le gradient porté par la semi-norme \(\| s \| = \| \nabla s \|_p \) avec \(p \in [0.5, 0.8] \). En traitement du signal audio [KNY09, KSR11] on utilise typiquement à partir de la matrice de TFCT \(\Phi \) un a priori de parcimonie dans le plan temps-fréquence et la pénalité associée est une norme invariante par translation \(\| s \| = \| \Phi^{\prime} s \|_p \).

Dans le cas d’un a priori de parcimonie sur le filtre, le problème de déconvolution se reformule comme

\[
\min_{a, s} \lambda \| x - a \ast s \|_2^2 + \| a \|_1 + C \| s \|.
\]

(P1)

On peut également utiliser une contrainte de normalisation sur \(a \), aboutissant à un problème différent

\[
\min_{a, s} \lambda \| x - a \ast s \|_2^2 + C \| s \| \quad \text{s.c. } \| a \|_1 = 1.
\]

(P2)

À noter qu’en traitement d’image, l’estimation du gradient de l’image au lieu de l’image elle-même est souvent l’objet d’un problème régularisé. Notre approche s’applique à une régularisation dans le domaine du gradient [SJA08, SDZ12, FSH+06, CL09], puisque c’est une variante de (P1)

\[
\min_{a, s} \lambda \| \nabla x - a \ast \nabla s \|_2^2 + \| a \|_1 + C \| \nabla s \|.
\]

(7.5)

Les formulations (P1)-(P2) sont relativement similaires au problème de factorisation de matrices en apprentissage de dictionnaire [GS10], sparse PCA [JOB10], non-negative matrix factorization [TST05], etc, où le but est de factoriser une matrice \(X \) en \(X = AS \) tout en incitant certaines propriétés sur les facteurs \(A \) et \(S \). Cependant, à la différence des approches de factorisation matricielle qui obtiennent souvent de bonnes performances en pratique, nous allons montrer que les fonctions de coûts qui apparaissent en (P1)-(P2) ont des propriétés fondamentalement problématiques. Bien qu’ils ne soient pas équivalents, les problèmes (P1) et (P2) échouent systématiquement à caractériser une solution non triviale, quelle que soit la valeur du paramètre \(C \) ou \(\lambda \).

7.2 L’écueil du minimum global

Soit un mélange \(x \), nous montrons ici que le minimum global de (P2) et celui de (P1) sont des reconstructions triviales, en ce sens que le filtre estimé est égal à une impulsion de Dirac. Soit \(\delta_0 \) l’impulsion de Dirac tel que \(\forall y \in \ell^2(\mathbb{Z}^d), \delta_0 \ast y = y \).
Théorème 7.1 Soit \(\| \cdot \| \) une semi-norme invariante par translation. Pour tout \(a, s \in \ell^2(\mathbb{Z}^d) \), \(0 < p \leq 1 \), et \(C > 0 \), il existe \(\mu_- , \mu^+ \in \mathbb{R}_+^* \) tel que \(\forall \mu \in [\mu_- , \mu^+] \)

\[
\| \mu \delta_0 \|_p + C \| \frac{1}{\mu} a * s \| \leq \| a \|_p + C \| s \|. \tag{7.6}
\]

Remarques :

— On peut étendre la proposition à un cas encore plus général : on peut considérer la famille de transformations linéaires \((T_t)_{t \in E}\) telle que

\[
\forall t \in \mathbb{Z} \, \quad x(t) = \sum_{\tau \in E} a(\tau) T_t(s)(\tau), \tag{7.7}
\]

et une norme \(\| \cdot \| \) invariante par ces transformations. Par exemple, le cas de la convolution circulaire \(x = a \otimes s \) de signaux de longueur finie de \(\mathbb{R}^T \) correspond à

\[
\forall t \in E \, \quad T_t(s)(\tau) = s(t - \tau \mod T) \tag{7.8}
\]

avec \(E = \{ 1, \ldots , T \} \).

— Si \(\| \cdot \| \) est une semi-quasinorme, c’est-à-dire qu’elle satisfait au lieu de (i)

\[
\| u + v \|_q \leq \| u \|_q + \| v \|_q
\]

pour \(q \geq 0 \), on obtient le même résultat à condition que \(p \leq q \), ce qui autorise à traiter le cas \(\| \cdot \| = \| \cdot \|_q \) avec \(0 < p \leq q \leq 1 \).

— Il n’y a pas de résultat d’unicité, mais si \(p < 1 \) ou si \(\| \cdot \| \) est strictement convexe, l’égalité dans (7.6) implique \(a = \delta_0 \) à un délai entier près (cf. preuve du Théorème 7.1)

Nous déduisons maintenant un corollaire utile dans le cas bruité, sans reconstruction exacte de \(x \), qui correspond aux situations pratiques décrites par le problème (P1).

Corollaire 7.1 Soit \(x \in \ell^2(\mathbb{Z}^d) \), \(0 < p \leq 1 \), \(C > 0 \), \(\lambda > 0 \). Il existe \(\mu \geq 0 \), \(\hat{a} \), \(\hat{s} \in \ell^2(\mathbb{Z}^d) \) tels que \((\mu \delta_0 , \frac{1}{\mu} \hat{a} * \hat{s}) \) est le minimum global de

\[
\mathcal{L} : (a, s) \mapsto \lambda \| x - a * s \|_2^2 + \| a \|_p + C \| s \|. \tag{7.9}
\]

Finalement, on montre que le problème (P2) a un minimum global trivial.

Corollaire 7.2 Soit \(x \in \ell^2(\mathbb{Z}^d) \), \(C > 0 \), \(0 < p \leq 1 \), \(\lambda > 0 \). Il existe \(\hat{a} \), \(\hat{s} \in \ell^2(\mathbb{Z}^d) \) tels que \((\delta_0 , \hat{a} * \hat{s}) \) est le minimum global de

\[
\mathcal{L} : (a, s) \mapsto \lambda \| x - a * s \|_2^2 + C \| s \| \quad s.c. \| a \|_1 = 1. \tag{7.10}
\]

De plus, dans le cas \(p < 1 \) ou quand \(\| \cdot \| \) est strictement convexe, le minimum global de (7.9) et (7.10) est unique. Nous détaillons ici la preuve du Théorème 7.1.

Preuve: [Théorème 7.1] Tout d’abord on minimise \(g : \mu \in \mathbb{R}_+^* \mapsto \| \mu \delta_0 \|_p + C \| \frac{1}{\mu} x \| \) et on obtient avec \(\hat{\mu} = \sqrt{\frac{C}{\| \delta_0 \|_p \| x \|}} \) le minimum \(g(\hat{\mu}) = 2 \sqrt{C \| \delta_0 \|_p \| x \|} = 2 \sqrt{C \| x \|} \).
En conséquence de l’invariance de $\| \cdot \|$ on obtient, pour $0 < p \leq 1$,

$$
\|a \ast s\|^p \leq \left(\sum_{\tau \in \mathbb{Z}^d} |a(\tau)| \cdot \|s(\cdot - \tau)\| \right)^p \quad (7.11)
$$

$$
= (\|a\|_1 \|s\|)^p \quad (7.12)
$$

$$
\leq \|a\|_p^p \|s\|^p \quad (7.13)
$$

$$
\|x\| \leq \|a\|_p \|s\| \quad (7.14)
$$

Si $p < 1$ l’inégalité (7.13) est stricte sauf si $a = \delta_0$ à un délai entier près. La stricte convexité de $\| \cdot \|$ restreint également les cas d’égalité de (7.11) au cas où a est un Dirac. La dernière inégalité fournit une borne supérieure à g :

$$
g(\mu) \leq 2\sqrt{C\|a\|_p \|s\|} \quad (7.15)
$$

$$
\leq \|a\|_p + C\|s\|. \quad (7.16)
$$

La dernière ligne utilise l’inégalité $\forall u, v \in \mathbb{R}, 2uv \leq u^2 + v^2$.

De plus, un large choix de scalaires μ satisfait la conclusion de la Proposition 7.1, c’est-à-dire $\mu \in [\|a\|_p + C\|s\| - \sqrt{\Delta}, \|a\|_p + C\|s\| + \sqrt{\Delta}]$, où $\Delta = \|a\|_p + C\|s\|^2 - 4\|x\|$. Le mélange trivial sans facteur d’échelle (δ_0, x) est moins pénalisé par la fonctions de coût que les valeurs initiales (a, s), pour les grandes valeurs de C. Formellement, l’inégalité (7.6) est satisfaite pour $\mu = 1$ et $C \geq 2\|\|s\| - 1 - \|a\|_p$.

\textbf{Preuve:} [Corollaire 7.1] Tout d’abord, \mathcal{L} est coercive, c’est-à-dire qu’elle tend vers $+\infty$ pour des grandes valeurs de a et s, et continue. Donc elle admet au moin un minimum global $\arg\min \mathcal{L} \neq \emptyset$. Soit \hat{a}, \hat{s} un minimum de \mathcal{L}. D’après la Proposition 7.1 il existe μ tel que $\mathcal{L}(\mu \delta_0, \frac{1}{\mu} \hat{a} \ast \hat{s}) \leq \mathcal{L}(\hat{a}, \hat{s})$, et $(\mu \delta_0, \frac{1}{\mu} \hat{a} \ast \hat{s}) \in \arg\min \mathcal{L}$.

\textbf{Preuve:} [Corollaire 7.2] Supposons que (\hat{a}, \hat{s}) est solution de (7.10), et rappelons (7.14), $C\|\hat{a} \ast \hat{s}\| \leq C\|\hat{a}\|_1 \|s\| = C\|s\|$. Alors pour (a, s) tel que $\|a\|_1 = 1$,

$$
\|x - \delta_0 \ast (\hat{a} \ast \hat{s})\|^2 + C\|\hat{a} \ast \hat{s}\| \leq \|x - a \ast s\|^2 + C\|s\|
$$

et $(\delta_0, \hat{a} \ast \hat{s})$ est aussi solution de (7.10).

\textbf{7.3 Minima locaux}

Résoudre globalement (P1) sans savoir que le minimum global est trivial est a priori un défi calculatoire, puisque la fonction de coût n’est pas convexe. Des problèmes d’optimisation similaires apparaissent dans le cadre de la factorisation matricielle comme la NMF parcimonieuse [TST05], l’analyse en composantes principales parcimonieuses [JOB10], et en ACI [BZJM06], et des algorithmes d’estimation alternée ont été mis au points. De tels algorithmes ne sont jamais garantis de converger vers un minimum global, au mieux vers un point stationnaire de (P1) [CW00]. Dans le cas de la déconvolution aveugle, puisque le minimum global est trivial, la convergence vers un minimum local peut en fait être plus que souhaitée : en supposant
que la solution recherchée est proche d’un minimum local \((a, s)\), on peut envisager d’exploiter d’autres informations pour initialiser l’algorithme proche d’un bassin d’attraction et converger vers une solution pertinente. Nous décrivons maintenant à partir d’un cas particulier comment vérifier expérimentalement que la solution est un minimum local. Les calculs qui suivent sont fortement inspirés de travaux sur l’apprentissage de dictionnaire [GS10].

7.3.1 Analyse locale de \((P1)\) dans le cas \(\ell_1\)

Il n’y a pas de minimum local en général, à moins que la constante \(C\) soit choisie prudemment. On peut déduire du Théorème 7.1 le résultat suivant :

Corollaire 7.3 Si \((\hat{a}, \hat{s})\) est un minimum local de

\[
(a, s) \mapsto \lambda \|x - a * s\|_2^2 + \|a\|_1 + C\|s\|,
\]

alors \(C = \frac{\|\hat{a}\|_1}{\|\hat{s}\|_1}\).

Puis, dans le cas particulier d’une pénalité \(\ell_1\) sur la source \(s\), \(\|s\| = \|\hat{s}\|_1\) où \(\hat{s} = \Psi s\) est obtenu en appliquant un isomorphisme à \(s\), on peut établir une caractérisation du minimum local. La fonction est convexe, une condition nécessaire et suffisante pour qu’un point soit minimum local est que

\[
0 \in \text{sous-différentiel de } f(a, s) = \|a\|_1 + C\|s\|.
\]

On partitionne la direction \(a\), et un réel \(\varepsilon > 0\). On remarque que

\[
\|a + \varepsilon a + \varepsilon a\|_1 = \|a\|_1 + \varepsilon \langle \text{signe}(a), a \rangle + \varepsilon \|a\|_1,
\]

puis en supposant \(\varepsilon\) suffisamment petit, les coefficients de \(a + \varepsilon a\) sont du même signe que ceux de \(a\), d’où

\[
\|a + \varepsilon a + \varepsilon a\|_1 = \|a\|_1 + \varepsilon \langle \text{signe}(a), a \rangle + \varepsilon \|a\|_1.
\]

Similairement, soit une source \(s\), et une direction \(h_a\). On partitionne la direction \(h_a\) dans le plan temps-fréquence, \(\Psi h_a = \hat{h}_a + h_{c,c}\) de sorte que les transformées \(h_a\) et \(h_{c,c}\) soient à support disjoints, et \(\hat{h}_a\) ait le support de \(\hat{s} = \Psi s\). On définit \(h_{c,c} = \Psi^{-1} \hat{h}_a\) et \(h_{c,c} = \Psi^{-1} \hat{h}_{c,c}\) qui ne sont plus à supports disjoints mais vérifient \(h_a = h_{a,c,a} + h_{a,c,c}\). On peut alors écrire

\[
\|s + \varepsilon h_a + \varepsilon h_{c,c}\| = \|\hat{s} + \varepsilon \hat{h}_a + \varepsilon \hat{h}_{c,c}\|_1 + \varepsilon \|\hat{h}_{c,c}\|_1.
\]

On obtient

\[
l_{\varepsilon} = \frac{f((a,s)+\varepsilon h_a)}{\varepsilon} - f((a,s))
\]

et

\[
l_{\varepsilon} = \frac{f((a,s)-\varepsilon h_a)}{\varepsilon} - f((a,s))
\]

Ainsi 0 est dans l’intervalle sous-différentiel si et seulement si

\[
\|\langle \text{signe}(a), h_a \rangle + C\langle \text{signe}(\hat{s}), \hat{h}_a \rangle\|_1 \leq \|h_{c,c}\|_1 + C\|\hat{h}_{c,c}\|_1.
\]
7.3.2 Formalisation du problème en optimisation convexe

Nous allons montrer qu’on peut réécrire (7.24) sous une forme plus concise : il existe deux matrices D, E et un vecteur c formés à partir du point a et s à tester, qui aboutissent typiquement [JGPZ10] à la condition nécessaire

$$\sup_{h \in \ker D} \frac{|\langle c, h \rangle|}{\|Eh\|_1} \leq 1,$$

(7.25)

où une inégalité stricte est une condition suffisante. Le terme de gauche de l’équation (7.25) peut être calculé à partir d’outils d’optimisation convexe, une fois reformulé. On obtient le vecteur c à partir du produit scalaire, en notant Ψ^* l’opérateur adjoint de Ψ dans (7.24)

$$\langle \text{signe}(a), h_a \rangle + C \langle \text{signe}(s), \hat{h}_s \rangle = |\langle \left(\begin{array}{c} \text{signe}(a) \\ C\Psi^*\text{signe}(s) \end{array} \right), h \rangle|.$$

(7.26)

On représente l’application linéaire $(h_a h_s) \mapsto (h_{a^c} h_{s^c})$ par la matrice E si bien que $\|h_{a^c}\|_1 + C\|h_{s^c}\|_1 = \|Eh\|_1$. En pratique, la matrice E est une projection sur le complémentaire des supports de a sur la composante des filtres, et la composée de la transformation des sources et de la projection $(\Gamma_{a^c}, \Gamma_{s^c})$ hors du support de (a, s) sur la composante des sources :

$$Eh = \left(\begin{array}{cc} \Gamma_{a^c} & 0 \\ 0 & C \Gamma_{s^c} \Psi \end{array} \right) \left(\begin{array}{c} h_a \\ h_s \end{array} \right) = \left(\begin{array}{c} h_{a^c} \\ C\Psi^*h_{s^c} \end{array} \right).$$

(7.27)

Cette remarque permet de tester numériquement la condition (7.24) dans toutes les directions du plan tangent, en n’utilisant que des outils classiques d’optimisation convexe.
7.3.3 Représentation temps-fréquence à coefficients réels : codage par MDCT

Afin d’exploiter la parcimonie temps-fréquence des sources, nous avons introduit la pénalité $\|\Phi s\|_1$. La transformation temps fréquence $s \mapsto \tilde{s} = \Phi s$ est bien une application linéaire, cependant \tilde{s} est à coefficients complexes. Le calcul (7.19)-(7.24) ne s’applique aux sources que si \tilde{s} est à coefficients réels.

On utilisera un codage par bande de fréquences, les Modified Discrete Cosine Transform (MDCT) [PB86]. C’est une transformation orthogonale à coefficients réels dans laquelle les signaux sonores sont parcimonieux [PBDG10]. Il existe plusieurs choix de fenêtres pour la MDCT qui favorisent la parcimonie des signaux sonores, pour cette étude nous nous contentons de fenêtres rectangulaires, et nous simulons la parcimonie sur des signaux aléatoires.

On note Ψ l’opérateur de la MDCT, tel que $\tilde{s} = \Psi s$, avec $\tilde{s} \in \mathbb{R}^L$, qu’on peut ranger dans un tableau de taille $\frac{T}{2} \times L$ pour visualiser le signal dans un plan temps-fréquence. L’opération est orthogonale, donc $\Psi^* \tilde{s} = s$, ce qui permet de remplacer l’adjoint dans (7.26) par l’opérateur inverse. En pratique, on peut calculer le vecteur c dans 7.25 sans expliciter Ψ.

7.3.4 Étude expérimentale

On veut tester la condition (7.25) dans une situation typique du traitement du signal audio. La fonction de coût utilise la matrice Ψ de MDCT décrite ci-dessus, pour $L = 32$, ainsi que la norme $\ell_1 \|s\| = \|\Psi s\|_1$ sur les sources, et la norme ℓ_1 sur les filtres.

Pour obtenir des signaux de longueur $T = 256$, nous générons aléatoirement et uniformément une paire de signaux gaussiens $a \in \mathbb{R}^T, s \in \mathbb{R}^T$, ainsi que deux supports choisis aléatoirement de tailles respectives k_a, k_s sur lesquels on fixe les coefficients à zéro, afin d’obtenir un niveau de parcimonie exacte $\rho_a = \|a\|_0, \rho_s = \|\Psi s\|_0$. On fixe $C = \|a\|_1 \|s\|_1$. L’estimation de la borne supérieure (7.25) est calculée avec CVX [GB12], un algorithme d’optimisation convexe, et nous présentons dans la Figure 7.1 le tableau des résultats. Le résultat indique que l’inégalité (7.25) est enfreinte pour des filtres et des sources non parcimonieux (grandes valeurs de ρ_a et ρ_s), alors que pour $\rho_a + \rho_s \leq 0.3$, la solution voulue est souvent un minimum local de (P1), même si elle ne peut pas être un minimum global.

Suivant le même procédé, on présente dans la Figure 7.1 le résultat pour une parcimonie en MDCT, c’est à dire $\|s\| = \|\Psi s\|_1$, avec $T = 256$ et $L = 32$. Le résultat est similaire, il faut un seuil de parcimonie plutôt fort $\rho_a + \rho_s \leq 0.3$ pour obtenir un minimum local.

7.4 Récapitulatif

Nous avons exploré quelques-unes des limitations théoriques du problème de déconvolution parcimonieuse pour plusieurs approches typiques. Les conséquences de cet écueil sont omniprésentes à la fois en traitement du signal sonore et d’image. Notre étude donne une nouvelle interprétation d’un problème bien connu expérimentalement, ainsi qu’une justification théorique du choix plutôt répandu de contraintes invariantes par changement d’échelle. Un exemple caractéristique est la régularisation parcimonieuse ℓ_1/ℓ_2 [KTF11] dans le domaine du
CHAPITRE 7. Un éclair en déconvolution aveugle

Figure 7.1 – Estimation de (7.25) en fonction de la parcimonie de \(a \) et de la MDCT de \(s \) : les zones noires sont des minima locaux.

Le gradient

\[
\min_{\alpha, \Lambda} \lambda \| \nabla x - \alpha \star \nabla s \|^2_2 + C \| \nabla s \|_1 \quad \text{s.t.} \quad \| \alpha \|_1 = 1,
\]

qui à notre connaissance n’admet pas de reconstruction triviale comme solution. Ce régulariseur peut toutefois ne pas être adapté à certains contextes, surtout en audio, et nos résultats pourraient permettre de mettre au point des fonctions de coût adaptées, en fournissant des garanties théoriques sur les minima indépendamment de l’algorithme utilisé pour leur résolution. Par ailleurs, l’étude locale prouve que de telles approches sont toujours pertinentes dans des conditions de parcimonie suffisantes. Un travail plus approfondi est nécessaire pour étendre nos résultats au cas multicanal, afin de traiter des problèmes de séparation de sources aveugle.
Conclusion
Chapitre 8

Conclusion et perspectives

Nous avons étudié dans cette thèse théoriquement et expérimentalement plusieurs fonctions de coût pour l’estimation des réponses acoustiques de salle dans différentes situations.

Conclusion

Le Chapitre 5 a permis de valider sur des données réelles l’apport de deux fonctions de coût, la régularisation parcimonieuse ℓ_1 et les pénalités pondérées par l’enveloppe exponentielle décroissante. Ces hypothèses sont déjà formulées dès les premiers travaux d’acoustique des salles [Kut00], notre apport est une validation de l’utilisation de ces a priori pour la résolution de problèmes inverses mal posés. Il résulte de cette étude une méthode pratique pour l’estimation simultanée des réponses de salles, utile pour l’accélération des mesures de calibration pour les grands systèmes de restitution spatialisée.

Le Chapitre 6 conclut l’étude théorique du problème de permutation en analyse en composantes indépendantes sous hypothèse de parcimonie, en supposant le problème d’échelle résolu. Nous avons fourni des garanties sous l’hypothèse de parcimonie des filtres multi-canaux et multi-sources : il existe un seuil de parcimonie en dessous duquel le filtre original minimise la “norme” ℓ_0 parmi toutes les permutations possibles des coefficients fréquentiels. Ce résultat est toujours vrai lorsque les filtres sont à supports disjoints, nous avons également étudié la possibilité de combiner les deux hypothèses. Nous nous sommes attachés à vérifier l’optimalité de ce seuil, en construisant des contre-exemples à tous les cas limites. Des simulations numériques apportent la possibilité d’utiliser ces garanties théoriques, ainsi qu’un résultat inattendu sur la performance de la relaxation aux normes ℓ_p avec $0 < p < 2$ dans l’algorithme d’optimisation combinatoire.

Le Chapitre 7 apporte une analyse globale et locale des pénalités pour l’estimation aveugle des réponses de salle par optimisation biconvexe. Le résultat négatif sur le minimum fournit une interprétation nouvelle à un écueil observé fréquemment dans la pratique en déconvolution d’image. L’analyse locale suggère la stabilité des solutions sous des contraintes de parcimonie : nous observons empiriquement des résultats positifs lorsque les sources et les filtres sont suffisamment parcimonieux dans une représentation donnée. Nous avons détaillé la mise en place des expériences menées pour illustrer la reproductibilité de cette étude, qui peut être étendue à
d’autres problèmes inverses avec régularisation parcimonieuse.

Perspectives

L’objectif global en séparation de source est surtout d’améliorer notre connaissance des enregistrements sonores. La traitement du signal sonore ces dernières décennies était focalisé sur le développement de modèles de signaux sonores, le succès de certains modèles à déjà permis de mettre en place un grand nombre d’applications pratiques. Or l’étude des différents modes d’acquisition est essentielle à la modélisation précise du signal sonore à partir des enregistrements. L’étude des conditions d’enregistrement à partir d’un enregistrement s’oriente aujourd’hui vers la reconnaisance, et simulation à la fois des sources et des conditions d’enregistrement : par exemple des travaux récents permettent de reconnaître forme de la salle dans des conditions contrôlées à partir d’un enregistrement sonore [DLV11].

Les possibilités qui s’ouvrent à la suite de ce travail sont articulées autour des applications de l’optimisation convexe et des représentations parcimonieuses à la séparation de sources.

Extension de l’étude du Chapitre 7 à un algorithme de séparation de sources

Notre étude du problème de déconvolution aveugle restreint le modèle de mélange au cas d’une seule source et d’un seul capteur. Un premier coup d’œil sur le cas multi-canal suggère que le minimum global n’est pas trivial en général. Sous certaines hypothèses, comme les contraintes sur les pôles communs, il existe déjà des résultats d’identifiabilité [XLT95], pour la résolution du système sans régularisation. Il s’agit dans un premier d’étendre ces résultats aux a priori de parcimonie sur les filtres, en complétant l’analyse locale et globale de la fonction de coût régularisée.

La séparation de sources sonores en milieu réverbérant est la motivation application principale de ce travail. La méthode de déconvolution étudiée au Chapitre 7 fournit déjà des résultats de séparation, localement. Une plus grande compréhension de la stabilité de l’optimisation est nécessaire pour mettre en place une méthode robuste qui combine les a priori de parcimonie sur les filtres et sur les sources.

Objectifs applicatifs à court terme

Les conclusions de l’étude des algorithmes que nous avons développés suggèrent des évolutions qui vont permettre d’approcher différents problèmes de traitement du signal.

Régularisations parcimonieuses invariantes par changement d’échelle pour la déconvolution aveugle

Les fonctions (non convexes) de type ℓ_1/ℓ_2 on déjà été étudiées pour la représentation parcimonieuse [KTF11], des algorithmes existants permettent d’envisager la régularisation des problèmes inverses. Elles apparaissent naturellement en conclusion de l’étude des minima globaux du Chapitre 7 : ces pénalités permettent d’exploiter l’a priori de parcimonie sans obtenir a priori un minimum global trivial à l’image des méthodes de maximum de kurtosis [GMF01].
Notre apport serait d’utiliser ces fonctions de coût pour estimer point par point la réponse de salle plutôt que ses caractéristiques statistiques, en vue d’un algorithme de déréverbération.

Information inter-canale pour l’estimation simultanée des filtres

En conséquence de la nature de la fonction de coût associée au problème, la méthode d’estimation simultanée des filtres présentée dans le Chapitre 5 traite indépendamment chaque canal. Il existe de nombreux travaux qui prennent en compte l’information inter-canale [DVG11], à travers la localisation des sources ponctuelles, l’inférence de l’étendue spatiale des sources étalées. La combinaison de ces méthodes est susceptible de renforcer l’a priori sur la nature des filtres, et de faciliter leur estimation pour des sources encore plus courtes.

Un algorithme d’optimisation combinatoire pour le problème de permutation

L’aspect combinatoire du problème de permutation rend difficile l’utilisation des résultats théoriques en grande dimension. L’algorithme glouton proposé fonctionne, sans qu’on ait apporté de preuve de convergence. L’étude de la convergence de ce type d’algorithme reste à faire, d’autant plus que les expériences menées laissent une question en suspens : la relaxation ℓ_p obtient les meilleurs résultat pour $p = 2 - \varepsilon$, ce qui va contre l’intuition habituelle en minimisation ℓ_0.

À plus long terme, il paraît possible de développer un algorithme de recherche de permutation en passant par l’optimisation sur les matrices bistochastiques [SK67], à l’image des résultats obtenus en théorie des graphes [KMT11].

Enjeux théoriques à long terme

Une meilleure compréhension des fonctions de coût ouvre la porte à des rapprochement entre plusieurs défis théoriques.

Lien entre la déconvolution aveugle et le problème d’échelle en ACI

L’étude des fonctions de coût associées au problème de déconvolution aveugle mono-canal et mono-source peut être vue comme une approche du problème d’échelle en ACI. En effet, en passant dans le domaine fréquentiel la convolution devient une multiplication terme à terme : trouver a, s qui vérifie $x = a \ast s$ à partir de x revient à résoudre un problème d’échelle entre les coefficients fréquentiels de a et de s.

Ainsi, l’étude des minima locaux fournit une première exploration d’une solution aveugle au problème d’échelle : nous avons montré empiriquement la possibilité de retrouver le facteur d’échelle sous des hypothèses de parcimonies suffisamment fortes.

Interprétation en terme d’apprentissage de dictionnaire

Un des défis théoriques posés par l’étude des représentations parcimonieuse est l’apprentissage de dictionnaire. On peut voir le problème de séparation de sources comme un problème
d’apprentissage de dictionnaire, si les sources séparées jouent le rôle de dictionnaire, l’estimation des filtres parcimonieux est exactement un problème de représentation parcimonieuse. L’étude des liens entre le problème d’identifiabilité des dictionnaires et la séparation de sources peut apporter des garanties à nos algorithmes.
Annexe A

Calcul du gradient de \mathcal{L}

Le calcul $\nabla \mathcal{L}$ repose sur celui d’un opérateur adjoint du produit matriciel de convolution tronquée $\ast_{[0,T-1]}$.

La convolution par des réponses de salles est causale. On peut voir cette convolution dans $\ell^2(\mathbb{Z})$, avec des signaux à supports finis. Pour $x, y \in \ell^2(\mathbb{Z})$ on note \ast la convolution usuelle

$$x \ast y(\tau) = \sum_{t \in \mathbb{Z}} x(t) y(\tau - t). \quad (A.1)$$

Pour $T \in \mathbb{N}$, on définit l’opérateur de troncature :

$$\mathbb{R}^T \rightarrow \mathbb{R}^T, \quad P_T^*: (x_t)_{t \in \mathbb{Z}} \mapsto (x_t)_{0 \leq t \leq T-1} \quad (A.2)$$

et son adjoint, l’opérateur zero-padding bilatéral

$$\mathbb{R}^T \rightarrow \mathbb{R}^\mathbb{Z}, \quad P_T: (x_0, \ldots, x_{T-1}) \mapsto (\ldots, 0, x_0, \ldots, x_{T-1}, 0, \ldots). \quad (A.3)$$

On considère $x \in \mathbb{R}^T$, $s \in \mathbb{R}^T$, $a \in \mathbb{R}^K$. La définition du produit de convolution tronquée $\ast_{[0,T-1]}$ est

$$a \ast_{[0,T-1]} s = P_T^*(P_K(a) \ast P_T(s)). \quad (A.4)$$

Pour $x, s, a \in \ell^2(\mathbb{Z})$, en notant $\bar{s}(t) = s(-t), t \in \mathbb{Z}$, il vient :

$$\langle x, a \ast s \rangle = \langle x \ast \bar{s}, a \rangle \quad (A.5)$$

On peut alors écrire

$$\langle x, a \ast_{[0,T-1]} s \rangle = \langle x, P_T^*(P_K(a) \ast P_T(s)) \rangle \quad (A.6)$$

$$= \langle P_T(x), P_K(a) \ast P_T(s) \rangle$$

$$= \langle P_T(x) \ast P_T(s), P_K(a) \rangle$$

$$= \langle P_K^* \left(P_T(x) \ast P_T(s) \right), a \rangle.$$
en utilisant la notation (A.5).

Il reste à exprimer $P_K^* (P_T(x) * P_T(s))$ comme une convolution tronquée. Puisque $P_T(s)$ est porté par $[0, T - 1]$, son renversement temporel $P_T(s)$ a son support dans $[-(T - 1), 0]$. On définit $s^* \in \mathbb{R}^T$ par $s^*(t) := s(T - 1 - t), 0 \leq t \leq T - 1$. Nous avons $P_T(s) = \delta_{-(T-1)} * P_T(s^*)$, on peut donc écrire

$$P_K^* \left(P_T(x) * P_T(s) \right) = P_K^* \left(\delta_{-(T-1)} * P_T(x) * P_T(s^*) \right)$$

où la dernière égalité vient du fait que $P_K^* (\delta_{-(T-1)} * u)$ est la restriction de la suite $u \in \ell^2(\mathbb{Z})$ à l’intervalle $[T - 1, (T - 1) + (K - 1)]$.

La cas multi-canal et multi-sources $M, N \geq 1$ s’obtient maintenant directement. Pour $1 \leq n \leq N$ on définit $S_n^* \in \mathbb{R}^T$ le renversement temporel de s_n, c’est-à-dire, pour $0 \leq t \leq T - 1$, $S_n^*(t) = s_n(T - 1 - t)$, et $S^* = (S_1^*, \ldots, S_N^*)$. En utilisant ces notations et le calcul précédent on obtient

$$\langle X, A \ast_{[0,T-1]} s \rangle = \left\langle \begin{pmatrix} X_1 \\ \vdots \\ X_M \end{pmatrix} \ast_{[T-1,T+K-2]} (S_1^*, \ldots, S_N^*), A \right\rangle$$

$$= \langle X \ast_{[T-1,T+K-2]} S^*, A \rangle.$$

(A.8)
Annexe B

Preuves du Chapitre 6

B.1 Peignes de Dirac

Soient $p, q \geq 1$ deux entiers et $L = pq$ leur produit. Le peigne de Dirac unitaire avec q pics et de pas p, noté x_p, est le vecteur de \mathbb{C}^L défini par

$$x_p[t] = \frac{1}{\sqrt{q}}$$

si $t \equiv 0[p]$, $x_p[t] = 0$ sinon. Sa transformée de Fourier est le peigne de Dirac unitaire à p pics et de pas q:

$F_L(x_p) = x_p$.

Pour $0 \leq n < p$ un indice entier de translation et $0 \leq m < q$ un indice de modulation, on peut définir le peigne de Dirac translaté et modulé $x_{p,n,m} = T_n M_m x_p$ où T_n est une translation circulaire de n coefficients, et M_m une modulation en fréquence $M_m[u][t] := u[t] \cdot e^{2i\pi mt/L}$.

On peut vérifier que la famille $\{x_{p,n,m}\}_{0 \leq n < p, 0 \leq m < q}$ est une base orthogonale de \mathbb{C}^L.

B.2 Preuve de la Proposition 1

On se contente de construire un exemple où $A = [\alpha, \beta]$ est une matrice de filtres 1×2. L'extension à une matrice A de taille $M \times N \times L$ est triviale en ajoutant des colonnes parcimonieuses qui sont différentes de α et β, et en dupliquant la première rangée.

Nous allons exploiter les peignes de Dirac. Soit $a = w_{k,0,0}$, $b = -w_{k/L,2k,0}$. Les filtres a et b sont à supports disjoints et vérifient $\|a\|_0 = \|b\|_0 = k$. Puisque $a - b = \sqrt{2} w_{2k,0,0}$ on a $a[\omega] = b[\omega]$ dès que $\omega \neq 0[2k]$. Ainsi, en permutant les transformées de Fourier de a et de b sur les $L/2k$ fréquences $\{\omega = 2kr, 0 \leq r < L/2k\}$ on obtient $\tilde{a} = b$ et $\tilde{b} = a$. Pour $u \in \mathbb{C}^L$ on définit les perturbation α et β de a et b

$$\begin{cases}
\alpha := a + u \\
\beta := b + T_{L/2}u
\end{cases}$$

avec la permutation circulaire $T_{L/2}$. En remarquant que pour $\omega = 2kr$

$$(T_{L/2}u)[\omega] = e^{\frac{2i\pi(L/2)\omega}{L}}u[\omega] = e^{2i\pi kr}u[\omega] = u[\omega]$$
on obtient après permutation des transformées de Fourier de α et β aux fréquences $\omega = 2kr$, $0 \leq r < L/2k$,

$$\begin{cases} \hat{\alpha} = b + u \\ \hat{\beta} = a + T_{L/2}u \end{cases}$$

On choisit le vecteur u nul partout à deux exceptions près $u[0] := -a[0]$, $u[\frac{L}{2k}] := -b[\frac{L}{2k}]$. Puisque $T_{L/2}u \neq u$ et $a \neq b$, on a $\{\alpha, \beta\} \neq \{\hat{\alpha}, \hat{\beta}\}$ et $\hat{A} \neq A$. De plus, $\Delta(A, A) = L/2k$.

Enfin, puisque les vecteurs sont constitués de k coefficients de même amplitude, $\|\alpha\|_0 = \|\beta\|_0 = \|\hat{\alpha}\|_0 = \|\hat{\beta}\|_0 = k$, et pour tout $0 < p \leq \infty \|\alpha\|_p = \|\beta\|_p = \|\hat{\alpha}\|_p = \|\hat{\beta}\|_p$. En particulier, $\|\hat{A}\|_p = \|A\|_p$, $0 \leq p \leq \infty$. □

B.3 Preuve de la Proposition 2

On répète la construction de la preuve de la Proposition 1 en partant de peignes de Dirac $a = w_{k',0}b = -w_{k',L/2k,0}$. Puisque $k' < k \leq L/2$, on a $\ell := k - k' \leq L/2 - k'$ et l'on peut choisir un vecteur ℓ-parcimonieux u de support disjoint de celui de $w_{k'}$ et tel que $T_{L/2}u$ et u ont des supports disjoints. Les quatre vecteurs $\{a, b, u, T_{L/2}u\}$ ont des supports disjoints, puisque α et β ont des supports disjoints, $\{\alpha, \beta\} \neq \{\hat{\alpha}, \hat{\beta}\}$ et $\hat{A} \neq A$. De plus, $\Delta(A, A) = L/2k$. Enfin, on a $\|\alpha\|_0 = \|\beta\|_0 = \|\hat{\alpha}\|_0 = \|\hat{\beta}\|_0 = k' + \ell = k$, et la quasi-norme ℓ_p de ces vecteurs est aussi égale $\|\hat{A}\|_p = \|A\|_p$, $0 \leq p \leq \infty$. □

B.4 Preuve de la Proposition 3

Par hypothèse, $\hat{A} \neq A$ donc il existe des indices i, j tels que $a_{ij} \neq \hat{a}_{ij}$. Pour de tels i, j, puisque $\|a_{ij}\|_0 = \|\hat{a}_{ij}\|_0$, chacune des inégalités (6.5)-(6.8) doit donc être une égalité. En conséquence : $\|a_{ij}\|_0 = \|\hat{a}_{ij}\|_0 = k'; 2k$ divise L et $\Delta = L/2k$; le vecteur non nul $b_{ij} := \hat{a}_{ij} - a_{ij}$ doit être un cas d’égalité du principe d’incertitude ℓ_0 avec $\|b_{ij}\|_0 = 2k$ et $\|F_\ell b_{ij}\|_0 = L/2k$. Il en résulte [Tao05] que b_{ij} est proportionnel à un peigne de Dirac modulé et translaté w_{2k} constitué de $2k$ Diracs espacés de $L/2k$ échantillons : il existe un scalaire $\gamma_{ij} \neq 0$, et deux entiers $0 \leq n_{ij} < L/2k$, $0 \leq m_{ij} < 2k$ tels que

$$b_{ij} = \gamma_{ij} \cdot w_{2k,n_{ij},n_{ij}}.$$

De plus comme $\|a_{ij}\|_0 = \|\hat{a}_{ij}\|_0 = k$ et $\|\hat{a}_{ij} - a_{ij}\|_0 = 2k$, les filtres \hat{a}_{ij} et a_{ij} ont des supports disjoints de taille k. Ainsi, il sont des restrictions de b_{ij} (resp. de $-b_{ij}$) à leurs supports respectifs.

On définit

$$E_{i,n,m} := \{j \in E_i, n_{ij} = n, m_{ij} = m\}.$$

Comme dans la preuve du Théorème 3.2 au Chapitre 3 démontré dans [Sud11], l’égalité $\sum_j \hat{a}_{ij} = \sum_j a_{ij}$ est vraie, ce qui implique $\sum_{j \in E_i} b_{ij} = \sum_j b_{ij} = 0$. En remplaçant les produits scalaires de la base orthogonale des peignes de Diracs $w_{2k,n,m}$, $0 \leq n < L/2k$, $0 \leq m < 2k$, on obtient

$$\sum_{j \in E_{i,n,m}} \gamma_{ij} = 0,$$

(B.1)
Puisque $\gamma_{ij} \neq 0$, quand $E_{i,n,m}$ est non vide il contient au moins deux indices distincts. En utilisant l’hypothèse des supports disjoints pour $j, j' \in E_{i,n,m}$, $j \neq j'$, les filtres originaux a_{ij} et $a_{ij'}$ sont à supports disjoints. De plus, on sait que ces supports sont contenus dans le support de $w_{2k,n,m}$ qui est de taille $2k$, ainsi

$$\sharp E_{i,n,m} \cdot k \leq k \sum_{j \in E_{i,n,m}} \|a_{ij}\|_0 \leq 2k.$$

Finalement, quand $E_{i,n,m}$ est non vide il contient exactement deux éléments distincts : $E_{i,n,m} = \{j, j'\}$ avec $j \neq j'$.

De plus, on remarque que : a) a_{ij} et $a_{ij'}$ sont à supports disjoints de taille k qui sont des sous espaces du support de taille $2k$ de $w_{2k,n,m}$; b) a_{ij} et \tilde{a}_{ij} ont la même propriété. Il en résulte que \tilde{a}_{ij} et $a_{ij'}$ ont le même support, disjoint de a_{ij}. De même, a_{ij} a le même support que $\tilde{a}_{ij'}$. Enfin, l’équation (B.1) se réécrit $\gamma_{ij} + \gamma_{ij'} = 0$, et implique $b_{ij} + b_{ij'} = 0$, c’est-à-dire $\tilde{a}_{ij} + \tilde{a}_{ij'} = a_{ij'} + a_{ij}$. On conclut que $\tilde{a}_{ij} = a_{ij'}$ et $\tilde{a}_{ij'} = a_{ij}$.

□
Bibliographie

[Don06] D.L. Donoho. For most large underdetermined systems of linear equations the minimal ℓ_1-norm solution is also the sparsest solution. Communications on pure and applied mathematics, 59(6) :797–829, 2006.

BIBLIOGRAPHIE

Table des figures

<table>
<thead>
<tr>
<th>N°</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Processus de mélange acoustique en milieu réverbérant.</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Squelette d’une réponse de salle (basé sur une illustration de [CJ10]).</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Représentation temps-fréquence de l’enregistrement obtenu après l’activation de deux sources par des sine sweeps entrelacés tirée de [MBL07]. Les coefficients non nuls sont en noir.</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Résultats de correction de permutation en fonction de la parcimonie des filtres k et de la taille Δ des permutations [BSG11].</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Un enregistrement de voix chantée vu dans le plan temps-fréquence. Les coefficients non nuls sont en noir.</td>
<td>40</td>
</tr>
<tr>
<td>5.1</td>
<td>Visualisations de l’enveloppe exponentielle d’une réponse impulsionnelle de salle.</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>Reproduction de l’illustration de la méthode des sources images [AB79].</td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparaison des modèles statistiques (5.5) à (5.8) sur une famille de réponses de salles synthétisées avec $t_R = 250$ ms.</td>
<td>53</td>
</tr>
<tr>
<td>5.4</td>
<td>Performance moyenne d’estimation de A sur dix enregistrements simulés de trois sources, en fonction de la durée du signal.</td>
<td>57</td>
</tr>
<tr>
<td>5.5</td>
<td>Installation à l’IRISA pour une expérience de mesure simultanée des réponses de salles.</td>
<td>58</td>
</tr>
<tr>
<td>5.6</td>
<td>Rapport signal-à-bruit $\text{SNR}A$ par bandes de fréquences entre les réponses estimées par $\mathcal{P}{1,\rho}$ sur la source 2 et la vérité terrain pour $N = 4, T = 0.45 T_{\text{crit}}$...</td>
<td>62</td>
</tr>
<tr>
<td>5.7</td>
<td>Vue logarithmique d’une des réponses estimées par $\mathcal{P}{1,\rho}$ pour $T = 0.45 T{\text{crit}}$, comparée à la vérité terrain.</td>
<td>63</td>
</tr>
<tr>
<td>5.8</td>
<td>Rôle du paramètre de l’enveloppe t_R sur la précision des réponses estimées pour $T = 0.45 T_{\text{crit}}$.</td>
<td>64</td>
</tr>
<tr>
<td>5.9</td>
<td>Performance des différences pénalités en fonction de la durée T des enregistrements.</td>
<td>65</td>
</tr>
<tr>
<td>5.10</td>
<td>Rôle du paramètre λ sur la précision des réponses obtenues avec $\mathcal{P}_{1,\rho}$ pour différentes durées T des enregistrements.</td>
<td>65</td>
</tr>
<tr>
<td>6.1</td>
<td>Histogramme de SNR_A entre la permutation estimée \hat{A} et l’original A.</td>
<td>77</td>
</tr>
<tr>
<td>Tableau des figures</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.2 Succès d’estimation des filtres en fonction de p, $0 \leq p \leq 1.9.$</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>6.3 Succès d’estimation des filtres en fonction de L, pour $p = 1.9.$</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>6.4 Succès d’estimation des filtres en fonction de M, pour $p = 1.9.$</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.5 Succès d’estimation des filtres en fonction de N, pour $p = 1.9.$</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.6 Temps de calcul de l’algorithme de recherche de permutation en fonction de la longueur L du filtre.</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>7.1 Estimation de (7.25) en fonction de la parcimonie de a et de la MDCT de s: les zones noires sont des minima locaux.</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>